数学奥赛辅导 第七讲
初中数学竞赛辅导讲义及习题解答 含答案 共30讲 改好278页
初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手第一讲 走进追问求根公式形如()的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。
而公式法是解一元二次方程的最普遍、最具有一般性的方法。
求根公式内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。
降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。
解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。
【例题求解】【例1】满足的整数n 有 个。
思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。
【例2】设、是二次方程的两个根,那么的值等于( )A 、一4B 、8C 、6D 、0思路点拨:求出、的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如,。
【例3】 解关于的方程。
思路点拨:因不知晓原方程的类型,故需分及两种情况讨论。
人教七年级上学期竞赛入门辅导讲义,共十讲,很实用
又如7007700-14=686,68-12=56(能被7整除)
能被11整除的数的特征:
①抹去个位数②减去原个位数③其差能被11整除
如1001100-1=99(能11整除)
又如102851028-5=1023102-3=99(能11整除)
二、例题
例1已知两个三位数328和2x9的和仍是三位数5y7且能被9整除.求x,y
第一讲数的整除
一、内容提要:
如果整数A除以整数(B≠0)所得的商A/B是整数,那么叫做A被B整除.
0能被所有非零的整数整除.
一些数的整除特征
除数
2或5
4或25
8或125
3或9
11
能被整除的数的特征
末位数能被2或5整除
末两位数能被4或25整除
末三位数能被8或125整除
各位上的数字和被3或9整除(如771,54324)
数和最犬的公约数.
6.公约数只有1的两个正整数叫做互质数(例如15与28互质).
7.在有余数的除法中,
被除数=除数×商数+余数若用字母表示可记作:
A=BQ+R,当A,B,Q,R都是整数且B≠0时,A-R能被B整除
例如23=3×7+2则23-2能被3整除.
二、例题
例1写出下列各正整数的正约数,并统计其个数,从中总结出规律加以应用:
9从1到100这100个自然数中,能同时被2和3整除的共_____个,
能被3整除但不是5的倍数的共______个.
10由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不
能被3整除的数共有几个?为什么?
11己知五位数1234A能被15整除,试求A的值.
数学奥林匹克专题讲座
数学奥林匹克专题讲座
数学奥林匹克专题讲座第01讲数论的方法技巧(上)数学奥林匹克专题讲座第02讲数论的方法技巧(下)数学奥林匹克专题讲座第03讲奇偶分析
数学奥林匹克专题讲座第04讲整数的分拆
数学奥林匹克专题讲座第05讲有趣的数字
数学奥林匹克专题讲座第06讲与年号有关的竞赛题
数学奥林匹克专题讲座第07讲图形与面积
数学奥林匹克专题讲座第08讲_立体图形
数学奥林匹克专题讲座第09讲列方程解应用题
数学奥林匹克专题讲座第10讲应用问题选讲
数学奥林匹克专题讲座第11讲计数的方法与原理
数学奥林匹克专题讲座第12讲染色和赋值
数学奥林匹克专题讲座第13讲抽屉原理
数学奥林匹克专题讲座第14讲估计与估算
数学奥林匹克专题讲座第15讲离散最值问题
数学奥林匹克专题讲座第16讲枚举、归纳与猜想数学奥林匹克专题讲座第17讲数学方法选讲(上)数学奥林匹克专题讲座第18讲数学方法选讲(下)。
初中数学奥林匹克竞赛教程
初中数学奥林匹克竞赛教程初中数学竞赛大纲(修订稿)数学竞赛对于开发学生智力,开拓视野,促进教学改革,提高教学水平,发现和培养数学人才都有着积极的作用。
目前我国中学生数学竞赛日趋规范化和正规化,为了使全国数学竞赛活动健康、持久地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《初中数学竞赛大纲(修订稿)》以适应当前形势的需要。
本大纲是在国家教委制定的九年义务教育制“初中数学教学大纲”精神的基础上制定的。
《教学大纲》在教学目的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性。
”具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的数学才能”,“要重视能力的培养……,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。
同时,要重视培养学生的独立思考和自学的能力”。
《教学大纲》中所列出的内容,是教学的要求,也是竞赛的要求。
除教学大纲所列内容外,本大纲补充列出以下内容。
这些课外讲授的内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,处理好普及与提高的关系,这样才能加强基础,不断提高。
1、实数十进制整数及表示方法。
整除性,被2、3、4、5、8、9、11等数整除的判定。
素数和合数,最大公约数与最小公倍数。
奇数和偶数,奇偶性分析。
带余除法和利用余数分类。
完全平方数。
因数分解的表示法,约数个数的计算。
有理数的表示法,有理数四则运算的封闭性。
2、代数式综合除法、余式定理。
拆项、添项、配方、待定系数法。
部分分式。
对称式和轮换对称式。
3、恒等式与恒等变形恒等式,恒等变形。
整式、分式、根式的恒等变形。
恒等式的证明。
4、方程和不等式含字母系数的一元一次、二次方程的解法。
一元二次方程根的分布。
含绝对值的一元一次、二次方程的解法。
含字母系数的一元一次不等式的解法,一元一次不等式的解法。
高中数学奥赛赛前辅导
第一讲 集合与函数综合问题例1、数集M 由2003个不同的实数组成,对于M 中任何两个不同的元素a 和b,数2a +M 中任何一个数a,(2003年俄罗斯数学奥林匹克试题)分析:欲证证明:设a ,b ,c 是数集M 中任意三个两两不同的元素,由题设知2222a b c c ++++都是有理数,于是22((()(1(2)2a b a b a b +-+=-+= 是有理数.22((c c +-+=是有理数,从而1(2)2是有理数,进而11((22=+是有理数.例2、称有限集S 的所有元素的乘积为S 的“积数”.给定数集111,,,.23100M ⎧⎫=⎨⎬⎩⎭求数集M 的所有含偶数个元素的子集的“积数”之和.分析:数集M 的所有子集的积数之和为111(1)(1)(1)1.23100+++- 设数集M 的所有含偶数个元素的子集的积数和为x ,所有含奇数个元素的子集的积数之和为y ,则111(1)(1)(1) 1.23100x y +=+++- 只需再建立一个关于x ,y 的方程,就可解出x ,y .解答:设数集M 的所有含偶数个元素的子集的积数之和为x ,所有含奇数个元素的子集的积数之和为y ,则111(1)(1)(1)1,23100111(1)(1)(1)1,2310099,299.1004851.200x y x y x y x y x +=+++--=----+=-== 又所以解得例3、设集合S n ={1,2,…,n}.若X 是S n 的子集,把X 中的所有数的和称为X 的“容量”(规定空集的容量为0).若X 的容量为奇(偶)数,则称X 为S n 的奇(偶)子集.(1)求证:S n 的奇子集与偶子集个数相等;(2)求证:当n ≥3时,S n 的所有奇子集的容量之和与所有偶子集的容量之和相等; (3)当n ≥3时,求S n 的所有奇子集的容量之和.(1992年全国高中数学联赛试题)分析:要证明两个集合的元素的个数一样多,一种方法是直接把这两个集合的元素个数算出来,另一种方法是在这两个集合之间建立一个一一对应.本题我们将用后一种方法来解.解答:(1)设A 是S n 的任一奇子集,构造映射f 如下:{1},1;{1},1.A A A A A A -∈∉ 若若(注:A —{1}表示从集合A 中去掉1后得到的集合) 所以,映射f 是将奇子集映为偶子集的映射.易知,若A 1,A 2是S n 的两个不同的奇子集,则f (A 1)≠f (A 2),即f 是单射. 又对S n 的每一个偶子集B ,若1∈B ,则存在A =B \{1},使得f (A )=B ;若1B ∉,则存在{1},A B = 使得f (A )=B ,从而f 是满射.所以,f 是S n 的奇子集所组成的集到S n 的偶子集所组成的集之间的一一对应,从而S n 的奇子集与偶子集个数相等,故均为11222n n -= 个.(2)设a n (b n )表示S n 中全体奇(偶)子集容量之和. 若n (≥3)是奇数,则S n 的奇子集由如下两类:(1)S n -1的奇子集;(2)S n -1的偶子集与集{n }的并,于是得a n =a n -1+(b n -1+n ²2n -2), ①又S n 的偶子集可由S n -1的偶子集和S n -1的奇子集与{n }的并构成,所以b n = b n -1+(a n -1+n ²2n -2), ② 由①,②,便得a n = b n . 若n (≥4)是偶数,同上可知a n =a n -1+(a n -1+n ²2n -2),b n = b n -1+(b n -1+n ²2n -2),由于n -1是奇数,由上面已证a n -1= b n -1,从而a n = b n . 综上即知,a n = b n ,n =3,4…(3)由于S n 的每一个元素均在2n -1个S n 的子集中出现,所以,S n 的所有子集容量之和为2n -1(1+2+…+n )=2n -2n (n +1).又由(2)知,a n =b n ,所以2312(1)2(1).2n n n a n n n n --=+=+说明(2)的证明中,建立了递推关系.这也是解决“计数”问题的一个有效方法. 例4、设A 是集合S ={1,2,…1000000}的一个恰有101个元素的子集.证明:在S中存在数t 1,t 2,…t 100,使得集合{|},1,2,,100j j A x t x A j =+∈= 中,每两个的交集为空集.(2003年国际数学奥林匹克试题)证明:考虑集合D ={x -y |x ,y ∈A },则||≤101100110101.D ⨯+=若i j A a ≠∅ ,设i j a A A ∈ ,则a =x +t i ,a=y +t j ,其中x ,y ∈A ,则t i -t j =y -x ∈D .若t i -t j ∈D ,即存在x ,y ∈A ,使得t i -t j =y -x ,从而x +t i = y +t j ,即.i j A A ≠∅ 所以,i j A A ≠∅ 的充要条件是t i -t j ∈D .于是,我们只需在集合S 中取出100个元素,使得其中任意两个差都不属于D .下面用递推方法来取出这100个元素.先在S 中任取一个元素t 1,再从S 中取一个t 2,使得122{|}.t t D t x x D +=+∈∈这是因为取定t 1后,至多有10101个S 中的元素不能作为t 2,从而在S 中存在这样的t 2.若已有k (≤99)个S 中的元素t 1,t 2,…,t k 满足要求,再取t k +1,使得t 1,…,t k 都不属于t k +1+D ={ t k +1+x |x ∈D },这是因为t 1,t 2,…,t k 取定后,至多有10101k ≤999999个S 中的数不能作为t k +1,故在S 中存在满足条件t k +1.所以,在S 中存在t 1,t 2,…,t 100,其中任意两个的差都不属于D .综上所术,命题得证.说明:条件|S |=106可以改小一些.一般地,我们有如下更强的结论:若A 是S ={1,2,…,n }的k 元子集,m 为正整数,满足条件n >(m -1)2(1),KC +则存在S 中的元素t 1,…,t m ,使A j ={x +t j |x ∈A },j =1,…m 中任意两个的交集为空集.例5、求函数y x =+的值域.(2001年全国高中数学联赛试题)≥0y x =-,所以 x 2-3x +2=y 2-2xy +x 2,即(2y -3)x =y 2-2.由上式知232,.223y y x y -≠=-且由222000022000002000002000002≥2332(1)(2)≥0,≥0.23231≤≥ 2.22[2,),,232(2)22≥0,2323≥2,32≥0,231,,,2231y y y x y y y y y y y y y y y x y y x y y x x x y x y y x y x -=--+----<-∈+∞=----=-=---+=-⎡⎫∈=⎪⎢-⎣⎭-得所以或又任取令则故所以且任取令则2200002(1)1≤0,2323y y y y --=-=--故x 0≤1,于是2000032≥0,x x y x -+=+且 综上,所求的函数的值域为31,[2,).2⎡⎫+∞⎪⎢⎣⎭说明:我们先求出了y 的范围31,[2,)2⎡⎫+∞⎪⎢⎣⎭ ,这是不是函数的值域呢?第二部分说明了对于31,[2,)2⎡⎫+∞⎪⎢⎣⎭ 中的任意一个数y 0,总存在一个x 0,使得00y x =+就证明了函数的值域是31,[2,).2⎡⎫+∞⎪⎢⎣⎭例6、求(31)(21)y x x =-+-的图象与x 轴的交点坐标.分析:仔细观察所给的式子,发现(31)(21)y x x =-+-,从而找到了解题途径.解答:因为(31)(21)y x x =-+-,令()1)f t t =,易知f (t )是奇函数,且f (t )是严格递增函数.所以y =f (3x -1)+f (2x -3).当y=0时,f (3x -1)=-f (2x -3)=f (3-2x ),所以3x -1=3-2x ,解得4.5x =故图象与x 轴的交点坐标为(4,05).例7、设a >0,211().ax r x ax x x+==+讨论函数r (x )在(0,+∞)中的单调性、最小值与最大值.解答:先讨论它的单调性. 设0<x 1<x 2<+∞212121211212212112212212212112212111()()()()1()()0≤,1()()()()1()()≤0;,1()()()()1()()≥0,r x r x ax ax x x x x a x x x x r x r x x x a x x x x a x x x r x r x x x a x x x x a x -=+-+=--<<-=--<--<-=-->--当有时有所以,在⎛ ⎝上,r (x )是严格递减的;在⎫+∞⎪⎭上,r (x )是严格递增的. 由此可知,r (x )没有最大值;当且仅当x 时,r (x )取最小值说明:此题的结论非常重要,许多问题最后可化归为讨论函数1()(())ar x ax r x x x x=+=+或的增减性来解.例8、设二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R ,a ≠0)满足条件: (1)当x ∈R 时,f (x -4)=f (2-x ),且f (x )≥x ;(2)当x ∈(0,2)时,21()≤();2x f x +(3)f (x )在R 上的最小值为0.求最大的m (m >1),使得存在t ∈R ,只要x ∈[1,m ],就有f (x +t )≤x .(2002年全国高中数学联赛试题)分析:先根据题设条件(1),(2),(3),把f (x )的解析式求出来,进而再确定m 的最大值.解答:由f (x -4)=f (2-x ),t ∈R ,可知二次函数f (x )的对称轴为x =-1.又由(3)知,二次函数f (x )的开口向上,即a >0,故可设f (x )=a (x +1)2(a >0)由(1)知f (1)≥1,由(2)知f (1)≤211()12+=,所以f (1)=1,故2211(11),.41()(1).4a a f x x =+==+所以因为21()(1)4f x x =+的图象开口向上,而y =f (x +t )的图象是由y =f (x )的图象平移|t |个单位得到.要在区间[1,m ]上,使得y =f (x +t )的图象在y =x 的图象的下方,且m 最大,则1和m 应当是关于x 的方程21(1)①4x t x ++=的两个根. 令x =1代入方程①,得t =0或t =-4.当t =0时,方程①的解为x 1=x 2=1(这与m >1矛盾!);当t =-4时,方程①的解为x 1=1,x 2=9.又当t =-4时,对任意x ∈[1,9],恒有 2(1)(9)≤0,1(41)≤,4x x x x --⇔-+ 即f (x -4)≤x .所以,m 的最大值为9.说明:我们由f (x -4)= f(2-x ),x ∈R 导出f (x )的图象关于x =-1对称.一般地,若f (x -a )=f (b -x ),x ∈R ,则()()()(),2222b a b a b a b a f x f x a f b x f x -++-+=+-=--=-故f (x )的图象关于2b ax -=对称.这个性质在解题中常常用到.例9、设f 为R +→R +的函数,对任意正实数x ,f(3x)=3f(x),且f (x )=1-|x -2|,1≤x ≤3.求最小的实数x ,使得f (x )=f (2004).分析:先用递推关系推出函数f (x )的解析式,然后再求解. 解答:由已知条件得1,1≤≤2,()3,2≤≤ 3.x x f x x x -⎧=⎨-⎩当3≤x ≤6时,令,3xt =则1≤t ≤2,此时 f (x )=f (3t )=3f (t )=3(t -1) =x -3, 即得 f (x )=|x -3|,2≤x ≤6.当6≤x ≤18时,令,3xt =则2≤x ≤6,于是 f (x )=f (3t )=3f (t )=3|t -3|=|x -9|.1,1≤≤2,|3|,2≤≤6,|9|,6≤≤18,|27|,18≤≤54,()|81|,54≤≤162,|243|,162≤≤486,|729|,486≤≤1458,|2187|,1458≤≤4374.x x x x x x x x f x x x x x x x x x -⎧⎪-⎪⎪-⎪-⎪=⎨-⎪⎪-⎪-⎪⎪-⎩所以f (2004)=2187-2004=183.由于162-81<183,486-243>183,而243-162<183,所以,最小的满足f (x )=f (2004)的实数x =243+183=426.说明:请读者自己证明:不存在实数x ∈(0,1),使得f (x )=183.例10、k 是实数,42421()1x kx f x x x ++=++,对任意三个实数a ,b ,c ,存在一个以f (a ),f (b ),f (c )为三边长的三角形,求k 的取值范围.分析:首先,对于任意实数x ,f (x )要恒大于0.在这个前提下,对任意三个实数a ,b ,c ,f (a ),f (b ),f (c )均能构成一个三角形的三边长,只需2f min (x )>f max (x )即可.解答:首先确定k 的范围,使得f (x )恒大于0,即只需x 4+kx 2+1恒大于0即可. 当k ≥0时,x 4+kx 2+1恒大于0;当k <0时,只需 △=k 2-4<0,即-2<k <0.所以,当k >-2时,f (x )恒大于0. (1)当k =1时,f (x )≡1满足题意. (2)当k >1时,有24222422(1)()1≥1(0),1(1)(1)()1≤1132(1),3k x f x x x x k x k x f x x x x k x -=+=++--=+++++==时等号成立当时等号成立所以,max max 2()1,(),3k f x f x +==从而由三角形的两边之和大于第三边的性质,有221,3k +⨯>解得k <4. 故1<k <4满足条件.(3)当-2<k <1时,与(2)类似,有max max 2()1,(),3k f x f x +==由221,3k +⨯>解得1.2k >-故112k-<<满足条件.综上所述,所求的k的取值范围为14. 2k-<<说明:本题的关键是把“对任意实数a,b,c,存在一个以f(a),f(b),f(c)为三边长的三角形”这一条件,转化为“2f min(x)>f max(x)”.例11、设N是非负整数集,f:N→N是一个函数,使得对任一n∈N,都有(f(2n+1))2-(f(2n))2=6f(n)+1,①f(2n)≥f(n).问:f(N)中有多少元素小于2003?解答:由题设(f(2n+1)2-(f(2n))2≥1>0,所以f(2n+1)> f(2n).又(f(2n+1)2=(f(2n))2+6 f(n)+1<(f(2n)2+6 f(2n)+9,所以f(2n+1)< f(2n)+3,故f(2n+1)< f(2n)+1或f(2n)+2.而(f(2n+1)2-(f(2n))2是奇数,所以f(2n+1)与f(2n)的奇偶性不同,从而f(2n+1)= f(2n)+1.代入①式,得f(2n)=3 f(n).令n=0,f(0)=3f(0),所以f(0)=0.令n=0代入①式,得f(1)=1,于是f(2)=3 f(1)=3.下面用数学归纳法证明:f是严格递增函数,即证f(n+1)>f(n).当n=0,1,2时,命题成立.假设对小于等于n的情形命题成立.则当n=2k(k≥1)为偶数时,有f(n+1)=f(2k+1)=f(2k)+1> f(2k)=f(n).当n=2k+1(k≥0)为奇数时,因为0≤k<k+1≤n,所以f(k+1)>f(k),从而f(k+1)≥f(k)+1,于是f(n+1)=f(2k+2)=3 f(k+1)≥3 f(k)+3= f(2k)+1+2= f(2k+1)+2> f(2k+1)= f(n)综上,f(n)是严格单调递增函数.显然,f(27)=3 f(26)=…=37 f(1)=2187>2003,而f(127)= f(126)+1=3 f(63)+4=9 f(31)+4=9 f(30)+13=27 f(15)+13=27 f(14)+40=81 f(7)+40=81 f(6)+121=243 f(3)+121=243 f(2)+364=729 f(1)+364=1093<2003,所以,共有f(0),f(1),f(2),…,f(127)这128个元素不超过2003.第二讲三角函数及反三角函数例1、化简11(,). cos()cos[(1)]nkk kk kβπαβαβ=≠∈+++∑Z分析:本题目的化简是利用一个递推模型来实现的,即找到这个题目的“源生地”.可先由产生分母cos αcos(α+β)的正切函数之和入手.sin tan()tan ,cos cos()11[tan()tan ].cos cos()sin βαβαααβαβαααββ+-=+=+-+考查即得到递推模型:1.c o s ()c o s [(1)]1{t a n [(1)]t a n ()}s i n k k k k αβαβαβαββ+++=++-+再求和,即得原式1{tan[(1)]tan()}sin k k αβαββ=++-+. 解答:略. 例2、不等式22(1)cos (cos 5)3sin 11x x x x θθθ+--+>--+对任何实数x 均成立,求θ.分析:这是一个关于x 的不等式,以解集为全体实数作为背景条件来求参数θ的范围问题.可将θ的正弦(或余弦)值表示成x 的函数f (x ),再利用f (x )的值域,对正弦(或余弦)值的制约去求得θ.解答:将不等式化成222253153sin cos 11153)1.41x x x x x x x x x x x θθπθ++-++-<=+-+-++-<+-+即利用判别式法可求得2531x y x x +=-+的值域为25[1,].3y ∈-)0,4πθ-<从而322,.44k k k πππθπ-<<+∈Z 例3、设,,1,x y z z +∈=R 试求xy +2xz 的最大值.分析:这是一个在限定条件下,求多元函数的最值问题.如何将多元函数在限定的条件中转化成单元函数,是破解这一问题的关键.可用三角法代换及平均值去求解.1,,,,z x y z +=∈R 且故可令22sin cos ,z αα=而x=cos 2αsin β,y =cos 2αcos β,其中,0,.2παβ⎛⎤∈ ⎥⎝⎦于是2222222222222222(2)cos sin (cos sin 2sin )sin (2cos )cos (cos cos 2sin )2cos sin (2cos cos cos )(cos cos 2sin )2cos sin 2cos cos cos cos cos 2sin ≤2cos 2sin .2cos xy xz x y z αβαβαββαβααββαβαβααββαβαβααβββ+=+=+=-+-=-+-⎛⎫-++ ⎪ ⎪-⎝⎭=-222222221tansin ,cos .2112212≤≤1131t t t t t t t t xy xz t tt βββ-===++++==-++令则故当133x y z ===时,取等号.即xy +2xz的最大值为3例4、已知θ1+θ2+…+θn =π,θi ≥0(i =1,2,…,n ),求sin 2θ1+sin 2θ2+…+sin 2θn 的最大值.(1985年IMO 预选题)分析:由于变量多,变式的目标难确定,不妨先将问题简单化,即先退到θ1+θ2为常数时探讨sin 2θ1+sin 2θ2的最大值的情形.这种策略往往在竞赛题解答中时用到.解答:先考查θ1+θ2=常数的情形.因为22212121222121212122212121221212212122112sin sin (sin sin )2sin sin 4sin cos cos()cos()222cos (2sin 1)1cos().22,,2sin 10;22,2sin 10;22,2sin 2θθθθθθθθθθθθθθθθθθθθθθπθθθθπθθθπθθ+=+-+-=--++-+=-+++++<-<++=-=++>上式中当时时时210.2θ->由此可得出,当122πθθ+<时,θ1与θ2有一个为零时,sin 2θ1+sin 2θ2有最大值;当122πθθ+=且|θ1-θ2|越小时,sin 2θ1+sin 2θ2值越大.n =3时,即θ1+θ2+θ3=π时,2221239sin sin sin ≤4θθθ++是容易证明的.而n ≥4时,可知θ1、θ2、θ3、θ4中必有两个角和不超过.2π 由前面的结论知,12≤2πθθ+时,sin 2θ1+sin 2θ2当θ1或θ2=0时,有最大值.于是所求的最大值可转化成三个角的和为π,其正弦值的平方的最大值问题.另一方面n =2时,θ1+θ2=π,sin 2θ1+sin 2θ2≤2.因此,sin 2θ1+sin 2θ2+…+sin 2θn 的最大值为9.4且当12345,03n πθθθθθθ======= 时,取等号.例5、如图2.1,△ABC 中,高AD =h ,BC =a ,AC =b ,AB =c .若a +h =b +c ,求∠BAC 的范围.分析:许多平面几何中的推导过程可用“三角法”进行转换,尤其是几何不等式的证明问题.经常以正、余弦定理及面积公式等结论作为依据.本题目还要从三角变换及不等式的推理中得出角的范围.解答:由,sin b c a h bc BAC ah +=+⎧⎨∠=⎩得出.sin ahbc BAC =∠令∠BAC =a .于是由22222222()2cos 22()1(1)sin 1.22sin 2cos 1cos 2sin ,cot 1.221122b c a b c bc a bc bca h a h ah a a h h h a a aαααααα+-+--==+-=-=+-+===+++得 故作CE ⊥BC ,使CE =2h .在Rt △BCE中,有BE =且AE +AB =b +c =a +h ≥BE .即2≥≤.3h a h a +得出于是41[1,],23h a +∈从而44cot [1,].[2arccot ,].2332BAC απ∈∠∈故例6、n ∈N +,x 0=0,x i >0,i =1,2,…n 且11.ni i x ==∑求证1≤.2ni π=<(1996年CMO 试题)分析:所证不等式左侧部分可用2a b+得出.右侧部分可引用θi =arcsin(x 0+x 1+…+x i ),再利用三角公式得出.解答:因11,ni ==∑由平均值不等式,有011≤ 1.2n x x x ++++=故1ni =成立.令θi =arcsin(x 0+x 1+…+x i ),i =0,1…,n .故101[0,]0.22n ππθθθθ∈=<<<= 且而11111111111sin sin 2cos sin222cos sin.2sin ,[0,],22(cos )()cos .2(1,2,,).cos i i i i i i i i i i i i i i i i i ii i i x x x x x x i n θθθθθθθθθπθθθθθθθθθ-----------+-=-=-<<∈-<=-<-= 利用可知故对上述求和有11101211.cos 2sin ,cos ni n i i i i i x x x x x πθθθθθ-=---<-==++++==∑ 但故代入上式可得出所证不等式右侧成立.例7、如图2.2,锐角△ABC 的外接圆中过A 、B 两点的切线分别与过C 的切线交于V 、T ,且AT ∩BC =P ,BV ∩AC =R .设AP 、BR 的中点分别是Q 、S .求证:∠ABQ =∠BAS ,并求当BC ︰CA ︰AB 取何值时,∠ABQ 取最大值. (第41届IMO 预选题)分析:要证∠ABQ =∠BAS ,由条件中的对称性,只要求得∠ABQ 的三角函数值与已知中的△ABC 边及角建立一个结构式即可.作QN ⊥AB 于N ,从cot BNNBQ QN∠=入手,而作PM ⊥AB 于M ,可用BN =BM +MN =111(cos )sin 222c BP B QN PM BP B +== 且是解决问题的突破点.解答:作PM ⊥AB 于M ,QN ⊥AB 于N .记BC =a ,AB =b ,AB =c ,∠A =∠BAC ,∠B =∠CBA ,∠C =∠ACB .由221sin()sin 2,1sin sin()2ABTACTAB BT C S BP c C c PC S b B b AC CT B ππ-====-又BP +CP =a ,故22211.sin ,22ac BP QN PM BP B b c===+而于是 2222222222221()21()21(cos ),2cot cot cot sin sin cos 2sin sin 3.2sin BN BM MN BM AB BM BM AB c BP B BN c b c ABQ B B QN BP B ac Ba cb ac b c ac B b c ac ac B ab C a b c ab C=+=+-=+=++∠==+=++-++++==+-=同理可得出2223cot 2sin a b c BAS ab C++∠=故∠ABQ =∠BAS .2222222223cot 2sin 3(2cos )2sin 2()43cot ≥3cot .sin sin 43cot ,sin 43cos sin )≤.a b c ABQ ab Ca b a b ab C ab C a b C C ab C C y C CC y C C θθ++∠=+++-=+=---=+=-⎫=由记=于是解得≥,y即≤ABQ ∠当且仅当a =b ,3arccos ,4C ∠=即BC ︰CA ︰AB1时取等号.第三讲 等差数列与等比数列例1、给定正整数n 和正数M ,对于满足条件2211≤n a a M ++的所有等差数列a 1,a 2,a 3,…,试求S= a n +1+a n +2+…+a 2n +1的最大值.分析:本题属于与等差数列相关的条件最值问题,而最值的求解运用的方法灵活多样,针对条件的理解不同,将有不同的解法.解答:方法一(代数法).设公差为d ,a n +1=a ,则1221222211222(1)(1),2,21,≥()41()(43)102104≥(),101n n n n n n S a a a n d nd S n M a a nd nd nd S n αααααα+++++=+++=+++=++=-+=++-+ 所以另一方面由从而有||≤1)S n d α+且当时,(1)2(1)n S n n n ⎛=+⎭=+=+由于此时有22211443,(),101n S nd a a M n α+=+==+故因此max S n =+122112111()(1)21(3)21(3sin cos )21)sin(),n n n n n n S a a a a a n n a a n r n r θθθϕ++++++=+++++=+=-+=-=+- 故其中cos sin()1,rϕϕθϕ==-=因此当时,有max2S n=+方法三(判别式法).设首项为a,公差为d,则221122222222(1)(23).222.①3(1)3≤,()≤.②①②,44109≤0.③1(1)③,444109≥0.1(1),||≤1),10nn andSSnd ana a Ma a nd MS Sa a Mn naS SMn nS nad+++==-++++++-++⎡⎤⎛⎫=-⨯⨯-⎢⎥⎪++⎝⎭⎢⎥⎣⎦+=-=故因为所以将代入得因为不等式关于有解所以解之得且当max,10nS=有方法四(不等式法).因为111112222211111122111111max(1)(1)21(3).2,(3)≤(31)()≤10,3≤1,,,nnnn nnnnna an nS n anna aa a a a Ma aa a Ma aa aS+++++++++-+=+++=--++--=+====由柯西不等式得所以3等号当且仅当时取到即有说明:这是1999年全国高中数学联赛的一道试题,在解答过程中,要分清什么是常量,什么是变量,注意条件和结论的结构形式.解法一通过配方来完成,解法二运用三角代换的方法,解法三运用二次方程根的判别式来完成,解法四则主要运用了柯西不等式.本题入口宽,解法多样,对培养学生的发散思维能力很有好外.例2、n 2(n ≥4)个正整数排成几行几列:a 11 a 12 a 13 a 14 … a 1n a 21 a 22 a 23 a 24 … a 2n a 31 a 32 a 33 a 34 … a 3n … …a n 1 a n 2 a n 3 a n 4 … a nn其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等,已知2442431122131,,,.816nn a a a a a a ===+++ 求分析:由于等差数列可由首项与公差惟一确定,等比数列可由首项与公比惟一确定,如果设a 11=a ,第一行数的公差为d ,第一列数的公比为q ,容易算出a st =[a +(t -1)d ]q s -1,进而由已知条件,建立方程组,求出a ,d ,q .解答:设第一行数列公差为d ,各列数列公比为q ,则第四行数列公差是dq 3.于是可得方程组:24113421134342(3)1,1(),83,16a a d q a a d q a a dq ⎧⎪=+=⎪⎪=+=⎨⎪⎪=+=⎪⎩解此方程组,得111.2a d q ===±由于所给n 2个数都是正数,故必有q >0,从而有111.2a d q ===故对任意的1≤k ≤n ,有111112323412311[(1)].2123,22221123,22222:11111,2222222.22k k kk k k n n n n n n ka a q a k d q nS nS n S n nS --++-==+-==++++=++++=+++++=-- 故又两式相减后可得所以 说明:这是1990年全国高中学数学联赛的一道试题,涉及到等差数列、等比数列、数列求和的有关知识和方法.通过建立方程组确定数列的通项;通项确定后,再选择错位相减的方法进行求和.例3、设{a n }是由正数组成的等比数列,S n 是其前n 项之和.(1)证明:21lg lg lg ;2n n n S S S +++<(2)是否存在常数C >0,使得21lg()lg()lg()2n n n S C S C S C ++-+-=-成立?并证明你分析:对于问题(1),运用对数的性质将所证不等式转化为221,n n n S S S ++<运用等比数列求和公式时,要分q =1和q ≠1两种情况讨论;对于问题(2),充分运用已知条件,进行分析论证,可先假设存在常数C >0,使所证等式成立,然后设法推出矛盾.如果不能推出矛盾,再逆推来考虑常数C >0的存在性.解答:(1)证明:设{a n }的公比为q ,由已知得a 1>0,q >0. (i )当q =1时,S n =na 1,从而2222211111(2)(1)0.n n n S S S na n a n a a ++-=+-+=-<即有221.n n n S S S ++<(ii )当q ≠1时,1(1)1n n a q S q-=-,所以22212221121122(1)(1)(1)0.(1)(1)n n n nn n n a q q a q S S S a q q q ++++----=-=-<--由(i )与(ii )知,221n n n S S S ++<恒成立,又由于S n >0,两边取常用对数即得21lg lg lg .2n n n S S S +++<(2)不存在.要使21lg()lg()lg()2n n n S C S C S C ++-+-=-成立,则有221()()(),0.n n n nS C S C S C S C ++⎧--=-⎪⎨->⎪⎩ 分两种情况讨论: (i )当q =1时221211121()()()()[(2)][(1)]0,n n n S C S C S C na C n a C n a C a ++----=-+--+-=-<即不存在常数C >0使结论成立.(ii )当q ≠1时,若条件(S n -C ) (S n +2-C )= (S n +1-C )2成立,则(S n -C ) (S n +2-C )- (S n +1-C )222111111(1)(1)(1)111[(1)]0,n n n n a q a q a q C C C q q q a q a C q ++⎡⎤⎡⎤⎡⎤---=----⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=--= 因a 1q n ≠0,故只能有a 1-C (1-q )=0,即11a C q=-,此时由于C >0,a 1>0,必有0<q <1.但当0<q <1时,110,11nn n a a q S C S q q--=-=<--不满足S n -C >0,即不存在常数C >0,使结论综合(i )、(ii )可得,不存在常数C >0,使得21lg()lg()lg()2n n n S C S C S C ++-+-=-成立.说明:这是1995年的一道全国高考试题,主要考查等比数列、对数、不等式等基础知识和推理论证能力以及分析和解决问题的能力.其中第(2)问属探索性问题.探索性问题对数学思想方法的运用以及分析问题、解决问题的能力要求更高,探索性问题是高考与竞赛的热点问题.第(2)问还可以用反证法进行如下证明:假设存在常数C >0,使21lg()lg()lg(),2n n n S C S C S C ++-+-=-12221221210,①0,②0,③()()(),④④(2),⑤n n n n n n n n n n n n S C S C S C S C S C S C S S S C S S S ++++++++⎧->⎪->⎪⎨->⎪⎪--=-⎩-=+-则有由得 根据平均值不等式及①、②、③、④知212112()()2()≥2()0,n n n n n n n S S S S C S C S C S C ++++++-=-+----=因为C >0,故⑤式右端非负,而由第(1)问证明知,⑤式左端小于零,矛盾.故不存在常数C >0,使得21lg()lg()lg()2n n n S C S C S C ++-+-=-成立.例4、如图3.1,有一列曲线P 0,P 1,P 2,…,已知P 0所围成的图形是面积为1的等边三角形,P k +1由对P k 进行如下的操作得到:将P k 的每条边三等分,以每边中间部分的线段为边,向外作等边三角形,再将中间部分的线段去掉(k =0,1,2,…).记S n 为P n 所围成图形的面积.(1)求数列{S n }的通项公式;(2)求lim .n n S →∞分析:这是一道有关几何图形的操作性问题.采用从特殊到一般的思考方法,便容易入手.解答:如图,对P 0进行操作,容易看出P 0的每条边变成P 1的4条边,故P 1的边数为3³4,同样,对P 1进行操作,P 1的每条边变成P 2的4条边,故P 2的边数为3³42.类似地,容易得到P n 的边数为3³4n .已知P 0的面积为S 0=1,比较P 1与P 0,容易看出P 1在P 0的每条边上增加了一个小等边三角形,其面积为213,故1021131.33S S =+⨯=+再比较P 2与P 1,可知P 2在P 1的每条边上增加了一个小等边三角形,其面积为221133⨯,面P 1有3³4条边,故2143114341.333S S =+⨯⨯=++类似地有22326351144341.3333S S =+⨯⨯=+++于是猜想2135211211114441333343411493441()399144193483411()().①59559n n n kk nn k k k n n n S ----===+++++⎛⎫=+=+ ⎪⎝⎭⎡⎤-⎢⎥⎣⎦=+⨯-⎡⎤=+-=-⨯⎢⎥⎣⎦∑∑ 下面用数学归纳法证明①式.当n =1时,由上面已知①式成立.假设n =k 时,有834().559k k S =- 当n =k +1时,易知第k +1次操作后,比较P k +1与P k ,P k +1在P k 的每条边上增加了一个小等边三角形,其面积为2(1)13k +,而P k 有3³4k 条边,故12(1)12(1)13434834.5593k k k k k kk k S S S ++++=+⨯⨯⎛⎫=+=-⨯ ⎪⎝⎭综上,由数学归纳法①式得证.8348(2)lim lim .5595n n n n S →+∞→+∞⎡⎤⎛⎫=-⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦说明:本题是2002年全国高中数学联赛的第14题,这类问题的一般解题过程是:实验——归纳——猜想——论证,主要考查学生探索能力.例5、设a 0为常数,且a n =3n -1-2a n -1(n ∈N +) (1)证明:对任意n ≥1,101[3(1)2](1)2;5n n n n n n a a -=+-+-(2)假设对任意n ≥1有a n >a n -1,求a 0的取值范围.分析:本题中数列{a n }由递推关系确定,第一问可以用数学归纳法给予证明,也可以将数列{a n }转化为等比数列直接计算,第二问要对n 进行讨论.解答:(1)证法一:(i )当n =1时,由已知a 1=1-2a 0,等式成立; (ii )假设当n =k (k ≥1)等式成立,即101110111101[3(1)2](1)2,53223[3(1)2](1)251[3(1)2](1)2,5k k k k k k k k kk k k k k k k k k k k a a a a a a -+-+++++=+-+-=-=-+---=+-+- 则也就是说,当n =k +1时,等式也成立.根据(i)和(ii),可知等式对任何n ∈N +成立.证法二:如果设a n -λ3n =-2(a n -1-λ3n -1),用a n =3n -1-2a n -1代入,可解出1.5λ=所以135n n a ⎧⎫-⎨⎬⎩⎭ 是公式比为-2,首项为135a -的等比数列.所以10120133(12)(2)(),551[3(1)2](1)2.5n n n n n n n n a a n a a -+--=---∈=+-+-N 即 (2)解法一:由a n 通项公式得11111023(1)32(1)32,5n n n n n n n a a a -----⨯+-⨯⨯-=+-⨯所以a n >a n -1(n ∈N +)等价于1203(1)(51)()()2n n a n --+--<∈N(i )当n =2k -1,k =1,2,…时,①式即为222302303(1)(51)(),2131(),525k k k a a -----<<+即上式对k =1,2,…都成立,故有101311().5253a -<⨯+=(ii )当n =2k ,k =1,2,…时,①式即为212202203(1)(51)(),2131().525k k k a a -----<>-⨯+即为上式对k =1,2,…都成立,有2120131()0.525a ⨯->-⨯+=综上,①式对任意n ∈N +成立,有010,3a <<故a 0的取值范围为1(0,).3解法二:如果a n >a n -1(n ∈N +)成立,特别取n =1、2有a 1-a 0=1-3a 0>0,a 2-a 1=6a 0>0,因此010.3a <<下面证明当0103a <<时,对任意n ∈N +,有a n -a n -1>0.由a n 通项公式知:5(a n -a n -1)=2×3n -1+(-1)n -1³3³2n -1+(-1)n ³5³3³2n -1a 0. (i)当n =2k -1,k =1,2,…时,5(a n -a n -1)=2×3n -1+3³2n -1-5³3³2n -1a 0>2×2n -1+3³2n -1-5³2n -1 =0.(ii)当n =2k ,k =1,2,…时,5(a n -a n -1)=2×3n -1-3³2n -1+5³3³2n -1a 0>2×3n -1-3³2n -1 ≥0.故a 0的取值范围为1(0,).3说明:本题是2003年全国高考的最后一道压轴题,有一定难度.特别是第二问求参数a 0的取值范围,要转化为相关数列的最大值和最小值来进行分析讨论,请读者对这一方法务必理解透彻.例6、设{a n }为等差数列,{b n }为等比数列,且22211223312,,()b a b a b a a a ===<,又12lim ()2,n n b b b →+∞+++= 试求{a n }的首项与公差.分析:题中有两个基本量{a n }中的首项a 1和公差d 是需要求的,利用222123,,a a a 成等比数列和给定极限可列两个方程,但需注意极限存在的条件.解答:设所求数列{a n }的公差为d ,因为a 1<a 2,故d =a 2-a 1>0.又{b n }为等比数列,故2422213213,,b b b a a a == 即即422111()(2),a d a a d +=+化简得2211240a a d d ++=,解得1(2,20,d a =--±<而故a 1<0.若222121(2,1);a d a q a =-==则若222121(2,1),a d a q a =-==-则但12lim ()1n n b b b →+∞+++= 存在,故|q |<1,于是21)q =不可能.从而只有1(2,d a =-于是由212lim ()1,n n b b b →+∞+++== 得21a =111)2,(2 2.a d a ===-+=所以故数列{a n }的首项公差分别为 2.说明:本题是2001年全国高中数学联赛的第13题,涉及到的知识主要是等差数列、等比数列、无穷递缩等比数列所有项的和等知识,用到方程的思想和方法,且在解题过程中要根据题意及时取舍,如由题意推出d >0,a 1<0,|q |<1等,在解题中都非常重要.例7、设S ={1,2,3,…,n },A 为至少含有两项的、公差为正的等差数列,其项都在S 中,且添加S 的其他元素于A 后均不能构成与A 有相同公差的数列,求这种A 的个数(这里只有两项的数列也看作等差数列).[分析]:可先通过对特殊的n (如n =1,2,3),通过列举求出A 的个数,然后总结规律,找出a n 的递推关系,从而解决问题;也可以就A 的公差d =1,2,…,n -1时,讨论A 的个数.解答:解法一:设A 的公差为d ,则1≤d ≥n -1,分两种情况讨论:(i )设n 为偶数,则当1≤≤2n d 时,公差为d 的A 有d 个;当1≤≤12nd n +-时,公差为d 的A 有n -d 个,故当n 为偶数时,这种A 共有2(12){12[(1)]}().224n n n n +++++++-+= 个(ii )当n 为奇数,则当1≤≤2n d 时,公差为d 的A 有d 个;当1≤≤12n d n +-时,公差为d 的A 有n -d 个,故当n 为奇数时,这种A 共有2111(12)(12)().224n n n ---+++++++= 个综合(i )、(ii )可得,所求的A 有2[]4n 个.解法二:设n 元素集S ={1,2,…,n )中满足题设的A 有a n 个,则a 1=0,a 2=1,a 3=2(A ={1,3},A ={1,2,3}),a 4=4(A={1,3},{1,4},{2,4},{1,2,3,4}),故1[].2n n na a -=+事实上,S ={1,2,…,n }比S ={1,2,…,n -1}的A 增加有公差为n -1的1个,公差为n -2的1个,…,公差为2n (n 为偶数)或12n +(n 为奇数)的增加1个,共增加[]2n个.由{a n }的递推式可得2[].4n n a =说明:这是1991年全国高中数学联赛第二试的第一题,主要考查应用等差数列和分类讨论的知识与方法解决综合问题的能力.第四讲 递归数列例1、数列{a n }定义如下:1111,(1416n n a a a +==+求它的通项公式.分析:带根号的部分不好处理,容易想到作代换:令n b =解答:设n b 211, 5.24n n b a b -==于是原递推式可化为2211111(14),241624n n n b b b +---=++ 即(2b n +1)2=(b n +3)2,由于b n 、b n +1非负,所以2b n +1=b n +3,故111222113(3),213(3)(),213(),21111.243322n n n n n n n n n n b b b b b b a +----=--=-=+-==++ 故即故说明:这是1981年IMO 的预选题,解题的关键是换元、转化. 例2、设数列{a n }和{b n }满足a 0=1,b 0=0,且11763,()87 4.n n n n n n a a b n b a b ++=+-⎧∈⎨=+-⎩N 证明: a n (n ∈N )是完全平方数.分析:二元递推式给定二数列,可先消元,化为一元递推式,进而求出通项公式,问题就好办了.证明:由a n +1=7a n +6b n -3,b n +1=8a n +7b n -4可得b n +2-14b n +1+b n =0,其特征方程λ2-14λ+1=0的根为λ1=7+27λ=-因此,(7(7,n n n b A B =++-由a 0=1,b 0=0,得b 1=4,所以0,(7(74,A B A B +=⎧⎪⎨++-=⎪⎩解得66A B ==,故10112220112220(7],1(74)8111(7(744211[(2(2].2211(2(2221[222]21[222(]22n n n n n n n n n n n nn n n n n n n n n n n n n n n n n n n n n b a b b e C C C C C C C C C +----=+--=-+=++-+=+=+=++++-++=+ 从而由于2223,n n n C M -++其中,当n为偶数时,n n n nM C =为整数,当n为奇数时,11n n n n M C --=为整数.从而无论n 为奇数,还是n 为偶数,对n ∈N ,均有e n 为整数,故a n 为完全平方数.说明:如果消去b n 得到a n 的递推关系a n +1=14a n -a n -1-6(n ≥1),则求a n 的过程稍微麻烦一点.本题是2000年全国高中数学联赛二试第二题.这类题型也是二试考查的重点.例3、数列{a n }定义如下:1212110,1,(1)(1)(1),222n n n n na a a na n n a --===+-+--n ≥3.试求1221122123(1)n n n n nn n n n n f a C a C a n C a nC a ----=++++-+ 的最简表达式. 分析:仔细研究所给数列{a n }的递推式和所要化简的f n 的表达式,可以发现通过适当换元就能解决问题.123121111111211112:,0,,,()(1).!232!111(1)!!()!21(1)!()!22(1)!(1)!n n n n n n n nn kn n n k kk k n nn n k kk k k k k n a b b b b b b b n n n k g f n k C a b n n n k n k n k g g b b n k n k n k n k b b n k n k ---==++==-=-=====++--+==-+=--+-+-=-+---+-+=-+--+∑∑∑∑ 解答令则且再令故121122().(1)!n nk n k k k n k b b n k +=+-=-+=-+-∑∑∑令d n =(-2)n(b n -b n -1),则12(1),2!nn n n d d n -=+-所以d 2=2,且3222(1),2!!l nnn t l d l n ==+-=∑1112122112202(1),,!(2)(2)!2(1)(1)!!(1)(1)()!!(1)!!111(1)()(1)().!(1)!1(1)()0,(1)()0,nnnn n n n kn n n k k knn k k n n k k k k nkk k k d b b n n n k g g n k k n k k n k k n n k k n n nn k k -++=+==++===--===---+--=+---=+-+-+=-+-++-=-=∑∑∑∑∑∑因此于是又故11323344311(1)[1(1)]!(1)!11(1)!(1)!42,311!!()(2)!!111!()2!(1).2!3!!n n n n nn n k k g g n n n n n n g b b f n g n g k k n n g n n n +=+==-=----++=--+=+===-+-+=++-=-+∑∑∑ 由于则说明:这是2000年全国数学冬令营的第二题,运算量大,需要进行多次换元,将问题逐步转化.解题过程要求运算准确、细心.例4、设a 1=1,a 2=3,对一切自然数n 有a n +2=(n +3) a n +1-(n +2) a n ,求所有被11整除的a n 的值.解答:设b n +1= a n +1-a n (n ≥1),则由条件有b n +1=(n +1)( a n -a n -1)= (n +1) b n (n ≥2),故b n =nb n -1=n (n -1) b n -2=…= n (n -1)…3b 2=n ! (n ≥2).所以a n =( a n -a n -1)+( a n -1-a n -2)+…+( a 2-a 1)+a 1=b n +b n -1+…+b 2+1=1!.nk k =∑由此可算出:44188110101!33113,!46233114203,!403791311367083.k k k a k a k a k ======⨯===⨯===⨯∑∑∑当n ≥11时,注意到11!n k k =∑可被11整除,因而10111!!nn k k a k k ===+∑∑也可被11整除.故当n =4,n =8或n ≥10时,a n 均可被11整除.说明:这是1990年巴尔干地区的数学奥林匹克试题,本题中换元起了重要的作用.例5、数列{a n }按如下法则定义:1111,,24n n n a a a a +==+证明:对n >然数.分析:因为结论中涉及到根号及2n a项,因而令n b =平方就容易找到解题思路.解答:令2222122221111,,,2442116n n nnn n n na b b a a a b a +===+=++-则因为于是 22122221222211122211111111(),11242416()22(2),2[2(2)2]4(1).①n n nn n n n n n n n n b b b b b b b b b b b b +++---+=++++=+=++=+即所以因为34,24,n b b ====由①式及b 2,b 3∈N 知,当n >1时,b n ∈N .说明:这是1991年全苏数学冬令营的一道试题,通过换元,将关于a n 的问题转化为关于b n 的问题,可使问题得到顺利解决.例6、设数列{a n }满足101262,(≥1)1n n n a a a n a --+==+,求a n .分析:引入待定系数λ,设法将所给问题转化为我们所熟悉的问题.先求得数列{a n }的不动点λ1、λ2,则数列12{}n n a a λλ--为一个等比数列.解答:126(2)626(),1112n n n n n n n a a a a a a λλλλλλλ++-+----=-==++++- 令62λλλ--=-,得λ2-λ-6=0,解之得:λ1=3,λ2=-2,1111100111143(3),2(2),11331,24231{},243311()(),2244342(1)(0,1,2,)4(1)n n n n n n n n n n n n n n n n n n n n na a a a a a a a a a a a a a a a a n ++++++++--=-+=+++--=-++-+--=-=-+++-==+- 所以故即是公比为-的等比数列从而故说明:用待定系数法求一些数列的通项是非常有效的.这类问题的一般情形就是在知识梳理部分提到的第9个问题.例7、(1)已知a 1=0,a 2=4,a n +2=2a n +1-2a n ,n ∈N +,求a n .(2)已知a 1=0,a 2=2,a 3=6,a n +3=2a n +2+a n +1-2a n ,n ∈N +,求a n . (3)已知a 1=1,a 2=2,a 3=8,a n +3=6a n +2-12a n +1+8a n ,n ∈N +,求a n . (4)已知a 1=2,a 2=1,a 3=-13,a n +3=7a n +2-16a n +1+12a n ,n ∈N +,求a n . 分析:本题中四个小题均属于线性递归数列问题,可用特征根的方法来解决. 解答:(1)特征方程x 2=2x -2有两个相异的根x 1=1+i ,x 2=1-i ,则{a n }的通项公式为a n =c 1(1+i)n +c 2(1-i)n ,代入前两项的值,得122221(1)(1)0,(1)(1)4,i c i c i c i c ++-=⎧⎪⎨++-=⎪⎩ 解得c 1=-1-i ,c 2=-1+i .故31121(1)(1)2cos.4n n n n n a i i π++++=-+--=- (2)特征方程x 3=2x 2+x -2有三个相异的根x 1=1,x 2=-1,x 3=2,于是{a n }的通项公式为a n =c 1+c 2(-1)n +c 32n .代入初始值,得12312312320,42,86,c c c c c c c c c -+=⎧⎪++=⎨⎪-+=⎩ 解得c 1=-2,c 2=0,c 3=1,故a n =-2+2n .(3)特征方程x 3=6x 2-12x +8有三重根x =2,故{a n }的通项公式为c n =( c 1+c 2n +c 3n 2)²2n , 其中c 1,c 2,c 3满足方程组1231231232221,48162,824728,c c c c c c c c c -+=⎧⎪++=⎨⎪++=⎩ 解此方程组,得123311,,,44c c c ==-=故。
《奥赛培训教程》课件
B
C
实用性强
教程中包含大量例题和练习题,有助于参赛 者加深对知识点的理解和掌握。
互动性强
教程中设置了一些互动环节,如在线测试、 讨论区等,增强了学习的互动性和趣味性。
D
对未来奥赛培训教程的期望和建议
增加案例分析
希望教程中能够增加更多实际 案例,帮助参赛者更好地理解
和应用所学知识。
更新内容及时
希望教程能够及时更新,以反 映奥赛最新的考试要求和趋势 。
03
如今,奥赛已经成为一项国际性的学科竞赛,吸引了来 自世界各地的优秀学生参加。
奥赛的意义和价值
奥赛有助于培养学生的创新精 神和实践能力,提高学生的综 合素质。
通过参加奥赛,学生可以拓宽 知识面、锻炼思维能力、增强 自信心和团队协作能力。
奥赛成绩优异的学生在申请国 内外知名大学时具有很大的优 势,同时还有机会获得各种奖 学金和荣誉。
奥赛培训教程可以作为学 习方向的指导,帮助学习 者明确学习目标和方向, 避免走弯路。
强化知识点
通过奥赛培训教程的学习 ,可以强化对知识点的理 解和掌握,提高学习效果 。
提高解题能力
奥赛培训教程注重解题思 路和方法的讲解,可以提 高学习者的解题能力。
如何与其他学习资源结合使用奥赛培训教程
互补学习
将奥赛培训教程与其他学习资源相结 合,可以弥补单一资源的不足,使学 习更加全面和系统。
《奥赛培训教程》 ppt课件
目录
• 奥赛简介 • 奥赛培训教程概述 • 奥赛培训教程各章节详解 • 奥赛培训教程的实践与应用 • 奥赛培训教程的总结与展望
01
奥赛简介
奥赛的起源和发展
01
奥赛起源于19世纪末,最初是法国的一场数学竞赛,后 来逐渐发展成为全球范围内的一项学科竞赛。
(四年级奥数讲义)第七讲
(四年级奥数讲义)第七讲四年级奥数讲义 - 第七讲前言本讲义旨在帮助四年级学生提升奥数能力,全面了解和掌握本学期的知识点。
在本讲中,我们将研究以下内容:1. 几何图形的性质2. 数列的练与运算3. 奥数应用题解析请同学们认真听讲,并配合课后作业进行巩固。
一、几何图形的性质1. 点、线、面的定义- 点:不占据空间位置的事物,用大写字母表示,如A、B。
- 线:由无数个点组成的一条直线,用小写字母表示,如a、b。
- 面:由无数个点组成的平面,用大写字母表示,如P、Q。
2. 图形的分类根据边数和角数,我们可以将图形分为以下几类:- 三角形:有3条边和3个角的图形。
- 四边形:有4条边和4个角的图形。
- 正多边形:边相等且角相等的多边形,如正三角形、正方形等。
- 不规则多边形:边和角都不相等的多边形。
3. 图形的性质不同图形具有不同的性质,我们需要了解它们的特点和规律,以便在解题过程中能够快速判断和运用。
例如:- 三角形的内角和为180度。
- 正方形的四个角都是90度。
二、数列的练与运算1. 数列的定义数列是一组按照特定规律排列的数,其中每个数都有自己的位置。
例如:2,4,6,8,10 是一个等差数列,其中公差为2,下一个数等于前一个数加2。
2. 数列的运算在求和或计算等问题中,需要掌握数列的运算方法。
例如:求和公式为:Sn = (a1 + an) * n / 2,其中a1为首项,an 为末项,n为项数。
三、奥数应用题解析在实际问题中,奥数经常与生活中的应用场景联系在一起,我们需要学会将奥数知识用于解决实际问题。
例如:小明每天晨跑,第一天跑8公里,以后每天跑的公里数是前一天的两倍。
问第6天小明总共跑了多少公里?解答:第6天跑的公里数为8 + 8 * 2^5 = 264公里。
总结通过本讲的研究,我们了解了几何图形的性质,掌握了数列的运算方法,并通过应用题实践了奥数知识。
请同学们课后认真复,并完成相关练题。
祝大家取得好成绩!。
学而思奥数2016秋季班提高班第7讲讲义
【分析】乘积要大的话,十位应该为 3、 4,个位为 1、2,那么不管每个数位上 的数属于哪个两位数,他们的和是不 变的,此时就可以利用“和一定差小积 大”,两个两位数的差应尽量小,两数 乘积最大为41 32 1312; 同样的,要乘积小,十位应该为 1、2, 个位为 3、4,那么不管每个数位上的 数属于哪个两位数,他们的和是不变 的,此时就可以利用“和一定差小积 大”,两个两位数的差应尽量大,两数 乘积最小为13 24 312.
作业 3
如图,ABCD 是长方形,三角形 BCF
的面积是 10,求三角形 DEF 的面积.
A
D
F
B
C
E
【答案】10
【分析】S△ADF S△BFC 长方形 ABCD 的一半,S△ADF S△DFE S△ADE 长方形
ABCD 的一半, S△DEF S△BCF 10.
四年级秋季尖子班第 7 讲练习册答案 最值问题初步
(3)长与宽的和为60 2 30米, 30 15 15,长、宽均为 15 米时面积 最大,为15 15 225平方米; 周长为 34 米,长与宽的和为34 2 17 米,17 8.5 8.5,所以面积最大为 8.5 8.5 72.25平方米.
【随堂练】 (1)两个自然数的和为 30,这两个数 的乘积最大是多少?最小是多少? (2)两个两位自然数的和为 35,这两 个数的乘积最大是多少?最小是多 少? (3)一个长方形周长为 40,这个长方
10个7
10个9
【答案】77 7622 23
9个 7
9个2
【分析】
原式 77 7 99 9
《数学奥林匹克专题讲座》第07讲 图形与面积
7讲图形与面积一、直线图形的面积在小学数学中我们学习了几种简单图形的面积计算方法,数学竞赛中的面积问题不但具有直观性,而且变换精巧,妙趣横生,对开发智力、发展能力非常有益。
图形的面积是图形所占平面部分的大小的度量。
它有如下两条性质:1.两个可以完全重合的图形的面积相等;2.图形被分成若干部分时,各部分面积之和等于图形的面积。
对图形面积的计算,一些主要的面积公式应当熟记。
如正方形面积=边长×边长;矩形面积=长×宽;平行四边形面积=底×高;三角形面积=底×高÷2;梯形面积=(上底+下底)×高÷2。
此外,以下事实也非常有用,它对提高解题速度非常有益。
1.等腰三角形底边上的高线平分三角形面积;2.三角形一边上的中线平分这个三角形的面积;3.平行四边形的对角线平分它的面积;4.等底等高的两个三角形面积相等。
解决图形面积的主要方法有:1.观察图形,分析图形,找出图形中所包含的基本图形;2.对某些图形,在保持其面积不变的条件下改变其形状或位置(叫做等积变形);3.作出适当的辅助线,铺路搭桥,沟通联系;4.把图形进行割补(叫做割补法)。
例1 你会用几种不同的方法把一个三角形的面积平均分成4等份吗?解:最容易想到的是将△ABC的底边4等分,如左下图构成4个小三另外,先将三角形△ABC的面积2等分(如右上图),即取BC的中点D,连接AD,则S△ABC-S△ABC,然后再将这两个小三角形分别2等分,分还有许多方法,如下面的三种。
请你再想出几种不同的方法。
例2 右图中每个小方格面积都是1cm2,那么六边形ABCDEF的面积是多少平方厘米?分析:解决这类问题常用割补法,把图形分成几个简单的容易求出面积的图形,分别求出面积。
也可以求出六边形外空白处的面积,从总面积中减去空白处的面积,就是六边形的面积。
解法1:把六边形分成6块:△ABC,△AGF,△PEF,△EKD,△CDH和正方形GHKP。
高中数学奥赛辅导教案
高中数学奥赛辅导教案
主题:解析几何-圆锥曲线
教学目标:
1. 了解圆锥曲线的定义和性质;
2. 掌握圆锥曲线的方程和几何性质;
3. 能够解决与圆锥曲线相关的解析几何问题。
教学重点:
1. 圆锥曲线的定义;
2. 圆、椭圆、双曲线、抛物线的方程和几何性质;
3. 圆锥曲线的参数方程及相关问题解决。
教学难点:
1. 圆锥曲线的性质的证明;
2. 圆锥曲线的参数方程的应用;
3. 圆锥曲线的相关题目解决。
教学过程:
1. 引入:通过一个实际的应用问题引入圆锥曲线的概念,引起学生的兴趣。
2. 讲解:介绍圆锥曲线的定义、方程和性质,重点讲解圆、椭圆、双曲线、抛物线的方程及几何性质。
3. 示范:通过几个例题演示如何求解与圆锥曲线相关的几何问题,让学生掌握解题方法。
4. 练习:让学生在课堂上进行练习,巩固所学知识,并解决一些练习题。
5. 提高:提出一些较难的问题,让学生进行思考和讨论,提高他们的解题能力。
6. 总结:总结本节课的重点内容,并留出时间进行问题答疑。
作业布置:
1. 完成课堂上留的练习题目;
2. 自主搜索一些与圆锥曲线相关的问题,进行解答,以提高解题能力。
教学反思:
通过本节课的教学,学生对圆锥曲线有了更深入的了解,掌握了相关的知识和解题方法。
通过练习和讨论,能够提高学生解析几何的能力和思维水平。
希望学生能够在课后进行更多的练习,巩固所学知识,提高解题能力。
初中数学竞赛辅导讲座19讲(全套)
第一讲 有 理 数一、有理数的概念及分类。
二、有理数的计算:1、善于观察数字特征;2、灵活运用运算法则;3、掌握常用运算技巧(凑整法、分拆法等)。
三、例题示范例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少个?例2、 将9998,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。
提示1:四个数都加上1不改变大小顺序;提示2:先考虑其相反数的大小顺序;提示3:考虑其倒数的大小顺序。
例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。
试确定三个数ca b ab 1,1,1-的大小关系。
分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较ca b ab 1,1,1-的大小关系,只要比较分母的大小关系。
例4、 在有理数a 与b(b >a)之间找出无数个有理数。
提示:P=na b a -+(n 为大于是 的自然数) 注:P 的表示方法不是唯一的。
2、符号和括号在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。
例5、 在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非负数是多少?提示:造零:n-(n+1)-(n+2)+(n+3)=0注:造零的基本技巧:两个相反数的代数和为零。
3、算对与算巧例6、 计算 -1-2-3-…-2000-2001-2002提示:1、逆序相加法。
2、求和公式:S=(首项+末项)⨯项数÷2。
例7、 计算 1+2-3-4+5+6-7-8+9+…-2000+2001+2002例8、 计算9999991999999个个个n n n +⨯ 提示1:凑整法,并运用技巧:199…9=10n +99…9,99…9=10n -1。
高中数学奥赛指导讲解教案
高中数学奥赛指导讲解教案
一、教学目标
1. 了解数学奥赛的考试内容和要求;
2. 掌握解题方法和技巧;
3. 提高数学思维能力和解决问题的能力;
4. 培养学生对数学的兴趣和热爱。
二、教学重点
1. 掌握基础知识和解题方法;
2. 熟练运用方法解决各类数学问题;
3. 解题时注重逻辑性和严谨性。
三、教学内容
1. 数学奥赛的类型和题型;
2. 常用的解题方法和技巧;
3. 练习题目的讲解和解答。
四、教学步骤
1. 热身引入
教师向学生介绍数学奥赛的重要性和意义,激发学生对数学竞赛的兴趣和热情。
2. 理论讲解
教师介绍数学奥赛的考试内容和要求,讲解常用的解题方法和技巧,引导学生掌握题目的解题思路和逻辑推理。
3. 实例讲解
教师结合具体的题目,逐个讲解每道题目的解题方法和步骤,帮助学生理解题目的意义和解题的关键点。
4. 练习训练
教师布置相关的练习题目,让学生在课堂上进行训练和练习,巩固所学的知识和技巧。
5. 案例分析
教师选取一些典型的案例,进行详细分析和讲解,让学生了解不同题型的解题思路和方法。
6. 总结提升
教师对本节课的内容进行总结和梳理,提出解题时需要注意的问题和技巧,鼓励学生在日
常学习中多加练习和提高。
五、教学评价
通过本节课的教学,学生应能掌握数学奥赛的基本要求和解题方法,提高解题能力和思维
能力,为参加数学竞赛打下坚实的基础。
同时,教师应及时对学生的学习情况进行评价和
反馈,鼓励学生继续努力学习和提高自己的数学水平。
数学竞赛基础培优第1-9讲
数学竞赛基础培优第1-9讲数学竞赛基础培优第 1 9 讲在数学的奇妙世界里,数学竞赛就像是一场充满挑战和惊喜的探险之旅。
而我们的“数学竞赛基础培优”课程,则是为大家精心准备的探险指南。
接下来,让我们一起走进第 1 9 讲的精彩内容。
第 1 讲:整数的运算与性质整数,是数学中最基础也最重要的概念之一。
在这一讲中,我们首先回顾了整数的四则运算:加法、减法、乘法和除法。
了解了加法和乘法的交换律、结合律,以及乘法对加法的分配律等基本运算规律。
接着,我们深入探讨了整数的性质。
比如,整数的奇偶性。
通过判断一个整数是奇数还是偶数,我们能够巧妙地解决很多数学问题。
还有整数的整除性,能被 2、3、5、9 等整除的数都有其独特的特征。
例如,一个数能被 2 整除,当且仅当它的个位数字是 0、2、4、6、8 中的一个;一个数能被 3 整除,当且仅当它的各位数字之和能被 3 整除。
第 2 讲:小数与分数小数和分数是表示数量的另外两种形式。
我们学习了小数的意义和性质,知道了小数可以看作是分数的另一种表现形式。
在分数方面,我们掌握了分数的基本性质,即分子和分母同时乘以或除以同一个非零数,分数的大小不变。
还学会了分数的四则运算,通分和约分是其中的关键技巧。
比如,计算 1/2 + 1/3 时,我们需要先通分,将 1/2 化为 3/6,将1/3 化为 2/6,然后相加得到 5/6 。
第 3 讲:代数式与方程代数式是由数和字母通过有限次的加、减、乘、除、乘方运算得到的式子。
我们学会了用字母表示数,以及如何化简和求值代数式。
方程则是含有未知数的等式。
通过建立方程,我们可以解决很多实际问题。
例如,一个数的 3 倍加上 5 等于 14,我们可以设这个数为 x ,列出方程 3x + 5 = 14 ,然后解方程得到 x = 3 。
第 4 讲:平面几何初步这一讲中,我们走进了平面几何的世界。
认识了点、线、面、角等基本元素。
角的度量和分类是重点之一,我们知道了锐角、直角、钝角、平角和周角的定义和大小范围。
小学数学奥林匹克竞赛辅导系列讲座共49讲
小学数学奥林匹克竞赛辅导系列讲座共49讲(总6页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除小学数学奥林匹克竞赛辅导系列讲座共49讲小学数学奥林匹克竞赛辅导系列讲座共49讲小学奥数辅导01 小学奥数辅导02 小学奥数辅导03 小学奥数辅导04小学奥数辅导05 小学奥数辅导06 小学奥数辅导07 小学奥数辅导08小学奥数辅导09 小学奥数辅导10 小学奥数辅导11 小学奥数辅导12小学奥数辅导13 小学奥数辅导14 小学奥数辅导15 小学奥数辅导16小学奥数辅导17 小学奥数辅导18 小学奥数辅导19 小学奥数辅导20小学奥数辅导21 小学奥数辅导22 小学奥数辅导23 小学奥数辅导24小学奥数辅导25 小学奥数辅导26 小学奥数辅导27 小学奥数辅导28小学奥数辅导29 小学奥数辅导30 小学奥数辅导31 小学奥数辅导32小学奥数辅导33 小学奥数辅导34 小学奥数辅导35 小学奥数辅导36小学奥数辅导37 小学奥数辅导38 小学奥数辅导39 小学奥数辅导40小学奥数辅导41 小学奥数辅导42 小学奥数辅导43 小学奥数辅导44小学奥数辅导45 小学奥数辅导46 小学奥数辅导47 小学奥数辅导48小学奥数辅导49这部小学数学奥林匹克竞赛辅导系列讲座视频是一部不可多得的优质视频,它会为您涉及小学奥数的重点和难点的详细讲解。
认真观看并跟随学习,您会发现它是您备战小学奥数不可或缺的学习伴侣。
奥数”是奥林匹克数学竞赛的简称。
1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第一届国际数学奥林匹克竞赛。
国际数学奥林匹克(InternationalMathematicalOlympiads)简称IMO,是一项以数学为内容,以中学生为对象的国际性竞赛活动,至今已有30余年的历史。
高中数学奥赛辅导教案模板
课程名称:高中数学奥赛辅导课程目标:1. 培养学生对数学奥赛的兴趣和热情,提高他们的数学思维能力。
2. 帮助学生掌握数学奥赛的基本题型和解题技巧。
3. 提升学生的逻辑思维能力和创新意识。
课程内容:一、课程概述1. 介绍数学奥赛的基本概念和意义。
2. 分析高中数学奥赛的特点和考试范围。
二、奥赛题型分析1. 计算题2. 推理题3. 应用题4. 综合题三、解题技巧与方法1. 计算题的解题技巧2. 推理题的解题技巧3. 应用题的解题技巧4. 综合题的解题技巧四、典型例题讲解1. 计算题典型例题2. 推理题典型例题3. 应用题典型例题五、模拟试题训练1. 模拟试题一2. 模拟试题二3. 模拟试题三教学过程:第一课时一、导入1. 介绍数学奥赛的基本概念和意义。
2. 引导学生了解高中数学奥赛的特点和考试范围。
二、课程内容讲解1. 计算题的解题技巧2. 推理题的解题技巧三、典型例题讲解1. 计算题典型例题讲解2. 推理题典型例题讲解四、课堂练习1. 学生独立完成练习题,教师巡视指导2. 学生展示解题过程,教师点评第二课时一、课程内容讲解1. 应用题的解题技巧2. 综合题的解题技巧1. 应用题典型例题讲解2. 综合题典型例题讲解三、课堂练习1. 学生独立完成练习题,教师巡视指导2. 学生展示解题过程,教师点评第三课时一、模拟试题训练1. 学生独立完成模拟试题一,教师巡视指导2. 学生展示解题过程,教师点评二、课程总结1. 总结课程内容,强调解题技巧的重要性2. 鼓励学生在课后进行自主练习,提高解题能力教学评价:1. 学生对数学奥赛的兴趣和热情是否有所提高。
2. 学生是否掌握了基本的解题技巧和方法。
3. 学生在模拟试题训练中的表现。
课后作业:1. 复习课程内容,总结解题技巧。
2. 完成课后练习题,巩固所学知识。
3. 预习下一节课的内容,为接下来的学习做好准备。
备注:1. 教师应根据学生的实际情况调整教学内容和进度。
六年级数学竞赛上册奥数高思第7讲逻辑推理二(彩色)
六年级数学竞赛上册奥数高思第7讲逻辑推理二(彩色)上册第7讲逻辑推理二48逻辑推理二这一讲我们学习的主要内容是与比赛有关的逻辑推理问题.这些问题有各种不同的形式:有分析对阵情况的,有计算各队积分的,有利用积分排名的,甚至还有讨论进球数、失球数的.不同类型的问题我们应该用不同的方法来处理.在逻辑推理中,特别有用的方法是画示意图或表格,这种方法相信大家并不陌生,用它来分析比赛问题,能够让我们对比赛的情况更为直观明了.编号为1、2、3、4、5、6的六名同学进行围棋比赛,每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号一样,那么编号为6的同学赛了几盘?分析为了让问题更加直观,我们可以画出一个示意图,用6个点来表示这6个同学.如果两个同学之间比赛过,则把对应的两个点用实线连起来,如果没比赛过,则用虚线连起来.1.A、B、C 三所小学,每所小学派出2支足球队,共6支足球队进行友谊比赛.同一所学校的两队之间不比赛,不同学校的每2个队间只比赛1场,比赛进行了若干天后,A 校的甲队队长发现另外5支球队赛过的场数各不相同.问:这时候A 校甲队与A 校乙队哪个队已赛过的场数多?A、B、C、D、E、F 六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛,已知第一天B 对D,第二天C 对E,第三天D 对F,第四天B 对C.那么第五天与A 队比赛的是哪个队?分析题目的条件比较多,如何才能看清楚呢?我们可以用下面的表格来表示.如图,第二列从上到下依次表示A 在5天中分别遇到的对手,第三列表示B 在5天中遇到的对手,依此类推.观察表格,这个表格的每行有几个字母?49上册第7讲每列有几个字母?每行、每列的字母有什么特点?A B C D E F1 D B2 E C3 F D4 C B52.五个国家足球队A、B、C、D、E 进行单循环比赛,每天进行两场比赛,一队轮空.已知第一天比赛的是A 与D,C 轮空;第二天A 与B 比赛,E 轮空;第三天A 与E 比赛;第四天A 与C 比赛;B 与C 的比赛在与D 的比赛之前进行.那么C 与E 在哪一天比赛?前两个例题,我们讨论的是比赛场数与对阵情况,接下来要讨论的问题是比赛中的积分情况.甲、乙、丙、丁四个同学进行象棋比赛,每两人都比赛一场,比赛规定:胜者得2分,平局各得1分,输者得0分.请问:(1)一共有多少场比赛?(2)四个人最后得分的总和是多少?(3)如果最后结果甲得第一,乙、丙并列第二,丁最后一名,那么乙得了多少分?分析(1)每两人之间都比赛一场,总比赛场数就是从四个人中挑出两人的方法数;(2)比赛的胜负情况有很多种可能,那么总分也有很多种可能吗?大家考虑一下每场比赛双方的得分之和就知道了;(3)乙、丙最后的分数一样,由于总分是固定的,这个相同的分数既不能太大,也不能太小,那么会是多少呢?50逻辑推理二3.有A、B、C、D 四支足球队进行单循环比赛,每两队都比赛一场.比赛规定:胜一场得2分,平局各得1分,负一场得0分.全部比赛结束后,A、B 两队的总分并列第一名,C 队第二名,D 队第三名,C 队最多得多少分?淘汰赛与循环赛淘汰赛:赛程相对较短,可以容纳较多的队参加.淘汰赛中,每进行一轮比赛都要淘汰一些队,在比赛中失败的队要退出比赛,再无参与比赛的机会,胜利者之间将继续进行比赛,并由获得最后胜利的队伍赢得冠军.在淘汰赛中,每个队只能与部分队进行比赛.由于各队所遇到对手的强弱不同,加之淘汰赛一场定胜负的方法使比赛产生的名次有一定的偶然性.循环赛:循环赛赛程较长,比赛中每一队轮流与其他队比赛一场(单循环)或两场(双循环),累计成绩最好的队为冠军.循环赛中每个队的对手强弱相同,因此对各参赛队最为公平,比赛名次能够较好的反映每个队的实际水平.两种赛制各有优劣,分别适用于不同情况.以足球为例,目前世界各国的足球联赛大部分采用双循环赛制,各洲杯赛一般都采用淘汰赛.而世界杯赛则采用两种赛制混合的方式,充分的扬长避短,即首先分若干小组进行循环赛,小组前几名出线后再通过淘汰赛角逐最终的冠军.4支足球队进行单循环比赛,即每两队之间都比赛一场. 每场比赛胜者得3分,负者得0分,平局各得1分. 比赛结束后,各队的总得分恰好是4个连续的自然数. 问:输给第一名的队的总分是多少?分析4支球队之间一共比赛了多少场?所有比赛的总分最多是多少,最少是多少?你能由此推断出各队的得分吗?4.甲、乙、丙、丁4个队举行足球单循环赛.规定:每场比赛胜者得3分,负者得0分,51上册第7讲平局各得1分.已知:(1)比赛结束后4个队的得分都是奇数;(2)甲队总分超过其他各队,名列第一;(3)乙队恰有两场平局,并且其中一场是与丙队平局.那么丁队得了多少分?四国足球邀请赛荷兰阿姆斯特丹每年都要举办一场四国足球邀请赛,它的得分规则与我们平时所知不尽相同——胜、平、负仍分别得3、1、0分,但为了鼓励进攻,突出荷兰攻势足球的特点,同时也为了使比赛更富有激情,大赛规定每一个进球也能得1分.这样做确实提高了比赛的观赏性,因此不少人建议国际足联把现在的积分规则也改为阿姆斯特丹杯的积分规则,但每次都没有成功.这是为什么呢?提高比赛的观赏度难道不好吗?其实四国赛规则并不是无懈可击的,在这种情况下,很容易出现两队事先商量好放弃防守、一味进攻的情况.如果打出100:100的比分,那么两个队一场比赛就能得101分.进球数越是可观,由胜负决出的那三分就越可以忽略不计,甚至可能会出现三战全败的队获得总冠军的情况.(请你想一想,这种结果会在什么情况下出现?)设想一下,如果四国赛不是一场普通的邀请赛,而是一场举足轻重的大赛,那估计比赛早就会变成一个灌球大赛了!在本讲的最后,我们以两道综合较强的逻辑推理问题作结尾,一道注重极端分析,一道注重整体分析,这两种方法前的学习中已经有所涉及,这里再回顾一下,希望同学们能够重视,因为它们在各类组合问题(即逻辑推理、构造论证、最值问题等)中都是极其常用并且行之有效的方法.有九个外表完全相同的小球,重量分别是1克,2克,…,9克.为了加以区分,它们都被贴上了数字标签.可是有一天,这些标签不知被哪个调皮鬼重新乱贴了一通.我们用天平做了两次称量,得到如下结果:(1)①②>③④⑤⑥⑦;(2)③⑧= ⑦.请问:⑨号小球的重量是多少?分析在条件(1)中,左边两个球竟比右边五个球还重!这两个球肯定比较重,会是怎样的两个球呢?再结合条件(2),你能知道⑨号小球有多重吗?52逻辑推理二5.有九个外表完全相同的小球,重量分别是1克,2克,…,9克.为了加以区分,它们都被贴上了数字标签.可是有一天,这些标签不知被哪个调皮鬼重新乱贴了一通.我们用天平做了三次称量,得到如下结果:(1)①>②③④;(2)⑤>⑥⑦;(3)⑧>⑨.请问:⑨号小球的重量是多少?A、B、C、D、E 五位同学分别从不同的途径打听到五年级那位获得数学竞赛第一名的同学的情况:A 打听到的:姓李,是女同学,13岁,东城区;B 打听到的:姓张,是男同学,11岁,海淀区;C 打听到的:姓陈,是女同学,13岁,东城区;D 打听到的:姓黄,是男同学,1岁,西城区;E 打听到的:姓张,是男同学2岁,东城区.实际上该同学的情况在上面都出现过,而且这五位同学的消息都仅有一项正确,那么第一名的同学应该是哪个区的,今年多少岁呢?分析每个同学打听到的消息都只有一项正确,可谓相当的少!5×4=20个判断,一共才5个正确的,其中关于姓氏、性别、年龄、地区的判断各有几项是正确的呢?6.某商品的编号是一个三位数.现有5个三位数:874、765、123、364、925,其中每一个数与商品编号恰好有一个数字完全对得上(即位置和大小都一样,例如912与925只有百位的9对得上).那么这个三位数是多少?53上册第7讲思考题A、B、C、D 四个足球队进行循环比赛,赛了若干场后,A、B、C 三队的比赛情况如下:场数胜平负进球失球A 321020B 211043C 200236D问:D 赛了几场?D 所参与的各场比赛的比分分别是什么?一、画图、列表分析方法在逻辑推理问题中的应用.二、与比赛积分有关的推理问两种常见的计分法:1. 2分制计分法:“每场比赛胜者得2分,负者得0分,平局各得1分”.这种情况下,每场比赛无论结果如何,双方总分都是2分,因此所有参赛选手的总分就等于“比赛场数×2”.2. 3分制计分法:“每场比赛胜者得3分,负者得0分,平局各得1分”.这种情况下,总分就是“胜负场数×3+ 平局场数×2”,或者写成“比赛场数×3?平局场数”.三、极端思想与整体思想在逻辑推理问题中的应用.1. A、B、C、D 四支球队进行足球比赛,每两队都要比赛一场.已知A、B、C 三队的成绩分别是:A 队二胜一负,B 队二胜一平,C 队一胜二负.那么D 队的成绩是什么?54逻辑推理二2.6名同学进行象棋比赛,每两人都比赛一场,比赛规定胜者得2分,平局各得1分,输者得0分.请问:(1)一共有多少场比赛?(2)6个人最后得分的总和是多少?(3)得分最高的三名同学的分数之和最多是多少?3.六个人参加乒乓球比赛,每两人之间都要比赛一场,胜者得2分,负者得0分,没有平局.比赛结束时发现,有两人并列第二名,两人并列第五名.那么第一名和第四名各得了多少分?4.足球甲A 联赛共有12个足球俱乐部参加,实行主客场双循环赛制,即任何两队分别在主场和客场各比赛一场,胜一得3分,平一场各得1分,负一场得0分,在联赛结束后按积分的高低排出名次.,在积分榜上第一名与第二名的积分差距最多可达多少分?5.有六个外表完全相同的小球,重量分别是1克,2克,……,6克.为了加以区分,它们都被贴上了数字标签.可是有一天,不知被哪个调皮鬼重新乱贴了一通.我们用天平做了两次称量,得到如下结果:(1)①②>③④⑤⑥;(2)③④⑤= ②.请问:①号小球的重量是多少克?55。
高中数学奥赛辅导教材(共十讲)
第一讲 集合概念及集合上的运算知识、方法、技能高中一年级数学(上)(试验本)课本中给出了集合的概念;一般地,符合某种条件(或具有某种性质)的对象集中在一起就成为一个集合.在此基础上,介绍了集合的元素的确定性、互异性、无序性.深入地逐步给出了有限集、无限集,集合的列举法、描述法和子集、真子集、空集、非空集合、全集、补集、并集等十余个新名词或概念以及二十几个新符号.由此形成了在集合上的运算问题,形成了以集合为背景的题目和用集合表示空间的线面及其关系,表面平面轨迹及其关系,表示充要条件,描述排列组合,用集合的性质进行组合计数等综合型题目.赛题精讲Ⅰ.集合中待定元素的确定充分利用集合中元素的性质和集合之间的基本关系,往往能解决某些以集合为背景的高中数学竞赛题.请看下述几例.例1:求点集}lg lg )9131lg(|),{(33y x y x y x +=++中元素的个数. 【思路分析】应首先去对数将之化为代数方程来解之. 【略解】由所设知,9131,0,033xy y x y x =++>>及 由平均值不等式,有,)91()31()(3913133333xy y x y x =⋅⋅≥++ 当且仅当333331,91,9131====y x y x 即(虚根舍去)时,等号成立. 故所给点集仅有一个元素.【评述】此题解方程中,应用了不等式取等号的充要条件,是一种重要解题方法,应注意掌握之.例2:已知.}.,22|{},,34|{22B A x x x y y B x x x y y A ⋂∈+--==∈+-==求R R【思路分析】先进一步确定集合A 、B.【略解】,11)2(2≥--=x y 又.33)1(2≤++-=x y∴A=}.31|{},3|{},1|{≤≤-=⋂≤=-≥y y B A y y B y y 故【评述】此题应避免如下错误解法:联立方程组⎪⎩⎪⎨⎧+--=+-=.22,3422x x y x x y 消去.0122,2=+-x x y 因方程无实根,故φ=⋂B A . 这里的错因是将A 、B 的元素误解为平面上的点了.这两条抛物线没有交点是实数.但这不是抛物线的值域.例3:已知集合|}.|||1|||),{(},0,|||||),{(y x xy y x B a a y x y x A +=+=>=+= 若B A ⋂是平面上正八边形的顶点所构成的集合,则a 的值为.【思路分析】可作图,以数形结合法来解之.【略解】点集A 是顶点为(a ,0),(0,a ),(-a ,0),(0,-a )的正方形的四条边构成(如图Ⅰ-1-1-1).将||||1||y x xy +=+,变形为,0)1|)(|1|(|=--y x所以,集合B 是由四条直线1,1±=±=y x 构成.欲使B A ⋂为正八边形的顶点所构成,只有212<<>a a 或这两种情况.(1)当2>a 时,由于正八形的边长只能为2,显然有,2222=-a故 22+=a .(2)当21<<a 时,设正八形边长为l ,则,222,2245cos -=-=︒l l l 这时,.221=+=l a 综上所述,a 的值为,222或+如图Ⅰ-1-1-1中).0,22(),0,2(+B A 【评述】上述两题均为1987年全国高中联赛试题,题目并不难,读者应从解题过程中体会此类题目的解法.Ⅱ.集合之间的基本关系充分应用集合之间的基本关系(即子、交、并、补),往往能形成一些颇具技巧的集合综合题.请看下述几例.例4:设集合},|613{},|21{},|{},|2{Z Z Z Z ∈+=∈+=∈=∈=n n D n n C n n B n n A 则在下列关系中,成立的是( )A .D CB A ≠≠≠⊂⊂⊂ B .φφ=⋂=⋂DC B A , C .D C C B A ≠⊂⋃=, D .φ=⋂=⋃D C B B A ,图Ⅰ-1-1-1【思路分析】应注意数的特征,即.,612613,21221Z ∈+=++=+n n n n n 【解法1】∵},|613{},|21{},|{},|2{Z Z Z Z ∈+=∈+=∈=∈=n n D n n C n n B n n A ∴D C C B A ≠⊂⋃=,.故应选C. 【解法2】如果把A 、B 、C 、D 与角的集合相对应,令}.|63{},|2{},|{},|2{Z Z Z Z ∈+=∈+='∈='∈='n n D n n C n n B n n A ππππππ 结论仍然不变,显然A ′为终边在坐标轴上的角的集合,B ′为终边在x 轴上的角的集 合,C ′为终边在y 轴上的角的集合,D ′为终边在y 轴上及在直线x y 33±=上的角的集合,故应选(C ).【评述】解法1是直接法,解法2运用转化思想把已知的四个集合的元素转化为我们熟悉的的角的集合,研究角的终边,思路清晰易懂,实属巧思妙解.例5:设有集合B A B A x x B x x x A ⋃⋂<==-=和求和},2|||{}2][|{2(其中[x ]表示不超过实数x 之值的最大整数).【思路分析】应首先确定集合A 与B.从而 .2,.21A x ∈≤≤-显然∴}.22|{≤<-=⋃x x B A若 },2,1,0,1{][,2][,2--∈+=⋂∈x x x B A x 则从而得出 ).1]([1)1]([3-=-===x x x x 或 于是 }3,1{-=⋂B A【评述】此题中集合B 中元素x 满足“|x |<3”时,会出现什么样的结果,读者试解之.例6:设})],([|{},),(|{),,()(2R R R ∈==∈==∈++=x x f f x x B x x f x x A c b c bx x x f 且, 如果A 为只含一个元素的集合,则A=B.【思路分析】应从A 为只含一个元素的集合入手,即从方程0)(=-x x f 有重根来解之.【略解】设0)(},|{=-∈=x x f A 则方程R αα有重根α,于是,)()(2α-=-x x x f )],([..)()(2x f f x x x x f =+-=从而α即 ,)()]()[(222x x x x x +-+-+-=ααα 整理得,0]1)1[()(22=++--ααx x 因α,x 均为实数 .,01)1(2αα=≠++-x x 故 即.}{A B ==α【评述】此类函数方程问题,应注意将之转化为一般方程来解之.例7:已知N N M a y x y x N x y y x M =⋂≤-+=≥=求}.1)(|),{(},|),{(222成立时,a 需满足的充要条件.【思路分析】由.,M N N N M ⊆=⋂可知【略解】.M N N N M ⊆⇔=⋂由).1()12(1)(22222a y a y y x a y x -+-+-≤≤-+得于是,若0)1()12(22≤-+-+-a y a y ① 必有.,2M N x y ⊆≥即而①成立的条件是 ,04)12()1(422m a x ≤-----=a a y 即 ,0)12()1(422≤-+-a a 解得 .411≥a【评述】此类求参数范围的问题,应注意利用集合的关系,将问题转化为不等式问题来求解. 例8:设A 、B 是坐标平面上的两个点集,}.|),{(222r y x y x C r ≤+=若对任何0≥r 都有B C A C r r ⋃⊆⋃,则必有B A ⊆.此命题是否正确?【思路分析】要想说明一个命题不正确,只需举出一个反例即可.【略解】不正确.反例:取},1|),{(22≤+=y x y x A B 为A 去掉(0,0)后的集合.容易看出,B C A C r r ⋃⊆⋃但A 不包含在B 中.【评述】本题这种举反例判定命题的正确与否的方法十分重要,应注意掌握之.Ⅲ.有限集合中元素的个数有限集合元素的个数在课本P 23介绍了如下性质:一般地,对任意两个有限集合A 、B ,有 ).()()()(B A card B card A card B A card ⋂-+=⋃我们还可将之推广为:一般地,对任意n 个有限集合,,,,21n A A A 有)(1321n n A A A A A card ⋃⋃⋃⋃⋃-)]()([)]()()()([3121321A A card A A card A card A card A card A card n ⋂+⋂-++++= )]()]([)]()(1232111n n n n n n A A A card A A A card A A card A A card ⋂⋂++⋂⋂+⋂++⋂++---).()1(311n n A A A card ⋂⋂⋂⋅-+--应用上述结论,可解决一类求有限集合元素个数问题.【例9】某班期末对数学、物理、化学三科总评成绩有21个优秀,物理总评19人优秀,化学总评有20人优秀,数学和物理都优秀的有9人,物理和化学都优秀的有7人,化学和数学都优秀的有8人,试确定全班人数以及仅数字、仅物理、仅化学单科优秀的人数范围(该班有5名学生没有任一科是优秀).【思路分析】应首先确定集合,以便进行计算.【详解】设A={数学总评优秀的学生},B={物理总评优秀的学生},C={化学总评优秀的学生}. 则.8)(,7)(,9)(,20)(,19)(,21)(=⋂=⋂=⋂===A C card C B card B A card C card B card A card ∵)()()()()()()(A C card C B card B A card C card B card A card C B A card ⋂-⋂-⋂-++=⋃⋃ ),(C B A card ⋂⋂+∴.3689201921)()(=--++=⋂⋂-⋃⋃C B A card C B A card 这里,)(C B A card ⋃⋃是数、理、化中至少一门是优秀的人数,)(C B A card ⋂⋂是这三科全优的人数.可见,估计)(C B A card ⋃⋃的范围的问题与估计)(C B A card ⋂⋂的范围有关.注意到7)}(),(),(min{)(=⋂⋂⋂≤⋂⋂A C card C B card B A card C B A card ,可知 7)(0≤⋂⋂≤C B A card . 因而可得.43)(36≤⋃⋃≤C B A card 又∵.5)(),()()(=⋃⋃=⋃⋃+⋃⋃C B A card U card C B A card C B A card 其中 ∴.48)(41≤≤U card 这表明全班人数在41~48人之间. 仅数学优秀的人数是).(C B A card ⋃⋂ ∴)()()()()(B card C B A card C B card C B A card C B A card -⋃⋃=⋃-⋃⋃=⋃⋂ .32)()()(-⋃⋃=⋂+-C B A card C B card C card 可见,11)(4≤⋃⋂≤C B A card 同理可知 ,10)(3≤⋃⋂≤C A B card.12)(5≤⋃⋂≤A B C card 故仅数学单科优秀的学生在4~11之间,仅物理单科优秀的学生数在3~10之间,仅化学单科优秀的学生在5~12人之间.第二讲 映射及映射法知识、方法、技能1.映射的定义设A ,B 是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有惟一的元素和它对应,这样的对应叫做从集合A 到集合B 的映射,记作.:B A f →(1)映射是特殊的对应,映射中的集合A ,B 可以是数集,也可以是点集或其他集合,这两个集合有先后次序,从A 到B 的映射与从B 到A 的映射是截然不同的.(2)原象和象是不能互换的,互换后就不是原来的映射了.(3)映射包括集合A 和集合B ,以及集合A 到B 的对应法则f ,三者缺一不可.(4)对于一个从集合A 到集合B 的映射来说,A 中的每一个元素必有惟一的,但B 中的每一个元素都不一定都有原象.如有,也不一定只有一个.2.一一映射一般地,设A 、B 是两个集合,.:B A f →是集合A 到集合B 的映射,如果在这个映射下,对于集合A 中的不同元素,在集合B 中有不同的象,而且B 中每一个元素都有原象,那么个这个映射叫做A 到B 上的一一映射.3.逆映射如果f 是A 与B 之间的一一对应,那么可得B 到A 的一个映射g :任给B b ∈,规定 a b g =)(,其中a 是b 在f 下的原象,称这个映射g 是f 的逆映射,并将g 记为f —1.显然有(f —1)—1= f ,即如果f 是A 与B 之间的一一对应,则f —1是B 与A 之间的一一对应,并且f —1的逆映射是f .事实上,f —1是B 到A 的映射,对于B 中的不同元素b 1和b 2,由于它们在f 下的原象不同,所以b 1和b 2在f —1下的像不同,所以f —1是1-1的. 任给b a f A a =∈)(,设,则a b f=-)(1.这说明A 中每个元素a 在f —1都有原象.因此,f —1是映射上的.这样即得f —1是B 到A 上的1-1映射,即f —1是B 与A 之间一一对应.从而f —1有逆映射.:B A h →由于任给b a h A a =∈)(,设,其中b 是a 在f —1下的原象,即f —1(b)=a ,所以,f(a)=b ,从而f h a f b a h ===得),()(,这即是f —1的逆映射是f .赛题精讲Ⅰ映射关映射的高中数学竞赛题是常见题型之一,请看下述试题.例1:设集合},,,,|),,,{(},,110|{M d c b a d c b a F x x x M ∈=∈≤≤=集合Z 映射f :F →Z.使得v u y x v x y u y x v u cd ab d c b a ff f ,,,,66),,,(,39),,,(.),,,(求已知→→-→的值.【思路分析】应从cd ab d c b a f -→),,,(入手,列方程组来解之.【略解】由f 的定义和已知数据,得⎩⎨⎧∈=-=-).,,,(66,39M y x v u xv uy xy uv 将两式相加,相减并分别分解因式,得.27))((,105))((=+-=-+x u v y x u v y显然,},110|{,,,,0,0Z ∈≤≤∈≥-≥-x x x v u y x v y x u 在的条件下,,110≤-≤v u ,21)(,15)(,105|)(,2210,221]11105[21=+=++≤+≤≤+≤+v y v y v y v y v y 可见但即 对应可知.5)(,7)(21=-=-x u x u 同理,由.9)(,3)(223,221]1127[,11021=+=+≤+≤≤+≤+≤-≤x u x u x u x u v y 又有知 对应地,.3)(,9)(21=-=-v y v y 于是有以下两种可能: (Ⅰ)⎪⎪⎩⎪⎪⎨⎧=-=+=-=+;3,9,7,15v y x u x u x y (Ⅱ)⎪⎪⎩⎪⎪⎨⎧=-=+=-=+.3,9,5,21v y x u x u v y 由(Ⅰ)解出x =1,y=9,u =8,v =6;由(Ⅱ)解出y=12,它已超出集合M 中元素的范围.因此,(Ⅱ)无解.【评述】在解此类问题时,估计x u v y x u v y +--+,,,的可能值是关键,其中,对它们的取值范围的讨论十分重要.例2:已知集合}.0|),{(}333|),{(><<=xy y x x y y x A 和集合求一个A 与B 的一一对应f ,并写出其逆映射.【略解】从已知集合A ,B 看出,它们分别是坐标平面上两直线所夹角形区域内的点的集合(如图Ⅰ-1-2-1).集合A 为直线x y x y 333==和所夹角内点的集合,集合B 则是第一、三象限内点的集合.所要求的对应实际上可使A 区域拓展成B 区域,并要没有“折叠”与“漏洞”.先用极坐标表示集合A 和B :图Ⅰ-1-2-1},36,,0|)sin ,cos {(πθπρρθρθρ<<∈≠=R A }.20,,0|)sin ,cos {(πϕρρϕρϕρ<<∈≠=R B 令).6(3),sin ,cos ()sin ,cos (πθϕϕρϕρθρθρ-=→f 在这个映射下,极径ρ没有改变,辐角之间是一次函数23πθϕ-=,因而ϕθ和之间是一一对应,其中),3,6(ππθ∈ ).2,0(πϕ∈所以,映射f 是A 与B 的一一对应. 逆映射极易写,从略.【评述】本题中将下角坐标问题化为极坐标问题,颇具特色.应注意理解掌握.Ⅱ映射法应用映射知识往往能巧妙地解决有关集合的一些问题.例3:设X={1,2,…,100},对X 的任一非空子集M ,M 中的最大数与最小数的和称为M 的特征,记为).(M m 求X 的所有非空子集的特征的平均数.【略解】设.}|101{,:,X A a a A A A f X A ≠≠⊂∈-=''→⊂令 于是A A f '→:是X 的非空子集的全体(子集组成的集),Y 到X 自身的满射,记X 的非空子集为A 1,A 2,…,A n (其中n=2100-1),则特征的平均数为.))()((21)(111∑∑=='+=ni i i n i i A m A m n A m n 由于A 中的最大数与A ′中的最小数的和为101,A 中最小数与A ′中的最大数的和也为101,故,202)()(='i i A m A m 从而特征平均数为 .10120221=⋅⋅n n如果A ,B 都是有限集合,它们的元素个数分别记为).(),(B card A card 对于映射B A f →:来说,如果f 是单射,则有)()(B card A card ≤;如果f 是满射,则有)()(B card A card ≥;如果f 是双射,则有)()(B card A card =.这在计算集合A 的元素的个数时,有着重要的应用.即当)(A card 比较难求时,我们就找另一个集合B ,建立一一对应B A f →:,把B 的个数数清,就有)()(B card A card =.这是我们解某些题时常用的方法.请看下述两例.例4:把△ABC 的各边n 等分,过各分点分别作各边的平行线,得到一些由三角形的边和这些平行线所组成的平行四边形,试计算这些平等四边形的个数.【略解】如图Ⅰ-1-2-2所示,我们由对称性,先考虑边不行于BC 的小平行四边形.把AB 边和AC 边各延长一等分,分别到B ′,C ′,连接B ′C ′.将A ′B ′的n 条平行线分别延长,与B ′C ′相交,连同B ′,C ′共有n+2个分点,从B ′至C ′依次记为1,2,…,n+2.图中所示的小平行四边形所在四条线分别交B ′C ′于i ,j ,k ,l .记A={边不平行于BC 的小平行四边形},}.21|),,,{(+≤<<<≤=n l k j i l k j i B把小平行四边形的四条边延长且交C B ''边于四点的过程定义为一个映射:B A f →:. 下面我们证明f 是A 与B 的一一对应,事实上,不同的小平行四边形至少有一条边不相同,那么交于C B ''的四点亦不全同.所以,四点组),,,(l k j i 亦不相同,从而f 是A 到B 的1-1的映射.任给一个四点组21),,,,(+≤<<<≤n l k j i l k j i ,过i ,j 点作AB 的平行线,过k ,l 作AC 的平行线,必交出一个边不平行于BC 的小平行四边形,所以,映射f 是A 到B 的满射. 总之f 是A 与B 的一一对应,于是有.)()(42+==n C B card A card加上边不平行于AB 和AC 的两类小平行四边形,得到所有平行四边形的总数是.342+n C 例5:在一个6×6的棋盘上,已经摆好了一些1×2的骨牌,每一个骨牌都恰好覆盖两上相邻的格子,证明:如果还有14个格子没有被覆盖,则至少能再放进一个骨牌.【思路分析】还有14个空格,说明已经摆好了11块骨牌,如果已经摆好的骨牌是12块,图Ⅰ-1-2-3所示的摆法就说明不能再放入骨牌.所以,有14个空格这一条件是完全必要的.我们要证明当还有14个空格时,能再放入一个骨牌,只要能证明必有两个相邻的空格就够了.如果这种 情况不发生,则每个空格的四周都有骨牌,由于正方形是对称的,当我们选定一个方向时,空格和骨牌就有了某种对应关系,即可建立空格到骨牌的一种映射,通过对空格集合与骨牌集合之间的数量关系,可以得到空格分布的一个很有趣的结论,从而也就证明了我们的命题.【略解】我们考虑下面5×6个方格中的空.如果棋盘第一行(即最上方的一行)中的空格数多于3个时,则必有两空格相邻,这时问题就得到解决.现设第一行中的空格数最多是3个,则有11314)(=-≥X card ,另一方面全部的骨牌数为11,即.11)(=Y card 所以必有),()(Y card X card =事实上这是一个一一映射,这时,将发生一个很有趣的现象:最下面一行全是空格,当然可以放入一个骨牌.【评述】这个题目的证明是颇具有特色的,从内容上讲,这个题目具有一定的综合性,既有覆盖与结构,又有计数与映射,尤其是利用映射来计数,在数学竞赛中还较少见.当然这个题目也可以用其他的方法来解决.例如,用抽屉原则以及用分组的方法来讨论其中两行的结构,也能比较容易地解决这个问题,请读者作为练习.例6:设N={1,2,3,…},论证是否存一个函数N N f →:使得2)1(=f ,n n f n f f +=)())((对一切N ∈n 成立,)1()(+<n f n f 格,即除去第一行后的方格中的空格.对每一个这样的空格,考察它上方的与之相邻的方格中的情况.(1)如果上方的这个方格是空格,则问题得到解决.(2)如果上方的这个方格被骨牌所占,这又有三种情况.(i )骨牌是横放的,且与之相邻的下方的另一个方格也是空格,则这时有两空格相邻,即问题得到解决;(ii )骨牌是横放的,与之相邻的下方的另一个方格不是空格,即被骨牌所覆盖; (iii )骨牌是竖放的.现在假设仅发生(2)中的(ii )和(iii )时,我们记X 为下面5×6个方格中的空格集合,Y 为上面5×6个方格中的骨牌集合,作映射Y X →:ϕ,由于每个空格(X 中的)上方都有骨牌(Y 中的),且不同的空格对应于不同的骨牌.所以,这个映射是单射,于是有 )()(Y card X card ≤,对一切N ∈n 成立.【解法1】存在,首先有一条链.1→2→3→5→8→13→21→…①链上每一个数n 的后继是)(n f ,f 满足n n f n f f +=)())((②即每个数是它产面两个数的和,这种链称为f 链.对于①中的数m>n ,由①递增易知有n m n f m f -≥-)()(③我们证明自然数集N 可以分析为若干条f 链,并且对任意自然数m>n ,③成立(从而)()1(n f n f >+),并且每两条链无公共元素).方法是用归纳法构造链(参见单壿著《数学竞赛研究教程》江苏教育出版社)设已有若干条f 链,满足③,而k+1是第一个不在已有链中出现的数,定义1)()1(+=+k f k f ④这链中其余的数由②逐一确定.对于m>n ,如果m 、n 同属于新链,③显然成立,设m 、n 中恰有一个属于新链.若m 属于新链,在m=k+1时,,1)(1)()()(n m n k n f k f n f m f -=+-≥-+=-设对于m ,③成立,则n m f m n m n f m m f n f m f f -≥+-≥-+=-)()()()())(( [由②易知)(2m f m ≥]. 即对新链上一切m ,③成立.若n 属于新链,在n=k+1时,.11)()()()(n m k m k f m f n f m f -=--≥--=-设对于n ,③成立,在m>n 时,m 不为原有链的链首。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七讲抽屉原则、容斥原理知识、方法、技能I .抽屉原则 10个苹果放入9个抽屉中,无论怎么放,一定有一个抽屉里放了2个或更多个苹果.这个简单的事实就是抽屉原则.由德国数学家狄利克雷首先提出来的.因此,又称为狄利克雷原则. 将苹果换成信、鸽子或鞋,把抽屉换成信筒、鸽笼或鞋盒,这个原则又叫做信筒原则、鸽笼原则或鞋盒原则.抽屉原则是离散数学中的一个重要原则,把它推广到一般情形就得到下面几种形式: 原则一:把m 个元素分成n 类(m >n ),不论怎么分,至少有一类中有两个元素. 原则二:把m 个元素分成n 类(m >n ) (1)当n |m 时,至少有一类中含有至少n m个元素; (2)当n |m 时,至少有一类中含有至少[nm]+1个元素.其中n m 表示n 是m 的约数,n m 表示n 不是m 的约数,[n m ]表示不超过nm的最大整数.原则三:把1221+-+++n m m m 个元素分成n 类,则存在一个k ,使得第k 类至少有k m 个元素.原则四:把无穷多个元素分成有限类,则至少有一类包含无穷多个元素.以上这些命题用反证法极易得到证明,这里从略. 一般来说,适合应用抽屉原则解决的数学问题具有如下特征:新给的元素具有任意性.如10个苹果放入9个抽屉,可以随意地一个抽屉放几个,也可以让抽屉空着. 问题的结论是存在性命题,题目中常含有“至少有……”、“一定有……”、“不少于……”、“存在……”、“必然有……”等词语,其结论只要存在,不必确定,即不需要知道第几个抽屉放多少个苹果. 对一个具体的可以应用抽屉原则解决的数学问题还应搞清三个问题: (1)什么是“苹果”? (2)什么是“抽屉”? (3)苹果、抽屉各多少? 用抽屉原则解题的本质是把所要讨论的问题利用抽屉原则缩小范围,使之在一个特定的小范围内考虑问题,从而使问题变得简单明确. 用抽屉原则解题的基本思想是根据问题的自身特点和本质,弄清对哪些元素进行分类,找出分类的规律. 用抽屉原则解题的基本思想是根据问题的自身特点和本质,弄清对哪些元素进行分类,找出分类的规律. 用抽屉原则解题的关键是利用题目中的条件构造出与题设相关的“抽屉”. Ⅱ. 容斥原则 当我们试图对某些对象的数目从整体上计数碰到困难时,考虑将整体分解为部分,通过对每个部分的计数来实现对整体的计数是一种明智的选择.将整体分解为部分也就是将有限集X 表示成它的一组两两互异的非空真子集A 1,A 2,…A n 的并集,即},,,{.2121n n A A A A A A X ==ϕ集合叫做集合X 的一个覆盖.一个特殊情况是,集族ϕ中的任意两个集合都不相交,这时我们称集族ϕ为集合X 的一个(完全)划分.如ϕ为集合X 的划分,则对集合X 的计数可通过熟知的加法公式||||||||||321n A A A A X ++++= ①进行,但是,要找到一个划分并且其中所有子集易于计数的有时并非易事. 我们可以考虑通过对任意的集族中的子集的计数来计算|X|,当集族ϕ中至少存在两个集合的交非空时,我们称这个覆盖为集合X 的不完全划分. 对于集合X 的不完全划分,显然有有||||||||21n A A A X +++< ②因为在计算|A i |时出现了对某些元素的重复计数,为了计算|X|,就得将②式右边重复计算的部分减去,如果减得超出了,还得再加上,也就是说我们要做“多退少补”的工作.完成这项工作的准则就是容斥原理. 是十九世纪英国数学家西尔维斯提出的. 容斥原理有两个公式. 1.容斥公式定理1 设则为有限集,),,2,1(n i A i =∑∑=≤<≤=-=-++-=ni nj i i ni n j i ii ni A A A A A 11111||)1(|||||| ③证明:当,/,/,,1221121B A A B A A B A A n ='='== 设时由加法公式有|||||||||)||(||)||(|||||||||||,||||||,|||||2121212121212211A A A A B B A B A B A A B A A A A A B A A B A -+=+-+-=++'+'=''==+'=+'结论成立.若n =k 时结论成立,则由∑∑∑=≤<≤=+=-+=+=+=+=+=-+-++-=-+=-+=ki kj i ki i k i ki k j i i i i ki k i ki k i ki k i k i i k i A A A A A A A A A A A A A A A 1111111111111111||||)1(|||||)(||||||)(|||||||∑≤<≤+=+++-+-+ki i k i ki kk j k i k A A A A A A A 111111|)(|)1(|)()(||∑∑+=+≤<≤+=-++-=111111||)1(||||k i k j i i k i kj i iA A A A 知,1+=k n 时结论成立.由归纳原理知,对任意自然数n ,公式③成立. 公式③称为容斥公式,显然它是公式①的推广.如果将i A 看成具有性质i P 的元素的集合,那么n A A A X 21=就是至少具有n个性质n P P P ,,,21 之一的元素的集合. 因此,容斥公式常用来计算至少具有某几个性质之一的元素的数目. 2.筛法公式 与容斥公式讨论的计数问题相反,有时需要计算不具有某几个性质中的任何一个性质的元素的个数,即||21n A A A . 为此,我们先引入下面的引理.引理1 设A 关于全集I 的补集为A ,则.||||||I A A =+引理2 ,11i ni i ni A A === ,11i ni i ni A A ===引理简单证略. 利用二引理改写公式③便是定理2 设),,2,1(n i A i =为有限集I 的子集,则||||||||111i ni i ni i ni A I A A ===-==∑∑=≤<≤=-+++-=ni nj i i ni nj i iA A A AI 111||)1(|||||| ④赛题精讲例1设ABC 为一等边三角形,E 是三边上点的全体. 对于每一个把E 分成两个不相交子集的划分,问这两个子集中是否至少有一个子集包含着一个直角三角形的三个顶点?(第24届IMO 第4题)【证明】如图I —3—2—1,在边BC 、CA 、AB 上分别取三点P 、Q 、R ,使.3,3,3ABRB CA QA BC PC ===显然 △ARQ ,△BPR ,△CQP 都是直角三角形. 它们的锐角是30°及60°.设E 1,E 2是E 的两个非空子集,且==2121,E E E E E 由抽屉原则P 、Q 、R 中至少有两点属于同一子集,不妨设P 、Q ∈E 1. 如果BC 边上除P 之外还有属于E 1的点,那么结论已明.设BC 的点除P 之外全属于E 2,那么只要AB 上有异于B 的点S 属于E 2,设S 在BC 上的投影点为S′,则△SS ′B 为直角三角形. 再设AB 内的每一点均不属于E 2,即除B 之外全属于E 1,特别,R 、A ∈E 1,于是A 、Q 、R ∈E 1,且AQR 为一直角三角形. 从而命题得证.【评述】此例通过分割图形构造抽屉. 在一个几何图形内有若干已知点,我们可以根据问题的要求把图形进行适当的分割,用这些分割成的图形作为抽屉,再对已知点进行分类,集中对某一个或几个抽屉进行讨论,使问题得到解决.例2:在1,4,7,10,13,…,100中任选出20个数,其中至少有不同的两组数,其和都等于104,试证明之. (第39届美国普特南数学竞赛题)【证明】给定的数共有34个,其相邻两数的差均为3,我们把这些数分成如下18个不相交的集合.{1},{52},{4,100},{7,97},…{49,55}. 且把它们分作是18个抽屉,从已知的34个数中任取20个数,即把前面两个抽屉中的数1和52都取出,则剩下的18个数在后面的16个抽屉中至少有不同的两个抽屉中的数全被取出,这两个抽屉中的数互不相同,每个抽屉中的两个数的和都是104.【评述】此例是根据某两个数的和为104来构造抽屉. 一般地,与整数集有关的存在性问题也可根据不同的需要利用整数间的倍数关系、同余关系来适当分组而构成抽屉. 例3 设 ,,,321a a a 是严格上升的自然数列:<<<321a a a ,求证:在这个数列中有无穷多个m a 可以表示为q p m ya xa a +=,这里q p ≠是两个正整数,而y x ,是两个适当的整数. (第17届IMO 第2题) 【证明】对严格上升的自然数列 <<<321a a a ,取以1a 为模的剩余类,则可分为1a 类 {0},{1},{2},…,{11-a }.考虑无穷数列,,,32 a a 由抽屉原则,其中有无穷多项属于同一类,不妨设这一剩余类是{r},且记其中数值最小的那一项为q a ,显然1>q ,于是,1r ua a q +=其中的u 是某个正整数,其他的属于这一剩余类的任一项m a 可表示为 .1r a a q +=ν由于,,u a a q m >>ν故所以有.)(111q q m a a u ua a a a +-=-+=νν令u x -=ν,这是一个正整数,再令1=y ,则上式成为.1q m ya xa a -=显然,这里的q p <=1.例4:设n x x x ,,,21 为实数,满足12232221=++++n x x x x ,求证:对于每一整数2≥k ,存在不全为零的整数),,2,1(1||,,,,21n i k a a a a i n =-≤使得并且.1)1(||2211--≤+++nn n k nk x a x a x a 【证明】由柯西不等式得 ))(111(|)||||(|2232221222221n n x x x x x x x +++++++≤+++即n x x x n ≤+++||||||21 .所以,当有时,10-≤≤k a i||||||2211n n x a x a x a +++.)1(|)||||)(|1(21n k x x x k n -≤+++-≤把区间))1(,0[n k -等分成12-k 个小区间,每个小区间的长度为1)1(--nk nk ,由于 每个i a 能取k 个整数,因此n n n k x a x a x a 共有||||||2211+++ 个正数,由抽屉原则知必有二数会落在同一个小区间之内,设它们分别是||||11i ni i ini i x a xa ∑∑=='''与,因此有∑=--≤''-'ni niiik nk xa a 11)1(|||)(|① 很明显,我们有.,,2,1,1||n i k a a i i =-≤''-'现在取⎩⎨⎧<'-''≥''-'=)0(,)0(,i i i i i i i x a a x a a a 如果如果这里i =1,2,…,n ,于是①可表示为∑=--≤ni ni i k nk x a 1.1)1(||这里i a 为整数,适合.,,2,1,1||n i k a i =-≤【评述】如上例所示,在证明存在某些有界量使相关的不等式成立时,可类似地把某区间划分为若干小区间作为抽屉,借用抽屉原则来证明.例5:一个国际社团的成员来自六个国家共有1978人,用1,2,…,1977,1978来编号,试证明:该社团至少有一个成员的编号或者与他的两个同胞的编号之和相等,或者是其中一个同胞的编号的两倍. (第20届IMO 第6题)【证明】可用反证法来证明与本题完全相当的下列问题:把整列1,2,…,1978按任一方式分成六组,则至少有一组具有这样的性质:其中有一个数或等于四组中其他两数之和,或等于其中某一个数的两倍. 假设这六组中的每一组数都不具备上述性质,也就是说每一组数都具备下列性质,记作性质(P ): 同组中任何两数之差必不在此组中.因为如果有b a ,连同b a -都在同一组中,那么由)(b a b a -+=可知,这组已具备题目所要求的性质. 因1978÷6>329,所以由抽屉原则可以肯定有一个组A ,其中至少有380个正整数,现在从A 中任意取出330个数业,记其中最大的那个数为1a ,把1a 分别减去其余329个数而得到329个差,它们互不相等且均小于1978. 由性质(P ),它们不会再在组A 中,即应属于其余五组. 又因329÷5÷>65.再由抽屉原则可以肯定有一组B ,其中至少含有上述329个数中的66个数,从B 中任取66个数且记其中最大的那个数为b 1,再把b 1减去其余65个数,得出的差显然不再属于B ,当然也不会属于A. 假如其中的某一个数b b -1属于A ,由于1b 与b 分别可以写为a ab a a b -='-=111,其中a a '与都属于A ,于是 a a a a a a b b '-=--'-=-)()(111这就同A 具备性质(P )的假设相违背,这就是说上述65个数必属其余四个数组.由于65÷4>16,所以至少有一组,称为C ,至少会有上述65个整数中的17个,反复进行上述推理,最后可得一数组F ,其中至少会有两个数,大数与小数之差是一个小于1978的正整数,可是它不在A 、B 、C 、D 、E 、F 的任一组中,这显然是一个矛盾,这矛盾说明至少有一组数不具备性质(P ).即题目的结论是正确的.【评述】我们容易发现,如果把此题中1978改为任何一个不小于1957的正整数后其结论仍是成立的. 上例的解答过程说明了对有些数学问题需要我们连续运用抽屉原则,而且每构造一次抽屉都把范围缩小一些.例6:已知1与90之间的19个(不同的)正整数,两两的差中是否一定有三个相等?(匈牙利数学竞赛题,1990年)【证明】设这19个数为 .9011921≤<<<≤a a a由于)()()(1217181819119a a a a a a a a -++-+-=- ,若右边的18个差中无三个相等,而只有两个相等,且取最小的,则 ,90)921(2119=+++⨯>- a a这与89190119=-≤-a a 矛盾. 所以两两的差中定有三个相等. 抽屉原则实际上都是重叠原则,这里再介绍抽屉原则的几种变形:平均量重叠原则:把一个量S 任意分成n 份,则其中至少有一份不大于nS,也至少有一份不少于nS . 面积的重叠原则:在平面上有n 个面积分别是A 1,A 2,…,A n 的图形,把这n 个图形按任何方式一一搬到某一个面积为A 的固定图形上去,(1)如果A 1+A 2+…+A n >A ,则至少有两个图形有公共点;(2)如果A 1+A 2+…+A n <A ,则固定图形中至少有一个点未被盖住.例7:在一个面积为20×25的长方形内任意放进120个面积为1×1的正方形,证明:在这个长方形内一定还可以放下一个直径为1的圆,它和这120个正方形的任何一个都不相重叠. (第1届全俄数学奥林匹克试题)【证明】要使直径为1的圆完全放在一个矩形里,它的圆心应与矩形任何一条边的距离不小于21,这可从20×25的长方形ABCD 的每一边剪去一个宽为21的长条,则余下的长方形A ′B ′C ′D ′的面积为19×24=456[如图I —3—2—2(a )].这样,任意放进长方形ABCD 内的直径为1的圆心都在长方形A ′B ′C ′D ′中,此外,圆心应与任何一个正方形的边界的距离也大于21,即在任何一个小正方形以外加上21的框[如图I —3—2—2(b )所得图形的面积是 4342141ππ+=+⨯+. 用这样的120个图形互不相交地去覆盖长方形A ′B ′C ′D ′,它们的总面积等于 ).43(120π+⨯但是 ).43(120π+⨯.4562.153042.312120=⨯=+⨯< 这说明用这样的120图形不能覆盖一个面积为456的长方形,从而可以在长方形ABCD 内放置一个直径为1的圆,它不与所有的小正方形中的任何一个重叠.例8:设n 与k 是正整数,n k nn <<>2,3平面上有n 个点,其中任意三点不共线,如果其中每个点都至少和其他k 个点用线段连接,则连接的线段中至少有三条围成一个三角形.(波兰数学竞赛题,1968年) 【证明】因为nk n 2,3>>所以2≥k .这表明:n 个点中必有两个点a 与b ,它们之间连一段线段,余下的点构成的集合记作X.X 中用线段与a 连接的所有点的集合记作A ,而与b 连接的所有点的集合记作B. 显然A ∪B 是X 的子集,因此,|A ∪B|≤|X|=n -2. 另一方面,由已知条件,1||,1||-≥-≥k B k A ,则由容斥公式, ||22||||||||2B A k B A B A B A n --≥-+=≥- 即 02||>-≥n k B A .这就证明了φ≠B A ,也就是说B A 中必有一点c ,它与a ,b 构成一个△abc .。