最新初中数学命题与证明的图文解析

合集下载

《命题、定理、证明》课件(22张ppt)

《命题、定理、证明》课件(22张ppt)
判断一件事情的语句叫做命题。
注意: 1、只要对一件事情作出了判断,不管正确与否,都是命题。
如:相等的角是对顶角。
下列语句是命题吗?
①熊猫没有翅膀.
②大象是红色的
③同位角相等.
④连接A、B两点.
⑤你多大了?
句子 ① ② ③ 能判断一件事情. 是命题
句子 ④ ⑤ ⑥ 不能判断一件事情. 不是命题
问题1 请同学读出下列语句 (1)如果两条直线都与第三条直线平行,那么这两 条直线也互相平行; (2)两条平行线被第三条直线所截,同旁内角互补; (3)对顶角相等; (4)等式两边都加同一个数,结果仍是等式.
像这样判断一件事情的语句,叫做命题(proposition).
命题的概念
⑥请你吃饭。
问题2 判断下列语句是不是命题? (1)你饭吃了吗?( ) (2)两点之间,线段最短。( ) (3)请画出两条互相平行的直线。 ( ) (4)过直线外一点作已知直线的垂线。 ( ) (5)如果两个角的和是90º,那么这两个角互余。( ) (6)对顶角不相等。( )
(1)这个命题的题设和结论分别是什么呢?
题设:在同一平面内,一条直线垂直于两条平行线中 的一条;
结论:这条直线也垂直于两条平行线中的另一条.
(2)你能结合图形用几何语言表述命题的题设和结论吗?
命题1 在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.
已知:b∥c, a⊥b .
下列语句在表述形式上,哪些是对事情作了判断?哪些没有对事情作出判断? 1、对顶角相等; 2、画一个角等于已知角; 3、两直线平行,同位角相等; 4、a、b两条直线平行吗? 5、温柔的小明; 6、玫瑰花是动物;

人教版七年级数学下册《命题、定理与证明》课件ppt

人教版七年级数学下册《命题、定理与证明》课件ppt
3.对顶角的性质:对顶角相等.
4.垂线的性质: ①在同一平面内过一点有且只有一条直线与已知直线垂直; ②垂线段最短.
五、证明的概念 在很多情况下,一个命题的正确性需要经过推理才能作出判断,这个
推理过程叫作证明. 注意: 证明的每一步推理都要有根据,不能“想当然”.
例3 已知:b∥c, a⊥b .求证:a⊥c.
确定一个命题是假命题的方法:
A
只要举出一个例子(反例):它符合命题的题设,但不
O
满足结论即可.
))12
C
B
1.下列语句中,不是命题的是( D ) A.两点之间线段最短 B.对顶角相等 C.不是对顶角不相等 D.过直线AB外一点P作直线AB的垂线
2.下列命题中,是真命题的是( D ) A.若a·b>0,则a>0,b>0 B.若a·b<0,则a<0,b<0 C. 若a·b=0,则a=0且b=0 D.若a·b=0,则a=0或b=0
例2: 如图,∠1=∠2,试说明直线AB,CD平行?
证明:因为∠2与∠3是 对顶角, 所以∠3=∠2 又因为∠1=∠2, 所以∠1=∠3, 且∠1与∠3是同位角, 所以AB与CD平行.
证明: ∵∠2与∠3是对顶角, ∴∠3=∠2 又∵∠1=∠2 ∴∠1=∠3, ∴AB∥CD
三、基本事实的概念 1.数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作 为判断其他命题真假的原始依据, 这样的真命题叫做基本事实.
命题的组成:
题设
已知事项
命题
结论
两直线平行,
由已知事 项推出的 事项
同位角相等
题设(条件)
结论
把下列命题改写成“如果……那么……”的形式.并指出它的题设和结论. 1.对顶角相等; 2.内错角相等; 3.两直线被第三条直线所截,同位角相等; 4.平行于同一直线的两直线平行; 5.等角的补角相等.

人教版八年级上册 13.1 命题、定理与证明(共33张PPT)

人教版八年级上册  13.1  命题、定理与证明(共33张PPT)

动手试一试:
证明:直角三角形的两个锐角互余.
已知:如图,在△ABC中,∠C=90°.
求证:∠A+∠B=90°.
A
B
C
证明:∵∠A+∠B+∠C=180°,
又∵∠C=90°,
∴ ∠A+∠B=180°-∠C=90°.
随堂练习
练习
把下列命题改成“如果……,那么……”的 形式,并分别指出条件和结论.
(1)全等三角形的对应边相等; (2)在同一平面内,垂直于同一条直线的 两条直线相互平行.
(1)条件:如果两个三角形是全等三 角形,结论:那么它们的对应边相等;
练习
把下列命题改成“如果……,那么……”的 形式,并分别指出条件和结论.
(1)全等三角形的对应边相等; (2)在同一平面内,垂直于同一条直线的 两条直线相互平行.
( 2)条件:如果在同一平面内两条直 线都垂直于同一条直线,结论:那么这两 条直线平行.
练习
指出下列命题中的真命题和假命题:
(1)同位角相等,两直线平行; (2)多边形的内角和等于180°; (3)三角形的外角和等于360°; (4)平行于同一条直线的两条直线相互 平行.
(2)是假命题; (1)(3)(4)是真命题.
练习
把下列定理改成“如果……,那么……” 的形式 ,指出它们的条件和结论,并用演绎 推理证明(1)所示的定理.
CD分别相交于E、F,PQ与 A
E
B
AB、CD分别相交于E、G,
C
∠PEM=27°,∠DGQ=63°.
求证:MN⊥CD.
F GD
Q N
作业
PM
A
E
B
CF
证明: AB//CD( ),

人教版初中数学命题与证明的图文解析

人教版初中数学命题与证明的图文解析
故选B.
【点睛】
考查了反证法,解此题关键要懂得反证法的意义及步骤 在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
11.下列五个命题:
①如果两个数的绝对值相等,那么这两个数的平方相等;
②内错角相等;
③在同一平面内,垂直于同一条直线的两条直线互相平行;
故选B.
【点睛】
考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.
16.下列命题正确的是()
A.矩形对角线互相垂直
B.方程 的解为
C.六边形内角和为540°
D.一条斜边和一条直角边分别相等的两个直角三角形全等
【答案】D
【解析】
【分析】
由矩形的对角线互相平分且相等得出选项A不正确;
有一个角是 度的等腰三角形是等边三角形;不正确;
等腰三角形的对称轴是顶角的平分线所在的直线,不正确.
正确命题为: 个;
故选:
【点睛】
本题考查了命题与定理的知识,解题的关键是了解轴对称的性质、等腰三角形的性质、等边三角形的判定等知识,属于基础知识,难度不大.
10.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设
2.下列定理中,逆命题是假命题的是( )
A.在一个三角形中,等角对等边
B.全等三角形对应角相等
C.有一个角是60度的等腰三角形是等边三角形
D.等腰三角形两个底角相等
【答案】B
【解析】
【分析】
先把一个命题的条件和结论互换就得到它的逆命题,再进行判断即可.
【详解】
解:A、逆命题为:在一个三角形中等边对等角,逆命题正确,是真命题;

初中数学命题与证明的图文解析

初中数学命题与证明的图文解析

初中数学命题与证明的图文解析一、选择题1.下列命题:①直角三角形的两个锐角互余;②同旁内角互补;③如果直线12l l P ,直线23l l P ,那 么13l l P .其中真命题的序号是( ) A .①②B .①③C .②③D .①②③【答案】B【解析】【分析】利用直角三角形的性质、平行线的性质等知识分别判断后即可确定正确的选项.【详解】解:①直角三角形的两个锐角互余,正确,是真命题;②两直线平行,同旁内角互补,故错误,是假命题; ③如果直线12l l P ,直线23l l P ,那 么13 l l P ,正确,是真命题; 故选:B .【点睛】本题主要考查了命题与定理,掌握命题与定理是解题的关键.2.下列命题是真命题的是( )A .若两个数的平方相等,则这两个数相等B .同位角相等C .同一平面内,垂直于同一直线的两条直线平行D .相等的角是对顶角【答案】C【解析】【分析】根据平方的意义,同位角的概念,平行线的判定,对顶角的概念逐一进行判断即可得.【详解】A . 若两个数的平方相等,则这两个数不一定相等,如22=(-2)2,但2≠-2,故A 选项错误;B . 只有两直线平行的情况下,才有同位角相等,故B 选项错误;C . 同一平面内,垂直于同一直线的两条直线平行,真命题,符合题意;D . 相等的角不一定是对顶角,如图,∠1=∠2,但这两个角不符合对顶角的概念,故D 选项错误,故选C.【点睛】本题考查了命题真假的判定,涉及了乘方、同位角、对顶角、平行线的判定等知识,熟练掌握相关知识是解题的关键.3.下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0【答案】A【解析】【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;故选A.【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.4.下列各命题的逆命题是真命题的是A.对顶角相等B.全等三角形的对应角相等C.相等的角是同位角D.等边三角形的三个内角都相等【答案】D【解析】【分析】分别写出四个命题的逆命题:相等的角为对顶角;对应角相等的两三角形全等;同位角相等;三个角都相等的三角形为等边三角形;然后再分别根据对顶角的定义对第一个进行判断;根据三角形全等的判定方法对第二个进行判断;根据同位角的性质对第三个进行判断;根据等边三角形的判定方法对第四个进行判断.【详解】A 、“对顶角相等”的逆命题为“相等的角为对顶角”,此逆命题为假命题,所以A 选项错误;B 、“全等三角形的对应角相等”的逆命题为“对应角相等的两三角形全等”,此逆命题为假命题,所以B 选项错误;C 、“相等的角是同位角”的逆命题为“同位角相等”,此逆命题为假命题,所以C 选项错误;D 、“等边三角形的三个内角都相等”的逆命题为“三个角都相等的三角形为等边三角形”,此逆命题为真命题,所以D 选项正确.故选D.【点睛】本题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题;经过推论论证得到的真命题称为定理.5.下列命题是假命题的是( )A .对顶角相等B .两直线平行,同旁内角相等C .平行于同一条直线的两直线平行D .同位角相等,两直线平行【答案】B【解析】解:A .对顶角相等是真命题,故本选项正确,不符合题意;B .两直线平行,同旁内角互补,故本选项错误,符合题意;C .平行于同一条直线的两条直线平行是真命题,故本选项正确,不符合题意;D .同位角相等,两直线平行是真命题,故本选项正确,不符合题意.故选B .6.下列命题中是假命题的是( ).A .同旁内角互补,两直线平行B .直线a b ⊥r r ,则a 与b 相交所成的角为直角C .如果两个角互补,那么这两个角是一个锐角,一个钝角D .若a b ∥,a c ⊥,那么b c ⊥【答案】C【解析】根据平行线的判定,可知“同旁内角互补,两直线平行”,是真命题;根据垂直的定义,可知“直线a b ⊥,则a 与b 相交所成的角为直角”,是真命题; 根据互补的性质,可知“两个角互补,这两个角可以是两个直角”,是假命题;根据垂直的性质和平行线的性质,可知“若a b P ,a c ⊥,那么b c ⊥”,是真命题. 故选C.7.下列命题中,是假命题的是( )A .若a>b ,则-a<-bB .若a>b ,则a+3>b+3C .若a>b ,则44a b > D .若a>b ,则a 2>b 2【答案】D【解析】【分析】 利用不等式的性质分别判断后即可确定正确的选项.【详解】A 、若a >b ,则-a <-b ,正确,是真命题;B 、若a >b ,则a+3>b+3,正确,是真命题;C 、若a >b ,则44a b >,正确,是真命题; D 、若a >b ,则a 2>b 2,错误,是假命题;故选:D .【点睛】 此题考查命题与定理的知识,解题的关键是了解不等式的性质,难度不大.8.下列命题正确的是( )A .在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的.B .两个全等的图形之间必有平移关系.C .三角形经过旋转,对应线段平行且相等.D .将一个封闭图形旋转,旋转中心只能在图形内部.【答案】A【解析】【分析】根据平移的性质:平移后图形的大小、方向、形状均不发生改变结合选项即可得出答案.【详解】解:A 、经过旋转后的图形两个图形的大小和形状也不变,半径相等的两个圆是等圆,圆还具有旋转不变性,故本选项正确;B 、两个全等的图形位置关系不明确,不能准确判定是否具有平移关系,错误;C 、三角形经过旋转,对应线段相等但不一定平行,所以本选项错误;D 、旋转中心可能在图形内部,也可能在图形边上或者图形外面,所以本选项错误. 故选:A.【点睛】本题考查平移、旋转的基本性质,注意掌握①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.9.下列命题是真命题的是( )A .中位数就是一组数据中最中间的一个数B .一组数据的众数可以不唯一C .一组数据的标准差就是这组数据的方差的平方根D .已知a 、b 、c 是Rt △ABC 的三条边,则a 2+b 2=c 2【答案】B【解析】【分析】正确的命题是真命题,根据定义判断即可.【详解】解:A 、中位数就是一组数据中最中间的一个数或着是中间两个数的平均数,故错误; B 、一组数据的众数可以不唯一,故正确;C 、一组数据的标准差是这组数据的方差的算术平方根,故此选项错误;D 、已知a 、b 、c 是Rt △ABC 的三条边,当∠C =90°时,则a 2+b 2=c 2,故此选项错误; 故选:B .【点睛】此题考查真命题的定义,掌握定义,准确理解各事件的正确与否是解题的关键.10.下列选项中,可以用来说明命题“若22a b >,则a b >”是假命题的反例是( ) A .2,a =b=-1B .2,1a b =-=C .3,a =b=-2D .2,0a b ==【答案】B【解析】分析:根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题. 详解:∵当a =﹣2,b =1时,(﹣2)2>12,但是﹣2<1,∴a =﹣2,b =1是假命题的反例. 故选B .点睛:本题考查的是命题与定理,要说明数学命题的错误,只需举出一个反例即可.这是数学中常用的一种方法.11.下列命题是真命题的是( )A .同位角相等B .对顶角互补C.如果两个角的两边互相平行,那么这两个角相等=-的图像上.D.如果点P的横坐标和纵坐标互为相反数,那么点P在直线y x【答案】D【解析】【分析】根据平行线的性质定理对A、C进行判断;利用对顶角的性质对B进行判断;根据直角坐标系下点坐标特点对D进行判断.【详解】A.两直线平行,同位角相等,故A是假命题;B.对顶角相等,故B是假命题;C.如果两个角的两边互相平行,那么这两个角相等或互补,故C是假命题;=-的图像上,故D是真命D.如果点的横坐标和纵坐标互为相反数,那么点P在直线y x题故选:D【点睛】本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.12.下列语句中不正确的是()A.同一平面内,不相交的两条直线叫做平行线B.在同一平面内,过一点有且只有一条直线与己知直线垂直C.如果两个三角形,两条对应边及其夹角相等,那么这两个三角形全等D.角是轴对称图形,它的角平分线是对称轴【答案】D【解析】【分析】利用平行线的定义、垂直的定义、三角形的全等和轴对称图形分别判断后即可确定正确的选项.【详解】A、在同一平面内不相交的两条直线叫做平行线,正确;B、同一平面内,过一点有且只有一条直线与已知直线垂直,故正确;C、如果两个三角形,两条对应边及其夹角相等,那么这两个三角形全等,正确;D、角是轴对称图形,它的平分线所在直线是它的对称轴,故错误;故选:D.【点睛】此题考查命题与定理的知识,解题的关键是了解平行线的定义、垂直的定义、三角形的全等和轴对称图形,难度不大.13.下列说法正确的是()A .若a >b ,则a 2>b 2B .若三条线段的长a 、b 、c 满足a +b >c ,则以a 、b 、c 为边一定能组成三角形C .两直线平行,同旁内角相等D .三角形的外角和为360°【答案】D【解析】【分析】利用特例对A 进行分析,利用三角形三边关系、平行线的性质、三角形外角的性质分别对B 、C 、D 进行分析判断.【详解】A 、若a >b ,则不一定有a 2>b 2,比如a =0,b =﹣1,故本选项错误;B 、若三条线段的长a 、b 、c 满足a +b >c ,则以a 、b 、c 为边不一定能组成三角形,故本选项错误;C 、两直线平行,同旁内角互补,故本选项错误;D 、三角形的外角和为360°,故本选项正确;故选:D【点睛】本题考查真假命题的判断,解题的关键是根据相关知识对命题进行分析判断.14.下列命题的逆命题是真命题的是( )A .若a b =,则a b =B .ABC ∆中,若222AC BC AB +=,则ABC ∆是Rt ∆C .若0a =,则0ab =D .四边相等的四边形是菱形【答案】D【解析】【分析】先根据逆命题的定义分别写出各命题的逆命题,然后根据绝对值的意义和有理数的乘法、菱形的性质及勾股定理进行判断.【详解】解:A 、该命题的逆命题为:若|a|=|b|,则a=b ,此命题为假命题;B 、该命题的逆命题为:若△ABC 是Rt △,则AC 2+BC 2=AB 2,此命题为假命题;C 、该命题的逆命题为:若ab=0,则a=0,此命题为假命题;D 、该命题的逆命题为:菱形的四边相等,此命题为真命题;故选:D .【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.15.能说明命题“关于x 的方程240x x m -+=一定有实数根”是假命题的反例为( ) A .1m =-B .0m =C .4m =D .5m =【答案】D【解析】【分析】利用m=5使方程x 2-4x+m=0没有实数解,从而可把m=5作为说明命题“关于x 的方程x 2-4x+m=0一定有实数根”是假命题的反例.【详解】当m=5时,方程变形为x 2-4x+m=5=0,因为△=(-4)2-4×5<0,所以方程没有实数解,所以m=5可作为说明命题“关于x 的方程x 2-4x+m=0一定有实数根”是假命题的反例. 故选D .【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.16.下列命题的逆命题是真命题的是( )A .直角都相等B .钝角都小于180°C .如果x 2+y 2=0,那么x=y=0D .对顶角相等【答案】C【解析】【分析】根据逆命题是否为真命题逐一进行判断即可.【详解】相等的角不都是直角,故A 选项不符合题意,小于180°的角不都是钝角,故B 选项不符合题意,如果x=y=0,那么x 2+y 2=0,正确,是真命题,符合题意,相等的角不一定都是对顶角,故D 选项不符合题意,故选C【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.17.下列命题的逆命题不正确...的是( ) A .相等的角是对顶角B .两直线平行,同旁内角互补C .矩形的对角线相等D .平行四边形的对角线互相平分【答案】C【分析】首先写出各个命题的逆命题,然后进行判断即可.【详解】A 、逆命题是:对顶角相等.正确;B 、逆命题是:同旁内角互补,两直线平行,正确;C 、逆命题是:对角线相等的四边形是矩形,错误;D 、逆命题是:对角线互相平分的四边形是平行四边形,正确.故选:C .【点睛】本题主要考查了写一个命题的逆命题的方法,首先要分清命题的条件与结论.18.已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设( )A .AB ∠=∠B .AB BC = C .B C ∠=∠D .A C ∠=∠【答案】C【解析】【分析】反证法的步骤:1、假设命题反面成立;2、从假设出发,经过推理得出和反面命题矛盾,或者与定义、公理、定理矛盾;3、得出假设命题不成立是错误的,即所求证命题成立.【详解】已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设B C ∠=∠,由“等角对等边”可得AB=AC,这与已知矛盾,所以.B C ∠≠∠故选C【点睛】本题考核知识点:反证法. 解题关键点:理解反证法的一般步骤.19.交换下列命题的题设和结论,得到的新命题是假命题的是( )A .两直线平行,同位角相等B .相等的角是对顶角C .所有的直角都是相等的D .若a=b ,则a ﹣3=b ﹣3【答案】C【解析】【分析】写出原命题的逆命题,根据相关的性质、定义判断即可.【详解】解:交换命题A 的题设和结论,得到的新命题是同位角相等,两直线平行是真命题; 交换命题B 的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C 的题设和结论,得到的新命题是所有的相等的角都是直角是假命题; 交换命题D 的题设和结论,得到的新命题是若a-3=b-3,则a=b 是真命题,【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.20.下列命题中,正确的命题是()A.度数相等的弧是等弧B.正多边形既是轴对称图形,又是中心对称图形C.垂直于弦的直径平分弦D.三角形的外心到三边的距离相等【答案】C【解析】【分析】根据等弧或垂径定理,正多边形的性质一一判断即可;【详解】A、完全重合的两条弧是等弧,错误;B、正五边形不是中心对称图形,错误;C、垂直于弦的直径平分弦,正确;D、三角形的外心到三个顶点的距离相等,错误;故选:C.【点睛】此题考查命题与定义,正多边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.。

命题定理与证明课件

命题定理与证明课件

详细描述
在命题的证明练习中,学生需要学习如何根据已知条件 和定义,通过逻辑推理和演绎法,推导出结论。这种练 习有助于学生理解命题证明的基本步骤和技巧,培养他 们的逻辑推理能力。
定理的证明练习
总结词
通过定理的证明练习,学生可以深入理解定理的证明过程,掌握定理的应用方法和技巧。
详细描述
在定理的证明练习中,学生需要学习如何根据定理的证明过程,理解和应用定理。这种练习有助于学生深入理解 定理的本质和应用,提高他们的数学素养和解决问题的能力。
相对论
在相对论中,光速不变原理、质能方程等都是重要的命题 和定理,它们为理解宇宙的基本规律提供了基础。
在计算机科学中的应用
数据结构
在数据结构中,各种排序和查找 算法的效率定理、图的遍历定理 等都是关键的命题和定理,它们 为设计和分析算法提供了依据。
算法分析
在算法分析中,时间复杂度、空 间复杂度等概念都是重要的命题 和定理,它们为评估算法的效率 和可行性提供了标准。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
命题与定理的应用
在数学中的应用
代数
概率统计
命题和定理在代数中有着广泛的应用 ,例如在解决方程、不等式和函数问 题时,需要运用各种基本定理和推论 。
在概率和统计中,命题和定理的应用 也十分重要,例如大数定律、中心极 限定理等,都是解决概率统计问题的 基石。
REPORT
CATALOG
DATE
ANALYSIS
SUMMARY
命题定理与证明课件
目录
CONTENTS
• 命题与定理的基本概念 • 命题的证明方法 • 定理的证明技巧 • 命题与定理的应用 • 命题与定理的实践练习

13.2 命题与证明 课件沪科版八年级数学上册

13.2 命题与证明  课件沪科版八年级数学上册
2
∵BE⊥AC,∴∠CEF=90°.
∴在 Rt△ CEF 中,∠EFC=90°-∠ACD=90°-28°=62°,
∴∠DFB=∠EFC=62°.
感悟新知
知5-练
(2)如图②,若BE⊥CD,∠A=50°,求∠ABE的度数.
解:∵BE⊥CD,∴∠BFC=90°.
∵CD 是∠ACB 的平分线,
1
∴∠BCF= ∠ACB=28°.
称之为反例.
感悟新知
知3-讲
特别警示
判断一个命题是真命题,需要经过推理说明其正确性,
而判断一个命题是假命题,只需举一个反例即可.
原命题的真假和其逆命题的真假没有必然联系,原命
题是真命题,其逆命题不一定是真命题;原命题是假命题,
其逆命题也不一定是假命题.
感悟新知
知3-练
例 3 判断下列命题的真假,写出逆命题,并判断逆命题
(2)辅助线通常画成虚线.
感悟新知
知5-讲
4. 推论1 直角三角形的两锐角互余.
几何语言:在△ABC中,∵∠C=90°,
∴∠A+∠B=90°.
5. 推论2 有两个角互余的三角形是直角三角形.
几何语言:在△ABC中,∵∠A+∠B=90°,
∴∠C=9 0°,即△ABC为直角三角形.
感悟新知
知5-讲
特别解读
能直接用来作为判断其他命题真假的依据.
感悟新知
知4-练
例 4 填写下列证明过程中推理的依据.
如图13.2-1,已知AC,BD相交于点O,DF平分
∠CDO与AC相交于点F,BE平分
∠ABO与AC相交于点E,∠A=∠C.
求证:∠1=∠2.
感悟新知
知4-练
证明:∵∠A=∠C,(_______)

湘教版初中八年级数学上册2-2命题与证明第2课时命题的证明课件

湘教版初中八年级数学上册2-2命题与证明第2课时命题的证明课件

2.(2024湖南长沙宁乡期末)如图,在△ABC中,E,G分别是AB, AC上的点,F,D是BC上的点,连接EF,AD,DG,已知AD∥EF, ∠1+∠2=180°. (1)求证:AB∥DG. (2)若DG是∠ADC的平分线,∠B=35°,求∠2的度数.
解析 (1)证明:∵AD∥EF,∴∠BAD+∠2=180°. ∵∠1+∠2=180°,∴∠BAD=∠1,∴AB∥DG. (2)∵DG是∠ADC的平分线,且AB∥DG, ∴∠1=∠GDC=∠B=35°,∴∠DAB=∠1=35°, ∵AD∥EF,∴∠2=180°-∠DAB=180°-35°=145°.
第2章 三角形
第2课时 命题的证明
9习题2.2 T6)如图,在四边形ABCD中,①AB∥ CD;②∠A=∠C;③AD∥BC. (1)请你以其中两个为条件,第三个为结论,写出一个命题.
(2)判断这个命题是不是真命题,并说明理由.
解析 (1)如果AB∥CD,∠A=∠C,那么AD∥BC.(答案不唯一) (2)这个命题是真命题. 理由:∵AB∥CD,∴∠B+∠C=180°, ∵∠A=∠C,∴∠B+∠A=180°,∴AD∥BC.
求证:EF平分∠BED. 证明:∵AC∥DE,
∴∠BCA=∠BED,即∠1+∠2=∠4+∠5, ∵DC∥EF,∴∠2=∠5, ∵CD平分∠BCA,∴∠1=∠2, ∴∠4=∠5,∴EF平分∠BED.
解析 先假设命题的结论不成立,再从这个假设出发,经过推 理论证,得出矛盾,由矛盾判定假设不正确,从而得到原命题 的结论正确,这种推理使用的证明方法是反证法.故选A.
8.(2022湖北武汉中考,18,★☆☆)如图,在四边形ABCD中,AD ∥BC,∠B=80°. (1)求∠BAD的度数. (2)AE平分∠BAD交BC于点E,∠BCD=50°,求证:AE∥DC.

八年级数学上册 2.2 命题与证明 第3课时 命题的证明课件 (新版)湘教版.pptx

八年级数学上册 2.2 命题与证明 第3课时 命题的证明课件 (新版)湘教版.pptx
已知:b∥c,a⊥b . 求证:a⊥c. 证明:∵ a⊥b(已知),
∴∠1=90º (垂直的定义). 又∵ b∥c(已知),
∴∠1=∠2(两直线平行,同位角相等).
∴∠2=∠1=90º(等量代换). ∴ a⊥c(垂直的定义).
13
2.填空
已知:如图,∠1=∠2,∠3=∠4,
求证:EG∥FH.
证明:∵∠1=∠2(已知)
2.2 命题与证明 第3课时 命题的证明
1
做一做
观察、操作、实验是人们认识事物的重要手 段,而且人们可以从中猜测发现出一些结论.
采用剪拼或度量的方法,猜测“三角形的外角和”等于多少度.
从剪拼或度量可以猜测三角形的三个外角之和等于 360°(如图),但是剪拼时难以真正拼成一个周角,只 是接近周角;分别度量这三个角后再相加,结果可能接 近360°,但不能很准确地都得到360°.
反证法是一种间接证明的方法,其基本的思路 可归结为“否定结论,导出矛盾,肯定结论”.
11
1.在同一平面内,如果一条直线垂直于两条平行 线中的一条,那么它也垂直于另一条.
你能结合图形用几何语言表述命题的题设和结 论ห้องสมุดไป่ตู้?
已知:b∥c, a⊥b . 求证:a⊥c.
12
请同学们思考如何利用已经学过的定义定理 来证明这个结论呢?
则∠A+∠B+∠C<180°. 这与“三角形的内角和等于180°”矛盾, 所以假设不正确.
因此,∠A,∠B,∠C中至少有一个角大于 或等于60°.
10
像这样,当直接证明一个命题为真有困难时, 我们可以先假设命题不成立,然后利用命题的条 件或有关的结论,通过推理导出矛盾,从而得出 假设不成立,即所证明的命题正确,这种证明方 法称为反证法.

人教版数学七年级下册5.3.2《命题、定理、证明》 课件(共23张PPT)

人教版数学七年级下册5.3.2《命题、定理、证明》 课件(共23张PPT)

归纳总结
判断某一种事情的句子叫做命题,理清命题的 定义必须搞清楚两点: (1)命题必须是一个“完整的句子”; (2)命题必须作出判断,如“两条直线相交交 点唯一吗?”没有对事情作出判断,故不是命题。 定理和公理都是真命题,都可以作为证明其他 命题的依据,不同的是:公理是人们从长期实践 中总结出来的真命题,不用证明也不能证明;定 理是用推理证实为正确的命题。
命题1 在同一平面内,如果一条直线垂直 于两条平行线中的一条,那么它也垂直于 另一条. 已知:如图,b∥c,a⊥b . 求证:a⊥c. 证明:∵ a⊥b(已知) ∴∠1=90º (垂直的定义) 又∵ b∥c(已知) ∴∠1=∠2(两直线平行,同位角相等) ∴∠2=∠1=90º(等量代换) ∴ a⊥c(垂直的定义)
题设是: a=b,b=c
结论是: a=c
③ 同位角相等.
如果两个角是同位角,那么这两个角相等.
条件是:两个角是同位角
结论是:这两个角相等 ④ 同角的补角相等. 如果两个角是同一个角的补角,那么这两个角相 等. 条件是:两个角是同一个角的补角 结论是:这两个角相等
讨论与归纳 思考:请问如何判断①是假命题?如何判断②是
真命题?
① 如果两个角相等,那么它们是对顶角. ② 如果两条平行线被第三条直线所截,那么同旁 内角互补. 注意:要判断一个命题是真命题要经过严格
的推理;是假命题只要举一个反例。
1.下列句子哪些是命题?是命题的,指出是真 命题还是假命题? 是 真命题 (1)兔子有四条腿; 是 假命题 (2)内错角相等; 否 (3)画一条直线; 是 假命题 (4)四边形是正方形; 否 (5)你的作业做完了吗? 是 真命题 (6)同位角相等,两直线平行; 是 真命题 (7)对顶角相等; 是 假命题 (8)垂直于同一直线的两直线平行; 否 (9)过点P画线段MN的垂线;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新初中数学命题与证明的图文解析一、选择题1.下列各命题的逆命题成立的是()A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.如果两个角都是45°,那么这两个角相等【答案】C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A、逆命题是三个角对应相等的两个三角形全等,错误;B、绝对值相等的两个数相等,错误;C、同位角相等,两条直线平行,正确;D、相等的两个角都是45°,错误.故选C.2.下列语句正确的个数是()①两个五次单项式的和是五次多项式②两点之间,线段最短③两点之间的距离是连接两点的线段④延长射线AB,交直线CD于点P⑤若小明家在小丽家的南偏东35︒方向,则小丽家在小明家的北偏西35︒方向A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质对各项进行分析即可.【详解】①两个五次单项式的和可能为零、五次单项式或五次多项式,错误;②两点之间,线段最短,正确;③两点之间的距离是连接两点的线段的长度,错误;④延长射线AB,交直线CD于点P,正确;⑤若小明家在小丽家的南偏东35︒方向,则小丽家在小明家的北偏西35︒方向,正确;故语句正确的个数有3个故答案为:C.【点睛】本题考查语句是否正确的问题,掌握单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质是解题的关键.3.下列命题是真命题的是( )A .内错角相等B .平面内,过一点有且只有一条直线与已知直线垂直C .相等的角是对顶角D .过一点有且只有一条直线与已知直线平行【答案】B【解析】【分析】命题的“真”“假”是就命题的内容而言.任何一个命题非真即假,正确的命题为真命题,错误的命题为假命题.【详解】A 、内错角相等,是假命题,故此选项不合题意;B 、平面内,过一点有且只有一条直线与已知直线垂直,是真命题,故此选项符合题意;C 、相等的角是对顶角,是假命题,故此选项不合题意;D 、过一点有且只有一条直线与已知直线平行,是假命题,故此选项不合题意; 故选:B .【点睛】此题主要考查了命题与定理,关键是掌握要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.4.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )A .③④②①B .③④①②C .①②③④D .④③①②【答案】B【解析】【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC 中,AB=AC ,求证:∠B <90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B ≥90°,(2)那么,由AB=AC ,得∠B=∠C ≥90°,即∠B+∠C ≥180°,(3)所以∠A+∠B+∠C >180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B <90°,原题正确顺序为:③④①②,故选B .【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.5.下列结论中,不正确的是 ( )A .两点确定一条直线B .两点之间,直线最短C .等角的余角相等D .等角的补角相等【答案】B【解析】【分析】根据直线线段的性质和余角、补角的定义逐项分析可得出正确选项.【详解】A .两点确定一条直线,正确;B . 两点之间,线段最短,所以B 选项错误;C .等角的余角相等,正确;D .等角的补角相等,正确.故选B考点:定理6.下列命题中是假命题的是( ).A .同旁内角互补,两直线平行B .直线a b ⊥r r ,则a 与b 相交所成的角为直角C .如果两个角互补,那么这两个角是一个锐角,一个钝角D .若a b ∥,a c ⊥,那么b c ⊥【答案】C【解析】根据平行线的判定,可知“同旁内角互补,两直线平行”,是真命题;根据垂直的定义,可知“直线a b ⊥,则a 与b 相交所成的角为直角”,是真命题; 根据互补的性质,可知“两个角互补,这两个角可以是两个直角”,是假命题;根据垂直的性质和平行线的性质,可知“若a b P ,a c ⊥,那么b c ⊥”,是真命题. 故选C.7.下列命题的逆命题不成立的是( )A .两直线平行,同旁内角互补B .如果两个实数相等,那么它们的平方相等C .平行四边形的对角线互相平分D .全等三角形的对应边相等【答案】B【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】选项A,两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,正确,成立;选项B,如果两个实数相等,那么它们的平方相等的逆命题是平方相等的两个数相等,错误,不成立,如(﹣3)2=32,但﹣3≠3;选项C,平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,正确,成立;选项D,全等三角形的对应边相等的逆命题是对应边相等的三角形全等,正确,成立;故选B.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.8.下列命题中,正确的命题是()A.度数相等的弧是等弧B.正多边形既是轴对称图形,又是中心对称图形C.垂直于弦的直径平分弦D.三角形的外心到三边的距离相等【答案】C【解析】【分析】根据等弧或垂径定理,正多边形的性质一一判断即可;【详解】A、完全重合的两条弧是等弧,错误;B、正五边形不是中心对称图形,错误;C、垂直于弦的直径平分弦,正确;D、三角形的外心到三个顶点的距离相等,错误;故选:C.【点睛】此题考查命题与定义,正多边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9.下列定理中,逆命题是假命题的是()A.在一个三角形中,等角对等边B.全等三角形对应角相等C.有一个角是60度的等腰三角形是等边三角形D .等腰三角形两个底角相等【答案】B【解析】【分析】先把一个命题的条件和结论互换就得到它的逆命题,再进行判断即可.【详解】解:A 、逆命题为:在一个三角形中等边对等角,逆命题正确,是真命题;B 、逆命题为:对应角相等的三角形是全等三角形,逆命题错误,是假命题;C 、逆命题为:如果一个三角形是等边三角形,那么它是一个等腰三角形而且有一个内角等于60°,逆命题正确,是真命题;D 、逆命题为:两个角相等的三角形是等腰三角形,逆命题正确,是真命题;故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是能够正确的写出原命题的逆命题.10.下列命题:①直角三角形的两个锐角互余;②同旁内角互补;③如果直线12l l P ,直线23l l P ,那 么13l l P .其中真命题的序号是( ) A .①②B .①③C .②③D .①②③【答案】B【解析】【分析】利用直角三角形的性质、平行线的性质等知识分别判断后即可确定正确的选项.【详解】解:①直角三角形的两个锐角互余,正确,是真命题;②两直线平行,同旁内角互补,故错误,是假命题; ③如果直线12l l P ,直线23l l P ,那 么13 l l P ,正确,是真命题; 故选:B .【点睛】本题主要考查了命题与定理,掌握命题与定理是解题的关键.11.下列命题是假命题的是( )A .三角形的外心到三角形的三个顶点的距离相等B .如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C .将一次函数y =3x -1的图象向上平移3个单位,所得直线不经过第四象限D .若关于x 的一元一次不等式组0213x m x -≤⎧⎨+>⎩无解,则m 的取值范围是1m £ 【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.12.下列命题中,是真命题的是()A.同位角相等B.若两直线被第三条直线所截,同旁内角互补C.同旁内角相等,两直线平行D.平行于同一直线的两直线互相平行【答案】D【解析】【分析】根据平行线的判定、平行线的性质判断即可.【详解】A、两直线平行,同位角相等,是假命题;B、若两条平行线被第三条直线所截,同旁内角互补,是假命题;C、同旁内角互补,两直线平行,是假命题;D、平行于同一直线的两条直线互相平行,是真命题;故选:D.【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.13.已知下列命题:①若a>b,则ac>bc;②若a=1;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是( )A .1个B .2个C .3个D .4个【答案】A【解析】【分析】先对原命题进行判断,再判断出逆命题的真假即可.【详解】解:①若a >b ,则ac >bc 是假命题,逆命题是假命题;②若a=1是真命题,逆命题是假命题;③内错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选A .点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.14.下列选项中,能说明命题“若22a b >,则a b >”是假命题的反例是( )A .1a =-,2b =B .2a =,1b =-C .1a =,2b =-D .2a =-,1b =【答案】D【解析】【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题,作答本题直接利用选项中数据代入求出答案.【详解】A. 当1a =-,2b =时,2a <2b ,a <b ,则此选项不是假命题的反例;B. 当2a =,1b =-时,2a >2b ,a >b ,则此选项不是假命题的反例;C. 当1a =,2b =-时,2a <2b ,a >b ,则此选项不是假命题的反例;D. 当2a =-,1b =时,2a >2b ,a <b ,则此选项是假命题的反例,故选:D .【点睛】本题考查真命题与假命题.要说明数学命题的错误,只需举出一个反例即可,反例就是符合已知条件但不满足结论的例子.15.能说明命题“关于x 的方程240x x m -+=一定有实数根”是假命题的反例为( ) A .1m =- B .0m = C .4m = D .5m =【解析】【分析】利用m=5使方程x2-4x+m=0没有实数解,从而可把m=5作为说明命题“关于x的方程x2-4x+m=0一定有实数根”是假命题的反例.【详解】当m=5时,方程变形为x2-4x+m=5=0,因为△=(-4)2-4×5<0,所以方程没有实数解,所以m=5可作为说明命题“关于x的方程x2-4x+m=0一定有实数根”是假命题的反例.故选D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.16.下列命题的逆命题是真命题的是()A.直角都相等 B.钝角都小于180° C.如果x2+y2=0,那么x=y=0 D.对顶角相等【答案】C【解析】【分析】根据逆命题是否为真命题逐一进行判断即可.【详解】相等的角不都是直角,故A选项不符合题意,小于180°的角不都是钝角,故B选项不符合题意,如果x=y=0,那么x2+y2=0,正确,是真命题,符合题意,相等的角不一定都是对顶角,故D选项不符合题意,故选C【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.17.下列正确说法的个数是()①同位角相等;②等角的补角相等;③两直线平行,同旁内角相等;④在同一平面内,过一点有且只有一条直线与已知直线垂直A.1 B.2 C.3 D.4【答案】B【解析】根据平行线的性质以及等角或同角的补角相等的知识,即可求得答案.【详解】解:∵两直线平行,同位角相等,故①错误;∵等角的补角相等,故②正确;∵两直线平行,同旁内角互补,故③错误;∵在同一平面内,过一点有且只有一条直线与已知直线垂直,故④正确.∴正确说法的有②④.故选B .【点睛】此题考查了平行线的性质与对顶角的性质,以及等角或同角的补角相等的知识.解题的关键是注意需熟记定理.18.下列命题的逆命题成立的有( )①勾股数是三个正整数 ②全等三角形的三条对应边分别相等③如果两个实数相等,那么它们的平方相等 ④平行四边形的两组对角分别相等 A .1个B .2个C .3个D .4个【答案】B【解析】【分析】先写出每个命题的逆命题,再分别根据勾股数的定义、三角形全等的判定、平方根的定义、平行四边形的判定逐个判断即可.【详解】①逆命题:如果三个数是正整数,那么它们是勾股数反例:正整数1,2,3,但222123+?,即它们不是勾股数,则此逆命题不成立②逆命题:三条对应边分别相等的两个三角形全等由SSS 定理可知,此逆命题成立③逆命题:如果两个实数的平方相等,那么这两个实数相等反例:222(2)4=-=,但22≠-,则此逆命题不成立④逆命题:两组对角分别相等的四边形是平行四边形由平行四边形的判定可知,此逆命题成立综上,逆命题成立的有2个故选:B .【点睛】本题考查了命题的相关概念、勾股数的定义、三角形全等的判定、平方根的定义、平行四边形的判定,正确写出各命题的逆命题是解题关键.19.下列四个命题中,其正确命题的个数是( )①若ac >bc ,则a >b ;②平分弦的直径垂直于弦;③一组对角相等一组对边平行的四边形是平行四边形;④反比例函数y=kx.当k<0时,y随x的增大而增大A.1 B.2 C.3 D.4【答案】A【解析】【分析】根据不等式性质、垂径定理、平行四边形的判定、反比例函数的性质,分别进行判断,即可得到答案.【详解】解:①若ac>bc,如果c>0,则a>b,故原题说法错误;②平分弦(不是直径)的直径垂直于弦,故原题说法错误;③一组对角相等一组对边平行的四边形是平行四边,故原题说法正确;④反比例函数y=kx.当k<0时,在每个象限内y随x的增大而增大,故原题说法错误;正确命题有1个,故选:A.【点睛】本题考查了判断命题的真假,解题的关键是掌握不等式性质、垂径定理、平行四边形的判定、反比例函数的性质进行判断.20.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设()A.三角形的三个外角都是锐角B.三角形的三个外角中至少有两个锐角C.三角形的三个外角中没有锐角D.三角形的三个外角中至少有一个锐角【答案】B【解析】【分析】反证法的步骤中,第一步是假设结论不成立,反面成立.【详解】解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,故选B.【点睛】考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.。

相关文档
最新文档