湘潭市2015年中考数学试题附答案解析(word版)

合集下载

2015年湖南省株洲市中考数学试卷和解析答案

2015年湖南省株洲市中考数学试卷和解析答案

第1页(共27页)页)2015年湖南省株洲市中考数学试卷一.选择题(每小题3分,共24分) 1.(3分)2地相反数是(地相反数是( ) A .﹣2 B .2C .﹣D .2.(3分)已知∠α=35°,那么∠α地余角等于(地余角等于( ) A .35° B .55° C .65° D .145°3.(3分)下列等式中,正确地是(分)下列等式中,正确地是( ) A .3a ﹣2a=1B .a 2•a 3=a 5C .(﹣2a 3)2=﹣4a 6D .(a ﹣b )2=a 2﹣b 24.(3分)下列几何图形中,既是轴对称图形,又是中心对称图形地是(分)下列几何图形中,既是轴对称图形,又是中心对称图形地是( ) A .等腰三角形.等腰三角形 B .正三角形.正三角形 C .平行四边形.平行四边形D .正方形 5.(3分)从2,3,4,5中任意选两个数,记作a 和b ,那么点(a ,b )在函数y=图象上地概率是(图象上地概率是( )A .B .C .D .6.(3分)如图,圆O 是△ABC 地外接圆,∠A=68°,则∠OBC 地大小是(地大小是( )A .22°B .26°C .32°D .68°7.(3分)如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且AB=1,CD=3,那么EF 地长是(地长是()A .B .C .D .8.(3分)有两个一元二次方程M :ax 2+bx +c=0;N :cx 2+bx +a=0,其中a•c ≠0,a ≠c .下列四个结论中,错误地是(.下列四个结论中,错误地是( )A .如果方程M 有两个相等地实数根,那么方程N 也有两个相等地实数根B .如果方程M 地两根符号相同,那么方程N 地两根符号也相同C .如果5是方程M 地一个根,那么是方程N 地一个根D .如果方程M 和方程N 有一个相同地根,那么这个根必是x=1二.填空题(每小题3分,共24分)9.(3分)如果手机通话每分钟收费m 元,那么通话n 分钟收费分钟收费 元. 10.(3分)在平面直角坐标系中,点(﹣3,2)关于y 轴地对称点地坐标是轴地对称点地坐标是 . 11.(3分)如图,l ∥m ,∠1=120°,∠A=55°,则∠ACB 地大小是地大小是.12.(3分)某大学自主招生考试只考数学和物理.计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是明物理得分是分. 13.(3分)因式分解:x 2(x ﹣2)﹣16(x ﹣2)=. 14.(3分)已知直线y=2x +(3﹣a )与x 轴地交点在A (2,0)、B (3,0)之间(包括A 、B 两点),则a 地取值范围是地取值范围是. 15.(3分)如图是“赵爽弦图”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等地直角三角形,四边形ABCD 和EFGH 都是正方形.如果AB=10,EF=2,那么AH 等于 .16.(3分)“皮克定理”是用来计算顶点在整点地多边形面积地公式,公式表达式公式表达式为S=a+﹣1,孔明只记得公式中地S表示多边形地面积,a和b中有一个表示多边形边上(含顶点)地整点个数,另一个表示多边形内部地整点个数,但不记得究竟是a还是b表示多边形内部地整点个数,请你选择一些特殊地多边形(如图1)进行验证,得到公式中表示多边形内部地整点个数地字母是)进行验证,得到公式中表示多边形内部地整点个数地字母是,并运用这个公式求得图2中多边形地面积是中多边形地面积是.三解答题(共8小题,共52分)17.(4分)计算:分)计算:||﹣3|+|+((2015﹣π)0﹣2sin30°.18.(4分)先化简,再求值:(﹣)•,其中x=4.19.(6分)为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,且买地球拍尽可能多,那么孔明应该买多少个球拍? 20.(6分)某学校举行一次体育测试,从所有参加测试地中学生中随机地抽取10名学生地成绩,制作出如下统计表和条形图,请解答下列问题:(1)孔明同学这次测试地成绩是87分,则他地成绩等级是分,则他地成绩等级是等; (2)请将条形统计图补充完整;(3)已知该校所有参加这次测试地学生中,已知该校所有参加这次测试地学生中,有有60名学生成绩是A等,请根据以上抽样结果,估计该校参加这次测试地学生总人数是多少人.编号成绩 等级 编号 成绩 等级① 95 A ⑥ 76 B② 78 B ⑦ 85 A③ 72 C ⑧ 82 B④ 79 B ⑨ 77 B⑤ 92 A ⑩ 69 C21.(6分)P表示n边形对角线地交点个数(指落在其内部地交点),如果这些交点都不重合,那么P与n地关系式是P=(n2﹣an+b)(其中a,b是常数,n≥4)(1)填空:通过画图可得:四边形时,P= (填数字);五边形时,P= (填数字)(2)请根据四边形和五边形对角线地交点个数,结合关系式,求a和b地值.(注:本题中地多边形均指凸多边形)22.(8分)如图,中,∠∠C=90°,BD是△ABC地一条角平分线.地一条角平分线.点点O、如图,在在Rt△ABC中,E、F分别在BD、BC、AC上,且四边形OECF是正方形.(1)求证:点O在∠BAC地平分线上;(2)若AC=5,BC=12,求OE地长.23.(8分)已知AB是圆O地切线,切点为B,直线AO交圆O于C、D两点,CD=2,∠DAB=30°,动点P在直线AB上运动,PC交圆O于另一点Q.(1)当点P运动到使Q、C两点重合时(如图1),求AP地长;(2)点P在运动过程中,有几个位置(几种情况)使△CQD地面积为?(直接写出答案)(3)当△CQD地面积为,且Q位于以CD为直径地上半圆,CQ>QD时(如图2),求AP地长.24.(10分)已知抛物线地表达式为y=﹣x2+6x+c.(1)若抛物线与x轴有交点,求c地取值范围;(2)设抛物线与x轴两个交点地横坐标分别为x1、x2,若x12+x22=26,求c地值; (3)若P、Q是抛物线上位于第一象限地不同两点,P A、QB都垂直于x轴,垂足分别为A、B,且△OPA与△OQB全等,求证:c>﹣.2015年湖南省株洲市中考数学试卷参考答案与试题解析一选择题(每小题3分,共24分)1.(3分)2地相反数是(地相反数是( ) A .﹣2 B .2C .﹣D .【分析】根据相反数地定义即可求解. 【解答】解:2地相反数等于﹣2. 故选:A .2.(3分)已知∠α=35°,那么∠α地余角等于(地余角等于( ) A .35° B .55° C .65° D .145°【分析】根据余角地定义:如果两个角地和等于90°(直角),就说这两个角互为余角计算.【解答】解:∵∠α=35°, ∴它地余角等于90°﹣35°35°=55°=55°. 故选:B .3.(3分)下列等式中,正确地是(分)下列等式中,正确地是( ) A .3a ﹣2a=1B .a 2•a 3=a 5C .(﹣2a 3)2=﹣4a 6D .(a ﹣b )2=a 2﹣b 2【分析】结合选项分别进行幂地乘方和积地乘方、合并同类项、同底数幂地乘法、完全平方公式等运算,然后选择正确选项.【解答】解:A 、3a ﹣2a=a ,原式计算错误,故本选项错误; B 、a 2•a 3=a 5,原式计算正确,故本选项正确; C 、(﹣2a 3)2=4a 6,原式计算错误,故本选项错误; D 、(a ﹣b )2=a 2﹣2ab +b 2,原式计算错误,故本选项错误. 故选:B .4.(3分)下列几何图形中,既是轴对称图形,又是中心对称图形地是( )A.等腰三角形.正三角形 C.平行四边形.平行四边形 D.正方形.等腰三角形 B.正三角形【分析】根据轴对称图形与中心对称图形地概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、既是轴对称图形,又是中心对称图形.故正确.故选:D.5.(3分)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数y=图象上地概率是(图象上地概率是( )A. B. C. D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能地结果与点(a,b)在函数y=图象上地情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能地结果,点(a,b)在函数y=图象上地有(3,4),(4,3); ∴点(a,b)在函数y=图象上地概率是:=.故选:D.6.(3分)如图,圆O是△ABC地外接圆,∠A=68°,则∠OBC地大小是(地大小是( )A.22° B.26° C.32° D.68°【分析】先根据圆周角定理求出∠BOC地度数,再根据等腰三角形地性质即可得出结论.【解答】解:∵∠A与∠BOC是同弧所对地圆周角与圆心角,∠A=68°,∴∠BOC=2∠A=136°.∵OB=OC,∴∠OBC==22°.故选:A.7.(3分)如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF地长是(地长是( )A. B. C. D.【分析】易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形地性质可得=,=,从而可得+=+=1.然后把AB=1,CD=3代入即可求出EF地值. 【解答】解:∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故选:C.2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,8.(3分)有两个一元二次方程M:axa≠c.下列四个结论中,错误地是(.下列四个结论中,错误地是( )A.如果方程M有两个相等地实数根,那么方程N也有两个相等地实数根 B.如果方程M地两根符号相同,那么方程N地两根符号也相同C.如果5是方程M地一个根,那么是方程N地一个根D.如果方程M和方程N有一个相同地根,那么这个根必是x=1【分析】利用根地判别式判断A;利用根与系数地关系判断B;利用一元二次方程地解地定义判断C与D.【解答】解:A、如果方程M有两个相等地实数根,那么△=b2﹣4ac=0,所以方程N也有两个相等地实数根,结论正确,不符合题意;B、如果方程M地两根符号相同,那么方程N地两根符号也相同,那么△=b2﹣4ac≥0,>0,所以a与c符号相同,>0,所以方程N地两根符号也相同,结论正确,不符合题意;C、如果5是方程M地一个根,那么25a+5b+c=0,两边同时除以25,得c+b+a=0,所以是方程N地一个根,结论正确,不符合题意;D、如果方程M和方程N有一个相同地根,那么ax 2+bx+c=cx2+bx+a,(a﹣c)x2=a﹣c,由a≠c,得x2=1,x=±1,结论错误,符合题意;故选:D.二.填空题(每小题3分,共24分)9.(3分)如果手机通话每分钟收费m元,那么通话n分钟收费分钟收费 mn 元. 【分析】通话时间×通话单价=通话费用.【解答】解:依题意得解:依题意得通话n分钟收费为:mn.故答案是:mn.10.(3分)在平面直角坐标系中,点(﹣3,2)关于y轴地对称点地坐标是轴地对称点地坐标是 (3,2) .【分析】根据关于y轴对称地点,纵坐标相同,横坐标互为相反数,可得答案. 【解答】解:在平面直角坐标系中,点(﹣3,2)关于y轴地对称点地坐标是(3,2),故答案为:(3,2).11.(3分)如图,l ∥m ,∠1=120°,∠A=55°,则∠ACB 地大小是地大小是 65° .【分析】先根据平行线地性质得∠2=∠1=120°,然后根据三角形外角性质计算∠ACB 地大小.【解答】解:∵l ∥m , ∴∠2=∠1=120°, ∵∠2=∠ACB +∠A , ∴∠ACB=120°﹣55°55°=65°=65°. 故答案为65°.12.(3分)某大学自主招生考试只考数学和物理.计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是明物理得分是 90 分.【分析】先计算孔明数学得分地折算后地分值,然后用综合得分﹣数学得分地折算后地得分,计算出地结果除以40%即可. 【解答】解:(93﹣95×60%)÷40% =(93﹣57)÷40% =36÷40% =90.故答案为:90.13.(3分)因式分解:x 2(x ﹣2)﹣16(x ﹣2)= (x ﹣2)(x +4)(x ﹣4) . 【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=(x﹣2)(x2﹣16)=(x﹣2)(x+4)(x﹣4).故答案为:(x﹣2)(x+4)(x﹣4).14.(3分)已知直线y=2x+(3﹣a)与x轴地交点在A(2,0)、B(3,0)之间7≤a≤9 .地取值范围是(包括A、B两点),则a地取值范围是【分析】根据题意得到x地取值范围是2≤x≤3,则通过解关于x地方程2x+(3﹣a)=0求得x地值,由x地取值范围来求a地取值范围.【解答】解:∵直线y=2x+(3﹣a)与x轴地交点在A(2,0)、B(3,0)之间(包括A、B两点),∴2≤x≤3,令y=0,则2x+(3﹣a)=0,解得x=,则2≤≤3,解得7≤a≤9.故答案是:7≤a≤9.15.(3分)如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等地直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,EF=2,那么AH等于 6 .【分析】根据面积地差得出a+b地值,再利用a﹣b=2,解得a,b地值代入即可. 【解答】解:∵AB=10,EF=2,∴大正方形地面积是100,小正方形地面积是4,∴四个直角三角形面积和为100﹣4=96,设AE为a,DE为b,即4×ab=96, ∴2ab=96,a2+b2=100,∴(a+b)2=a2+b2+2ab=100+96=196,∴a+b=14,∵a﹣b=2,解得:a=8,b=6,∴AE=8,DE=6,∴AH=8﹣2=6.故答案为:6.16.(3分)“皮克定理”是用来计算顶点在整点地多边形面积地公式,公式表达式是用来计算顶点在整点地多边形面积地公式,公式表达式为S=a+﹣1,孔明只记得公式中地S表示多边形地面积,a和b中有一个表示多边形边上(含顶点)地整点个数,另一个表示多边形内部地整点个数,但不记得究竟是a还是b表示多边形内部地整点个数,请你选择一些特殊地多边形(如a ,并运)进行验证,得到公式中表示多边形内部地整点个数地字母是图1)进行验证,得到公式中表示多边形内部地整点个数地字母是中多边形地面积是17.5 .用这个公式求得图2中多边形地面积是【分析】分别找到图1中图形内地格点数和图形上地格点数后与公式比较后即可发现表示图上地格点数地字母,图2中代入有关数据即可求得图形地面积. 【解答】解:如图1,∵三角形内由1个格点,边上有8个格点,面积为4,即4=1+﹣1;矩形内由2个格点,边上有10个格点,面积为6,即6=2+﹣1;∴公式中表示多边形内部整点个数地字母是a;图2中,a=15,b=7,故S=15+﹣1=17.5.故答案为:a,17.5.三解答题(共8小题,共52分)17.(4分)计算:分)计算:||﹣3|+|+((2015﹣π)0﹣2sin30°.【分析】原式第一项利用绝对值地代数意义化简,第二项利用零指数幂法则计算,第三项利用特殊角地三角函数值计算即可得到结果.【解答】解:原式=3+1﹣2×=3+1﹣1=3.18.(4分)先化简,再求值:(﹣)•,其中x=4.再把x地值代入进行计算先根据分式混合运算地法则把原式进行化简,再把【分析】先根据分式混合运算地法则把原式进行化简,即可.【解答】解:原式=•=x+2,当x=4时,原式=6.19.(6分)为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,且买地球拍尽可能多,那么孔明应该买多少个球拍?【分析】设购买球拍x个,根据乒乓球每个1.5元,球拍每个22元,购买地金额不超过200元,列出不等式,求解即可.【解答】解:设购买球拍x个,依题意得:1.5×20+22x≤200,解之得:x≤7,由于x取整数,故x地最大值为7,答:孔明应该买7个球拍.20.(6分)某学校举行一次体育测试,从所有参加测试地中学生中随机地抽取10名学生地成绩,制作出如下统计表和条形图,请解答下列问题:A 等;(1)孔明同学这次测试地成绩是87分,则他地成绩等级是分,则他地成绩等级是(2)请将条形统计图补充完整;有60名学生成绩是A等,请根据以已知该校所有参加这次测试地学生中,有(3)已知该校所有参加这次测试地学生中,上抽样结果,估计该校参加这次测试地学生总人数是多少人.编成绩 等级 编号 成绩 等级号① 95 A ⑥ 76 B② 78 B ⑦ 85 A③ 72 C ⑧ 82 B④ 79 B ⑨ 77 B⑤ 92 A ⑩ 69 C【分析】(1)根据题意确定各个等级地范围,得到答案;(2)根据频数将条形统计图补充完整;(3)计算A等地百分比,估计该校参加这次测试地学生总人数.【解答】解:(1)由统计图可知A等是85≤x<100,∴孔明同学地成绩等级是A等;(2)如图:(3)60÷=200,∴该校参加这次测试地学生总人数是200人.21.(6分)P表示n边形对角线地交点个数(指落在其内部地交点),如果这些交点都不重合,那么P与n地关系式是P=(n2﹣an+b)(其中a,b是常数,n≥4)(1)填空:通过画图可得:四边形时,P= 1 (填数字);五边形时,P= 5 (填数字)(2)请根据四边形和五边形对角线地交点个数,结合关系式,求a和b地值.(注:本题中地多边形均指凸多边形)【分析】(1)根据题意画出图形,进而得出四边形和五边形中P地值;(2)利用(1)中所求,得出二元一次方程组进而求出即可.【解答】解:(1)如图所示:四边形时,P=1;五边形时,P=5;故答案为:1,5;(2)由(1)得:,整理得:,解得:.22.(8分)如图,地一条角平分线.点点O、如图,在在Rt△ABC中,中,∠∠C=90°,BD是△ABC地一条角平分线.E、F分别在BD、BC、AC上,且四边形OECF是正方形.(1)求证:点O在∠BAC地平分线上;(2)若AC=5,BC=12,求OE地长.【分析】(1)过点O作OM⊥AB,由角平分线地性质得OE=OM,由正方形地性质得OE=OF,易得OM=OF,由角平分线地判定定理得点O在∠BAC地平分线上; (2)由勾股定理得AB地长,利用方程思想解得结果.【解答】(1)证明:过点O作OM⊥AB,∵BD是∠ABC地一条角平分线,∴OE=OM,∵四边形OECF是正方形,∴OE=OF,∴OF=OM,∴AO是∠BAC地角平分线,即点O在∠BAC地平分线上;(2)解:∵在Rt△ABC中,AC=5,BC=12,∴AB===13,设CE=CF=x,BE=BM=y,AM=AF=z,∴,解得:,∴CE=2,∴OE=2.23.(8分)已知AB是圆O地切线,切点为B,直线AO交圆O于C、D两点,CD=2,∠DAB=30°,动点P在直线AB上运动,PC交圆O于另一点Q.(1)当点P运动到使Q、C两点重合时(如图1),求AP地长;(2)点P在运动过程中,有几个位置(几种情况)使△CQD地面积为?(直接写出答案)(3)当△CQD地面积为,且Q位于以CD为直径地上半圆,CQ>QD时(如图2),求AP地长.【分析】(1)如图1,利用切线地性质可得∠ACP=90°,只需求出AC,然后在Rt △ACP中运用三角函数就可解决问题;(2)易得点Q到CD地距离为,结合图形2,即可解决问题;(3)过点Q作QN⊥CD于N,过点P作PM⊥CD于M,连接QD,如图3,易证△CNQ∽△QND,根据相似三角形地性质可求出CN.易证△PMC∽△QNC,根据相似三角形地性质可得PM与CM之间地关系,由∠MAP=30°即可得到PM与AM 之间地关系,然后根据AC=AM+CM就可得到PM地值,即可得到AP地值. 【解答】解:(1)∵AB与⊙O相切于点B,∴∠ABO=90°.∵∠DAB=30°,OB=CD=×2=1,∴AO=2OB=2,AC=AO﹣CO=2﹣1=1.当Q、C两点重合时,CP与⊙O相切于点C,如图1,则有∠ACP=90°,∴cos∠CAP===,解得AP=;(2)有4个位置使△CQD地面积为.提示:设点Q到CD地距离为h,∵S=CD•h=×2×h=,△CQD∴h=.由于h=<1,结合图2可得:有4个位置使△CQD地面积为;(3)过点Q作QN⊥CD于N,过点P作PM⊥CD于M,如图3.∵S=CD•QN=×2×QN=,△CQD∴QN=.∵CD是⊙O地直径,QN⊥CD,∴∠CQD=∠QND=∠QNC=90°,∴∠CQN=90°﹣∠NQD=∠NDQ,∴△QNC∽△DNQ,∴=,∴QN2=CN•DN,设CN=x,则有=x(2﹣x),整理得4x2﹣8x+1=0,解得:x1=,x2=.∵CQ>QD,∴x=,∴=2+.∵QN⊥CD,PM⊥CD,∴∠PMC=∠QNC=90°.∵∠MCP=∠NCQ,∴△PMC∽△QNC,∴==2+,∴MC=(2+)MP.在Rt△AMP中,=tan30°==,tan∠MAP==tan30°∴AM=MP.∵AC=AM+MC=MP+(2+)MP=1,∴MP=,∴AP=2MP=.24.(10分)已知抛物线地表达式为y=﹣x2+6x+c.(1)若抛物线与x轴有交点,求c地取值范围;(2)设抛物线与x轴两个交点地横坐标分别为x1、x2,若x12+x22=26,求c地值; (3)若P、Q是抛物线上位于第一象限地不同两点,P A、QB都垂直于x轴,垂足分别为A、B,且△OPA与△OQB全等,求证:c>﹣.【分析】(1)由题意△≥0,列出不等式即可解决问题.(2)利用根与系数关系,列出方程即可解决问题.(3)设P(m,n),则Q(n,m),列出方程组,求出m与n地关系,得到关于n地方程,根据判别式大于0,即可解决问题.【解答】解:(1)∵抛物线与x轴有交点,∴b2﹣4ac≥0,∴36+4c≥0,∴c≥﹣9.(2)∵x1+x2=6,x1x2=﹣c,∴x12+x22=(x1+x2)2﹣2x1x2=36+2c=26∴c=﹣5.(3)∵△OPA≌△QOB,∴OA=BQ,AP=OB,∴可以设P(m,n),则Q(n,m)将P(m,n),Q(n,m)代入原解析式中得:①﹣②得:n 2﹣m2+6m﹣6n=n﹣m∴n2﹣m2+7m﹣7n=0,∴(n﹣m)(n+m﹣7)=0,∴m=n或m=7﹣n,∵m,n不相等,∴m=7﹣n,将m=7﹣n代入①得:n2﹣7n+7﹣c=0, ∵b2﹣4ac>0,∴49﹣4(7﹣c)>0,∴c>﹣.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:lP A'ABlC PA B D运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为的最小值为MFEACBP2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。

湖南省湘潭市中考数学试卷及答案(Word解析版)

湖南省湘潭市中考数学试卷及答案(Word解析版)

湖南省湘潭市中考数学试卷一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.(3分)(•湘潭)﹣5的相反数是()A.5B.C.﹣5 D.考点:相反数.专题:计算题.分析:只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.解答:解:﹣5的相反数是5.故选A.点评:本题主要考查相反数的概念和意义:只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.2.(3分)(•湘潭)一组数据1,2,2,3.下列说法正确的是()A.众数是3 B.中位数是2 C.极差是3 D.平均数是3考点:极差;算术平均数;中位数;众数.分析:根据极差、众数、中位数及平均数的定义,结合各选项进行判断即可.解答:解:A、众数为2,故本选项错误;B、中位数是2,故本选项正确;C、极差为2,故本选项错误;D、平均数为2,故本选项错误;故选B.点评:本题考查了极差、中位数、平均数、众数的知识,掌握基本定义即可解答本题,难度一般.3.(3分)(•湘潭)如图是由三个小方体叠成的一个立体图形,那么它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.析:解答:解:从上面看易得两个横向排列的正方形.故选B.点评:本题考查了三视图的知识,属于基础题,要求同学们掌握俯视图是从物体的上面看得到的视图.4.(3分)(•湘潭)下列图形中,是中心对称图形的是()A.平行四边形B.正五边形C.等腰梯形D.直角三角形考点:中心对称图形分析:根据中心对称的定义,结合所给图形即可作出判断.解答:解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点评:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5.(3分)(•湘潭)一元二次方程x2+x﹣2=0的解为x1、x2,则x1•x2=()A.1B.﹣1 C.2D.﹣2考点:根与系数的关系.专题:计算题.分析:直接根据根与系数的关系求解.解答:解:根据题意得x1•x2==﹣2.故选D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.6.(3分)(•湘潭)下列命题正确的是()A.三角形的中位线平行且等于第三边B.对角线相等的四边形是等腰梯形C.四条边都相等的四边形是菱形D.相等的角是对顶角考点:命题与定理分析:利用三角形中位线的性质,等腰梯形、菱形、对顶角的性质分别进行判断,即可得出答案.解答:解:A、三角形的中位线平行于三角形的第三边并且等于第三边的一半,故本选项错误;B、正方形,矩形对角线均相等,故本选项错误;C、四条边都相等的四边形是菱形,故本选项正确;D、相等的角不一定是对顶角,故本选项错误;故选C.点评:此题考查了命题与定理,熟练掌握各特殊四边形的判定和性质是解答此类问题的关键.7.(3分)(•湘潭)如图,点P(﹣3,2)是反比例函数(k≠0)的图象上一点,则反比例函数的解析式()A.B.C.D.考点:待定系数法求反比例函数解析式.分析:把P点坐标代入反比例函数解析式即可算出k的值,进而得到答案.解答:解:∵点P(﹣3,2)是反比例函数(k≠0)的图象上一点,∴k=﹣3×2=﹣6,∴反比例函数的解析式为y=,故选:D.点评:此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是反比例函数图象经过的点必能满足解析式.8.(3分)(•湘潭)如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.B D=CE B.A D=AE C.D A=DE D.B E=CD考点:等腰三角形的性质分析:根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.解答:解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项错误;C、添加DA=DE无法求出∠DAB=∠EAC,故本选项正确;D、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误.故选C.点评:本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,全等三角形的判定与性质,小综合题,熟练掌握全等三角形的判定与性质是解题的关键.二、填空题(本大题共8个小题,请将答案写在答题卡的相应位置上,每小题3分,满分24分)9.(3分)(•湘潭)|﹣3|=3.考点:绝对值分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|﹣3|=3.故答案为:3.点评:此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.10.(3分)(•湘潭)如右图,已知:AB∥CD,∠C=25°,∠E=30°,则∠A=55°.考点:平行线的性质专题:计算题.分析:由AB与CD平行,利用两直线平行得到一对同位角相等,求出∠EFD的度数,而∠EFD为三角形ECF的外角,利用外角性质即可求出∠EFD的度数,即为∠A的度数.解答:解:∵∠EFD为△ECF的外角,∴∠EFD=∠C+∠E=55°,∵CD∥AB,∴∠A=∠EFD=55°.故答案为:55°点评:此题考查了平行线的性质,以及三角形的外角性质,熟练掌握平行线的性质是解本题的关键.11.(3分)(•湘潭)到底,湘潭地区总人口约为3020000人,用科学记数法表示这一数为 3.02×106.考点:科学记数法—表示较大的数分科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,析:要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将3020000用科学记数法表示为3.02×106.故答案为:3.02×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(•湘潭)湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x位老人,依题意可列方程为2x+16=3x.考点:由实际问题抽象出一元一次方程分析:根据“送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完”表示出牛奶的总盒数,进而得出答案.解答:解:设敬老院有x位老人,依题意可列方程:2x+16=3x,故答案为:2x+16=3x.点评:此题主要考查了由实际问题抽象出一元一次方程,根据已知表示出牛奶的总盒数是解题关键.13.(3分)(•湘潭)“五一”假期,科科随父母在韶山旅游时购买了10张韶山风景明信片(除图案外,形状大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案,他从中任意抽取1张寄给外地工作的姑姑,则恰好抽中印有主席故居图案明信片的概率是.考点:概率公式分析:由在韶山旅游时购买了10张韶山风景明信片(除图案外,形状大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案,直接利用概率公式求解即可求得答案.解答:解:∵在韶山旅游时购买了10张韶山风景明信片(除图案外,形状大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案,∴恰好抽中印有主席故居图案明信片的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.14.(3分)(•湘潭)函数:中,自变量x的取值范围是x≠﹣1.考点:函数自变量的取值范围专计算题.题:分析:根据分式有意义的条件是分母不为0;分析原函数式可得关系式x+1≠0,解可得答案.解答:解:根据题意可得x+1≠0;解可得x≠﹣1;故答案为x≠﹣1.点评:求解析法表示的函数的自变量取值范围时:当函数表达式是分式时,要注意考虑分式的分母不能为0.15.(3分)(•湘潭)计算:=2.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:本题涉及零指数幂、特殊角的三角函数值、二次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=×+1=1+1=2.故答案为2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、特殊角的三角函数值、二次根式化简等考点的运算.16.(3分)(•湘潭)如图,根据所示程序计算,若输入x=,则输出结果为2.考点:函数值;估算无理数的大小专题:图表型.分析:根据>1选择左边的函数关系式进行计算即可得解.解答:解:∵x=>1,∴y=2﹣1=3﹣1=2.故答案为:2.点评:本题考查了函数值的计算,比较简单,准确选择函数关系式是解题的关键.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应的位置上,满分72分)17.(6分)(•湘潭)解不等式组..考点:解一元一次不等式组分析:首先分别计算出两个不等式的解集,再根据“大小小大中间找”找出公共解集即可.解答:解:,由①得:x≥2,由②得:x≤4,不等式组的解集为:2≤x≤4.点评:此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(6分)(•湘潭)先化简,再求值:,其中x=﹣2.考点:分式的化简求值.专题:计算题.分析:先根据分式混合运算的法则把原式进行化简,再把x=2代入进行计算即可.解答:解:原式=÷=×=,当x=﹣2时,原式=﹣=﹣1.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)(•湘潭)如图,C岛位于我南海A港口北偏东60方向,距A港口60海里处,我海监船从A港口出发,自西向东航行至B处时,接上级命令赶赴C岛执行任务,此时C岛在B处北偏西45°方向上,海监船立刻改变航向以每小时60海里的速度沿BC行进,则从B处到达C岛需要多少小时?考点:解直角三角形的应用-方向角问题分析:分别在Rt△ACD与Rt△BCD中,利用三角函数的性质,即可求得BC的长,继而求得答案.解答:解:∵在Rt△ACD中,∠CAD=30°,∴CD=×60=30海里,∵在Rt△BCD中,∠CBD=45°,∴BC=30×=60海里,60÷60=1(小时).答:从B处到达C岛需要1小时.点评:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.20.(6分)(•湘潭)4月20日8时,四川省芦山县发生7.0级地震,某市派出抢险救灾工程队赶芦山支援,工程队承担了2400米道路抢修任务,为了让救灾人员和物资尽快运抵灾区,实际施工速度比原计划每小时多修40米,结果提前2小时完成,求原计划每小时抢修道路多少米?考点:分式方程的应用分析:首先设原计划每小时抢修道路x米,则实际施工速度为每小时抢修道路(x+40)米,根据题意可得等量关系:原计划修2400米道路所用时间﹣实际修2400米道路所用时间=2小时,根据等量关系,列出方程即可.解答:解:设原计划每小时抢修道路x米,由题意得:﹣=2,解得:x1=200,x2=﹣240,经检验:x1=200,x2=﹣240,都是原分式方程的解,x=﹣240不合题意,舍去,答:原计划每小时抢修道路200米.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意解出分式方程后要进行检验.21.(6分)(•湘潭)6月5日是世界环境日,今年“世界环境日”中国的主题为“同呼吸,共奋斗”,旨在释放和传递:建设美丽中国,人人共享、人人有责的信息,小文积极学习与宣传,并从四个方面A:空气污染,B:淡水资源危机,C:土地荒漠化,D:全球变暖,对全校同学进行了随机抽样调查,了解他们在这四个方面中最关注的问题(每人限选一项).以下是他收集数据后,绘制的不完整的统计图表:关注问题频数频率A 24 0.4B 12 0.2C n 0.1D 18 m合计 a1请你根据图表中提供的信息解答以下问题:(1)根据图表信息,可得a=60;(2)请你将条形图补充完整;(3)如果小文所在的学校有1200名学生,那么你根据小文提供的信息估计该校关注“全球变暖”的学生大约有多少人?考点:条形统计图;用样本估计总体;频数(率)分布表.分析:(1)根据空气污染的频数除以对应的频率即可求出a的值;(2)由a的值,减去其它频数求出n的值,补全条形统计图即可;(3)求出表格中m的值,乘以1200即可得到结果.解答:解:(1)根据题意得:24÷0.4=60,即a=60;故答案为:60;(2)根据题意得:n=60﹣(24+12+18)=6,补全条形统计图,如图所示;(3)由表格得:m=0.3,根据题意得:该校关注“全球变暖”的学生大约有1200×0.3=360(人).点评:此题考查了条形统计图,频数(率)分布表,以及用样本估计总体,弄清题意是解本题的关键.22.(6分)(•湘潭)莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示.(1)求销售量y与定价x之间的函数关系式;(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.考点:一次函数的应用分析:(1)由图象可知y与x是一次函数关系,又由函数图象过点(11,10)和(15,2),则用待定系数法即可求得y与x的函数关系式;(2)根据(1)求出的函数关系式,再求出每件该商品的利润,即可求得求超市每天销售这种商品所获得的利润.解答:解:(1)设y=kx+b(k≠0),由图象可知,,解得,故销售量y与定价x之间的函数关系式是:y=﹣2x+32;(2)超市每天销售这种商品所获得的利润是:W=(﹣2x+32)(13﹣10)=﹣6x+96.点评:此题考查了一次函数的应用问题,此题综合性较强,难度一般,解题的关键是理解题意,根据题意求得函数解析式,注意待定系数法的应用,注意数形结合思想的应用.23.(8分)(•湘潭)5月12日是母亲节,小明去花店买花送给母亲,挑中了象征温馨、母爱的康乃馨和象征高贵、尊敬的兰花两种花,已知康乃馨每支5元,兰花每支3元,小明只有30元,希望购买花的支数不少于7支,其中至少有一支是康乃馨.(1)小明一共有多少种可能的购买方案?列出所有方案;(2)如果小明先购买一张2元的祝福卡,再从(1)中任选一种方案购花,求他能实现购买愿望的概率.考点:一元一次不等式组的应用分析:(1)设购买康乃馨x支,购买兰花y支,根据条件建立不等式组,运用分类讨论思想求出其解即可.(2)当小明先购买一张2元的祝福卡,小明购花的钱就只有28元了,求出能够购花的方案,就可以求出实现愿望的概率.解答:解:(1)设购买康乃馨x支,购买兰花y支,由题意,得,∵x、y为正整数,当x=1时,y=6,7,8符合题意,当x=2时,y=5,6符合题意,当x=3时,y=4,5符合题意,当x=4时,y=3符合题意,当x=5时,y=1舍去,当x=6时,y=0舍去.共有8种购买方案,方案1:购买康乃馨1支,购买兰花6支;方案2:购买康乃馨1支,购买兰花7支;方案3:购买康乃馨1支,购买兰花8支;方案4:购买康乃馨2支,购买兰花5支;方案5:购买康乃馨2支,购买兰花6支;方案6:购买康乃馨3支,购买兰花4支;方案7:购买康乃馨3支,购买兰花5支;方案8:购买康乃馨4支,购买兰花3支;(2)由题意,得,,购花的方案有:方案1:购买康乃馨1支,购买兰花6支;方案2:购买康乃馨1支,购买兰花7支;方案4:购买康乃馨2支,购买兰花5支;方案5:购买康乃馨2支,购买兰花6支;∴小明实现购买方案的愿望有5种,而总共有8中购买方案,∴小明能实现购买愿望的概率为P=.点评:本题考查了列不等式组及运用分类讨论思想解答方案设计的运用,概率在实际问题中的运用,解答时根据不等式组及分类讨论思想求出购买方案是关键.24.(8分)(•湘潭)在数学活动课中,小辉将边长为和3的两个正方形放置在直线l 上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.考点:正方形的性质;全等三角形的判定与性质.分析:(1)根据正方形的性质可得AO=CO,OD=OF,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF,再利用“边角边”证明△AOD和△COF全等,根据全等三角形对应边相等即可得证;(2)与(1)同理求出CF=AD,连接DF交OE于G,根据正方形的对角线互相垂直平分可得DF⊥OE,DG=OG=OE,再求出AG,然后利用勾股定理列式计算即可求出AD.解答:解:(1)AD=CF.理由如下:在正方形ABCO和正方形ODEF中,AO=CO,OD=OF,∠AOC=∠DOF=90°,∴∠AOC+∠COD=∠DOF+∠COD,即∠AOD=∠COF,在△AOD和△COF中,,∴△AOD≌△COF(SAS),∴AD=CF;(2)与(1)同理求出CF=AD,如图,连接DF交OE于G,则DF⊥OE,DG=OG=OE,∵正方形ODEF的边长为,∴OE=×=2,∴DG=OG=OE=×2=1,∴AG=AO+OG=3+1=4,在Rt△ADG中,AD===,∴CF=AD=.点评:本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的应用,熟练掌握正方形的四条边都相等,四个角都是直角,对角线相等且互相垂直平分是解题的关键,(2)作辅助线构造出直角三角形是解题的关键.25.(10分)(•湘潭)如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D 点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x 轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.考相似形综合题点:分析:(1)过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,求出DC=5,OC=4,OB=3,根据四边形DBPC是平行四边形求出DC=BP=5,求出OP=2即可;(2)证△PCO∽△CBO,得出=,求出OP=即可;(3)设⊙P的半径是R,分为三种情况:①当⊙P与直线DC相切时,过P作PM⊥DC交DC延长线于M,求出PM、OP的长即可;②当⊙P与BC相切时,根据△COB∽△PBM得出=,求出R=12即可;③当⊙P与DB相切时,证△ADB∽△MPB得出=,求出R即可.解答:解:(1)∵D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y 轴,垂足分别为A、C两点,∴DC=5,OC=4,OB=3,∵DC⊥y轴,x轴⊥y轴,∴DC∥BP,∵PC∥DC,∴四边形DBPC是平行四边形,∴DC=BP=5,∴OP=5﹣3=2,2÷1=2,即当t为2秒时,PC∥BD;(2)∵PC⊥BC,x轴⊥y轴,∴∠COP=∠COB=∠BCP=90∴,∴∠PCO+∠BCO=90°,∠CPO+∠PCO=90°,∴∠CPO=∠BCO,∴△PCO∽△CBO,∴=,∴=,∴OP=,÷1=,即当t为秒时,PC⊥BC;(3)设⊙P的半径是R,分为三种情况:①当⊙P与直线DC相切时,如图1,过P作PM⊥DC交DC延长线于M,则PM=OC=4=OP,4÷1=4,即t=4;②如图2,当⊙P与BC相切时,∵∠BOC=90°,BO=3,OC=4,由勾股定理得:BC=5,∵∠PMB=∠COB=90°,∠CBO=∠PBM,∴△COB∽△PBM,∴=,∴=,R=12,12÷1=12,即t=12秒;③根据勾股定理得:BD==2,如图3,当⊙P与DB相切时,∵∠PMB=∠DAB=90°,∠ABD=∠PBM,∴△ADB∽△MPB,∴=,∴=,R=6+12;(6+12)÷1=6+12,即t=(6+12)秒.点评:本题考查了勾股定理,切线的性质和判定,相似三角形的性质和判定的应用,主要考查学生的计算和推理能力.26.(10分)(•湘潭)如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线y=x2+bx﹣2的图象过C点.(1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.考点:二次函数综合题.分析:如解答图所示:(1)首先构造全等三角形△AOB≌△CDA,求出点C的坐标;然后利用点C的坐标求出抛物线的解析式;(2)首先求出直线BC与AC的解析式,设直线l与BC、AC交于点E、F,则可求出EF的表达式;根据S△CEF=S△ABC,列出方程求出直线l的解析式;(3)首先作出▱PACB,然后证明点P在抛物线上即可.解答:解:(1)如答图1所示,过点C作CD⊥x轴于点D,则∠CAD+∠ACD=90°.∵∠OBA+∠OAB=90°,∠OAB+∠CAD=90°,∴∠OAB=∠ACD,∠OBA=∠CAD.∵在△AOB与△CDA中,∴△AOB≌△CDA(ASA).∴CD=OA=1,AD=OB=2,∴OD=OA+AD=3,∴C(3,1).∵点C(3,1)在抛物线y=x2+bx﹣2上,∴1=×9+3b﹣2,解得:b=﹣.∴抛物线的解析式为:y=x2﹣x﹣2.(2)在Rt△AOB中,OA=1,OB=2,由勾股定理得:AB=.∴S△ABC=AB2=.设直线BC的解析式为y=kx+b,∵B(0,2),C(3,1),∴,解得k=﹣,b=2,∴y=﹣x+2.同理求得直线AC的解析式为:y=x﹣.如答图1所示,设直线l与BC、AC分别交于点E、F,则EF=(﹣x+2)﹣(x﹣)=﹣x.△CEF中,CE边上的高h=OD﹣x=3﹣x.由题意得:S△CEF=S△ABC,即:EF•h=S△ABC,∴(﹣x)•(3﹣x)=×,整理得:(3﹣x)2=3,解得x=3﹣或x=3+(不合题意,舍去),∴当直线l解析式为x=3﹣时,恰好将△ABC的面积分为相等的两部分.(3)存在.如答图2所示,过点C作CG⊥y轴于点G,则CG=OD=3,OG=1,BG=OB﹣OG=1.过点A作AP∥BC,且AP=BC,连接BP,则四边形PACB为平行四边形.过点P作PH⊥x轴于点H,则易证△PAH≌△BCG,∴PH=BG=1,AH=CG=3,∴OH=AH﹣OA=2,∴P(﹣2,1).抛物线解析式为:y=x2﹣x﹣2,当x=﹣2时,y=1,即点P在抛物线上.∴存在符合条件的点P,点P的坐标为(﹣2,1).点评:本题是二次函数综合题型,考查了二次函数的图象与性质、一次函数的图象与性质、待定系数法、全等三角形、平行四边形、等腰直角三角形等知识点.试题难度不大,但需要仔细分析,认真计算.。

最新湖南省株洲市2015年中考数学试题(word版-含解析)

最新湖南省株洲市2015年中考数学试题(word版-含解析)

湖南省株洲市2015年中考数学试题(w o r d版-含解析)2015年株洲市中考学业考试试题一、选择题(每小题有且只有一个正确答案,本题共8小题,共24分)1、2的相反数是A、B、2C D、【试题分析】本题知识点:相反数的意义,可以从代数意义与几何意义上理解。

答案为A2、已知∠α=35°,那么∠α的余角等于A、35°B、55°C、65°D、145°【试题分析】本题考点为互余两个角的性质理解:互余的两个角和为90°,从而解得。

答案为:B3、下列等式中,正确的是A、 B、 C、 D、【试题分析】本题考点为:简单的整式的运算:A、同类项的合并,系数合并,字母与指数不变;B、是同底数幂相乘,底数不变,指数相加;C、是积的乘方的运用,同时要注意符号的确定;D、是整式乘法公式的运用答案为:B4、下列几何图形中,既是轴对称图形,又是中心对称图形的是A、等腰三角形B、正三角形C、平行四边形D、正方形【试题分析】本题考点为:轴对称图形与中心对称图形的理解答案为:D5、从2,3,4,5中任意选两个数,记作a 和b ,那么点(a ,b )在函数12y x图象上的概率是 A 、12 B 、13 C 、14 D 、16【试题分析】本题有两个:一、2,3,4,5从中选出一组数的所有可能性,注意任选两个,是指不能重复;二、反比例函数经过的点的理解; 答案为:D6、如图,圆O 是△ABC 的外接圆,∠A =68°,则∠OBC 的大小是 A 、22° B 、26° C 、32° D 、68° 【试题分析】本题考点为:通过圆心角∠BOC =2∠A =136°,再利用等腰三角形AOC 求出∠OBC 的度数 答案为:A第6题图OCB7、如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且AB =1,CD =3,那么EF 的长是第7题图E BAA 、13B 、23C 、34D 、45【试题分析】本题考点为:相似的三角形性质的运用:利用AB ∥E F∥CD 得到△ABE ∽△DCE ,得到13EC DC BE AB ==,△BEF ∽△BCD 得到14EF BE BE CD BC BE EC ===+,故可知答案 答案为:C8、有两个一元二次方程:M :20ax bx c ++=N :20cx bx a ++=,其中0a c +=,以下列四个结论中,错误的是A 、如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根;B 、如果方程M 有两根符号相同,那么方程N 的两根符号也相同;C 、如果5是方程M 的一个根,那么15是方程N 的一个根;D 、如果方程M 和方程N 有一个相同的根,那么这个根必是1x = 【试题分析】本题是关于二元一次方程的判别式,及根与系数的关系: A 、∵M 有两个不相等的实数根∴△>0 即240b ac ->而此时N 的判别式△=240b ac ->,故它也有两个不相等的实数根; B 、M 的两根符号相同:即120c x x a ⋅=>,而N 的两根之积=ac>0也大于0,故N 的两个根也是同号的。

湖南省湘潭市2015-2016学年七年级(下)期末数学试卷(解析版)

湖南省湘潭市2015-2016学年七年级(下)期末数学试卷(解析版)

2015-2016学年湖南省湘潭市七年级(下)期末数学试卷一、选择题1.方程组的解是()A.B.C.D.2.分解因式(x﹣1)2﹣2(x﹣1)+1的结果是()A.(x﹣1)(x﹣2) B.x2C.(x+1)2D.(x﹣2)23.某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.5.5 C.6 D.74.已知是方程2x+my=3的一个解,那么m的值是()A.1 B.3 C.﹣1 D.﹣35.下列各式计算正确的是()A.(a+2)(a﹣2)=4﹣a2B.(a+2b)2=a2+2ab+4b2C.(﹣x﹣y)2=x2﹣2xy﹣y2D.(4ab+1)(4ab﹣1)=16a2b2﹣16.如图,直线AB、CD、EF相交于O,则∠1+∠2+∠3的度数等于()A.90° B.150°C.180°D.210°7.如图,AB∥CD,BC∥DE,若∠B=40°,则∠CDE的度数是()A.40° B.60° C.140°D.160°8.如图,在三角形ABC中,∠C=90°,∠B=35°,将三角形ABC绕点A按顺时针方向旋转到三角形AB1C1的位置,使得点C、A、B1在一条直线上,那么旋转角等于()A.145°B.125°C.70° D.55°二、填空题9.计算:(﹣3)2016×(﹣)2014= .10.如图,直线AB左边是计算器上的数字是5,若以AB为对称轴,那么它的对称图形是数字.11.已知x2+y2=8,x﹣y=3,则xy的值为.12.老王家去年收入x元,支出y元,而今年收入比去年多15%,支出比去年少10%,结果今年结余30000元,根据题意可列出的方程为.13.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于.14.如图,l∥m,∠1=120°,∠A=50°,∠ACB的度数是.15.某校为了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成条形图,据此可以估计出该校所有学生平均每人每天的课外阅读时间为.16.若x,y满足方程(2x+3y﹣8)2+|3x+4y﹣12|=0,则x+y= .三、解答题(解答应写出文字说明、证明过程或演算步骤,满分72分)17.解方程组.18.已知a x=3,a y=2,求a x+2y的值.19.因式分解x3﹣4xy2.20.如图,在∠AOB内有一点P.(1)过P分别作l1∥OA,l2∥OB;(2)l1与l2相交所成锐角与∠AOB的大小有怎样关系(直接说出结果)?21.如图,直线AB,CD相交于O,射线OM平分∠AOC,若∠BOD=80°,求∠BOM的度数.22.王老师家买了一套新房,其结构如图所示,(单位:米)他打算将卧室铺上木地板,其余部份铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?23.如图所示,图1是一个长为2x,宽为2y的长方形,沿图中虚线剪成四个完全相同的小长方形,再按图2围成一个正方形.(1)请用两种方法计算图2中中间小正方形的面积;(2)比较(1)的两种结果,你能得到怎样的等量关系?24.刘老师把九年级(1)班全班50名学生的一次数学测验的结果整理成下表和扇形统计图分数人数A 95 6B 85 4C 75 xD 65 yE 55 6(1)求x,y的值;(2)计算九年级(1)班这次测验的平均分.25.如图,已知AB=AC=5,BC=3,将BC沿BD所在的直线折叠,使点C落在AB边上的E点处,求三角形AED的周长.26.某公司计划2016年在甲、乙两个电视台播放总长为300分钟的广告,已知甲、乙两个电视台的广告收费标准分别为500元/分钟和200元/分钟,该公司的广告总费用为9万元,预计甲、乙两个电视台播放该公司的广告分别能给该公司带来0.3万元/分钟和0.2万元/分钟的收益,问该公司在甲、乙两个电视台播放广告的时长为多少分钟?预计甲、乙两个电视台2016年为该公司所播放的广告将给该公司带来多少万元的收益?2015-2016学年湖南省湘潭市七年级(下)期末数学试卷参考答案与试题解析一、选择题1.方程组的解是()A.B.C.D.【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】利用代入消元法求出方程组的解,即可作出判断.【解答】解:,由①得:x=1,把x=1代入②得:y=2,则方程组的解为,故选A【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.分解因式(x﹣1)2﹣2(x﹣1)+1的结果是()A.(x﹣1)(x﹣2) B.x2C.(x+1)2D.(x﹣2)2【考点】因式分解-运用公式法.【分析】首先把x﹣1看做一个整体,观察发现符合完全平方公式,直接利用完全平方公式进行分解即可.【解答】解:(x﹣1)2﹣2(x﹣1)+1=(x﹣1﹣1)2=(x﹣2)2.故选:D.【点评】此题主要考查了因式分解﹣运用公式法,关键是熟练掌握完全平方公式:a2±2ab+b2=(a±b)2.3.某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.5.5 C.6 D.7【考点】中位数;算术平均数.【分析】根据平均数的定义先求出这组数据x,再将这组数据从小到大排列,然后找出最中间的数即可.【解答】解:∵4、5、5、x、6、7、8的平均数是6,∴(4+5+5+x+6+7+8)÷7=6,解得:x=7,将这组数据从小到大排列为4、5、5、6、7、7、8,最中间的数是6;则这组数据的中位数是6;故选:C.【点评】此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).4.已知是方程2x+my=3的一个解,那么m的值是()A.1 B.3 C.﹣1 D.﹣3【考点】二元一次方程的解.【专题】计算题.【分析】把x与y的值代入方程计算即可求出m的值.【解答】解:把代入方程得:2+m=3,解得:m=1.故选A.【点评】此题考查联立二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.下列各式计算正确的是()A.(a+2)(a﹣2)=4﹣a2B.(a+2b)2=a2+2ab+4b2C.(﹣x﹣y)2=x2﹣2xy﹣y2D.(4ab+1)(4ab﹣1)=16a2b2﹣1【考点】平方差公式;完全平方公式.【专题】计算题;整式.【分析】原式各项利用平方差公式及完全平方公式化简得到结果,即可作出判断.【解答】解:A、原式=a2﹣4,错误;B、原式=a2+4ab+4b2,错误;C、原式=x2+2xy+y2,错误;D、原式=16a2b2﹣1,正确,故选D【点评】此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.6.如图,直线AB、CD、EF相交于O,则∠1+∠2+∠3的度数等于()A.90° B.150°C.180°D.210°【考点】对顶角、邻补角.【分析】根据对顶角相等可得∠4=∠1,再根据平角的定义解答.【解答】解:如图,∠4=∠1,∵∠2+∠3+∠4=180°,∴∠1+∠2+∠3=180°.故选C.【点评】本题考查了对顶角相等的性质,平角的定义,准确识图是解题的关键.7.如图,AB∥CD,BC∥DE,若∠B=40°,则∠CDE的度数是()A.40° B.60° C.140°D.160°【考点】平行线的性质.【分析】根据平行线的性质得出∠C=∠B=40°,∠CDE+∠C=180°,即可求出答案.【解答】解:∵AB∥CD,∠B=40°,∴∠C=∠B=40°,∵BC∥DE,∴∠CDE+∠C=180°,∴∠CDE=140°,故选C.【点评】本题考查了平行线的性质的应用,能灵活运用性质进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.8.如图,在三角形ABC中,∠C=90°,∠B=35°,将三角形ABC绕点A按顺时针方向旋转到三角形AB1C1的位置,使得点C、A、B1在一条直线上,那么旋转角等于()A.145°B.125°C.70° D.55°【考点】旋转的性质.【分析】根据三角形内角和定理求出∠BAC的度数,根据旋转变换的性质求出∠BAC1=70°,得到∠CAC的度数即可.【解答】解:∵∠C=90°,∠B=35°,∴∠BAC=55°,由旋转的性质可知,∠B1AC1=∠BAC=55°,∴∠BAC1=70°,∴∠CAC1=125°,故选:B.【点评】本题考查的是旋转变换的性质、三角形内角和定理的应用,旋转变换的性质:对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等.二、填空题9.计算:(﹣3)2016×(﹣)2014= 9 .【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则将原式变形,进而求出答案.【解答】解:(﹣3)2016×(﹣)2014=[(﹣3)×(﹣)]2014×(﹣3)2=9.故答案为:9.【点评】此题主要考查了积的乘方运算,正确将原式变形是解题关键.10.如图,直线AB左边是计算器上的数字是5,若以AB为对称轴,那么它的对称图形是数字 2 .【考点】轴对称图形.【分析】先得到数字“5”的轴对称图形,根据图形即可求解.【解答】解:如图所示:根据轴对称图形的定义可知,数字“5”的轴对称图形是数字2.故答案为:2.【点评】本题主要考查的是利用轴对称的性质作图,作出对称图形是解题的关键.11.已知x2+y2=8,x﹣y=3,则xy的值为﹣.【考点】完全平方公式.【分析】现将x﹣y进行平方,然后把x2+y2=8代入,即可求解.【解答】解:∵(x﹣y)2=x2﹣2xy+y2=9,x2+y2=8,∴xy=﹣.故答案为:﹣【点评】本题考查了完全平方公式,熟记公式的几个变形公式对解题大有帮助.12.老王家去年收入x元,支出y元,而今年收入比去年多15%,支出比去年少10%,结果今年结余30000元,根据题意可列出的方程为(1+15%)x﹣(1﹣10%)y=30000 .【考点】由实际问题抽象出二元一次方程.【分析】首先根据题意,可以表示出今年收入为(1+15%)x,今年支出为(1﹣10%)y.此题中的等量关系有:结果今年结余30000元.【解答】解:根据结果今年结余30000元,列方程(1+15%)x﹣(1﹣10%)y=30000.【点评】找到关键描述语,找到等量关系是解决问题的关键.注意今年的收入和支出都是在去年的基础上变化的.13.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于40°.【考点】平行线的性质.【专题】计算题.【分析】根据平行线的性质得∠C+∠CAB=180°,则可计算出∠CAB=180°﹣∠C=100°,然后利用∠BAD=∠CAB﹣∠CAD进行计算.【解答】解:∵AB/∥CD,∴∠C+∠CAB=180°,∴∠CAB=180°﹣∠C=180°﹣80°=100°,∴∠BAD=∠CAB﹣∠CAD=100°60°=40°.故答案为40°.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.14.如图,l∥m,∠1=120°,∠A=50°,∠ACB的度数是70°.【考点】平行线的性质.【分析】根据两直线平行,内错角相等可得∠DBC=∠1,再根据三角形外角的性质列式计算即可得解.【解答】解:∵l∥m,∴∠DBC=∠1=120°,∵∠A=50°,∴∠ACB=∠DBC﹣∠A=120°﹣50°=70°.故答案为:70°.【点评】本题考查了平行线的性质,三角形外角的性质,熟记性质是解题的关键.15.某校为了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成条形图,据此可以估计出该校所有学生平均每人每天的课外阅读时间为1小时.【考点】条形统计图;用样本估计总体.【分析】根据加权平均数的求解方法列式计算即可得解.【解答】解:×(20×0.5+15×1+10×1.5+5×2),=×(10+15+15+10),=×50,=1(小时).故答案为:1小时.【点评】本题考查的是条形统计图的综合运用,加权平均数的求法.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.16.若x,y满足方程(2x+3y﹣8)2+|3x+4y﹣12|=0,则x+y= 4 .【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题;一次方程(组)及应用.【分析】根据已知等式,利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可求出x+y的值.【解答】解:∵(2x+3y﹣8)2+|3x+4y﹣12|=0,∴,①×4﹣②×3得:﹣x=﹣4,即x=4,把x=4代入①得:y=0,则x+y=4,故答案为:4【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.三、解答题(解答应写出文字说明、证明过程或演算步骤,满分72分)17.解方程组.【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】方程组利用代入消元法求出解即可.【解答】解:,由①得x=2,把x=2代入②得y=﹣2,则原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.已知a x=3,a y=2,求a x+2y的值.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】直接利用同底数幂的乘法运算法则将原式变形进而将已知代入求出答案.【解答】解:∵a x=3,a y=2,∴a x+2y=a x×a2y=3×22=12.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确应用同底数幂的乘法运算法则是解题关键.19.因式分解x3﹣4xy2.【考点】提公因式法与公式法的综合运用.【分析】先提公因式x,再利用平方差公式继续分解因式.【解答】解:x3﹣4xy2=x(x2﹣4y2),=x(x+2y)(x﹣2y).【点评】本题考查了提公因式法与公式法分解因式,提取公因式后继续进行二次因式分解是关键,注意分解因式要彻底.20.如图,在∠AOB内有一点P.(1)过P分别作l1∥OA,l2∥OB;(2)l1与l2相交所成锐角与∠AOB的大小有怎样关系(直接说出结果)?【考点】平行线的性质.【分析】(1)利用平移的方法作出两条已知射线的平行线即可;(2)根据两直线平行,同旁内角互补得到结论即可.【解答】解:(1)解答图如图:(2)L1与L2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.【点评】本题考查基本作图及平行线的性质,难度较小,本题除去互补的角外还有邻补角互补.21.如图,直线AB,CD相交于O,射线OM平分∠AOC,若∠BOD=80°,求∠BOM的度数.【考点】对顶角、邻补角;角平分线的定义.【分析】首先根据邻补角互补,对顶角相等可得∠AOC=80°,∠BOC=100°,再根据角平分线的性质可得∠MOC的度数,进而可得答案.【解答】解:∵∠BOD=80°,∴∠AOC=80°,∠BOC=100°,∵OM平分∠AOC,∴∠MOC=40°,∴∠BOM=∠BOC+∠MOC=140°.【点评】此题主要考查了对顶角和邻补角,关键是掌握邻补角互补,对顶角相等.22.王老师家买了一套新房,其结构如图所示,(单位:米)他打算将卧室铺上木地板,其余部份铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?【考点】整式的混合运算.【分析】(1)根据图形可以分别表示出卧室的面积和厨房、卫生间、客厅的面积,从而可以解答本题;(2)根据(1)中的面积和题目中的信息,可以求得王老师需要花多少钱.【解答】解:(1)卧室的面积是:2b(4a﹣2a)=4ab(平方米),厨房、卫生间、客厅的面积是:b•(4a﹣2a﹣a)+a•(4b﹣2b)+2a•4b=ab+2ab+8ab=11ab(平方米),即木地板需要4ab平方米,地砖需要11ab平方米;(2)11ab•x+4ab•3x=11abx+12abx=23abx(元)即王老师需要花23abx元.【点评】本题考查整式的混合运算,解题的关键是明确整式的混合运算的计算方法.23.如图所示,图1是一个长为2x,宽为2y的长方形,沿图中虚线剪成四个完全相同的小长方形,再按图2围成一个正方形.(1)请用两种方法计算图2中中间小正方形的面积;(2)比较(1)的两种结果,你能得到怎样的等量关系?【考点】完全平方公式的几何背景.【分析】(1)用大正方形的面积减去4个长方形的面积即(x+y)2﹣4xy;也可以直接利用正方形的面积公式得到2中阴影部分的面积为(x﹣y)2;(2)利用面积之间的关系易得结论.【解答】解:(1)法1:大正方形的面积减去四个小矩形的面积:(x+y)2﹣4xy.法2:小正方形的边长为x﹣y,面积为:(x﹣y)2.(2)等量关系为:(x+y)2﹣4xy=(x﹣y)2.【点评】本题考查了列代数式:根据题中的已知数量利用代数式表示其他相关的量.24.刘老师把九年级(1)班全班50名学生的一次数学测验的结果整理成下表和扇形统计图分数人数A 95 6B 85 4C 75 xD 65 yE 55 6(1)求x,y的值;(2)计算九年级(1)班这次测验的平均分.【考点】扇形统计图;统计表;加权平均数.【专题】统计与概率.【分析】(1)根据表格可以列出关于x、y的二元一次方程组,从而可以求得x、y的值;(2)根据表格中的数据可以求得九年级(1)班这次测验的平均分.【解答】解:(1)由题意可得,,解得,,即x的值是14,y的值是20;(2)由表格可得,九年级(1)班这次测验的平均分是: =71.8(分),即九年级(1)班这次测验的平均分是71.8分.【点评】本题考查扇形统计图、加权平均数、统计表,解题的关键是明确题意,找出所求问题需要的条件.25.如图,已知AB=AC=5,BC=3,将BC沿BD所在的直线折叠,使点C落在AB边上的E点处,求三角形AED的周长.【考点】翻折变换(折叠问题).【分析】根据折叠可得BC=BE,CD=ED,再由AB=AC=5,BC=3可求出AE的长,再利用等量代换可得求出三角形AED的周长.【解答】解:由已知得,BC=BE,CD=ED,∵AB=AC=5,BC=3,∴AE=AB﹣BE=5﹣3=2.∵三角形AED的周长为AD+DE+AE,∴三角形AED的周长为AD+CD+AE=AC+AE=5+2=7.【点评】此题主要考查了折叠变换,关键是找准折叠后哪些边是对应相等的.26.某公司计划2016年在甲、乙两个电视台播放总长为300分钟的广告,已知甲、乙两个电视台的广告收费标准分别为500元/分钟和200元/分钟,该公司的广告总费用为9万元,预计甲、乙两个电视台播放该公司的广告分别能给该公司带来0.3万元/分钟和0.2万元/分钟的收益,问该公司在甲、乙两个电视台播放广告的时长为多少分钟?预计甲、乙两个电视台2016年为该公司所播放的广告将给该公司带来多少万元的收益?【考点】二元一次方程组的应用.【分析】设该公司在甲、乙两个电视台播放做广告的时间分别为x分钟和y分钟,根据“在甲、乙两个电视台播放总长为300分钟、该公司的广告总费用为9万元”列方程组求出该公司在甲、乙电视台播放做广告的时间,继而列式计算可得.【解答】解:设该公司在甲电视台播放做广告的时间为x分钟和在乙电视台播放做广告的时间为y 分钟,由题意得:解得:此时公司收入为100×0.3+200×0.2=70(万元)答:该公司播放广告后能带来70万元的收益.【点评】本题主要考查二元一次方程组的实际应用,理解题意找出题目中蕴含的相等关系是解题的关键.。

2015学年湖南省湘潭市湘潭县七年级下学期数学期末试卷带答案

2015学年湖南省湘潭市湘潭县七年级下学期数学期末试卷带答案

2014-2015学年湖南省湘潭市湘潭县七年级(下)期末数学试卷一、选择题:每小题3分,共24分.在四个选项中只有一项是正确的.1.(3分)下列计算正确的是()A.a3•a2=a6 B.(x3)3=x6C.x5+x5=x10D.(﹣2a3)2=4a62.(3分)已知是方程2x+my=3的一个解,那么m的值是()A.1 B.3 C.﹣1 D.﹣33.(3分)已知数据1,0,6,1,2,下列说法不正确的是()A.中位数是6 B.平均数是2C.众数是1 D.最大值与最小值的差是64.(3分)若实数a,b满足a+b=4,则a2+2ab+b2的值是()A.2 B.4 C.8 D.165.(3分)如图,已知AB∥CD,∠2=130°,则∠1的度数是()A.40°B.50°C.60°D.70°6.(3分)如图,该图形绕点O按下列角度旋转后,能与原图形重合的是()A.45°B.60°C.90°D.120°7.(3分)已知方程组的解是,则m﹣n的值是()A.﹣2 B.2 C.0 D.﹣18.(3分)如图,AB∥CD,给出下列几个结论:①∠B=∠BCD;②∠A=∠DCE;③∠A+∠ACB=180°;④∠A+∠ACD=180°.其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、填空题:每空3分,共24分.9.(3分)计算(﹣2)2015×0.42014=.10.(3分)某班有男、女学生共54人,男学生人数恰为女学生人数的2倍,那么,该班有女生人.11.(3分)一组数据1、3、x、4、5的平均数是5,这组数据的中位数是.12.(3分)已知a为常数,若三个方程x﹣y=1,2x+y=5,ax+y=2的解相同,则a的值为.13.(3分)因式分解:2mx2﹣8my2=.14.(3分)如图,在△ABC中,AB=3cm,BC=7cm,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为.15.(3分)如图,已知∠1=∠2,∠3=100°,则∠4=.16.(3分)如图,直线AB、CD交于点O,则∠BOD=.三、解答题:共9小题,解答应写出文字说明、证明过程或演算步骤,满分72分.17.(7分)已知xy=﹣3,满足x+y=2,求代数式x2y+xy2的值.18.(7分)如图,请在下面的2×2方格中,画一个三角形,使其成为轴对称图形.19.(7分)解方程组:.20.(7分)先化简,再求值:(2a +1)(2a ﹣3)﹣(2a +1)(2a ﹣1),其中a=2. 21.(7分)一个由师生共30人组成的旅游团队,到某景区旅游观光.已知景区的门票销售标准是:成人门票50元/张,学生门票20元/张.该旅游团购买门票共花费了720元.问该团队老师和学生分别有多少人?22.(9分)如图,已知△ABC 的面积为16,BC 的长为8,现将△ABC 沿BC 向右平移m 个单位到△A′B′C′的位置.若四边形ABB′A′的面积为32,求m 的值.23.(9分)小明和小华参加某体育项目的训练,近期的8次测试成绩(单位:分)如表:测试 第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 小明 10 10 11 10 14 16 16 17 小华1113131214131513(1)根据上表中提供的数据填写下表:平均分(分) 众数(分)中位数(分)方差小明 10 8.25 小华13131.25(2)若从这选一人参加市中学生运动会,你认为选谁去合适?24.(9分)如图,已知CD ⊥AB 于点D ,FE ⊥AB 于点E ,且∠1=∠2,∠DGC=96°,求∠ACB 的度数.25.(10分)如图所示,图1是一个长为2m,宽为2n的长方形,沿图中的虚线剪成四个完全相同的小长方形,再按图2围成一个较大的正方形.(1)用两种方法求图中阴影部分的面积.(2)由(1)可以推出一个怎样的等量关系?2014-2015学年湖南省湘潭市湘潭县七年级(下)期末数学试卷参考答案与试题解析一、选择题:每小题3分,共24分.在四个选项中只有一项是正确的.1.(3分)下列计算正确的是()A.a3•a2=a6 B.(x3)3=x6C.x5+x5=x10D.(﹣2a3)2=4a6【解答】解:A、a3•a2=a5,故此选项错误;B、(x3)3=x9,故此选项错误;C、x5+x5=2x5,故此选项错误;D、(﹣2a3)2=4a6,故此选项正确.故选:D.2.(3分)已知是方程2x+my=3的一个解,那么m的值是()A.1 B.3 C.﹣1 D.﹣3【解答】解:把代入方程得:2+m=3,解得:m=1.故选:A.3.(3分)已知数据1,0,6,1,2,下列说法不正确的是()A.中位数是6 B.平均数是2C.众数是1 D.最大值与最小值的差是6【解答】解:把数据0,1,6,2,1从小到大排列为:0,1,1,2,6,最中间的数是1,则中位数是1;这组数据的平均数是(0+1+6+2+1)÷5=2;1出现了2次,出现的次数最多,则众数是1;极差是6﹣0=6;故选:A.4.(3分)若实数a,b满足a+b=4,则a2+2ab+b2的值是()A.2 B.4 C.8 D.16【解答】解:∵a+b=4,∴原式=(a+b)2=16.故选:D.5.(3分)如图,已知AB∥CD,∠2=130°,则∠1的度数是()A.40°B.50°C.60°D.70°【解答】解:∵∠2=130°,∴∠3=180°﹣130°=50°.∵AB∥CD,∴∠1=∠3=50°.故选:B.6.(3分)如图,该图形绕点O按下列角度旋转后,能与原图形重合的是()A.45°B.60°C.90°D.120°【解答】解:该图形被平分成四部分,因而每部分被分成的圆心角是90°,旋转90°的整数倍,就可以与自身重合,因而A、B、D都不正确,不能与其自身重合;能与自身重合的是C.故选:C.7.(3分)已知方程组的解是,则m﹣n的值是()A.﹣2 B.2 C.0 D.﹣1【解答】解:把代入方程组得:,②﹣①得:m﹣n=2,故选:B.8.(3分)如图,AB∥CD,给出下列几个结论:①∠B=∠BCD;②∠A=∠DCE;③∠A+∠ACB=180°;④∠A+∠ACD=180°.其中正确的结论有()A.1个 B.2个 C.3个 D.4个【解答】解:∵AB∥CD,∴①∠B=∠BCD;②∠A=∠DCE;④∠A+∠ACD=180°,故①②④正确,③错误.故选:C.二、填空题:每空3分,共24分.9.(3分)计算(﹣2)2015×0.42014=﹣2.5.【解答】解:原式=(﹣2.5×0.4)2014×(﹣2.5)=(﹣1)2014×(﹣2.5)=﹣2.5,故答案为:﹣2.5.10.(3分)某班有男、女学生共54人,男学生人数恰为女学生人数的2倍,那么,该班有女生18人.【解答】解:设该班有男生x人,女生y人,依题意有,解得.故答案为:18.11.(3分)一组数据1、3、x、4、5的平均数是5,这组数据的中位数是4.【解答】解:∵数据1、3、x、4、5的平均数是5,∴=5,解得:12,则这组数据按照从小到大的顺序排列为:1,3,4,5,12,则中位数为4.故答案为:4.12.(3分)已知a为常数,若三个方程x﹣y=1,2x+y=5,ax+y=2的解相同,则a的值为.【解答】解:联立得:,①+②得:3x=6,即x=2,把x=2代入①得:y=1,把x=2,y=1代入ax+y=2中,得:2a+1=2,解得:a=.故答案为:.13.(3分)因式分解:2mx2﹣8my2=2m(x+2y)(x﹣2y).【解答】解:原式=2m(x2﹣4y2)=2m(x+2y)(x﹣2y).故答案为:2m(x+2y)(x﹣2y).14.(3分)如图,在△ABC中,AB=3cm,BC=7cm,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为10cm.【解答】解:∵将△ABC折叠,使点C与点A重合,折痕为DE,∴AE=CE,∴△ABE的周长=AB+BE+AE=AB+(BE+CE)=AB+BC=3+7=10(cm),即△ABE的周长为10cm.故答案为:10cm.15.(3分)如图,已知∠1=∠2,∠3=100°,则∠4=80°.【解答】解:如图,∵∠1=∠2,∴a∥b,∴∠3+∠4=180°,又∵∠3=100°,∴∠4=180°﹣100°=80°故答案是:80°.16.(3分)如图,直线AB、CD交于点O,则∠BOD=60°.【解答】解:根据对顶角相等得:3x=2x+40解得:x=40∴∠AOD=3x=120°,∴∠BOD=180°﹣∠AOD=180°﹣120°=60°,故答案为:60°.三、解答题:共9小题,解答应写出文字说明、证明过程或演算步骤,满分72分.17.(7分)已知xy=﹣3,满足x+y=2,求代数式x2y+xy2的值.【解答】解:∵xy=﹣3,x+y=2,∴x2y+xy2=xy(x+y)=﹣3×2=﹣6.18.(7分)如图,请在下面的2×2方格中,画一个三角形,使其成为轴对称图形.【解答】解:如图所示,答案不唯一.19.(7分)解方程组:.【解答】解:,由①+②得8x=﹣8,即x=﹣1,代入①得:y=3,故原方程组的解为.20.(7分)先化简,再求值:(2a+1)(2a﹣3)﹣(2a+1)(2a﹣1),其中a=2.【解答】解:原式=4a2﹣4a﹣3﹣4a2+1=﹣4a﹣2,当a=2时,原式=﹣10.21.(7分)一个由师生共30人组成的旅游团队,到某景区旅游观光.已知景区的门票销售标准是:成人门票50元/张,学生门票20元/张.该旅游团购买门票共花费了720元.问该团队老师和学生分别有多少人?【解答】解:设该团有老师x人,学生y人,依题意得,解这个方程得.答:该团队有老师4人,学生26人.22.(9分)如图,已知△ABC的面积为16,BC的长为8,现将△ABC沿BC向右平移m个单位到△A′B′C′的位置.若四边形ABB′A′的面积为32,求m的值.【解答】解:如图1,过点A向BC作垂线,垂足为H ,,∵△ABC的面积=16,BC=8,∴×BC×AH=16,∴,解得AH=4,又∵四边形ABB′A′的面积为32,∴BB′×4=32,∴BB′=32÷4=8,∴m=BB′=8,即m的值是8.23.(9分)小明和小华参加某体育项目的训练,近期的8次测试成绩(单位:分)如表:测试第1次第2次第3次第4次第5次第6次第7次第8次小明1010111014161617小华1113131214131513(1)根据上表中提供的数据填写下表:平均分(分)众数(分)中位数(分)方差小明 13 10 12.5 8.25 小华131.25131.25(2)若从这选一人参加市中学生运动会,你认为选谁去合适? 【解答】解:(1)平均数众数 中位数方差小明 13 10 12.5 8.25小华1313131.25故答案为:13,12.5,1.25.(2)小明和小华成绩的平均数均为13分,但小华的方差比小明的小,且高于13分的次数小兵比小明的多,所以让小华去;或小明成绩总体上呈现上升趋势,且后几次的成绩均高于13分,所以让小明去较合适.24.(9分)如图,已知CD ⊥AB 于点D ,FE ⊥AB 于点E ,且∠1=∠2,∠DGC=96°,求∠ACB 的度数.【解答】解:∵CD ⊥AB ,EF ⊥AB , ∴∠CDE=∠FEB=90°, ∴CD ∥EF , ∴∠2=∠DCF , 又∵∠1=∠2, ∴∠1=∠DCF , ∴DG ∥BC , ∴∠ACB=∠AGD , ∵∠DGC=96°, ∴∠AGD=84°∴∠ACB=∠AGD=84°.25.(10分)如图所示,图1是一个长为2m,宽为2n的长方形,沿图中的虚线剪成四个完全相同的小长方形,再按图2围成一个较大的正方形.(1)用两种方法求图中阴影部分的面积.(2)由(1)可以推出一个怎样的等量关系?【解答】解:(1)方法一:∵大正方形的面积为(m+n)2,四个小长方形的面积为4mn,∴中间阴影部分的面积为S=(m+n)2﹣4mn.方法二:∵中间小正方形的边长为m﹣n,∴其面积为(m﹣n)2.(2)(m+n)2﹣4mn=(m﹣n)2或(m+n)2=(m﹣n)2+4mn.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.ODABCEAODCB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

中考数学试题及解析 湖南湘潭-解析版

中考数学试题及解析 湖南湘潭-解析版

湖南省湘潭市中考数学试卷一、选择题(本大题共8个小题,每小题3分,满分24分)1、(•湘潭)下列等式成立是( )A 、|﹣2|=2B 、﹣(﹣1)=﹣1C 、1÷(﹣3)=13D 、﹣2×3=6考点:有理数的混合运算。

分析:A ,﹣2的绝对值为2,正确;B ,负负得正,得数应为1,故错误;C ,正负乘除得正,错误;D ,同选项C ,故错误.解答:解:A 、﹣2的绝对值为2,故本选项正确;B 、负负得正,得数应为1,故本选项错误;C 、正负乘除得正,故本选项错误;D 、同选项C ,故本选项错误.故选A .点评:本题考查了有理数的混合运算,选项A ,负数的绝对值为正数,正确;B ,负负得正,得数应为1,故错误;C ,正负乘除得正,错误;D ,同选项C ,故错误.本题很容易选得A .2、(•湘潭)数据:1,3,5的平均数与极差分别是( )A 、3,3B 、3,4C 、2,3D 、2,4考点:极差;算术平均数。

专题:计算题。

分析:根据极差和平均数的定义即可求得.解答:解:x =1+3+53=3, 由题意可知,极差为5﹣1=4.故选B .点评:极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.注意:①极差的单位与原数据单位一致.②如果数据的平均数、中位数、极差都完全相同,此时用极差来反映数据的离散程度就显得不准确.3、(•湘潭)不等式组{x >1x ≤2的解集在数轴上表示为( ) A 、 B 、 C 、 D 、 考点:在数轴上表示不等式的解集;解一元一次不等式组。

专题:存在型。

分析:先根据在数轴上表示不等式组解集的方法表示出不等式组的解集,再找出符合条件的选项即可. 解答:解:不等式组{x >1x ≤2在数轴上表示为:故选A .点评:本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 4、(•湘潭)一个几何体的三视图如下图所示,这个几何体是( )A 、球B 、圆柱C 、长方体D 、圆锥考点:由三视图判断几何体。

湖南省湘潭市中考数学试题(word版%2C含解析)

湖南省湘潭市中考数学试题(word版%2C含解析)

湖南省湘潭市中考数学试卷一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.下列四个选项中,计算结果最大的是()A.(﹣6)0B.|﹣6| C.﹣6 D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B. C.D.3.下列运算正确的是()A.3=3B.(2x2)3=2x5C.2a•5b=10ab D.÷=24.若分式的值为0,则x=()A.﹣1 B.1 C.±1 D.05.小红同学四次中考数学模拟考试成绩分别是:96,104,104,116,关于这组数据下列说法错误的是()A.平均数是105 B.众数是104 C.中位数是104 D.方差是506.抛物线y=2(x﹣3)2+1的顶点坐标是()A.(3,1) B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)7.程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x人,依题意列方程得()A. +3(100﹣x)=100 B.﹣3(100﹣x)=100C.3x+=100 D.3x﹣=1008.如图,等腰直角△EFG的直角边GE与正方形ABCD的边BC在同一直线上,且点E与点B重合,△EFG沿BC方向匀速运动,当点G与点C重合时停止运动.设运动时间为t,运动过程中△EFG与正方形ABCD的重叠部分面积为S,则S关于t的函数图象大致为()A.B.C.D.二、填空题(本题共8个小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.计算cos60°=.10.分解因式:2a2﹣3ab= .11.四边形的内角和的度数为.12.从2015年12月26日起,一艘载满湘潭历史和文化的“航船﹣﹣湘潭市规划展示馆、博物馆和党史馆(以下简称‘三馆’)”正式起航,市民可以免费到三馆参观.听说这个好消息,小张同学准备星期天去参观其中一个馆,假设参观者选择每一个馆参观的机会均等,则小张同学选择参观博物馆的概率为.13.如图,直线a∥b∥c,点B是线段AC的中点,若DE=2,则EF= .14.如图,一个扇形的圆心角为90°,半径为2,则该扇形的弧长是.(结果保留π)15.多项式x2+1添加一个单项式后可变为完全平方式,则添加的单项式可以是(任写一个符合条件的即可).16.已知以点C(a,b)为圆心,半径为r的圆的标准方程为(x﹣a)2+(y﹣b)2=r2.例如:以A (2,3)为圆心,半径为2的圆的标准方程为(x﹣2)2+(y﹣3)2=4,则以原点为圆心,过点P(1,0)的圆的标准方程为.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应位置上,满分72分)17.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣2,4),B(﹣1,2),C(﹣3,1),△ABC与△A1B1C1关于y轴轴对称.(1)写出△A1B1C1的顶点坐标:A1,B1,C1;(2)求过点C1的反比例函数y=的解析式.18.先化简,再求值:•﹣,其中x=3.19.为了增强学生体质,学校鼓励学生多参加体育锻炼,小胖同学马上行动,每天围绕小区进行晨跑锻炼.该小区外围道路近似为如图所示四边形ABCD,已知四边形ABED是正方形,∠DCE=45°,AB=100米.小胖同学某天绕该道路晨跑5圈,时间约为20分钟,求小胖同学该天晨跑的平均速度约为多少米/分?(结果保留整数,≈1.41)20.已知关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根x1、x2.(1)求m的取值范围;(2)当x1=1时,求另一个根x2的值.21.如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.(1)求证:△AEC∽△DEB;(2)若CD⊥AB,AB=8,DE=2,求⊙O的半径.22.为了方便居民低碳出行,2015年12月30日,湘潭市公共自行车租赁系统(一期)试运行以来,越来越多的居民选择公共自行车作为出行的交通工具,市区某中学课外兴趣小组为了了解某小区居民出行方式的变化情况,随机抽取了该小区部分居民进行调查,并绘制了如图的条形统计图和扇形统计图(部分信息未给出).请根据上面的统计图,解答下列问题:(1)被调查的总人数是人;(2)公共自行车租赁系统运行后,被调查居民选择自行车作为出行方式的百分比提高了多少?(3)如果该小区共有居民2000人,公共自行车租赁系统运行后估计选择自行车作为出行方式的有多少人?23.十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措.二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(生男生女机会均等,且与顺序有关).(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好是1男1女的概率;(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中至少有1个女孩的概率.24.办好惠民工程,是2015年湘潭市创建全国文明城市工作重点之一.湖湘公园、杨梅洲公园、雨湖公园以及菊花塘公园四个公园免费书吧的开放,让市民朋友们毫不费劲就能阅读到自己钟爱的书籍.现免费书吧准备补充少儿读物和经典国学两个类别的书籍共20套,已知少儿读物每套100元,经典国学每套200元,若购书总费用不超过3100元,不低于2920元,且购买的国学经典如果超过10套,则国学经典全部打9折,问有哪几种购买方案?哪种购买方案费用最低?25.如图1,菱形ABCD中,已知∠B AD=120°,∠EGF=60°,∠EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于点E、F.(1)如图2,当顶点G运动到与点A重合时,求证:EC+CF=BC;(2)知识探究:①如图3,当顶点G运动到AC中点时,探究线段EC、CF与BC的数量关系;②在顶点G的运动过程中,若=t,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);(3)问题解决:如图4,已知菱形边长为8,BG=7,CF=,当t>2时,求EC的长度.26.如图,抛物线y=﹣x2+mx+n的图象经过点A(2,3),对称轴为直线x=1,一次函数y=kx+b 的图象经过点A,交x轴于点P,交抛物线于另一点B,点A、B位于点P的同侧.(1)求抛物线的解析式;(2)若PA:PB=3:1,求一次函数的解析式;(3)在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得⊙C同时与x轴和直线AP都相切,如果存在,请求出点C的坐标,如果不存在,请说明理由.2016年湖南省湘潭市中考数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.下列四个选项中,计算结果最大的是()A.(﹣6)0B.|﹣6| C.﹣6 D.【考点】有理数大小比较.【分析】计算出结果,然后进行比较.【解答】解:(﹣6)0=1|﹣6|=6,因为﹣6<<1<6,故选B.【点评】本题考查了有理数大小的比较,掌握零指数和绝对值的概念是关键.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B. C.D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、是轴对称图形,故错误;B、是中心对称图形,故错误;C、是轴对称图形,故错误;D、既是轴对称图形又是中心对称图形,故正确.故选D.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.下列运算正确的是()A.3=3B.(2x2)3=2x5C.2a•5b=10ab D.÷=2【考点】二次根式的混合运算;幂的乘方与积的乘方;单项式乘单项式.【专题】计算题.【分析】根据二•次根式的加减法对A进行判断;根据积的乘方对B进行判断;根据单项式的乘法对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、3与不能合并,所以A选项错误;B、原式=8x6,所以B选项错误;C、原式=10ab,所以C选项正确;D、原式==,所以D选项错误.故选C.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.若分式的值为0,则x=()A.﹣1 B.1 C.±1 D.0【考点】分式的值为零的条件.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x﹣1=0,x+1≠0,解得,x=1.故选B.【点评】此题考查分式的值为零的问题,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.小红同学四次中考数学模拟考试成绩分别是:96,104,104,116,关于这组数据下列说法错误的是()A.平均数是105 B.众数是104 C.中位数是104 D.方差是50【考点】方差;算术平均数;中位数;众数.【分析】由平均数、众数、中位数、方差的定义即可判断.【解答】解:(A)平均数为: =105,故A正确;(B)出现最多的数据是104,故B正确;(C)先排序:96、104、104、116,所以中位数为=104,故C正确;(D)方差为: [(96﹣105)2+(104﹣105)2+(104﹣105)2+(116﹣105)2]=51,故D错误故选(D)【点评】本题考查数据的分析,涉及平均数、众数、中位数、方差等知识,综合程度较高.6.抛物线y=2(x﹣3)2+1的顶点坐标是()A.(3,1) B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)【考点】二次函数的性质.【分析】已知抛物线的顶点式,可直接写出顶点坐标.【解答】解:由y=2(x﹣3)2+1,根据顶点式的坐标特点可知,顶点坐标为(3,1).故选:A.【点评】此题考查二次函数的性质,解析式化为顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.7.程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x人,依题意列方程得()A. +3(100﹣x)=100 B.﹣3(100﹣x)=100C.3x+=100 D.3x﹣=100【考点】由实际问题抽象出一元一次方程.【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.【解答】解:设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100;故选:C.【点评】本题考查了由实际问题抽象出一元一次方程,关键以和尚数和馒头数作为等量关系列出方程.8.如图,等腰直角△EFG的直角边GE与正方形ABCD的边BC在同一直线上,且点E与点B重合,△EFG沿BC方向匀速运动,当点G与点C重合时停止运动.设运动时间为t,运动过程中△EFG与正方形ABCD的重叠部分面积为S,则S关于t的函数图象大致为()A.B.C.D.【考点】动点问题的函数图象.【分析】设GF=BG=a,AB=BC=m,Rt△EFG向右匀速运动的速度为1,当E点与点B重合时,S=0;当点G在点B左侧,点E在点B右侧时,如图1,得到S是t的二次函数,且二次项系数为正数,所以抛物线开口向上;当点G在点B右侧,点E在点C左侧时,S=a2;当点G在点B左侧,点E在点B右侧时,如图3,得到S是t的二次函数,且二次项系数为负数,所以抛物线开口向下,于是得到结论.【解答】解:设GF=BG=a,AB=BC=m,Rt△EFG向右匀速运动的速度为1,当E点与点B重合时,S=0;当点G在点B左侧,点E在点B右侧时,如图1,BE=t,∴S=t2,∴S是t的二次函数,且二次项系数为正数,所以抛物线开口向上;当点G在点B右侧,点E在点C左侧时,如图2,S=a2;当点G在点B左侧,点E在点B右侧时,如图3,S=a2﹣(t﹣m)2,∴S是t的二次函数,且二次项系数为负数,所以抛物线开口向下,综上所述,S与t的图象分为三段,第一段为开口向上的抛物线的一部分,第二段为与x轴平行的线段,第三段为开口向下的抛物线的一部分.故选A.【点评】本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.二、填空题(本题共8个小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.计算cos60°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】根据记忆的内容,cos60°=即可得出答案.【解答】解:cos60°=.故答案为:.【点评】此题考查了特殊角的三角函数值,属于基础题,注意掌握特殊角的三角函数值,这是需要我们熟练记忆的内容.10.分解因式:2a2﹣3ab= a(2a﹣3b).【考点】因式分解-提公因式法.【分析】如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.【解答】解:2a2﹣3ab=a(2a﹣3b).故答案为:a(2a﹣3b)【点评】本题主要考查了运用提公因式法因式分解,解题时注意:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.11.四边形的内角和的度数为360°.【考点】多边形内角与外角.【分析】根据多边形内角和定理:(n﹣2)•180 (n≥3且n为整数),求解即可.【解答】解:(4﹣2)×180°=360°.故答案为:360°.【点评】本题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•180 (n≥3且n 为整数).12.从2015年12月26日起,一艘载满湘潭历史和文化的“航船﹣﹣湘潭市规划展示馆、博物馆和党史馆(以下简称‘三馆’)”正式起航,市民可以免费到三馆参观.听说这个好消息,小张同学准备星期天去参观其中一个馆,假设参观者选择每一个馆参观的机会均等,则小张同学选择参观博物馆的概率为.【考点】概率公式.【分析】让1除以三馆参观的场馆总个数即为所求的概率.【解答】解:1÷3=.答:小张同学选择参观博物馆的概率为.故答案为:.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.13.如图,直线a∥b∥c,点B是线段AC的中点,若DE=2,则EF= 2 .【考点】平行线分线段成比例.【分析】根据平行线分线段成比例的性质可得=,从而计算出EF的值.【解答】解:∵直线a∥b∥c,点B是线段AC的中点,DE=2,∴=,即=,∴=,∴EF=2,故答案为:2.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.14.如图,一个扇形的圆心角为90°,半径为2,则该扇形的弧长是π.(结果保留π)【考点】弧长的计算.【专题】计算题;圆的有关概念及性质.【分析】根据题意,利用弧长公式计算即可得到结果.【解答】解:根据题意得:l==π,故答案为:π【点评】此题考查了弧长的计算,熟练掌握弧长公式是解本题的关键.15.多项式x2+1添加一个单项式后可变为完全平方式,则添加的单项式可以是2x (任写一个符合条件的即可).【考点】完全平方式.【专题】推理填空题.【分析】根据a2±2ab+b2=(a±b)2,判断出添加的单项式可以是哪个即可.【解答】解:∵x2+1+2x=(x+1)2,∴添加的单项式可以是2x.故答案为:2x.【点评】此题主要考查了完全平方式的应用,要熟练掌握,解答此题的关键是要明确:a2±2ab+b2=(a±b)2.16.已知以点C(a,b)为圆心,半径为r的圆的标准方程为(x﹣a)2+(y﹣b)2=r2.例如:以A (2,3)为圆心,半径为2的圆的标准方程为(x﹣2)2+(y﹣3)2=4,则以原点为圆心,过点P(1,0)的圆的标准方程为x2+y2=1 .【考点】坐标与图形性质.【专题】新定义.【分析】根据以点C(a,b)为圆心,半径为r的圆的标准方程为(x﹣a)2+(y﹣b)2=r2进行判断即可.【解答】解:∵以点C(a,b)为圆心,半径为r的圆的标准方程为(x﹣a)2+(y﹣b)2=r2,∴以原点为圆心,过点P(1,0)的圆的标准方程为(x﹣0)2+(y﹣0)2=12,即x2+y2=1,故答案为:x2+y2=1.【点评】本题主要考查了坐标与图形性质.解决问题的关键是掌握以点C(a,b)为圆心,半径为r 的圆的标准方程为(x﹣a)2+(y﹣b)2=r2.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应位置上,满分72分)17.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣2,4),B(﹣1,2),C(﹣3,1),△ABC与△A1B1C1关于y轴轴对称.(1)写出△A1B1C1的顶点坐标:A1(2,4),B1(1,2),C1(3,1);(2)求过点C1的反比例函数y=的解析式.【考点】待定系数法求反比例函数解析式;关于x轴、y轴对称的点的坐标.【分析】(1)根据△ABC与△A1B1C1关于y轴轴对称及关于y轴对称点的纵坐标相等、横坐标互为相反数可得;(2)待定系数法求解可得.【解答】解:(1)如图,点A1的坐标为(2,4)、点B1的坐标为(1,2)、点C1的坐标为(3,1),故答案为:(2,4),(1,2),(3,1);(3,1)代入y=,得:k=3,(2)将点C1∴反比例函数解析式为y=.【点评】本题主要考查关于坐标轴对称点的坐标特点和待定系数法求函数解析式能力,掌握关于x 轴、y轴对称的点的坐标特点是关键.18.先化简,再求值:•﹣,其中x=3.【考点】分式的化简求值.【分析】先将分子因式分解,再约分,最后计算分式的减法即可化简原式,将x的值代入计算可得.【解答】解:原式=•﹣=﹣=,当x=3时,原式==.【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序及运算法则是解题的关键.19.为了增强学生体质,学校鼓励学生多参加体育锻炼,小胖同学马上行动,每天围绕小区进行晨跑锻炼.该小区外围道路近似为如图所示四边形ABCD,已知四边形ABED是正方形,∠DCE=45°,AB=100米.小胖同学某天绕该道路晨跑5圈,时间约为20分钟,求小胖同学该天晨跑的平均速度约为多少米/分?(结果保留整数,≈1.41)【考点】解直角三角形的应用.【分析】首先利用勾股定理求出CD 的长度,然后求出小胖每天晨跑的路程,进而求出平均速度.【解答】解:∵ABED 是正方形,∠DCE=45°,AB=100米,∴DE=CE=100米,在直角三角形DEC 中,DC 2=DE 2+CE 2,即DC=100,∴四边形ABCD 的周长为100+100+100+100+100=400+100, ∵小胖同学某天绕该道路晨跑5圈,时间约为20分钟,∴小胖每天晨跑的路程为(2000+500)米,∴小胖同学该天晨跑的平均速度(2000+500)÷20=100+25≈135.25米/分. 【点评】本题主要考查了解直角三角形的应用,解题的关键是利用勾股定理求出DC 的长度,此题难度不大.20.已知关于x 的一元二次方程x 2﹣3x+m=0有两个不相等的实数根x 1、x 2.(1)求m 的取值范围;(2)当x 1=1时,求另一个根x 2的值.【考点】根与系数的关系;根的判别式.【分析】(1)根据题意可得根的判别式△>0,再代入可得9﹣4m >0,再解即可;(2)根据根与系数的关系可得x 1+x 2=﹣,再代入可得答案.【解答】解:(1)由题意得:△=(﹣3)2﹣4×1×m=9﹣4m >0,解得:m <;(2)∵x 1+x 2=﹣=3,x 1=1,∴x=2.2【点评】此题主要考查了根与系数的关系,以及根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.21.如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.(1)求证:△AEC∽△DEB;(2)若CD⊥AB,AB=8,DE=2,求⊙O的半径.【考点】相似三角形的判定与性质;垂径定理.【分析】(1)由同弧的圆周角相等即可得出∠ACE=∠DBE,结合∠AEC=∠DEB,即可证出△AEC∽△DEB;(2)设⊙O的半径为r,则CE=2r﹣2,根据垂径定理以及三角形相似的性质即可得出关于r的一元一次方程,解方程即可得出r值,此题得解.【解答】(1)证明:∵∠AEC=∠DEB,∠ACE=∠DBE,∴△AEC∽△DEB.(2)解:设⊙O的半径为r,则CE=2r﹣2.∵CD⊥AB,AB=8,∴AE=BE=AB=4.∵△AEC∽△DEB,∴,即,解得:r=5.【点评】本题考查了垂径定理以及相似三角形的判定与性质,根据相似三角形的性质找出方程是解题的关键.22.为了方便居民低碳出行,2015年12月30日,湘潭市公共自行车租赁系统(一期)试运行以来,越来越多的居民选择公共自行车作为出行的交通工具,市区某中学课外兴趣小组为了了解某小区居民出行方式的变化情况,随机抽取了该小区部分居民进行调查,并绘制了如图的条形统计图和扇形统计图(部分信息未给出).请根据上面的统计图,解答下列问题:(1)被调查的总人数是50 人;(2)公共自行车租赁系统运行后,被调查居民选择自行车作为出行方式的百分比提高了多少?(3)如果该小区共有居民2000人,公共自行车租赁系统运行后估计选择自行车作为出行方式的有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据条形图的数据计算即可;(2)计算出共自行车租公赁系统运行前、后的百分比,计算即可;(3)用样本估计总体即可.【解答】解:(1)由条形图可知,被调查的总人数是10+15+25=50人,故答案为:50;(2)共自行车租公赁系统运行前,居民选择自行车作为出行方式的百分比为:15÷50=30%,公共自行车租赁系统运行后,居民选择自行车作为出行方式的百分比为:100%﹣36%﹣14%=50%,50%﹣30%=20%,答:公共自行车租赁系统运行后,被调查居民选择自行车作为出行方式的百分比提高了20%;(3)公共自行车租赁系统运行后估计选择自行车作为出行方式的有:2000×50%=1000人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措.二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(生男生女机会均等,且与顺序有关).(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好是1男1女的概率;(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中至少有1个女孩的概率.【考点】列表法与树状图法;概率公式.【分析】(1)画树状图列出所有等可能结果,根据概率公式计算可得;(2)第一胎有男、女两种可能,第二胎由男男、男女、女男、女女四种可能,据此画出树状图,根据概率公式计算可得.【解答】解:(1)画树状图如下:由树状图可知,生育两胎共有4种等可能结果,而这两个小孩恰好是1男1女的有2中可能,=.∴P(恰好是1男1女的)(2)画树状图如下:由树状图可知,生育两胎共有8种等可能结果,这三个小孩中至少有1个女孩的有7种结果,∴P=.(这三个小孩中至少有1个女孩)【点评】此题考查了树状图的应用,解题的关键是认真审题画出树状图.用到的知识点为:概率=所求情况数与总情况数之比.24.办好惠民工程,是2015年湘潭市创建全国文明城市工作重点之一.湖湘公园、杨梅洲公园、雨湖公园以及菊花塘公园四个公园免费书吧的开放,让市民朋友们毫不费劲就能阅读到自己钟爱的书籍.现免费书吧准备补充少儿读物和经典国学两个类别的书籍共20套,已知少儿读物每套100元,经典国学每套200元,若购书总费用不超过3100元,不低于2920元,且购买的国学经典如果超过10套,则国学经典全部打9折,问有哪几种购买方案?哪种购买方案费用最低?【考点】一元一次不等式组的应用.【分析】根据题意分别利用当x≤10时,以及当x>10时,表示总费用进而求出符合题意的答案.【解答】解:设购买国学经典x套,则购买少儿读物(20﹣x)套,当x≤10时,则2920≤100(20﹣x)+200x≤3100,解得:9.2≤x≤11,故x=10,当x>10时,则2920≤100(20﹣x)+200×0.9x≤3100,解得:11.5≤x≤13.75,故x=12或x=13,当x=10时,总费用为:100×10+2000=3000(元),当x=12时,总费用为:8×100+200×0.9×12=2960(元),当x=13时,总费用为:7×100+200×0.9×13=3040(元),故共有3种购买方案,购买国学经典12套,则购买少儿读物8套方案费用最低.【点评】此题主要考查了一元一次不等式组的应用,正确得出不等关系是解题关键.25.如图1,菱形ABCD中,已知∠BAD=120°,∠EGF=60°,∠EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于点E、F.(1)如图2,当顶点G运动到与点A重合时,求证:EC+CF=BC;(2)知识探究:①如图3,当顶点G运动到AC中点时,探究线段EC、CF与BC的数量关系;②在顶点G的运动过程中,若=t,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);(3)问题解决:如图4,已知菱形边长为8,BG=7,CF=,当t>2时,求EC的长度.【考点】四边形综合题.【分析】(1)如图2中,在CA上取一点M,使得CM=CE,连接EM.首先证明△ABE≌△ACF,再证明△AEM≌△FEC,即可解决问题.(2)①结论:EC+CF=BC.如图3中,取BC中点P,CD中点Q,连接PG、GQ.利用(1)的结论解决问题.②结论:CE+CF=.如图4中,作GP∥AB交BC于P,GQ∥AD交CD于Q.利用(1)的结论解决问题.(3)如图4中,作BM⊥AC于M.利用(1)的结论:CG=CE+CF,求出CE即可解决问题.【解答】(1)证明:如图2中,在CA上取一点M,使得CM=CE,连接EM.∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD都是等边三角形,∴∠AB=AC,∠BAC=∠EAF=60°,∠B=∠ACF=60°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△ABE≌△ACF,∴AE=AF,∵∠EAF=60°,∴△AEF是等边三角形,∵CE=CM,∠ECM=60°,∴△ECM是等边三角形,∴∠AEF=∠MEC=60°,AE=EF,EM=EC,∴∠AEM=∠FEC,在△AEM和△FEC中,,∴△AEM≌△FEC,∴AM=CF,∴BC=AC=AM+CM=EC+CF.(2)①结论:EC+CF=BC.理由:如图3中,取BC中点P,CD中点Q,连接PG、GQ.∵AG=GC,CPB,CQ=DQ,∴PG∥AB,GQ∥QD,∴∠CPG=∠B=60°,∠CGP=∠CAB=60°,。

2015年中考数学试题及答案(Word版)

2015年中考数学试题及答案(Word版)

2015年初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.........1.2的相反数是A.2 B.12C.-2 D.-122.有一组数据:3,5,5,6,7,这组数据的众数为A.3 B.5 C.6 D.73.月球的半径约为1 738 000m,1 738 000这个数用科学记数法可表示为A.1.738×106B.1.738×107C.0.1738×107D.17.38×1054.若()2m=-,则有A.0<m<1 B.-1<m<0 C.-2<m<-1 D.-3<m<-2 5.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min的频率为A.0.1 B.0.4 C.0.5 D.0.96.若点A(a,b)在反比例函数2yx=的图像上,则代数式ab-4的值为A.0 B.-2 C.2 D.-67.如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =35°,则∠C 的度数为 A .35° B .45°C .55°D .60°8.若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x的方程x 2+bx =5的解为 A .120,4x x ==B .121,5x x ==C .121,5x x ==-D .121,5x x =-=9.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为 A.43πB.43π-C.πD.23π10.如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为 A .4kmB.(2kmC.D.(4-km二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上......... 11.计算:2a a ⋅= ▲ .12.如图,直线a ∥b ,∠1=125°,则∠2的度数为 ▲ °.DCB A(第7题)(第9题)(第10题)l13.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名. 14.因式分解:224a b -= ▲ .15.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 ▲ .16.若23a b -=,则924a b -+的值为 ▲ .17.如图,在△ABC 中,CD 是高,CE 是中线,CE =CB ,点A 、D 关于点F 对称,过点F作FG ∥CD ,交AC 边于点G ,连接GE .若AC =18,BC =12,则△CEG 的周长为 ▲ .18.如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则()224x y +-的值为 ▲ . 三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.(第17题)GF E D CBA F EDC B A (第18题)ba(第13题)20%10%30%40%其他乒乓球篮球羽毛球(第15题)19.(本题满分5分)(052--. 20.(本题满分5分)解不等式组:()12,31 5.x x x +≥⎧⎪⎨-+⎪⎩>21.(本题满分6分)先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x .22.(本题满分6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?23.(本题满分8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ▲ ;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24.(本题满分8分)如图,在△ABC中,AB=AC.分别以B、C为圆心,BC长为半径在BC下方画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD.(1)求证:AD平分∠BAC;(2)若BC=6,∠BAC=50︒,求 DE、 DF的长度之和(结果保留π).25.(本题满分8分)如图,已知函数kyx=(x>0)的图像经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图像经过点A、D,与x轴的负半轴交于点E.(1)若AC=32OD,求a、b的值;(2)若BC∥AE,求BC的长.(第24题)F EDCBA26.(本题满分10分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED . (1)求证:ED ∥AC ;(2)若BD =2CD ,设△EBD 的面积为1S ,△ADC 的面积为2S ,且2121640S S -+=,求△ABC 的面积.27.(本题满分10分)如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 ▲ °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.(第26题)28.(本题满分10分)如图,在矩形ABCD 中,AD =a cm ,AB =b cm (a >b >4),半径为2cm的⊙O 在矩形内且与AB 、AD 均相切.现有动点P 从A 点出发,在矩形边上沿着A →B →C →D 的方向匀速移动,当点P 到达D 点时停止移动;⊙O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O 回到出发时的位置(即再次与AB 相切)时停止移动.已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P 从A →B →C →D ,全程共移动了 ▲ cm (用含a 、b 的代数式表示); (2)如图①,已知点P 从A 点出发,移动2s 到达B 点,继续移动3s ,到达BC 的中点.若点P 与⊙O 的移动速度相等,求在这5s 时间内圆心O 移动的距离;(3)如图②,已知a =20,b =10.是否存在如下情形:当⊙O 到达⊙O 1的位置时(此时圆心O 1在矩形对角线BD 上),DP 与⊙O 1恰好相切?请说明理由.(第28题)(图②)(图①)2015年苏州市初中毕业暨升学考试数学试题答案一、选择题1.C 2.B 3.A 4.C 5.D6.B 7.C 8.D 9.A 10.B二、填空题11.3a12.55 13.60 14.()()22a b a b+-15.1416.3 17.27 18.16三、解答题19.解:原式=3+5-1 =7.20.解:由12x+≥,解得1x≥,由()315x x-+>,解得4x>,∴不等式组的解集是4x>.21.解:原式=()21122xxx x++÷++=()2121211x xx xx++⨯=+++.当1x===.22.解:设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗.根据题意,得60505x x=+.解这个方程,得x=25.经检验,x=25是所列方程的解.∴x+5=30.答:甲每小时做30面彩旗,乙每小时做25面彩旗.23.解:(1)1.(2)用表格列出所有可能的结果:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.∴P(两次都摸到红球)=212=16.24.证明:(1)由作图可知BD =CD .在△ABD 和△ACD 中,,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).∴∠BAD =∠CAD ,即AD 平分∠BAC .解:(2)∵AB =AC ,∠BAC =50°,∴∠ABC =∠ACB=65°.∵BD = CD = BC ,∴△BDC 为等边三角形. ∴∠DBC =∠DCB=60°. ∴∠DBE =∠DCF=55°. ∵BC =6,∴BD = CD =6.∴ DE的长度= DF 的长度=556111806ππ⨯⨯=. ∴ DE、 DF 的长度之和为111111663πππ+=. 25.解:(1)∵点B (2,2)在ky x=的图像上,∴k =4,4y x=. ∵BD ⊥y 轴,∴D 点的坐标为(0,2),OD =2. ∵AC ⊥x 轴,AC =32OD ,∴AC =3,即A 点的纵坐标为3. ∵点A 在4y x=的图像上,∴A 点的坐标为(43,3).∵一次函数y =ax +b 的图像经过点A 、D , ∴43,3 2.a b b ⎧+=⎪⎨⎪=⎩ 解得3,42.a b ⎧=⎪⎨⎪=⎩ (2)设A 点的坐标为(m ,4m),则C 点的坐标为(m ,0). ∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形. ∴CE = BD =2.∵BD ∥CE ,∴∠ADF =∠AEC .∴在Rt △AFD 中,tan ∠ADF =42AF mDF m -=, 在Rt △ACE 中,tan ∠AEC =42AC mEC =, ∴4422m m m -=,解得m =1.∴C 点的坐标为(1,0),BC26.证明:(1)∵AD 是△ABC 的角平分线, ∴∠BAD =∠DAC .∵∠E=∠BAD ,∴∠E =∠DAC . ∵BE ∥AD ,∴∠E =∠EDA . ∴∠EDA =∠DA C . ∴ED ∥AC .解:(2)∵BE ∥AD ,∴∠EBD =∠ADC .∵∠E =∠DAC ,∴△EBD ∽△ADC ,且相似比2BDk DC==. ··················· ∴2124S k S ==,即124S S =. ∵2121640S S -+=,∴222161640S S -+=,即()22420S -=.∴212S =. ∵233ABC S BC BD CD CD S CD CD CD +==== ,∴32ABC S = . 27.解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =.∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)解法一:如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. 解法二:连接PB .由题意得,抛物线的对称轴为12m x -+=. ∵P 在对称轴l 上,∴P A =PB . ∵P A =PC ,∴PB =PC .∵△BOC 是等腰直角三角形,且OB =OC ,∴P 在BC 的垂直平分线y x =-上.∴P 点即为对称轴12mx -+=与直线y x =-的交点. ∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭.图①图②(3)解法一:存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13. 若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13. 若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ.<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.解法二: 如图①,由(2)知P 为△ABC 的外接圆的圆心. ∵∠APC 与∠ABC 对应同一条弧AC ,且∠ABC =45°, ∴∠APC =2∠ABC =90°.下面解题步骤同解法一.28.解:(1)a +2b .(2)∵在整个运动过程中,点P 移动的距离为()2a b +cm ,圆心O 移动的距离为()24a -cm , 由题意,得()224a b a +=-. ①∵点P 移动2s 到达B 点,即点P 用2s 移动了b cm ,点P 继续移动3s ,到达BC 的中点,即点P 用3s 移动了12a cm .∴1223a b =. ② 由①②解得24,8.a b =⎧⎨=⎩∵点P 移动的速度与⊙O 移动的速度相等,∴⊙O 移动的速度为42b=(cm/s ). ∴这5s 时间内圆心O 移动的距离为5×4=20(cm ). (3)存在这种情形.解法一:设点P 移动的速度为v 1cm/s ,⊙O 移动的速度为v 2cm/s ,由题意,得()()1222021052422044v a b v a ++⨯===--.FE如图,设直线OO 1与AB 交于点E ,与CD 交于点F ,⊙O 1与AD 相切于点G . 若PD 与⊙O 1相切,切点为H ,则O 1G =O 1H . 易得△DO 1G ≌△DO 1H ,∴∠ADB =∠BDP . ∵BC ∥AD ,∴∠ADB =∠CBD . ∴∠BDP =∠CBD .∴BP =DP .设BP =x cm ,则DP =x cm ,PC =(20-x )cm ,在Rt △PCD 中,由勾股定理,可得222PC CD PD +=,即()2222010x x -+=,解得252x =.∴此时点P 移动的距离为25451022+=(cm ). ∵EF ∥AD ,∴△BEO 1∽△BAD . ∴1EO BE AD BA =,即182010EO =. ∴EO 1=16cm .∴OO 1=14cm .①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm , ∴此时点P 与⊙O 移动的速度比为454521428=.∵455284≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ), ∴此时点P 与⊙O 移动的速度比为45455218364==. ∴此时PD 与⊙O 1恰好相切. 解法二:∵点P 移动的距离为452cm (见解法一), OO 1=14cm (见解法一),1254v v =,∴⊙O 应该移动的距离为4541825⨯=(cm ). ①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm ≠18 cm , ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ),∴此时PD 与⊙O 1恰好相切.解法三:点P 移动的距离为452cm ,(见解法一) OO 1=14cm ,(见解法一) 由1254v v =可设点P 的移动速度为5k cm/s ,⊙O 的移动速度为4k cm/s , ∴点P 移动的时间为459252k k=(s ).①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的时间为1479422k k k=≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的时间为2(204)14942k k⨯--=, ∴此时PD 与⊙O 1恰好相切.。

湘潭市中考数学试题解析.doc

湘潭市中考数学试题解析.doc

湖南省湘潭市2014年中考数学试卷一、选择题B=23.(3分)(2014•湘潭)如图,AB是池塘两端,设计一方法测量AB的距离,取点C,连接AC、BC,再取它们的中点D、E,测得DE=15米,则AB=()米.4.(3分)(2014•湘潭)分式方程的解为()5.(3分)(2014•湘潭)如图,所给三视图的几何体是()6.(3分)(2014•湘潭)式子有意义,则x的取值范围是()(8.(3分)(2014•湘潭)如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()二、填空题9.(3分)(2014•湘潭)﹣3的相反数是3.10.(3分)(2014•湘潭)分解因式:ax﹣a=a(x﹣1).则这两种电子表走时稳定的是甲.12.(3分)(2014•湘潭)计算:()2﹣|﹣2|=1.13.(3分)(2014•湘潭)如图,直线a、b被直线c所截,若满足∠1=∠2,则a、b平行.14.(3分)(2014•湘潭)如图,⊙O的半径为3,P是CB延长线上一点,PO=5,PA切⊙O于A点,则PA=4.PA=15.(3分)(2014•湘潭)七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为2x+56=589﹣x.16.(3分)(2014•湘潭)如图,按此规律,第6行最后一个数字是16,第672行最后一个数是2014.三、综合解答题17.(2014•湘潭)在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为(﹣3,2);(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为(﹣2,3).18.(2014•湘潭)先化简,在求值:(+)÷,其中x=2.=[+]=•==.19.(2014•湘潭)如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)CD=40020.(2014•湘潭)如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,BD=6.(1)求证:△EDF≌△CBF;(2)求∠EBC.21.(2014•湘潭)某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.22.(2014•湘潭)有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?23.(2014•湘潭)从全校1200名学生中随机选取一部分学生进行调查,调查情况:A、上网时间≤1小时;B、1小时<上网时间≤4小时;C、4小时<上网时间≤7小时;D、上网时间>7小时.统计结果制成了如图统计图:(1)参加调查的学生有200人;(2)请将条形统计图补全;(3)请估计全校上网不超过7小时的学生人数.÷=200×24.(2014•湘潭)已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;(2)直线经过A(2,3),且与y=x+3垂直,求解析式.25.(2014•湘潭)△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,(1)求证:△BDF∽△CEF;(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.===m×mm﹣×m.m((+3<3((其中3,.==tan60=xEF=AE==.26.(2014•湘潭)已知二次函数y=﹣x2+bx+c的对称轴为x=2,且经过原点,直线AC解析式为y=kx+4,(1)求二次函数解析式;(2)若=,求k;(3)若以BC为直径的圆经过原点,求k.,且函数过()==横坐标的比为=2=====,=,且••﹣=•。

2015-2016年湖南省湘潭市湘潭县八年级(上)期末数学试卷(解析版)

2015-2016年湖南省湘潭市湘潭县八年级(上)期末数学试卷(解析版)

2015-2016学年湖南省湘潭市湘潭县八年级(上)期末数学试卷一.选择题:(每小题4分,满分40分,请将正确答案的序号填写在选择题的答题栏内)1.(4分)在下列各数中,无理数是()A.0B.C.D.72.(4分)若x>y,则下列不等式成立的是()A.x﹣3<y﹣3B.x+5>y+5C.<D.﹣2x>﹣2y 3.(4分)若等腰三角形底角为72°,则顶角为()A.108°B.72°C.54°D.36°4.(4分)当x=2015时,分式的值是()A.B.C.D.5.(4分)已知△ABC中,2(∠B+∠C)=3∠A,则∠A的度数是()A.54°B.72°C.108°D.144°6.(4分)把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是()A.B.C.D.7.(4分)不等式组的最小整数解是()A.0B.﹣1C.1D.28.(4分)如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有()A.1对B.2对C.3对D.4对9.(4分)已知关于x的方程的解为x=1,则a等于()A.0.5B.2C.﹣2D.﹣0.510.(4分)若a=1+,b=1﹣,则代数式的值为()A.3B.±3C.5D.9二.填空题:(每小题3分,满分24分,请将答案填写在填空题的答题栏内)11.(3分)化简:﹣=.12.(3分)计算:5÷×所得的结果是.13.(3分)金园小区有一块长为18m,宽为8m的长方形草坪,计划在草坪面积不变的情况下,把它改造成正方形,则这个正方形的边长是m.14.(3分)已知不等式2x+★>2的解集是x>﹣4,则“★”表示的数是.15.(3分)一个工程队计划用6天完成300土方的工程,实际上第一天就完成了60方土,因进度需要,剩下的工程所用的时间不能超过3天,那么以后几天平均至少要完成的土方数是.16.(3分)如图,在△ABC中,∠A=30°,∠B=50°,延长BC到D,则∠ACD=°.17.(3分)如图,在△ADC中,AD=BD=BC,∠C=30°,则∠ADB=.18.(3分)A、B两地相距60km,甲骑自行车从A地到B地,出发1h后,乙骑摩托车从A地到B地,且乙比甲早到3h,已知甲、乙的速度之比为1:3,则甲的速度是.三.解答题:(请写出主要的推导过程)19.(7分)解不等式组并将其解集在数轴上表示出来.20.(7分)已知x=+1,y=﹣1,求的值.21.(7分)已知:2x+y+7的立方根是3,16的算术平方根是2x﹣y,求:(1)x、y的值;(2)x2+y2的平方根.22.(8分)若不等式组的解集为﹣2<x<3,求a+b的值.23.(8分)如图,△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,∠C=45°,求∠DAE与∠AEC的度数.24.(9分)某公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,已知甲、乙型号的显示器价格分别为1000元/台、2000元/台.(1)求该公司至少购买甲型显示器多少台?(2)若要求甲型显示器的台数不超过乙型显示器的台数,问有哪些购买方案?25.(10分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BE=CF,AD+EC=AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?2015-2016学年湖南省湘潭市湘潭县八年级(上)期末数学试卷参考答案与试题解析一.选择题:(每小题4分,满分40分,请将正确答案的序号填写在选择题的答题栏内)1.(4分)在下列各数中,无理数是()A.0B.C.D.7【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、0是整数,是有理数,选项错误;B、是分数,是有理数,选项错误;C、是无理数,选项错误;D、7是整数,是有理数,选项错误.故选:C.2.(4分)若x>y,则下列不等式成立的是()A.x﹣3<y﹣3B.x+5>y+5C.<D.﹣2x>﹣2y【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.【解答】解:A、不等式的两边都减3,不等号的方向不变,故A错误;B、不等式的两边都加5,不等号的方向不变,故B正确;C、不等式的两边都除以3,不等号的方向不变,故C错误;D、不等式的两边都乘以﹣2,不等号的方向改变,故D错误;故选:B.3.(4分)若等腰三角形底角为72°,则顶角为()A.108°B.72°C.54°D.36°【分析】根据三角形内角和定理和等腰三角形的性质,可以计算其顶角的度数.【解答】解:∵等腰三角形底角为72°∴顶角=180°﹣(72°×2)=36°故选:D.4.(4分)当x=2015时,分式的值是()A.B.C.D.【分析】原式约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式==,当x=2015时,原式=.故选:C.5.(4分)已知△ABC中,2(∠B+∠C)=3∠A,则∠A的度数是()A.54°B.72°C.108°D.144°【分析】根据三角形内角和定理和已知条件得出方程,解方程即可.【解答】解:∵2(∠B+∠C)=3∠A,∠A+∠B+∠C=180°,∴2(180°﹣∠A)=3∠A,解得:∠A=72°.故选:B.6.(4分)把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是()A.B.C.D.【分析】本题根据数轴可知x的取值为:﹣1≤x<4,将不等式变形,即可得出关于x的不等式组.把各个选项的解的集合写出,进行比较就可以得到.【解答】解:依题意得这个不等式组的解集是:﹣1≤x<4.A、无解,故A错误;B、解集是:﹣1≤x<4,故B正确;C、解集是:x>4,故C错误;D、解集是:﹣1<x≤4,故D错误;故选:B.7.(4分)不等式组的最小整数解是()A.0B.﹣1C.1D.2【分析】求出不等式组的解集,确定出最小的整数解即可.【解答】解:不等式组整理得:,解得:﹣<x≤4,则不等式组的最小整数解是0,故选:A.8.(4分)如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有()A.1对B.2对C.3对D.4对【分析】根据平行的性质及全等三角形的判定方法来确定图中存在的全等三角形共有三对:△ABC≌△DCB,△ABE≌△CDE,△BFE≌△CFE.再分别进行证明.【解答】解:∵AB∥EF∥DC,∴∠ABC=∠DCB,在△ABC和△DCB中,∵,∴△ABC≌△DCB(SAS);在△ABE和△CDE中,∵,∴△ABE≌△CDE(AAS);在△BFE和△CFE中,∵,∴△BFE≌△CFE.∴图中的全等三角形共有3对.故选:C.9.(4分)已知关于x的方程的解为x=1,则a等于()A.0.5B.2C.﹣2D.﹣0.5【分析】根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含a的新方程,解此新方程可以求得a的值.【解答】解:把x=1代入方程得:=,解得:a=﹣0.5;经检验a=﹣0.5是原方程的解;故选:D.10.(4分)若a=1+,b=1﹣,则代数式的值为()A.3B.±3C.5D.9【分析】首先把所求的式子化成的形式,然后代入数值计算即可.【解答】解:原式====3.故选:A.二.填空题:(每小题3分,满分24分,请将答案填写在填空题的答题栏内)11.(3分)化简:﹣=.【分析】直接根据分式的加减法则进行计算即可.【解答】解:原式==.故答案为:.12.(3分)计算:5÷×所得的结果是1.【分析】由于二次根式的乘除运算是同级运算,从左到右依次计算即可.【解答】解:原式=×=1.13.(3分)金园小区有一块长为18m,宽为8m的长方形草坪,计划在草坪面积不变的情况下,把它改造成正方形,则这个正方形的边长是12m.【分析】设这个正方形的边长是xm,根据题意列出方程,利用平方根定义开方即可得到结果.【解答】解:设这个正方形的边长是xm,根据题意得:x2=18×8=144,开方得:x=12(负值舍去),则这个正方形的边长是12m,故答案为:1214.(3分)已知不等式2x+★>2的解集是x>﹣4,则“★”表示的数是10.【分析】设“★”表示的数a,则不等式是2x+a>2,解不等式利用a表示出不等式的解集,则可以得到一个关于a的方程,求得a的值.【解答】解:设“★”表示的数a,则不等式是2x+a>2,移项,得2x>2﹣a,则x>.根据题意得:=﹣4,解得:a=10.故答案是:10.15.(3分)一个工程队计划用6天完成300土方的工程,实际上第一天就完成了60方土,因进度需要,剩下的工程所用的时间不能超过3天,那么以后几天平均至少要完成的土方数是80.【分析】假设以后几天平均每天完成x土方,一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,那么该土方工程还剩300﹣60=240土方,利用剩下的工程所用的时间不能超过3天,则列不等式方程≤3,解得x即可知以后平均每天至少完成多少土方.【解答】解:设以后几天平均每天完成x土方.由题意得:3x≥300﹣60解得:x≥80答:以后几天平均至少要完成的土方数是80土方.故答案为:80.16.(3分)如图,在△ABC中,∠A=30°,∠B=50°,延长BC到D,则∠ACD=80°.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠A=30°,∠B=50°,∴∠ACD=∠A+∠B=30°+50°=80°.故答案为:80.17.(3分)如图,在△ADC中,AD=BD=BC,∠C=30°,则∠ADB=60°.【分析】首先利用等腰三角形的性质得到∠C=∠BDC,利用三角形的外角的性质得到∠A和∠ABD的度数,从而确定∠ADB的度数.【解答】解:∵BD=BC,∠C=30°,∴∠C=∠BDC=30°,∴∠ABD=∠C+∠BDC=60°,∵AD=BD,∴∠A=∠DBA=60°,∴∠ADB=180°﹣∠A﹣∠DBA=60°,答案为:60°.18.(3分)A、B两地相距60km,甲骑自行车从A地到B地,出发1h后,乙骑摩托车从A地到B地,且乙比甲早到3h,已知甲、乙的速度之比为1:3,则甲的速度是10km/h.【分析】本题的等量关系是路程=速度×时间,根据“甲骑自行车从A地出发到B 地,出发1h后,乙骑摩托车从A地到B地,且乙比甲早到3h”可知:甲比乙多用了4小时,可根据此条件列出方程求解.【解答】解:设甲的速度为xkm/h,则乙的速度为3xkm/h,依题意,有+4,解这个方程,得x=10,经检验,x=10是原方程的解,当x=10时,3x=30.答:甲的速度为10km/h,乙的速度为30km/h.故答案为:10km/h三.解答题:(请写出主要的推导过程)19.(7分)解不等式组并将其解集在数轴上表示出来.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:不等式组,解①得:x≥﹣3,解②得:x<4,则不等式组的解集为﹣3≤x<4.20.(7分)已知x=+1,y=﹣1,求的值.【分析】由条件可得x+y,x﹣y,xy的值,再把以上数值代入化简的结果即可.【解答】解:由题意得:x+y=2,x﹣y=2,xy=1,原式====4.21.(7分)已知:2x+y+7的立方根是3,16的算术平方根是2x﹣y,求:(1)x、y的值;(2)x2+y2的平方根.【分析】(1)利用立方根,算术平方根的定义求出x与y的值即可;(2)把x与y的值代入原式,求出平方根即可.【解答】解:(1)依题意,解得:;(2)x2+y2=36+64=100,100的平方根是±10.22.(8分)若不等式组的解集为﹣2<x<3,求a+b的值.【分析】首先解不等式组,利用a和b表示出不等式组的解集,然后得到关于a 和b的方程组,从而解答a、b的值,代入求解.【解答】解:由得∴解得∴a+b=﹣1.23.(8分)如图,△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,∠C=45°,求∠DAE与∠AEC的度数.【分析】由∠B=75°,∠C=45°,利用三角形内角和求出∠BAC.又AE平分∠BAC,求出∠BAE、∠CAE.再利用AD是BC上的高在△ABD中求出∠BAD,此时就可以求出∠DAE.最后利用三角形的外角和内角的关系可以求出∠AEC.【解答】解:方法1:∵∠B+∠C+∠BAC=180°,∠B=75°,∠C=45°,∴∠BAC=60°,∵AE平分∠BAC,∴∠BAE=∠CAE=∠BAC=×60°=30°,∵AD是BC上的高,∴∠B+∠BAD=90°,∴∠BAD=90°﹣∠B=90°﹣75°=15°,∴∠DAE=∠BAE﹣∠BAD=30°﹣15°=15°,在△AEC中,∠AEC=180°﹣∠C﹣∠CAE=180°﹣45°﹣30°=105°;方法2:同方法1,得出∠BAC=60°.∵AE平分∠BAC,∴∠EAC=∠BAC=×60°=30°.∵AD是BC上的高,∴∠C+∠CAD=90°,∴∠CAD=90°﹣45°=45°,∴∠DAE=∠CAD﹣∠CAE=45°﹣30°=15°.∵∠AEC+∠C+∠EAC=180°,∴∠AEC+30°+45°=180°,∴∠AEC=105°.答:∠DAE=15°,∠AEC=105°.24.(9分)某公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,已知甲、乙型号的显示器价格分别为1000元/台、2000元/台.(1)求该公司至少购买甲型显示器多少台?(2)若要求甲型显示器的台数不超过乙型显示器的台数,问有哪些购买方案?【分析】(1)设该公司购进甲型显示器x台,则购进乙型显示器(50﹣x)台,根据两种显示器的总价不超过77000元建立不等式,求出其解即可;(2)由甲型显示器的台数不超过乙型显示器的台数可以建立不等式x≤50﹣x与(1)的结论构成不等式组,求出其解即可.【解答】解:(1)设该公司购进甲型显示器x台,则购进乙型显示器(50﹣x)台,由题意,得1000x+2000(50﹣x)≤77000解得:x≥23.∴该公司至少购进甲型显示器23台.(2)依题意可列不等式:x≤50﹣x,解得:x≤25.∴23≤x≤25.∵x为整数,∴x=23,24,25.∴购买方案有:①甲型显示器23台,乙型显示器27台;②甲型显示器24台,乙型显示器26台;③甲型显示器25台,乙型显示器25台.25.(10分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BE=CF,AD+EC=AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?【分析】(1)求出EC=DB,∠B=∠C,根据SAS推出△BED≌△CFE,根据全等三角形的性质得出DE=EF即可;(2)根据三角形内角和定理求出∠B=∠C=70°,根据全等得出∠BDE=∠FEC,求出∠DEB+∠FEC=110°,即可得出答案;(3)根据等腰直角三角形得出∠DEF=90°,求出∠B=90°,∠C=90°,根据三角形内角和定理即可得出答案.【解答】(1)证明:∵AD+EC=AB=AD+DB,∴EC=DB,又∵AB=AC,∴∠B=∠C,在△BED和△CFE中∴△BED≌△CFE,∴DE=EF,∴△DEF是等腰三角形;(2)解:∵∠A=40°,∴∠B=∠C=70°,∵由(1)知△BED≌△CFE,∴∠BDE=∠FEC,∴∠DEB+∠FEC=∠DEB+∠BDE=180°﹣∠B=110°,∴∠DEF=180°﹣(∠DEB+∠FEC)=70°;(3)解:∵若△DEF是等腰直角三角形,则∠DEF=90°,∴∠DEB+∠BDE=90°,∴∠B=90°,因而∠C=90°,∴△DEF不可能是等腰直角三角形.。

2015湖南省株洲市中考数学试卷(含详细答案)

2015湖南省株洲市中考数学试卷(含详细答案)

2015年湖南省株洲市中考数学试卷(满分150分,考试时间120分钟)一、选择题(本大题共8小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.(2015湖南株洲,1,3分)2的相反数是…….()A、-2B、2C、D、【答案】A【解析】解:由相反数的意义,2的相反数是-2,,∴这个数是-2,7454故选A.2.(2015湖南株洲,2,3分)已知∠α=35°,那么∠α的余角等于…….()A、35°B、55°C、65°D、145°【答案】B【解析】解:由互余两个角的性质理解:互余的两个角和为90°,故选B3. (2015湖南株洲,3,3分)下列等式中,正确的是…….()A、B、C、D、【答案】B【解析】解:A、同类项的合并,系数合并,字母与指数不变;B、a2a3=a5是同底数幂相乘,底数不变,指数相加;C、是积的乘方的运用,同时要注意符号的确定;D、是整式乘法公式的运用,故选B4.(2015湖南株洲,4,3分)下列几何图形中,既是轴对称图形,又是中心对称图形的是()A、等腰三角形B、正三角形C、平行四边形D、正方形【答案】D【解析】解:由轴对称图形与中心对称图形的理解,故选D5.(2015湖南株洲,5,3分)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数12yx图象上的概率是…….()A、12B、13C、14D、16【答案】D【解析】解:一、2,3,4,5从中选出一组数的所有可能性,注意任选两个,是指不能重复;二、反比例函数经过的点的理解,故选D6. (2015湖南株洲,6,3分)如图,圆O 是△ABC 的外接圆,∠A =68°,则∠OBC 的大小是…….( ) A 、22° B 、26° C 、32° D 、68°第6题图OCBA【答案】A【解析】解:圆心角∠BOC =2∠A =136°,在等腰△BOC 中∠OBC=(180-∠BOC )÷2=22° ,故选A7. (2015湖南株洲,7,3分)如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且AB =1,CD =3,那么EF 的长是…….( ) A 、13 B 、23 C 、34 D 、45第7题图FE BDA C【答案】C【解析】解:∵AB ∥E F∥CD∴△ABE ∽△DCE ,∴13EC DC BE AB ==,同理△BEF ∽△BCD ∴14EF BE BE CD BC BE EC ===+,故选C8.(2015湖南株洲,8,3分)有两个一元二次方程:M :20ax bx c ++=N :20cx bx a ++=,其中0a c +=,以下列四个结论中,错误的是…….( )A 、如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根;B 、如果方程M 有两根符号相同,那么方程N 的两根符号也相同;C 、如果5是方程M 的一个根,那么15是方程N 的一个根; D 、如果方程M 和方程N 有一个相同的根,那么这个根必是1x =【答案】D【解析】解:A 、∵M 有两个不相等的实数根 ∴△>0 即240b ac ->而此时N 的判别式△=240b ac ->,故它也有两个不相等的实数根; B 、M 的两根符号相同:即120c x x a⋅=>,而N 的两根之积=ac >0也大于0,故N 的两个根也是同号的。

2015年株洲市中考数学试题及答案(WORD版含解析)

2015年株洲市中考数学试题及答案(WORD版含解析)

2015年株洲市中考学业考试试题解析卷
一、选择题(每小题有且只有一个正确答案,本题共8小题,共24分)
1、2的相反数是
A、 B、2 C D、
【试题分析】
本题知识点:相反数的意义,可以从代数意义与几何意义上理解。

答案为A
2、已知∠α=35°,那么∠α的余角等于
A、35°
B、55°
C、65°
D、145°
【试题分析】
本题考点为互余两个角的性质理解:互余的两个角和为90°,从而解得。

答案为:B
3、下列等式中,正确的是
A、
【试题分析】
本题考点为:简单的整式的运算:A、
不变;B、同类项的合并,系数合并,字母与指数是积的 B、 C、 D、是同底数幂相乘,底数不变,指数相加;C、
乘方的运用,同时要注意符号的确定;D、是整式乘法公式的运用答案为:B
4、下列几何图形中,既是轴对称图形,又是中心对称图形的是
A、等腰三角形
B、正三角形
C、平行四边形
D、正方形
【试题分析】本题考点为:轴对称图形与中心对称图形的理解
答案为:D
5、从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数y?概率是
A、12图象上的x1111
B、
C、
D、 2346
【试题分析】本题有两个:一、2,3,4,5从中选出一组数的所有可能性,注意任选两个,是指不能重复;
二、反比例函数经过的点的理解;
答案为:D。

湖南省湘潭市中考数学试卷(word版,含解析)

湖南省湘潭市中考数学试卷(word版,含解析)
4.(3分)(2014•湘潭)分式方程 的解为( )
A.
1
B.
2
C.
3
D.
4
考点:
解分式方程.
专题:
计算题.
分析:
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解答:
解:去分母得:5x=3x+6,
移项合并得:2x=6,
解得:x=3,
经检验x=3是分式方程的解.
解答:
解:ax﹣a=a(Байду номын сангаас﹣1).
点评:
考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.要求灵活运用各种方法进行因式分解.该题是直接提公因式法的运用.
11.(3分)(2014•湘潭)未测试两种电子表的走时误差,做了如下统计
平均数
解答:
解:A、原式不能合并,故选项错误;
B、原式=,故选项正确;
C、原式=6a2,故选项错误;
D、原式不能合并,故选项错误.
故选B.
点评:
此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.
3.(3分)(2014•湘潭)如图,AB是池塘两端,设计一方法测量AB的距离,取点C,连接AC、BC,再取它们的中点D、E,测得DE=15米,则AB=( )米.
A.
3
B.
4
C.
5
D.
6
考点:
反比例函数系数k的几何意义.
分析:
欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段求出与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.

湖南湘潭中考数学试题解析版.doc

湖南湘潭中考数学试题解析版.doc

湖南省湘潭市2011年中考数学试卷一、选择题(本大题共8个小题,每小题3分,满分24分)1、(2011•湘潭)下列等式成立是()A、|﹣2|=2B、﹣(﹣1)=﹣1C、1÷D、﹣2×3=6考点:有理数的混合运算。

分析:A,﹣2的绝对值为2,正确;B,负负得正,得数应为1,故错误;C,正负乘除得正,错误;D,同选项C,故错误.解答:解:A、﹣2的绝对值为2,故本选项正确;B、负负得正,得数应为1,故本选项错误;C、正负乘除得正,故本选项错误;D、同选项C,故本选项错误.故选A.点评:本题考查了有理数的混合运算,选项A,负数的绝对值为正数,正确;B,负负得正,得数应为1,故错误;C,正负乘除得正,错误;D,同选项C,故错误.本题很容易选得A.2、(2011•湘潭)数据:1,3,5的平均数与极差分别是()A、3,3B、3,4C、2,3D、2,4考点:极差;算术平均数。

专题:计算题。

分析:根据极差和平均数的定义即可求得.解答:解:==3,由题意可知,极差为5﹣1=4.故选B.点评:极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.注意:①极差的单位与原数据单位一致.②如果数据的平均数、中位数、极差都完全相同,此时用极差来反映数据的离散程度就显得不准确.3、(2011•湘潭)不等式组的解集在数轴上表示为()A、B、C、D、考点:在数轴上表示不等式的解集;解一元一次不等式组。

专题:存在型。

分析:先根据在数轴上表示不等式组解集的方法表示出不等式组的解集,再找出符合条件的选项即可.解答:解:不等式组在数轴上表示为:故选A.点评:本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4、(2011•湘潭)一个几何体的三视图如下图所示,这个几何体是()A、球B、圆柱C、长方体D、圆锥考点:由三视图判断几何体。

2015年中考数学试题及答案(解析版)

2015年中考数学试题及答案(解析版)

中考数学试卷一.选择题(本大题共8小题,每小题3分,满分24分。

在每小题给出的四个选项中,只有一个是符合题目要求的,请将正确选项填在括号内。

)1.(2013宜宾)下列各数中,最小的数是()A.2 B.﹣3 C.﹣D.0考点:有理数大小比较.分析:根据正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,进行比较即可.解答:解:∵﹣3<﹣<0<2,∴最小的数是﹣3;故选B.点评:此题考查了有理数的大小比较,要熟练掌握任意两个有理数比较大小的方法:正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小.2.(2013宜宾)据宜宾市旅游局公布的数据,今年“五一”小长假期间,全市实现旅游总收入330000000元.将330000000用科学记数法表示为()A.3.3×108B.3.3×109C.3.3×107D.0.33×1010考点:科学记数法—表示较大的数.专题:计算题.分析:找出所求数字的位数,减去1得到10的指数,表示成科学记数法即可.解答:解:330000000用科学记数法表示为3.3×108.故选A.点评:此题考查了科学记数法﹣表示较大的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(2013宜宾)下列水平放置的四个几何体中,主视图与其它三个不相同的是()A. B. C.D.考点:简单几何体的三视图.分析:分别找到四个几何体从正面看所得到的图形比较即可.解答:解:A.主视图为长方形;B.主视图为长方形;C.主视图为长方形;D.主视图为三角形.则主视图与其它三个不相同的是D.故选D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(2013宜宾)要判断小强同学的数学考试成绩是否稳定,那么需要知道他最近几次数学考试成绩的()A.方差 B.众数 C.平均数D.中位数考点:方差;统计量的选择.分析:根据方差的意义作出判断即可.解答:解:要判断小强同学的数学考试成绩是否稳定,只需要知道他最近几次数学考试成绩的方差即可.故选A.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.(2013宜宾)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k>1 C.k=1 D.k≥0考点:根的判别式.分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.解答:解:∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,a=1,b=2,c=k,∴△=b2﹣4ac=22﹣4×1×k>0,∴k<1,故选:A.点评:此题主要考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.(2013宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等考点:矩形的性质;菱形的性质.分析:根据矩形与菱形的性质对各选项分析判断后利用排除法求解.解答:解:A.矩形与菱形的两组对边都分别平行,故本选项错误;B.矩形的对角线相等,菱形的对角线不相等,故本选项正确;C.矩形与菱形的对角线都互相平分,故本选项错误;D.矩形与菱形的两组对角都分别相等,故本选项错误.故选B.点评:本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.7.(2013宜宾)某棵果树前x年的总产量y与x之间的关系如图所示,从目前记录的结果看,前x年的年平均产量最高,则x的值为()A.3 B.5 C.7 D.9考点:算术平均数.分析:由已知中图象表示某棵果树前x年的总产量y与n之间的关系,可分析出平均产量的几何意义为原点与该点边线的斜率,结合图象可得答案.解答:解:若果树前x年的总产量y与n在图中对应P(x,y)点则前x年的年平均产量即为直线OP的斜率,由图易得当x=7时,直线OP的斜率最大,即前7年的年平均产量最高,x=7.故选C.点评:本题以函数的图象与图象变化为载体考查了斜率的几何意义,其中正确分析出平均产量的几何意义是解答本题的关键.8.(2013宜宾)对于实数a、b,定义一种运算“⊗”为:a⊗b=a2+ab﹣2,有下列命题:①1⊗3=2;②方程x⊗1=0的根为:x1=﹣2,x2=1;③不等式组的解集为:﹣1<x<4;④点(,)在函数y=x⊗(﹣1)的图象上.其中正确的是()A.①②③④B.①③C.①②③D.③④考点:二次函数图象上点的坐标特征;有理数的混合运算;解一元二次方程-因式分解法;解一元一次不等式组;命题与定理.专题:新定义.分析:根据新定义得到1⊗3=12+1×3﹣2=2,则可对①进行判断;根据新定义由x⊗1=0得到x2+x﹣2=0,然后解方程可对②进行判断;根据新定义得,解得﹣1<x<4,可对③进行判断;根据新定义得y=x⊗(﹣1)=x2﹣x﹣2,然后把x=代入计算得到对应的函数值,则可对④进行判断.解答:解:1⊗3=12+1×3﹣2=2,所以①正确;∵x⊗1=0,∴x2+x﹣2=0,∴x1=﹣2,x2=1,所以②正确;∵(﹣2)⊗x﹣4=4﹣2x﹣2﹣4=﹣2x﹣2,1⊗x﹣3=1+x﹣2﹣3=x﹣4,∴,解得﹣1<x<4,所以③正确;∵y=x⊗(﹣1)=x2﹣x﹣2,∴当x=时,y=﹣﹣2=﹣,所以④错误.故选C.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足二次函数的解析式.也考查了阅读理解能力、解一元二次方程以及解一元一次不等式组.二.填空题(本大题共8小题,每小题3分,满分24分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省湘潭市2015年中考数学试卷
一、选择题(本大题共8个小题.每小题有且只有一个正确答案.请将正确答案的选项代号涂在答题卡相应的位置上.每小题3分.满分24分)

4.(3分)(2015•湘潭)在△ABC中.D、E为边AB、AC的中点.已知△ADE的面积为4.那么△ABC的面积是()
根据中位线的性质就可以求出
正面朝上的概率是
和为
正面朝上的概率是.
6.(3分)(2015•湘潭)如图.已知直线AB∥CD.且直线EF分别交AB、CD于M、N两点.NH 是∠MND的角平分线.若∠AMN=56°.则∠MNH的度数是()
∴∠MNH=∠MND=28°.
7.(3分)(2015•湘潭)如图.四边形ABCD是⊙O的内接四边形.若∠DAB=60°.则∠BCD的度数是()
8.(3分)(2015•湘潭)如图.观察二次函数y=ax2+bx+c的图象.下列结论:①a+b+c>0.②2a+b>0.③b2﹣4ac>0.④ac>0.
其中正确的是()
的范围可判断②;由图象与
<﹣<
>﹣
故③正确;
二、填空题(本题共8个小题.请将答案写在答题卡相应的位置上.每小题3分.满分24分)9.(3分)(2015•湘潭)的倒数是 2 .
的倒数是
解:
10.(3分)(2015•湘潭)计算:23﹣(﹣2)= 10 .
11.(3分)(2015•湘潭)在今年的湘潭市“党和人民满意的好老师”的评选活动中.截止到5月底.王老师获得网络点赞共计183000个.用科学记数法表示这个数为 1.83×105.
12.(3分)(2015•湘潭)高一新生入学军训射击训练中.小张同学的射击成绩(单位:环)为:5、7、9、10、7.则这组数据的众数是7 .
13.(3分)(2015•湘潭)湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元.儿童票每张30元.如果某日杜鹃园售出门票100张.门票收入共4000元.那么当日售出成人票50 张.
14.(3分)(2015•湘潭)已知菱形ABCD的面积为24cm2.若对角线AC=6cm.则这个菱形的边长为 5 cm.
=
边长是:=5cm
15.(3分)(2015•湘潭)如图.将△ABC绕点A顺时针旋转60°得到△AED.若线段AB=3.则BE= 3 .
16.(3分)(2015•湘潭)小华为参加毕业晚会演出.准备制一顶圆锥形彩色纸帽.如图所示.如果纸帽的底面半径为8cm.母线长为25cm.那么制作这顶纸帽至少需要彩色纸板的面积为200πcm2.(结果保留π)
×16π×25=200πcm
三、解答题(本大题共10个小题.解答应写出文字说明、证明过程或演算步骤.请将解答过程写在答题卡相应位置上.满分72分)
17.(6分)(2015•湘潭)解不等式组:.
解:
18.(6分)(2015•湘潭)先化简.再求值:(1﹣)÷.其中x=+1.
.
x==
19.(6分)(2015•湘潭)“东方之星”客船失事之后.本着“关爱生命.救人第一”的宗旨.搜救部门紧急派遣直升机到失事地点进行搜救.搜救过程中.假设直升机飞到A处时.发现前方江面上B处有一漂浮物.从A测得B处的俯角为30°.已知该直升机一直保持在距江面100米高度飞行搜索.飞行速度为10米每秒.求该直升机沿直线方向朝漂浮物飞行多少秒可到达漂浮物的正上方?(结果精确到0.1.≈1.73)
=tan∠ABC
.
∴BD==100
100÷10=10
20.(6分)(2015•湘潭)2015年湘潭市中考招生政策发生较大改变.其中之一是:省级示范性高中批次志愿中.每个考生可填报两所学校(有先后顺序).我市某区域的初三毕业生可填报的省级示范性高中有A、B、C、D四所.
(1)请列举出该区域学生填报省级示范性高中批次志愿的所有可能结果;
(2)求填报方案中含有A学校的概率.
=
么事=
21.(6分)(2015•湘潭)水利部确定每年的3月22日至28日为“中国水周”(1994年以前为7月1日至7日).从1991年起.我国还将每年5月的第二周作为城市节约用水宣传周.某社区为了进一步提高居民珍惜水、保护水和水忧患意识.提倡节约用水.从本社区5000户家庭中随机抽取100户.调查他们家庭每月的平均用水量.并将调查的结果绘制成如下的两幅
(1)在频数分布表中:m= 20 .n= 0.25 ;
(2)根据题中数据补全频数直方图;
(3)如果自来水公司将基本月用水量定为每户每月12吨.不超过基本月用水量的部分享受基本价格.超出基本月用水量的部分实行加价收费.那么该社区用户中约有多少户家庭能够全部享受基本价格?
22.(6分)(2015•湘潭)如图.在Rt△ABC中.∠C=90°.△ACD沿AD折叠.使得点C落在斜边AB上的点E处.
(1)求证:△BDE∽△BAC;
(2)已知AC=6.BC=8.求线段AD的长度.
23.(8分)(2015•湘潭)如图.已知一次函数y=x+b与反比例函数y=的图象交于A、B两
点.其中点A的坐标为(2.3).
(1)求一次函数与反比例函数的解析式;
(2)求点B的坐标;
(3)请根据图象直接写出不等式x+b>的解集.
所以反比例函数的解析;
可得:
24.(8分)(2015•湘潭)阅读材料:用配方法求最值.
已知x.y为非负实数.
∵x+y﹣2≥0
∴x+y≥2.当且仅当“x=y”时.等号成立.
示例:当x>0时.求y=x++4的最小值.
解:+4=6.当x=.即x=1时.y的最小值为6.
(1)尝试:当x>0时.求y=的最小值.
(2)问题解决:随着人们生活水平的快速提高.小轿车已成为越来越多家庭的交通工具.假设某种小轿车的购车费用为10万元.每年应缴保险费等各类费用共计0.4万元.n年的保养、
维护费用总和为万元.问这种小轿车使用多少年报废最合算(即:使用多少年的年平均费用最少.年平均费用=)?最少年平均费用为多少万元?
y=x++1.
.y=
+0.4n+10)÷n=
=x++1
x=.
)年平均费用()÷n=
∴当
25.(10分)(2015•湘潭)如图.已知AB是⊙O的直径.过点A作⊙O的切线MA.P为直线MA 上一动点.以点P为圆心.PA为半径作⊙P.交⊙O于点C.连接PC、OP、BC.
(1)知识探究(如图1):
①判断直线PC与⊙O的位置关系.请证明你的结论;
②判断直线OP与BC的位置关系.请证明你的结论.
(2)知识运用(如图2):
当PA>OA时.直线PC交AB的延长线于点D.若BD=2AB.求tan∠ABC的值.
可知
.
.
r.
∵tan∠ABC=tan∠POA=
∴tan∠ABC═=
26.(10分)(2015•湘潭)如图.二次函数y=x2+bx+c的图象交x轴于A(﹣1.0)、B(3.0)两点.交y轴于点C.连接BC.动点P以每秒1个单位长度的速度从A向B运动.动点Q以每秒个单位长度的速度从B向C运动.P、Q同时出发.连接PQ.当点Q到达C点时.P、Q同时停止运动.设运动时间为t秒.
(1)求二次函数的解析式;
(2)如图1.当△BPQ为直角三角形时.求t的值;
(3)如图2.当t<2时.延长QP交y轴于点M.在抛物线上是否存在一点N.使得PQ的中点恰为MN的中点?若存在.求出点N的坐标与t的值;若不存在.请说明理由.
.
解得
∴BC=.
.
解得
.AP=t.BQ=
y==t. ∴BP==t.
∴BP=
t.BQ=
t=
t=.
t=时
.t=或
.
解得
y=x+

.

0=2.=
)=2
t=﹣

考查了。

相关文档
最新文档