概率论讲义3
概率论与数理统计强化讲义_数三_
概率论与数理统计 强化讲义 (数三)
考研帮课堂配套电子讲义—概率论与数理统计
课程配套讲义是学习的必备资源,帮帮为大家精心整理了高质量的配套讲 义,确保同学们学习的方便与高效。该讲义是帮帮结合大纲考点及考研辅导名师 多年辅导经验的基础上科学整理的。 内容涵盖考研的核心考点、 复习重点、 难点。 结构明了、 脉络清晰, 并针对不同考点、 重点、 难点做了不同颜色及字体的标注, 以便同学们复习时可以快速投入、高效提升。 除课程配套讲义外, 帮帮还从学习最贴切的需求出发, 为大家提供以下服务, 打造最科学、最高效、最自由的学习平台:
I 0.94 II Cn2 0.94 0.06 III 1 0.94
B 发生 A 不发生的概率相等,求 A 发生的概率.
第 2 页
考研帮课堂配套电子讲义—概率论与数理统计
【答案】
2 3
1 1 1 , P B A , P A B ,则 P A B ___ 4 3 2
例 8. P ( A ) 【答案】
1 3
题型二 三大概型
方法点拨: 三大概型是指古典概型、几何概型、伯努利概型。古典概型就是常说的排列组合 问题,考的少,几何概型注意体积、面积的计算,伯努利概型,需要注意一下“至 多”和“至少”的问题。 例 1.在区间 -1,1 之间任取两个数 X,Y 则二次方程 t 2 Xt Y 0 有两个正根的 概率为 ___ 【答案】
P max X , Y 0 =___
3 4 , P X 0 P Y 0 , 则 7 7
【答案】
5 7
设 A,B,C 是 随 机 事 件 , 且
概率论第03讲
A
0.95
B
0.95
D
0.70
H
0.95
G
0.75
E
0.70
15
C
0.70
F
0.75
A
0.95
B
0.95
D
0.70
H
0.95
G
0.75
E
0.70
解:将电路正常工作记为W,由于各元件独立 将电路正常工作记为 , 工作, 工作,有 P(W ) = P( A)P(B)P(C ∪ D ∪ E)P(F ∪ G)P( H ) 其中 P(C ∪ D ∪ E) = 1 − P(C)P( D)P( E) = 0.973
B3 B1 A B4 B2 B7 B5 B6 B8
17
P(A) = ∑ P(AB i )
i =1
n
= ∑ P ( Bi ) P ( A | Bi )
i =1
n
定义
为试验S的样本空间 的样本空间, 设 Ω 为试验 的样本空间,B1,…Bn为S 的一组事件。 的一组事件。若
(1) ) (2) )
B1,…Bn互不相容,i=1,…,n 互不相容,
B3 B1 A B4 B2 B7 B5 B6 B8
22
诸Bi是原因 A是结果 是结果
发报机发出“ 的概率为 的概率为0.6,发出“ 的 例7 发报机发出“.”的概率为 ,发出“—”的 概率为0.40;收报机将“.”收为“.”的概率为 ;收报机将“ 收为 收为“ 的概率为 的概率为0.99, 概率为 , 收为“ 的概率为 的概率为0.02。求收报机将任一 将“—”收为“.”的概率为 收为 。 信号收为“ 的概率 信号收为“.”的概率 .
9
概率论与数理统计第3讲52265共45页
6年总计 31394 16146 15248
频率(%) 男孩 女孩 51.31 48.69 51.22 48.78 52.73 47.27 50.56 49.44 51.56 48.44 51.47 48.53 51.48 48.52
8
概率的古典定义(概率的古典概型) 有一类试验的特点是: 1,每次试验只有有限种可能的试验结果 2,每次试验中,各基本事件出现的可能性完全 相同. 具这两个特点的试验称为古典概型试验. 在古典概型的试验中, 如果总共有n个可能的 试验结果, 因此每个基本事件发生的概率为 1/n, 如果事件A包含有m个基本事件, 则事件A 发生的概率则为m/n.
11
排列和组合 在古典概型的概率的计算中困难的是计算一 事件包含的基本事件的数目, 因此需要排列和 组合的知识. 乘法法则: 如果一件事情可以分为两步做, 第 一步有n种选择, 在第一步中的每一种选择中, 第二步有m种选择, 则整件事情共有
mn种选择
12
放回抽样
假设一副牌有52张, 将它们编号为1,2,…,52. 每次抽出一张观察后再放回去(这样下一次这 张牌仍有机会被抽到), 这叫放回抽样. 假设共 抽了5次, 共有多少种可能的抽法? 第一次有52种抽法, 在第一次的每一种抽法中, 第二次又有52种抽法, …, 因此抽5次共有
3
概率的统计定义
概率的统计定义并非严格的数学上的定义, 而 只是大数定律的一个描述. 在n次重复试验中, 如果事件A发生了m次, 则 m/n称为事件A发生的频率. 同样若事件B发生 了k次, 则事件B发生的频率为k/n. 如果A是必 然事件, 有m=n, 即必然事件的频率是1, 当然 不可能事件的频率为0. 如果A与B互不相容, 则事件A+B的频率为(m+k)/n, 它恰好等于两个 事件的频率的和m/n+k/n, 这称之为频率的可 加性.
曹显兵.概率论讲义(打印版)
第一讲 随机事件与概率考试要求1. 了解样本空间的概念, 理解随机事件的概念, 掌握事件的关系与运算.2. 理解概率、条件概率的概念, 掌握概率的基本性质, 会计算古典型概率和几何型概率, 掌握概率的加法公式、减法公式、乘法公式、全概率公式, 以及贝叶斯公式.3. 理解事件独立性的概念, 掌握用事件独立性进行概率计算;理解独立重复试验的概率, 掌握计算有关事件概率的方法. 一、古典概型与几何概型1.试验,样本空间与事件.2.古典概型:设样本空间Ω为一个有限集,且每个样本点的出现具有等可能性,则 基本事件总数中有利事件数A A P =)(3.几何概型:设Ω为欧氏空间中的一个有界区域, 样本点的出现具有等可能性,则、体积)Ω的度量(长度、面积、体积)A的度量(长度、面积=)(A P【例1】 一个盒中有4个黄球, 5个白球, 现按下列三种方式从中任取3个球, 试求取出的球中有2个黄球, 1 个白球的概率. (1) 一次取3个;(2) 一次取1 个, 取后不放回; (3) 一次取1个, 取后放回.【例2 】从 (0,1) 中随机地取两个数,试求下列概率: (1) 两数之和小于1.2; (2) 两数之和小于1且其积小于163. 一、 事件的关系与概率的性质1. 事件之间的关系与运算律(与集合对应), 其中特别重要的关系有: (1) A 与B 互斥(互不相容) ⇔ Φ=AB (2) A 与B 互逆(对立事件) ⇔ Φ=AB ,Ω=B A(3) A 与B 相互独立⇔ P (AB )=P (A )P (B ).⇔ P (B|A )=P (B ) (P (A )>0). ⇔(|)(|)1P B A P B A += (0<P (A )<1).⇔P (B|A ) =P (B|A ) ( 0 < P (A ) < 1 )注: 若(0<P (B )<1),则,A B 独立⇔ P (A|B )=P (A ) (P (B )>0)⇔ 1)|()|(=+B A P B A P (0<P (B )<1). ⇔ P (A |B )=P (A |B ) (0<P (B )<1) ⇔ P (A |B )=P (A |B ) (0<P (B )<1)(4) A, B, C 两两独立 ⇔ P (AB )=P (A )P (B );P (BC )=P (B )P (C ); P (AC )=P (A )P (C ).(5) A, B, C 相互独立 ⇔ P (AB )=P (A )P (B );P (BC )=P (B )P (C ); P (AC )=P (A )P (C );P (ABC )=P (A )P (B )P (C ).2. 重要公式 (1) )(1)(A P A P -=(2))()()(AB P A P B A P -=-(3) )()()()(AB P B P A P B A P -+=)()()()()()()()(ABC P AC P BC P AB P C P B P A P C B A P +---++=(4) 若A 1, A 2,…,A n 两两互斥, 则∑===ni i ni iA P AP 11)()(.(5) 若A 21,A , …, A n 相互独立, 则 )(1)(11in i n i iA P A P ∏==-= )](1[11ini A P ∏=--=.∏===ni i n i i A P A P 11)()( .(6) 条件概率公式: )()()|(A P AB P A B P =(P (A )>0)【例3】 已知(A +B )(B A +)+B A B A +++=C, 且P ( C )=31, 试求P (B ). 【例4】 设两两相互独立的三事件A, B, C 满足条件: ABC =Φ, P (A )=P (B )=P (C )<21,且已知9()16P A B C =, 则P (A )= .【例5】 设三个事件A 、B 、C 满足P (AB )=P (ABC ), 且0<P (C )<1, 则 【 】(A )P (A B|C )=P (A|C )+ P (B|C ). (B )P (A B|C )=P (AB ).(C )P (AB|C )=P (A|C )+ P (B|C ). (D )P (AB|C )=P (AB ).【例6】 设事件A, B, C 满足条件: P (AB )=P (AC )=P (BC )18=, P (ABC )=116, 则事件A, B, C 中至多一个发生的概率为 .【例7】 设事件A, B 满足 P (B| A )=1则【 】(A ) A 为必然事件. (B ) P (B|A )=0.(C ) A B ⊃. (D ) A B ⊂.【例8】 设A, B, C 为三个相互独立的事件, 且0<P (C )<1, 则不独立的事件为 【 】 (A )B A +与C . (B ) AC 与C(C )B A -与C (D ) AB 与C【例9】 设A ,B 为任意两个事件,试证P (A )P (B )-P (AB ) ≤ P (A -B ) P (B -A ) ≤41. 三、乘法公式,全概率公式,Bayes 公式与二项概率公式 1. 乘法公式:).|()|()|()()().|()()|()()(1212131212121212121-===n n n A A A A P A A A P A A P A P A A A P A A P A P A A P A P A A P2. 全概率公式:11()(|)(),,,.i i i j i i i P B P B A P A A A i j A ∞∞====Φ≠=Ω∑ 3.Bayes 公式:11(|)()(|),,,.(|)()j j j i j i i iii P B A P A P A B A i j A P B A P A ∞∞====Φ≠=Ω∑ A 4.二项概率公式:()(1),0,1,2,,.k kn k n n P k C P P k n -=-= ,【例10】 10件产品中有4件次品, 6件正品, 现从中任取2件, 若已知其中有一件为次品,试求另一件也为次品的概率.【例11】设10件产品中有3件次品, 7件正品, 现每次从中任取一件, 取后不放回.试求下列事件的概率. (1) 第三次取得次品; (2) 第三次才取得次品;(3) 已知前两次没有取得次品, 第三次取得次品; (4) 不超过三次取到次品;【例12】 甲, 乙两人对同一目标进行射击,命中率分别为0.6和0.5, 试在下列两种情形下, 分别求事件“已知目标被命中,它是甲射中”的概率.(1)在甲, 乙两人中随机地挑选一人, 由他射击一次; ( 2)甲, 乙两人独立地各射击一次.【例13】设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份,7份和5份. 随机地取一个地区的报名表,从中先后任意抽出两份. (1) 求先抽到的一份是女生表的概率p;(2)已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q .第二讲 随机变量及其分布考试要求1. 理解随机变量及其概率分布的概念.理解分布函数(()()F x P X x =≤) 的概念及性质.会计算与随机变量有关的事件的概率.2. 理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson )分布及其应用.3. 了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4. 理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布2(,)N μσ、指数分布及其应用,其中参数为(0)λλ>的指数分布的概率密度为,0,()0,0.x e x f x x λλ-⎧>=⎨≤⎩5. 会求随机变量函数的分布. 一、分布函数1.随机变量:定义在样本空间上,取值于实数的函数称为随机变量. 2.分布函数:∞+-∞=<<),≤ ()(x x X P x FF (x )为分布函数 ⇔(1) 0≤F (x ) ≤1(2) F (x )单调不减 (3) 右连续F (x+0)=F (x ) (4)1)(,0)(=+∞=-∞F F3.离散型随机变量与连续型随机变量(1) 离散型随机变量∑∞=====1i 10,≥,,,2,1,)(i i i i p p n i p x X P分布函数为阶梯跳跃函数.(2) 连续型随机变量⎰∞-=xtt f x F d )( )(f (x )为概率密度 ⇔ (1) f (x )≥0, (2) ⎰+∞∞- f (x )1d =x⎰=≤≤=<<bax f b X a P b X a P )()()(4.几点注意【 例1 】 设随机变量X 的分布函数为0,1,57(),11,16161, 1.x F x x x x <-⎧⎪⎪=+-≤<⎨⎪≥⎪⎩则2(1)P X== .【 例2 】 设随机变量X 的密度函数为 f (x ), 且 f (-x ) = f (x ), 记()X F x 和()X F x -分别是X 和X -的分布函数, 则对任意实数x 有 【 】 (A )()()X X F x F x -=. (B )()()X X F x F x -=-.(C )()1()X X F x F x -=-.(D )()2()1X X F x F x -=-.【 例3 】 设 随机变量X 服从参数为0λ>的指数分布, 试求随机变量 Y= min { X, 2 } 的分布函数【 例4 】设某个系统由 6 个相同的元件经两两串联再并联而成, 且各元件工作状态相互独立 每个元件正常工作时间服从参数为 0λ>的指数分布, 试求系统正常工作的时间 T 的概率分布.【 例5】设随机变量X 的概率密度为⎩⎨⎧<-=.,0,1|||,|1)(其他x x x f 试求(1)X 的分布函数)(x F ; (2)概率)412(<<-X P .二、 常见的一维分布(1) 0-1分布:1,0,)1()(1 =-==-k p p k XP k k .(2) 二项分布n k p p C k X P p n B k n k k n ,,1,0,)1()(:),( =-==- .(3) Poisson 分布)(λP : ,2,1,0,0>,e !)(===-k k k XP k λλλ.(4) 均匀分布⎪⎩⎪⎨⎧-=.,<<1)(:),(其他0,, b x a a b x f b a U(5) 正态分布N (μ,σ2):0,,eπ21)(222)(+∞<<∞->=--μσσσμ x x f(6) 指数分布⎩⎨⎧=-. ,0 >0,,e )(:)(其他x x f E x λλλ >0λ.(7) 几何分布.2110,)1()(:)(1 ,,k ,<p<p p k XP p G k =-==- (8) 超几何分布H (N,M,n ): },min{,,1,0,)(M n k C C C k X P nNkn M N k M ===-- . 【例6】某人向同一目标独立重复射击,每次射击命中目标的概率为p (0<p<1), 则此人第4次射击恰好第2次命中目标的概率为【 】 (A ) 2)1(3p p -.(B ) 2)1(6p p -.(C ) 22)1(3p p-. (D ) 22)1(6p p-.【例7】 设X ~N (μ, σ2), 则 P ( X ≤1+μ) 【 】 (A ) 随μ的增大而增大 . (B ) 随μ的增大而减小. (C ) 随σ的增大而不变 . (D ) 随σ的增大而减小. 【例8】 设X ~N (μ, σ2), ()F x 为其分布函数,0μ<,则对于任意实数a ,有 【 】(A ) ()() 1.F a F a -+> (B ) ()() 1.F a F a -+= (C ) ()() 1.F a F a -+< (D ) 1()().2F a F a μμ-++=【例9】 甲袋中有1个黑球,2个白球,乙袋中有3个白球,每次从两袋中各任取一球交换放入另一袋中,试求交换n 次后,黑球仍在甲袋中的概率.三、 随机变量函数的分布: 1. 离散的情形2. 连续的情形3. 一般的情形【例10】 设随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=.,0,20,41,01,21)(其他x x x f X令),(,2y x F X Y=为二维随机变量(X, Y )的分布函数.(Ⅰ) 求Y 的概率密度)(y f Y ;(Ⅱ) )4,21(-F . 第三讲 多维随机变量及其分布考试要求1. 理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度.会求与二维随机变量相关事件的概率.2. 理解随机变量的独立性及不相关的概念,掌握随机变量相互独立的条件.3. 掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义 .4. 会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布. 一、 各种分布与随机变量的独立性 1. 各种分布(1)一般二维随机变量 F (x, y )=P{ X ≤ x, Y ≤ y }, x ∈ (−∞, +∞), y ∈ (−∞, +∞)的性质F (x, y )为联合分布函数 ⇔ 1) 0 ≤F (x, y )≤1 , ∀x ∈ (−∞, +∞),, y ∈ (−∞, +∞);2) F (−∞, y )= F (x, −∞)=0, F (+∞,+∞)=1;3) F (x, y )关于x, y 均为单调不减函数; 4) F (x, y )关于x, y 均分别右连续.(2)二维离散型随机变量的联合概率分布、边缘分布、条件分布联合概率分布律 P{X = x i , Y = y j } = p i j , i, j =1, 2 ,⋅⋅⋅ , p i j ≥ 0,1=∑∑ijji p.边缘分布律 p i • = P{X = x i }=∑jji p, i =1, 2 ,⋅⋅⋅ ,p • j = P{ Y = y j }=∑iji p, j =1, 2 ,⋅⋅⋅ ,条件分布律 P{X = x i |Y = y j } =jj i p p •, P{ Y = y j | X = x i } =•i j i p p .二维连续型随机变量的联合概率密度、边缘密度和条件密度f (x, y )为联合概率密度 ⇔ 1︒ f (x, y )≥0,2︒1=⎰⎰∞+∞-∞+∞- ),(dxdy y x f .设( X, Y )~ f (x, y )则分布函数: ⎰⎰∞-∞-=xydxdy y x f y x F ),(),(;边缘概率密度:⎰∞+∞-= ),()(dy y x f x f X , ⎰∞+∞-= ),()(dx y x f x f Y .条件概率密度:)(),()|(|y f y x f y x f Y Y X =, )(),()|(|x f y x f x y f X X Y =.⎰⎰=∈Ddxdy y x f D Y X P ),(}),{(.),(),(yx y x F y x f ∂∂∂=22. 随机变量的独立性和相关性X 和Y 相互独立 ⇔ F (x, y )= F X (x )F Y (y );⇔ p i j = p i • ⨯ p • j (离散型)⇔ f (x, y )= f X (x )f Y (y ) (连续型)【注】1︒ X 与Y 独立, f (x ), g (x )为连续函数 ⇒ f (X )与g (Y )也独立. 2︒ 若X 1, ⋅⋅⋅⋅, X m , Y 1, ⋅⋅⋅⋅, Y n 相互独立, f , g 分别为m 元与 n 元连续函数 ⇒ f (X 1, ⋅⋅⋅⋅, X m )与g (Y 1, ⋅⋅⋅⋅, Y n )也独立. 3︒ 常数与任何随机变量独立.3. 常见的二维分布(1)二维均匀分布 (X, Y )~ U (D ), D 为一平面区域. 联合概率密度为⎪⎩⎪⎨⎧∈=.,.),(,)(),(其他01D y x D S y x f (2)二维正态分布 (X, Y )~ N (μ1 , μ2, σ12,σ22, ρ ), −∞ <μ1, μ2 < +∞, σ1>0, σ2 > 0, | ρ | <1. 联合概率密度为221121ρσπσϕ-=),(y x ⎥⎥⎦⎤⎢⎢⎣⎡-+------22222121212122121σμσσμμρσμρ)())(()()(y y x x e性质:( a ) X ~ N (μ1, σ12 ), Y ~ N (μ2, σ22) ( b ) X 与Y 相互独立 ⇔ ρX Y =0 , 即 X 与Y 不相关.( c ) C 1X+C 2Y ~ N (C 1 μ1+ C 2 μ2, C 12σ12+ C 22σ22+2C 1C 2 ρ σ1σ2 ). ( d ) X 关于Y=y 的条件分布为正态分布: )](),([22122111ρσμσσρμ--+y N 【 例1 】 设A ,B 为事件,且P (A )=41, P (B|A )=21, P (A|B )=12令 X =⎩⎨⎧否则发生若,0,1A , Y =⎩⎨⎧否则发生若,0B ,1(1) 试求(X, Y )的联合分布律; (2)计算Cov ( X, Y ); (3) 计算 22(2,43)Cov XY +.【 例2 】设随机变量X 与Y 相互独立,下表列出了二维随机变量(X, Y )联合分布律及关于X 和关于Y 的边缘分布律中的部分数值, 试将其余数值填入表中的空白处.【 例3 】设随机变量X 与Y 独立同分布, 且X 的概率分布为313221PX 记{}{}Y X V Y X U,m in ,,m ax ==.(I )求(U, V )的概率分布;(II )求(U, V )的协方差Cov (U, V ).【详解】(I )易知U, V 的可能取值均为: 1, 2. 且{}{}})1,m in ,1,(m ax )1,1(=====Y X Y X P V U P)1,1(===Y X P 94)1()1(====Y P X P , {}{}0})2,m in ,1,(m ax )2,1(======Y X Y X P V U P , {}{}})1,m in ,2,(m ax )1,2(=====Y X Y X P V U P)2,1()1,2(==+===Y X P Y X P)2()1()1()2(==+===Y P XP Y P X P 94=, {}{}})2,m in ,2,(m ax )2,2(=====Y X Y X P V U P)2()2()2,2(======Y P X P Y X P 91=, 故(U, V )的概率分布为:(II ) 9122941209411)(⨯⨯+⨯⨯++⨯⨯=UV E 916=, 而 914952941)(=⨯+⨯=U E , 910912981)(=⨯+⨯=V E . 故 814910914916)()()(),(=⨯-=-=V E U E UV E V U Cov . 【 例4】 设随机变量X 在区间(0, 1)上服从均匀分布, 在)10(<<=x x X 的条件下,随机变量Y 在区间),0(x 上服从均匀分布, 求(Ⅰ)随机变量X 和Y 的联合概率密度;(Ⅱ)Y 的概率密度; (Ⅲ)概率}1{>+Y XP .二、 二维(或两个)随机变量函数的分布 1.分布的可加性(1)若X~B (m, p ), Y~B (n, p ), 且X 与Y 相互独立,则 X+Y ~ B (m+n, p ). (2)若X~P (λ1), Y~P (λ2), 且X 与Y 相互独立,则 X+Y ~ P (λ1+λ2).(3)若X~N (211,μσ), Y~P (222,μσ), 且X 与Y 相互独立,则 X+Y ~ N (221212,μμσσ++).一般地,若X i ~N (2,i i μσ), i =1, 2, …, n, 且X 1,X 2,…,X n 相互独立,则Y=C 1X 1+C 2X 2+…+C n X n +C 仍服从正态分布,且此正态分布为2211(,),n ni i i i i i N C C Cμσ==+∑∑ 其中C 1,…,C n 为不全为零的常数.2. 两个随机变量函数的分布. 【例5】 设X 与Y 相互独立, 且~(1),~(2),X P Y P 则{max(,)0}______;P X Y ≠={min(,)0}__________.P X Y ≠=【 例6】 设X 与Y 相互独立, 其密度函数分别为:1,01,()X x f x <<⎧=⎨⎩0,其他. ,0,()y Y e y f x -⎧>=⎨⎩0,其他.求Z =2X +Y 的概率密度.【 例7】设二维随机变量(X, Y )的概率密度为2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其它.(I )求{}Y X P 2>;(II )求Z =X+Y的概率密度)(z f Z .【详解】(I ){}Y X P 2>⎰⎰>=yx dxdy y x f 2),(⎰⎰--=12210)2(ydx y x dy 247=. (II )方法一: 先求Z 的分布函数: ⎰⎰≤+=≤+=zy x Z dxdy y x f Z Y X P z F ),()()(当z<0时, 0)(=z F Z ; 当10<≤z 时, ⎰⎰=1),()(D Z dxdy y x f z F ⎰⎰---=yz zdx y x dy 00)2(3231z z -=;当21<≤z 时, ⎰⎰-=2),(1)(D Z dxdy y x f z F ⎰⎰-----=111)2(1yz z dx y x dy3)2(311z --=; 当2≥z时, 1)(=z F Z .故Z =X+Y的概率密度)(z f Z =)(z F Z '⎪⎩⎪⎨⎧<≤-<<-=.,0,21,)2(,10,222其他z z z z z方法二:⎰∞+∞--=dx x z x f z f Z ),()(,⎩⎨⎧<-<<<---=-.,0,10,10),(2),(其他x z x x z x x z x f ⎩⎨⎧+<<<<-=.,0,1,10,2其他x z x x z 当z ≤0 或z ≥ 2时, 0)(=z f Z ;当01z <<时,⎰-=z Z dx z z f 0)2()()2(z z -=;当21<≤z 时, ⎰--=11)2()(z Z dx z z f 2)2(z -=;故Z =X+Y的概率密度)(z f Z ⎪⎩⎪⎨⎧<≤-<<-=.,0,21,)2(,10,222其他z z z z z【例8】 设随机变量X 与Y 相互独立, X 有密度函数f (x ), Y 的分布律为 ()i i P Y a p ==, i =1,2. 试求Z =X +Y 的概率分布.第四讲 数字特征与极限定理考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念, 会运用数字特征的基本性质, 并掌握常用分布的数字特征.2.会根据随机变量X 的概率分布求其函数)(X g 的数学期望)(X Eg ;会根据随机变量X 和Y 的联合概率分布求其函数),(Y X g 的数学期望),(Y X Eg .3.了解切比雪夫不等式.4.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大数定律)5.了解棣莫弗—拉普拉斯定理(二项分布以正态分布为极限分布)和列维—林德伯格定理(独立同分布的中心极限定理);(经济类还要求)会用相关定理近似计算有关随机事件的概率 一、 数学期望与方差(标准差) 1. 定义(计算公式)离散型{}i i p x X P ==, ∑=iii px X E )(连续型)(~x f X , xx xf X E d )()(⎰+∞∞-=方差:[]222)()())(()(X E X E X E X E X D -=-=标准差:)(X D ,2. 期望的性质:1° )())((,)(X E X E E C C E == 2° )()()(2121Y E C X E C Y C X C E +=+ 3° )()()(Y E X E XY E ,Y X =则独立与若4° [])()(≤)(222Y E X E XY E3. 方差的性质:1° 0))((,0))((,0)(===X D D X E D C D 2°)()()(Y D X D Y X D Y X +=±相互独立,则与3° )()(2121X D C C X C D =+ 4° 一般有 ),Cov(2)()()(Y X Y D X D Y XD ±+=±)()(2)()(Y D X D Y D X D ρ±+=5°2()()C D X E X <-, )(X E C ≠【例1】设试验成功的概率为43, 失败的概率为41, 独立重复试验直到成功两次为止. 试求试验次数的数学期望. 【例2】 n 片钥匙中只有一片能打开房门, 现从中任取一片去试开房门, 直到打开为止. 试在下列两种情况下分别求试开次数的数学期望与方差: (1)试开过的钥匙即被除去; (2)试开过的钥匙重新放回.【例3】 设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=.,0,0,2cos 21)(其他πx x x f 对X 独立地重复观察4次, 用Y 表示观察值大于3π的次数, 求2Y 的数学期望.【例4】 设有20人在某11层楼的底层乘电梯上楼, 电梯在中途只下不上, 每个乘客在哪一层(2-11层)下是等可能的, 且乘客之间相互独立, 试求电梯须停次数的数学期望. 二、随机变量函数的期望(或方差) 1、一维的情形 )(X g Y =离散型:{}i i P Xx p == , ∑=ii ipx g Y E )()(连续型:~()X f x x x f x g Y E d )()()(⎰+∞∞-=2、二维的情形 ),(Y X g Z =离散型{}iji i p y Y x X P Y X ===,~),(,∑∑=jij jiipy x g Z E ),()(连续型),(~),(y x f Y X , y x y x f y x g Z E d d ),(),()(⎰⎰+∞∞-+∞∞-=【例5】 设X 与Y 独立且均服从N (0,1),求Z =22Y X + 的数学期望与方差.【例6】设两个随机变量X 与Y 相互独立且均服从N (0,21), 试求Z =|X -Y |的数学期望与方差. 三 、协方差,相关系数与随机变量的矩 1、重要公式与概念:协方差 []))()((()Cov(Y E Y X E X E X,Y --=相关系数 )()()Cov(Y D X D X,Y XY =ρ)(k X E k 阶原点矩[]kX E X E k ))((- 阶中心矩2、性质:1°),(Cov ),(Cov X Y Y X =2° ),(Cov ),(Cov Y X ab bY aX = 3° ),(Cov ),(Cov ),(Cov 2121Y X Y X Y X X +=+4° |(,)|1X Y ρ≤5° 1)(1),(=+=⇔=b aX Y P Y X ρ )>0(a 1)(1),(=+=⇔-=b aX Y P Y X ρ )<0(a 3、下面5个条件互为充要条件:(1)0),(=Y X ρ(2)0)Cov(=X,Y (3))()()(Y E X E XY E = (4))()()(Y D X D Y X D +=+ (5))()()(Y D X D Y X D +=- 【例7】设)2(,,,21>n X X X n 为独立同分布的随机变量, 且均服从)1,0(N , 记∑==ni iX n X 11,.,,2,1,n i X X Y i i =-= 求:(I ) i Y 的方差n iY D i ,,2,1),( =;(II ) 1Y 与n Y 的协方差),(1n Y Y Cov ; (III ) }.0{1≤+n Y Y P四、极限定理1. 切比雪夫不等式{}{}()()|()|,|()|<1-22D X D X P XE X P X E X εεεε-≥≤-≥或2. 大数定律3. Poisson 定理4. 中心极限定理列维—林德伯格定理: 设随机变量X 1,X 2,…,X n ,…相互独立同分布, 且2(),(),i i E X D X μσ== 1,2,,,i n =, 则对任意正数x ,有2-2lim d n t i x n X n P x t μ-∞→∞⎧⎫-⎪⎪⎪≤=⎬⎪⎪⎪⎩⎭∑⎰ 棣莫弗—拉普拉斯定理: 设~(,),nB n p η(即X 1,X 2,…,X n,…相互独立, 同服从0一1分布) 则有22lim d t x n P x t --∞→∞⎧⎫⎪≤=⎬⎪⎭⎰. 【例8】 银行为支付某日即将到期的债券须准备一笔现金,已知这批债券共发放了500张,每张须付本息1000元,设持券人(1人1券)到期到银行领取本息的概率为0.4.问银行于该日应准备多少现金才能以99.9%的把握满足客户的兑换.【分析】 若X 为该日到银行领取本息的总人数,则所需现金为1000X ,设银行该日应准备现金x 元.为使银行能以99.9%的把握满足客户的兑换,则 P (1000X ≤x )≥0.999.【详解】 设X 为该日到银行领取本息的总人数,则X~B (500,0.4)所需支付现金为1000X ,为使银行能以99.9%的把握满足客户的兑换,设银行该日应准备现金x 元,则 P (1000 X ≤x )≥0.999.由棣莫弗—拉普拉斯中心极限定理知:(1000)()1000x P X x P X ≤=≤5000.4x P ⎛⎫-⨯ ⎪=≤=≤0.999(3.1).ΦΦ≈≥=即3.1,≥得 x ≥ 233958.798.因此银行于该日应准备234000元现金才能以99.9%的把握满足客户的兑换.第五讲 数理统计考试要求1. 理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.其中样本方差定义为.)(11212X X n S i ni --=∑=2. 了解2χ分布、t 分布和F 分布的概念及性质,了解分位数的概念并会查表计算. 3. 了解正态总体的常用抽样分布.4. 理解经验分布函数的概念和性质, 会根据样本值求经验分布函数.5. 理解参数的点估计、估计量与估计值的概念.6. 掌握矩估计法(一阶、二阶矩)和最大似然的估计法.7. 了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.8. 理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间. 9. 理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的 两类错误.10. 了解单个及两个正态总体的均值和方差的假设检验 一、样本与抽样分布1. 总体、个体与简单随机样本:2. 常用统计量:1° 样本均值 i ni X nX ∑==112° 样本方差 212)(11X X n S i ni --=∑=3° 样本标准差: S =4° 样本k 阶原点矩 11,1,2,n kk i i A X k n ===∑5° 样本k 阶中心矩 11(),1,2,n kk i i B X X k n ==-=∑3.分位数 4. 重要抽样分布(1)分布2χ (2) t 分布 (3) F 分布5. 正态总体的常用抽样分布:22,,,(,),n X X X N μσ1设为来自正态总体的样本11nii X X n ==∑,2211()1ni i S X X n ==--∑, 则 (1)2~,~(0,1).X N N n σμ⎛⎫ ⎪⎝⎭ (2)222221(1)1()~(1).ni i n S X X n χσσ=-=--∑(3)22211()~().ni i X n μχσ=-∑(4) ~(1).X t n - (5)X 与2S 相互独立, 且 μ=)(X E , 22)(σ=S E , nX D 2)(σ=.【例1】 设总体2~(,),XN μσ设12,,,n X X X 是来自总体X 的一个样本, 且22111,()nni nii i X X S XX n====-∑∑,求21()n E X S .【例2】 设总体2~(,),X N μσ 设12,,,nX X X 是取自总体X 的一个样本, 且221111,()1nni i i i X X S X X nn ====--∑∑,则 2()_________D S=.【例3】设随机变量~()(1),X t n n >, 则 21~________Y X =【例4】 设总体X 服从正态分布)2,0(2N , 而1521,,,X X X 是来自总体X 的简单随机样本, 求随机变量)(221521121021X X X X Y ++++= 的分布. 【例5】 设总体2~(,),X N μσ 设121,,,,n n X X X X +是来自总体X 的一个样本, 且*221111,()()nni ii i X X S XX nn====-∑∑,试求统计量的分布. 二、参数估计1. 矩估计2. 最大似然估计3. 区间估计4. 估计量的评选标准 【例6】设总体12~(,)XU θθ,n X X X ,,,21 为来自总体X 的样本,试求12,θθ的矩估计和最大似然估计.【例7】设总体X 的概率密度为⎪⎩⎪⎨⎧<≤-<<=.,0,21,1,10,),(其他x x x f θθθ其中θ是未知参数)10(<<θ, n X X X ,,2,1 为来自总体X 的简单随机样本, 记N 为样本值n x x x ,,2,1 中小于1的个数, 求:(1)θ的矩估计;(2) θ的最大似然估计.【例8】设总体X 的概率密度为36(),0,()0,xx x f x θθθ⎧-<<⎪=⎨⎪⎩其他. n X X X ,,,21 为来自X 的简单随机样本,(1) 求θ的矩估计量ˆθ; (2) 判断θ的无偏性; (3) 判断θ的一致性. 三、假设检验1. 假设检验的基本思想:对总体分布中的未知参数作出某种假设,根据样本在假设为真的前提下构造一个小概率事件,基于“小概率事件”在一次试验中几乎不可能发生而对假设作出拒绝或接受.2. 单个正态总体均值和方差的假设检验.3. 假设检验两类错误:第一类错误:原假设0H 为真,但拒绝了0H .第二类错误;原假设0H 为假,但接受到了0H .。
概率论第三讲
P( A∪ B) = P( A) + P(B) P( AB) = 0.8
P ( A B ) = P( A ∪ B) = 0.2
陕西科技大学
3 September 2007
第一章 随机事件与概率
第11页
课后同学问: 上例 中小王他能答出第一类问题的概 率为0.7, 答出第二类问题的概率为0.2, 两 类问题都能答出的概率为0.1. 为什么不是 0.7×0.2 ? 若是的话, 则应有 P ( A1 A2 ) = P ( A1 ) P ( A2 ) 而现在题中并未给出这一条件. 在§1.5中将告诉我们上述等式成立的 条件是 :事件A1,A2 相互独立.
3 September 2007
陕西科技大学
第一章 随机事件与概率
第16页
思考题
口袋中有2个白球,每次从口袋中随 机地摸出一球,并换入一只黑球. 求第k 次取到黑球的概率.
3 September 2007
陕西科技大学
第一章 随机事件与概率
第17页
例1.3.4
一颗骰子掷4次,求至少出现一次6点的概率. 解:用对立事件进行计算, 记 A=“至少出现一次6点”, 则所求概率为
3 September 2007
陕西科技大学
第一章 随机事件与概率
第20页
利用对称性
甲掷硬币n+1次,乙掷n次. (习题1.3第10题) 求甲掷出的正面数比乙掷出的正面数多的概率. 解:记甲正=甲掷出的正面数,乙正=乙掷出的正面数. 甲反=甲掷出的反面数,乙反=乙掷出的反面数. 因为 P(甲正>乙正)= P(n+1-甲反> n-乙反) = P(甲反-1<乙反)= P(甲反≤乙反) (对称性) = 1P(甲正>乙正) 所以 2P(甲正>乙正)=1, 由此得 P(甲正>乙正)=1/2
概率论与数理统计课件第三章
f
(x,
y)
1
21 2
1
2
exp
1
2(1 2 )
(x
1)2
2 1
2
(x
1)( y 1 2
2 )
(y
2)2
2 2
其中1、2、1、 2、都是常数,且1 0, 2 0,1 1.
则称(X,Y)服从参数为1、2、1、的二2、维 正态分布,
记为
(X
,Y)
~
N (1,
2
,
2 1
,
2 2
2F(x, y) f (x, y) xy
(5)若(X,Y)为二维连续型随机向量,联合概率密度为f(x,y),则
F(x,y) P{X x,Y y}
返回
X
18
第
页
例5 设二维随机变量(X,Y)的概率密度为
Ae2(x y) , x 0, y 0
f (x, y)
0, 其他
(1)确定常数A;
分别为(X,Y)关于X和Y的边缘分布函数.
返回
X
25
第
页
例1 设二维随机向量(X,Y)的联合分布函数为
(1 e2x )(1 e3y ), x 0, y 0,
F(x, y)
0, 其他.
求边缘分布 FX (x), FY ( y)
当x
0时,FX
(x)
lim (1
y
e2 x
)(1
e3 y
)
1
e2 x
返回
X
14
第
例3 设随机变量Y~N(0,1),令
0, X 1 1,
| Y | 1
0,
|Y
|
概率论讲义
i
P( Ai )
i 1
n
i n 1
P( ) P( A )
i 1
n
性质3 对任意事件 A, B, 若A B, 则有 P( B A) P( B) P( A),且P( B) P( A).
证 : A B, 故有B A ( B A), 且A ( B A) ,由概率的可加性
A .
k k 1
A B
3.事件的交: “事件A与B同时发生”这一事件称为A与B的交, 记作A B (AB) A B={x|x A 且 x B} 类似地,事件
A
k 1
K为可列个事件
A1,A2,…的交.
A B
4.事件的差:
事件A-B={x|xA且xB} 称为A与B的差.
随机事件
“在一定条件下可能发生也可能不发生事情 ” 叫做随机事件,简称事件. 如E1中,“出现正面”; E3中,“出现偶数 点”; E5中{1000<t<3000}(小时). 事件是由样本空间中某些样本点组成的集 合,事件发生当且仅当它所包含的某一个样 本点出现。
基本事件:由一个样本点组成的单点集. 如:{H},{T}. 复合事件:由两或两个以上的基本事件复合而 成的事件为复合事件. 如:E3中 {出现正面次数为偶数}. 必然事件: 样本空间是自身的子集,在每次 试验中总是发生的,称为必然事件。
高射炮对目标飞机射击三次设高射炮对目标飞机射击三次设ai次击中飞机次击中飞机表示下列事件表示下列事件只有第一次击中飞机只有第一次击中飞机恰有一次击中飞机恰有一次击中飞机至少有一次击中飞机至少有一次击中飞机至多两至多两次击中飞机次击中飞机定义
第一章 随机事件及其概率
2014年自考 概率论与数理统计串讲讲义 第三章 多维随机变量及其概率分布
第三章 多维随机变量及其概率分布1. 二维随机变量),(Y X),(Y X 的分布函数),(),(y Y x X P y x F ≤≤=X 的分布函数),(),(lim )(1+∞==∞→x F y x F x F y Y 的分布函数),(),(lim )(2y F y x F y F x +∞==∞→ ),(lim 0),(lim y x F y x F y x -∞→-∞→==2. 离散型),(Y X 的分布律ij P⎪⎩⎪⎨⎧=≥===∑∑i jij i i ij P y Y x X P P 10),( (与⎪⎩⎪⎨⎧=≥∑K K K P P 10比较) ∑===jij i i P x X P P )(∑===iij i j P y Y P P )(例1 设),(Y X 的分布律为求(1)?=a(2))0(=X P(3))2(≤Y P(4))2,1(≤<Y X P(5))(Y X P =解:(1)由1=∑∑i j ij P知∑∑==+++++=1031131211030201)(i j ij P P P P P P P 125.025.03.01.01.0=+++++=a 解得0=a(2)300102031(0)0.10.10.30.5j j P X PP P P ====++=++=∑(3)∑∑==+=+==+==≤10210121)2()1()2(i i i i P P P P Y P Y P Y P 45.0)01.0()25.01.0(=+++=(4)2.01.01.0)2,0()1,0()2,0()2,1(0201=+=+===+===≤==≤<P P Y X P Y X P Y X P Y X P(5)25.0)(11===P Y X P3. 连续型),(Y X 的分布密度设D 为平面上的区域,),(y x f 为),(Y X 的分布密度,则其满足:⎪⎩⎪⎨⎧=≥⎰⎰∞+∞-∞+∞-1),(0),(dxdy y x f y x f dxdy y x f D Y X P D⎰⎰=∈),()),((特别,⎰⎰∞-∞-=≤≤=x ydudv v u f y Y x X P y x F ),(),(),(),(),(2y x f yx y x F =∂∂∂ 若X ,Y 相互独立,则有)()(),(21y F x F y x F ⋅=,)()(),(21y f x f y x f ⋅=,其中)(),(11x f x F 分别为X 的边缘分布函数和分布密度,)(),(22y f y F 分别为Y 的边缘分布函数和分布密度。
概率论第三章课件
f ( x , y ) d x d y , G
例5 设二维随机变量(X,Y )具有概率密度
ke( 2 x y ) , f ( x, y) 0,
x 0, y 0 其它
(1)确定系数k;(2)求分布函数F(x,y);(3)求概率 P{X≤Y}。 解 (1)由于
反过来还可以证明,任意一个具有上述四个性 质的二元函数,必定可以作为某个二维随机变量的 联合分布函数。 对于n维随机向量(X1,X2,…,Xn )可类似定义 分布函数如下:
对任意n个实数x1 , x2 ,, xn , n元函数 F ( x1 , x2 ,, xn ) P{ X 1 x1 , X 2 x2 ,, X n xn } 称为n维随机向量( X 1 , X 2 ,, X n )的分布函数, 或随机 向量( X 1 , X 2 ,, X n )的联合分布函数 它有类似于二维 , 随机变量的分布函数的 性质.
如果将(X,Y)看作平面上随机点的坐标,则 F(x,y)=P{X≤x,Y≤y} 就表示点(X,Y)落在图(1)中阴影部分的概率。
y
X x ,Y y
( x, y)
o
图(1)
x
y
这时,点 (X,Y)落入任一 y2 矩形区域 y1 {x1< X ≤x2,y1< Y ≤y2} 的概率,可运用概率的加法 性质求得(借助图(2)): O
G
3、说明
几何上, z f ( x, y ) 表示空间的一个曲面 .
表示介于 f (x, y)和 xoy 平面之间的空间区域的 全部体积等于1.
P {( X ,Y ) G }
P{ ( X ,Y ) G }的值等于以G为底 , 以曲面z f ( x , y ) 为顶面的柱体体积.
概率论与数理统计3讲
基本事件数m C52,则
P( A)
m n
C52 C82
5 4 1 2 1 2 8 7
5 0.357 14
例2 一批产品共200个, 废品有6个, 求(1)这批 产品的废品率; (2)任取3个恰有一个是废品 的概率;(3)任取3个全非废品的概率
解求的设概P(率A),,则P(A1), P(A0)分别表示(1),(2),(3)中所
2
p
阴影部分面积 正方形面积
T2
(T t)2 T2
1 1 t T
2
介绍蒙特卡洛试验技术
我们知道象掷硬币这样的试验作一次是很费 时间的. 但是计算机出现以后, 通常都有一 个随机函数, 此随机函数每次调用的返回值 都不一样, 会产生一个随机的数字, 因此我 们就可以利用这样一个随机的数字进行反 复的试验来求出我们所希望的事件的概率. 特别是有一些事件的概率求起来非常困难, 但用计算机进行仿真试验, 就可以通过统计 的办法求出概率的近似值, 这叫做蒙特卡洛 试验.
A S
则必然有 P( A) m( A)
(3.2)
m(S)
如样本空间S为一线段或一空间立体, 则 向S投点的相应概率仍可用上式确定, 但
m(·)应理解为长度或体积.
例 某人一觉醒来, 发觉表停了, 他打开收音 机, 想听电台报时, 设电台每正点报时一次, 求他(她)等待时间短于10分钟的概率.
解 以分钟为单位, 记上一次报时时刻为0, 则 下一次报时时刻为60, 于是这个人打开收音 机的时间必在(0,60), 记”等待时间短于10分 钟”为事件A, 则有
解 设事件A={第二个邮筒恰有一封信}
事件B={前两个邮筒中各有一封信}
两封信投入4个邮筒共有44种投法, 而组成事 件A的投法有23种, 组成事件B的投法则只有 2种, 因此
概率论3ppt课件
••
•
•中心• • •
•
••中•••心•• •••
••
甲炮射击结果
乙炮射击结果
较好
因为乙炮的弹着点较集中在中心附近 .
(1)方差的定义
设X是一个随机变量,若E{[X-E(X)]2}<∞,
则称 D(X)=E{[X-E(X)]2 } 为X的方差. 称 D( X )为X标准差.
• • • • •a•• • • •
2)若C是常数,则D(CX)= C2 D(X);
3) 若X1与X2 独立,则
D(X1+X2)=D(X1)+D(X2);
可推广为:若X1,X2,…,Xn相互独立,则
n
n
D[ X i ] D( X i )
i 1
i 1
3 常见分布的数学期望和方差
离散型
两点分布 P( X 0) 1 p, P( X 1) p E( X ) p D( X ) p(1 p)
D(Y ) (6 8)2 0.2 (7 8)2 0.1 (8 8)2 0.4 (9 8)2 0.1 (10 8)2 0.2 1.8 送甲去参加奥运会更合理。
Y 6 7 8 9 10
Pk 0.2 0.1 0.4 0.1 0.2
(2)方差的性质
1)设C是常数,则D(C)= 0;
=E{X2-2XE(X)+[E(X)]2} =E(X2)-2[E(X)]2 +[E(X)]2 =E(X2)-[E(X)]2
展开
利用期望 性质
例3.要在甲乙两射手之间选送一个人去参加奥运会, 已知两人的射击成绩的分布律分别为:
X 6 7 8 9 10
Pk 0.1 0.2 0.4 0.2 0.1
Y 6 7 8 9 10
概率论与数理统计(茆诗松)第三章讲义
1 xy ; dy = 2 2
1
1 x 0 2 dy = y ; 2 x 2 11 11 x 当 0 ≤ x < 2 , y ≥ 1 时, F ( x, y ) = ∫ dx ∫ dy = ;当 x ≥ 2 , y ≥ 1 时, F ( x, y ) = ∫ dx ∫ dy = 1 . 0 0 0 0 2 2 2
∫ ∫
+∞ +∞
−∞ −∞
p( x, y )dxdy = 1 .
二维连续随机变量的性质: (1) (X, Y ) 在区域 G 上取值的概率等于密度函数在 G 上的二重积分,P{( X , Y ) ∈ G} = ∫∫ p( x, y )dxdy ;
G
′′ ( x, y ) . (2)在密度函数 p (x, y) 的连续点处, p ( x, y ) = Fxy
§3.1
3.1.1 多维随机变量
多维随机变量及其联合分布
则称 (X1, X2, …, Xn) 是 n 维随机变量 定义 设 X1, X2, …, Xn 是定义在同一个样本空间Ω上的 n 个随机变量, 或随机向量(Random Vector) . 特别是当 X 与 Y 是定义在同一个样本空间Ω上的两个随机变量,则 (X, Y ) 是二维随机变量.在本章中 主要讨论二维随机变量,所得结论通常可以自然推广到一般的 n 维随机变量. 3.1.2 定义 联合分布函数
若二维随机变量 (X, Y ) 的全部可能取值是有限个或可列个,则称之为二维离散随机变量. 定义 设 X 的全部可能取值是 x1, x2, …,Y 的全部可能取值是 y1, y2, …,且 P{X = xi , Y = yj} = p(xi, yj) = pij , i, j = 1, 2, …, 称之为 (X, Y ) 的联合概率分布函数(Joint Probability Distribution Function) . 通常将联合概率分布写成表格形式,又称为联合分布列.
概率论课堂讲义3.2
一、随机变量独立性的定义
1. 定义:设F(x,y)及Fx(x) , FY(y)分别是二维随 机变量(X,Y)的分布函数及边缘分布函数。若对于所有 x,y有
解: 因为 F ( x , y ) P{ X x , Y y }
所以 F X ( x ) F ( x , )
xi x y j y
p
ij
xi x
p ij p ij y j x i x j 1
P{X=xi}=Pi. 0.43 0.57 1
1 0.17 3 0.04 P{Y=yj}=P.j 0.21
解: 由计算知 容易看出
P{X=1}=0.43,P{Y=-1}=0.21,
且 P{X=1, Y=-1}=0.17 P{X=1,Y =-1}≠P{X=1}P{Y=-1} 因此X与Y不是相互独立的随机变量.
0 lim F ( x , y ) A( B
x
y
2
)( C arctan y )
0 lim F ( x , y ) A( B arctan x )( C
2
)
联立这三个方程,并取x=0,y=0,可得
A=1/π2, B=π/2,C=π/2.
从而
1 F ( x , y ) 2 arctanx arctany 2 2
二、离散型随机变量独立的等价条件
定理 设(X,Y)为离散型随机变量,其分布律为 P{X=xi,Y=yj}=pij (i,j=1,2,…) (i=1,2,…)
概率论与数理统计第3讲
II. 几何概率模型中事件概率求法 能否求几何概型中基本事件的概率? 换句话说,几何概型中基本事件的概率能不 能像古典概型中基本事件的概率(1/n)那样有 确定的值? 答案是:不能!因为几何概型的样本空间Ω 是无限的,所以几何概型中基本事件的概率无 法确定。(无穷小,可以认为等于0)
那事件(指非基本事件)的概率如何计算呢?
将 A、B的位置对调,有
若 P(A)>0, 则P(BA)=P(A)P(B|A) ,
而 P(AB) = P(BA), 故 P(A)>0,则P(AB)=P(A)P(B|A) 。 (3)
多个事件乘法公式的推广: 当 P(A1A2…An) > 0 时,有 P (A1A2…An)
= P(A1) P(A2|A1) …P(An| A1A2…An-1) .
其 中 , l () A 表 示 区 域 A 的 长 度 。
若在空间上投点,记事件A={点落入区域A中}, 则有
V ( A) P ( A) , V ( )
其 中 , V ( A ) 表 示 区 域 A 的 体 积 。
例:(会面问题)甲、乙两人相约在早上 8 点 到 9 点之间在某地会面,先到者等候另一个人 20分钟,过时就离开。如果每个人可在指定的 一小时内任意时刻到达,试计算两人能会面的 概率。 解: 记8点为计算时刻的0时,以分钟为时间单位, 以x,y,分别表示甲乙两人到达会面地点的时刻, 则样本空间为:
考虑上边例子:
记 Ai = {球取自 i 号箱}, i =1, 2, 3; B = {取得红球}。
所求为 P(A1|B)。
P (A B ) 1 P (A ) 1| B P (B )
运用全概率公式 计算P(B)
P(A 1)P(B| A 1)
概率2-3讲义
φ x
1 e 2π
x2 2
, x
二、多维连续型随机变量
概率论
定义 对于二维随机变量 X ,Y , 如果存在非负可积 的函数 f x , y , 使 X ,Y , 落在平面xoy 上任一区域G 内的概率
P (( X ,Y ) G ) f ( x , y )dxdy
几个注记 注1:联合概率密度的定义类似于物质的面密度
注2:联合密度函数不是唯一的,可在至多可数个点
上取值不同。
例
设(X,Y)的概率密度是
概率论
ke (2 x y ) , x 0, y 0, f x, y 其它. 0,
(1) 求常数 k; (2) 求概率 P Y X . (3) 求概率 P ( X 1) . 答案
(3) P{ X 1} f ( x, y )dxdy
y
x 1
x 1 1
dx 2e
0 0
(2 x y )
dy
o 1
x
1 e
2
求二维随机变量(X,Y)的有关概率,首先得找到 区域 G 将问题转化成 P{( X , Y ) G} ,然后再化为 二重积分 f ( x, y )dxdy
a x
a
f ( x)dx 0 (x 0)
P ( A) 1 A S
概率为零的事件不一定是不可能事件
例1 设随机变量X 具有概率密度 kx, x f ( x) 2 , 2 0, ()确定常数k ; 1 0 x3 3 x 4 其它
概率论
概率论
其中 θ 0 为常数, 则称 X 服从参数为 θ 的指数分布.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求 A, B, C.
【答案】 A
1
2
,B C
2
概率论与数理统计
二、二维离散型随机变量 (一)定义: ( X , Y ) 的所有可能取的值是有限对 或可列无穷多对,称 ( X , Y ) 是二维离散型随机变量。
(二) ( X , Y ) 的联合分布律: 定义: P{X xi ,Y y j } piji, j 1,2, 性质:
f ( x, y) f X ( x) fY ( y)
(1.定义域无纠缠形;2.可分离变量;)
概率论与数理统计
第四节 条件概率分布
引例:设随机变量 X 在1,2,3三个整数中等可能取值,Y 在
1 ~ X 中等可能地整数值, ( X ,Y ) 的分布律为 X 1 2 3 Y 1 1/3 1/6 1/9
P { X x i , Y y j } p ij
2 0 3 0 则
1/6 1/9 0 1/9
当 X 3 时,Y 的条件概率分别为:
P {Y 1 | X 3} 1/ 3, P {Y 2 | X 3} 1/ 3, P {Y 3 | X 3} 1/ 3.
概率论与数理统计
一、 二维离散型随机变量的条件分布律 (一)定义:设 ( X , Y ) 是二维离散型随机变量,其分布律为
x 0, y x 其它 ,
例
Y ) 设二维随机变量 ( X , 的联合概率密度函数为
1 ( x2 y2 ) 1 f ( x, y) (1 sin x sin y )e 2 , x, y 2 求 f X ( x ), fY ( y )
概率论与数理统计
第三节 随机变量的相互独立性
概率论与数理统计
(2)性质:
a) f ( x, y) 0;
b)
f ( x, y )dxdy 1;
2F c)若f ( x, y )在点( x, y )连续, 则f ( x, y ) ; xy
d ) P{( X ,Y ) D} f ( x, y)dxdy.
1, X Y U , 0 , X Y 1, X 2Y V 0 , X 2Y
试求 U ,V 的联合分布律,并判断 U ,V 是否独立.
如何判断 X ,Y 是否独立: (1)
F ( x, y) FX ( x)FY ( y)
(2) 离散型: pij pi p j (离散型有 0 一般不独立) (3) 连续型:
求 f X ( x), fY ( y) 。
例 5 设二维随机变量 ( X , Y ) 在 xoy 平面上由曲线 y x
y x 2 所围成的区域上服从均匀分布,求 f X ( x), fY ( y) . 和
例6
( X , Y ) 的联合概率密度函数为
e y , f ( x, y ) 0, 求 f X ( x), fY ( y) 。
(2) ( X , Y ) 的联合分布函数为
(1 e 2 x )(1 e y ), F ( x, y ) 0,
x 0, y 0, 其它.
2 ( X , Y ) 在 xoy 平面上由曲线 y x 和 y x (3)
所围成的区域上服从均匀分布.
例 4.设 ( X , Y ) 在 G {( x, y) | 0 x 2, 0 y 1} 上服从 均匀分布,若
一、 定义 若对任意 x , y ,有 P{ X x,Y y} P{ X x}P{Y y}, 即 F ( x, y) FX ( x)FY ( y) ,则称 X 和 Y 是相互独立的。 (1)连续型随机变量 ( X , Y ) :X 与 Y 独立
f ( x, y ) f X ( x ) f Y ( y )
概率论与数理统计
三、二维连续型随机变量
(1) 定义 对 ( X , Y ) 的分布函数 F ( x, y ) ,若存在非负函数
f ( x, y ) 0 ,使x, y R ,有
F ( x, y) f (u, v)dudv
x y
则称 ( X , Y ) 是连续型的二维随机变量, f ( x, y ) 称为 ( X , Y ) 的 联合概率密度。
概率论与数理统计
(三)二维连续型随机变量举例 二维正态分布
2 1 2 1 2 ( x 1 )2 ( x 1 )( y 2 ) ( y 2 )2 1 1 exp{ [ 2 ]} 2 2 2 2 1 1 2 1 2 f ( x, y) 1
概率论与数理统计
第三章 多维随机变量及其分布
第一节 二维随机变量
一 二维随机变量及分布函数的定义
(一) 二维随机变量的定义
设 E 是一个随机试验, 是 E 的样本空间,X 和 Y 是定义在 上的随机变量, 由它们构成的向量 (X, Y) 称为二维随机变量。
概率论与数理统计
(二) 联合分布函数: 、 1.定义:
f ( x, y)
其中 1 , 2 , 1 , 2 , 是常数且 1 0, 2 0 , 称(X,Y)服从二维正态分布。
概率论与数理统计
记为 ( X ,Y ) ~ N (1 , 2 ,1 , 2 , )
2 2
书例 3 结论: ( X ,Y ) ~ N (1 , 2 ,1 , 2 , )
D
概率论与数理统计
例 3 (X,Y)的概率密度函数
ce ( 2 x y ) f ( x, y ) 0, 求(1) 求 c ;
(2) F ( x, y) ; (3) P Y X , P X 1 ;
x 0, y 0 , 其它
计算步骤:①画出区域 G D ;②用不等式表示区域 G D ; ③化二重积分为累次积分(必要时引入极坐标变换等技 巧)
F ( x, y ) P{ X x, Y y} x, y R
称为(X,Y)的联合分布函数。
注: x 2 x1 , y 2 y1
P{ x1 X x2 , y1 Y y2 }
,
F ( x2 , y2 ) F ( x2 , y1 ) F ( x1 , y2 ) F ( x1 , y1 )
,
d ) x2 x1 , y2 y1
,
F ( x2 , y2 ) F ( x2 , y1 ) F ( x1 , y2 ) F ( x1 , y1 ) 0
概率论与数理统计
例 1.
( X , Y ) 的分布函数为
x y F ( x, y ) A( B arctan )(C arctan ) , 2 3
F ( x, y, z ) P{X x, Y y, Z z}
概率论与数理统计
第二节 边缘分布
问题: ( X , Y ) 是二维随机变量,但 X 和 Y 单独看也是随 机变量,应有各自的概率分布。如何由 ( X , Y ) 的联合概 率分布求 X 和 Y 的概率分布,即边缘分布?
概率论与数理统计
a) pij 0,
b) pij 1
例2.将一枚均匀硬币掷出三次,令 X 为前两次掷出 正面的次数, Y 为三次掷出正面的次数,试求: (1) ( X , Y ) 的联合分布律;
3 P{0 X , 0 Y 4 } , P{1 X 2, 3 Y 4} (2) . 2
(1 e 2 x )(1 e y ), x 0, y 0, F ( x, y ) 0, 其它.
求边缘分布函数
概率论与数理统计
二、边缘分布律 已知联合分布律 P{ X xi ,Y y j } pij 求 X 和 Y 的分布律
P{ X xi } P X xi , Y y j pij pi .
一、边缘分布函数
已知 ( X , Y ) 的联合分布函数为 F ( x, y ) , X 和 Y 的分布函数 求
FX ( x ) P { X x } P { X x , Y } F ( x , )
同理
FY ( y) F (, y)
例 1. ( X , Y ) 的联合分布函数为
f X ( x)
f ( x, y )dy
fY ( y)
f ( x, y)dx
概率论与数理统计
例 3 二维正态分布
1
2 1 2 1 2 ( x 1 )2 ( x 1 )( y 2 ) ( y 2 )2 1 1 exp{ [ 2 ]} 2 2 2 2 1 1 2 1 2
2 2
,
则 X ~ N ( 1 , 12 ) ,Y ~ N ( 2 , 22 ) 注意:联合分布决定边缘分布,反之不然。
例 4
( X , Y ) 的联合概率密度函数为
2 1 x xy f ( x, y ) 3 0 0 x 1, 0 y 2 其它
,
j j
i , j 1,2,
P{Y y j } pij p. j
i
概率论与数理统计
例2 X X,Y的分布律分别为 -1
1 4
0
1 2
1
1 4
pi
Y
0
1 2
1
1 2
pi
且 P( XY 0) 1 , 求 (X,Y) 的联合分布律.
概率论与数理统计
三、边缘概率密度 已知联合概率密度 f ( x, y ) ,求 X 和 Y 的概率密度
概率论与数理统计
2. 性质:
a) F ( x, y ) 是 x 和 y 的不减函数;
b) 0 F (x, y) 1, F (, y) 0, F ( x,) 0 F (,) 0, F (,) 1