备战2012中考:相交线与平行线精华试题汇编

合集下载

(完整版)相交线与平行线常考题目及答案(绝对经典)(最新整理)

(完整版)相交线与平行线常考题目及答案(绝对经典)(最新整理)
相交线与平行线 一.选择题(共 3 小题) 1.在同一平面内,有 8 条互不重合的直线,l1,l2,l3…l8,若 l1⊥l2,l2∥l3,l3⊥l4,l4∥ l5…以此类推,则 l1 和 l8 的位置关系是( ) A.平行 B.垂直 C.平行或垂直 D.无法确定 2.如图,直线 AB、CD 相交于 O,OE⊥AB,OF⊥CD,则与∠1 互为余角的 有( )
试卷第 6 页,总 16 页
24.如图,直线 AB,CD 相交于点 O,OA 平分∠EOC,且∠EOC:∠EOD=2:3. (1)求∠BOD 的度数; (2)如图 2,点 F 在 OC 上,直线 GH 经过点 F,FM 平分∠OFG,且∠MFH﹣∠ BOD=90°,求证:OE∥GH.
25.如图,直线 AB.CD 相交于点 O,OE 平分∠BOC,∠COF=90°. (1)若∠BOE=70°,求∠AOF 的度数; (2)若∠BOD:∠BOE=1:2,求∠AOF 的度数.
38.如图,已知 a∥b,ABCDE 是夹在直线 a,b 之间的一条折线,试研究∠1、∠2、 ∠3、∠4、∠5 的大小之间有怎样的等量关系?请说明理由.
39.如图,AB∥DC,增加折线条数,相应角的个数也会增多,∠B,∠E,∠F,∠G, ∠D 之间又会有何关系?
40.已知直线 AB∥CD, (1)如图 1,点 E 在直线 BD 上的左侧,直接写出∠ABE,∠CDE 和∠BED 之 间的数量关系是 . (2)如图 2,点 E 在直线 BD 的左侧,BF,DF 分别平分∠ABE,∠CDE,直 接写出∠BFD 和∠BED 的数量关系是 .
试卷第 8 页,总 16 页
31.如图,直线 AB、CD 相交于点 O,OE 把∠BOD 分成两部分; (1)直接写出图中∠AOC 的对顶角为 ,∠BOE 的邻补角为 (2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE 的度数.

中考数学专题复习卷:相交线与平行线(含解析)

中考数学专题复习卷:相交线与平行线(含解析)

订交线与平行线一、选择题1.如图,直线∥,直线与、都订交,假如∠1=50 °,那么∠ 2 的度数是()A. 50 °B. 100C. 130°D. 150°【答案】 C【分析】:∵ a∥ b,∠ 1=50°,∴∠ 1=∠ 3=50°,∵∠ 2+∠ 3=180°,∴∠ 2=180°-∠ 1=180°-50 °=130°.故答案为: C.【剖析】此中将∠ 2 的邻补角记作∠3,利用平行线的性质与邻补角的意义即可求得∠ 2 的度数.2.如图,AB ∥ CD,且∠DEC=100°,∠ C=40°,则∠B 的大小是()A. 30 °B. 40C. 50°D. 60°【答案】 B【分析】:∵∠ DEC=100°,∠ C=40°,∴∠ D=40°,又∵ AB ∥ CD,∴∠ B=∠ D=40°,故答案为: B .【剖析】第一依据三角形的内角和得出∠ D 的度数,再依据二直线平行,内错角相等得出答案。

3.如图,若l 1∥l2,l3∥ l4,则图中与∠ 1互补的角有()A.1 个B.2 个C.3 个D.4 个【答案】 D【分析】如图,∵ l 1∥l2,l3∥ l4,∵∠ 2=∠ 4,∠ 1+∠ 2=180°,又∵∠ 2=∠3,∠ 4= ∠5,∴与∠ 1 互补的角有∠ 2、∠ 3、∠ 4、∠ 5 共 4 个,故答案为: D.【剖析】依据二直线平行同位角相等,同旁内角互补得出∠2= ∠ 4,∠ 1+∠ 2=180°,再依据对顶角相等得出∠ 2=∠ 3,∠ 4=∠ 5,从而得出答案。

4.如图,直线,若,,则的度数为()A. B. C. D.【答案】 C【分析】:∵∠ 1=42°,∠ BAC=78°,∴∠ ABC=60°,又∵ AD ∥ BC,∴∠ 2=∠ ABC=60°,故答案为: C.【剖析】第一依据三角形的内角和得出∠ABC 的度数,再依据二直线平行内错角相等即可得出答案。

相交线与平行线练习及中考典型题目

相交线与平行线练习及中考典型题目

相交线与平行线练习及中考典型题目文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]第三章《相交线与平行线》测试题一、选择题(每小题3分,共30分)1、下面四个图形中,∠1与∠2是对顶角的图形()A、 B、 C、 D、3、同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A、a∥dB、b⊥dC、a⊥dD、b ∥c4、如图,若m∥n,∠1=105 o,则∠2= ()A、55 oB、60 oC、65 oD、75 o5、下列说法中正确的是()A、有且只有一条直线垂直于已知直线B、从直线外一点到这条直线的垂线段,叫做这点到这条直线距离C、互相垂直的两条线段一定相交D、直线c外一点A与直线c上各点连接而成的所有线段中最短线段的长是3cm,则点A到直线c的距离是3cm6、两条直线被第三条直线所截,下列条件中,不能判断这两条直线平行的的是()A、同位角相等B、内错角相等C、同旁内角互补D、同旁内角相等7、下列句子中不是命题的是()A 、两直线平行,同位角相等。

B 、直线AB 垂直于CD吗C 、若︱a ︱=︱b ︱,则a 2 = b 2。

D 、同角的补角相等。

8、下列说法正确的是()A 、同位角互补B 、同旁内角互补,两直线平行C 、内错角相等D 、两个锐角的补角相等 9、如图,能判断直线AB ∥CD 的条件是 ()A 、∠1=∠2B 、∠3=∠4C 、∠1+∠3=180 oD 、∠3+∠4=180 o10、如图,PO ⊥OR ,OQ ⊥PR ,则点O 到PR 所在直线的距离是线段()的长 A 、POB 、ROC 、OQD 、PQ二、填空题(每空分,共45分)1.如图(1)是一块三角板,且︒=∠301,则____2=∠。

2.若,9021︒=∠+∠则21∠∠与的关系是 。

3.若,18021︒=∠+∠则21∠∠与的关系是 。

4.若,9021︒=∠+∠,9023︒=∠+∠则31∠∠与的关系是 ,理由是 。

2012年全国部分地区中考数学试题分类解析汇编 第20章 相交线与平行线

2012年全国部分地区中考数学试题分类解析汇编 第20章 相交线与平行线

2012年全国各地中考数学真题分类汇编第20章相交线与平行线1.(2012某某)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.140°考点:平行线的性质;直角三角形的性质。

解答:解:∵AB∥CD,DB⊥BC,∠1=40°,∴∠3=∠1=40°,∵DB⊥BC,∴∠2=90°﹣∠3=90°﹣40°=50°.故选B.2.(2012某某)如图,直线a、b被直线c所截,下列说法正确的是()A.当∠1=∠2时,一定有a∥bB.当a∥b时,一定有∠1=∠2C.当a∥b时,一定有∠1+∠2=90°D.当∠1+∠2=180°时,一定有a∥b考点:平行线的判定;平行线的性质。

解答:解:A.若∠1=∠2不符合a∥b的条件,故本选项错误;3.(2012中考)如图,直线a∥b,直线c与a,b相交,∠1=65°,则∠2=(B)A.115°B.65°C.35°D.25°4.(2012某某)如图,直线AB∥CD,AF交CD于点E,∠CEF=140°,则∠A等于()A.35°B.40°C.45°D.50°考点:平行线的性质。

解答:解:∵∠CEF=140°,∴∠FED=180°﹣∠CEF=180°﹣140°=40°,∵直线AB∥CD,∴∠A∠FED=40°.故选B.5.(2012潜江)如图,AB∥CD,∠A=48°,∠C=22°.则∠E等于()A.70°B.26°C.36°D.16°考点:平行线的性质;三角形内角和定理。

分析:由AB∥CD,根据两直线平行,内错角相等,即可求得∠1的度数,又由三角形外角的性质,即可求得∠E的度数.解答:解:∵AB∥CD,∠A=48°,∴∠1=∠A=48°,∵∠C=22°,∴∠E=∠1﹣∠C=48°﹣22°=26°.故选B.点评:此题考查了平行线的性质与三角形外角的性质.此题比较简单,注意掌握两直线平行,内错角相等定理的应用.6.(2012某某)图,直线BD∥EF,AE与BD交于点C,若∠ABC=30°,∠BAC=75°,则∠CEF 的大小为(D)A.60°B.75°C.90°D.105°【考点】平行线的性质;三角形内角和定理.【专题】探究型.【分析】先根据三角形外角的性质求出∠1的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1是△ABC的外角,∠ABC=30°,∠BAC=75°,∴∠1=∠ABC+∠BAC=30°+75°=105°,∵直线BD∥EF,∴∠CEF=∠1=105°.故选D.【点评】本题考查的是平行线的性质及三角形外角的性质,熟知两直线平行,同位角相等是解答此题的关键.7.(2012某某)如图,将三角尺与直尺贴在一起,使三角尺的直角顶点C (∠ACB=90°)在直尺的一边上,若∠1=60°,则∠2的度数等于( )A.75° B . 60° C . 45° D . 30°考点:平行线的性质;余角和补角。

【备战】中考数学 相交线与平行线精华试题汇编 人教新课标版

【备战】中考数学 相交线与平行线精华试题汇编 人教新课标版

备战2012中考:相交线与平行线精华试题汇编一、选择题1. (2011山东德州4,3分)如图,直线l 1∥l 2, ∠1=40°,∠2=75°,则∠3等于(A )55° (B ) 60°(C )65° (D ) 70°【答案】C2. (2011山东日照,3,3分)如图,已知直线AB CD ∥,125C ∠=°,45A ∠=°,那么E ∠的大小为( )(A )70° (B )80°(C )90° (D )100°【答案】B3. (2011山东泰安,8 ,3分)如图,l∥m ,等腰直角三角形ABC 的直角顶点C 在直线m上,若∠β=200,则∠α的度数为( )A.250 B.300 C.200 D.350【答案】A 4. (2011四川南充市,3,3分) 如图,直线DE 经过点A,DE ∥BC,,∠B=60°,下列结论成立的是( )(A )∠C=60° (B )∠DAB=60° (C )∠EAC=60° (D )∠BAC=60°ED C BAl 1l 21 2 3【答案】B5. (2011山东枣庄,2,3分)如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于( )A .30° B.40° C .60° D.70°【答案】A6. (2010湖北孝感,3,3分)如图,直线AB 、CD 相交于点O ,OT ⊥AB 于O ,CE ∥AB 交CD 于点C ,若∠ECO=30°,则∠DOT=( )A.30°B.45°C. 60°D. 120°【答案】C7. (2011河北,2,2分)如图1∠1+∠2=( )1图1A .60°B .90°C .110°D .180°【答案】B8. (2011宁波市,8,3分)如图所示,AB ∥CD ,∠E =37°, ∠C =20°, ∠EAB 的度数为A . 57°B . 60°C . 63°D . 123°【答案】A9. (2011浙江衢州,12,4分)如图,直尺一边AB 与量角器的零刻度线CD 平行,若量角器的一条刻度线OF 的读书为70°,OF 与AB 交于点E ,那么AEF ∠= 度.A CB DE10.(2011浙江绍兴,3,4分)如图,已知//,,34AB CD BC ABE C BED ∠∠=︒∠平分,则 的度数是( )A.17︒B. 34︒C. 56︒D. 68︒ A D【答案】D11. (2011浙江义乌,8,3分)如图,已知AB ∥CD ,∠A =60°,∠C =25°,则∠E 等于A. 60°B. 25°C. 35°D. 45°【答案】C12. (2011四川重庆,4,4分)如图,AB ∥CD ,∠C =80°,∠CAD =60°,则∠BAD 的度数等于( )A .60° B.50° C. 45° D. 40°【答案】D13. (2011浙江丽水,5,3分)如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A BCD E60°A .30° B.25° C.20° D.15°【答案】B14. (2011台湾台北,8)图(二)中有四条互相不平行的直线L 1、L 2、L 3、L 4所截出的七个角。

2012中考数学专题试卷(包含详解答案)《相交线、平行线》提高测试 2

2012中考数学专题试卷(包含详解答案)《相交线、平行线》提高测试 2

《相交线、平行线》提高测试(一)判断题(每题2分,共10分)1.过线段外一点画线段的中垂线……………………………………………………()2.如果两个角互为补角,那么它们的角平分线一定互相垂直……………………()3.两条直线不平行,同旁内角不互补………………………………………………()4.错误地判断一件事情的语句不叫命题……………………………………………()5.如图,AB∥CD,那么∠B+∠F+∠D=∠E+∠G…………………………()(二)填空题(每小题2分,共18分)6.如图,当∠1=∠时,AB∥DC;当∠D+∠=180°时,AB∥DC;当∠B=∠时,AB∥CD.7.如图,AB∥CD,AD∥BC,∠B=60°,∠EDA=50°.则∠CDF=.8.如图,O是△ABC内一点,OD∥AB,OE∥BC,OF∥AC,∠B=45°,∠C=75°,则∠DOE=,∠EOF=,∠FOD=.9.两个角的两边分别平行,其中一个角比另一个角的3倍少20°.则这两个角的度数分别是.10.如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,则∠GEF=.11.如图,AD∥BC,点O在AD上,BO、CO分别平分∠ABC、∠DCB,若∠A+∠D=m°.则∠BOC=______.12.有一条直的等宽纸带,按图(1)折叠时,纸带重叠部分中的∠ =度.图(1)13.把命题“在同一平面内垂直于同一直线的两直线互相平行”写成“如果…那么…”的形式是:如果______________,那么_____________.14.如图,在长方体中,与面BCC′B′平行的面是面;与面BCC′B′垂直的面是,与棱A′A平行的面有,与棱A′A垂直的面有.(三)选择题(每小题3分,共21分)15.如图,已知直线AB与CD相交于点O,OE⊥CD.垂足为O,则图中∠AOE和∠DOB的关系是……………………………………………………………………()(A)同位角(B)对顶角(C)互为补角(D)互为余角16.如图,CD⊥AB,垂足为D,AC⊥BC,垂足为C.图中线段的长能表示点到直线(或线段)距离的线段有…………………………………………………………()(A)1条(B)3条(C)5条(D)7条17.若AO⊥BO,垂足为O,∠AOC︰∠AOB=2︰9,则∠BOC的度数等于……()(A)20°(B)70°(C)110°(D)70°或110°18.下列命题中,真命题是……………………………………………………………()(A)同位角相等工(B)同旁内角相等,两直线平行(C)同旁内角互补(D)同一平面内,平行于同一直线的两直线平行19.直线AB∥CD,且与EF、GH相交成如图可示的图形,则共得同旁内角…()(A)4对(B)8对(C)12对(D)16对20.如图,AD∥EF∥BC,且EG∥AC.那么图中与∠1相等的角(不包括∠1)的个数是………………………………………………………………………………()(A)2 (B)4 (C)5 (D)621.某人从A点出发向北偏东60°方向速到B点,再从B点出发向南偏西15°方向速到C点,则∠ABC等于……………………………………………………………()(A)75°(B)105°(C)45°(D)135°(四)解答题(本题5分)22.根据命题“角平分线上的点到角的两边距离相等”,画出图形,并结合图形写出已知、求证(不证明).五、计算题(第23、24题,每题5分.第25、26题每题6分,共22分)23.如图,AB∥CD∥PN,∠ABC=50°,∠CPN=150°.求∠BCP的度数.24.如图,∠CAB=100°,∠ABF=110°,AC∥PD,BF∥PE,求∠DPE的度数.25.如图,DB∥FG∥EC,∠ABD=60°,∠ACE=36°,AP平分∠BAC.求∠P AG的度数.26.如图,AB∥CD,∠1=115°,∠2=140°,求∠3的度数.(五)证明题(每题6分,共24分)27.已知:如图.AB∥CD,∠B=∠C.求证:∠E=∠F.28.已知:如图,AC∥DE,DC∥EF,CD平分∠BCD.求证:EF平分∠BED.29.已知:如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.30.已知:如图,AB∥CD,请你观察∠E、∠B、∠D之间有什么关系,并证明你所得的结论.《相交线、平行线》提高测试1.【提示】线段外一点不一定在线段的中垂线上,所以过线段外一点画线段的垂线,不一定平分这条线段如图PQ⊥AB,垂足为O.但PQ不平分AB.【答案】×.2.【提示】两个角互为补角时,这两个角可以是邻补角,也可以不是邻补角.当两角互补但不是邻补角时,则它们的角平分线不互相垂直.如图:∠AOB与∠AOC互补,OM平分∠AOC、ON平分∠AOB.显然OM与ON不垂直.【答案】×.3.【提示】如图,AB与CD不平行,EF与AB交于点G.与CD交于点H.过点G作PQ∥CD.∴∠QGF+∠GHD=180°.∵∠BGF<∠QGF,∴∠BGF+∠GHD<180°;又∠PGH+∠GHC=180°,∵∠AGH>∠PGH,∴∠AGH+∠GHC>180°.即两直线不平行,同旁内角不互补.【答案】√.4.【提示】判断一件事情的语句叫做命题.错误地判断得到的是假命题.假命题也是命题.【答案】×.5.【提示】过点E、F、G分别画EP∥AB,PQ∥AB,GM∥AB.则AB∥EP∥FQ∥GM∥CD.∴∠B=∠1,∠3=∠2,∠4=∠5,∠D=∠6.∴∠B+∠3+∠4+∠D=∠1+∠2+∠5+∠6.即∠B+∠EFG+∠D=∠BEF+∠FG(D)【答案】√.6.【提示】把题中的“AB∥CD”视作条件去找∠1的内错角、∠D的同旁内角和∠B 的同位角.即得要填的角.【答案】4,DAB,5.7.【提示】由AB∥CD,得∠DCF=∠B=60°,由AD∥BC得∠ADC=∠DCF=60°,∴∠ADE+∠ADC=50°+60°=110°,∴∠CDF=180°-110°=70°.【答案】70°.8.【提示】由OD∥AB,∠B=45°,得∠ODC=∠B=45°.由OE∥DC,∠DOE+∠ODC=180°,∴∠DOE=180°-45°=135°.同理可求∠EOF=105°.由周角的定义可求∠FOD=120°.【答案】135°,105°,120°.9.【提示】如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.设一个角为x度.则另一个角为(3x-20)度.依据上面的性质得,3x-20=x,或3x-20+x=180°.∴x=10,或x=50.当x=50时,3x-20=3×50-20=130.【答案】10°、10°或50°、130°.【点评】通过列方程(或方程组)解题是几何计算常用的方法.10.【提示】由AB∥EF∥CD,可知∠BED=∠B+∠D.已知∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∠B-∠D=24°.于是可得关于∠B 、∠D 的方程组⎩⎨⎧︒=∠-∠︒=∠+∠2496D B D B 解得 ∠B =60°. 由AB ∥EF 知∠BEF =∠B =60°. 因为EG 平分∠BEF ,所以∠GEF =21∠BEF =30°. 【答案】30°.11.【提示】由AD ∥BC ,BO 平分∠ABC ,可知∠AOB =∠CBO =21∠ABC . 同理∠DOC =∠BCO =21∠DCB . ∵ AD ∥BC ,∴ ∠A +∠ABC =180°,∠D +∠DCB =180°, ∴ ∠A +∠D +∠ABC +∠DCB =360°.∵ ∠A +∠D =m °,∴ ∠ABC +∠DCB =360°-m °.∴ ∠AOB +∠DOC =21(∠ABC +∠DCB )=21(360°-m °)=180°-21m °. ∴ ∠BOC =180°-(∠AOB +∠DOC )=180°-(180°-21m °)=21m °. 【答案】21m °.12.【提示】裁一张等宽纸带按图示折叠,体会一下题目的含义.将等宽纸带展平,便得图(2).由此图可知∠DAC =30°.AB 是∠C ′AC 的平分线.∴ ∠α=75°.图(2)【答案】75°. 【点评】解类似具有操作性的实际问题时,不妨动手做一做,从中感受一下题目的意义,进而将实际问题转化成数学问题.用数学知识解决实际问题.这样做不仅能培养我们抽象思维和空间想象能力,而且能提高我们解决实际问题的能力.13.【答案】在同一平面内两条直线垂直于同一条直线,这两条直线互相平行.14.【答案】面ADD ′A ;面ABB ′A ′,面ABCD ,面A ′B ′C ′D ′,面DCC ′D ′;面DCC ′D ′,面BCC ′B ′;面ABCD ,面A ′B ′C ′D ′.15.【提示】由OE⊥CD,知:∠AOE与∠AOC互余.∠AOC与∠BOD是对顶角.所以∠AOE与∠DOB互为余角.【答案】D.16.【提示】CD的长表示点C到AB的距离;AC的长表示点A到BC的距离;BC的长表示点B到AC的距离;AD的长表示点A到CD的距离,BD的长表示点B到CD 的距离.共5条.【答案】C.17.【提示】OC可在∠AOB内部,也可在∠AOB外部,如图可示,故有两解.设∠AOC=2x°,则∠AOB=9x°.∵AO⊥BO,∴∠AOB=90°.∵9x=90°,x=10°,∠AOC=2x=20°.(1)∠BOC=∠AOB-∠AOC=90°-20°=70°;(2)∠BOC=∠AOB+∠AOC=90°+20°=110°.【答案】D.18.【提示】两直线不平行,则同位角不相等,同旁内角不互补,所以A、C错误,B 也不一定成立.如图所示直线a、b被直线c所截.∠1=∠2,∠3=∠4.显然a与b 不平行.【答案】D.19.【提示】该图可分离出四个基本图形,如图所示.11第三条直线截两平行线,此时图形呈“”型,有同旁内角两对; 第三条直线截两相交线,此时图形呈“”型,有同旁内角六对.故图中共有同旁内角2×2+6×2=16(对).【答案】D . 20.【提示】由AD ∥EF ∥BC ,且EG ∥AC 可得:∠1=∠DAH =∠FHC =∠HCG =∠EGB =∠GEH 除∠1共5个.【答案】C .21.【提示】按要求画出图形再计算∵ NA ∥BS ,∴ ∠NAB =∠SBA =60°.∵ ∠SBC =15°,∴ ∠ABC =∠SBA -∠SBC =60°-15°=45°.【答案】C .22.【答案】已知:OC 平分∠AOB ,P 是OC 上任意一点.PD ⊥OB ,PE ⊥OA ,垂足分别是D 、E . 求证:PE =PD .23.【提示】由AB ∥CD ,∠ABC =50°可得∠BCD =50°.由PN ∥CD ,∠CPN =150°,可得∠PCD =30°.∴ ∠BCP =∠BCD -∠PCD =50°-30°=20°.【答案】20°.24.【提示】由AC ∥PD ,∠CAB =100°,可得∠APD =80°.同理可求∠BPE =70°.∴ ∠DPE =180°-∠APD -∠BPE =180°-80°-70°=30°.【答案】30°.25.【提示】由DB ∥FG ∥EC ,可得∠BAC =∠BAG +∠CAG=∠DBA +∠ACE=60°+36°=96°.12 由AP 平分∠BAC 得∠CAP =21∠BAC =21×96°=48°. 由FG ∥EC 得∠GAC =ACE =36°.∴ ∠P AG =48°-36°=12°.【答案】12°.26.【提示】过点E 作EG ∥AB .∵ AB ∥CD 由平行公理推论可得EG ∥CD .由此可求得∠AEC 的度数.由平角定义可求得∠3的度数.【答案】75°.27.【提示】证明AC ∥BD .【答案】证明:∵ AB ∥CD (已知),∴ ∠B =∠CDF (两直线平行,同位角相等).∵ ∠B =∠C (已知),∴ ∠CDF =∠C (等量代换).∴ AC ∥BD (内错角相等,两直线平行).∴ ∠E =∠F (两直线平行,内错角相等).28.【提示】由AC ∥DE .DC ∥EF 证∠1=∠3.由DC ∥EF 证∠2=∠4.再由CD 平分∠BCA ,即可证得∠3=∠4.【答案】证明:∵ AC ∥DE (已知),∴ ∠1=∠5(两直线平行,内错角相等).同理∠5=∠3.∴ ∠1=∠3(等量代换).∵ DC ∥EF (已知),∴ ∠2=∠4(两直线平行,同位角相等).∵ CD 平分∠ACB ,∴ ∠1=∠2(角平分线定义),∴ ∠3=∠4(等量代换),∴ EF 平分∠BED (角平分线定义).29.【提示】过点E 作EF ∥AB ,证明∠BED =90°.【答案】证明:过点E 作EF ∥AB .∴ ∠BEF =∠B (两直线平行,内错角相等).∵ ∠B =∠1,∴ ∠BEF =∠1(等量代换).同理可证:∠DEF =∠2.∵ ∠1+∠BEF +∠DEF +∠2=180°(平角定义),13 即2∠BEF +2∠DEF =180°,∴ ∠BEF +∠DEF =90°(等式性质).即∠BED =90°.∴ BE ⊥DE (垂直的定义).30.【提示】结论:∠B +∠E =∠D .过点E 作EF ∥AB .【答案】结论:∠B +∠E =∠D .证明:过点E 作EF ∥AB ,∴ ∠FEB =∠B (两直线平行,内错角相等).∵ AB ∥CD ,EF ∥AB ,∴ EF ∥CD (平行公理推论),∴ ∠FED =∠D (两直线平行,内错角相等).∵ ∠FED =∠FEB +∠BED =∠B +∠BED ,∴ ∠B +∠BED =∠D (等量代换).本题还可添加如图所示的辅助线,请你证明∠B +∠E =∠D .【点评】这是一道探索结论型的问题.要通过对直观图形仔细观察,大胆猜想,设定结论,再进行推理,验证结论.直观图形是观察思考的依据,准确的直观图形可引发正确的直觉思维.所以作图不可忽视.直觉思维是正确,还必须用相关的理论来验证.这样得到的结论方可靠.。

【备战2012】中考数学 相交线与平行线精华试题汇编 人教新课标版

【备战2012】中考数学 相交线与平行线精华试题汇编 人教新课标版

备战2012中考:相交线与平行线精华试题汇编一、选择题1. (2011某某某某4,3分)如图,直线l 1∥l 2, ∠1=40°,∠2=75°,则∠3等于(A )55° (B ) 60°(C )65° (D ) 70°【答案】C 2. (2011某某日照,3,3分)如图,已知直线AB CD ∥,125C ∠=°,45A ∠=°,那么E ∠的大小为( )(A )70° (B )80°(C )90° (D )100°【答案】B3. (2011某某某某,8 ,3分)如图,l∥m ,等腰直角三角形ABC 的直角顶点C 在直线m上,若∠β=200,则∠α的度数为( )0 B.300 C.200 0【答案】A4. (2011某某某某市,3,3分) 如图,直线DE 经过点A,DE ∥BC,,∠B=60°,下列结论成立的是( )l 1 l 2 123(A )∠C=60°(B )∠DAB=60°(C )∠E AC=60°(D )∠BAC=60°ED C BA【答案】B 5. (2011某某枣庄,2,3分)如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于( )A .30° B.40° C .60° D.70°【答案】A6. (2010某某某某,3,3分)如图,直线AB 、CD 相交于点O ,OT ⊥AB 于O ,CE ∥AB 交CD 于点C ,若∠ECO=30°,则∠DOT=( )°°°°【答案】C7. (2011某某,2,2分)如图1∠1+∠2=( )21图1A CB DEA .60°B .90°C .110°D .180°【答案】B8. (2011某某市,8,3分)如图所示,AB ∥CD ,∠E =37°, ∠C =20°, ∠EAB 的度数为A . 57°B . 60°C . 63°D . 123°【答案】A9. (2011某某某某,12,4分)如图,直尺一边AB 与量角器的零刻度线CD 平行,若量角器的一条刻度线OF 的读书为70°,OF 与AB 交于点E ,那么AEF ∠=度.【答案】7010.(2011某某某某,3,4分)如图,已知//,,34AB CD BC ABE C BED ∠∠=︒∠平分,则 的度数是( )A.17︒B. 34︒C. 56︒D. 68︒E C A BD【答案】D 11. (2011某某义乌,8,3分)如图,已知AB ∥CD ,∠A =60°,∠C =25°,则∠E 等于0o 180o 0o 180o170o 170o 160o 160o150o 150o 140o 140o 30o 30o 40o 40o 50o 50o 110o 110o 120o 120o 130o 130o 90o 90o 100o 100o 60o 60o 70o 70o 80o 80o 20o 20o 10o 10o 1211109876543201AB FC OD (第12题) (第3题图)A. 60°B. 25°C. 35°D. 45°【答案】C12. (2011某某某某,4,4分)如图,AB ∥CD ,∠C =80°,∠CAD =60°,则∠BAD 的度数等于( )A .60° B.50° C. 45° D. 40°【答案】D13. (2011某某某某,5,3分)如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )21A .30°B.25°C.20°D.15°【答案】B14. (2011某某台北,8)图(二)中有四条互相不平行的直线L 1、L 2、L 3、L 4所截出的七个角。

中考数学总复习《相交线与平行线》专项测试卷-附参考答案

中考数学总复习《相交线与平行线》专项测试卷-附参考答案

中考数学总复习《相交线与平行线》专项测试卷-附参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.如图,直线a与直线b被直线c所截,b⊥c,垂足为A,∠1=69∘若使直线b与直线a平行,则可将直线b绕着点A顺时针旋转( )A.69∘B.49∘C.31∘D.21∘2.下列四个命题中,它的逆命题成立的是( )A.如果x=y,那么x2=y2B.直角都相等C.全等三角形对应角相等D.等边三角形的每个角都等于60∘3.如图,直线AB,CD相交于点O,OE,OF,OG分别是∠AOC,∠BOD,∠BOC的平分线,以下说法不正确的是( )A.∠DOF与∠COG互为余角B.∠COG与∠AOG互为补角C.射线OE,OF不一定在同一条直线上D.射线OE,OG互相垂直4.如图,直线a∥b,将三角尺的直角顶点放在直线b上,若∠1=35∘,则∠2等于( )A.45∘B.55∘C.35∘D.65∘5.如图,下列几组角的位置关系是内错角的是( )A.∠1和∠2B.∠3和∠4C.∠2和∠3D.∠1和∠46.如图,ED,CM与AO交于点C,OB,ON与AO交于O点,那么下列说法正确的是( )① ∠2和∠4是同位角;② ∠1和∠3是同位角;③ ∠ACD和∠AOB是内错角;④ ∠1和∠4是同旁内角;⑤ ∠ECO和∠AOB是内错角;⑥ ∠OCD和∠4是同旁内角.A.②③⑤B.①③⑤C.②③④D.①⑤⑥7.如图,两条直线被第三条直线所截,在所标注的角中,下列说法不正确的是( )A.∠1与∠5是同旁内角B.∠1与∠2是邻补角C.∠3与∠5是内错角D.∠2与∠4是对顶角8.如图,点O在直线AB上,OC⊥OD若∠AOC=120∘,则∠BOD的度数为( )A.30∘B.40∘C.50∘D.60∘二、填空题(共5题,共15分)9.已知∠AOB和∠BOC互为邻补角,且∠BOC:∠AOB=4:1,射线OD平分∠AOB,射线OE⊥OD,则∠BOE=.10.如图,若∠ADE=∠ABC,则DE∥BC,理由是.11.如图,已知∠B=∠D,要使BE∥DF,还需补充一个条件,你认为这个条件应该是.(填一个即可)12.如图,已知∠1=60∘,∠2=60∘,∠3=120∘,则直线a,b,c之间的位置关系为.13.如图,如果∠2=100∘,那么∠1的同位角的度数为.三、解答题(共3题,共45分)14.如图EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=116∘,∠ACF=20∘求∠FEC的度数.15.如图,已知两条直线DM∥CN,线段AB的两个端点.A,B分别在直线OM,CN上∠C=∠BAD,点E在线段BC上,且DB平分∠ADE.(1) 求证:AB∥CD.(2) 若沿着NC方向平移线段AB,那么∠CBD与∠CED度数之间的关系是否随着AB 位置的变化而变化?若变化,请找出变化规律;若不变化,请确定它们之间的数量关系.16.如图,已知DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2求证:CD⊥AB.参考答案1. 【答案】D2. 【答案】D3. 【答案】C4. 【答案】B5. 【答案】B6. 【答案】D7. 【答案】C8. 【答案】A9. 【答案】72∘或108∘10. 【答案】同位角相等,两直线平行11. 【答案】∠B=∠COE(答案不唯一)12. 【答案】a∥b∥c13. 【答案】80∘14. 【答案】∵EF∥AD,AD∥BC∴EF∥BC.∵AD∥BC∴∠ACB+∠DAC=180∘.∵∠DAC=116∘∴∠ACB=64∘.∵∠ACF=20∘∴∠FCB=∠ACB−∠ACF=44∘.∵CE平分∠BCF∴∠BCE=22∘.∵EF∥BC∴∠FEC=∠ECB.∴∠FEC=22∘.15. 【答案】(1) ∵DM∥CN∴∠BAD=∠NBA∵∠C=∠BAD∴∠C=∠NBA∴AB∥CD.(2) ∵DB平分∠ADE∴∠ADB=∠EDB∵DM∥CN∴∠ADB=∠CBD∴∠CBD=∠EDB∵DM∥CN∴∠CED=∠EDA∵∠EDA=2∠EDB∠CED.∴∠CDB=1216. 【答案】∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90∘(垂直定义)∴DG∥AC(同位角相等,两直线平行)∴∠2=∠ACD(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠ACD(等量代换)∴EF∥CD(同位角相等,两直线平行)∴∠AEF=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∴∠AEF=90∘(垂直的定义)∴∠ADC=90∘(等量代换)∴CD⊥AB(垂直的定义).。

中考数学相交线与平行线专题训练50题含参考答案

中考数学相交线与平行线专题训练50题含参考答案

中考数学相交线与平行线专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,与1∠是同位角的是( )A .2∠B .3∠C .4∠D .5∠2.如图,结合图形作出了如下判断或推理:①如图甲,如果CD AB ⊥,D 为垂足,那么点C 到AB 的距离等于C ,D 两点间的距离;①如图乙,如果AB CD ∥,那么B D ∠=∠;①如图丙,如果ACD CAB ∠=∠,AD BC =,那么B D ∠=∠; ①如图丁,如果12∠=∠,120D ∠=︒,那么60BCD ∠=︒. 其中正确的有( ) A .1个B .2个C .3个D .4个3.如图,在ABC 中,8AB =,点M 是BC 的中点,AD 是BAC ∠的平分线,作MF AD ∥交AC 于F ,已知CF 10=,则AC 的长为( )A .12B .11C .10D .94.如图,下列判断中正确的是( )A .如果① 1+① 5=180°,那么AB∥CDB .如果① 1=① 5,那么AB∥CDC .如果① 3+① 4=180°,那么AB∥CDD .如果① 2=① 4,那么AB∥CD5.如图,12356∠=∠=∠=︒,则4∠的度数是( )A .56°B .114°C .124°D .146°6.如图:P 为直线l 外一点,点A ,B ,C 在直线l 上,且PB ①l ,垂足为B ,①APC =90°,则下列语句错误( )A .线段PB 的长叫做点P 到直线l 的距离 B .线段AC 的长叫做点C 到直线AP 的距离C .P A 、PB 、PC 三条线段中, PB 是最短的D .线段P A 的长叫做点A 到直线PC 的距离7.将一副三角板按如图放置,则下列结论正确的有( )①如果2∠与E ∠互余,则BC DA ∥; ①180BAE CAD ∠+∠=︒; ①如果BC AD ∥,则有245∠=︒; ①如果150CAD ∠=︒,必有4C ∠=∠.A .①①①B .①①①C .①①①D .①①①①8.如图,直线,AB CD 相交于点,O OE AB ⊥于点,O OF 平分12530'AOE ∠∠=︒,,则下列结论中不正确的是( )A .13∠=∠B .245∠=︒C .AOD ∠与1∠互为补角D .3∠的余角等于6530'︒9.如图,两直线被第三直线所截,下列说法中不正确的是( )A .1∠和2∠是对顶角B .2∠和3∠是内错角C .2∠和4∠是同位角D .1∠和4∠是同旁内角10.如图,AB 是O 的弦,OC AB ⊥,垂足为C ,OD AB ∥,12OC OD =,则ODB∠的度数为( )A .65︒B .70︒C .75︒D .80︒11.如图,AB ①CD ,点E 在线段BC 上,CD =CE ,若①ABC =30°,则①D 的度数为( )A .85°B .75°C .65°D .30°12.如图,三角板的直角顶点放在直线b 上,已知a b ,128∠=︒,则2∠的度数为( )A .28︒B .56︒C .62︒D .152︒13.如图,ACE ∠是ABC ∆的外角,ACD A ∠=∠,50B ∠=︒,则BCD ∠的度数为( )A .130︒B .120︒C .110︒D .100︒14.如图所示,直线l 1∥l 2,①1=120°,则①2的度数为( )A .60°B .80°C .100°D .120°15.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么7条直线最多有: A .28个交点B .24个交点C .21个交点D .15个交点16.如图,图中的同位角的对数是( )A .4B .6C .8D .1217.如图,平行线m ,n 间的距离为5,直线l 与m ,n 分别交于点A ,B ,45α=︒,在m 上取点P (不与点A 重合),作点P 关于l 的对称点Q .若3PA =,则点Q 到n 的距离为( )A .2B .3C .2或8D .3或818.已知1∠与2∠互为对顶角,2∠与3∠互余,若345∠=︒,则1∠的度数是( ) A .45B .90C .80D .7019.如图,一公路修到汤逊湖边时,需拐弯绕过湖通过,如果第一次拐的角①A 是110°,第二次拐的角①B 是160°,第三次拐的角是①C ,这时的道路与第一条路平行,则①C 的度数( )A .120°B .130°C .140°D .150°20.如图,从①12∠=∠,①C D ∠=∠,①DF AC ∥三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )A .0B .1C .2D .3二、填空题21.如图,在四边形ABCD 中,AD ①BC ,AB 与CD 不平行,AC 、BD 相交于点O ,写出图中一对面积相等的三角形,它们可以是__________________________(只需写出一对).22.如图,Rt ABC △中,90C ∠=︒,13AB =,5BC =,利用尺规在AC ,AB 上分别截取AD ,AE ,使AD AE =,分别以D ,E 为圆心,以大于12DE 为长的半径作弧,两弧在BAC ∠内交于点F ,作射线AF 交边BC 于点G ,点P 为边AB 上的一动点,则GP 的最小值为______.23.如图,按角的位置关系填空:①A 与①2是_____.24.如图,AB ①CD ,①PCD =75°,①P =30°,则①BAP =___.25.如图,已知点A 在反比例函数4(0)y x x=>的图象上,过点A 作x 轴的平行线交反比例函数10(0)y x x=>的图象于点B ,连结OA ,过点B 作//BC OA 交y 轴于点C ,连结AC ,则AOC 的面积为________.26.如图是一把剪刀的示意图,我们可想象成一个相交线模型,若①AOB +①COD =72°,则①AOB =_______.27.平面内有八条直线,两两相交最多有m 个交点,最少有n 个交点,则m n +=______.28.如图,在平行四边形ABCD 中,AE ①CD ,若∥B =60°,则∥DAE 的度数是______度.29.如图,已知AB //CD ,AF 交CD 于点E ,且BE ①AF ,①BED =40°,则①A 的度数是_____.30.如图,AC //BD ,EP 、FP 分别平分AEF ∠、EFB ∠,若,A m B n ∠=︒∠=︒,则P ∠=________°.(用含m ,n 的代数式表示)31.如图,①ABC 中,AB AC =,AD 为BC 上的高线,E 为AB 边上一点,EF BC ⊥于点F ,交CA 的延长线于点G ,已知23EF EG ==,,则AD 的长为_______.32.如图,直线//a b ,一块含60°角()60B ∠=︒的直角三角板如图放置,若113∠=︒,则2∠=______33.如图,已知m n ∕∕,1105∠=︒,2140∠=︒则a ∠=________.34.如图,已知//DE FG ,则12A ∠+∠-∠=________________35.如图,Rt ABC 中,①ACB =90°,AB =10,BC =6,点D 是斜边上任意一点,将点D 绕点C 逆时针旋转60°得到点E ,则线段DE 长度的最小值是_____.36.如图,当风车的一片叶子AB 所在的直线旋转到与地面MN 平行时,叶子CD 所在的直线与地面MN________,理由是________________________________.37.如图,AB ①CD ,EG 平分AEN ∠,若EFD ∠=108°,则GEN ∠的度数为_________________.38.如图,在ABC 中,90BAC ∠=︒,AB AC =,过点C 作CD BC ⊥,连接,DA DB ,过点A 作AE BD ⊥于点E ,若2EAD ADC ∠=∠,ADC △的面积为6,则BC 的长为____________.39.将一张长方形纸片折叠成如图所示的图形.若29ABC ∠=︒,则ACD ∠=______.40.如图1所示为一条足够长的长方形纸带,其中PN ①QM ,点A 、B 分别在PN 、QM 上,记①ABM =α(0<α<90°);如图2,将纸带第一次沿BR 1折叠成图2,使BM 与BA 重合;如图3,将纸条展开后第二次再折叠,使BM 与BR 1重合,第三次沿AR 2折叠成图4,第四次沿BR 2折叠成图5,按此操作,最后一次折叠后恰好完全盖住①AR 2B ,整个过程共折叠了9次,则α=_______°.三、解答题41.如图,在四边形ABCD 中,//AB CD E ,是边CD 上的一点,连接AE AC BE AC 、、,与BE 相交于点O ,且OA OC =.求证:AE BC =.42.如图,l 1①l 2,①α是①β的2倍,求①α的度数.43.完成下面的证明:如图:已知AD BC ⊥于点D ,DE AB ∥,13∠=∠,求证:FG BC ⊥.证明:①DE AB ∥(已知), ①12∠=∠(______), 又①13∠=∠(已知), ①23∠∠=(等量代换), ①______(______), ①BGF ∠=______(______), ①AD BC ⊥(已知),①90∠=︒(______),BDA①______(等量代换),⊥(垂直定义).①FG BC44.如图,①CME+①ABF=180°,MA平分①CMN.若①MNA=62°,求①A的度数.根据提示将解题过程补充完整.解:因为①ABM+①ABF=180°,又因为①CME+①ABF=180°(已知),所以①ABM=①CME所以AB①CD,理由:()所以①CMN+()=180°,理由:(__________________________)因为①MNA=62°,所以①CMN=()因为MA平分①CMN,①CMN=().(角平分线的定义)所以①AMC=12因为AB①CD,所以①A=①AMC=()理由:(__________________________________)45.已知,①ABC、①DCE均为等边三角形,且B、C、E三点在一条直线上,BD与AE相交于O点.(1)求证:①BCD①①ACE;(2)求①DOE的度数;(3)连接MN,求证:MN①BE;46.观察下列图形,并阅读相关文字.2条直线相交,3条直线相交,4条直线相交,5条直线相交;有2对对顶角,有6对对顶角,有12对对顶角,有20对对顶角;通过阅读分析上面的材料,计算后得出规律,当n条直线相交于一点时,有多少对对顶角出现(n为大于2的整数).47.如图,六边形ABCDEF的内角都相等,①1=①2=60°,AB与DE有怎样的位置关系?AD与BC有怎样的位置关系?为什么?48.如图,直线AB与CD相较于点O,OE①AB与点O,OB平分①DOF,①DOE=62°.求①AOC、①EOF、①COF的度数.49.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.试说明:(1)ABC DEF△△;≅∠=∠.(2)A EGC50.在ABC中,ACB ABC∠>∠,点D和点E分别是边BC和BC延长线上的点,连接AD、AE,CAE B∠=∠.(1)如图1,若60ADE ∠=︒,40CAE ∠=︒,求BAD ∠的大小;(2)如图2,若DAE ADE ∠=∠.①试证明:AD 平分BAC ∠;①若点F 为射线AD 上一点(不与点D 重合),过点F 作FG BC ⊥,垂足为点G .若B α∠=,ACB β∠=,求AFG ∠的大小(用含α、β的代数式表示).参考答案:1.A【分析】根据同位角的定义进行求解即可:两条直线被第三条直线所截,在截线的同旁,被截两条直线的同一侧的两个角在同位角.【详解】解:由图可知,①1的同位角是①2,故选A.【点睛】本题主要考查了同位角的定义,熟知同位角的定义是解题的关键.2.B【分析】根据点到直线的距离及两点间的距离的定义可判断①;根据平行线的性质及三角形的外角的性质可判断①;根据平行线的判定可判断①;根据平行线的判定与性质可判断①.【详解】解:①由于直线外一点到直线的垂线段的长度,叫做这点到这条直线的距离,故正确;①设AB与DE相交于点O.①AB①CD,①①AOE=①D.又①①AOE>①B,①①D>①B,故错误;①①①ACD=①CAB,①AB①CD,∴∠=∠,故错误;BAC ACD①①①1=①2,①AD①BC,①①D+①BCD=180°,又①①D=120°,①①BCD=60°,故正确.故选:B.【点睛】本题主要考查了点到直线的距离的定义,平行线的判定与性质,三角形的外角的性质,正确理解相关概念和性质是解本题的关键.3.A【分析】可通过作辅助线,即延长FM 到N ,使MN MF =,连接BN ,延长MF 交BA 延长线于E ,从而利用角之间的关系转化为线段之间的关系,进而最终可得出结论.【详解】解:如图,延长FM 到N ,使MN MF =,连接BN ,延长MF 交BA 延长线于E ,M 是BC 中点,BM CM ∴=,在BMN 和CMF 中,BM CM BMN CMF MN MF =⎧⎪∠=∠⎨⎪=⎩,(SAS)BMN CMF ∴△≌△,BN CF ∴=,N MFC ∠=∠,又BAD CAD ∠=∠,MF AD ∥,E BAD CAD CFM AFE N ∴∠=∠=∠=∠=∠=∠,AE AF ∴=,BN BE =,2AB AC AB AF FC AB AE FC BE FC BN FC FC ∴+=++=++=+=+=,8AB =,CF 10=,220812AC FC AB ∴=-=-=.故选:A .【点睛】本题主要考查了全等三角形的判定及性质以及角、线段之间的转化问题,解决本题的关键是熟练掌握全等三角形的判定.4.B【分析】根据两直线平行的条件:同旁内角互补、同位角相等、内错角相等,即可判断.【详解】解:A:如果① 1+① 5=180°,不能判定AB∥CD,故错误,不符合题意;B:如果① 1=① 5,那么AB∥CD,故正确,符合题意;C:如果① 3+① 4=180°,不能判定AB∥CD,故错误,不符合题意;D:如果① 2=① 4,不能判定AB∥CD,故错误,不符合题意;故选:B.【点睛】本题考查根据两直线平行的条件:同旁内角互补、同位角相等、内错角相等,熟记两直线平行的条件是解题关键.5.C【分析】根据平行线的判定得出l1//l2,根据平行线的性质解答即可.【详解】解:①①1=①2=①3=56°,①①1=①5,①①5=①2,①l1//l2,①①6=①3,①①4=180°-①6=180°-56°=124°,故选C.【点睛】此题考查平行线的判定和性质,关键是根据平行线的判定得出l1//l2解答.6.B【分析】根据点到直线的距离的定义以及垂线段最短,可得答案.【详解】解:A、线段PB的长度叫做点P到直线l的距离,故A选项正确;B、线段PC的长度叫做点C到直线AP的距离,故B选项错误;C、P A、PB、PC三条线段中,PB最短,故C选项正确;D、线段P A的长叫做点A到直线PC的距离,故D选项正确;故选:B.【点睛】本题考查了点到直线的距离以及垂线段最短,利用点到直线的距离是解题关键.7.C【分析】根据平行线的性质与判定,余角的性质,等逐项分析并选择正确的选项即可.【详解】解:如图将ED 与AB 的交点即为F ,①2∠与E ∠互余,①90AFE ∠=︒,①445∠=︒,且30D ∠=︒,①4D ∠∠≠,从而BC 与DA 不平行,故①错误;①1290∠∠+=︒,2390∠∠+=︒,12229090180BAE CAD ∠∠∠∠∠∠+=+++=︒+︒=︒,故①正确;①①BC AD ,①123180C ∠∠∠∠+++=︒,又①45C ∠=︒,1290∠∠+=︒,①345∠=︒,①2904545∠=︒-︒=︒,故①正确;①160∠=︒,①60E ∠=︒,①1E ∠∠=,①AC DE ,①4C ∠∠=,故①正确;故选:C .【点睛】本题考查三角板中的角度计算,平行线的性质与判定,能够掌握数形结合思想是解决本题的关键.8.D【分析】根据垂线的性质,角平分线的定义及对顶角、邻补角的性质,逐一判断.【详解】A 、①AB 、CD 相交于O 点,①13∠=∠正确,符合题意;B 、①OE ①AB 于点O ,OF 平分①AOE ,①245∠=︒正确,符合题意;C 、①OD 过直线AB 上一点O ,①AOD ∠与1∠互为补角,正确,符合题意;D 、3∠的余角等于9025306430''︒-︒=︒,原说法错误,不合题意,故选:D .【点睛】本题考查对顶角的性质以及邻补角的定义,角平分线的定义,垂线的性质.是需要熟记的内容.9.D【分析】同位角:两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.内错角:两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角.同旁内角:两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.【详解】A.1∠和2∠是对顶角,正确;B.2∠和3∠是内错角,正确;C.2∠和4∠是同位角,正确;D.1∠和4∠不是同旁内角,本选项错误.【点睛】理解同位角,内错角和同旁内角的定义是关键.10.C【分析】如图所示(见详解),连接OB ,得Rt OBC △,且OB OD r ==,12OC OD =,OD AB ∥,由此即可求出30OBC BOD ∠=∠=︒,再根据等腰三角形的性质即可求解.【详解】解:如图所示,连接OB ,①OB OD r ==,①OC AB ⊥,垂足为C ,OD AB ∥,12OC OD =, ①在Rt OBC △中,12OC OB =, ①30OBC BOD ∠=∠=︒,①OB OD r ==,①BOD 是等腰三角形, ①1(18030)752OBD ODB ∠=∠=⨯︒-︒=︒, 故选:C .【点睛】本题主要考查圆与含30︒角的直角三角形,等腰三角形性质的综合运用,掌握圆的知识,含30︒角的直角三角形的性质,等腰三角形性质是解题的关键.11.B【分析】根据AB ①CD ,可得①C =①ABC =30°,再由等腰三角形的性质,即可求解.【详解】解:①AB ①CD ,①①C =①ABC =30°,又①CD =CE ,①①D =①CED ,①①C +①D +①CED =180°,即30°+2①D =180°,①①D =75°.故选:B【点睛】本题主要考查了平行线的性质,等腰三角形的性质,熟练掌握等腰三角形中,等边对等角是解题的关键.12.C【分析】根据平行线的性质,可得:①3=①1=28°,结合①4=90°,即可求解.【详解】①三角板的直角顶点放在直线b 上,a b ,①①3=①1=28°,①①4=90°,①①5=180°-90°-28°=62°,①①2=①5=62°.故选C .【点睛】本题主要考查平行线的性质定理,掌握两直线平行,同位角相等,是解题的关键.13.A【分析】根据①ACD=①A,得出AB与CD平行,进而利用平行线的性质解答即可.【详解】解:①①ACD=①A,①AB①CD,①①B+①BCD=180°,①①BCD=180°-50°=130°,故选:A.【点睛】本题考查了平行线的判定和性质,关键是根据①ACD=①A,得出AB与CD平行解答.14.D【分析】两直线平行,同位角相等;对顶角相等.此题根据这两条性质即可解答.【详解】①直线l1∥l2,,①1=120°,①①1的同位角是120°,①①2=①1的同位角=120°.故选D.【点睛】本题用到的知识点为:两直线平行,同位角相等;对顶角相等.比较简单.15.C【分析】由已知,在同一平面内,三条直线两两相交,最多有3个交点;4条直线两两相交,最多有6个交点;由此得出:在同一平面内,n条直线两两相交,则有(1)2n n-个交点,代入即可求解.【详解】解:由已知总结出在同一平面内,n条直线两两相交,则有(1)2n n-个交点,所以5条直线两两相交,交点的个数为7(71)2⨯-=21. 故选:C . 【点睛】本题考查的知识点是相交线,关键是此题在相交线的基础上,着重培养学生的观察、实验和猜想、归纳的能力,以及掌握从特殊到一般的思想方法.16.D【详解】试题分析:根据同位角的定义可以得出图中有12对同位角.考点:同位角的定义17.C【分析】根据题意,分两种情况:当点P 在点A 左侧时,当点P 在点A 右侧时.作点P 关于l 的对称点Q ,连接AQ .由轴对称,得3QA PA ==,290PAQ α∠==︒,分别计算即可求得答案.【详解】解:当点P 在点A 左侧时,如图,作点P 关于l 的对称点Q ,连接AQ .由轴对称的性质,得:3QA PA ==,290PAQ α∠==︒,①点Q 到n 的距离为532-=;当点P 在点A 右侧时,如图,作点P 关于l 的对称点Q ,连接AQ .由轴对称的性质,得:3QA PA ==,290PAQ α∠==︒,点Q 到n 的距离为538+=.故选:C . 【点睛】本题主要考查了点到直线的距离、轴对称的性质,解题的关键是利用分类讨论和数形结合思想解题.18.A【分析】根据对顶角的性质以及互余的定义即可求出答案.【详解】由题意可知:①1=①2,①①2+①3=90°,①①2=45°,①①1=45°,故选:A.【点睛】此题考查对顶角与互余,解题的关键是正确理解对顶角的性质以及互余的定义,本题属于基础题型.19.B【分析】首先过点B作BE①AD,由AD①CF,可得BE①AD①CF,然后根据平行线的性质即可求得①C的度数.【详解】解:过点B作BE①AD,①AD①CF,①BE①AD①CF,①①ABE=①A=110°,①EBC+①C=180°,①①ABC=160°,①ABE+①EBC=①ABC,①①EBC=50°,①①C=130°.故选:B.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质,正确作出辅助线是解题的关键.20.D【分析】分别任选其中两个条件作为已知,然后结合平行线的判定与性质,证明剩余一个条件是否成立即可.【详解】解:如图所示:(1)当①①1=①2,则①3=①2,故DB∥EC,则①D=①4;当①①C=①D,故①4=①C,则DF∥AC,可得:①A=①F,即①①可证得①;(2)当①①1=①2,则①3=①2,故DB①EC,则①D=①4,当①①A=①F,故DF∥AC,则①4=①C,故可得:①C=①D,即①①可证得①;(3)当①①A=①F,故DF∥AC,则①4=①C,当①①C=①D,则①4=①D,故DB∥EC,则①2=①3,可得:①1=①2,即①①可证得①.故正确的有3个.故选:D.【点睛】本题主要考查了平行线的判定和性质,正确掌握并熟练运用平行线的判定与性质是解题关键.21.△ABC和△DBC(答案不唯一)【分析】利用同底等高的两个三角形面积相等即可求解.【详解】解:①AD①BC,①AD与BC之间的距离相等,①△ABC和△DBC面积相等.故答案为:△ABC和△DBC.(答案不唯一)【点睛】本题考查了三角形的面积,平行线间的距离,掌握平行线之间的距离处处相等是解题的关键.22.12 5【分析】根据勾股定理求得AC的长,设G到AB的距离为h,则GP h,根据题意可知AG 是CAB ∠的角平分线,根据角平分线的性质得出h 即为GP 的最小值,根据等面积法计算即可求解.【详解】解:①Rt ABC △中,90C ∠=︒,13AB =,5BC =,①12AC ==,设G 到AB 的距离为h ,则GP h ≥根据题意可知AG 是CAB ∠的角平分线,①CG h =, ①111222ABC S AC BC CG AC AB h =⨯=⨯+⨯ ()12h AC AB =+ ①51260121213255AC BC h AC AB ⨯⨯====++, ①GP 的最小值为125, 故答案为:125. 【点睛】本题考查了勾股定理,角平分线的性质,作角平分线,垂线段最短,掌握角平分线的性质是解题的关键.23.同旁内角【详解】解:根据图形,①A 与①2是同旁内角.故答案为同旁内角.24.45°【分析】根据平行线的性质得①1=PCD =75°,根据三角形外角的性质得①1=①P +①BAP ,即可得①BAP 的度数.【详解】解:①AB ①CD ,①①1=PCD =75°,①①1=①P +①BAP ,①①BAP =①1-①P =75°-30°=45°.故答案为:45°.【点睛】此题主要考查了平行线的性质的应用,要熟练掌握,解答此题的关键是熟练掌握平行线的性质,利用三角形外角的性质求解.25.3【分析】设A (4m ,m ),B (10m ,m ),则AB =10m −4m =6m ,连接OB ,由平行线间的距离处处相等,得①AOC 的面积和①AOB 的面积相等,再由三角形的面积公式求得①AOB 的面积便可.【详解】解:设A (4m ,m ),B (10m ,m ),则AB =10m −4m =6m , 连接OB ,①BC①OA ,①S △AOC =S △AOB =12AB•m =12×6m•m =3, 故答案为:3.【点睛】本题主要考查了反比例函数的图象和性质,三角形的面积计算,平行线间的距离处处相等,解答本题的关键是正确作辅助线,转化三角形的面积计算.26.36°##36度【分析】根据对顶角相等即可求解.【详解】由题意得,,AOB COD ∠∠为对顶角,,72AOB COD AOB COD ∠=∠∠+∠=︒,36AOB COD ∴∠=∠=︒,故答案为:36︒.【点睛】本题考查了对顶角的定义及性质,即两个角有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,且对顶角相等,熟练掌握知识点是解题的关键.27.29【分析】由题意可得八条直线相交于一点时交点最少,任意两直线相交都产生一个交点时交点最多,由此可得出m ,n 的值,从而得出答案..【详解】解:根据题意可得:10条直线相交于一点时交点最少,此时交点为1个,即n=1;任意两直线相交都产生一个交点时,交点最多,①此时交点为:8×(8-1)÷2=28,即m=28;则m+n=28+1=29.故答案为29.【点睛】本题考查直线的交点问题,掌握直线相交于一点时交点最少,任意n 条直线两两相交时交点最多为12n (n-1)个是关键. 28.30【分析】利用平行四边形对角相等求出①D =①B =60°,由垂直的定义得到①AED =90°,再利用三角形内角和定理求得①DAE 的度数即可.【详解】解:①四边形ABCD 是平行四边形,①①D =①B =60°,① AE ①CD ,①①AED =90°,①①DAE =180°-①D -①AED =30°.故答案为:30【点睛】此题主要主要考查了平行四边形的性质、三角形内角和定理、垂直的定义等知识,熟练掌握平行四边形的性质是解题的关键.29.50︒##50度【分析】由两直线平行内错角相等解得40B ∠=︒,再根据三角形内角和180°解题.【详解】解:AB //CD ,BED B ∴∠=∠40BED ∠=︒40B ∴∠=︒BE AF ⊥90AEB ∴∠=︒904050A ∴∠=︒-︒=︒故答案为:50︒.【点睛】本题考查平行线的性质、三角形内角和定理等知识,是重要考点,掌握相关知识是解题关键.30.1()902m n +-【分析】分别作EM 、FN 、PQ 平行于AC ,根据两直线平行同旁内角互补和两直线平行内错角相等可得(180)FEP PEM m ∠=∠+︒-︒,(180)EFP PFN n ∠=∠+︒-︒,再根据两直线平行同旁内角互补列等式180MEF NFE ∠+∠=︒,利用PEM PFN QPE QPF P ∠+∠=∠+∠=∠即可求出①P .【详解】分别作EM 、FN 、PQ 平行于AC ,如图,①AC EM PQ ∥∥,A m ∠=︒,①180AEM m ∠=︒-︒,①EP 分别平分AEF ∠,①FEP PEA ∠=∠,①(180)FEP PEM m ∠=∠+︒-︒,同理,①BD FN PQ ∥∥,B n ∠=︒, FP 分别平分EFB ∠,①(180)EFP PFN n ∠=∠+︒-︒,①180MEF NFE ∠+∠=︒,①180FEP PEM EFP PFN ∠+∠+∠+∠=︒,①(180)(180)180PEM m PEM PFN n PFN ∠+︒-︒+∠+∠+︒-︒+∠=︒,即:2()180PEM PFN m n ∠+∠=︒+︒-︒,①QPE PEM ∠=∠,QPF PFN ∠=∠,P QPM QPF ∠=∠+∠,①2180P m n ∠=︒+︒-︒, ①()11(180)()9022P m n m n ∠=+-=+-︒ 故答案为:1()902m n +-.【点睛】本题考查了平行线的性质,熟练运用平行线的性质进行角度的代换是解题的关键.31.3.5【分析】先根据等腰三角形的性质得出BAD CAD ∠=∠,再证明AD EF ,根据平行线的性质得出AEG BAD G CAD ∠=∠∠=∠,,等量代换得出AEG G ∠=∠,那么AG AE =.作AH EG ⊥于H ,根据等腰三角形的性质得出 1322EH HG EG ===, 然后证明四边形ADFH 是矩形,即可求出72AD FH EF EH ==+=. 【详解】解:AB AC =,AD 为BC 边上的高线, BAD CAD ∴∠=∠,AD BC EF BC ⊥⊥,,AD EF ∴∥,AEG BAD G CAD ∴∠=∠∠=∠,,AEG G ∴∠=∠,AG AE ∴=,如图,作AH EG ⊥于H ,则 1 1.52EH HG EG ===,90AHF HFD ADF ∠=∠=∠=︒,①四边形ADFH 是矩形,2 1.5 3.5AD FH EF EH ∴==+=+=.故答案为: 3.5【点睛】此题考查了矩形的判定与性质,熟记矩形的判定与性质是解题的关键. 32.47︒【分析】由平行线的性质,已知113∠=︒求得13ABD ∠=︒,再根据角的和差,平行公理推论,平行线的性质解得2∠度数,进而得出答案.【详解】解:过点B 作//BD a ,如图所示://,////,a b BD a b ∴3ABD ∴∠=∠,又113∠=︒,313ABD ∴∠=∠=︒,ABC ABD DBC ∠=∠+∠,60ABC ∠=︒,601347DBC ∴∠=︒-︒=︒,//BD a ,247DBC ∴∠=∠=︒.故答案为:47︒.【点睛】本题考查了平行线的性质,平行公理的推论,角的和差,对顶角的性质,等量代换等相关知识点,解题的关键是掌握平行线的性质,同时需要作已知直线的平行线. 33.65°【分析】根据两直线平行,同旁内角互补求出①3,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】①m①n,①1=105°,①①3=180°−①1=180°−105°=75°①①α=①2−①3=140°−75°=65°故答案为65°.【点睛】此题考查平行线的性质,解题关键在于利用同旁内角互补求出①3.34.180【分析】根据平行线的性质,得到2AHF ∠=∠,根据平角的性质得到180AHF AHC ∠+∠=︒,1180ACH ∠+∠=︒,然后根据三角形内角和定理即可求解.【详解】①//DE FG①2AHF ∠=∠①180AHF AHC ∠+∠=︒,1180ACH ∠+∠=︒又①180AHC ACH A ∠+∠+∠=︒①180********A ︒-∠+︒-∠+∠=︒①12180A ∠+∠-∠=︒故答案为180.【点睛】本题考查了平行线的性质—两直线平行同位角相等,三角形的内角和,解题过程中注意等量代换是本题的关键.35.245【分析】由旋转的性质可证①CDE 为等边三角形,当DE 最短时CD 最短,即:当CD ①AB 时CD 最短,最后运用直角三角形等面积法求解即可.【详解】解:由旋转的性质得,CD =CE ,①DCE =60°,①①CDE 为等边三角形,①CD =CE =DE ,当DE 最短时CD 最短,即:当CD ①AB 时CD 最短,此时S △ABC =1122AC BC ⋅=AB •CD ,即AC •BC =AB •CD , 在Rt ①ABC 中,①ACB =90°,AB =10,BC =6,由勾股定理得,AC 8,①6×8=10CD ,①CD =245, ①线段DE 长度的最小值是245. 故填245. 【点睛】本题主要考查了旋转的性质、勾股定理、垂线段最短以及等面积法,把求DE 的最小值转化为求CD 的最小值是解答本题的关键.36. 相交 经过直线外一点,有且只有一条直线与这条直线平行【分析】根据AB①MN 来判定CD 与MN 的关系.【详解】叶子CD 所在直线与地面MN 相交.理由如下:AB 与CD 相交于点O ,即AB 经过点O ,CD 也经过点O ,AB 与CD 有夹角,在同一平面内,过直线外一点,有且只有一条直线与已知直线平行,故AB 旋转到与地面MN 平行的位置时,叶子CD 所在直线与地面MN 相交.故答案为:相交;经过直线外一点,有且只有一条直线与这条直线平行【点睛】本题考查了平行与相交线.注意与“在同一平面内,垂直于同一条直线的两条直线互相平行”的区别.37.36°【分析】由平行线的性质,得AEN CFE ∠=∠,再由角平分线的定义,即可求出答案.【详解】解:①EFD ∠=108°,①18010872CFE ∠=︒-︒=︒,①AB ①CD ,①72AEN CFE ∠=∠=︒,①EG 平分AEN ∠, ①172362GEN ∠=⨯︒=︒; 故答案为:36°.【点睛】本题考查了平行线的性质,角平分线的定义,以及邻补角的定义,解题的关键是熟练掌握所学的性质定理进行解题.38.【分析】过点A 作AH①DC 交DC 的延长线于点H ,作AF①BC 于点F ,通过等腰直角三角形的性质和2EAD ADC ∠=∠关系得出ABE BAD ∠=∠,从而有AD BD = ,然后证明四边形AFCH 是正方形,则有12CH AH CF BC ===,进而通过勾股定理得出12CD BC =,然后利用ADC △的面积为6即可求出BC 的长度.【详解】过点A 作AH①DC 交DC 的延长线于点H ,作AF①BC 于点F①90BAC ∠=︒,AB AC =,AF①BC1,452AF CF BC BAF CAF ∴==∠=∠=︒ ①AF①BC ,CD BC ⊥90AFC FCD ∴∠=∠=︒//AF CD ∴FAD ADC ∴∠=∠①2EAD ADC ∠=∠EAF FAD DAC ∴∠=∠=∠BAE CAD ∴∠=∠90,90BAE ABE CAD BAD ∠+∠=︒∠+∠=︒ABE BAD ∴∠=∠AD BD ∴=①AF①BC ,CD BC ⊥,AH①DC ,AF CF =①四边形AFCH 是正方形12CH AH CF BC ∴=== 22222222,,AD HD AH BD BC CD AD BD =+=+=222211()()22CD BC BC CD BC ∴++=+ 12CD BC ∴= 111162222S ADC CD AH BC BC ∴==⨯⨯=BC ∴=故答案为:【点睛】本题主要考查等腰直角三角形的性质,正方形的性质,勾股定理和平行线的性质,掌握等腰直角三角形的性质,正方形的性质,勾股定理和平行线的性质是解题的关键,难点在于如何找到BC 与CD 之间的关系.39.122︒##122度【分析】如图,先根据长方形纸片对边平行,利用平行线的性质求得29MCB ABC ∠=∠=︒,再根据折叠的性质得出29MCB ACB ∠=∠=︒,即可由平角定义求解.【详解】解:如图,点M 在DC 的延长线上,①AB ∥DM ,29ABC ∠=︒,29MCB ABC ∴∠=∠=︒,根据折叠的性质得到,29MCB ACB ∠=∠=︒,180ACD ACB MCB ∠+∠+∠=︒,1802929122ACD ∴∠=︒-︒-︒=︒,故答案为:122︒.【点睛】本题考查平行线的性质,折叠的性质,熟练掌握平行线的性质和折叠的性质是解题的关键.40.80°##80度【分析】根据题意,可知第9次折叠时,2R N 刚好与21R R 重合,根据折叠的性质,则有平角2AR N ∠被平分成了9个角,则220AR B ∠=,再根据折叠的性质,即可求解.【详解】根据题意,可知第9次折叠时,2R N 刚好与21R R 重合,作图如下:根据折叠的性质,则有平角2AR N ∠被平分成了(9-1+1)个角, ①2180209AR B ∠==, ①PN QM ∥,①2220R BM AR B ∠=∠=,①根据折叠的性质有212R BR R BM ∠=∠,11ABR R BM ∠=∠,①21220R BR R BM ∠=∠=,①1121240ABR R BM R BR R BM ∠=∠=∠+∠=,①1180ABM ABR R BM α=∠=∠+∠=,故答案为:80°.【点睛】本题主要考查了折叠的性质,理解最后一次折叠后恰好完全盖住2AR B ∠即是指2R N 刚好与21R R 重合,是解答本题的关键.41.证明见解析【分析】通过证明()≌∆∆OCE OAB ASA 得出AB EC =,根据一组对边平行且相等的四边形是平行四边形得出四边形ABCE 是平行四边形,进而得证.【详解】证明://AB CD ,OCE OAB ∴∠=∠,在OCE ∆和OAB ∆中,EOC BOA OC OA OCE OAB ∠=∠⎧⎪=⎨⎪∠=∠⎩,()≌∴∆∆OCE OAB ASA ,AB EC ∴=,又//AB EC ,∴四边形ABCE 是平行四边形,AE BC ∴=.【点睛】本题考查平行线的性质,全等三角形的判定与性质,平行四边形的判定与性质,熟练掌握全等三角形与平行四边形的判定与性质是解题的关键.42.①α=120°.【分析】根据平行线的性质得到①1+①α=180°,即①α+①β=180°,根据①α=2①β,求解得到①β的度数,进而得到①α的度数.【详解】解:如图①l 1①l 2,①①1+①α=180°(两直线平行,同旁内角互补),①①1=①β(对顶角相等),①①α+①β=180°(等量代换),①①α=2①β,①2①β+①β=180°,①①β=60°,①①α=2①β=120°.【点睛】本题主要考查平行线的性质,对顶角相等,两角互补等知识点,解此题的关键在于熟练掌握其知识点.43.两直线平行,内错角相等;FG AD ∥;同位角相等,两直线平行;BDA ∠;两直线平行,同位角相等;垂直的定义;90BGF ∠=︒.【分析】由平行线的性质得到①1=①2,等量代换得到①2=①3,即可判定 FG ①AD ,根据平行线的性质得到①BGF=①BDA,再根据垂直的定义即可得解.【详解】证明:①DE①AB(已知),①①1=①2(两直线平行,内错角相等),又①①1=①3(已知),①①2=①3(等量代换),①FG①AD(同位角相等,两直线平行),①①BGF=①BDA(两直线平行,同位角相等),①AD①BC(已知),①①BDA=90°(垂直的定义),①①BGF=90°(等量代换),①FG①BC(垂直定义).【点睛】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.44.同位角相等,两直线平行;①MNA;两直线平行,同旁内角互补;118°;59°;59°;两直线平行,内错角相等【分析】根据同角的补角相等可得出①ABM=①CME,利用“同位角相等,两直线平行”可得出AB①CD,由“两直线平行,同旁内角互补”及①MNA =62°可求出①CMN =118°,结合角平分线的定义可求出①AMC的度数,再利用“两直线平行,内错角相等”即可求出①A的度数.【详解】解:因为①ABM+①ABF=180°,又因为①CME+①ABF=180°(已知),所以①ABM=①CME所以AB①CD,(同位角相等,两直线平行)所以①CMN+①MNA=180°,(两直线平行,同旁内角互补)因为①MNA=62°,所以①CMN=118°,因为MA平分①CMN,①CMN =59°.(角平分线的定义)所以①AMC=12因为AB①CD,。

第五章相交线与平行线单元试卷中考真题汇编[解析版]

第五章相交线与平行线单元试卷中考真题汇编[解析版]

第五章相交线与平行线单元试卷中考真题汇编[解析版]一、选择题1.如图,A 、P 是直线m 上的任意两个点,B 、C 是直线n 上的两个定点,且直线m ∥n .则下列说法正确的是( )A .AC=BPB .△ABC 的周长等于△BCP 的周长 C .△ABC 的面积等于△ABP 的面积D .△ABC 的面积等于△PBC 的面积2.给出下列4个命题:①同旁内角互补;②相等的角是对顶角;③等角的补角相等;④两直线平行,同位角相等.其中,假命题的个数为( ) A .1B .2C .3D .43.下列结论中:①同一平面内,两条不相交的直线被第三条直线所截,形成的同旁内角互补;②在同一平面内,若,//a b b c ⊥,则a c ⊥; ③直线外一点到直线的垂线段叫点到直线的距离;④同一平面内,过一点有且只有一条直线与已知直线平行,正确的个数有( ) A .1个B .2个C .3个D .4个4.如图,直线12//,,140l l αβ∠=∠∠=︒,则2∠等于( )A .140︒B .130︒C .120︒D .110︒5.如图,五边形ABCDE 中,AE ∥BC ,则∠C +∠D +∠E 的度数为( )A .180°B .270°C .360°D .450°6.定义:平面内的直线l 1与l 2相交于点O ,对于该平面内任意一点M ,点M 到直线l 1、l 2的距离分别为a 、b ,则称有序非负实数对(a ,b )是点M 的“距离坐标”,根据上述定义,距离坐标为(2,1)的点的个数有( ) A .2个B .3个C .4个D .5个7.如下图,在下列条件中,能判定AB//CD 的是( )A .∠1=∠3B .∠2=∠3C .∠1=∠4D .∠3=∠48.下列所示的四个图形中,∠1和∠2是同位角的是( )A .②③B .①②③C .①②④D .①④9.如图,直线12l l ,130∠=︒,则23∠+∠=( )A .150°B .180°C .210°D .240°10.把一张有一组对边平行的纸条,按如图所示的方式析叠,若∠EFB =35°,则下列结论错误的是( )A .∠C 'EF =35°B .∠AEC =120° C .∠BGE =70°D .∠BFD =110°11.下列定理中有逆定理的是( )A .直角都相等B .全等三角形对应角相等C .对顶角相等D .内错角相等,两直线平行12.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直. ②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行. ④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离. ⑤过一点,有且只有一条直线与已知直线平行. A .2个B .3个C .4个D .5个二、填空题13.一副三角尺按如图所示叠放在一起,其中点,B D 重合,若固定三角形AOB ,将三角形ACD 绕点A 顺时针旋转一周,共有 _________次 出现三角形ACD 的一边与三角形AOB 的某一边平行.14.如图,在△ABC 中,6BC cm =,将△ABC 以每秒2cm 的速度沿BC 所在直线向右平移,所得图形对应为△DEF ,设平移时间为t 秒,若要使2AD CE =成立,则t 的值为_____秒.15.如图,AB ∥CD,BF 平分∠ABE,DF 平分∠CDE,∠BFD=35°,那么∠BED 的度数为_______.16.如图,两直线AB 、CD 平行,则12345∠+∠+∠+∠+∠=__________.17.两个角的两边分别平行,一个角是50°,那么另一个角是__________. 18.如图,点О为直线AB 上一点,,,135OC OD OE AB ⊥⊥∠=︒.(1)EOD ∠= °,2∠= °;(2)1∠的余角是_ ,EOD ∠的补角是__ .19.如图,AB ∥CD ,∠1=64°,FG 平分∠EFD ,则∠EGF=__________________°.20.如图,AB∥CD,∠β=130°,则∠α=_______°.三、解答题21.问题情境(1)如图1,已知AB∥CD,∠PBA=125°,∠PCD=155°,求∠BPC的度数.佩佩同学的思路:过点P作PG∥AB,进而PG∥CD,由平行线的性质来求∠BPC,求得∠BPC=问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,∠ACB=90°,DF∥CG,AB与FD相交于点E,有一动点P在边BC上运动,连接PE,PA,记∠PED=∠α,∠PAC=∠β.①如图2,当点P在C,D两点之间运动时,请直接写出∠APE与∠α,∠β之间的数量关系;②如图3,当点P在B,D两点之间运动时,∠APE与∠α,∠β之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P在C,D两点之间运动时,若∠PED,∠PAC的角平分线EN,AN相交于点N,请直接写出∠ANE与∠α,∠β之间的数量关系.22.已知AB∥CD(1)如图1,求证:∠ABE+∠DCE-∠BEC=180°(2)如图2,∠DCE的平分线CG的反向延长线交∠ABE的平分线BF于F①若BF∥CE,∠BEC=26°,求∠BFC②若∠BFC-∠BEC=74°,则∠BEC=________°23.在综合与实践课上,老师让同学们以“三条平行线m,n,l(即始终满足m∥n∥l)和一副直角三角尺ABC,DEF(∠BAC=∠EDF=90°,∠FED=60°,∠DFE=30°,∠ABC=∠ACB=45°)”为主题开展数学活动.操作发现(1)如图1,展翅组把三角尺ABC的边BC放在l上,三角尺DEF的顶点F与顶点B重合,边EF经过AB,顶点E恰好落在m上,顶点D恰好落在n上,边ED与n相交所成的一个角记为∠1,求∠1的度数;(2)如图2,受到展翅组的启发,高远组把直线m向下平移后使得两个三角尺的两个直角顶点A、D分别落在m和l上,顶点C恰好落在n上,边AC与l相交所成的一个角记为∠2,边DF与m相交所成的一个角记为∠3,请你说明∠2﹣∠3=15°;结论应用(3)老师在点评高远组的探究操作时提出,在(2)的条件下,若点N是直线n上一点,CN恰好平分∠ACB时,∠2与∠3之间存在一个特殊的倍数关系,请你直接写出它们之间的倍数关系,不需要说明理由.24.已知:直线l分别交AB、CD与E、F两点,且AB∥CD.(1)说明:∠1=∠2;(2)如图2,点M、N在AB、CD之间,且在直线l左侧,若∠EMN+∠FNM=260°,①求:∠AEM+∠CFN的度数;②如图3,若EP平分∠AEM,FP平分∠CFN,求∠P的度数;(3)如图4,∠2=80°,点G在射线EB上,点H在AB上方的直线l上,点Q是平面内一点,连接QG 、QH ,若∠AGQ =18°,∠FHQ =24°,直接写出∠GQH 的度数.25.如图,已知//,60AM BN A ︒∠=,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点.C D 、()1CBD ∠=()2若点P 运动到某处时,恰有ACB ABD =∠∠,此时AB 与BD 有何位置关系?请说明理由.()3在点P 运动的过程中,APB ∠与ADB ∠之间的关系是否发生变化?若不变,请写出它们的关系并说明理由;若变化,请写出变化规律.26.如图1所示,AB ∥CD ,E 为直线CD 下方一点,BF 平分∠ABE .(1)求证:∠ABE +∠C ﹣∠E =180°.(2)如图2,EG 平分∠BEC ,过点B 作BH ∥GE ,求∠FBH 与∠C 之间的数量关系. (3)如图3,CN 平分∠ECD ,若BF 的反向延长线和CN 的反向延长线交于点M ,且∠E +∠M =130°,请直接写出∠E 的度数.27.点C ,B 分别在直线MN ,PQ 上,点A 在直线MN ,PQ 之间,//MN PQ . (1)如图1,求证:A MCA PBA ∠=∠+∠;(2)如图2,过点C 作//CD AB ,点E 在PQ 上,ECM ACD ∠=∠,求证:A ECN ∠=∠;(3)在(2)的条件下,如图3,过点B 作PQ 的垂线交CE 于点F ,ABF ∠的平分线交AC 于点G ,若DCE ACE ∠=∠,32CFB CGB ∠=∠,求A ∠的度数.28.阅读材料(1),并利用(1)的结论解决问题(2)和问题(3).(1)如图1,AB ∥CD ,E 为形内一点,连结BE 、DE 得到∠BED ,求证:∠E =∠B +∠D 悦悦是这样做的:过点E 作EF ∥AB .则有∠BEF =∠B . ∵AB ∥CD ,∴EF ∥CD . ∴∠FED =∠D .∴∠BEF +∠FED =∠B +∠D . 即∠BED =∠B +∠D .(2)如图2,画出∠BEF 和∠EFD 的平分线,两线交于点G ,猜想∠G 的度数,并证明你的猜想.(3)如图3,EG 1和EG 2为∠BEF 内满足∠1=∠2的两条线,分别与∠EFD 的平分线交于点G 1和G 2,求证:∠FG 1E +∠G 2=180°.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据平行线之间的距离及三角形的面积即可得出答案.【详解】解:∵A、P是直线m上的任意两个点,B、C是直线n上的两个定点,且直线m∥n,根据平行线之间的距离相等可得:△ABC与△PBC是同底等高的三角形,故△ABC的面积等于△PBC的面积.故选D.【点睛】本题考查平行线之间的距离;三角形的面积.2.B解析:B【分析】根据平行线的判定方法对①进行判断;据对顶角的定义对②进行判断;根据平行线的性质对④进行判断;根据补角的定义对③进行判断.【详解】两直线平行,同旁内角互补,所以①错误;相等的角不一定是对顶角,所以②错误;等角的补角相等,所以③正确;两条平行直线被第三条直线所截,同位角相等,所以④正确;;故选B.【点睛】本题主要考查了平行线的性质及判定,对顶角的性质等,熟练掌握各性质定理是解答此题的关键.解析:B 【分析】根据平行线的性质,点到直线的距离依次判断. 【详解】解:①同一平面内,两条不相交的直线(即两直线平行)被第三条直线所截,形成的同旁内角互补,说法正确;②在同一平面内,若,//a b b c ⊥,则a c ⊥,说法正确; ③直线外一点到直线的垂线段叫点到直线的距离,说法错误; ④同一平面内,过一点有且只有一条直线与已知直线平行,说法错误; 正确的说法有2个, 故选:B . 【点睛】此题考查平行线的性质,点到直线的距离,正确理解定义是解题的关键.4.A解析:A 【分析】作出如下图所示的辅助线,然后再利用平行线的性质即可求解. 【详解】解:如图所示,作直线m ∥n ∥l 1∥l 2,此时有∠3=∠1=40°,∠6=180°-∠2,∠4=∠5, 又∠α=∠3+∠4,∠β=∠5+∠6=∠5+(180°-∠2), 且∠α=∠β,∴∠3+∠4=∠5+(180°-∠2),由于∠4=∠5, ∴∠3=180°-∠2,代入数据: 40°=180°-∠2, ∴∠2=140°, 故选:A . 【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题的关键.5.C【分析】首先过点D作DF∥AE,交AB于点F,由AE∥BC,可证得AE∥DF∥BC,然后由两直线平行,同旁内角互补,证得∠A+∠B=180°,∠E+∠EDF=180°,∠CDF+∠C=180°,继而证得结论.【详解】过点D作DF∥AE,交AB于点F,∵AE∥BC,∴AE∥DF∥BC,∴∠A+∠B=180°,∠E+∠EDF=180°,∠CDF+∠C=180°,∴∠C+∠CDE+∠E=360°,故选C.【点睛】本题考查了平行线的性质,解题时掌握辅助线的作法,注意数形结合思想的应用.6.C解析:C【分析】首先根据题意,可得距离坐标为(2,1)的点是到l1的距离为2,到l2的距离为1的点;然后根据到l1的距离为2的点是两条平行直线,到l2的距离为1的点也是两条平行直线,可得所求的点是以上两组直线的交点,一共有4个,据此解答即可.【详解】解:如图1,,到l1的距离为2的点是两条平行直线l3、l4,到l2的距离为1的点也是两条平行直线l5、l6,∵两组直线的交点一共有4个:A、B、C、D,∴距离坐标为(2,1)的点的个数有4个.故选C.此题主要考查了点的坐标,以及对“距离坐标”的含义的理解和掌握,解答此题的关键是要明确:到l 1的距离为2的点是两条平行直线,到l 2的距离为1的点也是两条平行直线.7.C解析:C【解析】根据平行线的判定,可由∠2=∠3,根据内错角相等,两直线平行,得到AD ∥BC ,由∠1=∠4,得到AB ∥CD.故选C.8.C解析:C【分析】根据同位角的定义逐一判断即得答案.【详解】图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.故选:C .【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.9.C解析:C【分析】根据题意作直线l 平行于直线l 1和l 2,再根据平行线的性质求解即可.【详解】解:作直线l 平行于直线l 1和l 212////l l l1430;35180︒︒∴∠=∠=∠+∠=245∠=∠+∠2+3=4+5+3=30180210︒︒︒∴∠∠∠∠∠+=故选C.本题主要考查平行线的性质,关键在于等量替换的应用,两直线平行同旁内角互补,两直线平行内错角相等.10.B解析:B【分析】根据平行线的性质即可求解.【详解】A.∵AE∥BF,∴∠C'EF=∠EFB=35°(两直线平行,内错角相等),故A选项不符合题意;B.∵纸条按如图所示的方式析叠,∴∠FEG=∠C'EF=35°,∴∠AEC=180°﹣∠FEG﹣∠C'EF=180°﹣35°﹣35°=110°,故B选项符合题意;C.∵∠BGE=∠FEG+∠EFB=35°+35°=70°,故C选项不符合题意;D.∵AE∥BF,∴∠EGF=∠AEC=110°(两直线平行,内错角相等),∵EC∥FD,∴∠BFD=∠EGF=110°(两直线平行,内错角相等),故D选项不符合题意;故选:B.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.11.D解析:D【分析】先写出各选项的逆命题,判断出其真假即可得出答案.【详解】A、直角都相等的逆命题是相等的角是直角,错误;B、全等三角形的对应角相等的逆命题是对应角相等的三角形是全等三角形,错误;C、对顶角相等的逆命题是相等的角是对顶角,错误;D、逆命题为两直线平行,内错角相等,正确;故选D.【点睛】本题考查的是命题与定理的区别,正确的命题叫定理,错误的命题叫做假命题,关键是对逆命题的真假进行判断.12.C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.二、填空题13.【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分8种情况讨论:(1)如图1,AD边与OB边平行时,∠BAD=45°;(2)如图2,解析:8【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分8种情况讨论:(1)如图1,AD边与OB边平行时,∠BAD=45°;(2)如图2,当AC边与OB平行时,∠BAD=90°+45°=135°;(3)如图3,DC边与AB边平行时,∠BAD=60°+90°=150°,(4)如图4,DC边与OB边平行时,∠BAD=135°+30°=165°,(5)如图5,DC边与OB边平行时,∠BAD=45°﹣30°=15°;(6)如图6,DC边与AO边平行时,∠BAD=15°+90°=105°(7)如图7,DC边与AB边平行时,∠BAD=30°,(8)如图8,DC边与AO边平行时,∠BAD=30°+45°=75°;综上所述:∠BAD的所有可能的值为:15°,30°,45°,75°,105°,135°,150°,165°.故答案为:8.【点睛】本题考查了平行线的性质及判定,画出所有符合题意的示意图是解决本题的关键.14.2或6.【解析】【分析】分两种情况:(1)当点E在C的左边时;(2)当点E在C的右边时.画出相应的图形,根据平移的性质,可得AD=BE,再根据AD=2CE,可得方程,解方程即可求解.【详解】解析:2或6.【解析】【分析】分两种情况:(1)当点E在C的左边时;(2)当点E在C的右边时.画出相应的图形,根据平移的性质,可得AD=BE,再根据AD=2CE,可得方程,解方程即可求解.【详解】解:分两种情况:(1)当点E在C的左边时,如图根据图形可得:线段BE和AD的长度即是平移的距离,则AD=BE,设AD=2tcm,则CE=tcm,依题意有2t+t=6,解得t=2.(2)当点E在C的右边时,如图根据图形可得:线段BE和AD的长度即是平移的距离,则AD=BE,设AD=2tcm,则CE=tcm,依题意有2t-t=6,解得t=6.故答案为2或6.【点睛】本题考查了平移的性质,解题的关键是理解平移的方向,由图形判断平移的方向和距离.注意分类讨论.15.70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥A解析:70°【分析】此题要构造辅助线:过点E ,F 分别作EG ∥AB ,FH ∥AB .然后运用平行线的性质进行推导.【详解】解:如图所示,过点E ,F 分别作EG ∥AB ,FH ∥AB .∵EG ∥AB ,FH ∥AB ,∴∠5=∠ABE ,∠3=∠1,又∵AB ∥CD ,∴EG ∥CD ,FH ∥CD ,∴∠6=∠CDE ,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=35°.∵BF 平分∠ABE ,DF 平分∠CDE ,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×35°=70°.故答案为70°.【点睛】本题主要考查了平行线的性质,根据题中的条件作出辅助线EG ∥AB ,FH ∥AB ,再灵活运用平行线的性质是解本题的关键.16.【分析】根据题意,通过添加平行线,利用内错角和同旁内角,把这五个角转化成4个的角.【详解】分别过F 点,G 点,H 点作,,平行于AB利用内错角和同旁内角,把这五个角转化一下,可得,有4个的角, 解析:720【分析】根据题意,通过添加平行线,利用内错角和同旁内角,把这五个角转化成4个180的角.【详解】分别过F 点,G 点,H 点作2L ,3L ,4L 平行于AB利用内错角和同旁内角,把这五个角转化一下,可得,有4个180的角,1804720∴⨯=.故答案为720.【点睛】本题考查了平行线的性质:两直线平行,同旁内角互补,添加辅助线是解题关键. 17.130°或50°【解析】由两个角的两边分别平行,可得这两个角互补或相等,再根据一个角是50°,即可求得答案.解:∵两个角的两边分别平行,∴这两个角互补或相等,∵一个角是50°,∴另一个角是解析:130°或50°【解析】由两个角的两边分别平行,可得这两个角互补或相等,再根据一个角是50°,即可求得答案.解:∵两个角的两边分别平行,∴这两个角互补或相等,∵一个角是50°,∴另一个角是130°或50°.故答案为:130°或50°.18.(1)35,55;(2)与,【分析】(1)由,可得,,所以,,,所以,已知的度数,即可得出与的度数;(2)由(1)可得的余角是与,要求的补角,即要求的补角,的补角是.【详解】(1),,,解析:(1)35,55;(2)COE ∠与2∠,COB ∠【分析】(1)由OC OD ⊥,OE AB ⊥可得=90COD ∠︒,=90AOE ∠︒,所以1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,所以1=EOD ∠∠,已知1∠的度数,即可得出2∠与EOD ∠的度数;(2)由(1)可得1∠的余角是COE ∠与2∠,要求EOD ∠的补角,即要求1∠的补角,1∠的补角是COB ∠.(1)OC OD ⊥,OE AB ⊥,∴=90COD ∠︒,=90AOE ∠︒,∴1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,∴1=EOD ∠∠,135∠=︒,∴255∠=︒,35=EOD ∠︒;(2)由(1)可得1∠的余角是COE ∠与2∠,1180COB =∠∠+︒,∴1∠的补角是COB ∠,∴EOD ∠的补角是COB ∠.故答案为:(1)35,55;(2)COE ∠与2∠,COB ∠.【点睛】 本题主要考查余角、补角以及垂直的定义,熟记补角、余角以及垂直的定义是解题关键.19.【分析】根据两直线平行,同位角相等求出∠EFD,再根据角平分线的定义求出∠GFD,然后根据两直线平行,内错角相等解答.【详解】解:∵AB∥CD,∠1=64°,∴∠EFD=∠1=64°,∵解析:【分析】根据两直线平行,同位角相等求出∠EFD ,再根据角平分线的定义求出∠GFD ,然后根据两直线平行,内错角相等解答.【详解】解:∵AB ∥CD ,∠1=64°,∴∠EFD=∠1=64°,∵FG 平分∠EFD ,∴∠GFD=12∠EFD=12×64°=32°, ∵AB ∥CD ,∴∠EGF=∠GFD=32°.故答案为:32.考点:平行线的性质.20.50【分析】根据平行线的性质解答即可.解:∵AB∥CD,∴ =∠1,∵∠1+=180°,∠=130°,∴∠1=180°-=180°-130°=50°,∴=50°,故答案为:5解析:50【分析】根据平行线的性质解答即可.【详解】解:∵AB ∥CD ,∴α∠ =∠1,∵∠1+β∠=180°,∠β=130°,∴∠1=180°-β∠=180°-130°=50°,∴α∠=50°,故答案为:50.【点睛】本题考查了平行线的性质和平角的定义,解题的关键掌握平行线的性质和平角的定义.三、解答题21.(1)80°;(2)①∠APE =∠α+∠β;②∠APE =∠β﹣∠α,理由见解析;(3)∠ANE =12(∠α+∠β) 【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数;(2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;②过P 作PQ ∥DF ,依据平行线的性质可得∠β=∠QPA ,∠α=∠QPE ,即可得到∠APE =∠APQ ﹣∠EPQ =∠β﹣∠α;(3)过P 和N 分别作FD 的平行线,依据平行线的性质以及角平分线的定义,即可得到∠ANE 与∠α,∠β之间的数量关系为∠ANE =12(∠α+∠β). 【详解】解:(1)如图1,过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠B+∠BPG=180°,∠C+∠CPG=180°,又∵∠PBA=125°,∠PCD=155°,∴∠BPC=360°﹣125°﹣155°=80°,故答案为:80°;(2)①如图2,∠APE与∠α,∠β之间的数量关系为∠APE=∠α+∠β;理由如下:作PQ∥DF,∵DF∥CG,∴PQ∥CG,∴∠β=∠QPA,∠α=∠QPE,∴∠APE=∠APQ+∠EPQ=∠β+∠α;②如图3,∠APE与∠α,∠β之间的数量关系为∠APE=∠β﹣∠α;理由如下:过P作PQ∥DF,∵DF∥CG,∴PQ∥CG,∴∠β=∠QPA,∠α=∠QPE,∴∠APE=∠APQ﹣∠EPQ=∠β﹣∠α;(3)如图4,∠ANE与∠α,∠β之间的数量关系为∠ANE=12(∠α+∠β).理由如下:作NQ∥DF,∵DF∥CG,∴NQ∥CG,∴∠DEN=∠QNE,∠CAN=∠QNA,∵EN平分∠DEP,AN平分∠CAP,∴∠DEN=12∠α,∠CAN=12∠β,∴∠QNE=12∠α,∠QNA=12∠β,∴∠ANE=∠QNE +∠QNA=12∠α+12∠β=12(∠α+∠β);【点睛】本题主要考查了平行线的判定和性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.22.(1)详见解析;(2)①103°;②32°【分析】(1)过E作EF∥AB,根据平行线的性质可求∠B=∠BEF,∠C+∠CEF=180°,进而可证明结论;(2)①易求∠ABE=52°,根据(1)的结论可求解∠DCE=154°,根据角平分线的定义可得∠DCG=77°,过点F作FN∥AB,结合平行线的性质利用∠BFC=∠BFN+∠NFC可求解;②根据平行线的性质即角平分线的定义可求解∠BFC=∠FCE=180°-∠ECG=180°-(90°12∠BEC)=90°+12∠BEC,结合已知条件∠BFC-∠BEC=74°可求解∠BEC的度数.【详解】(1)证明:如图1,过E作EF∥AB,∵AB∥CD,∴DC∥EF,∴∠B=∠BEF,∠C+∠CEF=180°,∴∠C+∠B-∠BEC=180°,即:∠ABE+∠DCE-∠BEC=180°;(2)解:①∵FB∥CE,∴∠FBE=∠BEC=26°,∵BF平分∠ABE,∴∠ABE=2∠FBE=52°,由(1)得:∠DCE=180°-∠ABE+∠BEC=180°-52°+26°=154°,∵CG平分∠ECD,∴∠DCG=77°,过点F作FN∥AB,如图2,∵AB∥CD,∴FN∥CD,∴∠BFN=∠ABF=26°,∠NFC=∠DCG=77°,∴∠BFC=∠BFN+∠NFC=103°;②∵BF∥CE,∴∠BFC=∠ECF,∠FBE=∠BEC,∵BF平分∠ABE,∴∠ABE=2∠FBE=2∠BEC,由(1)知:∠ABE+∠DCE-∠BEC=180°,∴2∠BEC+∠DCE-∠BEC=180°,∴∠DCE=180°-∠BEC,∵CG平分∠DCE,∴∠ECG=12∠DCE=12(180°-∠BEC)=90°-12∠BEC,∴∠BFC=∠FCE=180°-∠ECG=180°-(90°-12∠BEC)=90°+12∠BEC,∵∠BFC-∠BEC=74°,∴∠BFC=74°+∠BEC,即74°+∠BEC=90°+12∠BEC,解得∠BEC=32°.故答案为:32°.【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键.23.(1)75°;(2)见解析;(3)∠2=3∠3【分析】(1)利用三角板的度数,求出∠DBC的度数,再利用平行线的性质得到∠BDN的度数,由此得到∠1的度数;(2)过B点作BG∥直线m,利用平行线的性质可得到∠3=DBG和∠LAB=∠ABG,再利用等量代换得到∠3+∠LAB=75°,利用余角性质得到∠LAB=90°-∠2,由此证明结论;(3)结论:∠2=3∠3.利用(2)中结论,结合平行线的性质得到∠2和∠3的度数由此证明结论.【详解】(1)∵直线n∥直线l,∴∠DBC=∠BDN,又∵∠DBC=∠ABC﹣∠ABD=45°﹣30°=15°,∴∠BDN=15°,∴∠1=90°﹣15°=75°.(2)如图所示,过B点作BG∥直线m,∵BG∥m,l∥m,∴BG∥l(平行于同一直线的两直线互相平行),∵BG∥m,∴∠3=DBG,又∵BG∥l,∴∠LAB=∠ABG,∴∠3+∠LAB=∠DBA=30°+45°=75°,又∵∠2和∠LAB互为余角,∴∠LAB=90°﹣∠2,∴∠3+90°﹣∠2=75°,∴∠2﹣∠3=15°.(3)结论:∠2=3∠3.理由:在(2)的条件下,∠2﹣∠3=15°,又∵CN平分∠BCA,∴∠BCN=∠CAN=22.5°,又∵直线n∥直线l,∴∠2=22.5°,∴∠3=7.5°,∴∠2=3∠3.【点睛】考查平行线的性质并结合了三角板中的特殊角度,学生需要作辅助线利用平行线的传递性将特殊的角的关系联系起来,熟悉掌握平行线之间角的关系是解题的关键.24.(1)理由见解析;(2)①80°,②40°;(3)38°、74°、86°、122°.【分析】(1)根据平行线的性质及对顶角的性质即可得证;(2)①过拐点作AB 的平行线,根据平行线的性质推理即可得到答案;②过点P 作AB 的平行线,根据平行线的性质及角平分线的定义求得角的度数;(3)分情况讨论,画出图形,根据三角形的内角和与外角的性质分别求出答案即可.【详解】(1)//AB CD1EFD ∴∠=∠,2EFD ∠=∠12∠∠∴=; (2)①分别过点M ,N 作直线GH ,IJ 与AB 平行,则//////AB CD GH IJ ,如图:AEM EMH ∴∠=∠,CFN FNJ ∠=∠,180HMN MNJ ∠+∠=︒,()80AEM CFN EMH FNJ EMN MNF HMN MNJ ∴∠+∠=∠+∠=∠+∠-∠+∠=︒;②过点P 作AB 的平行线,根据平行线的性质可得:3AEP ∠=∠,4CFP ∠=∠,∵EP 平分∠AEM ,FP 平分∠CFN , ∴11344022AEP CFP AEM CFM ∠+∠=∠+∠=∠+∠=︒, 即40P ∠=︒;(3)分四种情况进行讨论:由已知条件可得80BEH ∠=︒,①如图:118082EPG BEH AGQ ∠=︒-∠-∠=︒182HPQ EPG ∴∠=∠=︒11118074GQ H EHQ HPQ ∴∠=︒-∠-∠=︒②如图:104BPH FHP BEH ∠=∠+∠=︒,22122BQ H BPH AGQ ∴∠=∠+∠=︒;③如图:56BPH BEH FHP ∠=∠-∠=︒,3338BQ H BPH AGQ ∴∠=∠-∠=︒;④如图:104BPH BEH FHP ∠=∠+∠=︒ ,4486GQ H BPH AGQ ∴∠=∠-∠=︒;综上所述,∠GQH 的度数为38°、74°、86°、122°.【点睛】本题考查平行线的性质,三角形外角的性质等内容,解题的关键是掌握辅助线的作法以及分类讨论的思想.25.(1)60°;(2)AB BD ⊥,证明详见解析;(3)不变,2APB ADB ∠=∠,理由详见解析【分析】(1)由平行线的性质可得∠ABN =120°,即∠ABP +∠PBN =120°,再根据角平分线的定义知∠ABP =2∠CBP 、∠PBN =2∠DBP ,可得2∠CBP +2∠DBP =120°,即∠CBD =∠CBP +∠DBP =60°;(2)由AM ∥BN 得∠ACB =∠CBN ,当∠ACB =∠ABD 时有∠CBN =∠ABD ,得∠ABC +∠CBD =∠CBD +∠DBN ,即∠ABC =∠DBN ,再根据角平分线的定义可得1 4ABC CBP DBP DBN ABN ∠=∠=∠=∠=∠,最后根据∠ABN =120°可得390ABD ABC ︒∠=∠=,进而可得答案;(3)由AM ∥BN 得∠APB =∠PBN 、∠ADB =∠DBN ,根据BD 平分∠PBN 知∠PBN =2∠DBN ,从而可得∠APB =2∠ADB .【详解】解:(1)∵AM ∥BN ,∠A =60°,∴∠A +∠ABN =180°,∴∠ABN =120°;∵AM ∥BN ,∴∠ABN +∠A =180°,∴∠ABN =180°﹣60°=120°,∴∠ABP +∠PBN =120°,∵BC 平分∠ABP ,BD 平分∠PBN ,∴∠ABP =2∠CBP ,∠PBN =2∠DBP ,∴2∠CBP +2∠DBP =120°,∴∠CBD =∠CBP +∠DBP =60°;()2AB BD ⊥理由: // AM BN,180ACB CBN A ABN ︒∴∠=∠∠+∠=ACB ABD ∠=∠CBN ABD ∴∠=∠CBN CBD ABD CBD ∴∠-∠=∠-∠,即DBN ABC ∠=∠BC BD 、分别平分ABP ∠和PBN ∠,,ABC CBP DBP DBN ∴∠=∠∠=∠1 4ABC CBP DBP DBN ABN ∴∠=∠=∠=∠=∠ 180A ABN ︒∠+∠=180 ********ABN A ︒︒︒︒∴∠=-∠=-=1304ABC ABN ︒∴∠=∠= 390ABD ABC ︒∴∠=∠=,即AB BD ⊥()3不变.且2APB ADB ∠=∠理由: // ,AM BN,APB PBN ADB DBN ∴∠=∠∠=∠BD 平分,PBN ∠2PBN DBN ∴∠=∠2.APB ADB ∴∠=∠【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.26.(1)见解析;(2)2∠FBH +∠C =180°;(3)80°【分析】(1)过点E 作//EK AB ,由平行线的性质得出,180ABE BEK CEK C ∠=∠∠+∠=︒,进而得出答案;(2)设,ABF EBF BEG CEG αβ∠=∠=∠=∠=,由平行线的性质得出,HBE BEG FBH FBE HBE βαβ∠=∠=∠=∠-∠=-,由(1)知180ABE C BEC ∠+∠-∠=︒,即可得出答案;(3)设,ABF EBF x ECN DCN y ∠=∠=∠=∠=,由(1)知2()180E x y ∠=+-︒,过M 作////PQ AB CD ,由平行线的性质得出,PMF ABF x QMN DCN y ∠=∠=∠=∠=,求出130E FMN x y ∠+∠=+=︒,即可得出答案.【详解】(1)如图1,过点E 作//EK AB∴ABE BEK ∠=∠∵//AB CD∴//EK CD∴180CEK C ∠+∠=︒∴180ABE C E BEC CEK C BEC CEK C ∠+∠-∠=∠+∠+∠-∠=∠+∠=︒; (2)∵BF 、EG 分别平分ABE ∠、BEC ∠∴,ABF EBF BEG CEG ∠=∠∠=∠设,ABF EBF BEG CEG αβ∠=∠=∠=∠=∵//BH EG∴HBE BEG β∠=∠=∴FBH FBE HBE αβ∠=∠-∠=-由(1)知,180ABE C BEC ∠+∠-∠=︒即222()180C C αβαβ+∠-=-+∠=︒∴2180FBH C ∠+∠=︒;(3)∵CN 、BF 分别平分ECD ∠、ABE ∠∴,ABF EBF ECN DCN ∠=∠∠=∠设,ABF EBF x ECN DCN y ∠=∠=∠=∠=由(1)知:180ABE C E ∠+∠-∠=︒即2()180E x y ∠=+-︒如图3,过M 作////PQ AB CD则,PMF ABF x QMN DCN y ∠=∠=∠=∠=∴180180()FMN PMF QMN x y ∠=︒-∠-∠=︒-+130E FMN ∠+∠=︒∴2()180180()130x y x y +-︒+︒-+=︒130x y ∴+=︒∴2()180213018080E x y ∠=+-︒=⨯︒-︒=︒.【点睛】本题考查了角平分线的定义、平行线的性质、角的和差等知识点,较难的是题(3),通过作辅助线,构造平行线是解题关键.27.(1)证明见解析;(2)证明见解析;(3)∠A=72°.【分析】(1)根据题意过点A 作平行线AD//MN ,证出三条直线互相平行并由平行得出与ACM ∠和ABP ∠相等的角即可得出结论;(2)由题意利用垂直线定义以及三角形内角和为180°进行分析即可证得A ECN ∠=∠; (3)根据题意设MCA ACE ECD x ∠=∠=∠=,由(1)列出关系式2702CFB x ∠=︒-和11352CGB x ∠=︒-,解出方程进而得出结论. 【详解】证明:(1)过点A 作平行线AD//MN ,∵AD//MN ,//MN PQ ,∴AD//MN//PQ,∴,MCA DAC PBA DAB ∠=∠∠=∠,∴A DAC DAB MCA PBA ∠=∠+∠=∠+∠.(2)∵//CD AB∴180A ACD ∠+∠=︒∵180ECM ECN ∠+∠=︒又ECM ACD ∠=∠∴A ECN ∠=∠(3)证得MCA ACE ECD ∠=∠=∠ ABP NCD ∠=∠设MCA ACE ECD x ∠=∠=∠=由(1)可知CFB FCN FBQ ∠=∠+∠列出关系式2702CFB x ∠=︒-由(1)可知CGB MCG GBP ∠=∠+∠ 列出关系式11352CGB x ∠=︒- 312702(135)22x x -=︒- 解得:54x =︒结论:72A ∠=︒【点睛】本题考查平行线的性质与判定,结合平行线的性质与判定运用数形结合思维分析是解题的关键.28.(2)∠EGF =90°;(3)详见解析.【解析】【分析】(2)如图2所示,猜想:∠EGF=90°;由结论(1)得∠EGF=∠BEG+∠GFD ,根据EG 、FG 分别平分∠BEF 和∠EFD ,得到∠BEF=2∠BEG ,∠EFD=2∠GFD ,由于BE ∥CF 到∠BEF+∠EFD=180°,于是得到2∠BEG+2∠GFD=180°,即可得到结论;(3)如图3,过点G 1作G 1H ∥AB 由结论(1)可得∠G 2=∠1+∠3,∠EG 1F=∠BEG 1+∠G 1FD ,得到∠3=∠G 2FD ,由于FG 2平分∠EFD 求得∠4=∠G 2FD ,由于∠1=∠2,于是得到∠G 2=∠2+∠4,由于∠EG 1F=∠BEG 1+∠G 1FD ,得到∠EG 1F+∠G 2=∠2+∠4+∠BEG 1+∠G 1FD=∠BEF+∠EFD ,然后根据平行线的性质即可得到结论.证明:(2)如图2所示,猜想:∠EGF=90°;由结论(1)得∠EGF=∠BEG+∠GFD,∵EG、FG分别平分∠BEF和∠EFD,∴∠BEF=2∠BEG,∠EFD=2∠GFD,∵BE∥CF,∴∠BEF+∠EFD=180°,∴2∠BEG+2∠GFD=180°,∴∠BEG+∠GFD=90°,∵∠EGF=∠BEG+∠GFD,∴∠EGF=90°;(3)证明:如图3,过点G1作G1H∥AB,∵AB∥CD,∴G1H∥CD,由结论(1)可得∠G2=∠1+∠3,∠EG1F=∠BEG1+∠G1FD,∴∠3=∠G2FD,∵FG2平分∠EFD,∴∠4=∠G2FD,∵∠1=∠2,∴∠G2=∠2+∠4,∵∠EG1F=∠BEG1+∠G1FD,∴∠EG1F+∠G2=∠2+∠4+∠BEG1+∠G1FD=∠BEF+∠EFD,∵AB∥CD,∴∠BEF+∠EFD=180°,∴∠EG1F+∠G2=180°.本题考查了平行线的性质,角平分线的性质,熟练掌握平行线的性质定理是解题的关键.。

第五章相交线与平行线单元试卷中考真题汇编[解析版]

第五章相交线与平行线单元试卷中考真题汇编[解析版]

第五章相交线与平行线单元试卷中考真题汇编[解析版]一、选择题1.如图,直线AB,CD被直线EF所截,与AB,CD分别交于点E,F,下列描述:①∠1和∠2互为同位角②∠3和∠4互为内错角③∠1=∠4 ④∠4+∠5=180°其中,正确的是()A.①③B.②④C.②③D.③④2.如图,下列能判断AB∥CD的条件有()①∠B+∠BCD=180°②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5A.1 B.2 C.3 D.43.如图,∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠54.如图所示,下列说法不正确的是()A.∠1和∠2是同旁内角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠4是内错角5.如图,AB∥CD,∠1=120°,则∠2=()A .50°B .70°C .120°D .130° 6.如图,//,2,2,AB CD FEN BEN FGH CGH ∠=∠∠=∠则F ∠与H ∠的数量关系是( )A .90F H ︒∠+∠=B .2H F ∠=∠C .2180H F ︒∠-∠=D .3180H F ︒∠-∠=7.下列定理中,没有逆定题的是( )①内错角相等,两直线平行②等腰三角形两底角相等③对顶角相等④直角三角形的两个锐角互余.A .1个B .2个C .3个D .4个8.下列说法不正确的是( ) A .过任意一点可作已知直线的一条平行线 B .在同一平面内两条不相交的直线是平行线 C .在同一平面内,过直线外一点只能画一条直线与已知直线垂直 D .直线外一点与直线上各点连接的所有线段中,垂线段最短9.如图,将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF 若5BC cm =,则EC 的长为( )A.2cm B.4cmC.6cm D.8cm10.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容,则回答正确的是()已知:如图,∠BEC=∠B+∠C,求证:AB∥CD证明:延长BE交__※__于点F,则∠BEC=__⊙__+∠C又∵∠BEC=∠B+∠C,∴∠B=▲∴AB∥CD(__□__相等,两直线平行)A.⊙代表∠FEC B.□代表同位角C.▲代表∠EFC D.※代表AB11.如图,在△ABC中,点D,E分别为边AB,AC上的点,画射线ED.下列说法错误的是()A.∠B与∠2是同旁内角B.∠A与∠1是同位角C.∠3与∠A是同旁内角D.∠3与∠4是内错角12.如图,直线AC和直线BD相交于点O,OE平分∠BOC.若∠1+∠2=80°,则∠3的度数为()A.40°B.50°C.60°D.70°二、填空题13.如图,已知AB∥CD,点E,F分别在直线AB,CD上点P在AB,CD之间且在EF的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则∠EPF 的度数为 _____.14.如图,在平面内,两条直线1l ,2l 相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.15.如图,已知AB CD ∥,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E ,第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E ,第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,…第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E .若1n E ∠=度,那BEC ∠等于__________度.16.如图,两直线AB 、CD 平行,则12345∠+∠+∠+∠+∠=__________.17.如图,A 、B 、C 表示三位同学所站位置,C 同学在A 同学的北偏东50方向,在B 同学的北偏西60方向,那么C 同学看A 、B 两位同学的视角ACB ∠=______.18.如图,AB ∥CD ,∠1=64°,FG 平分∠EFD ,则∠EGF=__________________°.19.如图,//AB CD ,BD 平分ABC ∠,:4:1C DBA ∠∠=,则CDB ∠=______.20.观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:112n P P ∠+∠+∠++∠=…_________度.三、解答题21.问题情境(1)如图1,已知//AB CD ,125PBA ︒∠=,155PCD ︒∠=,求BPC ∠的度数.佩佩同学的思路:过点P 作PG//AB ,进而//PG CD ,由平行线的性质来求BPC ∠,求得BPC ∠=________.问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,90ACB ︒∠=,//DF CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记PED α∠=∠,PAC β∠=∠.①如图2,当点P 在C ,D 两点之间运动时,请直接写出AOE ∠与α∠,β∠之间的数量关系;②如图3,当点P 在B ,D 两点之间运动时,APE ∠与α∠,β∠之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P 在C ,D 两点之间运动时,若PED ∠,PAC ∠的角平分线EN ,AN 相交于点N ,请直接写出ANE ∠与α∠,β∠之间的数量关系.22.如图,A 、B 分别是直线a 和b 上的点,∠1=∠2,C 、D 在两条直线之间,且∠C =∠D .(1) 证明:a ∥b ;(2) 如图,∠EFG=60°,EF 交a 于H ,FG 交b 于I ,HK ∥FG ,若∠4=2∠3,判断∠5、∠6的数量关系,并说明理由;(3) 如图∠EFG 是平角的n 分之1(n 为大于1的整数),FE 交a 于H ,FG 交b 于I .点J 在FG 上,连HJ .若∠8=n ∠7,则∠9:∠10=______ .23.如图1,AB ∥CD ,点E 在AB 上,点G 在CD 上,点 F 在直线 AB ,CD 之间,连接EF ,FG ,EF 垂直于 FG ,∠FGD =125°.(1)求出∠BEF 的度数;(2)如图 2,延长FE 到H ,点M 在FH 的上方,连接MH ,Q 为直线 AB 上一点,且在直线 MH 的右侧, 连接 MQ ,若∠EHM=∠M +90°,求∠MQA 的度数;(3)如图 3,S 为 NB 上一点,T 为 GD 上一点,作直线 ST ,延长 GF 交 AB 于点 N ,P 为直线 ST 上一动点,请直接写出∠PGN ,∠SNP 和∠GPN 的数量关系 .(题中所有角都是大于 0°小于 180°的角)24.如图1,//,AB CD 直线MN 分别交AB CD 、于点,E F BEF ∠、与EFD ∠的角平分线交于点P EP ,与CD 交于点G GH EG ⊥,交MN 于H .(1)求证:// ;PF GH (2)如图2,连接PH K ,为GH 上一动点,PHK HPK PO ∠=∠,平分EPK ∠交MN 于,Q 则HPQ ∠的大小是否发生变化?若不变,求出其值;若改变,请说明理由.25.已知,90AOB ︒∠=,点C 在射线OA 上,//CD OE .(1)如图 1,若120OCD ︒∠=,求∠BOE 的度数;(2)把“90AOB ︒∠=°”改为“120AOB ︒∠=”,射线OE 沿射线OB 平移,得到O E ',其它条件不变(如 图 2 所示),探究,OCD BO E '∠∠ 的数量关系;(3)在(2)的条件下,作PO OB '⊥,垂足为O ' ,与OCD ∠ 的角平分线CP 交于点P ,若BO E α'∠= , 用含 α 的式子表示CPO '∠(直接写出答案).26.已知://AB DE ,//AC DF ,B C E F 、、、四点在同一直线上.(1)如图1,求证:12∠=∠;(2)如图2,猜想1,3,4∠∠∠这三个角之间有何数量关系?并证明你的结论; (3)如图3,Q 是AD 下方一点,连接,AQ DQ ,且13DAQ BAD ∠=∠,13ADQ ADF ∠=∠,若110AQD ∠=︒,求2∠的度数.27.问题情境:我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.已知三角板ABC 中,60,30,90BAC B C ∠=∠=︒∠=︒︒,长方形DEFG 中,DE GF .问题初探:(1)如图(1),若将三角板ABC 的顶点A 放在长方形的边GF 上,BC 与DE 相交于点M ,AB DE ⊥于点N ,求EMC ∠的度数.分析:过点C 作CH GF ∥,则有CH DE ∥,从而得,CAF HCA EMC MCH ∠=∠∠=∠,从而可以求得EMC ∠的度数.由分析得,请你直接写出:CAF ∠的度数为____________,EMC ∠的度数为___________.类比再探:(2)若将三角板ABC 按图(2)所示方式摆放(AB 与DE 不垂直),请你猜想写出CAF ∠与EMC ∠的数量关系,并说明理由.28.(问题提出)(1)如图①,已知 AB ∥CD ,求证 :∠1+∠MEN+∠2=360°(推广应用)(2)如图②,已知 AB ∥ CD ,求∠1+∠2+∠3+∠4+∠5 +∠6的度数为___________. 如图③,已知 AB ∥CD ,求∠1+∠2+∠3+∠4+∠5 +∠6+…+∠n 的度数为_________.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据同位角,内错角,同旁内角的定义判断即可.【详解】①∠1和∠2互为邻补角,故错误;②∠3和∠4互为内错角,故正确;③∠1=∠4,故正确;④∵AB不平行于CD,∴∠4+∠5≠180°故错误,故选:C.【点睛】本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.2.C解析:C【分析】判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.【详解】①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;②∠1 = ∠2,内错角相等,可判断AD∥BC,不可判断AB∥CD;③∠3 =∠4,内错角相等,可判断AB∥CD;④∠B = ∠5,同位角相等,可判断AB∥CD故选:C【点睛】本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB与CD这两条直线,故是错误的.3.D解析:D【分析】根据同位角定义可得答案.【详解】解:解:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角,根据定义,结合图形,∠1的同位角是∠5.故选:D.【点睛】本题考查同位角的定义,解题关键是熟练理解同位角的定义,本题属于基础题型.4.A解析:A【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义. 5.C解析:C【分析】由平行线性质和对顶角相等可以得到解答.【详解】解:如图,由对顶角相等可以得到∠3=∠1=120°又AB∥CD,∴∠2=∠3=120°.故选C .【点睛】本题考查平行线和对顶角的综合应用,由题意发现角的相等关系是解题关键.6.D解析:D【分析】先设角,利用平行线的性质表示出待求角,再利用整体思想即可求解.【详解】设,NEB HGC αβ∠=∠=则2,2FEN FGH αβ∠=∠=∵//AB CD∴H AEH HGC ∠=∠+∠NEB HGC =∠+∠αβ=+F FEB FGD ∠=∠-∠()180FEB FGC =∠-︒-∠()31803αβ=-︒-()3180αβ=+-︒∴F ∠3180H =∠-︒3180H F ∴∠-∠=︒故选:D .【点睛】本题考查了平行线的性质,关键是熟练掌握平行线的性质,注意整体思想的运用.7.A解析:A【解析】试题分析:根据题意可知:①的逆命题是两直线平行,内错角相等,是真命题,是逆定理;②的逆命题是有两个角相等的三角形是等腰三角形,是真命题,是逆定理;③的逆命题是相等的两个角是对顶角,是假命题,不是逆定理;④的逆命题是有两个锐角互余的三角形是直角三角形,是真命题,是逆定理.只有一个不是逆定理.故选:A8.A解析:A【解析】试题分析:平面内,过直线外一点有且只有一条直线与已知直线平行,故A 不正确;在同一平面内两条不相交的直线是平行线,这是平行线的概念,故B 正确;在同一平面内,过直线外一点只能画一条直线与已知直线垂直,故C 正确;直线外一点与直线上各点连接的所有线段中,垂线段最短,故D 正确;故选:A.9.A解析:A【分析】由平移性质可得:BC=EF ,CF=3,cm 可得EC=EF-CF .【详解】因为将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF所以EF=5BC cm ,CF=3,cm所以EC=5-3=2(cm)故选:A【点睛】考核知识点:平移性质.抓住平移性质:对应边相等,是解题关键.10.C解析:C【分析】延长BE 交CD 于点F ,利用三角形外角的性质可得出∠BEC =∠EFC+∠C ,结合∠BEC =∠B+∠C 可得出∠B =∠EFC ,利用“内错角相等,两直线平行”可证出AB ∥CD ,找出各符号代表的含义,再对照四个选项即可得出结论.【详解】证明:延长BE 交CD 于点F ,则∠BEC =∠EFC+∠C .又∵∠BEC =∠B+∠C ,∴∠B =∠EFC ,∴AB ∥CD (内错角相等,两直线平行).∴※代表CD ,⊙代表∠EFC ,▲代表∠EFC ,□代表内错角.故选:C .【点睛】本题考查了平行线的判定以及三角形外角的性质,利用各角之间的关系,找出∠B =∠EFC是解题的关键.11.B解析:B【分析】根据同位角、内错角以及同旁内角的概念解答即可.【详解】解:A.∠B与∠2是BC、DE被BD所截而成的同旁内角,故本选项正确;B.∠A与∠1不是同位角,故本选项错误;C.∠3与∠A是AE、DE被AD所截而成的同旁内角,故本选项正确;D.∠3与∠4是内错角AD、CE被ED所截而成的内错角,故本选项正确;故选:B.【点睛】本题主要考查了同位角、内错角以及同旁内角,同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.12.D解析:D【分析】根据对顶角和邻补角的定义即可得到∠BOC的度数,再根据角平分线即可得出∠3的度数.【详解】解:∵∠1=∠2,∠1+∠2=80°,∴∠1=∠2=40°,∴∠BOC=140°,又∵OE平分∠BOC,∴∠3=70°.故选:D.【点睛】本题考查了邻补角、对顶角、角平分线的应用,解题时注意运用:对顶角相等,邻补角互补,即和为180°.二、填空题13.45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF与∠AEM和∠CFM的关系,然后可得答案.【详解】解:如图1,过作,,,,,,,同理可得,由折叠可解析:45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF 与∠AEM 和∠CFM 的关系,然后可得答案.【详解】解:如图1,过M 作//MN AB ,//AB CD ,////AB CD NM ∴,AEM EMN ∴∠=∠,NMF MFC ∠=∠,90EMF ∠=︒,90AEM CFM ∴∠+∠=︒,同理可得P AEP CFP ∠=∠+∠, 由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 1()452P AEM CFM ∴∠=∠+∠=︒, 如图2,过M 作//MN AB ,//AB CD ,////AB CD NM ∴,180AEM EMN ∴∠+∠=︒,180NMF MFC ∠+∠=︒,360AEM EMF CFM ∴∠+∠+∠=︒,90EMF ∠=︒,36090270AEM CFM ∴∠+∠=︒-︒=︒, 由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 12701352P ∴∠=︒⨯=︒, 综上所述:EPF ∠的度数为45︒或135︒,故答案为:45°或135°.【点睛】本题主要考查了平行线的性质,关键是正确画出图形,分两种情况分别计算出∠EPF 的度数.14.4【分析】到的距离是2的点,在与平行且与的距离是2的两条直线上;同理,点在与的距离是1的点,在与平行,且到的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:解析:4【分析】到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;同理,点M 在与2l 的距离是1的点,在与2l 平行,且到2l 的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;到2l 的距离是1的点,在与2l 平行且与2l 的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.【点睛】本题主要考查了到直线的距离等于定长的点的集合.15.【分析】先过E 作EF ∥AB ,根据AB ∥CD ,得出AB ∥EF ∥CD ,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;根据∠ABE和∠DCE的平分线交点为E1,解析:2n【分析】先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;根据∠ABE和∠DCE的平分线交点为E1,则可得出∠CE1B=∠ABE1+∠DCE112=∠ABE12+∠DCE12=∠BEC;同理可得∠BE2C=∠ABE2+∠DCE212=∠ABE112+∠DCE112=∠CE1B14=∠BEC;根据∠ABE2和∠DCE2的平分线,交点为E3,得出∠BE3C18=∠BEC;…据此得到规律∠E n12n=∠BEC,最后求得∠BEC的度数.【详解】如图1,过E作EF∥AB.∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2.∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图2.∵∠ABE和∠DCE的平分线交点为E1,∴∠CE1B=∠ABE1+∠DCE112=∠ABE12+∠DCE12=∠BEC.∵∠ABE1和∠DCE1的平分线交点为E2,∴∠BE2C=∠ABE2+∠DCE212=∠ABE112+∠DCE112=∠CE1B14=∠BEC;∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE312=∠ABE212+∠DCE212=∠CE2B18=∠BEC;…以此类推,∠E n12n=∠BEC,∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n.【点睛】本题考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.16.【分析】根据题意,通过添加平行线,利用内错角和同旁内角,把这五个角转化成4个的角.【详解】分别过F 点,G 点,H 点作,,平行于AB利用内错角和同旁内角,把这五个角转化一下,可得,有4个的角, 解析:720【分析】根据题意,通过添加平行线,利用内错角和同旁内角,把这五个角转化成4个180的角.【详解】分别过F 点,G 点,H 点作2L ,3L ,4L 平行于AB利用内错角和同旁内角,把这五个角转化一下,可得,有4个180的角,1804720∴⨯=.故答案为720.【点睛】本题考查了平行线的性质:两直线平行,同旁内角互补,添加辅助线是解题关键.17.【解析】【分析】根据平行线的性质:两直线平行,内错角相等,可得答案.【详解】如图,作,,,,故答案为:.【点睛】本题考查了方向角,利用平行线的性质两直线平行内错角相等是解题 解析:110【解析】【分析】根据平行线的性质:两直线平行,内错角相等,可得答案.【详解】如图,作CF //AD //BE ,FCA DAC 50∠∠∴==,BCF CBE 60∠∠==,ACB ACF FCB 5060110∠∠∠∴=+=+=,故答案为:110.【点睛】本题考查了方向角,利用平行线的性质两直线平行内错角相等是解题关键.18.【分析】根据两直线平行,同位角相等求出∠EFD,再根据角平分线的定义求出∠GFD,然后根据两直线平行,内错角相等解答.【详解】解:∵AB∥CD,∠1=64°,∴∠EFD=∠1=64°,∵解析:【分析】根据两直线平行,同位角相等求出∠EFD ,再根据角平分线的定义求出∠GFD ,然后根据两直线平行,内错角相等解答.【详解】解:∵AB ∥CD ,∠1=64°,∴∠EFD=∠1=64°,∵FG 平分∠EFD ,∴∠GFD=12∠EFD=12×64°=32°, ∵AB ∥CD ,∴∠EGF=∠GFD=32°.故答案为:32.考点:平行线的性质.19.30°【分析】先由AB//CD 得到∠CDB=∠ABD,∠C+∠ABC=180︒,设出∠ABD=x°,依据“平分,”列出方程,求出∠ABD 即可解决问题.【详解】∵AB//CD∴∠ABD=x°解析:30°【分析】先由AB//CD 得到∠CDB=∠ABD ,∠C+∠ABC=180︒,设出∠ABD=x°,依据“BD 平分ABC ∠,:4:1C DBA ∠∠=”列出方程,求出∠ABD 即可解决问题.【详解】∵AB//CD∴∠ABD=x°,∠ABD ,∠C+∠ABC=180︒,BD 平分ABC ∠,∴∠ABD=∠CBD∵:4:1C DBA ∠∠=,∴4C DBA ∠=∠设∠ABD=x°,则∠CBD=x°,∠C=4x°,∴2x°+4x°=180°,解得,x=30∴∠ABD=30°,∴∠CDB=30°,故答案为:30°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,求出∠ABD=30°是解此题的关键.20.(n ﹣1)×180【分析】分别过P1、P2、P3作直线AB 的平行线P1E ,P2F ,P3G ,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=18 解析:(n ﹣1)×180【分析】分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°于是得到∠1+∠2=10°,∠1+∠P 1+∠2=2×180,∠1+∠P 1+∠P 2+∠2=3×180°,∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,根据规律得到结果∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.【详解】解:如图,分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,∵AB ∥CD ,∴AB ∥P 1E ∥P 2F ∥P 3G .由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180° ∴(1)∠1+∠2=180°,(2)∠1+∠P 1+∠2=2×180,(3)∠1+∠P 1+∠P 2+∠2=3×180°,(4)∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,∴∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.故答案为:(n+1)×180.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,利用两直线平行,同旁内角互补是解答此题的关键.三、解答题21.(1)80︒;(2)①APE αβ∠=∠+∠,②APE βα∠=∠-∠,理由见解析;(3)1()2ANE αβ∠=∠+∠ 【分析】(1)过点P 作//PG AB ,则//PG CD ,由平行线的性质可得BPC ∠的度数; (2)①过点P 作FD 的平行线,依据平行线的性质可得APE ∠与α∠,β∠之间的数量关系;②过P 作//PQ DF ,依据平行线的性质可得QPA β∠=∠,QPE α∠=∠,即可得到APE APQ EPQ βα∠=∠-∠=∠-∠;(3)过P 和N 分别作FD 的平行线,依据平行线的性质以及角平分线的定义,即可得到ANE ∠与α∠,β∠之间的数量关系为1()2ANE αβ∠=∠+∠. 【详解】解:(1)如图1,过点P 作//PG AB ,则//PG CD ,由平行线的性质可得180B BPG ︒∠+∠=,180C CPG ︒∠+∠=,又∵125PBA ︒∠=,155PCD ︒∠=,∴36012515580BPC ︒︒︒︒∠=--=,故答案为:80︒;(2)①如图2,APE ∠与α∠,β∠之间的数量关系为APE αβ∠=∠+∠; 过点P 作PM∥FD,则PM∥FD∥CG,∵PM∥FD,∴∠1=∠α,∵PM∥CG,∴∠2=∠β,∴∠1+∠2=∠α+∠β,即:APE αβ∠=∠+∠,②如图,APE ∠与α∠,β∠之间的数量关系为APE βα∠=∠-∠;理由: 过P 作//PQ DF ,∵//DF CG ,∴//PQ CG ,∴QPA β∠=∠,QPE α∠=∠,∴APE APQ EPQ βα∠=∠-∠=∠-∠;(3)如图,由①可知,∠N=∠3+∠4,∵EN 平分∠DEP,AN 平分∠PAC, ∴∠3=12∠α,∠4=12∠β, ∴1()2ANE αβ∠=∠+∠,∴ANE ∠与α∠,β∠之间的数量关系为1()2ANE αβ∠=∠+∠. 【点睛】 本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.22.(1)见解析;(2)526∠=∠,见解析;(3)n-1 【分析】(1)延长AD 交直线b 于点E ,根据平行线的性质与判定即可得证;(2)由//HK FG 得到3EFG α∠+∠=∠,4FJH ∠=∠,再根据三角形的内角和与对顶角的性质即可求解;(3)延长EF 交直线b 于点P ,过点J 作//JQ a ,根据平行线的性质及三角形外角的性质等,得到180107n ︒∠=-∠,()1918017n n n-∠=⋅︒--∠,即可得到9:10∠∠的值. 【详解】(1)如图,延长AD 交直线b 于点E ,ADC C ∠=∠,//AD BC ∴,2AEB ∴∠=∠,12∠=∠,1AEB ∴∠=∠,(2)∵//HK FG ,60EFG ∠=︒,∴360α∠+∠=︒,4FJH ∠=∠,5120FJH ∠+∠=︒,∵423∠=∠,∴523120∠+∠=︒,即()5260120α∠+-∠=︒,∴52α∠=∠,∵6α∠=∠,∴526∠=∠.(3)如图,延长EF 交直线b 于点P ,过点J 作//JQ a ,则10FPI ∠=∠,8180HJQ ∠+∠=︒,7QJI FIP ∠=∠=∠,∵EFG FPI FIP ∠=∠+∠,9HJI EFG ∠=∠+∠, ∴1801077EFG n︒∠=∠-∠=-∠, ()1918017n HJI EFG n n -∠=∠-∠=⋅︒--∠, ∴9:101n ∠∠=-,故答案为:1n -.【点睛】本题考查平行线的性质与判定,三角形内角和定理,三角形外角的性质等内容,解题的关键是根据题意作出辅助线.23.(1)145︒;(2)55︒;(3)2125PGN SNP NPG ∠+∠-︒=∠(1)过点F 作//FN AB ,根据AB ∥CD ,EF 垂直于FG ,∠FGD =125°可计算NFG ∠,EFN ∠,从而求算BEF ∠;(2)作//FN AB ,//HK AB 交MQ 于点K ,由(1)知55,=35NFG EFN ∠=︒∠︒,从而求算35AEF EHL ∠=∠=︒,再根据90EHM M ∠=∠+︒,设M x ∠=︒,利用外角求出MHL ∠,从而求算MQA ∠;(3)作//PI AB 交NG 于I ,连接NP ,GP ,FP ,设SNP x ∠=︒ ,则NPI x ∠=︒ 设IPG y ∠=︒ ,则PGT y ∠=︒,从而表示PGN ∠,进而寻找数量关系.【详解】(1)过点F 作//FN AB ,如图:∵AB ∥CD ,EF 垂直于FG ,∠FGD =125°∴55,905535NFG EFN ∠=︒∠=︒-︒=︒∴180145BEF EFN ∠=︒-∠=︒(2)作//FN AB ,//HK AB 交MQ 于点K ,如图:由(1)知:55,905535NFG EFN ∠=︒∠=︒-︒=︒∴35AEF EHL ∠=∠=︒又∵90EHM M ∠=∠+︒,设M x ∠=︒∴90EHM x ∠=︒+︒∴903555MHL x x ∠=︒+︒-︒=︒+︒∴5555MKH MQA MHL M x x ∠=∠=∠-∠=︒+︒-︒=︒(3)作//PI AB 交NG 于I ,连接NP ,GP ,FP ,如图:设SNP x ∠=︒ ,则NPI x ∠=︒设IPG y ∠=︒ ,则PGT y ∠=︒又∵125FGD ∠=︒∴125PGN y ∠=︒-︒∴2125PGN SNP NPG ∠+∠-︒=∠【点睛】本题考查平行线的性质综合,转化相关的角度是解题关键.24.(1)详见解析;(2)HPQ ∠的大小不发生变化,一直是45︒.【分析】(1)利用平行线的性质推知180BEF EFD ∠+∠=︒;然后根据角平分线的性质、三角形内角和定理证得90EPF ∠=︒,即EG PF ⊥,故结合已知条件GH EG ⊥,易证//PF GH ;(2)利用三角形外角定理、三角形内角和定理求得49039022∠=︒-∠=︒-∠;然后由邻补角的定义、角平分线的定义推知14522QPK EPK ∠=∠=︒+∠;最后根据图形中的角与角间的和差关系求得HPQ ∠的大小不变,是定值45︒.【详解】解:(1)证明:如图1,//AB CD ,180BEF EFD ∴∠+∠=︒.又BEF ∠与EFD ∠的角平分线交于点P , 1()902FEP EFP BEF EFD ∴∠+∠=∠+∠=︒, 90EPF ∴∠=︒,即EG PF ⊥.GH EG ⊥,//PF GH ∴;(2)HPQ ∠的大小不发生变化,理由如下:如图2,12∠=∠, 322∠=∠∴. 又GH EG ⊥,49039022∠=︒-∠=︒-∠∴.18049022EPK ∠=︒-∠=︒+∠∴.PQ ∵平分EPK ∠,14522QPK EPK ∴∠=∠=︒+∠. ∴245HPQ QPK ∠=∠-∠=︒,∴HPQ ∠的大小不发生变化,一直是45︒.【点睛】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④//a b ,////b c a c ⇒.25.(1) 150°;(2) ∠OCD+∠BO'E=240°;(3) 30°+12α.【分析】(1)先求出到∠AOE 的度数,再根据直角、周角的定义即可求解;(2)过O 点作OF//CD ,根据平行线的判定和性质可得∠OCD 、∠BO'E 的数量关系; (3)根据四边形内角和为360°,再结合(2)的结论以及角平分线的定义即可解答.【详解】解:(1)∵CD//OE ,∴∠AOE=∠OCD=120°,∴∠BOE=360°-90°-120°=150°;(2)如图2,过O 点作OF//CD ,∴CD//OE ,∴OF ∥OE ,∴∠AOF=180°-∠OCD ,∠BOF=∠EO'O=180°-∠BO'E ,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO'E=360°-(∠OCD+∠BO'E )=120°, ∴∠OCD+∠BO'E=240°;(3)∵CP 是∠OCD 的平分线,∴∠OCP=12∠OCD , ∴∠CPO'=360°-90°-120°-∠OCP=150°-12∠OCD =150°-12(240°-∠BO'E ) =30°+12α【点睛】本题考查了平行线的判定和性质、周角的定义、角平分线的定义,确定∠OCD 、∠B0'E 的数量关系是解答本题的关键.26.(1)详见解析;(2)118034∠+︒=∠+∠,详见解析;(3)230∠=︒【分析】(1)如下图,延长AC ,DE 相交于点G ,利用∠G 作为过渡角可证;(2)如下图,作//CP AB ,可得//CP DE ,推导得出118034∠+︒=∠+∠; (3)如下图,过Q 作1//AD l ∠,利用平行可得出70x y +=︒,再利用////QR AB DE 得到22110x y z +-=︒,从而得出z 的值.【详解】(1)延长,AC DE 相交于点G .∵//AB DE ,//AC DF∴1G ∠=∠,2G ∠=∠∴12∠=∠.(2)作//CP AB ,则//CP DE∵//CP AB ,//CP DE .∴1ACP ∠=∠,4180ECP ∠+∠=︒∴11804ACP ECP ∠+︒=∠+∠+∠即118034∠+︒=∠+∠.(3)过Q 作1//AD l ∠则5D ∠=.6y ∠=∵56110180∠+∠+︒=︒∴110180x y ++︒=︒即70x y +=︒旁证:过Q 作//QR AB ,则//QR DE .设DAQ x ∠=,APQ y ∠=,2z ∠=.则2BAQ x ∠=,2FDQ y ∠=,1z ∠=.∵////QR AB DE∴2AQR BAQ x ∠=∠=,2EDQ DQR y z ∠=∠=-.∴22110x y z +-=︒又∵70x y +=︒∴22140x y +=︒∵(2)(22)30x y x y z z +-+-==︒∴230∠=︒【点睛】本题考查角度的推导,第(3)问的解题关键是通过方程思想和整体思想,计算得出∠2的大小.27.(1)30°,60°;(2)∠CAF+∠EMC=90°,理由见解析【分析】(1)利用∠CAF=∠BAF-∠BAC 求出∠CAF 度数,求∠EMC 度数转化到∠MCH 度数; (2)过点C 作CH ∥GF ,得到CH ∥DE ,∠CAF 与∠EMC 转化到∠ACH 和∠MCH 中,从而发现∠CAF 、∠EMC 与∠ACB 的数量关系.【详解】(1)过点C 作CH ∥GF ,则有CH ∥DE ,所以∠CAF=∠HCA ,∠EMC=∠MCH ,∵∠BAF=90°,∴∠CAF=90°-60°=30°.∠MCH=90°-∠HCA=60°,∴∠EMC=60°.故答案为30°,60°.(2)∠CAF+∠EMC=90°,理由如下:过点C 作CH ∥GF ,则∠CAF=∠ACH .∵DE ∥GF ,CH ∥GF ,∴CH ∥DE .∴∠EMC=∠HCM .∴∠EMC+∠CAF=∠MCH+∠ACH=∠ACB=90°.【点睛】考查了平行线的判定和性质,解题关键是熟记并灵活运用其性质和判定.28.(1)见解析,(2)900,180(1).n ︒︒-【分析】(1)过点E 作EF ∥CD ,根据平行线的判定得出EF ∥AB ,根据平行线的性质得出即可;(2)如图②过E 作EQ ∥CD ,过F 作FW ∥CD ,过G 作GR ∥CD ,过H 作HY ∥CD ,根据平行线的判定得出EQ ∥FW ∥GR ∥HY ∥AB ∥CD ,根据平行线的性质得出即可;如图③,利用(1)(2)②发现规律,直接得到答案.【详解】证明:(1)证明:过点E 作EF ∥CD ,∵AB ∥CD , ∴EF ∥AB ,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°,∴∠1+∠2+∠MEN =360°;(2)如图②过E 作EQ ∥CD ,过F 作FW ∥CD ,过G 作GR ∥CD ,过H 作HY ∥CD ,∵CD ∥AB , ∴EQ ∥FW ∥GR ∥HY ∥AB ∥CD ,∴∠1+∠MEQ=180°,∠QEF+∠EFW=180°,∠WFG+∠FGR=180°,∠RGH+∠GHY=180°,∠YHN+∠6=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=5×180°=900°, 如图③,由∠1+∠2+∠MEN 3601802=︒=︒⨯, ∠1+∠2+∠3+∠4+∠5+∠69001805=︒=︒⨯,可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n 180(1)n =︒-, 故答案为:900°,180(1)n ︒-;【点睛】本题考查了平行线的性质和判定,能灵活运用平行线的性质进行推理是解此题的关键.。

相交线与平行线测试题及答案

相交线与平行线测试题及答案

相交线与平行线测试题及答案1. 单选题:在平面上,两条互相垂直的直线称为()。

A. 平行线B. 垂直线C. 相交线D. 对称线答案:B. 垂直线2. 单选题:下面哪种说法是正确的?A. 平行线永远不会相交B. 相交线永远不会平行C. 平行线和相交线可以同时存在D. 平行线和相交线不能同时存在答案:C. 平行线和相交线可以同时存在3. 多选题:判断下列述句是否正确。

1) 平行线没有交点。

2) 相交线可以有无数个交点。

3) 两条垂直线的交点一定是直角。

A. 正确的有1)、2)、3)B. 正确的有1)、3)C. 正确的有2)、3)D. 正确的只有3)答案:B. 正确的有1)、3)4. 填空题:两条互相垂直的直线所成的角度为()度。

答案:90度5. 判断题:两条平行线的夹角为180度。

答案:错误6. 判断题:两条相交直线一定不平行。

答案:正确7. 计算题:已知直线L1与直线L2互相垂直,L1的斜率为2,过点(1,3)的直线L2的斜率为()。

答案:-1/28. 计算题:已知直线L1过点(1,2)且斜率为3/4,直线L2与L1平行且过点(3,5),求直线L2的斜率。

答案:3/49. 解答题:请解释什么是相交线和平行线,并举例说明。

答案:相交线是指两条直线或线段在平面上有唯一一点相交。

例如,在平面上有两条直线,一条通过点A和点B,另一条通过点C和点D,如果点A与点C不重合并且点B与点D不重合,则这两条直线相交于点E。

平行线是指在平面上没有任何交点的两条直线。

例如,在平面上有一条直线通过点A和点B,另一条直线通过点C和点D,如果两条直线没有任何一点相交,则这两条直线是平行线。

10. 解答题:如何通过直线的斜率来判断两条直线是否平行或垂直?答案:两条直线平行的充要条件是它们的斜率相等,即斜率相同的两条直线是平行线。

两条直线垂直的充要条件是它们的斜率的乘积为-1,即斜率之积为-1的两条直线是垂直线。

总结:在平面几何中,相交线是指两条直线或线段在平面上有唯一一点相交,平行线是指在平面上没有任何交点的两条直线。

(专题精选)初中数学相交线与平行线分类汇编及答案

(专题精选)初中数学相交线与平行线分类汇编及答案

(专题精选)初中数学相交线与平行线分类汇编及答案一、选择题1.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数, 进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B .【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.2.如图,点,D E 分别在BAC ∠的边,AB AC 上,点F 在BAC ∠的内部,若1,250F ︒∠=∠∠=,则A ∠的度数是( )A .50︒B .40︒C .45︒D .130︒【答案】A【解析】【分析】 利用平行线定理即可解答.【详解】解:根据∠1=∠F,可得AB//EF,故∠2=∠A=50°.故选A.【点睛】本题考查平行线定理:内错角相等,两直线平行.3.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA的度数是()A.28°B.30°C.38°D.36°【答案】D【解析】【分析】根据两直线平行,内错角相等,得到∠DFA=∠CDB,根据三角形的内角和求出∠CDB的度数从而得到∠DFA的度数.【详解】解:∠C=(52)1801085︒-⨯=,且CD=CB,∴∠CDB=∠CBD∵由三角形的内角和∠C+∠CDB+∠CBD=180°∴∠CDB+∠CBD=180°-∠C =180°-108°=72°∴∠CDB==∠CBD=7236 2︒︒=又∵AF∥CD∴∠DFA=∠CDB=36°(两直线平行,内错角相等)故选D【点睛】本题主要考查多边形的基本概念和三角形的基本概念,正n边形的内角读数为(2)180n n-⨯.4.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=50°,则∠AED=( )A .65°B .115°C .125°D .130°【答案】B【解析】 试题分析:∵AB ∥CD ,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE 平分∠CAB ,∴∠EAB=65°,∵AB ∥CD ,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B .考点:平行线的性质.5.如图,直线a ∥b ,直线c 与直线a ,b 相交,若∠1=56°,则∠2等于( )A .24°B .34°C .56°D .124°【答案】C【解析】【分析】【详解】 试题分析:根据对顶角相等可得∠3=∠1=56°,根据平行线的性质得出∠2=∠3=56°.故答案选C.考点:平行线的性质.6.如图AD ∥BC ,∠B =30o ,DB 平分∠ADE ,则∠DEC 的度数为 ( )A.30o B.60o C.90o D.120o【答案】B【解析】∵AD∥BC,∴∠ADB=∠DBC,∵DB平分∠ADE,∴∠ADB=∠ADE,∵∠B=30°,∴∠ADB=∠BDE=30°,则∠DEC=∠B+∠BDE=60°.故选B.【点睛】此题主要考查了平行线的性质,正确得出∠ADB的度数是解题关键.7.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有()个.A.1个B.2个C.3个D.4个【答案】D【解析】【分析】到l1距离为2的直线有2条,到l2距离为1的直线有2条,这4条直线有4个交点,这4个交点就是“距离坐标”是(2,1)的点.【详解】因为两条直线相交有四个角,因此每一个角内就有一个到直线l1,l2的距离分别是2,1的点,即距离坐标是(2,1)的点,因而共有4个.故选:D.【点睛】本题主要考查了点到直线的距离,解题时注意:到一条已知直线距离为定值的直线有两条.8.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A是72°,第二次拐弯处的角是∠B,第三次拐弯处的∠C是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B 等于( )A .81°B .99°C .108°D .120°【答案】B【解析】 试题解析:过B 作BD ∥AE ,∵AE ∥CF ,∴BD ∥CF ,∴72,180A ABD DBC C ∠=∠=∠+∠=o o,∵153C ∠=o ,∴27DBC ∠=o ,则99.ABC ABD DBC ∠=∠+∠=o 故选B.9.如图,11∥l 2,∠1=100°,∠2=135°,则∠3的度数为( )A .50°B .55°C .65°D .70°【答案】B【解析】【分析】 如图,延长l 2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.【详解】如图,延长l 2,交∠1的边于一点,∵11∥l 2,∴∠4=180°﹣∠1=180°﹣100°=80°,由三角形外角性质,可得∠2=∠3+∠4,∴∠3=∠2﹣∠4=135°﹣80°=55°,故选B .【点睛】本题考查了平行线的性质及三角形外角的性质,熟练运用平行线的性质是解决问题的关键.10.如图,直线 a ∥b ∥c ,直角三角板的直角顶点落在直线 b 上,若∠1=30°,则∠2 等于( )A .40°B .60°C .50°D .70° 【答案】B【解析】【分析】根据两直线平行内错角相等得1324==∠∠,∠∠,再根据直角三角板的性质得341290+=+=︒∠∠∠∠,即可求出∠2的度数.【详解】∵a ∥b ∥c∴1324==∠∠,∠∠∵直角三角板的直角顶点落在直线 b 上∴341290+=+=︒∠∠∠∠∵∠1=30°∴290160=︒-=︒∠∠故答案为:B .【点睛】本题考查了平行线和三角板的角度问题,掌握平行线的性质、三角板的性质是解题的关键.11.如图,DE ∥BC ,BE 平分∠ABC ,若∠1=70°,则∠CBE 的度数为( )A .20°B .35°C .55°D .70°【答案】B【解析】【分析】 根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE ∥BC ,∴∠1=∠ABC=70°,∵BE 平分∠ABC , ∴1352CBE ABC ∠=∠=︒, 故选:B .【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.12.如图,直线AD BC ∥,30C ∠=︒,:1:3ADB BDC ∠∠=,则DBC ∠的度数是( )A .35°B .37.5°C .45°D .40° 【答案】B【解析】【分析】根据两直线平行,同旁内角互补,可得出18030015ADC ∠=︒-︒=︒,再结合:1:3ADB BDC ∠∠=即可得出ADB ∠的度数,最后,根据两直线平行,内错角相等即可得出答案.【详解】解:∵//AD BC ,30C ∠=︒∴18030015ADC ∠=︒-︒=︒∵:1:3ADB BDC ∠∠=∴115037.513ADB ∠=︒⨯=︒+ ∴37.5DBC ADB ∠=∠=︒故选:B .【点睛】本题考查的知识点是平行线的性质,难度不大,熟记平行线性质的内容是解此题的关键.13.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是( )A .45°B .60°C .75°D .82.5°【答案】C【解析】【分析】直接利用平行线的性质结合已知角得出答案.【详解】如图,作直线l 平行于直角三角板的斜边,可得:∠3=∠2=45°,∠4=∠5=30°,故∠1的度数是:45°+30°=75°,故选C .【点睛】本题主要考查了平行线的性质,正确作出辅助线是解题关键.14.如图,等边ABC V 边长为a ,点O 是ABC V 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE V 形状不变;②ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE V 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .1【答案】A【解析】【分析】连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和OE ,然后三角形的面积公式可得S △ODE2,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC2即可判断②和③;求出BDE V 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC V 是等边三角形,点O 是ABC V 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB ∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120° ∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE V 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠∴∴S △ODE =12DE·OH=4OE 2 ∴OE 最小时,S △ODE 最小,过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE ′=12BC=12a 在Rt △OBE ′中 OE′=BE′·tan ∠OBE ′=12a 33 ∴S △ODE 3223 ∵△ODB ≌△OEC∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =1223 23=1423 ∴S △ODE ≤14S 四边形ODBE 即ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确; ∵S 四边形ODBE 23 ∴四边形ODBE 的面积始终不变,故③正确; ∵△ODB ≌△OEC∴DB=EC∴BDE V 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE ∴DE 最小时BDE V 的周长最小∵3OE∴OE 最小时,DE 最小而OE 的最小值为OE′=36a ∴DE 336a =12a ∴BDE V 的周长的最小值为a +12a =1.5a ,故④正确; 综上:4个结论都正确,故选A .【点睛】此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.15.如图,下列判断:①若12A C ∠=∠∠=∠,,则B D ∠=∠;②若12B D ∠=∠∠=∠,,则A C ∠=∠:③若,A C B D ∠=∠∠=∠,则12∠=∠.其中,正确的个数是( ).A .0B .1C .2D .3【答案】D【解析】【分析】 ①根据12A C ∠=∠∠=∠,证明四边形DEBF 是平行四边形即可判断;②根据12B D ∠=∠∠=∠,证明DC ∥AB 即可判断;③根据,A C B D ∠=∠∠=∠证明DC ∥AB 即可判断.【详解】解:如图,标出∠3,①∵A C ∠=∠,∴DC ∥AB (内错角相等,两直线平行),∵2,3∠∠是对顶角,∴23∠∠=,∴13∠=∠(等量替换),∴DE ∥FB (同位角相等,两直线平行),∴四边形DEBF 是平行四边形(两组对边分别平行),∴B D ∠=∠,②∵2,3∠∠是对顶角,∴23∠∠=,∴13∠=∠(等量替换),∴DE ∥FB (同位角相等,两直线平行),∴∠B+∠DEB=180°,又∵B D ∠=∠,∴∠D+∠DEB=180°,∴DC ∥AB (同旁内角互补,两直线平行),∴A C ∠=∠(两直线平行,内错角相等);故②正确;③∵A C ∠=∠,∴DC ∥AB (内错角相等,两直线平行),∴B CFB ∠=∠(两直线平行,内错角相等),又∵B D ∠=∠,∴D CFB ∠=∠,∴DE ∥FB (同位角相等,两直线平行),∴13∠=∠(两直线平行,同位角相等),∵2,3∠∠是对顶角,∴23∠∠=,∴12∠=∠(等量替换),故③正确.故D 为答案.【点睛】本题主要考查了直线平行的判定(同位角相等、内错角相等、同旁内角互补,两直线平行)、直线平行的性质、等量替换的相关知识点,掌握直线平行的判定和性质是解题的关键.16.如图//,AB CD EG EH FH ,、、分别平分,,,CEF DEF EFB ∠∠∠则图中与BFH ∠相等的角(不含它本身)的个数是( )A .5B .6C .7D .8【解析】【分析】先根据平行线的性质得到CEF EFB ∠=∠,CEG EGB ∠=∠,再利用把角平分线的性质得到CEG FEG EFH BFH ∠=∠=∠=∠,最后对顶角相等和等量替换得到答案.【详解】解:如图,做如下标记,∵//AB CD ,∴,CEF EFB ∠=∠CEG EGB ∠=∠(两直线平行,内错角相等),又∵EG 、FH 分别平分,,CEF EFB ∠∠∴CEG FEG EFH BFH ∠=∠=∠=∠,又∵CEG NEG ∠=∠,FEG MEN ∠=∠,EGB AGP ∠=∠(对顶角相等),∴BFH ∠=CEG FEG EFH MEN NED EGF AGP ∠=∠=∠=∠=∠=∠=∠(等量替换)故与BFH ∠相等的角有7个,故C 为答案.【点睛】本题主要考查直线平行的性质、对顶角的性质(对顶角相等)、角平分线的性质(角平分线把角分为两个大小相等的角)还有等量替换,把所学知识灵活运用是解题的关键.17.如图,直线,AB CD 相交于点,50,O AOC OE AB ︒∠=⊥,则DOE ∠的大小是( )A .40︒B .50︒C .70︒D .90︒【答案】A【解析】【分析】 根据对顶角的性质,把BOD ∠的度数计算出来,再结合OE AB ⊥,即可得到答案.【详解】解:∵50AOC ∠=︒,∴50BOD ∠=︒(对顶角相等),又∵OE AB ⊥,∴90EOB ∠=︒,∴905040DOE BOE DOB ∠=∠-∠=︒-︒=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等),判断,BOD AOC ∠∠是对顶角是解题的关键.18.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )①//AD BC ;②B D ∠=∠;③//AB CD ;④2180B ∠+∠=︒A .4个B .3个C .2个D .1个【答案】A【解析】【分析】根据∠1=∠B 可判断AD ∥BC ,再结合∠2=∠C 可判断AB ∥CD ,其余选项也可判断.【详解】∵∠1=∠B∴AD ∥BC ,①正确;∴∠2+∠B=180°,④正确;∵∠2=∠C∴∠C+∠B=180°∴AB ∥CD ,③正确∴∠1=∠D ,∴∠D=∠B ,②正确故选:A【点睛】本题考查平行的证明和性质,解题关键是利用AD ∥BC 推导出∠B+∠2=180°,为证AB ∥DC 作准备.19.如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A.65°B.70°C.75°D.80°【答案】D【解析】【分析】由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.【详解】解:∵AB∥CD,∴∠C=∠1=45°,∵∠3是△CDE的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b ∥c⇒a∥c.20.下列结论中:①若a=b a b;②在同一平面内,若a⊥b,b//c,则a⊥c;③直线外一点到直线的垂线段叫点到直线的距离;33( ) A.1个B.2个C.3个D.4个【答案】B【解析】【分析】【详解】a b解:①若a=b0②在同一平面内,若a⊥b,b//c,则a⊥c,正确③直线外一点到直线的垂线段的长度叫点到直线的距离33正确的个数有②④两个故选B。

【黄冈中考】备战2012年中考数学 相交线与平行线的押轴题解析汇编二 人教新课标版

【黄冈中考】备战2012年中考数学 相交线与平行线的押轴题解析汇编二 人教新课标版

【黄冈中考】备战2012年中考数学——相交线与平行线的押轴题解析汇编二相交线与平行线3. (某某省某某市,3,4分)如图,已知AB //CD ,BC 平分∠ABE ,∠C =34°,则∠BED 的度数是( ) A. 17° B. 34° C. 56° D. 68°【解题思路】两直线平行,同位角相等,内错角相等,同旁内角互补. 题中∠BED 与∠ABE 是一组内错角,∠ABC 与∠C 也是一组内错角,根据角平分线的定义,可知∠ABE =2∠ABC =2∠C =68°.本题也可以通过三角形的内角和的推论得出结论. 【答案】D【点评】本题考查两直线平行的性质,和角平分线的定义,难度较小.8.(2011某某义乌,8,3分)如图,已知AB ∥CD ,∠A =60°,∠C =25°,则∠E 等于 A. 60°B. 25° C. 35° D. 45°【解题思路】设AE 与CD 的交点为M ,根据平行线的性质则,∠A=∠DME=60°,又∠DME 是△CEM 的外角,所以∠DME=∠C+∠E ,所以∠E=60°-25°=35°. 【答案】C【点评】本题考查平行线的性质和三角形外角的性质,解题的关键是寻找已知和未知之间的桥梁,欲求什么,先求什么,将已知和未知结合起来.难度中等.第8题 MABCDE60°2.(2011某某省)如图1,∠1+∠2等于 A .60°B .90°C .110°D .180°【分析与解】借助基本图形的直观特征不难得出∠1+∠2=90°,此题选B.【点评】本题属于容易题,主要考查基本几何图形-――角的认识及相关知识的应用. (2011某某省,11,3分)11、如图2,已知直线a,b 被直线c 所截,且a ∥b,∠1=048,那么∠2的度数为( )A 、042 B 、048 C 、052 D 、0132【解题思路】由a ∥b 可知∠1=∠3=048,而∠3=∠2,故∠2=048 【答案】B .【点评】本题主要考查平行线的性质和对顶角的定义,关键是抓住两平行线被第三条直线所截中的“三线八角”,难度较小。

第五章相交线与平行线单元试卷中考真题汇编[解析版]

第五章相交线与平行线单元试卷中考真题汇编[解析版]

第五章相交线与平行线单元试卷中考真题汇编[解析版]一、选择题1.如图,下列能判断AB∥CD的条件有()①∠B+∠BCD=180°②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5A.1 B.2 C.3 D.42.如图,OC是∠AOB的平分线,直线l∥OB.若∠1=50°,则∠2的大小为()A.50°B.60°C.65°D.80°3.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个4.已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为(). A.20° B.80° C.160° D.20°或160°5.如图,在△ABC中,AB=AC,CD∥AB,点E在BC的延长线上.若∠A=30°,则∠DCE的大小为()A.30° B.52.5° C.75° D.85°6.如下图,在下列条件中,能判定AB//CD的是( )A .∠1=∠3B .∠2=∠3C .∠1=∠4D .∠3=∠4 7.下列命题中,假命题是( )A .对顶角相等B .同角的余角相等C .面积相等的两个三角形全等D .平行于同一条直线的两直线平行 8.如图,将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF 若5BC cm ,则EC 的长为( )A .2cmB .4cmC .6cmD .8cm9.光线在不同介质中的传播速度不同,因此当光线从空气射向水中时,会发生折射.如图,在空气中平行的两条入射光线,在水中的两条折射光线也是平行的.若水面和杯底互相平行,且∠1=122°,则∠2=( )A .61°B .58°C .48°D .41°10.如图,将ABC 沿BC 的方向平移1cm 得到DEF ,若ABC 的周长为6cm ,则四边形ABFD 的周长为( )A .6cmB .8cmC .10cmD .12cm 11.把一张有一组对边平行的纸条,按如图所示的方式析叠,若∠EFB =35°,则下列结论错误的是( )A .∠C 'EF =35°B .∠AEC =120° C .∠BGE =70°D .∠BFD =110°12.下列命题中,是真命题的是( )A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行二、填空题13.如图,已知AD //BC ,BD 平分∠ABC ,∠A =112°,且BD ⊥CD ,则∠ADC =_____.14.如图,已知AB ∥CD ,点E ,F 分别在直线AB ,CD 上点P 在AB ,CD 之间且在EF 的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则∠EPF 的度数为 _____.15.如图,AB ∥CD ,CF 平分∠DCG ,GE 平分∠CGB 交FC 的延长线于点E ,若∠E =34°,则∠B 的度数为____________.16.规律探究:同一平面内有直线1a 、2a 、3a ,⋯,100a ,若12//a a ,23a a ⊥,34//a a ,45a a ⊥,⋯,按此规律,1a 与100a 的位置关系是______.17.如图,两直线AB 、CD 平行,则12345∠+∠+∠+∠+∠=__________.18.如图,a ∥b ,∠2=∠3,∠1=40°,则∠4的度数是______度.19.如图,1∠与2∠是对顶角,110α∠=+︒,250∠=︒,则α=______.20.如图,已知12∠=∠,求证:A BCH ∠=∠.证明:∵12∠=∠(已知)23∠∠=(______)∴13∠=∠(等量代换)∴//CH (______)(同位角相等,两直线平行)∴A BCH ∠=∠(______)三、解答题21.阅读下面材料:彤彤遇到这样一个问题:已知:如图甲,AB //CD ,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED . 求证:∠BED =∠B +∠D .彤彤是这样做的:过点E 作EF //AB ,则有∠BEF =∠B .∵AB//CD,∴EF//CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.即∠BED=∠B+∠D.请你参考彤彤思考问题的方法,解决问题:如图乙.已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.(1)如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;(2)如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,直接写出∠BED的度数(用含有α,β的式子表示).22.如图①,已知AB∥CD,一条直线分别交AB、CD于点E、F,∠EFB=∠B,FH⊥FB,点Q在BF上,连接QH.(1)已知∠EFD=70°,求∠B的度数;(2)求证:FH平分∠GFD.(3)在(1)的条件下,若∠FQH=30°,将△FHQ绕着点F顺时针旋转,如图②,若当边FH转至线段EF上时停止转动,记旋转角为α,请直接写出当α为多少度时,QH与△EBF的某一边平行?23.如图,A、B分别是直线a和b上的点,∠1=∠2,C、D在两条直线之间,且∠C=∠D.(1)证明:a∥b;(2)如图,∠EFG=60°,EF交a于H,FG交b于I,HK∥FG,若∠4=2∠3,判断∠5、∠6的数量关系,并说明理由;(3)如图∠EFG是平角的n分之1(n为大于1的整数),FE交a于H,FG交b于I.点J在FG上,连HJ.若∠8=n∠7,则∠9:∠10=______ .24.(1)如图1,已知任意ABC ∆,过点C 作//DE AB ,求证:180A B ACB ∠+∠+∠=︒;(2)如图2,求证:∠AGF=∠AEF+∠F ;(3)如图3,//,119,AB CD CDE GF ∠=︒交DEB ∠的角平分线EF 于点,150F AGF ∠=︒,求F ∠的度数.25.已知E 、D 分别在AOB ∠的边OA 、OB 上,C 为平面内一点,DE 、DF 分别是CDO ∠、CDB ∠的平分线.(1)如图1,若点C 在OA 上,且//FD AO ,求证:DE AO ⊥;(2)如图2,若点C 在AOB ∠的内部,且DEO DEC ∠=∠,请猜想DCE ∠、AEC ∠、CDB ∠之间的数量关系,并证明;(3)若点C 在AOB ∠的外部,且DEO DEC ∠=∠,请根据图3、图4直接写出结果出DCE ∠、AEC ∠、CDB ∠之间的数量关系.26.已知://AB DE ,//AC DF ,B C E F 、、、四点在同一直线上.(1)如图1,求证:12∠=∠;(2)如图2,猜想1,3,4∠∠∠这三个角之间有何数量关系?并证明你的结论; (3)如图3,Q 是AD 下方一点,连接,AQ DQ ,且13DAQ BAD ∠=∠,13ADQ ADF ∠=∠,若110AQD ∠=︒,求2∠的度数. 27.已知直线AB CD ∥,直线EF 与直线AB 、CD 分别相交于点E 、F .(1)如图1,若160∠=︒,求2∠,3∠的度数;(2)若点P 是平面内的一个动点,连接PE 、PF ,探索EPF ∠、PEB ∠、PFD ∠之间的数量关系;①当点P 在图2的位置时,请写出EPF ∠、PEB ∠、PFD ∠之间的数量关系并证明; ②当点P 在图3的位置时,请写出EPF ∠、PEB ∠、PFD ∠之间的数量关系并证明; ③当点P 在图4的位置时,请直接写出EPF ∠、PEB ∠、PFD ∠之间的数量关系.28. [问题解决]:如图1,已知AB ∥CD ,E 是直线AB ,CD 内部一点,连接BE ,DE ,若∠ABE=40°,∠CDE=60°,求∠BED 的度数.嘉琪想到了如图2所示的方法,但是没有解答完,下面是嘉淇未完成的解答过程: 解:过点E 作EF ∥AB ,∴∠ABE=∠BEF=40°∵AB ∥CD ,∴EF ∥CD ,…请你补充完成嘉淇的解答过程:[问题迁移]:请你参考嘉琪的解题思路,完成下面的问题:如图3,AB ∥CD ,射线OM 与直线AB ,CD 分别交于点A ,C ,射线ON 与直线AB ,CD 分别交于点B ,D ,点P 在射线ON 上运动,设∠BAP=α,∠DCP=β.(1)当点P 在B ,D 两点之间运动时(P 不与B ,D 重合),求α,β和∠APC 之间满足的数量关系.(2)当点P在B,D两点外侧运动时(P不与点O重合),直接写出α,β和∠APC之间满足的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.【详解】①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;②∠1 = ∠2,内错角相等,可判断AD∥BC,不可判断AB∥CD;③∠3 =∠4,内错角相等,可判断AB∥CD;④∠B = ∠5,同位角相等,可判断AB∥CD故选:C【点睛】本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB与CD 这两条直线,故是错误的.2.C解析:C【分析】根据平行线的性质可求∠AOB,再根据角平分线的定义求得∠BOC,再根据平行线的性质可求∠2.【详解】∵l∥OB,∴∠AOB+∠1=180°∴∠AOB=180°﹣∠1=130°,∵OC是∠AOB的平分线,∴∠BOC=65°,∴∠2=∠BOC=65°.故选:C.【点睛】考查了角平分线,平行线的性质,关键是熟悉两直线平行,同位角相等;两直线平行,同旁内角互补的知识点.3.A解析:A【详解】∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,C CBFCD BDEDC BDF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.考点:1.全等三角形的判定与性质;2.角平分线的性质;3.全等三角形的判定与性质.4.D解析:D【解析】试题分析:如图,∵∠A=20°,∠A的两边分别和∠B的两边平行,∴∠B和∠A可能相等也可能互补,即∠B的度数是20°或160°,故选:D.5.C解析:C【解析】试题分析:根据等腰三角形的性质:等边对等角,可得∠B=∠ACB,然后根据三角形的内角和可求得∠B=75°,然后根据平行线的性质可得∠B=∠DCE=75°.故选:C.点睛:此题主要考查了等腰三角形的性质,解题关键是利用等腰三角形的性质求得两底角的值,然后根据平行线的性质可求解问题.6.C解析:C【解析】根据平行线的判定,可由∠2=∠3,根据内错角相等,两直线平行,得到AD∥BC,由∠1=∠4,得到AB∥CD.故选C.7.C解析:C【分析】根据对顶角的性质对A 进行判断;根据余角的性质对B 进行判断;根据三角形全等的判断对C 进行判断;根据平行线的传递性对D 进行判断.【详解】解:A 、对顶角相等,所以A 选项为真命题;B 、同角的余角相等,所以B 选项为真命题;C 、面积相等的两个三角形不一定全等,所以C 选项为假命题;D 、平行于同一条直线的两条直线平行,所以D 选项为真命题.故选:C .【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8.A解析:A【分析】由平移性质可得:BC=EF ,CF=3,cm 可得EC=EF-CF .【详解】因为将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF所以EF=5BC cm ,CF=3,cm所以EC=5-3=2(cm)故选:A【点睛】考核知识点:平移性质.抓住平移性质:对应边相等,是解题关键.9.B解析:B【分析】由水面和杯底互相平行,利用“两直线平行,同旁内角互补”可求出∠3的度数,由水中的两条折射光线平行,利用“两直线平行,同位角相等”可得出∠2的度数.【详解】如图,∵水面和杯底互相平行,∴∠1+∠3=180°,∴∠3=180°﹣∠1=180°﹣122°=58°.∵水中的两条折射光线平行,∴∠2=∠3=58°.故选:B.【点睛】本题考查了平行线的性质,牢记“两直线平行,同旁内角互补”和“两直线平行,同位角相等”是解题的关键.10.B解析:B【分析】先根据平移的性质得出AD=1,BF=BC+CF=BC+1,DF=AC,再根据四边形ABFD的周长=AD+AB+BF+DF即可得出结论.【详解】∵将周长为6的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=6,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=8.故选:B.【点睛】本题考查了平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.11.B解析:B【分析】根据平行线的性质即可求解.【详解】A.∵AE∥BF,∴∠C'EF=∠EFB=35°(两直线平行,内错角相等),故A选项不符合题意;B.∵纸条按如图所示的方式析叠,∴∠FEG=∠C'EF=35°,∴∠AEC=180°﹣∠FEG﹣∠C'EF=180°﹣35°﹣35°=110°,故B选项符合题意;C.∵∠BGE=∠FEG+∠EFB=35°+35°=70°,故C选项不符合题意;D.∵AE∥BF,∴∠EGF=∠AEC=110°(两直线平行,内错角相等),∵EC∥FD,∴∠BFD=∠EGF=110°(两直线平行,内错角相等),故D选项不符合题意;故选:B.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.12.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可.详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确;根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确.故选A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.二、填空题13.124°【分析】先由平行线的性质求得∠ABC,然后根据角平分线的定义求得∠DBC,然后再根据平行线的性质求得∠ADB,最后结合BD⊥CD即可求得∠ADC.【详解】解:∵AD//BC∴∠AB解析:124°【分析】先由平行线的性质求得∠ABC,然后根据角平分线的定义求得∠DBC,然后再根据平行线的性质求得∠ADB,最后结合BD⊥CD即可求得∠ADC.【详解】解:∵AD//BC∴∠ABC=180°-∠A=180°-112°=68°,∵BD平分∠ABC,∠ABC=34°∴∠DBC=12∵AD//BC∴∠ADB=∠DBC=34°∵BD⊥CD,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=90°+34°=124°.故答案为124°.【点睛】本题考查了平行线的性质、角平分线的性质、垂直的性质,其中掌握平行线的性质是解答本题的关键.14.45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF与∠AEM和∠CFM的关系,然后可得答案.【详解】解:如图1,过作,,,,,,,同理可得,由折叠可解析:45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF与∠AEM和∠CFM的关系,然后可得答案.【详解】解:如图1,MN AB,过M作//AB CD,//∴,AB CD NM////∠=∠,AEM EMN∴∠=∠,NMF MFC∠=︒,90EMF90AEM CFM ∴∠+∠=︒,同理可得P AEP CFP ∠=∠+∠, 由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 1()452P AEM CFM ∴∠=∠+∠=︒, 如图2,过M 作//MN AB ,//AB CD , ////AB CD NM ∴,180AEM EMN ∴∠+∠=︒,180NMF MFC ∠+∠=︒,360AEM EMF CFM ∴∠+∠+∠=︒,90EMF ∠=︒,36090270AEM CFM ∴∠+∠=︒-︒=︒,由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 12701352P ∴∠=︒⨯=︒, 综上所述:EPF ∠的度数为45︒或135︒,故答案为:45°或135°.【点睛】本题主要考查了平行线的性质,关键是正确画出图形,分两种情况分别计算出∠EPF 的度数.15.68°【分析】如图,延长DC 交BG 于M .由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E 即可解决问题.【详解】解:如图,延长DC 交BG 于M .由题意解析:68°【分析】如图,延长DC 交BG 于M .由题意可以假设∠DCF=∠GCF=x ,∠CGE=∠MGE=y .构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E,∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.16.互相垂直.【解析】【分析】依据,,,,,可得,即可得到与的位置关系是互相垂直.【详解】解:,,,,按此规律,,又,,,以此类推,,,故答案为:互相垂直.【点睛】本题主要解析:互相垂直.【解析】依据12a //a ,23a a ⊥,34a //a ,45a a ⊥,⋯,可得14n a a ⊥,即可得到1a 与100a 的位置关系是互相垂直.【详解】解:12a //a ,23a a ⊥,34a //a ,14a a ∴⊥,按此规律,58a a ⊥,又45a a ⊥,⋯,18a a ∴⊥,以此类推,14n a a ⊥100425=⨯,1100a a ∴⊥,故答案为:互相垂直.【点睛】本题主要考查了平行线的性质,解决问题的关键是根据已知条件得出规律:14n a a ⊥.17.【分析】根据题意,通过添加平行线,利用内错角和同旁内角,把这五个角转化成4个的角.【详解】分别过F 点,G 点,H 点作,,平行于AB利用内错角和同旁内角,把这五个角转化一下,可得,有4个的角, 解析:720【分析】根据题意,通过添加平行线,利用内错角和同旁内角,把这五个角转化成4个180的角.【详解】分别过F 点,G 点,H 点作2L ,3L ,4L 平行于AB利用内错角和同旁内角,把这五个角转化一下,可得,有4个180的角,1804720∴⨯=.故答案为720.【点睛】本题考查了平行线的性质:两直线平行,同旁内角互补,添加辅助线是解题关键.【解析】试题分析:如图,分别作a 、b 的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°.解析:40【解析】试题分析:如图,分别作a 、b 的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°. 故答案为:40.19.40°【分析】先根据对顶角相等的性质得出∠1=∠2,即可求出α的度数.【详解】解:∵∠1与∠2是对顶角,,∠2=50°,∴∠1=∠2,∵,∠2=50°,∴α+10°=50°,∴α=4解析:40°【分析】先根据对顶角相等的性质得出∠1=∠2,即可求出α的度数.【详解】解:∵∠1与∠2是对顶角,110α∠=+︒,∠2=50°,∴∠1=∠2,∵110α∠=+︒,∠2=50°,∴α+10°=50°,∴α=40°.故答案为:40°.【点睛】本题考查了对顶角相等的性质以及角度的计算.20.对顶角相等,AG ,两直线平行,同位角相等.根据对顶角的定义可得,再根据平行线的判定可得CH//AG,最后由两直线平行、同位角相等即可证明.【详解】解:证明:∵(已知)(对顶角相等)解析:对顶角相等,AG ,两直线平行,同位角相等.【分析】根据对顶角的定义可得23∠∠=,再根据平行线的判定可得CH//AG,最后由两直线平行、同位角相等即可证明.【详解】解:证明:∵12∠=∠(已知)23∠∠=(对顶角相等)∴13∠=∠(等量代换)∴//CH (AG )(同位角相等,两直线平行)∴A BCH ∠=∠(两直线平行,同位角相等).故答案为:对顶角相等,AG ,两直线平行,同位角相等.【点睛】本题考查了对顶角的定义、平行线的性质和判定定理等知识,灵活应用平行线的性质和判定定理是解答本题的关键.三、解答题21.(1)65°;(2)1118022αβ︒-+【分析】(1)如图1,过点E 作EF ∥AB ,当点B 在点A 的左侧时,根据∠ABC =60°,∠ADC =70°,参考彤彤思考问题的方法即可求∠BED 的度数;(2)如图2,过点E 作EF ∥AB ,当点B 在点A 的右侧时,∠ABC =α,∠ADC =β,参考彤彤思考问题的方法即可求出∠BED 的度数.【详解】(1)如图1,过点E 作EF ∥AB ,有∠BEF =∠EBA .∵AB ∥CD ,∴EF ∥CD .∴∠FED =∠EDC .∴∠BEF +∠FED =∠EBA +∠EDC .即∠BED =∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA=12∠ABC=30°,∠EDC=12∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度数为65°;(2)如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD,∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=12∠ABC=12α,∠EDC=12∠ADC=12β,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣12α +12β.答:∠BED的度数为180°﹣12α +12β.【点睛】本题考查了平行线的判定与性质以及角平分线的定义,解决本题的关键是熟练掌握平行线的判定与性质.22.(1)35°;(2)见解析;(3)30°或65°或175°或210°【分析】(1)利用AB∥CD,得到∠B=∠BFD,又∠B=∠EFB,由此得到∠EFB=∠BFD=12∠EFD=35°;(2)由(1)知∠EFB=∠BFD,利用FH⊥FB,得到∠BFD+∠DFH=90°,∠EFB+∠GFH=90°,再由等角的余角相等得到∠DFH=∠GFH即可求解;(3)按QH分别与△EBF的三边平行三种情况分类讨论即可.【详解】解:(1)AB∥CD,∴∠B=∠BFD.∵∠EFB=∠B,∴∠EFB=∠BFD=12∠EFD=35°,∴∠B=35°,故答案为:35°;(2)∵FH⊥FB,∴∠BFD+∠DFH=90°,∠EFB+∠GFH=90°∵∠EFB=∠BFD,由等角的余角相等可知,∴∠DFH=∠GFH.∴FH平分∠GFD.(3)分类讨论:情况一:QH与△EFB的边BF平行时,如下图1和图4所示:当为图1时:∵BF与HQ平行,∴∠H+∠BFH=180°,又∠H=60°,∴∠BFH=120°,此时旋转角α=∠BFQ=120°-∠HFQ=120°-90°=30°,当为图4时:此时∠HFB=∠H=60°,旋转角α=∠1+∠2+∠3=360°-(∠HFB+∠HFQ)=360°-(60°+90°)=210°;情况二:QH与△EFB的边BE平行时,如下图2所示:此时∠1=∠3=35°,∠2=∠4=30°,∴旋转角α=∠BFQ=∠1+∠2=35°+30°=65°;情况三:QH与△EFB的边EF平行时,如下图3所示:此时∠3=∠Q=30°,∴旋转角α=∠BFQ=∠1+∠2+∠3=35°+110°+30°=175°,综上所述,旋转角α=30°或65°或175°或210°.故答案为:α=30°或65°或175°或210°.【点睛】本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,周角的定义等,熟练掌握平行线的性质是解决本题的关键.23.(1)见解析;(2)526∠=∠,见解析;(3)n-1 【分析】(1)延长AD 交直线b 于点E ,根据平行线的性质与判定即可得证;(2)由//HK FG 得到3EFG α∠+∠=∠,4FJH ∠=∠,再根据三角形的内角和与对顶角的性质即可求解;(3)延长EF 交直线b 于点P ,过点J 作//JQ a ,根据平行线的性质及三角形外角的性质等,得到180107n ︒∠=-∠,()1918017n n n-∠=⋅︒--∠,即可得到9:10∠∠的值. 【详解】(1)如图,延长AD 交直线b 于点E ,ADC C ∠=∠,//AD BC ∴,2AEB ∴∠=∠,12∠=∠,1AEB ∴∠=∠,//a b ∴.(2)∵//HK FG ,60EFG ∠=︒,∴360α∠+∠=︒,4FJH ∠=∠,5120FJH ∠+∠=︒,∵423∠=∠,∴523120∠+∠=︒,即()5260120α∠+-∠=︒,∴52α∠=∠,∵6α∠=∠,∴526∠=∠.(3)如图,延长EF 交直线b 于点P ,过点J 作//JQ a ,则10FPI ∠=∠,8180HJQ ∠+∠=︒,7QJI FIP ∠=∠=∠,∵EFG FPI FIP ∠=∠+∠,9HJI EFG ∠=∠+∠, ∴1801077EFG n︒∠=∠-∠=-∠, ()1918017n HJI EFG n n -∠=∠-∠=⋅︒--∠, ∴9:101n ∠∠=-,故答案为:1n -.【点睛】本题考查平行线的性质与判定,三角形内角和定理,三角形外角的性质等内容,解题的关键是根据题意作出辅助线.24.(1)见详解;(2)见详解;(3)29.5°.【分析】(1)根据平行线的性即可A ACD ∠=∠,B BCE ∠=∠,再根据平角的定义进行等量代换即可证明;(2)因为根据平角的定义和三角形的内角和定理即可得到结论;(3)根据平行线的性质得到119DEB ∠=︒,61AED ∠=︒,由角平分线的性质得到59.5DEF ∠=︒,根据三角形的外角的性质即可得到结论.【详解】(1)如图1所示,在ABC ∆中,//DE AB ,A ACD ∴∠=∠,B BCE ∠=∠.180ACD BCA BCE ∠+∠+∠=︒,180A B ACB ∴∠+∠+∠=︒.即三角形的内角和为180︒;(2)180AGF FGE ∠+∠=︒,由(1)知,180GEF F FGE ∠+∠+∠=︒,AGF AEF F ∴∠=∠+∠;(3)//AB CD ,119CDE ∠=︒,119DEB CDE ∴∠=∠=︒,18061AED CDE ∠=︒-∠=︒,∵EF 平分DEB ∠,59.5DEF ∴∠=︒,120.5AEF AED FED ∴∠=∠+∠=︒,150AGF ∠=︒,AGF AEF F ∠=∠+∠,150120.529.5F ∴∠=︒-︒=︒.【点睛】本题考查了平行线的性质,三角形的内角和定理的证明与应用,三角形外角定理证明与应用,熟练掌握平行线的性质定理是解题的关键,此类题目每一步都为后续解题提供了解题条件或方法.25.(1)证明见解析;(2)∠CDB +∠AEC =2∠DCE ;(3)图3中∠CDB =∠AEC +2∠DCE ,图4中∠AEC =∠CDB +2∠DCE .【分析】(1)依据DE 、DF 分别是∠CDO 、∠CDB 的平分线,可得∠CDF =12∠CDB ,∠CDE =12∠CDO ,进而得出∠EDF =12(∠CDB +∠CDO )=90°,再根据平行线的性质,即可得到∠AED =90°,即DE ⊥AO ;(2)连接OC ,依据∠DEO =∠DEC ,∠EDO =∠EDC ,可得∠DOE =∠DCE ,再根据三角形外角性质,即可得到∠CDB +∠AEC =∠COD +∠OCD +∠EOC +∠ECO =2∠DCE ;(3)如图3中,依据∠CDB 是△ODG 的外角,可得∠CDB =∠DOG +∠DGO ,依据∠DGO 是△CEG 的外角,可得∠DGO =∠AEC +∠C ,进而得到∠CDB =∠DOG +∠AEC +∠C =∠AEC +2∠DCE ;如图4中,同理可得∠AEC =∠DOE +∠CDB +∠C =∠CDB +2∠DCE .【详解】解:(1)如图1,∵DE 、DF 分别是∠CDO 、∠CDB 的平分线,∴∠CDF =12∠CDB ,∠CDE =12∠CDO , ∴∠EDF =12(∠CDB +∠CDO )=90°, 又∵DF ∥AO ,∴∠AED =90°,∴DE ⊥AO ;(2)如图2,连接OC ,∵∠DEO =∠DEC ,∠EDO =∠EDC ,∴∠DOE =∠DCE ,∵∠CDB 是△COD 的外角,∠AEC 是△COE 的外角,∴∠CDB =∠COD +∠OCD ,∠AEC =∠EOC +∠ECO ,∴∠CDB +∠AEC =∠COD +∠OCD +∠EOC +∠ECO =2∠DCE ;(3)图3中,∠CDB =∠AEC +2∠DCE ;图4中,∠AEC =∠CDB +2∠DCE .理由: 如图3,∵∠DEO =∠DEC ,∠EDO =∠EDC ,∴∠DOE =∠DCE ,∵∠CDB 是△ODG 的外角,∴∠CDB =∠DOG +∠DGO ,∵∠DGO 是△CEG 的外角,∴∠DGO =∠AEC +∠C ,∴∠CDB =∠DOG +∠AEC +∠C =∠AEC +2∠DCE ;如图4,∵∠DEO =∠DEC ,∠EDO =∠EDC ,∴∠DOE =∠DCE ,∵∠AEC 是△OEH 的外角,∴∠AEC =∠DOE +∠OHE ,∵∠OHE 是△CDH 的外角,∴∠OHE =∠CDB +∠C ,∴∠AEC =∠DOE +∠CDB +∠C =∠CDB +2∠DCE .【点睛】本题主要考查了平行线的性质以及三角形外角性质的综合运用,解题时注意:三角形的外角等于与它不相邻的两个内角的和.26.(1)详见解析;(2)118034∠+︒=∠+∠,详见解析;(3)230∠=︒【分析】(1)如下图,延长AC ,DE 相交于点G ,利用∠G 作为过渡角可证;(2)如下图,作//CP AB ,可得//CP DE ,推导得出118034∠+︒=∠+∠; (3)如下图,过Q 作1//AD l ∠,利用平行可得出70x y +=︒,再利用////QR AB DE 得到22110x y z +-=︒,从而得出z 的值.【详解】(1)延长,AC DE 相交于点G .∵//AB DE ,//AC DF∴1G ∠=∠,2G ∠=∠∴12∠=∠.(2)作//CP AB ,则//CP DE∵//CP AB ,//CP DE .∴1ACP ∠=∠,4180ECP ∠+∠=︒∴11804ACP ECP ∠+︒=∠+∠+∠即118034∠+︒=∠+∠.(3)过Q 作1//AD l ∠则5D ∠=.6y ∠=∵56110180∠+∠+︒=︒∴110180x y ++︒=︒即70x y +=︒旁证:过Q 作//QR AB ,则//QR DE .设DAQ x ∠=,APQ y ∠=,2z ∠=.则2BAQ x ∠=,2FDQ y ∠=,1z ∠=.∵////QR AB DE∴2AQR BAQ x ∠=∠=,2EDQ DQR y z ∠=∠=-.∴22110x y z +-=︒又∵70x y +=︒∴22140x y +=︒∵(2)(22)30x y x y z z +-+-==︒∴230∠=︒【点睛】本题考查角度的推导,第(3)问的解题关键是通过方程思想和整体思想,计算得出∠2的大小.27.(1)360∠=︒;(2)①EPF PEB PFD ∠=∠+∠,证明见解析;②360EPF PEB PFD ︒∠+∠+∠=,证明见解析;③EPF PEB PFD ∠=∠-∠或EPF PFD PEB ∠+∠=∠.【分析】(1)根据对顶角相等求∠2,根据两直线平行,同位角相等求∠3;(2)①过点P 作MN ∥AB ,根据平行线的性质得∠EPM =∠PEB ,且有MN ∥CD ,所以∠MPF =∠PFD ,然后利用等式性质易得∠EPF =∠PEB +∠PFD .②③的解题方法与①一样,分别过点P 作MN ∥AB ,然后利用平行线的性质得到三个角之间的关系.【详解】(1)解:∵12∠=∠,160∠=︒,∴260∠=︒;∵AB CD ∥,∴3160∠=∠=︒ .(2)①EPF PEB PFD ∠=∠+∠.过点P 作MN AB ,则EPM PEB ∠=∠.∵AB CD ∥,MN AB , ∴MN CD ∥,∴MPF PFD ∠=∠,∴EPM MPF PEB PFD ∠+∠=∠+∠,即EPF PEB PFD ∠=∠+∠.②360EPF PEB PFD ︒∠+∠+∠=,过点P 作MN AB ,则180PEB EPN ∠+∠=︒,∵AB CD ∥,MN AB , ∴MN CD ∥,∴180NPF PFD ∠+∠=︒,∴360PEB EPN NPF PFD ∠+∠+∠+∠=︒.即360EPF PEB PFD ︒∠+∠+∠=.③EPF PEB PFD ∠=∠-∠或EPF PFD PEB ∠+∠=∠.写对一种即可.理由:如图4,过点P作PM∥AB,∵AB∥CD,MP∥AB,∴MP∥CD,∴∠PEB=∠MPE,∠PFD=∠MPF,∵∠EPF+∠FPM=∠MPE,∴∠EPF+∠PFD=∠PEB.【点睛】本题主要考查了平行公理的推论和平行线的性质,结合图形作出辅助线构造出三线八角是解决此题的关键.28.[问题解决]见解析;[问题迁移](1)∠APC=α+β;(2)当点P在BN上时,∠APC=β-α;当点P在OD上时,∠APC=α-β.【分析】问题解决:过点E作EF∥AB,依据平行线的性质,即可得到∠BED的度数;问题迁移:(1)过P作PQ∥AB,依据平行线的性质,即可得出α,β和∠APC之间满足的数量关系.(2)分两种情况讨论:过P作PQ∥AB,易得当点P在BN上时,∠APC=β-α;当点P在OD上时,∠APC=α-β.【详解】问题解决:如图2,过点E作EF∥AB,∴∠ABE=∠BEF=40°∵AB∥CD,∴EF∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠BED=∠B+∠D=40°+60°=100°;问题迁移:(1)如图3,过P作PQ∥AB,∵AB∥CD,∴PQ∥CD,∴∠BAP=∠APQ,∠DCP=∠CPQ,∴∠APC=∠BAP+∠DCP,即∠APC=α+β;(2)如图4,当点P在BN上时,∠APC=β-α;如图5,当点P在OD上时,∠APC=α-β.【点睛】本题主要考查了平行线的性质与判定的运用,解决问题的关键是掌握:两直线平行,内错角相等,并利用角的和差关系进行推算.。

第五章相交线与平行线单元试卷中考真题汇编[解析版]

第五章相交线与平行线单元试卷中考真题汇编[解析版]

第五章相交线与平行线单元试卷中考真题汇编[解析版]一、选择题1.下列命题是真命题的是( )A .直角三角形中两个锐角互补B .相等的角是对顶角C .同旁内角互补,两直线平行D .若a b =,则a b =2.下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是( ) A .5 B .12C .14D .16 3.如图,已知AB ∥CD ,BC 平分∠ABE ,∠C =35°,则∠BED 的度数是( )A .70°B .68°C .60°D .72° 4.下列图形中,1∠与2∠是同位角的是( )A .B .C .D .5.如图,//AB CD ,PF CD ⊥于F ,40AEP ∠=︒,则EPF ∠的度数是( )A .120︒B .130︒C .140︒D .150︒6.如图,在四边形ABCD 中,∠1=∠2,∠A=60°,则∠ADC=( )A .65°B .60°C .110°D .120°7.已知∠A 的两边与∠B 的两边互相平行,且∠A=20°,则∠B 的度数为( ). A .20° B .80° C .160° D .20°或160°8.如图,直线a∥b,AC⊥AB于A,AC交直线b于点C,∠1=50°,则∠2的度数是()A.50° B.40° C.25° D.20°9.下列命题中,其逆命题为真命题的是()A.若a=b,则a2=b2B.同位角相等C.两边和一角对应相等的两个三角形全等D.等腰三角形两底角不相等10.下列命题是假命题的是()A.等腰三角形底边上的高是它的对称轴B.有两个角相等的三角形是等腰三角形C.等腰三角形底边上的中线平分顶角D.等边三角形的每一个内角都等于60°11.如图,下列条件:①,②,③,④,⑤中能判断13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠l l的有( )直线12A.5个B.4个C.3个D.2个12.如图,直线AC和直线BD相交于点O,OE平分∠BOC.若∠1+∠2=80°,则∠3的度数为()A.40°B.50°C.60°D.70°二、填空题13.如图,已知AB∥CD,点E,F分别在直线AB,CD上点P在AB,CD之间且在EF的左侧.若将射线EA沿EP折叠,射线FC沿FP折叠,折叠后的两条射线互相垂直,则∠EPF的度数为 _____.14.镇江市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN 、QP 上分别放置A 、B 两盏激光灯,如图所示.A 灯发出的光束自AM 逆时针旋转至AN 便立即回转;B 灯发出的光束自BP 逆时针旋转至BQ 便立即回转,两灯不间断照射,A 灯每秒转动12°,B 灯每秒转动4°.B 灯先转动12秒,A 灯才开始转动.当B 灯光束第一次到达BQ 之前,两灯的光束互相平行时A 灯旋转的时间是 .15.平面内不过同一点的n 条直线两两相交,它们交点个数记作n a ,并且规定10a =,则2a =__________,1n n a a --=____________.16.如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠DFB =12∠CGE ;③∠ADC =∠GCD ;④CA 平分∠BCG .其中正确的结论是_______.17.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________18.如图,a ∥b ,∠2=∠3,∠1=40°,则∠4的度数是______度.19.如图,已知∠1=(3x +24)°,∠2=(5x +20)°,要使m ∥n ,那么∠1=_____(度).20.如图所示,AB ∥CD ,EC ⊥CD .若∠BEC =30°,则∠ABE 的度数为_____.三、解答题21.如图1,D 是△ABC 延长线上的一点,CE //AB .(1)求证:∠ACD =∠A+∠B ;(2)如图2,过点A 作BC 的平行线交CE 于点H ,CF 平分∠ECD ,FA 平分∠HAD ,若∠BAD =70°,求∠F 的度数.(3)如图3,AH //BD ,G 为CD 上一点,Q 为AC 上一点,GR 平分∠QGD 交AH 于R ,QN 平分∠AQG 交AH 于N ,QM //GR ,猜想∠MQN 与∠ACB 的关系,说明理由.22.如图1,AB//CD ,在AB 、CD 内有一条折线EPF .(1)求证:AEP CFP EPF ∠∠∠+=.(2)如图2,已知BEP ∠的平分线与DFP ∠的平分线相交于点Q ,试探索EPF ∠与EQF ∠之间的关系;(3)如图3,已知BEQ ∠=1BEP 3∠,1DFQ DFP 3∠∠=,则P ∠与Q ∠有什么关系,请说明理由.23.钱塘江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)求a、b的值;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达AN之前,若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.24.[感知发现]:如图,是一个“猪手”图,AB∥CD,点E在两平行线之间,连接BE,DE ,我们发现:∠E=∠B+∠D证明如下:过E点作EF∥AB.∴∠B=∠1(两直线平行,内错角相等.)又AB∥CD(已知)∴CD∥EF(如果两条直线都与第三条直线平行,那么这两条直线也互相平行.)∴∠2=∠D(两直线平行,内错角相等.)∴∠1+∠2=∠B+∠D(等式的性质1.)即:∠E=∠B+∠D[类比探究]:如图是一个“子弹头”图,AB∥CD,点E在两平行线之间,连接BE,DE.试探究∠E+∠B+∠D=360°.写出证明过程.[创新应用]:(1).如图一,是两块三角板按如图所示的方式摆放,使直角顶点重合,斜边平行,请直接写出∠1的度数.(2).如图二,将一个长方形ABCD 按如图的虚线剪下,使∠1=120o ,∠FEQ=90°. 请直接写出∠2的度数.25.如图,已知直线12//l l ,直线3l 交1l 于C 点,交2l 于D 点,P 是线段CD 上的一个动点,(1)若P 点在线段CD (C 、D 两点除外)上运动,问PAC ∠,APB ∠,PBD ∠之间的关系是什么?这种关系是否变化?(2)若P 点在线段CD 之外时,PAC ∠,APB ∠,PBD ∠之间的关系怎样?说明理由26.(1)如图1,已知直线//m n ,在直线n 上取A B 、两点,C P 、为直线m 上的两点,无论点C P 、移动到任何位置都有:ABC S ____________ABP S △(填“>”、“<”或“=”)(2)如图2,在一块梯形田地上分别要种植大豆(空白部分)和芝麻(阴影部分),若想把种植大豆的两块地改为一块地,且使分别种植两种植物的面积不变,请问应该怎么改进呢?写出设计方案,并在图中画出相应图形并简述理由.(3)如图3,王爷爷和李爷爷两家田地形成了四边形DEFG ,中间有条分界小路(图中折线ABC ),左边区域为王爷爷的,右边区域为李爷爷的。

初中数学相交线与平行线难题汇编及答案

初中数学相交线与平行线难题汇编及答案

初中数学相交线与平行线难题汇编及答案一、选择题1.给出下列说法,其中正确的是( )A.两条直线被第三条直线所截,同位角相等;B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;C.相等的两个角是对顶角;D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.【答案】B【解析】【分析】正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.【详解】A选项:同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;B选项:强调了在平面内,正确;C选项:不符合对顶角的定义,错误;D选项:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.故选:B.【点睛】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.2.下列说法中,正确的是()A.过一点有且只有一条直线与已知直线垂直B.过直线外一点有且只有一条直线与已知直线平行C.垂于同一条直线的两条直线平行D.如果两个角的两边分别平行,那么这两个角一定相等【答案】B【解析】【分析】根据平行线的性质和判定,平行线公理及推论逐个判断即可.【详解】A、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项不符合题意;B、过直线外一点有且只有一条直线与已知直线平行,故本选项符合题意;C、在同一平面内,垂直于同一条直线的两直线平行,故本选项不符合题意;D、如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意;故选:B.【点睛】此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.3.如图,能判定EB ∥AC 的条件是( )A .∠C =∠ABEB .∠A =∠EBDC .∠C =∠ABCD .∠A =∠ABE 【答案】D【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A 、∠C =∠ABE 不能判断出EB ∥AC ,故A 选项不符合题意;B 、∠A =∠EBD 不能判断出EB ∥AC ,故B 选项不符合题意;C 、∠C =∠ABC 只能判断出AB =AC ,不能判断出EB ∥AC ,故C 选项不符合题意;D 、∠A =∠ABE ,根据内错角相等,两直线平行,可以得出EB ∥AC ,故D 选项符合题意. 故选:D .【点睛】此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.4.如图,下列能判定AB ∥CD 的条件有几个( )(1)12∠=∠ (2)34∠=∠(3)5B ∠=∠ (4)180B BCD ∠+∠=︒.A .4B .3C .2D .1【答案】B【解析】【分析】 根据平行线的判定逐一判定即可.【详解】因为12∠=∠,所有AD ∥BC ,故(1)错误.因为34∠=∠,所以AB ∥CD ,故(2)正确.因为5B ∠=∠,所以AB ∥CD ,故(3)正确.因为180B BCD ∠+∠=︒,所以AB ∥CD ,故(4)正确.所以共有3个正确条件.故选B【点睛】本题考查的是平行线的判定,找准两个角是哪两条直线被哪条直线所截形成的同位角、同旁内角、内错角是关键.5.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是()A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等【答案】D【解析】【分析】【详解】解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.6.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是()A.∠ABE=2∠CDE B.∠ABE=3∠CDEC.∠ABE=∠CDE+90°D.∠ABE+∠CDE=180°【答案】A【解析】【分析】延长BF与CD相交于M,根据两直线平行,同位角相等可得∠M=∠CDE,再根据两直线平行,内错角相等可得∠M=∠ABF,从而求出∠CDE=∠ABF,再根据角平分线的定义解答.【详解】解:延长BF与CD相交于M,∵BF∥DE,∴∠M=∠CDE,∵AB∥CD,∴∠M=∠ABF,∴∠CDE=∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∴∠ABE=2∠CDE.故选:A.【点睛】本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也是本题的难点.7.如图所示,∠AOB的两边.OA、OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠DEB的度数是()A.35°B.70°C.110°D.120°【答案】B【解析】【分析】【详解】解:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt △DOF 中,∠ODF=90°,∠AOB=35°,∴∠2=55°;∴在△DEF 中,∠DEB=180°-2∠2=70°.故选B .8.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A 是72°,第二次拐弯处的角是∠B ,第三次拐弯处的∠C 是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B 等于( )A .81°B .99°C .108°D .120°【答案】B【解析】 试题解析:过B 作BD ∥AE ,∵AE ∥CF ,∴BD ∥CF ,∴72,180A ABD DBC C ∠=∠=∠+∠=,∵153C ∠=,∴27DBC ∠=,则99.ABC ABD DBC ∠=∠+∠=故选B.9.如图,在ABC ∆中,90,2,4C AC BC ∠=︒==,将ABC ∆绕点A 逆时针旋转90︒,使点C 落在点E 处,点B 落在点D 处,则B E 、两点间的距离为( )A .10B .22C .3D .25【答案】B【解析】【分析】 延长BE 和CA 交于点F ,根据旋转的性质可知∠CAE=90︒,证明∠BAE=∠ABC ,即可证得AE ∥BC ,得出2142EF AF AE FB FC BC ====,即可求出BE . 【详解】延长BE 和CA 交于点F∵ABC ∆绕点A 逆时针旋转90︒得到△AED∴∠CAE=90︒∴∠CAB+∠BAE=90︒又∵∠CAB+∠ABC=90︒∴∠BAE=∠ABC∴AE ∥BC∴2142EF AF AE FB FC BC ====∴AF=AC=2,FC=4∴BF=42∴BE=EF=12BF=22故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.10.如图,12180∠+∠=︒,3100∠=︒,则4∠=( )A.60︒B.70︒C.80︒D.100︒【答案】C【解析】【分析】首先证明a∥b,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4.【详解】解:∵∠1+∠5=180°,∠1+∠2=180°,∴∠2=∠5,a∥b,∴∠3=∠6=100°,∴∠4=180°-100°=80°.故选:C.【点睛】此题考查平行线的判定与性质,解题关键是掌握两直线平行同位角相等.11.在下图中,∠1,∠2是对顶角的图形是()A.B.C.D.【答案】B【解析】略12.下列说法中,正确的是()A.不相交的两条直线是平行线B.过一点有且只有一条直线与已知直线平行C .从直线外一点作这条直线的垂线段叫做点到这条直线的距离D .在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.【答案】D【解析】【分析】运用平行线,垂线的定义,点到直线的距离及平行公理及推论判定即可.【详解】A 、不相交的两条直线是平行线,要在同一平面内的前提条件下,故A 选项错误;B 、过直线外一点有且只有一条直线与已知直线平行,故B 选项错误;C 、从直线外一点作这条直线的垂线段叫做点到这条直线的距离,应为垂线段的长度,故C 选项错误;D 、在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直,故D 选项正确.故选:D .【点睛】本题主要考查了平行线,垂线的定义,点到直线的距离及平行公理及推论,解题的关键是熟记定义与性质.13.已知α∠的两边与β∠的两边分别平行,且α∠=20°,则∠β的度数为( ) A .20°B .160°C .20°或160°D .70°【答案】C【解析】【分析】分两种情况,画出图形,结合平行线的性质求解即可.【详解】如图1,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=∠1=20°;如图2,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=180°-∠1=160°;故选C.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.本题也考查了分类讨论的数学思想.14.如图,直线//,175a b ︒∠=,则2∠的大小是( )A .75︒B .85︒C .95︒D .105︒【答案】D【解析】【分析】 把2∠的对顶角标记为3∠,根据对顶角的性质得到2∠与3∠得关系,再根据直线平行的性质得到1∠与3∠得关系,最后由等量替换得到2∠得度数.【详解】解:如图,把2∠的对顶角标记为3∠,∵2∠与3∠互为对顶角,∴23∠∠=,又∵//a b ,175︒∠=,∴13180∠+∠=︒(两直线平行,同旁内角互补),∴12180∠+∠=︒(等量替换),∴2180118075105∠=︒-∠=︒-︒=︒故D 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的性质(两直线平行,同旁内角互补),学会运用等量替换原则是解题的关键.15.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )①//AD BC ;②B D ∠=∠;③//AB CD ;④2180B ∠+∠=︒A .4个B .3个C .2个D .1个【答案】A【解析】【分析】根据∠1=∠B 可判断AD ∥BC ,再结合∠2=∠C 可判断AB ∥CD ,其余选项也可判断.【详解】∵∠1=∠B∴AD ∥BC ,①正确;∴∠2+∠B=180°,④正确;∵∠2=∠C∴∠C+∠B=180°∴AB ∥CD ,③正确∴∠1=∠D ,∴∠D=∠B ,②正确故选:A【点睛】本题考查平行的证明和性质,解题关键是利用AD ∥BC 推导出∠B+∠2=180°,为证AB ∥DC 作准备.16.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为( )A .115°B .120°C .145°D .135° 【答案】D【解析】【分析】由三角形的内角和等于180°,即可求得∠3的度数,又由邻补角定义,求得∠4的度数,然后由两直线平行,同位角相等,即可求得∠2的度数.【详解】在Rt△ABC中,∠A=90°,∵∠1=45°(已知),∴∠3=90°-∠1=45°(三角形的内角和定理),∴∠4=180°-∠3=135°(平角定义),∵EF∥MN(已知),∴∠2=∠4=135°(两直线平行,同位角相等).故选D.【点睛】此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.17.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴1352CBE ABC∠=∠=︒,故选:B.【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.18.下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)不相交的两条直线叫做平行线;(4)有公共顶点且有一条公共边的两个互补的角互为邻补角.A.1个B.2个C.3个D.4个【答案】C【解析】(1)应强调过直线外一点,故错误;(2)正确;(3)不相交的两条直线叫做平行线,没有说明是否是在同一平面内,所以错误;(4)有公共顶点且有一条公共边的两个角不一定互为邻补角,角平分线的两个角也满足,但可以不是,故错误.错误的有3个,故选C.19.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°【答案】B【解析】试题分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B.考点:平行线的性质.20.如图,下列推理错误的是( )A.因为∠1=∠2,所以c∥d B.因为∠3=∠4,所以c∥dC.因为∠1=∠3,所以a∥b D.因为∠1=∠4,所以a∥b【答案】C【解析】分析:由平行线的判定方法得出A、B、C正确,D错误;即可得出结论.详解:根据内错角相等,两直线平行,可知因为∠1=∠2,所以c∥d,故正确;根据同位角相等,两直线平行,可知因为∠3=∠4,所以c∥d,故正确;因为∠1和∠3的位置不符合平行线的判定,故不正确;根据内错角相等,两直线平行,可知因为∠1=∠4,所以a∥b,故正确.故选:C.点睛:本题考查了平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解决问题的关键.。

第五章相交线与平行线单元试卷中考真题汇编[解析版]

第五章相交线与平行线单元试卷中考真题汇编[解析版]

第五章相交线与平行线单元试卷中考真题汇编[解析版]一、选择题1.如图,∠1的同位角是( )A .∠2B .∠3C .∠4D .∠52. 如图,a ∥b ,点A 在直线a 上,点B ,C 在直线b 上,AC ⊥b ,如果AB=5cm ,BC=3cm ,那么平行线a ,b 之间的距离为( )A .5cmB .4cmC .3cmD .不能确定3.如图,直线//AB CD ,点E 在CD 上,点O 、点F 在AB 上,EOF ∠的角平分线OG 交CD 于点G ,过点F 作FH OE ⊥于点H ,已知148OGD ∠=︒,则OFH ∠的度数为( )A .26ºB .32ºC .36ºD .42º 4.如图,直线AB ,CD 相交于点O ,EO ⊥AB ,垂直为点O ,∠BOD =50°,则∠COE =( )A .30°B .140°C .50°D .60°5.下列说法中,错误的有( )①若a 与c 相交,b 与c 相交,则a 与b 相交;②若a∥b,b∥c,那么a∥c;③过直线外一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、相交、垂直三种.A .3个B .2个C .1个D .0个6.下列语句是命题的是( )A .平分一条线段B .直角都相等C .在直线AB 上取一点D .你喜欢数学吗? 7.命题“垂直于同一条直线的两条直线互相平行”的条件是( )A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线 8.如图所示,下列说法正确的是( ).A .1∠与2∠是同位角B .1∠与3∠是同位角C .2∠与3∠是内错角D .2∠与3∠是同旁内角 9.如图,在△ABC 中,点D ,E 分别为边AB ,AC 上的点,画射线ED .下列说法错误的是( )A .∠B 与∠2是同旁内角B .∠A 与∠1是同位角C .∠3与∠A 是同旁内角D .∠3与∠4是内错角10.下列命题是真命题的是( ) A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是011.如图,ABC 面积为2,将ABC 沿AC 方向平移至DFE △,且AC=CD ,则四边形AEFB 的面积为( )A .6B .8C .10D .1212.如图所示,下列条件能判断a ∥b 的有( )A .∠1+∠2=180°B .∠2=∠4C .∠2+∠3=180°D .∠1=∠3二、填空题13.平面内不过同一点的n 条直线两两相交,它们交点个数记作n a ,并且规定10a =,则2a =__________,1n n a a --=____________.14.如图,已知直线AB,CD 相交于点O,OE 平分∠COB,若∠EOB=55°,则∠BOD=_________.15.α∠与β∠的两边互相垂直,且o 50α∠=,则β∠的度数为_________.16.如图,已知12∠=∠,求证:A BCH ∠=∠.证明:∵12∠=∠(已知)23∠∠=(______)∴13∠=∠(等量代换)∴//CH (______)(同位角相等,两直线平行)∴A BCH ∠=∠(______)17.如图,∠AOB =60°,在∠AOB 的内部有一点P ,以P 为顶点,作∠CPD ,使∠CPD 的两边与∠AOB 的两边分别平行,∠CPD 的度数为_______度.18.将一张长方形纸片折叠成如图所示的形状,则∠ABC=_________.19.如图,AC ∥BD,AE 平分∠BAC 交BD 于点E,若∠1=62°,则∠2=______.20.如图,直线////a b c ,直角三角板的直角顶点落在直线b 上,若135∠=︒,则2∠等于_______.三、解答题21.已知直线//EF MN ,点,A B 分别为EF , MN 上的点.(1)如图1,若120FAC ACB ∠=∠=︒,12CAD FAC ∠=∠, 12CBD CBN ∠=∠,求CBN ∠与ADB ∠的度数;(2)如图2,若120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠,则ADB =∠_________︒; (3)若把(2)中“120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠”改为“FAC ACB m ∠=∠=︒,1CAD FAC n ∠=∠, 1CBD CBN n∠=∠”,则ADB =∠_________︒.(用含,m n 的式子表示)22.对于平面内的∠M 和∠N ,若存在一个常数k >0,使得∠M +k ∠N =360°,则称∠N为∠M 的k 系补周角.如若∠M =90°,∠N =45°,则∠N 为∠M 的6系补周角.(1)若∠H =120°,则∠H 的4系补周角的度数为 ;(2)在平面内AB ∥CD ,点E 是平面内一点,连接BE ,DE .①如图1,∠D =60°,若∠B 是∠E 的3系补周角,求∠B 的度数;②如图2,∠ABE 和∠CDE 均为钝角,点F 在点E 的右侧,且满足∠ABF =n ∠ABE ,∠CDF =n ∠CDE (其中n 为常数且n >1),点P 是∠ABE 角平分线BG 上的一个动点,在P 点运动过程中,请你确定一个点P 的位置,使得∠BPD 是∠F 的k 系补周角,并直接写出此时的k 值(用含n 的式子表示).23.课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A 是BC 外一点,连接AB ,AC ,求BAC B C ∠+∠+∠的度数.(1)阅读并补充下面推理过程.解:过点A 作ED BC ∥B EAB ∴∠=∠,C ∠=__________.__________180=︒180B BAC C ∴∠+∠+∠=︒解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将BAC ∠,B ,C ∠“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB ED ,试说明:180D BCD B ∠+∠-∠=︒(提示:过点C 做CF AB ∥).深化拓展:(3)已知AB CD ∥,点C 在点D 的右侧,70ADC ∠=︒.BE 平分ABC ∠,DE 平分ADC ∠,BE ,DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间. ①如图3,点B 在点A 的左侧,若60ABC ∠=︒,则BED ∠的度数为________. ②如图4,点B 在点A 的右侧,且<AB CD ,AD BC <.若ABC n ∠=︒,则BED ∠的度数为________.(用含n 的代数式表示)24.已知://AB DE ,//AC DF ,B C E F 、、、四点在同一直线上.(1)如图1,求证:12∠=∠;(2)如图2,猜想1,3,4∠∠∠这三个角之间有何数量关系?并证明你的结论; (3)如图3,Q 是AD 下方一点,连接,AQ DQ ,且13DAQ BAD ∠=∠,13ADQ ADF ∠=∠,若110AQD ∠=︒,求2∠的度数. 25.如图1.已知直线AB ED .点C 为AB ,ED 内部的一个动点,连接CB ,CD ,作ABC ∠的平分线交直线ED 于点E ,作CDE ∠的平分线交直线BA 于点A ,BE 和DA 交于点F .(1)若180FDC ABC ∠+∠=︒,猜想AD 和BC 的位置关系,并证明; (2)如图2,在(1)的基础上连接CF ,则在点C 的运动过程中,当满足CF AB ∥且32CFB DCF ∠=∠时,求BCD ∠的度数. 26.问题情境:我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.已知三角板ABC 中,60,30,90BAC B C ∠=∠=︒∠=︒︒,长方形DEFG 中,DE GF .问题初探:(1)如图(1),若将三角板ABC 的顶点A 放在长方形的边GF 上,BC 与DE 相交于点M ,AB DE ⊥于点N ,求EMC ∠的度数.分析:过点C 作CH GF ∥,则有CH DE ∥,从而得,CAF HCA EMC MCH ∠=∠∠=∠,从而可以求得EMC ∠的度数.由分析得,请你直接写出:CAF ∠的度数为____________,EMC ∠的度数为___________.类比再探:(2)若将三角板ABC 按图(2)所示方式摆放(AB 与DE 不垂直),请你猜想写出CAF ∠与EMC ∠的数量关系,并说明理由.27.问题情境(1)如图①,已知360B E D ∠+∠+∠=︒,试探究直线AB 与CD 有怎样的位置关系?并说明理由.小明给出下面正确的解法:直线AB 与CD 的位置关系是//AB CD .理由如下:过点E 作//EF AB (如图②所示)所以180B BEF ∠+∠=︒(依据1)因为360B BED D ∠+∠+∠=︒(已知)所以360B BEF FED D ∠+∠+∠+∠=︒所以180FED D ∠+∠=︒所以//EF CD (依据2)因为//EF AB所以//AB CD (依据3)交流反思上述解答过程中的“依据1”,“依据2”,“依据3”分别指什么?“依据1”:________________________________;“依据2”:________________________________;“依据3”:________________________________.类比探究(2)如图,当B 、E ∠、F ∠、D ∠满足条件________时,有//AB CD . 拓展延伸(3)如图,当B 、E ∠、F ∠、D ∠满足条件_________时,有//AB CD .28.阅读材料(1),并利用(1)的结论解决问题(2)和问题(3).(1)如图1,AB ∥CD ,E 为形内一点,连结BE 、DE 得到∠BED ,求证:∠E =∠B +∠D 悦悦是这样做的:过点E 作EF ∥AB .则有∠BEF =∠B .∵AB ∥CD ,∴EF ∥CD .∴∠FED =∠D .∴∠BEF +∠FED =∠B +∠D .即∠BED =∠B +∠D .(2)如图2,画出∠BEF 和∠EFD 的平分线,两线交于点G ,猜想∠G 的度数,并证明你的猜想.(3)如图3,EG 1和EG 2为∠BEF 内满足∠1=∠2的两条线,分别与∠EFD 的平分线交于点G 1和G 2,求证:∠FG 1E +∠G 2=180°.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据同位角定义可得答案.【详解】解:解:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角,根据定义,结合图形,∠1的同位角是∠5.故选:D.【点睛】本题考查同位角的定义,解题关键是熟练理解同位角的定义,本题属于基础题型.2.B解析:B【分析】从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,并由勾股定理可得出答案.【详解】解:∵AC⊥b,∴△ABC是直角三角形,∵AB=5cm,BC=3cm,∴(cm),∴平行线a、b之间的距离是:AC=4cm.故选:B.【点睛】本题考查了平行线之间的距离,以及勾股定理,关键是掌握平行线之间距离的定义,以及勾股定理的运用.3.A解析:A【解析】【分析】依据∠OGD=148°,可得∠EGO=32°,根据AB∥CD,可得∠EGO =∠GOF,根据GO平分∠EOF,可得∠GOE =∠GOF,等量代换可得:∠EGO=∠GOE=∠GOF=32°,根据⊥,可得:OFH∠=90°-32°-32°=26°FH OE【详解】解:∵∠OGD=148°,∴∠EGO=32°∵AB∥CD,∴∠EGO =∠GOF,∠的角平分线OG交CD于点G,∵EOF∴∠GOE =∠GOF,∵∠EGO=32°∠EGO =∠GOF∠GOE =∠GOF,∴∠GOE=∠GOF=32°,⊥,∵FH OE∠=90°-32°-32°=26°∴OFH故选A.【点睛】本题考查的是平行线的性质及角平分线的定义的综合运用,易构造等腰三角形,用到的知识点为:两直线平行,内错角相等.4.B解析:B【解析】试题解析:EO⊥AB,∴∠=AOE90,∠=∠=AOC BOD50,∴∠=∠+∠=+=COE AOC AOE5090140.故选B.5.B解析:B【解析】①若a与b相交,b与c相交,则a与c相交或平行,故本小题错误;②若a∥b,b∥c,则a∥c;根据平行公理的推论:如果两条直线都和第三条直线平行,那么两条直线也互相平行,上面说法正确;③过直线外一点有且只有一条直线与已知直线平行,故正确;④在平面内,两条直线的位置关系有平行和相交两种,故不正确.因此只有②③正确.故选:B.6.B解析:B【分析】根据命题的定义分别进行判断.【详解】A.平分一条线段,为描述性语言,不是命题;B.直角都相等,是命题;C.在直线AB上取一点,为描述性语言,不是命题;D.你喜欢数学吗?是疑问句,不是命题.故选:B .【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.7.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D .【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断.8.D解析:D【分析】根据同位角、同旁内角.内错角的定义进行判断.【详解】A .1∠与2∠不是同位角,故选项A 错误;B .1∠与3∠是内错角,故该选项错误;C .2∠与3∠是同旁内角,故选项C 错误,选项D 正确.故选:D .【点睛】本题考查了同位角、同旁内角、内错角的定义.熟记同位角、同旁内角、内错角的定义是解答此题的关键.9.B解析:B【分析】根据同位角、内错角以及同旁内角的概念解答即可.【详解】解:A .∠B 与∠2是BC 、DE 被BD 所截而成的同旁内角,故本选项正确;B .∠A 与∠1不是同位角,故本选项错误;C .∠3与∠A 是AE 、DE 被AD 所截而成的同旁内角,故本选项正确;D .∠3与∠4是内错角AD 、CE 被ED 所截而成的内错角,故本选项正确;故选:B .【点睛】本题主要考查了同位角、内错角以及同旁内角,同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.10.A解析:A【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A 、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B 、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C 、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D 、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题; 故选A .【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.11.C解析:C【分析】如图(见解析),先根据平移的性质可得//AE BF ,2BF AD AC ==,DE AC =,再根据平行线的性质可得BEF 的边BF 上的高等于BG ,然后根据三角形的面积公式分别求出ABE △和BEF 的面积即可得出答案.【详解】如图,过点B 作BG AE ⊥于点G ,连接BE , ABC 面积为2,122AC BG ∴⋅=,即4AC BG ⋅=, 由平移的性质得://AE BF ,BF AD =,DE AC =,AC CD =,2BF AD AC CD AC ∴==+=,3AE AD DE AC =+=,113622ABE S AE BG AC BG ∴=⋅=⋅⋅=, //AE BF ,BEF ∴的边BF 上的高等于BG ,112422BEF S BF BG AC BG ∴=⋅=⋅⋅=, ∴四边形AEFB 的面积为6410ABE BEF S S +=+=,故选:C .【点睛】本题考查了平移的性质、平行线间的距离、三角形的面积公式等知识点,熟练掌握平移的性质是解题关键.12.B解析:B【分析】通过平行线的判定的相关知识点,并结合题中所示条件进行相应的分析,即可得出答案.【详解】A.∠1 ,∠2是互补角,相加为180°不能证明平行,故A错误.B.∠2=∠4,内错角相等,两直线平行,所以B正确.C. ∠2+∠3=180°,不能证明a∥b,故C错误.D.虽然∠1=∠3,但是不能证明a∥b;故D错误.故答案选:B.【点睛】本题考查的知识点是平行线的判定,解题的关键是熟练的掌握平行线的判定.二、填空题13.【分析】条直线相交只有一个交点,条直线相交,交点数是,条直线相交,交点数是,即,可写出,的解.【详解】解:求平面内不过同一点的条直线两两相交的交点个数,可由简入繁,当2条直线相交时,交点解析:1n-【分析】2条直线相交只有一个交点,3条直线相交,交点数是12+,n条直线相交,交点数是123(1)n++++-,即1123(1)(1)2na n n n=++++-=-,可写出2a,1n na a--的解.【详解】解:求平面内不过同一点的n条直线两两相交的交点个数,可由简入繁,当2条直线相交时,交点数只有一个;当3条直线相交时,交点数为两条时的数量+第3条直线与前两条的交点2个,即交点数是12+;同理,可以推导当n 条直线相交时,交点数是123(1)n ++++-,即1123(1)(1)2n a n n n =++++-=-, 212(21)12a ∴=⨯⨯-=, 111(1)(1)(2)122n n a a n n n n n -∴-=----=-, 本题的答案为:1,1n -.【点睛】本题考查了平面内直线两两相交交点数的计算,涉及到一种很重要的数学方法数学归纳法的初步应用接触,此方法在推导证明中比较常用.14.70°【解析】【分析】从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线,根据,因与互为邻补角,则+=180°,从而求出∠BOD 的大小.【详解】∵OE 平解析:70°【解析】【分析】从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线,根据2COB EOB ∠=∠,因AOC ∠与COB ∠互为邻补角,则AOC ∠+COB ∠=180°,从而求出∠BOD 的大小.【详解】∵OE 平分∠COB ,∴∠COB=2∠EOB (角平分线的定义),∵∠EOB=55°,∴∠COB=110°,∵AOC ∠+COB ∠=180°,∴∠BOD=180°−110°=70°.故答案是:70°【点睛】此题主要考查了邻补角、角平分线的性质,关键是掌握邻补角互补.15.130°或50°【解析】【分析】作图分析,若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.【详解】如图∵β的两边与α的两边分别垂直,∴α+β=180°故β=130°,在上述情解析:130°或50°【解析】【分析】作图分析,若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.【详解】如图∵β的两边与α的两边分别垂直,∴α+β=180°故β=130°,在上述情况下,若反向延长∠β的一边,那么∠β的补角的两边也与∠α的两边互相垂直,故此时∠β=50;综上可知:∠β=50°或130°,故正确答案为:【点睛】本题考核知识点:四边形内角和. 解题关键点:根据题意画出图形,分析边垂直的2种可能情况.16.对顶角相等,AG ,两直线平行,同位角相等.【分析】根据对顶角的定义可得,再根据平行线的判定可得CH//AG ,最后由两直线平行、同位角相等即可证明.【详解】解:证明:∵(已知)(对顶角相等)解析:对顶角相等,AG ,两直线平行,同位角相等.【分析】根据对顶角的定义可得23∠∠=,再根据平行线的判定可得CH//AG,最后由两直线平行、同位角相等即可证明.【详解】解:证明:∵12∠=∠(已知)23∠∠=(对顶角相等)∴13∠=∠(等量代换)CH(AG)(同位角相等,两直线平行)∴//∠=∠(两直线平行,同位角相等).∴A BCH故答案为:对顶角相等,AG,两直线平行,同位角相等.【点睛】本题考查了对顶角的定义、平行线的性质和判定定理等知识,灵活应用平行线的性质和判定定理是解答本题的关键.17.60或120【分析】根据题意分两种情况,如图所示(见解析),再分别根据平行线的性质即可得.【详解】由题意,分以下两种情况:(1)如图1,,(两直线平行,同位角相等),(两直线平行,内错解析:60或120【分析】根据题意分两种情况,如图所示(见解析),再分别根据平行线的性质即可得.【详解】由题意,分以下两种情况:PC OB PD OA,(1)如图1,//,//∴=∠=∠︒(两直线平行,同位角相等),PDBAOB60∠︒(两直线平行,内错角相等);CPD∴=∠=60PDBPC OB PD OA,(2)如图2,//,//PDB∠︒(两直线平行,同位角相等),∴=∠=AOB60D∴∠=︒(两直线平行,同旁内角互补);∠=︒-180120C P BP D∠的度数为60︒或120︒,综上,CPD故答案为:60或120.【点睛】本题考查了平行线的性质,依据题意,正确分两种情况讨论是解题关键.18.73°【解析】试题解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=∠CBE=73°.解析:73°【解析】试题解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=12∠CBE=73°.19.121°【分析】由AC∥BD,根据两直线平行,同位角相等,即可求得∠B的度数;由邻补角的定义,求得∠BAC的度数;又由AE平分∠BAC交BD于点E,即可求得∠BAE 的度数,根据三角形外角的性质即解析:121°【分析】由AC∥BD,根据两直线平行,同位角相等,即可求得∠B的度数;由邻补角的定义,求得∠BAC的度数;又由AE平分∠BAC交BD于点E,即可求得∠BAE的度数,根据三角形外角的性质即可求得∠2的度数.【详解】∵AC∥BD,∴∠B=∠1=64°,∴∠BAC=180°-∠1=180°-62°=118°,∵AE平分∠BAC交BD于点E,∴∠BAE=12∠BAC=59°,∴∠2=∠BAE+∠B=62°+59°=121°.故答案为121°.【点睛】此题考查了平行线的性质,角平分线的定义,邻补角的定义以及三角形外角的性质.题目难度不大,注意数形结合思想的应用.20.【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵,,∴,∴∠4=90°−∠3=55°,∵,∴∠2解析:55︒【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵//a b ,135∠=︒,∴335∠=︒,∴∠4=90°−∠3=55°,∵////a b c ,∴∠2=∠4=55°.故答案为:55°.【点睛】本题主要考查了平行线的性质,熟练掌握相关概念是解题关键.三、解答题21.(1)120º,120º;(2)160;(3)()1360n m n -⋅- 【分析】(1)过点,C D 作CG EF ,DH EF ,根据 120FAC ACB ∠=∠=︒,平行线的性质和周角可求出120GCB ∠=︒,则 120CBN GCB ∠=∠=︒,再根据 12CAD FAC ∠=∠, 12CBD CBN ∠=∠,可得 1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒,可求出 60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,根据ADB ADH BDH ∠=∠+∠即可得到结果; (2)同理(1)的求法,根据120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠求解即可; (3)同理(1)的求法,根据FAC ACB m ∠=∠=︒,1CAD FAC n∠=∠, 1CBD CBN n∠=∠求解即可; 【详解】 解:(1)如图示,分别过点,C D 作CGEF ,DH EF ,∵EFMN , ∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒,∵1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒ ∴60DBN CBN CBD ∠=∠-∠=︒,又∵60FAD FAC CAD ∠=∠-∠=︒,∴60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,∴120ADB ADH BDH ∠=∠+∠=︒.(2)如图示,分别过点,C D 作CG EF ,DH EF ,∵EF MN ,∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒, ∵1403CBD CBN ∠=∠=︒, 1403CAD FAC ∠=∠=︒ ∴80DBN CBN CBD ∠=∠-∠=︒,又∵80FAD FAC CAD ∠=∠-∠=︒,∴80ADH FAD ∠=∠=︒,80BDH DBN ∠=∠=︒,∴160ADB ADH BDH ∠=∠+∠=︒.故答案为:160;(3)同理(1)的求法∵EF MN ,∴EF MN CG DH ,∴ACG FAC m ∠=∠=︒,∴3603602GCB ACG ACB m ∠=︒-∠-∠=︒-︒,∴3602CBN GCB m ∠=∠=︒-︒, ∵13602m CBD CBN n n ︒-︒∠=∠=, 1m CAD FAC n n︒∠=∠= ∴()()360213602=3602m n m DBN CB D m n N n CB ︒-︒-︒-︒-︒∠-∠=-=∠︒, 又∵()1n m FAD FAC CAD m m n n -︒∠=∠-∠=︒-=︒, ∴()1n ADH FAD m n -∠=∠=︒, ()13602n BDH DBN m n-∠=∠=︒-︒, ∴()()()1113602=360n n n ADB ADH BDH m m m n n n --∠=∠+∠=-︒︒-︒︒-+︒. 故答案为:()1360n m n-⋅-. 【点睛】 本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键.22.(1)60°;(2)①75°,②当BG 上的动点P 为∠CDG 的角平分线与BG 的交点时,满足∠BPD 是∠F 的k 系补周角,此时k=2n ,推导见解析.【分析】(1)直接利用k 系补周角的定义列方程求解即可.(2)①依据k 系补周角的定义及平行线的性质,建立∠B ED 、∠B 、∠D 的关系式求解即可.②结合本题的构图特点,利用平行线的性质得到:∠ABF+∠CDF+∠F=360°,结合∠ABF =n ∠ABE ,∠CDF =n ∠CDE (其中n 为常数且n >1),又由于点P 是∠ABE 角平分线BG 上的一个动点,通过构造相同特殊条件猜想出一个满足条件的P 点,再通过推理论证得到k 的值(含n 的表达式),即说明点P 即为所求.【详解】解:(1)设∠H 的4系补周角的度数为x ,则有120°+4x=360°,解得:x=60°∴∠H 的4系补周角的度数为60°;(2)①如图,过点E 作EF//AB ,∵AB//EF,∴EF//CD ,∴∠B=∠1,∠D=∠2,∴∠1+∠2=∠B+∠D ,即∠B ED=∠B+∠D ,∵∠BED+3∠B=360°,∠D =60,∴360360B B ︒-∠=∠+︒,解得:∠B=75°,∴∠B=75°;②预备知识,基本构图:如图,AB//CD//EF,则∠ABE+∠BEG=180°,∠DCE+∠GEC=180°,∴∠ABE+∠BEG+∠DCE+∠GEC=360°,即∠ABE+∠DCG+∠BEC=360°如图:当BG 上的动点P 为∠CDG 的角平分线与BG 的交点时,满足∠BPD 是∠F 的k 系补周角,此时k=2n.理由如下:若∠BPD 是∠F 的k 系补周角,则∠F+k ∠BPD=360°,∴k ∠BPD=360°-∠F又由基本构图知:∠ABF+∠CDF=360°-∠F , ∴k ∠BPD=∠ABF+∠CDF ,又∵∠ABF =n ∠ABE ,∠CDF =n ∠CDE ,∴k ∠BPD= n ∠ABE+ n ∠CDE ,∵∠BPD=∠PHD+∠PDH,∵AB//CD ,PG 平分∠ABE ,PD 平分∠CDE ,∴∠PHD=∠ABH=12ABE ∠ ,∠PDH=12CDE ∠, ∴2k (ABE ∠+CDE ∠)=n(∠ABE+∠CDE), ∴k=2n.【点睛】本题主要考查平行线的基本性质及基本构图的应用.题型较新颖,发散性较强,理解题意,熟练掌握平行线的性质及其基本构图是解题的关键.23.(1)∠DAC;EAB BAC DAC ∠+∠+∠(2)见解析(3)①65②215°−12n 【分析】(1)根据平行线的性质即可得到结论;(2)过C 作CF ∥AB 根据平行线的性质得到∠D+∠FCD=180°,∠B =∠BCF ,然后根据已知条件即可得到结论;(3)①过点E 作EF ∥AB ,然后根据两直线平行内错角相等,即可求∠BED 的度数; ②∠BED 的度数改变.过点E 作EF ∥AB ,先由角平分线的定义可得:∠ABE =12∠ABC =12n°,∠CDE =12∠ADC =35°,然后根据两直线平行内错角相等及同旁内角互补可得:∠BEF =180°−∠ABE =180°−12n°,∠CDE =∠DEF =35°,进而可求∠BED =∠BEF +∠DEF =180°−12n°+35°=215°−12n°. 【详解】(1)过点A 作ED BC ∥B EAB ∴∠=∠,C ∠=∠DAC .EAB BAC DAC ∠+∠+∠180=︒180B BAC C ∴∠+∠+∠=︒故答案为:∠DAC;EAB BAC DAC ∠+∠+∠;(2)如图2,过C 作CF ∥AB ,∵AB ∥DE ,∴CF ∥DE ,∴∠D+∠FCD=180°,∵CF ∥AB ,∴∠B =∠BCF ,∵BCD ∠=∠FCD+∠BCF ,∴D BCD B ∠+∠-∠=180D FCD BCF B D FCD B B D FCD ∠+∠+∠-∠=∠+∠+∠-∠=∠+∠=︒; 即180D BCD B ∠+∠-∠=︒; (3)①如图3,过点E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =60°,∠ADC =70°,∴∠ABE =12∠ABC =30°,∠CDE =12∠ADC =35°, ∴∠BED =∠BEF +∠DEF =30°+35°=65°; 故答案为:65;②如图4,过点E 作EF ∥AB ,∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =n°,∠ADC =70°∴∠ABE =12∠ABC =12n°,∠CDE =12∠ADC =35°∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠BEF =180°−∠ABE =180°−12n°,∠CDE =∠DEF =35°, ∴∠BED =∠BEF +∠DEF =180°−12n°+35°=215°−12n °. 故答案为:215°−12n .【点睛】此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算.24.(1)详见解析;(2)118034∠+︒=∠+∠,详见解析;(3)230∠=︒【分析】(1)如下图,延长AC ,DE 相交于点G ,利用∠G 作为过渡角可证;(2)如下图,作//CP AB ,可得//CP DE ,推导得出118034∠+︒=∠+∠; (3)如下图,过Q 作1//AD l ∠,利用平行可得出70x y +=︒,再利用////QR AB DE 得到22110x y z +-=︒,从而得出z 的值.【详解】(1)延长,AC DE 相交于点G .∵//AB DE ,//AC DF∴1G ∠=∠,2G ∠=∠∴12∠=∠.(2)作//CP AB ,则//CP DE∵//CP AB ,//CP DE .∴1ACP ∠=∠,4180ECP ∠+∠=︒∴11804ACP ECP ∠+︒=∠+∠+∠即118034∠+︒=∠+∠.(3)过Q 作1//AD l ∠则5D ∠=.6y ∠=∵56110180∠+∠+︒=︒∴110180x y ++︒=︒即70x y +=︒旁证:过Q 作//QR AB ,则//QR DE .设DAQ x ∠=,APQ y ∠=,2z ∠=.则2BAQ x ∠=,2FDQ y ∠=,1z ∠=.∵////QR AB DE∴2AQR BAQ x ∠=∠=,2EDQ DQR y z ∠=∠=-.∴22110x y z +-=︒又∵70x y +=︒∴22140x y +=︒∵(2)(22)30x y x y z z +-+-==︒∴230∠=︒【点睛】本题考查角度的推导,第(3)问的解题关键是通过方程思想和整体思想,计算得出∠2的大小.25.(1)AD BC ∥,见解析;(2)108°【分析】(1)//AD BC ,根据角平分线的性质可知EDF FDC ∠=∠,又因为//AB ED ,因此EDF DAB ∠=∠,推出FDC DAB ∠=∠,再结合已知条件即可得出结论;(2)设DCF x ,则32CFB x ∠=,根据平行线的的性质有32ABF CFB x ∠=∠=,再根据角平分线性质可得23ABC ABF x ∠=∠=,又因为//AD BC ,推出3BCD ABC x ∠=∠=,2BCF x ∠=,由//CF AB 得180ABC BCF ∠+∠=︒,从而可解得x 的值,即可得出答案.【详解】解:(1)//AD BC .证明如下:∵//AB ED ,∴EDF DAB ∠=∠,∵DF 平分EDC ∠,∴EDF FDC ∠=∠,∴FDC DAB ∠=∠,∵180FDC ABC ∠+∠=︒,∴180DAB ABC ∠+∠=︒,∴//AD BC .(2)∵32CFB DCF ∠=∠, ∴设DCF x ,则32CFB x ∠=, ∵//CF AB , ∴32ABF CFB x ∠=∠=, ∵BE 平分ABC ∠,∴23ABC ABF x ∠=∠=,由(1)得//AD BC ,∴180FDC BCD ∠+∠=︒,∵180FDC ABC ∠+∠=︒,∴3BCD ABC x ∠=∠=,∴2BCF x ∠=,∵//CF AB ,∴180ABC BCF ∠+∠=︒,即32180x x +=︒,解得36x =︒,∴3108BCD x ∠==︒.【点睛】本题考查的主要知识点是平行线的判定及性质以及角平分线的性质,根据图形找准角与角之间的关系 是解此题的关键.26.(1)30°,60°;(2)∠CAF+∠EMC=90°,理由见解析【分析】(1)利用∠CAF=∠BAF-∠BAC 求出∠CAF 度数,求∠EMC 度数转化到∠MCH 度数; (2)过点C 作CH ∥GF ,得到CH ∥DE ,∠CAF 与∠EMC 转化到∠ACH 和∠MCH 中,从而发现∠CAF 、∠EMC 与∠ACB 的数量关系.【详解】(1)过点C 作CH ∥GF ,则有CH ∥DE ,所以∠CAF=∠HCA ,∠EMC=∠MCH ,∵∠BAF=90°,∴∠CAF=90°-60°=30°.∠MCH=90°-∠HCA=60°,∴∠EMC=60°.故答案为30°,60°.(2)∠CAF+∠EMC=90°,理由如下:过点C 作CH ∥GF ,则∠CAF=∠ACH .∵DE ∥GF ,CH ∥GF ,∴CH ∥DE .∴∠EMC=∠HCM .∴∠EMC+∠CAF=∠MCH+∠ACH=∠ACB=90°.【点睛】考查了平行线的判定和性质,解题关键是熟记并灵活运用其性质和判定.27.(1)两直线平行,同旁内角互补;同旁内角互补,两直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)∠B+∠E+∠F+∠D=540°;(3)∠B +∠E+∠D-∠F=180°.【分析】(1)根据平行线的性质和判定,平行公理的推论回答即可;(2)过点E、F分别作GE∥HF∥CD,根据两直线平行,同旁内角互补及已知条件求得同旁内角∠ABE+∠BEG=180°,得到AB∥GE,再根据平行线的传递性来证得AB∥CD;(3)过点E、F分别作ME∥FN∥CD,根据两直线平行,内错角相等及已知条件求得同旁内角∠B+∠BEM=180°,得到AB∥ME,再根据平行线的传递性来证得AB∥CD.【详解】解:(1)由题意可知:“依据1”:两直线平行,同旁内角互补;“依据2”:同旁内角互补,两直线平行;“依据3”:如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)当∠B、∠E、∠F、∠D满足条件∠B+∠E+∠F+∠D=540°时,有AB∥CD.理由:如图,过点E、F分别作GE∥HF∥CD,则∠GEF+∠EFH=180°,∠HFD+∠CDF=180°,∴∠GEF+∠EFD+∠FDC=360°;又∵∠B+∠BEF+∠EFD+∠D=540°,∴∠ABE+∠BEG=180°,∴AB∥GE,∴AB∥CD;(3)当∠B、∠E、∠F、∠D满足条件∠B+∠E+∠D-∠F=180°时,有AB∥CD.如图,过点E、F分别作ME∥FN∥CD,则∠MEF=EFN,∠D=∠DFN,∵∠B+∠BEF+∠D-∠EFD=180°,∴∠B+∠BEM+∠MEF+∠D-∠EFN-∠DFN=180°,∴∠B+∠BEM=180°,∴AB∥ME,∴AB∥CD.【点睛】本题考查平行线的判定和性质的综合应用,作出合适的辅助线,灵活运用平行线的性质定理和判定定理是解题的关键.28.(2)∠EGF=90°;(3)详见解析.【解析】【分析】(2)如图2所示,猜想:∠EGF=90°;由结论(1)得∠EGF=∠BEG+∠GFD,根据EG、FG 分别平分∠BEF和∠EFD,得到∠BEF=2∠BEG,∠EFD=2∠GFD,由于BE∥CF到∠BEF+∠EFD=180°,于是得到2∠BEG+2∠GFD=180°,即可得到结论;(3)如图3,过点G1作G1H∥AB由结论(1)可得∠G2=∠1+∠3,∠EG1F=∠BEG1+∠G1FD,得到∠3=∠G2FD,由于FG2平分∠EFD求得∠4=∠G2FD,由于∠1=∠2,于是得到∠G2=∠2+∠4,由于∠EG1F=∠BEG1+∠G1FD,得到∠EG1F+∠G2=∠2+∠4+∠BEG1+∠G1FD=∠BEF+∠EFD,然后根据平行线的性质即可得到结论.【详解】证明:(2)如图2所示,猜想:∠EGF=90°;由结论(1)得∠EGF=∠BEG+∠GFD,∵EG、FG分别平分∠BEF和∠EFD,∴∠BEF=2∠BEG,∠EFD=2∠GFD,∵BE∥CF,∴∠BEF+∠EFD=180°,∴2∠BEG+2∠GFD=180°,∴∠BEG+∠GFD=90°,∵∠EGF=∠BEG+∠GFD,∴∠EGF=90°;(3)证明:如图3,过点G1作G1H∥AB,∵AB∥CD,∴G1H∥CD,由结论(1)可得∠G2=∠1+∠3,∠EG1F=∠BEG1+∠G1FD,∴∠3=∠G2FD,∵FG2平分∠EFD,∴∠4=∠G2FD,∵∠1=∠2,∴∠G2=∠2+∠4,∵∠EG1F=∠BEG1+∠G1FD,∴∠EG1F+∠G2=∠2+∠4+∠BEG1+∠G1FD=∠BEF+∠EFD,∵AB∥CD,∴∠BEF+∠EFD=180°,∴∠EG1F+∠G2=180°.【点睛】本题考查了平行线的性质,角平分线的性质,熟练掌握平行线的性质定理是解题的关键.。

2012 中考数学真题分类汇编相交线与平行线

2012 中考数学真题分类汇编相交线与平行线

2012 中考数学真题分类汇编相交线与平行线一.选择题1.(2012临沂)如图,AB ∥CD ,DB ⊥BC ,∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .140°2.(2012张家界)如图,直线a 、b 被直线c 所截,下列说法正确的是( )A .当∠1=∠2时,a ∥bB .当a ∥b 时,∠1=∠2C .当a ∥b 时,∠1+∠2=90°D .当∠1+∠2=180°时,a ∥b3(2012山西)如图,直线AB ∥CD ,AF 交CD 于点E ,∠CEF=140°,则∠A 等于( )A .35°B 40°C .45 D50°7.(2012宜昌)如图,将三角尺与直尺贴在一起,使三角尺的直角顶点C (∠ACB=90°)在直尺的一边上,若∠1=60°,则∠2的度数等于( )8.(2012海南)小明同学把一个含有450角的直角三角板在如图所示的两条平行线m n ,上,测得0120α∠=,则β∠的度数是【 】A .450 B .550 C .650 D .7509.(2012•连云港)如图,将三角尺的直角顶点放在直线a 上,a ∥b ,∠1=50°,∠2=60°,则∠3的度数为( ) A.60° B.50° C.80° D.70°FEDCBA10.(2012重庆)已知:如图,BD平分∠ABC,点E在BC上,EF//AB.若∠CEF=100°,则∠ABD的度数为( ) A.60° B.50° C.40° D.30°11.(2012玉林)如图,a∥b,c与a,b都相交,∠1=50°,则∠2=A.40°B.50°C.100°D.130°12.(2012衡阳)如图,直线a⊥直线c,直线b⊥直线c,若∠1=70°,则∠2=()A.70°B.90°C.110° D.80°13.(2012呼和浩特)如图,已知a∥b,∠1=65°,则∠2的度数为A. 65°B. 125°C. 115°D. 25°ab2114.(2012•内江)如图1,=∠=∠=∠3,1402,651,//00则ba()A 0100 B.0105 C.0110 D.011515. (2012广元)一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为【】A. 先向左转130°,再向左转50°B. 先向左转50°,再向右转50°C. 先向左转50°,再向右转40°D. 先向左转50°,再向左转40°二.填空题16.(2012河北)14、如图7,AB,CD相交于点O,AC⊥CD与点C,若∠BOD=38°,则∠A等于______°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备战2012中考:相交线与平行线精华试题汇编第20章 相交线与平行线一、选择题1. (2011山东德州4,3分)如图,直线l 1∥l 2, ∠1=40°,∠2=75°,则∠3等于 (A )55° (B ) 60° (C )65° (D ) 70°【答案】C2. (2011山东日照,3,3分)如图,已知直线AB CD ∥,125C ∠=°,45A ∠=°,那么E ∠的大小为( ) (A )70° (B )80° (C )90° (D )100°【答案】B3. (2011山东泰安,8 ,3分)如图,l ∥m ,等腰直角三角形ABC 的直角顶点C 在直线m 上,若∠β=200,则∠α的度数为( )A.250B.300C.200D.350 【答案】A4. (2011四川南充市,3,3分) 如图,直线DE 经过点A,DE ∥BC,,∠B=60°,下列结论成立的是( )(A )∠C=60° (B )∠DAB=60° (C )∠E AC=60° (D )∠BAC=60°EDCB Al 1 l 2123【答案】B5. (2011山东枣庄,2,3分)如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于( )A .30° B.40° C .60° D.70° 【答案】A6. (2010湖北孝感,3,3分)如图,直线AB 、CD 相交于点O ,OT ⊥AB 于O ,CE ∥AB 交CD 于点C ,若∠ECO=30°,则∠DOT=( ) A.30° B.45° C. 60° D. 120°【答案】C7. (2011河北,2,2分)如图1∠1+∠2=( )21图1A .60°B .90°C .110°D .180° 【答案】B8. (2011宁波市,8,3分)如图所示,AB ∥CD ,∠E =37°, ∠C =20°, ∠EAB 的度数为 A . 57° B . 60° C . 63°D . 123°【答案】A9. (2011浙江衢州,12,4分)如图,直尺一边AB 与量角器的零刻度线CD 平行,若量角器的一条刻度线OF 的读书为70°,OF 与AB 交于点E ,那么AEF ∠= 度.A CB D E【答案】70 10.(2011浙江绍兴,3,4分)如图,已知//,,34AB CD BC ABE C BED ∠∠=︒∠平分,则 的度数是( )A.17︒B. 34︒C. 56︒D. 68︒ECABD【答案】D11. (2011浙江义乌,8,3分)如图,已知AB ∥CD ,∠A =60°,∠C =25°,则∠E 等于A. 60°B. 25°C. 35°D. 45° 【答案】C12. (2011四川重庆,4,4分)如图,AB ∥CD ,∠C =80°,∠CAD =60°,则∠BAD 的度数等于( )A .60°B .50°C . 45°D . 40° 【答案】D13. (2011浙江丽水,5,3分)如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )21ABCDE60° 0o 180o0o 180o170o170o160o160o150o 150o 140o 140o 30o30o 40o 40o50o 50o110o 110o120o 120o130o 130o90o90o100o100o60o 60o70o 70o80o80o20o 20o 10o 10o 1211109876543201ABFCOD (第12题)(第3题图)A .30°B .25°C .20°D .15° 【答案】B14. (2011台湾台北,8)图(二)中有四条互相不平行的直线L 1、L 2、L 3、L 4所截出的七个角。

关于这七个角的度数关系,下列何者正确?A .742∠∠∠+=B 。

613∠∠∠+=C .︒∠∠∠180641=++D 。

︒∠∠∠360532=++【答案】C15. (2011台湾全区,7)若△ABC 中,2(∠A +∠C )=3∠B ,则∠B 的外角度数为何?A .36B .72C .108D .144【答案】C16. (2011湖南邵阳,8,3分)如图(三)所示,已知O 是直线AB 上一点,∠1=40°,OD 平分角BOD ,则∠2的度数是() A.20° B.25° C.30° D.70°12ABOC D【答案】D.提示:∠1+2∠2=180°,∠1=40°,故∠2=70°。

17. (2011广东株洲,5,3分)某商品的商标可以抽象为如图所示的三条线段,其中 AB ∥CD ,∠EAB=45°,则∠FDC 的度数是( )A .30︒B .45︒C .60︒D .75︒【答案】B18. (2011山东济宁,6,3分)如图,AE ∥BD ,∠1=120°,∠2=40°,则∠C 的度数是A .10°B .20°C .30°D .40°【答案】B19. (2011山东聊城,4,3分)如图,已知a ∥b ,∠1=50°,则∠2的度数是( )A .40°B .50°C .120°D .130°【答案】D 20.(2011四川宜宾,4,3分)如图,直线AB 、CD 相交与点E ,DF ∥AB .若∠D=70°,则∠CEB 等于( )A .70°B .80°C .90°D .110°【答案】D21.( 2011重庆江津, 5,4分)下列说法不正确...是( ) A.两直线平行,同位角相等; B 两点之间直线最短C.对顶角相等;D.半圆所对的圆周角是直角· 【答案】B ·22. (2011重庆綦江,5,4分)如图,直线a ∥b , AC ⊥AB ,AC 交直线b 于点C ,∠1=65°,则∠2的度数是( )A. 65°B. 50°C. 35°D. 25° 【答案】:D23. (2011湖南怀化,4,3分)如图2,已知直线a ∥b,∠1=40°,∠2=60°,则∠3等于(第4题图)21E DCB A 第6题A.100°B.60° C .40° D.20°【答案】A24. (2011江苏南通,5,3分)已知:如图AB ∥CD ,∠DCE =80°,则∠BEF 的度数为A. 120° B . 110° C . 100° D . 80°【答案】C25. (2011山东临沂,3,3分)如图,已知AB ∥CD ,∠1=70°,则∠3的度数是( )A .60°B .70°C .80°D .110°【答案】D26. (2011湖北黄石,8,3分)平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n 个点最多可确定21条直线,则n 的值为 A. 5 B. 6 C. 7 D. 8 【答案】B27. (2011湖南邵阳,8,3分)如图(三)所示,已知O 是直线AB 上一点,∠1=40°,OD 平分角BOD ,则∠2的度数是()A.20°B.25°C.30°D.70°12ABOCD【答案】D.28. (2011广东茂名,3,3分)如图,已知AB ∥CD , 则图中与∠1互补的角有A .2个B .3 个C .4 个D .5个【答案】A29. (2011湖北襄阳,4,3分)如图1,CD ∥AB ,∠1=120°,∠2=80°,则∠E 的度数是A .40°B .60°C .80°D .120°【答案】A30. (2011广东湛江10,3分)如图,直线AB CD 、相交于点E ,//DF AB ,若100AEC ︒∠=,则D ∠等于A 70︒B 80︒C 90︒D 100︒【答案】B31. (2011贵州安顺,3,3分)如图,己知AB ∥CD ,BE 平分∠ABC ,∠CDE =150°,则∠C 的度数是( )A .100°B .110°C .120°D .150°【答案】C 二、填空题1. (2011广东湛江14,4分)已知130︒∠=,则1∠的补角的度数为 度. 【答案】1502. (2011湖南湘潭市,11,3分)如图,a ∥b ,若∠2=130°,则∠1=_______度.【答案】50°3. (2011广东广州市,15,3分)已知三条不同的直线a ,b ,c 在同一平面内,下列四个命题:①如果a ∥b ,a ⊥c ,那么b ⊥c ; ②如果b ∥a ,c ∥a ,那么b ∥c ; ③如果b ⊥a ,c ⊥a ,那么b ⊥c ; ④如果b ⊥a ,c ⊥a ,那么b ∥c . 其中真命题的是 .(填写所有真命题的序号) 【答案】①②④ 4. (2011 浙江湖州,12,4).如图,已知CD 平分∠ACD ,DE ∥AC ,∠1=30°,则∠2= 度.2 l1 a b第3题图21E D C BA图1【答案】605. (2011浙江省,11,3分)已知∠A=40°,则∠A 的补角等于 . 【答案】140º6. (2011浙江温州,13,5分)如图,a ∥b ,∠1=40°,∠2=80°,则∠3= 度.【答案】1207. (2011湖南邵阳,15,3分)如图(五)所示,AB ∥CD ,MN 分别交AB ,CD 于点E ,F 。

已知∠1=35°,则∠2=________。

【答案】35°。

相关文档
最新文档