3三角恒等变换与正余弦定理(含答案)

合集下载

三角恒等变换、正余弦定理及应用5—7讲

三角恒等变换、正余弦定理及应用5—7讲

第5讲 两角和与差的正弦、余弦和正切【2013年高考会这样考】1.考查利用两角和与差的正弦、余弦、正切公式及倍角公式进行三角函数式的化简与求值.2.利用三角公式考查角的变换、角的范围.【复习指导】本讲复习应牢记和、差角公式及二倍角公式,准确把握公式的特征,活用公式(正用、逆用、变形用、创造条件用);同时要掌握好三角恒等变换的技巧,如变换角的技巧、变换函数名称的技巧等.基础梳理1.两角和与差的正弦、余弦、正切公式(1)C (α-β):cos(α-β)=cos_αcos_β+sin_αsin_β;(2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β;(3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β;(4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β;(5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β; (6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β. 2.二倍角的正弦、余弦、正切公式(1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;(3)T 2α:tan 2α=2tan α1-tan 2α. 3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1?tan_αtan_β);(2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. 4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定.两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β. (2)化简技巧:切化弦、“1”的代换等.三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.双基自测1.(人教A 版教材习题改编)下列各式的值为14的是( ).A .2cos 2 π12-1B .1-2sin 275° C.2tan 22.5°1-tan 222.5° D .sin 15°cos 15°解析 2cos 2π12-1=cos π6=32;1-2sin 275°=cos 150°=-32;2tan 22.5°1-tan 222.5°= tan 45°=1;sin 15°cos 15°=12sin 30°=14.答案 D2.(2011·福建)若tan α=3,则sin 2αcos 2α的值等于( ).A .2B .3C .4D .6解析 sin 2αcos 2 α=2sin αcos αcos 2 α=2tan a =2×3=6,故选D.答案 D3.已知sin α=23,则cos(π-2α)等于( ).A .-53B .-19 C.19 D.53解析 cos(π-2α)=-cos2α=-(1-2sin 2α)=2sin 2α-1=2×49-1=-19.答案 B4.(2011·辽宁)设sin ⎝ ⎛⎭⎪⎫π4+θ=13,则sin 2θ=( ). A .-79 B .-19 C.19 D.79解析 sin 2θ=-cos ⎝ ⎛⎭⎪⎫π2+2θ=2sin 2⎝ ⎛⎭⎪⎫π4+θ-1=2×⎝ ⎛⎭⎪⎫132-1=-79. 答案 A5.tan 20°+tan 40°+3tan 20° tan 40°=________.解析 ∵tan 60°=tan(20°+40°)=tan 20°+tan 40°1-tan 20°tan 40°, ∴tan 20°+tan 40°=tan 60°(1-tan 20°tan 40°)=3-3tan 20°·tan 40°,∴原式=3-3tan 20°tan 40°+3tan 20°tan 40°= 3.答案 3考向一 三角函数式的化简【例1】?化简2cos 4x -2cos 2x +122tan ⎝ ⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x . [审题视点] 切化弦,合理使用倍角公式.解 原式=-2sin 2x cos 2x +122sin ⎝ ⎛⎭⎪⎫π4-x cos 2⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x =12?1-sin 22x ?2sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x =12cos 22x sin ⎝ ⎛⎭⎪⎫π2-2x =12cos 2x . 三角函数式的化简要遵循“三看”原则:(1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式;(3)三看“结构特征”,分析结构特征,找到变形的方向.【训练1】 化简:?sin α+cos α-1??sin α-cos α+1?sin 2α.解 原式=⎝ ⎛⎭⎪⎫2sin α2cos α2-2sin 2α2⎝ ⎛⎭⎪⎫2sin α2cos α2+2sin 2α24sin α2cos α2cos α =⎝ ⎛⎭⎪⎫cos α2-sin α2⎝ ⎛⎭⎪⎫cos α2+sin α2sin α2cos α2cos α=⎝ ⎛⎭⎪⎫cos 2α2-sin 2α2sin α2cos α2cos α=cos αsin α2cos α2cos α=tan α2.考向二 三角函数式的求值【例2】?已知0<β<π2<α<π,且cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,求cos(α+β)的值. [审题视点] 拆分角:α+β2=⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β,利用平方关系分别求各角的正弦、余弦. 解 ∵0<β<π2<α<π,∴-π4<α2-β<π2,π4<α-β2<π,∴cos ⎝ ⎛⎭⎪⎫α2-β= 1-sin 2⎝ ⎛⎭⎪⎫α2-β=53, sin ⎝ ⎛⎭⎪⎫α-β2= 1-cos 2⎝ ⎛⎭⎪⎫α-β2=459, ∴cos α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β =cos ⎝ ⎛⎭⎪⎫α-β2cos ⎝ ⎛⎭⎪⎫α2-β+sin ⎝ ⎛⎭⎪⎫α-β2sin ⎝ ⎛⎭⎪⎫α2-β =⎝ ⎛⎭⎪⎫-19×53+459×23=7527, ∴cos(α+β)=2cos 2α+β2-1=2×49×5729-1=-239729.三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余互补”关系.【训练2】 已知α,β∈⎝ ⎛⎭⎪⎫0,π2,sin α=45,tan(α-β)=-13,求cos β的值.解 ∵α,β∈⎝ ⎛⎭⎪⎫0,π2,∴-π2<α-β<π2, 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴1cos 2?α-β?=1+tan 2(α-β)=109. cos(α-β)=31010,sin(α-β)=-1010.又∵sin α=45,∴cos α=35.∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=35×31010+45×⎝ ⎛⎭⎪⎫-1010=1010. 考向三 三角函数的求角问题【例3】?已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.[审题视点] 由cos β=cos[α-(α-β)]解决.解 ∵0<β<α<π2,∴0<α-β<π2.又∵cos(α-β)=1314,∵cos α=17,β<α<π2,∴sin α=1-cos 2α=437∴sin(α-β)=1-cos 2?α-β?=3314,∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=17×1314+437×3314=12.∵0<β<π2.∴β=π3.通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.【训练3】 已知α,β∈⎝ ⎛⎭⎪⎫-π2,π2,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.解 由根与系数的关系得:tan α+tan β=-33,tan αtan β=4,∴tan α<0,tan β<0,-π<α+β<0.又tan(α+β)=tan α+tan β1-tan αtan β=-331-4= 3. ∴α+β=-2π3.考向四 三角函数的综合应用【例4】?(2010·北京)已知函数f (x )=2cos 2x +sin 2x .(1)求f ⎝ ⎛⎭⎪⎫π3的值; (2)求f (x )的最大值和最小值.[审题视点] 先化简函数y =f (x ),再利用三角函数的性质求解.解 (1)f ⎝ ⎛⎭⎪⎫π3=2cos 2π3+sin 2π3 =-1+34=-14.(2)f (x )=2(2cos 2x -1)+(1-cos 2x )=3cos 2x -1,x ∈R .∵cos x ∈[-1,1],∴当cos x =±1时,f (x )取最大值2;当cos x =0时,f (x )取最小值-1.高考对两角和与差的正弦、余弦、正切公式及二倍角公式的考查还往往渗透在研究三角函数性质中.需要利用这些公式,先把函数解析式化为y =A sin(ωx +φ)的形式,再进一步讨论其定义域、值域和最值、单调性、奇偶性、周期性、对称性等性质.【训练4】 已知函数f (x )=2sin(π-x )cos x .(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π2上的最大值和最小值. 解:f (x )=2sin x cos x =sin 2x(1)f (x )的最小正周期T =2π2=π.(2)∵-π6≤x ≤π2,∴-π3≤2x ≤π. ∴-32≤sin 2x ≤1.∴f (x )的最大值为1,最小值为-32.难点突破10——三角函数求值、求角问题策略面对有关三角函数的求值、化简和证明,许多考生一筹莫展,而三角恒等变换更是三角函数的求值、求角问题中的难点和重点,其难点在于:其一,如何牢固记忆众多公式,其二,如何根据三角函数的形式去选择合适的求值、求角方法.一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α+β)+(α-β)等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论.【示例】? (2011·江苏)已知tan ⎝ ⎛⎭⎪⎫x +π4=2,则tan x tan 2x 的值为________. 二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.【示例】? (2011·南昌月考)已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.▲三角恒等变换与向量的综合问题(教师备选)两角和与差的正弦、余弦、正切公式作为解题工具,是每年高考的必考内容,常在选择题中以条件求值的形式考查.近几年该部分内容与向量的综合问题常出现在解答题中,并且成为高考的一个新考查方向.【示例】? (2011·温州一模)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈⎝ ⎛⎭⎪⎫0,π2. (1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2,求cos φ的值.第6讲 正弦定理和余弦定理【2013年高考会这样考】1.考查正、余弦定理的推导过程.2.考查利用正、余弦定理判断三角形的形状.3.考查利用正、余弦定理解任意三角形的方法.【复习指导】1.掌握正弦定理和余弦定理的推导方法.2.通过正、余定理变形技巧实现三角形中的边角转换,解题过程中做到正余弦定理的优化选择.基础梳理1.正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c 2R 等形式,以解决不同的三角形问题.2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ?a >b ?sin A >sin B .两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角.两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A版教材习题改编)在△ABC中,A=60°,B=75°,a=10,则c等于( ).A.5 2 B.10 2C.1063D.5 6解析由A+B+C=180°,知C=45°,由正弦定理得:asin A=csin C,即1032=c22.∴c=1063.答案 C2.在△ABC中,若sin Aa=cos Bb,则B的值为( ).A.30°B.45°C.60°D.90°解析由正弦定理知:sin A sin A=cos Bsin B,∴sin B=cos B,∴B=45°.答案 B3.(2011·郑州联考)在△ABC中,a=3,b=1,c=2,则A等于( ).A.30°B.45°C.60°D.75°解析由余弦定理得:cos A=b2+c2-a22bc=1+4-32×1×2=12,∵0<A<π,∴A=60°. 答案 C4.在△ABC中,a=32,b=23,cos C=13,则△ABC的面积为( ).A .3 3B .2 3C .4 3 D. 3解析 ∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C=12×32×23×223=4 3.答案 C5.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________. 解析 ∵a 2+b 2-c 2=-3ab ,∴cos C =a 2+b 2-c 22ab =-32, 故C =150°为三角形的最大内角.答案 150°考向一 利用正弦定理解三角形【例1】?在△ABC 中,a =3,b =2,B =45°.求角A ,C 和边c .[审题视点] 已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°,∴sin A =32.∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°,c =b sin C sin B =6+22;当A =120°时,C =180°-45°-120°=15°,c =b sin C sin B =6-22.(1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.【训练1】 (2011·北京)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________.解析 因为△ABC 中,tan A =2,所以A 是锐角,且sin A cos A =2,sin 2A +cos 2A =1,联立解得sin A =255,再由正弦定理得a sin A =b sin B ,代入数据解得a =210.答案 255 210考向二 利用余弦定理解三角形【例2】?在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b 2a +c. (1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.[审题视点] 由cos B cos C =-b 2a +c,利用余弦定理转化为边的关系求解. 解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .将上式代入cos B cos C =-b 2a +c得: a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b 2a +c, 整理得:a 2+c 2-b 2=-ac .∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B ,∴13=16-2ac ⎝ ⎛⎭⎪⎫1-12,∴ac =3. ∴S △ABC =12ac sin B =334.(1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.【训练2】 (2011·桂林模拟)已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2 A 2+cos A =0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积.解 (1)由2cos 2A 2+cos A =0, 得1+cos A +cos A =0,即cos A =-12,∵0<A <π,∴A =2π3.(2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc ,又a =23,b +c =4,有12=42-bc ,则bc =4,故S △ABC =12bc sin A = 3.考向三 利用正、余弦定理判断三角形形状【例3】?在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状.[审题视点] 首先边化角或角化边,再整理化简即可判断.解 由已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,得b 2[sin(A -B )+sin C ]=a 2[sin C -sin(A -B )],即b 2sin A cos B =a 2cos A sin B ,即sin 2B sin A cos B =sin 2A cos B sin B ,所以sin 2B =sin 2A ,由于A ,B 是三角形的内角.故0<2A <2π,0<2B <2π.故只可能2A =2B 或2A =π-2B ,即A =B 或A +B =π2.故△ABC 为等腰三角形或直角三角形.判断三角形的形状的基本思想是;利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.【训练3】 在△ABC 中,若a cos A =b cos B =c cos C ;则△ABC 是( ).A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形解析 由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C (R 为△ABC 外接圆半径). ∴sin A cos A =sin B cos B =sin C cos C .即tan A =tan B =tan C ,∴A =B =C .答案 B考向三 正、余弦定理的综合应用【例3】?在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.[审题视点] 第(1)问根据三角形的面积公式和余弦定理列出关于a ,b 的方程,通过方程组求解;第(2)问根据sin C +sin(B -A )=2sin 2A 进行三角恒等变换,将角的关系转换为边的关系,求出边a ,b 的值即可解决问题.解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4. 又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎨⎧ a 2+b 2-ab =4,ab =4,解得⎩⎨⎧a =2,b =2.(2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A ,即sin B cos A =2sin A cos A .当cos A =0,即A =π2时,B =π6,a =433,b =233;当cos A ≠0时,得sin B =2sin A ,由正弦定理,得b =2a .联立方程组⎩⎨⎧ a 2+b 2-ab =4,b =2a ,解得⎩⎪⎨⎪⎧ a =233,b =433.所以△ABC 的面积S =12a b sin C =233.正弦定理、余弦定理、三角形面积公式对任意三角形都成立,通过这些等式就可以把有限的条件纳入到方程中,通过解方程组获得更多的元素,再通过这些新的条件解决问题.【训练3】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cosB =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值.解 (1)因为cos B =45,所以sin B =35.由正弦定理a sin A =b sin B ,可得a sin 30°=103,所以a =53.(2)因为△ABC 的面积S =12ac ·sin B ,sin B =35,所以310ac =3,ac =10.由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20.所以(a +c )2-2ac =20,(a +c )2=40.所以a +c =210.阅卷报告4——忽视三角形中的边角条件致错【问题诊断】 考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件.,【防范措施】 解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】?(2011·安徽)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a =3,b =2,1+2cos(B +C )=0,求边BC 上的高.错因 忽视三角形中“大边对大角”的定理,产生了增根.实录 由1+2cos(B +C )=0,知cos A =12,∴A =π3,根据正弦定理a sin A =b sin B 得:sin B =b sin A a =22,∴B =π4或3π4.以下解答过程略.正解 ∵在△ABC 中,cos(B +C )=-cos A ,∴1+2cos(B +C )=1-2cos A =0,∴A =π3.在△ABC 中,根据正弦定理a sin A =b sin B ,∴sin B =b sin A a =22.∵a >b ,∴B =π4,∴C =π-(A +B )=512π.∴sin C =sin(B +A )=sin B cos A +cos B sin A =22×12+22×32=6+24.∴BC 边上的高为b sin C =2×6+24=3+12.【试一试】 (2011·辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2 A =2a .(1)求b a ;(2)若c2=b2+3a2,求B.[尝试解答] (1)由正弦定理得,sin2A sin B+sin B cos2A=2sin A,即sin B(sin2A+cos2A)=2sin A.故sin B=2sin A,所以ba= 2.(2)由余弦定理和c2=b2+3a2,得cos B=?1+3?a2c.由(1)知b2=2a2,故c2=(2+3)a2.可得cos2B=12,又cos B>0,故cos B=22,所以B=45°.第7讲正弦定理、余弦定理应用举例【2013年高考会这样考】考查利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题.【复习指导】1.本讲联系生活实例,体会建模过程,掌握运用正弦定理、余弦定理解决实际问题的基本方法.2.加强解三角形及解三角形的实际应用,培养数学建模能力.基础梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.两种情形解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.双基自测数学1618 为您分享 此文档,更多高质量素材尽在数学16181.(人教A 版教材习题改编)如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( ).A .50 2 mB .50 3 mC .25 2 m D.2522m 解析 由正弦定理得AB sin ∠ACB =AC sin B,又∵B =30° ∴AB =AC ·sin ∠ACB sin B =50×2212=502(m). 答案 A2.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( ).A .α>βB .α=βC .α+β=90°D .α+β=180°解析 根据仰角与俯角的定义易知α=β.答案 B3.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ).A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析 如图.答案 B4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ).A .5海里B .53海里C .10海里D .103海里 解析 如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10(海里),在Rt △ABC 中,得AB =5(海里),于是这艘船的速度是50.5=10(海里/时). 答案 C5.海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里.解析 由正弦定理,知BC sin 60°=AB sin?180°-60°-75°?.解得BC =56(海里). 答案 5 6考向一 测量距离问题【例1】?如图所示,为了测量河对岸A ,B 两点间的距离,在这岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC =105°,∠ADC =60°,试求AB 的长.[审题视点] 在△BCD 中,求出BC ,在△ABC 中,求出AB .解 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .∵∠BCD =30°,∠BDC =105°∴∠CBD =45°在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a . 在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a . (1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.【训练1】 如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶,测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.试探究图中B 、D 间距离与另外哪两点间距离相等,然后求B ,D 的距离.解 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1 km.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA .又∵∠ABC =15°在△ABC 中,AB sin ∠BCA =AC sin ∠ABC,所以AB =AC sin 60°sin 15°=32+620(km), 同理,BD =32+620(km). 故B 、D 的距离为32+620km. 考向二 测量高度问题【例2】?如图,山脚下有一小塔AB ,在塔底B 测得山顶C 的仰角为60°,在山顶C 测得塔顶A 的俯角为45°,已知塔高AB =20 m ,求山高CD .[审题视点] 过点C 作CE ∥DB ,延长BA 交CE 于点E ,在△AEC 中建立关系.解如图,设CD =x m ,则AE =x -20 m ,tan 60°=CD BD, ∴BD =CD tan 60°=x 3=33x (m). 在△AEC 中,x -20=33x , 解得x =10(3+3) m .故山高CD 为10(3+3) m.(1)测量高度时,要准确理解仰、俯角的概念;(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形内应用正、余弦定理.【训练2】 如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB .解 在△BCD 中,∠CBD =π-α-β,由正弦定理得BC sin ∠BDC =CD sin ∠CBD,所以BC =CD sin ∠BDC sin ∠CBD =s ·sin βsin?α+β?在Rt △ABC 中,AB =BC tan ∠ACB =s tan θsin βsin?α+β?. 考向三 正、余弦定理在平面几何中的综合应用【例3】?如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB =45°,求BD 的长.[审题视点] 由于AB =5,∠ADB =45°,因此要求BD ,可在△ABD 中,由正弦定理求解,关键是确定∠BAD 的正弦值.在△ABC 中,AB =5,AC =9,∠ACB=30°,因此可用正弦定理求出sin ∠ABC ,再依据∠ABC 与∠BAD 互补确定sin ∠BAD 即可. 解 在△ABC 中,AB =5,AC =9,∠BCA =30°.由正弦定理,得AB sin ∠ACB =AC sin ∠ABC, sin ∠ABC =AC ·sin ∠BCA AB =9sin 30°5=910. ∵AD ∥BC ,∴∠BAD =180°-∠ABC ,于是sin ∠BAD =sin ∠ABC =910. 同理,在△ABD 中,AB =5,sin ∠BAD =910, ∠ADB =45°,由正弦定理:AB sin ∠BDA =BD sin ∠BAD, 解得BD =922.故BD 的长为922. 要利用正、余弦定理解决问题,需将多边形分割成若干个三角形,在分割时,要注意有利于应用正、余弦定理.【训练3】 如图,在△ABC 中,已知∠B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.解 在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°,∴∠ADB =60°. 在△ABD 中,AD =10,∠B =45°,∠ADB =60°,由正弦定理得AB sin ∠ADB =AD sin B, ∴AB =AD ·sin ∠ADB sin B =10sin 60°sin 45°=10×3222=5 6.规范解答9——如何运用解三角形知识解决实际问【问题研究】 ?1?解三角形实际应用问题的一般步骤是:审题——建模?准确地画出图形?——求解——检验作答.,?2?三角形应用题常见的类型:,①实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理解之;,②实际问题经抽象概括后,已知量与未知量涉及两个三角形,这时需按顺序逐步在两个三角形中求出问题的解;,③实际问题经抽象概括后,涉及的三角形只有一个,但由题目已知条件解此三角形需连续使用正弦定理或余弦定理.,【解决方案】 航海、测量问题利用的就是目标在不同时刻的位置数据,这些数据反映在坐标系中就构成了一些三角形,根据这些三角形就可以确定目标在一定的时间内的运动距离,因此解题的关键就是通过这些三角形中的已知数据把测量目标归入到一个可解三角形中.【示例】?(本题满分12分)如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里,当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问:乙船每小时航行多少海里?(1)分清已知条件和未知条件(待求).(2)将问题集中到一个三角形中.(3)利用正、余弦定理求解.[解答示范] 如图,连接A 1B 2由已知A 2B 2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2. 又∠A 1A 2B 2=180°-120°=60°,∴△A 1A 2B 2是等边三角形,∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20,∠B 1A 1B 2=105°-60°=45°,(8分)在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200, ∴B 1B 2=10 2. 因此,乙船的速度为10220×60=302(海里/时).(12分) 利用解三角形知识解决实际问题要注意根据条件画出示意图,结合示意图构造三角形,然后转化为解三角形的问题进行求解.【试一试】 如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,求cos θ.[尝试解答] 如图所示,在△ABC 中,AB =40,AC =20,∠BAC =120°,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800,所以BC =207.由正弦定理,得sin ∠ACB =AB BC ·sin ∠BAC =217. 由∠BAC =120°,知∠ACB 为锐角,故cos ∠ACB =277. 故cos θ=cos(∠ACB +30°)=cos∠ACB cos 30°-sin∠ACB sin 30°=277×32-217×12=2114.。

高中数学 第三章 三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式 3.1.3 二倍角的正弦、

高中数学 第三章 三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式 3.1.3 二倍角的正弦、

3.1.3 二倍角的正弦、余弦、正切公式疱工巧解牛知识•巧学 一、倍角公式1.公式的推导:倍角公式是和角公式的特例,只要在和角公式中令α=β,就可得出相应的倍角公式.sin(α+β)=sinαcosβ+cosαsinβ−−→−=βα令sin2α=2sinαcosα;cos(α+β)=cosαcosβ-sinαsinβ−−→−=βα令cos2α=cos 2α-sin 2α.由于sin 2α+cos 2α=1,显然,把sin 2α=1-cos 2α代入cos2α=cos 2α -sin 2α,得cos2α=cos 2α-sin 2α=cos 2α-(1-cos 2α)=2cos 2α-1. 同理,消去cos 2α,得cos2α=1-2sin 2α. tan(α+β)=αααβαβαβα2tan 1tan 22tan tan tan 1tan tan -=−−→−•-+=令. 综上,我们把公式叫做二倍角公式.2.二倍角公式中角α的范围由任意角的三角函数的定义可知S 2α、C 2α中的角α是任意的,但公式T 2α即tan2α=αα2tan 1tan 2-中的角是有条件限制的. 要使tan2α有意义,需满足1-tan 2α≠0且tanα有意义.当tanα有意义时,α≠2π+kπ(k∈Z );当1-tan 2α≠0,即tanα≠±1时,α≠±4π+kπ(k∈Z ).综上,可知要使T 2α有意义,需α≠±4π+kπ且α≠2π+kπ(k∈Z ).特别地,当α=2π+kπ(k∈Z )时,虽然tanα的值不存在,但tan2α的值是存在的,这时求tan2α的值,可用诱导公式进行,即tan2(2π+kπ)=tan(π+2kπ)=tanπ=0. 学法一得 二倍角的切函数是用单角的切函数表示出来的,它的角α除了使解析式有意义外,还应使函数自身也有意义. 3.倍角公式中的倍角是相对的二倍角公式不仅仅可用于将2α作为α的2倍的情况,对于两个角的比值等于2的情况都成立,如8α是4α的二倍角,4α是2α的二倍角,3α是23α的二倍角,2α是4α的二倍角,3α是6α的二倍角等. 在运用倍角公式对半角的三角函数进行变换时,无论正用还是逆用,都可直接使用这一公式.例6cos6sin23sinααα=,6cos 26sin 6cos 3cos222αααα=-=-1=1-2sin26α;sin3α·cos3α=21 (2sin3αcos3α)=21sin6α;cos 22α-sin 22α=cos4α;ααα3sin 4123cos 23sin 21=;︒-︒35tan 135tan 22=tan70°等. 4.倍角公式的几种变形形式(sinα±cosα)2=1±sin2α;1+cos2α=2cos 2α;1-cos2α=2sin 2α;cos 2α=22cos 1α+;sin 2α=22cos 1α-. 学法一得 我们常把1+co sα=2cos 22α,1-cosα=2sin 22α称为升幂换半角公式,利用该公式消去常数项,便于提取公因式化简三角函数式;把cos 2α=22cos 1α+,sin 2α=22cos 1α-称为降幂换倍角公式,利用该公式能使之降次,便于合并同类项化简三角函数式.倍角公式给出了α的三角函数与2α的三角函数之间的关系.对于该公式不仅要会正用,还应会逆用和变用.5.倍角公式与和角公式的内在联系只有理清公式的来龙去脉及公式的变形形式,才能及时捕捉到有价值的信息,完成问题的解答. 典题•热题知识点一 直接应用倍角公式求值 例1 求下列各式的值:(1)2sin15°sin105°;(2)︒-15sin 731432;(3)︒-︒5.22tan 15.22tan 2;(4)12cos24cos 24sin πππ. 解:(1)原式=2sin15°·sin(90°+15°)=2sin15°cos15°=sin30°=21.(2)原式=143(1-2sin 215°)=143cos30°=283323143=⨯. (3)原式=.2112145tan 215.22tan 15.22tan 2212=⨯=︒=︒-︒•. (4)原式=8121416sin 4112cos 12sin 21=⨯==πππ.方法归纳 倍角公式中的角是相对的,对它应该有广义上的理解,即112cos 2sin22++=n n nααα(n∈N *),12sin 2cos 2cos212+-=+n n nααα(n∈N *),1212tan 12tan 22tan++-=n n nααα (n∈N *).知识点二 利用倍角公式给值求值例2 已知x∈(2π-,0),cosx=54,则tan2x 等于( ) A.247 B.247- C.724 D.724- 思路分析:运用三角函数值在各个象限的符号及倍角公式求解. 解法一:∵x∈(2π-,0),cosx=54, ∴sinx=53)54(1cos 122-=--=--x . 由倍角公式sin2x=2sinxcosx=2524-,cos2x=2cos 2x-1=2×(54)2-1=257. 得tan2x=7242cos 2sin -=x x .解法二:∵x∈(2π-,0),cosx=54,∴sinx=53)54(1cos 122-=--=--x .∴tanx=43cos sin -=x x . ∴tan2x=724)43(1)43(2tan 1tan 222-=---⨯=-xx . 答案:D方法归纳 ①解好选择题的关键在于能否针对题目的特点,选择合理而适当的解法,最忌对任何题目都按部就班地演算求解,小题大做,应力求做到“小题小做”“小题巧做”. ②像这种从题目的条件出发,通过正确地运算推理,得出结论,再与选择肢对照确定选项的方法叫做定量计算法;像这样通过对题干和选择肢的关系进行观察、分析,再运用所学知识,通过逻辑推理作出正确选择的方法叫做定性分析法. 例3 已知sin(4π+α)sin(4π-α)=161,α∈(2π,π),求sin4α的值.思路分析:要求sin4α的值,根据倍角公式可知只需求出sin2α、cos2α的值或sinα、cosα的值即可.由于(4π+α)+(4π-α)=2π,可运用二倍角公式求出cos2α的值. 解:由题设条件得sin(4π+α)sin(4π-α)=sin(4π+α)cos[2π-(4π-α)] =sin(4π+α)cos(4π+α)=21sin(2π+2α)=21cos2α=61,∴cos2α=31.∵α∈(2π,π),∴2α∈(π,2π).又∵cos2α=31>0,∴2α∈(23π,2π).∴sin2α=322)31(12cos 122-=--=--α. ∴sin4α=2sin2α·cos2α=2×92431)322(-=⨯-. 例4 已知cos(4π+x)=53,47127ππ<<x ,求x x x tan 1sin 22sin 2-+的值.思路分析:由于结论中同时含有切、弦函数,所以可先对结论切化弦,化简后不难发现,只需求出sin2x 和tan(4π+x)的值即可,注意到2(4π+x)=2π+2x ,这样通过诱导公式就容易找到sin2x 同cos(4π+x)的关系了. 解:∵47127ππ<<x ,∴πππ2465<+<x .又∵cos(4π+x)=53>0,∴23π<4π+x <2π.∴sin(4π+x)=54)53(1)4(cos 122-=--=+--x π,345354)4cos()4sin()4tan(-=-=++=+x x x πππ.∵sin2x=-cos2(4π+x)=1-2cos 2(4π+x)=25725181=-, ∴原式=x x x x x x x x x x x xx x x sin cos )sin (cos 2sin sin cos cos sin 2cos 2sin cos sin 1sin 22sin 22-+=-•+•=-+7528)34(257)4tan(2sin tan 1tan 12sin -=-⨯=+•=-+•=x x x x x π.例5 在△ABC 中,已知AB=AC=2BC(如图3-1-10),求角A 的正弦值.图3-1-10思路分析:由于所给三角形是等腰三角形,所以可通过底角的三角函数值或顶角一半的三角函数值来求解.解:作AD⊥BC 于点D ,设∠BAD=θ,那么A=2θ.∵BD=21BC=41AB ,∴sinθ=41=AB BD . ∵0<2θ<π,∴0<θ<2π.于是cosθ=415)41(1sin 122=-=-θ. 故sinA=sin2θ=2sinθcosθ=815415412=⨯⨯. 巧解提示:作AD⊥BC 于点D ,∵BD=21BC=41AB,又∵AB=AC, ∴∠B=∠C.∴cosB=cosC=41=AB BD . ∵0<B <2π,∴sinB=415.又∵A+B+C=π,∴A=π-(B+C)=π-2B. ∴sinA=sin(π-2B)=sin2B=2sinBcosB=815414152=⨯⨯. 方法归纳 在△ABC 中,由于A+B+C=π,所以A=π-(B+C),222CB A +-=π.由诱导公式可知:sinA=sin(B+C);cosA=-cos(B+C);tanA=-tan(B+C);2cot2tan ;2sin 2cos ;2cos 2sinC B A C B A C B A +=+=+=. 任意变换A 、B 、C 的位置,以上关系式仍然成立. 例6 已知sin 22α+sin2αcosα-cos2α=1,α∈(0,2π),求sinα、tanα的值. 思路分析:已知是二倍角,所求的结论是单角;已知复杂,结论简单,因此可从化简已知入手,推出求证的结论.解:把倍角公式sin2α=2sinαcosα,cos2α=2cos 2α-1代入已知得 4sin 2αcos 2α+2sinαcos 2α-2cos 2α=0, 即2cos 2α(2sin 2α+sinα-1)=0, 即2cos 2α(2sinα-1)(sinα+1)=0.∵α∈(0,2π),∴sinα+1≠0,cos 2α≠0. ∴2sinα-1=0,即sinα=21.又∵α∈(0,2π),∴α=6π.∴tanα=33.知识点三 利用倍角公式化简三角函数式例7 利用三角公式化简sin50°(1+3tan10°).思路分析:本题给我们的感觉是无从下手,很难看出有什么公式可直接利用.从角的角度去分析,10°、50°除了它们的和60°是特殊角外,别无特点;从函数名称的角度去分析,由于该式子有弦,有切,我们可从化切为弦入手去尝试解决,转化成弦函数.通分后出现asinθ+bcosθ的形式,由于3是一特殊角的三角函数值,可把它拼凑成两角和(差)的正、余弦展开式的形式逆用公式求值.若把50°转化成(60°-10°)从同一角入手,也可以求值. 解:原式=sin(60°-10°)(1+3tan10°)=(23cos10°-21sin10°)(1+3tan10°) =23cos10°+23cos10°tan10°-21sin10°-23sin10°tan10° =23cos10°+sin10°-23sin10°·tan10°=23(cos10°-︒︒10cos 10sin 2)+sin10° =︒︒︒+︒•=︒+︒︒•10cos 10cos 10sin 33220cos 2310sin 10cos 20cos 23 ︒︒+︒••=︒︒+︒•=10cos 20sin 2120cos 233322310cos 20sin 3320cos 23180sin 80sin 10cos 80sin 10cos 20sin 60cos 20cos 60sin =︒︒=︒︒=︒︒︒+︒︒=.巧解提示:原式=︒︒+︒•︒=︒︒+︒10cos )10sin 2310cos 21(250sin )10cos 10sin 31(50sin ︒︒︒+︒︒︒=10cos 10sin 30cos 10cos 30sin 50sin 2110cos 10cos 10cos 80sin 10cos 40sin 40cos 2=︒︒=︒︒=︒︒︒=.方法归纳 对于三角整式,基本思路是降次、消项和逆用公式;对三角分式,基本思路是分子与分母约分或逆用公式;对二次根式,要设法使被开方数升次,通过开方进行化简.另外,还可用切割化弦、变量代换、角度归一等方法.对于形如1±sinα、1±cosα的形式,我们可采取升幂换半角的形式,消去常数项1,通过提取公因式化简有理式或通过开方化简无理式. 例8 求cos20°cos40°cos60°cos80°的值. 解:由于cos60°=21,所以原式=21cos20°cos40°cos80° ︒︒︒︒︒•=20sin 80cos 40cos 20cos 20sin 21 ︒︒︒•=︒︒︒︒•=20sin 80cos 80sin 8120sin 80cos 40cos 40sin 41 16120sin 160sin 161=︒︒•=. 方法归纳 对于可化为cosαcos2αcos4α…cos2n-1α(n∈N 且n>1)的三角函数式,由于它们的角是以2为公比的等比数列,可将分子、分母同乘以最小角的正弦,运用二倍角公式进行化简.巧解提示:此外,本题也可构造一对偶式求解. 设M=cos20°·cos40°·cos60°·cos80°, N=sin20°·sin40°·sin60°·sin80°, 则MN=161sin40°·sin80°·sin120°·sin160° =161sin20°·sin40°·sin60°·sin80° =161N ,∴M=161,即cos20°·cos40°·cos60°·cos80°=161. 知识点四 利用倍角公式证明三角恒等式例9 求证:θθθθθθ2tan 14cos 4sin 1tan 24cos 4sin 1-++=-+. 证明:原式等价于1+sin4θ-cos4θ=αθ2tan 1tan 2-(1+sin4θ+cos4θ), 即1+sin4θ-cos4θ=tan2θ(1+sin4θ+cos4θ). ① 而①式右边=tan 2θ(1+cos4θ+sin4θ)=θθ2cos 2sin(2cos 22θ+2sin2θcos2θ)=2sin2θcos2θ+2sin 22θ =sin4θ+1-cos4θ=左边.所以①式成立,原式得证. 例10 求证:︒=︒-︒10sin 3240cos 140sin 322. 思路分析:由于分母是三角函数值平方的形式,通分后转化成3cos 240°-sin 240°,按平方差公式展开得(3cos40°+sin40°)(3cos40°-sin40°),恰好是两个辅助角公式的形式,可运用三角函数的和差公式求值;此外,也可对它的分母降幂换倍角进行化简. 证明:左边=︒•︒︒-︒︒+︒=︒︒︒-︒40cos 40sin )40sin 40cos 3)(40sin 40cos 3(40cos 40sin 40sin 40cos 32222222)40cos 40sin 2()40sin 2140cos 23(2)40sin 2140cos 23(24︒︒︒-︒⨯︒+︒⨯=︒︒︒-︒︒︒︒+︒︒=80sin )40sin 60cos 40cos 60)(sin 40sin 60cos 40cos 60(sin 162︒︒-︒︒+︒=80sin )4060sin()4060sin(162 ︒=︒︒︒⨯=︒︒=︒︒︒=10sin 3210cos 10cos 10sin 21680sin 20sin 1680sin 20sin 100sin 162=右边, 所以原式成立.方法归纳 对于三角函数式的化简、求值和证明,可从角的角度、运算的角度或函数名称的角度去考虑,其中通过通分,提取公因式、约分、合并同类项等运算的手法去化简是非常必要的.例11 已知3sin 2α+2sin 2β=1,3sin2α-2sin2β=0,求证:cos(α+2β)=0.思路分析:从求证的结论看,cos(α+2β)的展开式中含有cosα、cos2β、sinα、sin2β这样的函数值.由已知条件结合倍角公式的特点,恰好能转化出cos2β、sin2β这样的函数值.证明:由3sin 2α+2sin 2β=1,得1-2sin 2β=3sin 2α,∴cos2β=3sin 2α. 又∵sin2β=23sin2α, ∴cos(α+2β)=cosαcos2β-sinαsin2β=cosα·3sin 2α-sinα·23sin2α=23sinαsin 2α-23sinαsin2α=0.方法归纳 首先观察条件与结论的差异,从解决某一差异入手.确定从结论开始,通过变换将已知条件代入得出结论;或通过变换已知条件得出结论;或同时将条件与结论变形,直到找到它们间的联系.如果上述方法都难奏效的话,可采用分析法;如果已知条件含有参数,可采用消去参数法;如果已知条件是连比的式子,可采用换元法,等等. 问题•探究 材料信息探究问题 倍角和半角公式:sinα=2tan12tan22αα+,cosα=2tan12tan 122αα+-,tanα=2tan12tan 22αα-,这组公式称为“万能公式”,那么“万能公式”是怎样来的?它真的是“万能”的吗?探究过程:万能公式是一组用tan2α来表示sinα、cosα和tanα的关系式. 这组公式可以利用二倍角公式推导,其中正切tanα=2tan 12tan22αα-,可以由倍角公式直接获得;正弦、余弦只要在倍角公式中添加分母,再分子、分母同除以cos 22α可得: 2tan 12tan22cos 2sin 2cos 2sin 22cos 2sin 2sin 222ααααααααα+=+==, 2tan 12tan 12cos 2sin 2sin 2cos 2sin 2cos cos 22222222ααααααααα+-=+-=-=. 这组“万能公式”为一类三角函数的求值提供了一座方便可行的桥梁,如要计算cosα或sin(α+β)的值,可以先设法求得tan2α或2tan βα+的值.由于公式中涉及角的正切,所以使用时要注意限制条件,即要保证式子有意义.探究结论:所谓的“万能”,是说不论角α的哪一种三角函数,都可以表示成tan 2α的有理式,这样就可以把问题转化为以tan 2α为变量的“一元有理函数”,即如果令tan 2α=t ,则sinα、cosα和tanα均可表达为关于t 的分式函数,这就实现了三角问题向代数问题的转化,为三角问题用代数方法求解提供了一条途径.如tan15°+cot15°=tan15°+=︒+︒=︒15tan 115tan 15tan 12430sin 2115tan 15tan 222=︒=+︒︒,就较方便的解决了问题.再如求函数2sin cos +=x x y 的值域.令t x =2tan ,则t∈R ,利用万能公式有sinx=212t t +,cosx=2211t t +-,所以=+++-=21211222tt t t y 222221t t t ++-,由此可以建立关于t 的一次或二次函数(2y+1)t 2+2yt+2y-1=0,进一步分类讨论可得函数的值域.。

《三角恒等变换与正余弦定理》提高篇 复习卷带答案 教师版

《三角恒等变换与正余弦定理》提高篇 复习卷带答案 教师版

《三角恒等变换与正余弦定理》提高篇复习卷一、单选题(共15题;共30分)1.若=2,则sin(α﹣5π)•sin(﹣α)等于()A. B. C. D. -【答案】B【解析】【解答】由题意知,=2,分子和分母同除以cosα得,=2,解得tanα=3,∵sin(α﹣5π)•sin(﹣α)=﹣sinα•(﹣cosα)=sinαcosα=故选B.【分析】利用商的关系先对所给的齐次式,分子和分母同除以cosα进行转化,求出正切值,再根据诱导公式对所求的式子进行化简,再由商的关系转化为正切的式子,把求出的正切值代入进行求解。

2. 的值为()A. B. C. D. 1【答案】A【解析】【分析】选A。

【点评】二倍角的正弦公式在解题中经常用到,要准确掌握、灵活应用.3.已知sin(x+)=,则cosx+cos(﹣x)的值为()A. -B.C. -D.【答案】B【解析】【解答】解:cosx+cos(﹣x)=cosx+cosx+sinx=cosx+sinx=sin(x+)=,故选:B.【分析】根据两角和差的余弦公式和正弦公式计算即可.4.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于()A. 30(+1)mB. 120(-1)mC. 180(-1)mD. 240(-1)m【答案】B【解析】【解答】解: 如图,∠DAB=15°,∵tan15°=tan(45°﹣30°)=.在Rt△ADB中,又AD=60,∴DB=AD•tan15°=60×(2﹣)=120﹣60.在Rt△ADC中,∠DAC=60°,AD=60,∴DC=AD•tan60°=60.∴BC=DC﹣DB=60﹣(120﹣60)=120(﹣1)(m).∴河流的宽度BC等于120(﹣1)m.故选:B.【分析】由题意画出图形,由两角差的正切求出15°的正切值,然后通过求解两个直角三角形得到DC和DB的长度,作差后可得答案.5.三角形的两边长分别为3和5,其夹角的余弦值是方程的根,则该三角形的面积为A. 6B.C. 8D. 10【答案】A【解析】【解答】由5x2-7x-6=0,可得x=2或x= ,则cos = ,所以sin = ,则该三角形的面积S= ×3×5× =6.故答案为:A.【分析】由方程的根得到角的余弦值,由面各公式求面积.6.在锐角三角形△ABC中,a,b,c分别是角A,B,C的对边,(a+b+c)(a+c﹣b)= ,则cosA+sinC的取值范围为()A. B. C. D.【答案】B【解析】【解答】解:由:(a+b+c)(a+c﹣b)= ,可得:,根据余弦定理得:,∵B是锐角,∴.∴,即,= ,又△ABC是锐角三角形,∴,即,∴,∴,∴.故选:B.【分析】由已知利用余弦定理可求cosB,结合B是锐角,可求B,进而可得,利用三角函数恒等变换的应用化简可求cosA+sinC= ,由已知可求范围,利用正弦函数的图象和性质即可计算得解.7.设函数,且其图像关于轴对称,则函数的一个单调递减区间是()A. B. C. D.【答案】C【解析】解答:函数,图像关于轴对称,必有所以:,又因为:,所以当时,,所以,所以单调递减区间:由解得:,所以的单调递减区间是:,当时,单调递减区间是:,显然C正确.分析:由题首先观察所给三角函数式子,运用差角公式化简,然后利用其关于y轴对称结合三角函数性质得到,然后运用整体方法得到函数的单调区间.8.如图所示,,,三点在地面上的同一直线上,,从两点测得点的仰角分别为,,则点离地面的高为()A. B. C. D.【答案】A【解析】【解答】在△ACD中,根据正弦定理得,,所以.在△ABD 中,.故答案为:A.【分析】结合条件由正弦定理求解.9.已知tan100°=K,则cos10°=()A. B. C. D.【答案】D【解析】解答:由tan100°=tan(90°+10°)=﹣cot10°=K,则cot10°=﹣K,且K<0,所以sin10°= = ,则cos10°= = =﹣.故选D分析:利用诱导公式,由已知tan100°的值求出cot10°的值,且判断出K为负数,然后利用同角三角函数间的基本关系先求出sin10°的值,进而求出cos10°的值.10.已知sin2A=,A∈(0,π),则sinA+cosA=()A. B. - C. D. -【答案】A【解析】【解答】由sin2A=2sinAcosA= >0,又A∈(0,π).所以A∈(0,),所以sinA+cosA>0又(sinA+cosA)2=1+2sinAcosA=故选A.【分析】根据sin2A=2sinAcosA,A∈(0,π),可确定角A的范围,再对sinA+cosA进行平方可得答案.11.已知sin=,0<x<,则的值为()A. B. C. D.【答案】 D【解析】【解答】∵0<x<∴sin[ ﹣(+x)]=cos(+x)=∴=故选D.【分析】首先利用诱导公式化简sin[ ﹣(+x)]=cos(+x),即可求出结果.12.在锐角三角形中, , , 分别是角, , 的对边, = ,则的取值范围为( )A. B. C. D.【答案】B【解析】【解答】解:由得,即,∴,∴,从而,∴=cosA+sinA=sin(A+)又,∴,∴,,∴.故答案为:B.【分析】对题目所给条件整理化简,即可知,在三角形中A+B+C=,利用正弦函数的两角和公式表示出来,根据题意确定的取值范围,利用正弦函数的基本性质,即可得出答案。

高三数学余弦定理试题答案及解析

高三数学余弦定理试题答案及解析

高三数学余弦定理试题答案及解析1.在中,内角所对的边分别是.已知,,则的值为 .【答案】.【解析】∵,由正弦定理可知,,又∵,∴,∴.【考点】正余弦定理解三角形.2.在△ABC中,角A,B,C所对的边分别为a,b,c,已知cos C+(cos A-sin A)cos B=0.(1)求角B的大小;(2)若a+c=1,求b的取值范围.【答案】(1)(2)≤b<1【解析】(1)由已知得-cos(A+B)+cos Acos B-sin A cos B=0,即有sin Asin B-sin Acos B=0.因为sin A≠0,所以sin B-cos B=0.又cos B≠0,所以tan B=.又0<B<π,所以B=.(2)由余弦定理,有b2=a2+c2-2accos B.因为a+c=1,cos B=,有b2=32+.又0<a<1,于是有≤b2<1,即有≤b<1.3.在中,内角A,B,C所对应的边分别为,若则的面积()A.3B.C.D.【答案】C【解析】因为所以由余弦定理得:,即,因此的面积为选C.【考点】余弦定理4.(12分)(2011•陕西)叙述并证明余弦定理.【答案】见解析【解析】先利用数学语言准确叙述出余弦定理的内容,并画出图形,写出已知与求证,然后开始证明.方法一:采用向量法证明,由a的平方等于的平方,利用向量的三角形法则,由﹣表示出,然后利用平面向量的数量积的运算法则化简后,即可得到a2=b2+c2﹣2bccosA,同理可证b2=c2+a2﹣2cacosB,c2=a2+b2﹣2abcosC;方法二:采用坐标法证明,方法是以A为原点,AB所在的直线为x轴建立平面直角坐标系,表示出点C和点B的坐标,利用两点间的距离公式表示出|BC|的平方,化简后即可得到a2=b2+c2﹣2bccosA,同理可证b2=c2+a2﹣2cacosB,c2=a2+b2﹣2abcosC.解:余弦定理:三角形任何一边的平方等于其他两遍平方的和减去这两边与它们夹角的余弦之积的两倍;或在△ABC中,a,b,c为A,B,C的对边,有a2=b2+c2﹣2bccosA,b2=c2+a2﹣2cacosB,c2=a2+b2﹣2abcosC.证法一:如图,====b2﹣2bccosA+c2即a2=b2+c2﹣2bccosA同理可证b2=c2+a2﹣2cacosB,c2=a2+b2﹣2abcosC;证法二:已知△ABC中A,B,C所对边分别为a,b,c,以A为原点,AB所在直线为x轴建立直角坐标系,则C(bcosA,bsinA),B(c,0),∴a2=|BC|2=(bcosA﹣c)2+(bsinA)2=b2cos2A﹣2bccosA+c2+b2sin2A=b2+c2﹣2bccosA,同理可证b2=a2+c2﹣2accosB,c2=a2+b2﹣2abcosC.点评:此题考查学生会利用向量法和坐标法证明余弦定理,以及对命题形式出现的证明题,要写出已知求证再进行证明,是一道基础题.5.如图所示,位于东海某岛的雷达观测站A,发现其北偏东,与观测站A距离海里的B处有一货船正匀速直线行驶,半小时后,又测得该货船位于观测站A东偏北的C处,且,已知A、C两处的距离为10海里,则该货船的船速为海里/小时___________.【答案】【解析】由已知,所以,,由余弦定理得,,故(海里),该货船的船速为海里/小时.【考点】三角函数同角公式,两角和与差的三角函数,余弦定理的应用.6.△各角的对应边分别为,满足,则角的范围是( )A.B.C.D.【答案】A【解析】由得:,化简得:,同除以得,,即,所以,故选.【考点】余弦定理.7.在△ABC中,内角A,B,C所对的边分别是a,b,c,若a=4,A=,则该三角形面积的最大值是( )A.2B.3C.4D.4【答案】C【解析】由余弦定理得:a2=b2+c2-2bccosA=b2+c2-bc≥2bc-bc=bc bc≤16,∴S=bcsinA≤×16×sin=4.8.在中,角,,所对的边分别为为,,,且(1)求角;(2)若,,求,的值.【答案】(1);(2)【解析】(1)将已知利用正弦二倍角公式展开,因为,约去,得的值,进而求;(2)已知三角形的面积和,不难想到,得,又根据余弦定理得,联立求即可.试题解析:(1)由已知,∴,∵,∴,∴.(2)由余弦定理,又, 10分由解得 13分【考点】1、正弦二倍角公式;2、三角形面积公式;3、余弦定理.9.已知外接圆的半径为,且.,从圆内随机取一个点,若点取自内的概率恰为,则的形状为( )A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形【答案】B【解析】由题意得所以.在三角形AOB中,由于,所以由余弦定理得,即,所以,的形状为等边三角形.【考点】几何概型概率,余弦定理10.在△ABC中,角A,B,C的对边分别为a,b,c.已知(1)求角A的大小;(2)若,△ABC的面积为,求.【答案】(1);(2)【解析】(1)三角恒等变换是以三角基本关系式,诱导公式,和、差、倍角等公式为基础的,三角变换的常见策略有:(1)发现差异;(2)寻找联系;(3)合理转化、概括.由题知,将展开,得,移项合并得,注意到,可求,进而求角A的大小;(2)由(1)知,结合△ABC的面积为,不难想到①,得关系;又根据,利用余弦定理得②,联立求.试题解析:(1)∵,∴可得,∴. 4分∵,可得.∴. 7分=∴,解得bc=8.① 10分(2)由(1)得.∵S△ABC由余弦定理,得, 12分即.②将①代入②,可得. 14分【考点】1、两角差的余弦公式;2、诱导公式;3、余弦定理.11.已知△ABC的角A、B、C所对的边分别是a、b、c,设向量m=(a,b),n=(sinB,sinA),p=(b-2,a-2).(1)若m∥n,求证:△ABC为等腰三角形;(2)若m⊥p,边长c=2,角C=,求△ABC的面积.【答案】(1)见解析(2)【解析】(1)证明:∵m∥n,∴asinA=bsinB,即a·=b·,其中R是△ABC外接圆半径,∴a=b.∴△ABC为等腰三角形.(2)解:由题意可知m·p=0,即a(b-2)+b(a-2)=0.∴a+b=ab.由余弦定理可知,4=a2+b2-ab=(a+b)2-3ab,即(ab)2-3ab-4=0,∴ab=4(舍去ab=-1),∴S=absinC=×4×sin=.12.△ABC中,角A,B,C所对的边分别为a,b,c,若C=,3a=2c=6,则b的值为( ) A.B.C.-1D.1+【答案】D【解析】因为3a=2c=6,所以a=2,c=3,由余弦定理知cos C=,即cos===,得b=1+.13.如果一个钝角三角形的边长是三个连续自然数,那么最长边的长度为()A.3B.4C.6D.7【答案】B【解析】设出三边的长度,然后由余弦定理,使其最长边所对的角的余弦值小于0即可得到边长的取值范围,再结合边长是自然数得到解.设三角形的三边长分别为n-1,n,n+1(n>1),则n+1对的角θ为钝角,由余弦定理得cosθ= ,所以(n-1)2+n2<(n+1)2,解得0<n<4,所以n=2,3.当n=2时,三边长为1,2,3,1+2=3,不符合题意.当n=3时,三边长为2,3,4,符合题意.故最长边的长度为4.14.已知函数的图像经过点.(1)求的值;(2)在中,、、所对的边分别为、、,若,且.求.【答案】(1)(2)sinB=【解析】(1)f(x)的图像经过点,带入函数得到关于的三角等式,再利用常见三角函数值与的范围即可求出的值.(2)利用三角形关于C角的余弦定理与题目已知式子结合即可得出C角的余弦值,进而得到C角的正弦值(三角形内角的正弦值都为正数),再把带入函数解析式即可得到A角的余弦,利用余弦与正弦的关系得到A角的正弦值,而三角形三个角和为180度,则B角的正弦利用和差角公式即可用A,C两个角的正余弦值来表示,进而得到B角的余弦值.试题解析:(1)由题意可得,即. 2分,,,. 5分(2),, 7分. 8分由(1)知,.,, 10分又,. 12分【考点】三角函数的图象与性质,三角恒等变换余弦定理15.在△ABC中,AB=5,AC=3,BC=7,则∠BAC=( )A.B.C.D.【答案】C【解析】由余弦定理有:.所以.【考点】余弦定理.16.在△ABC中,AB=2,AC=3,BC=4,则角A,B,C中最大角的余弦值为________.【答案】-【解析】根据三角形的性质:大边对大角,由此可知角A最大,由余弦定理得cos A==-17.已知的重心为G,内角A,B,C的对边分别为a,b,c,若,则角A为()A.B.C.D.【答案】A【解析】∵,∴,∴,∴,∴,∴.【考点】1.向量的运算;2.余弦定理.18.在△ABC中,∠ACB=60°,sin A∶sin B=8∶5,则以A,B为焦点且过点C的椭圆的离心率为________.【答案】【解析】设BC=m,AC=n,则=,m+n=2a,(2c)2=m2+n2-2mn cos 60°,先求得m=a,n=a,代入得4c2=a2,e=.19.已知锐角△ABC的内角A,B,C的对边分别为a,b,c,且23cos2A+cos 2A=0,a=7,c=6,则b=________.【答案】5【解析】由23cos2A+cos 2A=23cos2A+2cos2A-1=0,∴cos2A=,则cos A=.由a2=b2+c2-2bc cos A,得:72=b2+62-12b×,解之得b=5(舍去负值).20.在△ABC中,AB=2,AC=3,BC=4,则角A,B,C中最大角的余弦值为().A.-B.-C.D.【答案】A【解析】根据三角形的性质:大边对大角,由此可知角A最大,由余弦定理得cos A===-.21.在△中,,,,则△的面积等于()A.B.C.或D.或【答案】D【解析】由余弦定理,代入各值整理可得,解得,三角形面积,所以面积为或【考点】1.余弦定理;2.三角形的面积公式。

高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析1.已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是()A.B.C.D.【答案】A【解析】原函数在轴左侧是一段正弦型函数图象,在轴右侧是一条对数函数的图象,要使得图象上关于轴对称的点至少有对,可将左侧的图象对称到轴右侧,即,应该与原来轴右侧的图象至少有个公共点如图,不能满足条件,只有此时,只需在时,的纵坐标大于,即,得.【考点】分段函数,函数图象,正弦型函数,对数函数2.若,则函数的最大值是___________.【答案】【解析】由题意因为,所以,所以函数的最大值是.【考点】求最大值.3.已知,,则下列不等式一定成立的是A.B.C.D.【答案】D【解析】,【考点】三角函数的性质4.若,且为第二象限角,则()A.B.C.D.【答案】B【解析】由得又为第二象限角,所以,选B.【考点】两角差余弦公式5.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.-2D.【答案】C【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选C.【考点】三角函数的性质.6.设的最小值为,则.【答案】【解析】,根据题意,结合二次函数在某个区间上的最值问题,对参数进行讨论,当时,其最小值为,所以不合题意,当时,其最小值为,解得,当时,其最小值为,无解,所以.【考点】倍角公式,二次函数在给定区间上的最值问题.7.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.D.-2【答案】D【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选D.【考点】三角函数的性质.8.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x【答案】D【解析】因为A项为非奇非偶函数,B项是奇函数,C项是奇函数,只有D项是符合题意的,故选D.【考点】诱导公式,倍角公式,三角函数的奇偶性和周期.9.函数的最大值为.【答案】【解析】解析式表示过的直线的斜率,由几何意义,即过定点(4,3)与单位圆相切时的切线斜率为最值.所以设切线得斜率为k,则直线方程为,即 ,【考点】三角函数最值【方法点睛】本题主要考查三角函数最值问题及转化的思想,解决问题的根据是根据所给函数式子转化为直线与圆的位置关系问题,即将所给式子看做定点与单位圆上点的连线的斜率的范围问题,通过模型转化使问题定点巧妙解决,属于经典试题.10.(本题满分12分)如图,在中,边上的中线长为3,且,.(1)求的值;(2)求边的长.【答案】(1)(2)4【解析】(1)利用角的关系,再结合两角差正弦公式展开就可求解(2)先在三角形ABD中,由正弦定理解出BD长,即CD长:由正弦定理,得,即,解得…故;再在三角形ADC中由余弦定理解出AC:;AC= 4试题解析:(1)(2)在中,由正弦定理,得,即,解得…故,从而在中,由余弦定理,得;AC= 4 ;【考点】正余弦定理11.中,,则的最大值为.【答案】【解析】设,由余弦定理的推论,所以,设,代入上式得,,故,当时,此时,符合题意,因此最大值为,故答案为:.【考点】解三角形.【思路点睛】首先假设,然后再根据余弦定理的推论,可得,找到与的关系,再设,代入上式得,利用根的判别式,进而求出结果.本题的关键是利用余弦定理的推论.12.已知函数的部分图象如图所示.(1)求函数的解析式;(2)若,求函数在区间上的单调减区间.【答案】(1);(2),.【解析】(1)由图象中的最高点和最低点的纵坐标得到关于的方程组求得,再利用图象得到函数的周期,进而得到值,最后代入最低点坐标或最高点坐标结合的范围求出,即得到函数的解析式;(2)先求出,利用两角和差的正弦公式将其化为的形式,再利用整体思想求其单调递减区间.试题解析:(1)由图知,解得,又,所以,所以,将点代入,得,再由,得,所以;(2)因为由,解得;又,故所求的单调减区间为,.【考点】1.三角函数的图象与性质;2.三角恒等变形.13.已知角的终边经过点(-4,3),则= ,= ;【答案】;【解析】由题意可得.【考点】任意角三角函数的定义.14.在△ABC中,a、b、c分别是角A、B、C的对边,且.(Ⅰ)求角B的大小;(Ⅱ)若,求△ABC的面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)在解三角形的背景下,考查正弦定理,余弦定理,知值求值.(Ⅱ)综合余弦定理,求三角形的面积公式,需要把作为整体求之.试题解析:(Ⅰ)由正弦定理得将上式代入已知即,即.∵∵∵B为三角形的内角,∴.(Ⅱ)由余弦定理得,结合,可得,所以△ABC的面积.【考点】正弦定理,余弦定理,三角形的面积公式.15.在△中,角,,所对的边分别为,,,表示△的面积,若,,则.【答案】【解析】∵,∴,∴,∴,.∵,∴,∴,∴,∴.【考点】解三角形.【思路点睛】先利用余弦定理和三角形的面积公式可得,可得,再用正弦定理把中的边换成角的正弦,利用两角和公式化简整理可求得,最后根据三角形内角和,进而求得.16.中,角A,B,C的对边分别为a,b,c,若的面积,则 .【答案】【解析】由余弦定理,,又,,,即,,.【考点】1、余弦定理;2、同角三角函数的基本关系;3、三角形面积公式.【思路点睛】本题主要考查的是余弦定理、同角三角函数基本关系、三角形的面积公式,属于容易题.因为题目求,且的面积,边的平方的形式一般想到余弦定理,面积展开后利用余弦定理即可求得与的关系,从而利用同角三角函数的基本关系求得.17.(2012•安徽)设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.(Ⅰ)求角A的大小;(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据2sinBcosA=sinAcosC+cosAsinC,可得2sinBcosA=sin(A+C),从而可得2sinBcosA=sinB,由此可求求角A的大小;(Ⅱ)利用b=2,c=1,A=,可求a的值,进而可求B=,利用D为BC的中点,可求AD的长.解:(Ⅰ)∵2sinBcosA=sinAcosC+cosAsinC∴2sinBcosA=sin(A+C)∵A+C=π﹣B∴sin(A+C)=sinB>0∴2sinBcosA=sinB∴cosA=∵A∈(0,π)∴A=;(Ⅱ)∵b=2,c=1,A=∴a2=b2+c2﹣2bccosA=3∴b2=a2+c2∴B=∵D为BC的中点,∴AD=.【考点】余弦定理;三角函数的恒等变换及化简求值.18.在中,已知.(Ⅰ)求sinA与角B的值;(Ⅱ)若角A,B,C的对边分别为的值.【答案】(Ⅰ);(Ⅱ),.【解析】(I)给出了关于角的两个三角函数值,利用诱导公式和同角三角函数的基本关系式可求得其正弦、余弦,再根据三角形的性质可求得的值;(II)在第一问的基础上,利用正弦定理可求得边,再由余弦定理求边,注意利用三角形基本性质舍解.试题解析:(Ⅰ)∵,,又∵,.∵,且,.(Ⅱ)由正弦定理得,,另由得,解得或(舍去),,.【考点】三角函数的诱导公式,同角三角函数的基本关系式及利用正、余弦定理在解三角形.19.已知,则的值为.【答案】.【解析】,故填:.【考点】三角恒等变形.20.在中,角A,B,C的对边分别为,,,若,则角的值为()A.或B.或C.D.【答案】A.【解析】,,∴或,故选A.【考点】余弦定理.【思路点睛】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.21.为了得到函数的图象,只需把函数图象上的所有点()A.横坐标缩短到原来的倍,纵坐标不变B.横坐标伸长到原来的2倍,纵坐标不变C.纵坐标缩短到原来的倍,横坐标不变D.纵坐标缩短到原来的2倍,横坐标不变【答案】A【解析】这是一个三角函数的图象变换问题,一般的为了得到函数的图象,只需把函数的图象上所有点的横坐标伸长()或缩短()到原来的倍(纵坐标不变)即可,因此为了得到函数的图象,只需把函数图象上的所有点横坐标缩短到原来的倍,纵坐标不变,故选A.【考点】三角函数的图象变换.【方法点睛】本题是一个三角函数的图象变换问题,属于容易题.一般的要得到函数(其中)的图像可按以下步骤进行:先把的图象向左()或向右()平移个单位,再将所得函数的图象上各点的横坐标扩大()或缩小()为原来的(纵坐标不变),再把所得函数图象上各点的纵坐标扩大()或缩小()为原来的倍(横坐标不变),最后再将所得图像向上()或向下()平移个单位,即可得到函数的图象.22.如图,在中,,,点在边上,且,.(I)求;(II)求的长.【答案】(Ⅰ);(Ⅱ),.【解析】(Ⅰ)由图可知,所以,又,所以,再由两角差的正弦公式可求得;(Ⅱ)由题意可用正弦定理、余弦定理即可求出、的长,在中,有,又从而可求得;在中,由余弦定理得,,从而可求出.试题解析:(Ⅰ)在中,因为,所以,所以(Ⅱ)在中,由正弦定理得,在中,由余弦定理得,所以【考点】1.解三角形;2.两角差的正弦公式.23.设的内角对边分别为,已知,且.(1)求角的大小;(2)若向量与共线,求的值.【答案】(1);(2)。

第8讲 三角恒等变换与正余弦定理

第8讲 三角恒等变换与正余弦定理

1 sin(3α-β)=sin(2α+α-β)=cos(α-β)= ,故选 2
B.
3.若 α∈(0,π),且 3sin α+2cos α=2,则
������ π tan 2 3 3 A.9 3 C. 6
[答案] B
[解析] 因为 3sin α+2cos α=2, 所以 3sin α=2(1-cos α), 即2 因为
������ ������ 2������ 3sin cos =4sin . 2 2 2 ������ π α∈(0,π),所以 ∈ 0, 2 2 ������ ������ sin 2 3 2
������ cos 2
=(
)
3 B.5
D. 3
,所以
������ sin >0, 2
所以 tan = 则 tan
2 2 2
=32,所以
AB=4 2.
则△ ABC 的面积为
.
2.(1)[2018· 全国卷Ⅱ] 在△ ABC
������ 5 中,cos = ,BC=1,AC=5,则 2 5
(2)由 b +c -a =8 得 2bccos A=8,可知 A
2 2 2
AB=(
)
为锐角,且 bccos A=4.由已知及正弦定 理得 sin Bsin C+sin Csin B=4sin Asin Bsin C,因为 sin B≠0,sin C≠0,所以可得
=
1 +1 6 1 1- ×1 6
命题角度 利用恒等变换求值 (1)活用三角函数的定义; (2)注意两角和与差公式、二倍角公式的使用.
2.(1)[2018· 全国卷Ⅱ] 在△ ABC
������ 5 中,cos = ,BC=1,AC=5,则 2 5

高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析1.已知中,那么角=【答案】π/4【解析】略2.已知f(α)=(1)化简f(α);(2)若α是第三象限角,且cos(α-)=,求f(α)的值.【答案】(1)f(α)==-cosα.(2)∵α是第三象限角,且cos(α-)=-sinα=,∴sinα=-,∴cosα=-=-,∴f(α)=-cosα=.【解析】略3.已知函数为奇函数,且,其中(1)求的值;(2)若,求的值.【答案】(1) , ;(2)【解析】(1)由为奇函数,可得,函数化为,又根据可求;(2)由(1)可得,由得又因为,所以,再根据两角和的正弦可求试题解析:因为为奇函数,所以,,则(2),因为,即又因为,所以,【考点】函数的奇偶性,三角函数的性质4.设命题函数是奇函数;命题函数的图象关于直线对称.则下列判断正确的是()A.为真B.为假C.为假D.为真【答案】C【解析】因为是偶函数,所以命题是假命题,由余弦函数的性质可知命题是假命题,选项C正确.【考点】1.三角函数性质;2.逻辑联结词与命题.5.(本小题满分12分)某同学用五点法画函数在某一个周期内的图像时,列表并填入了部分数据,如下表:5-5(1)请将上表数据补充完整,并直接写出函数的解析式;(2)若函数的图像向左平移个单位后对应的函数为,求的图像离原点最近的对称中心.【答案】(1);(2).【解析】第一问结合三角函数的性质,确定出对应的值,完善表格,从而确定出函数解析式,第二问利用图形的平移变换,将函数的解析式求出来,利用函数的性质,找出函数图像的对称中心,给赋值,比较从而确定出离原点最近的对称中心.试题解析:(1)根据表中已知数据,解得数据补全如下表:050-50函数表达式为(2)函数图像向左平移个单位后对应的函数是,其对称中心的横坐标满足,所以离原点最近的对称中心是.【考点】三角函数的性质,图像的变换.6.(本小题满分10分)已知函数.(1)求的最小正周期;(2)设,求的值域和单调递减区间.【答案】(1);(2)【解析】(1)先根据二倍角公式和两角和与差的公式进行化简,再求出周期即可;(2)先根据x的范围求得,再结合正弦函数的性质可得到函数f(x)的值域,求得单调递减区间.试题解析:(1)(2)∵,,的值域为.的递减区间为.【考点】三角函数的周期性及其求法;正弦函数的定义域和值域;正弦函数的单调性7.(本小题满分12分)在中,角的对边分别为,已知,向量,且∥.(1)求角的大小;(2)若成等差数列,求边的大小.【答案】(1);(2)【解析】(1)利用数量积运算、正弦定理即可得出;(2)由成等差数列,可得,或,即2a=b.再利用直角三角形的边角关系、余弦定理即可得出.试题解析:(1)∥,得,由正弦定理可得,(2)成等差,所以化简整理得:即或得或若若【考点】正弦定理;平面向量数量积运算8.在中,角所对的边为.已知,且.(1)求的值;(2)当时,求的面积.【答案】(1);(2).【解析】(1)根据已知条件中的式子,结合正弦定理,将其化为的方程,即可求解;(2)利用已知条件,结合余弦定理,可求得,的值,再利用三角形面积计算公式即可求得的值.试题解析:(1)∵,∴①,又∵,∴②,联立①②,即可求得,;(2)由(1)结合余弦定理可知,或,由已知易得,∴,∴,.【考点】1.正余弦定理解三角形;2.三角恒等变形.9.(本题满分12分)已知,,函数.(1)求的最小正周期,并求其图像对称中心的坐标;(2)当时,求函数的值域.【答案】(1)的最小正周期为,其对称中心的坐标为()();(2)的值域为.【解析】(1)先用降幂公式和辅助角公式,将进行化简整理得到,然后根据正弦函数的周期公式可得函数的最小正周期,进而求出函数的零点,即为函数的图像对称中心的坐标;(2)根据可得到,最后结合正弦函数的图像与性质可得函数的值域.试题解析:(1)因为=,所以的最小正周期为,令,得,∴故所求对称中心的坐标为()().(2)∵,∴,∴,即的值域为.【考点】1、三角函数中的恒等变换;2、三角函数的周期性及其求法;3、正弦函数的图像及其性质.【方法点晴】本题考查了三角函数中的恒等变换、三角函数的周期性及其求法和正弦函数的图像及其性质,重点考查学生对三角函数的基本概念、基本性质和基本原理,属中档题.解决这类问题最关键的一步是运用降幂公式、倍角公式及三角函数的和差公式等将函数的表达式化简为同角的正弦或余弦形式.因此需要大家应熟练掌握相关公式并结合三角函数的图像及其性质进行求解.10.若函数在上单调递减,且在上的最大值为,则的值为()A.B.C.D.【答案】A【解析】由题意得:,解得,选A.【考点】正切函数性质11.(本小题满分12分)已知向量,.(1)当时,求的值;(2)设函数,已知在中,内角、、的对边分别为、、,若,,,求当时,的取值范围.【答案】(1);(2).【解析】(1)平方关系和商数关系式中的角都是同一个角,且商数关系式中,利用,得出,把转化为的式子,从而求解;(2)熟悉三角公式的整体结构,灵活变换,要熟悉三角公式的代数结构,更要掌握公式中角和函数名称的特征,要体会公式间的联系,掌握常见的公式变形,倍角公式应用是重点,涉及倍角或半角的都可以利用倍角公式及其变形,把形如化为,研究函数的性质由的取值范围确定的取值范围,再确定的取值范围.试题解析:(1),,,(2)由正弦定理得,得或,,因此,,即.【考点】1、同角三角函数的基本关系;2、三角函数的化简;3、求三角函数的值域.12.(2012秋•泰安期中)已知函数f(x)=2sinωxcosωx﹣2sin2ωx+(ω>0),直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为.(Ⅰ)求ω的值;(Ⅱ)求函数f(x)的单调增区间;(Ⅲ)若f(α)=,求sin(π﹣4α)的值.【答案】(Ⅰ)1;(Ⅱ)见解析;(Ⅲ)﹣.【解析】(I)利用二倍角公式即辅助角公式,化简函数,利用直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为,可得函数的最小正周期为π,根据周期公式,可求ω的值;(II)利用正弦函数的单调性,可得函数f(x)的单调增区间;(III)由f(a)=,可得sin(2a+)=,根据sin(π﹣4a)=sin[﹣2(2a+)]=﹣cos[2(2a+)]=2sin2(2a+)﹣1,即可求得结论.解:(I)∵f(x)=2sinωxcosωx﹣2sin2ωx+=sin2ωx+cos2ωx=2sin(2ωx+)∵直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为,∴函数的最小正周期为π∴=π∴ω=1;(II)由(I)知,f(x)=2sin(2x+)∴﹣+2kπ≤2x+≤+2kπ,k∈Z∴﹣+kπ≤x≤+kπ,k∈Z∴函数f(x)的单调增区间为[﹣+kπ,+kπ],k∈Z;(III)∵f(a)=,∴sin(2a+)=∴sin(π﹣4a)=sin[﹣2(2a+)]=﹣cos[2(2a+)]=2sin2(2a+)﹣1=﹣.【考点】三角函数中的恒等变换应用;由y=Asin(ωx+φ)的部分图象确定其解析式;复合三角函数的单调性.13.已知向量,且函数在时取得最小值.(Ⅰ)求的值;(Ⅱ)在中,分别是内角的对边,若,,,求的值.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)利用向量的数量积公式,结合辅助角公式,求的值;(Ⅱ)先求出,再利用正弦定理,即可求的值.试题解析:(Ⅰ)由于(Ⅱ)由上知,于是由正弦定理得:【考点】正弦定理,余弦定理,两角和与差的三角函数,向量的数量积14.已知,函数在单调递减,则的取值范围是.【答案】【解析】,,由题意,所以,由于,所以只有,.【考点】三角函数的单调性.【名师】求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中A≠0,ω>0)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“ωx+φ(ω>0)”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与y=sin x(x∈R),y=cos x(x∈R)的单调区间对应的不等式方向相同(反).15.(2015秋•南京校级期中)将函数f(x)=2sin(2x﹣)的图象向左平移m个单位(m>0),若所得的图象关于直线x=对称,则m的最小值为.【答案】【解析】由条件利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得m的最小值.解:将函数f(x)=2sin(2x﹣)的图象向左平移m个单位(m>0),可得y=2sin[2(x+m)﹣]=2sin(2x+2m﹣)的图象.∵所得的图象关于直线x=对称,∴2•+2m﹣=kπ+,k∈Z,即 m=+,k∈Z,则m的最小值为,故答案为:.【考点】函数y=Asin(ωx+φ)的图象变换.16.(2015秋•昌平区期末)已知函数.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)的单调递减区间.【答案】(Ⅰ);(Ⅱ)函数f(x)的单调递减区间是.)【解析】(Ⅰ)利用三角函数的倍角公式以及辅助角公式进行化简,即可求函数f(x)的最小正周期;(Ⅱ)利用三角函数的单调性即可求函数f(x)的单调递减区间.解:(Ⅰ)==所以最小正周期.(Ⅱ)由,得.所以函数f(x)的单调递减区间是.)【考点】三角函数中的恒等变换应用;正弦函数的图象.17.已知函数.(1)求的最小正周期和在上的单调递减区间;(2)若为第四象限角,且,求的值.【答案】(1);(2).【解析】(1)对的表达式进行三角恒等变形,利用三角函数的性质即可求解;(2)利用同角三角函数的基本关系求得的值后即可求解.试题解析:(1)由已知,所以最小正周期,由,得,故函数在上的单调递减区间;(2)因为为第四象限角,且,所以,所以.【考点】三角函数综合.18.已知是第二象限角,且,则()A.B.C.D.【答案】C【解析】由,得,又∵是第二象限角,∴,∴原式=;故选C.【考点】1.诱导公式;2.同角三角函数基本关系式.19.在中,角所对的边分别为,且,则的最大值为_____.【答案】【解析】由及正弦定理得,又因为,于是可得,所以,所以,则的最大值为,故答案填.【考点】1、正弦定理;2、两角和与差的三角函数;3、基本不等式.20.将函数图象上各点的横坐标伸长到原来的倍,再向左平移个单位,纵坐标不变,所得函数图象的一条对称轴的方程是()A.B.C.D.【答案】D【解析】将函数图象上各点的横坐标伸长到原来的倍,得,再向左平移个单位,得,令,解得,令,得,即所得函数图象的一条对称轴的方程是,故选D.【考点】三角函数的图象变换与三角函数的性质.21.设平面向量.(1)若,求的值;(2)若,求的取值范围.【答案】(1);(2).【解析】(1)先利用向量数量积的坐标表示求出,利用商数关系求出得值,再利用二倍角公式求出的值,最后代入到的展开式即可求得;(2)欲求,先求出,再根据求的范围,从而可得的取值范围.试题解析:(1)因为,所以,∴,∴.(2),,.【考点】1、向量数量积的坐标表示;2、二倍角公式;3、三角函数;4、商数关系;5、向量的模.22.设中的内角所对的边长分别为,且.(1)当时,求角的度数;(2)求面积的最大值.【答案】(1);(2).【解析】(1)求出,再由正弦定理求出,求出角;(2)求三角形面积的最大值,即求的最大值,由,,求出,就可以求出面积的最大值.试题解析:解:(1)因为,所以.因为,由正弦定理可得.因为,所以是锐角,所以.(2)因为的面积,所以当最大时,的面积最大.因为,所以.因为,所以,所以(当时等号成立).所以面积的最大值为.【考点】1.正弦定理;2.余弦定理;3.重要不等式.23.在中,内角的对边为,已知.(1)求角的值;(2)若,且的面积为,求.【答案】(1);(2).【解析】根据正弦定理可得,根据内角和定理和两角和的正弦公式整理可得,即得角的值;(2)由的面积为,求得的值,根据余弦定理表示构造的另一个方程,解方程组即可求得.试题解析:(1)∵,∴,∴,即,∴,∴,又∵是三角形的内角,∴(2)∵,∴,∴,又∵,∴,∴,∴【考点】正余弦定理解三角形.24.的三个内角满足:,则()A.B.C.D.或【答案】B【解析】由已知条件以及正弦定理可得:,即,再由余弦定理可得,所以,故选B.【考点】正弦定理、余弦定理.25.在中,角,,的对边分别是,,,已知,.(I)求的值;(II)若角为锐角,求的值及的面积.【答案】(I);(II)【解析】(I)根据题意和正弦定理求出a的值;(II)由二倍角的余弦公式变形求出sin2A,由A 的范围和平方关系求出cosA,由余弦定理列出方程求出b的值,代入三角形的面积公式求出△ABC的面积.试题解析:(I)因为,且,所以.因为,由正弦定理,得.(II)由得.由余弦定理,得.解得或(舍负).所以.【考点】正弦定理;余弦定理26.如图所示的是函数和函数的部分图象,则函数的解析式是()A.B.C.D.【答案】C.【解析】由题意得,,故排除B,D;又∵,故排除A,故选C.【考点】三角函数的图象和性质.27.已知,则=()A.B.C.D.【答案】A【解析】,故选A.【考点】和差倍半的三角函数.28.在中,角所对的边分别为,.(Ⅰ)求的值;(Ⅱ)若,,求的面积.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)先根据正弦定理将边统一成角:,再利用三角形内角关系、诱导公式、两角和正弦公式将三角统一成两角:,最后根据同角三角函数关系将弦化切:(Ⅱ)由(Ⅰ)易得,已知两角一对边,根据正弦定理求另一边:,利用三角形内角关系求第三角的正弦值:,最后根据面积公式求面积:试题解析:解:(Ⅰ)由及正弦定理得.所以,所以.(Ⅱ),所以, ,,所以的面积为.【考点】正弦定理,弦化切【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.29.同时具有性质“①最小正周期是,②图象关于直线对称;③在上是增函数”的一个函数是()A.B.C.D.【答案】C【解析】由题意得,函数的最小周期为,则,又函数图象关于直线对称,则函数为函数的最小值,则只有B、C满足,由当时,,则函数是单调递增函数,故选C.【考点】三角函数的性质.30.若函数的最大值为5,则常数______.【答案】【解析】,其中,故函数的最大值为,由已知得,,解得.【考点】三角函数的图象和性质.【名师】解决三角函数性质问题的基本思路是通过化简得到,结合角的范围求解.. 本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.31.定义在区间[0,]上的函数的图象与的图象的交点个数是 .【答案】7【解析】由,因为,所以故两函数图象的交点个数是7.【考点】三角函数图象【名师】求函数图象的交点个数,有两种方法:一是直接求解,如本题,解一个简单的三角方程,此方法立足于易于求解;二是数形结合,分别画出函数图象,数出交点个数,此法直观,但对画图要求较高,必须准确,尤其是要明确函数的增长幅度.32.△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b=(A)(B)(C)2 (D)3【答案】D【解析】由余弦定理得,解得(舍去),选D.【考点】余弦定理【名师】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!33.将函数y=2sin(2x+)的图像向右平移个周期后,所得图像对应的函数为A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x–)D.y=2sin(2x–)【答案】D【解析】函数的周期为,将函数的图像向右平移个周期即个单位,所得图像对应的函数为,故选D.【考点】三角函数图像的平移【名师】函数图像的平移问题易错点有两个,一是平移方向,注意“左加右减”;二是平移多少个单位是对x而言的,不要忘记乘以系数.34.如图,在Rt△ABC中,AC⊥BC,D在边AC上,已知BC=2,CD=1,∠ABD=45°,则AD=.【答案】5【解析】,,所以,.【考点】解三角形.【名师】在解直角三角形时,直角三角形中的三角函数定义是解题的桥梁,利用它可以很方便地建立边与角之间的关系.35.设函数的部分图象如图所示,直线是它的一条对称轴,则函数的解析式为()A.B.C.D.【答案】C【解析】因为直线是它的一条对称轴,排除B,D,因为图象过点,排除选项A,选C.【考点】三角函数图象与性质.36.在中,角,,的对边分别为,,,且满足,则角等于()A.B.C.D.【答案】A【解析】由正弦定理可得,即,由余弦定理可得,所以,故应选A。

高二数学三角函数三角恒等变换解三角形试题答案及解析

高二数学三角函数三角恒等变换解三角形试题答案及解析

高二数学三角函数三角恒等变换解三角形试题答案及解析1..【答案】【解析】故答案为:.【考点】两角和与差的三角公式.2.若函数在区间上单调递增,则的最小值是()A.B.C.D.【答案】D【解析】依题意,,令,在区间上,,单调递增,,所以;【考点】1.导数与单调性;2.化归的思想;3.函数在内是()A.增函数B.减函数C.有增有减D.不能确定【答案】A【解析】函数,可得,所以函数在内是增函数.故选:A.【考点】利用导数研究函数的单调性.4.(12分).已知在△ABC中,内角A,B,C所对的边长分别为a,b,c,且tan A+tan B=.(1)求角B的大小;(2)若,求sinA·sinC的值.【答案】(1);(2)【解析】(Ⅰ)已知等式左边利用同角三角函数间的基本关系化简,整理后根据sinC不为0求出cosB的值,即可确定出B的度数;(Ⅱ)已知等式去分母整理后得到关系式,利用余弦定理列出关系式,把得出关系式及cosB的值代入,并利用正弦定理化简,即可求出sinAsinC的值试题解析:(Ⅰ)已知等式变形得:sinAcosA+sinBcosB=2sinCcosA,去分母得:sinAcosB+sinBcosA=2sinCcosB,即sin(A+B)=2sinCcosB=sinC,∵sinC≠0,∴cosB=12,则B=60°;(Ⅱ)由,整理得:,∵cosB=12,∴,由正弦定理得:sin2B=2sinA·sinC=,则sinA·sinC=【考点】1.同角间三角函数关系;2.正弦定理5.将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将所得图象向左平移个单位,则所得函数图象对应的解析式为()A.B.C.D.【答案】D【解析】将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图像,再将所得图象向左平移个单位,则所得函数图象对应的解析式为.故选D.【考点】三角函数图像变换:周期变换、左右平移.6.已知在△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且,则tanC等于()A.B.C.D.【答案】C【解析】【考点】1.余弦定理解三角形;2.同角间三角函数关系7.已知在△ABC中,内角A,B,C所对的边长分别为a,b,c,且tan A+tan B=.(1)求角B的大小;(2)若+=3,求sin Asin C的值.【答案】(1);(2)【解析】(1)由题意切化弦,同分可得,整理可得,即可求得;(2)根据已知式子同分可得,由余弦定理得到,再结合正弦定理即可得到试题解析:(1)由题意可得:因为,所以,又因为,所以(2)有题意可得:即由余弦定理可得:,得到有正弦定理:【考点】1.正余弦定理;2.化简求值8.(本题满分11分)若的内角所对的边分别为,且满足(1)求;(2)当时,求的面积.【答案】(1);(2).【解析】(1)因为正弦定理,所以化为,因为三角形内角有,所以即,所以;(2)由余弦定理,得,而,,得,即,因为三角形的边,所以,则.试题解析:(1)因为由正弦定理,得,又,从而,由于所以(2)解法一:由余弦定理,得,而,,得,即因为,所以,故面积为.解法二:由正弦定理,得从而又由知,所以故,所以面积为.【考点】1.正弦定理与余弦定理;2.三角形的面积公式.9.在中,已知,,则的长为____________________.【答案】【解析】由正弦定理可得【考点】正弦定理解三角形10.(本小题满分10分)在△ABC中,是方程的一个根,(1)求;(2)当时,求△ABC周长的最小值.【答案】(1)(2)【解析】(1)解一元二次方程得到方程的根,结合三角函数有界性得到的值,从而求得大小;(2)由三角形余弦定理结合,可将转化为的表达式,从而求得其最小值,得到周长的最小值试题解析:(1)又是方程的一个根(2)由余弦定理可得:则:当时,c最小且,此时△ABC周长的最小值为.【考点】1.余弦定理解三角形;2.一元二次方程的根11.在△ABC中,角A,B,C所对的边分别为a,b,c,若(b-c)cosA=acosC,则cosA=_____【答案】【解析】由正弦定理可将已知条件转化为【考点】正弦定理与三角函数基本公式12.在△ABC中,cosA=,sinB=,则cosC的值为.【答案】【解析】由cosA=,sinB=得【考点】三角函数基本公式13.在△ABC中,如果,且为锐角,试判断此三角形的形状.【答案】等腰直角三角形.【解析】判定三角形的形状由三角形的三边长或三个角来确定.由可确定.根据正弦定理,可确定角,从而确定三角形的形状.试题解析:因为,所以,又为锐角,所以.,.由正弦定理得:,即展开得:,即,则,所以△ABC是等腰直角三角形.【考点】1.三角形形状;2.正弦定理;14.在△中,分别为角所对的边,若,则此三角形一定是()A.正三角形B.直角三角形C.等腰三角形D.等腰或直角三角形【答案】C【解析】,三角形为等腰三角形【考点】1.正弦定理解三角形;2.三角函数基本公式15.在中,、、分别是三内角A、B、C的对应的三边,已知(1)求角C的大小;(2)满足的是否存在?若存在,求角A的大小.【答案】(1);(2)不存在【解析】(1)由正弦定理将变形可得到关于角C的关系式,进而求得角C的大小;(2)结合角C的大小将变形求解A角,若A角存在则三角形存在试题解析:(1)由正弦定理,得因为由则(2)由(1)知,于是=这样的三角形不存在。

高三数学正弦定理试题答案及解析

高三数学正弦定理试题答案及解析

高三数学正弦定理试题答案及解析1.在中,内角所对的边分别为.已知,(1)求角的大小;(2)若,求的面积.【答案】(1);(2).【解析】(1)△ABC中,由条件利用二倍角公式化简可得:-2sin(A+B)sin(A-B)=2•cos(A+B)sin(A-B),求得tan(A+B)的值,进而可得A+B 的值,从而求得C的值.(2)由求得cosA的值.再由正弦定理求得a,再求得 sinB=sin[(A+B)-A]的值,从而求得△ABC的面积为的值.试题解析:(1)由题意得,,即,,由得,,又,得,即,所以;(2)由,,得,由,得,从而,故,所以的面积为.【考点】1.二倍角的三角公式;2.正弦定理.2.[2014·北京西城区期末]在△ABC中,三个内角A,B,C的对边分别为a,b,c.若b=,B=,tanC=2,则c=________.【答案】2【解析】∵tanC=2,∴=2,又sin2C+cos2C=1,∴sin2C=,∴sinC=.由正弦定理,得=.∴c=×b=2.=2,则3.若ABC三个内角A、B、C的对边分别为a,b,c,且a=1,B=45o,SABCsinA=( ).(A) (B) (C) (D)【答案】A【解析】,根据余弦定理:,代入数字,,再根据正弦定理:.故选A.【考点】正余弦定理解三角形4.一只艘船以均匀的速度由A点向正北方向航行,如图,开始航行时,从A点观测灯塔C的方位角(从正北方向顺时针转到目标方向的水平角)为45°,行驶60海里后,船在B点观测灯塔C的方位角为75°,则A到C的距离是__________海里.【答案】【解析】,中,由正弦定理,【考点】正弦定理.5.已知的内角的对边分别为,且, 则______【答案】【解析】由正弦定理已知条件可化为,所以,即,所以,所以.【考点】正弦定理与余弦定理.6.己知A、B、C分别为△ABC的三边a、b、c所对的角,向量,且.(1)求角C的大小:(2)若sinA,sinC,sinB成等差数列,且,求边c的长.【答案】(1);(2)6.【解析】(1)由向量数量积坐标运算得,又三角形的三个内角,所以有,因此,整理得,所以所求角的大小为;(2)由等差中项公式得,根据正弦定理得,又,得,由(1)可得,根据余弦定理得,即,从而可解得.(1) 2分在中,由于,所以.又,,,又,. 5分而,. 7分(2)成等差数列,,由正弦定理得. 9分,.由(1)知,所以. 11分由余弦定理得,,.. 13分【考点】1.正弦、余弦定理;2.向量数量积.7.△ABC的内角A、B、C的对边分别是a、b、c,若B=2A,a=1,b=,则c=()A. B.2 C. D.1【答案】B【解析】∵B=2A,a=1,b=,∴由正弦定理=得:===,∴cosA=,由余弦定理得:a2=b2+c2﹣2bccosA,即1=3+c2﹣3c,解得:c=2或c=1(经检验不合题意,舍去),则c=2.故选B8.在中,角所对的边分别为,点在直线上.(1)求角的值;(2)若,且,求.【答案】(1)角的值为;(2).【解析】(1)由正弦定理先化角为边,得到;再由余弦定理求得,所以角的值为;(2)先用二倍角公式化简,再结合正弦函数的性质可求角,由正弦定理知.试题解析:(1)由题得,由正弦定理得,即.由余弦定理得,结合,得.(2)因为因为,且所以所以,.【考点】正余弦定理、二倍角公式.9.在中,已知,则最大角等于.【答案】【解析】由正弦定理得:,所以最大角为C,由余弦定理得:【考点】正余弦定理10.在直三棱柱ABC-A1B1C1中,已知AB=5,AC=4,BC=3,AA1=4,点D在棱AB上.(1)若D是AB中点,求证:AC1∥平面B1CD;(2)当时,求二面角的余弦值.【答案】(1)详见解析;(2)【解析】(1)要证明AC1∥平面B1CD,根据线面的判定定理,只要转换证明DE//AC1即可;(2)可以以C为原点建立空间直角坐标系,求出平面BCD的法向量与平面B1CD的法向量,然后利用向量夹角公式即可.试题解析:解:(1)证明:连结BC1,交B1C于E,连接DE.因为直三棱柱ABC-A1B1C1,D是AB中点,所以侧面BB1C1C为矩形,DE为△ABC1的中位线,所以DE//AC1.因为DE平面B1CD,AC1平面B1CD,所以AC1∥平面B1CD.6分(2)由(1)知AC⊥BC,如图,以C为原点建立空间直角坐标系C-xyz.则B(3,0,0),A(0,4,0),A1(0,4,4),B1(3,0,4).设D(a,b,0)(,),因为点D在线段AB 上,且,即.所以,,,,.平面BCD的法向量为.设平面B1CD的法向量为,由,,得,所以,,.所以.所以二面角的余弦值为.12分【考点】(1)空间位置关系的证明;(2)平面向量在立体几何中的应用.11.在中,角A,B,C的对边分别为a,b,c,已知,.(1)求的值;(2)若为的中点,求、的长.【答案】(1)(2).【解析】(1)在三角形中,由,知B为锐角且,由三角函数的诱导公式得;(2)由正弦定理得首先得到,在三角形BCD中,由余弦定理得:即得所求.本题较为简单,关键是要正确应用公式.试题解析:(1)在三角形中,,故B为锐角 3分所以 6分(2)三角形ABC中,由正弦定理得,, 9分又D为AB中点,所以BD=7在三角形BCD中,由余弦定理得: 12分【考点】正弦定理、余弦定理的应用.12.在中,角A,B,C所对的边长分别为a,b,c.若.则角C 等于()A.B.C.D.【答案】A【解析】即,所以,又,故,选.【考点】正弦定理、余弦定理的应用.13.如图所示,扇形,圆心角的大小等于,半径为2,在半径上有一动点,过点作平行于的直线交弧于点.(1)若是半径的中点,求线段的长;(2)设,求面积的最大值及此时的值.【答案】(1);(2)当时,取得最大值.【解析】(1)由得出,在中,利用余弦定理计算长度;(2)要求面积的最大值,需要将面积表示为的函数再求最值,显然可以用正弦的面积公式,注意到已知,故不妨用,接下来分别把表示成的函数,在中利用正弦定理得,同理,利用正弦定理,得,故的面积,运用两角差的正弦公式,降幂公式以及辅助角公式将化为同角三角函数,得,注意的范围是,可得时取最大值1,此时取最大值.试题解析:(1)在中,,,由; 5分(2)平行于,在中,由正弦定理得,即,,又,. 8分记的面积为,则=, 10分当时,取得最大值. 12分【考点】1、三角恒等变换;2、三角函数的基本运算;3、正、余弦定理.14.已知m=,n=,满足.(1)将y表示为x的函数,并求的最小正周期;(2)已知a,b,c分别为ABC的三个内角A,B,C对应的边长,的最大值是,且a=2,求b+c的取值范围.【答案】(1),其最小正周期为. (2).【解析】(1)利用平面向量的坐标运算及和差倍半的三角函数公式,化简得到,其最小正周期为.(2)由题意得,及,得到.由正弦定理得,,化简得到,利用,进一步确定的取值范围为.试题解析:(1)由得, 2分即,所以,其最小正周期为. 6分(2)由题意得,所以,因为,所以. 8分由正弦定理得,,, 10分,,,所以的取值范围为. 12分【考点】平面向量的坐标运算,和差倍半的三角函数,正弦定理的应用,三角函数的性质.15.设△ABC的三个内角A、B、C所对的边分别是a、b、c,且,则A=________.【答案】【解析】由,,得,即sinA=cosA,所以A=.16.在锐角△ABC中,内角A、B、C的对边分别为a、b、c,且2asinB= b.(1)求角A的大小;(2)若a=6,b+c=8,求△ABC的面积.【答案】(1)(2)【解析】(1)由2asinB=b及正弦定理,得sinA=.因为A是锐角,所以A=. (2)由余弦定理a2=b2+c2-2bccosA,得b2+c2-bc=36.又b+c=8,所以bc=.由三角形面积公式S=bcsinA,得△ABC的面积为17.设A、B两点在河的两岸,一测量者在A所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°,求A、B两点的距离.【答案】50m【解析】由题意知∠ABC=30°,由正弦定理,得AB=m.故A、B两点的距离为50m.18.在△ABC中,角A、B、C所对的边分别是a、b、c,已知c=2,C=.(1)若△ABC的面积等于,求a、b;(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.【答案】(1)a=2,b=2(2)【解析】(1)由余弦定理及已知条件,得a2+b2-ab=4.因为△ABC的面积等于,所以absinC=,得ab=4.联立方程组,解得a=2,b=2.(2)由题意得sin(B+A)+sin(B-A)=4sinAcosA,所以sinBcosA=2sinAcosA.当cosA=0时,A=,所以B=,所以a=,b=.当cosA≠0时,得sinB=2sinA,由正弦定理得b=2a,联立方程组解得a=,b=.所以△ABC的面积S=absinC=19.在△ABC中,若9cos2A-4cos2B=5,则=________.【答案】【解析】由9cos2A-4cos2B=5,得9(1-2sin2A)=5+4(1-2sin2B),得9sin2A=4sin2B,即3sinA=2sinB.由正弦定理得=20.设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.不确定【答案】A【解析】由正弦定理,得sinBcosC+cosBsinC=sin2A,则sin(B+C)=sin2A,由三角形内角和定理及互为补角的诱导公式,得sin(B+C)=sin2A=1,所以A=,故选A.21.在△ABC中,若∠A=π,∠B=π,AB=6,则AC等于()A.B.2C.3D.4【答案】D【解析】∠C=π-∠A-∠B=π--=.由正弦定理=,∴=,∴AC=4.故选D.22.已知向量,,函数.(1)求函数的单调递增区间;(2)在中,内角的对边分别为,已知,,,求的面积.【答案】(1)函数的单调递增区间为.(2).【解析】(I)根据平面向量的数量积,应用和差倍半的三角函数公式,将化简为,讨论函数的单调性;(2)利用求得,再应用正弦定理及两角和差的三角函数公式,求得,应用三角形面积公式即得所求.试题解析:(1)3分令(,得(,所以,函数的单调递增区间为. 6分(2)由,得,因为为的内角,由题意知,所以,因此,解得, 8分又,,由正弦定理,得, 10分由,,可得, 11分所以,的面积= . 12分【考点】平面向量的数量积,和差倍半的三角函数,正弦定理的应用,三角形面积公式.23.在△ABC中,角A,B,C的对边分别为a,b,c,若acos2+ccos2= b.(1)求证:a,b,c成等差数列;(2)若∠B=60°,b=4,求△ABC的面积.【答案】(1)见解析 (2) 4【解析】解:(1)证明:acos2+ccos2=a·+c·=b,即a(1+cos C)+c(1+cos A)=3b.由正弦定理得:sin A+sin Acos C+sin C+cos Asin C=3sin B,即sin A+sin C+sin(A+C)=3sin B,∴sin A+sin C=2sin B.由正弦定理得,a+c=2b,故a,b,c成等差数列.(2)由∠B=60°,b=4及余弦定理得:42=a2+c2-2accos 60°,∴(a+c)2-3ac=16,又由(1)知a+c=2b,代入上式得4b2-3ac=16,解得ac=16,∴△ABC的面积S=acsin B=acsin 60°=4.24.在△ABC中,角A,B,C的对边分别为a,b,c,且c=2,C=60°.(1)求的值;(2)若a+b=ab,求△ABC的面积.【答案】(1)(2)【解析】(1)由正弦定理可设,所以a=sin A,b=sin B,(3分)所以==.(6分)(2)由余弦定理得c2=a2+b2-2ab cos C,即4=a2+b2-ab=(a+b)2-3ab,(7分)又a+b=ab,所以(ab)2-3ab-4=0.解得ab=4或ab=-1(舍去).(12分)所以S=ab sin C=×4×=.(14分)△ABC25.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,则cos C等于().A.B.-C.±D.【答案】A【解析】先用正弦定理求出角B的余弦值,再求解.由,且8b=5c,C=2B,所以5c sin 2B=8c sin B,所以cos B=.所以cos C=cos 2B=2cos2B-1=.26.在△ABC中,内角A,B,C的对边长分别为a,b,c,已知a2-c2=2b,且sin A cos C=3cos A sin A,求b=______.【答案】4【解析】在△ABC中,sin A cos C=3cos A sin C,则由正弦定理及余弦定理有a·=3··c,化简并整理得2(a2-c2)=b2.又由已知a2-c2=2b,则4b=b2,解得b=4或b=0(舍).27.设△ABC的内角A,B,C所对边的长分别为a,b,c.若b+c=2a,3sin A=5sin B,则角C= ().A.B.C.D.【答案】B【解析】由已知条件和正弦定理得3a=5b,且b+c=2a,则a=,c=2a-b=,cos C=,又0<C<π,因此角C=.28.在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是().A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】C【解析】由正弦定理,得a2+b2<c2,∴cos C=<0,则C为钝角,故△ABC为钝角三角形.29.如图所示,在坡度一定的山坡A处测得山顶上一建筑物CD的顶端C对于山坡的斜度为15°,向山顶前进100米到达B处,又测得C对于山坡的斜度为45°,若CD=50米,山坡对于地平面的坡角为θ,则cos θ=().A.B.2-C.-1D.【答案】C【解析】在△ABC中,由正弦定理可知,BC===50(),在△BCD中,sin∠BDC===-1.由题图,知cos θ=sin∠ADE=sin ∠BDC=-1.30.在中,若,则的形状是( )A.正三角形B.等腰三角形C.直角三角形D.等腰直角形【答案】B【解析】由正弦定理、余弦定理,可化为,整理得,,所以,的形状是等腰三角形,选B.【考点】正弦定理、余弦定理的应用31.在中,角、、对的边分别为、、,且,.(1)求的值;(2)若,求的面积.【答案】(1);(2).【解析】(1)由正弦定理计算比值,确定与、以及与的等量关系,然后将相应结果代入计算的值;(2)利用余弦定理,再结合已知条件求出的值,最后利用三角形的面积公式计算的面积.试题解析:(1)由正弦定理可得:,所以,,所以;(2)由余弦定理得,即,又,所以,解得或(舍去),所以.【考点】1.正弦定理;2.余弦定理;3.三角形的面积32.在△ABC中,角、、的对边分别为、、,设S为△ABC的面积,满足.(Ⅰ)求角C的大小;(Ⅱ)若,且,求的值.【答案】(I);(II)4.【解析】(Ⅰ)本小题较易,直接利用余弦定理及三角形面积公式,确定,根据,得到;(Ⅱ)应用“切化弦”技巧,转化成“弦函数”问题,应用正弦定理可得,进一步求得,得到,确定得到△ABC是等边三角形,根据可求得.试题解析: (Ⅰ) ,且. 2分因为,所以, 3分所以, 4分因为,所以; 6分(Ⅱ)由得:, 7分即, 8分又由正弦定理得, 9分∴,∴△ABC是等边三角形, 10分∴, 11分所以. 12分【考点】正弦定理、余弦定理的应用,三角形面积公式,平面向量的数量积.33.的外接圆半径,角的对边分别是,且 .(1)求角和边长;(2)求的最大值及取得最大值时的的值,并判断此时三角形的形状.【答案】(1),;(2)的最大值,此时,此时三角形是等边三角形.【解析】本题主要考查解三角形中的正弦定理或余弦定理的运用,以及基本不等式的运用和求三角形面积的最值.第一问,先利用余弦定理将角化成边,去分母化简,得,再利用余弦定理求,在中,,所以,再利用正弦定理求边;第二问,先通过余弦定理,再结合基本不等式求出的最大值,得到面积的最大值,注意等号成立的条件,通过这个条件得出,所以判断三角形形状为等边三角形.试题解析:(1)由,得:,即,所以, 4分又,所以,又,所以 6分(2)由,,得(当且仅当时取等号) 8分所以,(当且仅当时取等号)10分此时综上,的最大值,取得最大值时,此时三角形是等边三角形. 12分【考点】1.正弦定理;2.余弦定理;3.均值定理;4.三角形面积公式.34.已知A、B、C是球O的球面上三点,三棱锥O﹣ABC的高为2且∠ABC=60°,AB=2,BC=4,则球O的表面积为()A. B. C. D.【答案】C【解析】由,则,设的外接圆半径为,则,即,,.【考点】1.正余弦定理;2.球体中构造直角三角形.35.在△中,角所对的边分别为,且,则_______;若,则__________.【答案】;【解析】因为,所以,又,所以,那么.又,所以,由正弦定理得,.【考点】1.三角函数的和角公式;2.正弦定理36.在中,内角所对的边长分别为,,,.求sinC和b的值.【答案】,.【解析】本题较为简单,突出了对正弦定理、余弦定理得考查.根据,应用正弦定理可得应用余弦定理建立方程,由求解.试题解析:,由正弦定理可得 5分由,得,由,故. 10分【考点】正弦定理、余弦定理的应用37.在锐角中,角所对的边长分别为.若()A.B.C.D.【答案】A.【解析】由正弦定理,代入已知式得又为锐角三角形,.【考点】正弦定理.38.在△ABC中,角A,B,C所对的边分别是,若,,=45°,则角A=___.【答案】角或.【解析】由正弦定理得,所以角或.【考点】1.解三角形;2.正弦定理.39.设△的三边为满足.(Ⅰ)求的值;(Ⅱ)求的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)由,即含有角又含有边,像这一类题,可以利用正弦定理把边化成角,也可利用余弦定理把角化成边,本题两种方法都行,若利用正弦定理把边化成角,利用三角恒等变化,求出角,若利用余弦定理把角化成边,利用代数恒等变化,找出边之间的关系,从而求出角;(Ⅱ)求的取值范围,首先利用降幂公式,与和角公式,利用互余,将它化为一个角的一个三角函数,从而求出范围.试题解析:(Ⅰ),所以,所以,所以所以,即,所以,所以(Ⅱ)= =其中因为,所以所以【考点】正余弦定理的运用,三角恒等变化,求三角函数值域,考查学生的运算能力.40.凸四边形中,其中为定点,为动点,满足.(1)写出与的关系式;(2)设的面积分别为和,求的最大值,以及此时凸四边形的面积。

高三数学三角恒等变换试题答案及解析

高三数学三角恒等变换试题答案及解析

高三数学三角恒等变换试题答案及解析1.已知,则()A.B.C.D.【答案】B【解析】将两边平方得,,可得,故选B.【考点】同角基本关系以及二倍角公式.2.已知cos(α-)+sinα=,则sin(α+)的值是()A.-B.C.-D.【答案】C【解析】cos(α-)+sinα=⇒sinα+cosα=⇒sin(α+)=,所以sin(α+)=-sin(α+)=-.3.已知函数f(x)=cos2ωx+sinωxcosωx-(ω>0)的最小正周期为π.(1)求ω值及f(x)的单调递增区间;(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知a=1,b=,f()=,求角C 的大小.【答案】(1)增区间为[kπ-,kπ+](k∈Z)(2)当B=时,C=π--=;当B=时,C=π--=.【解析】解:(1)f(x)=+sin2ωx-=sin(2ωx+).∵T=π,∴ω=1,∴f(x)=sin(2x+),增区间为[kπ-,kπ+](k∈Z).(2)∵f()=sin(A+)=,角A为△ABC的内角且a<b,∴A=.又a=1,b=,∴由正弦定理得=,也就是sinB==×=.∵b>a,∴B=或B=,当B=时,C=π--=;当B=时,C=π--=.4.已知α,β∈(0,),满足tan(α+β)=4tanβ,则tanα的最大值是()A.B.C.D.【答案】B【解析】tanα=tan[(α+β)-β]==≤=,当且仅当tanβ=时等号成立.5.在中,若分别为的对边,且,则有()A.a、c、b成等比数列B.a、c、b成等差数列C.a、b、c成等差数列D.a、b、c成等比数列【答案】D【解析】由已知得,,故,又,而,故,所以,故,从而a、b、c成等比数列.【考点】1、两角和与差的余弦公式;2、二倍角公式;3、正弦定理.6.在△ABC中,角A,B,C的对边分别为a,b,c,已知,b sin=a+c sin,则C= .【答案】【解析】由已知得,所以,由,应用正弦定理,得,.整理得,即,由于,从而,又,故.【考点】1正弦定理;2正弦两角和差公式。

常考问题三角恒等变换与解三角形

常考问题三角恒等变换与解三角形

知识与方法
热点与突破
审题与答题
热点与突破 热点一 三角变换及应用 【例 1】 (1)已知 0<β<π2<α<π,且 cosα-β2=-19,sinα2-β=23,
求 cos(α+β)的值; (2)已知 α,β∈(0,π),且 tan(α-β)=12,tan β=-17,求 2α-β 的值.
知识与方法
A,所以
tan
A=
33,
因为 0<A<23π,所以 A=6π,C=π2.
法二 由已知,得 A+C=2B,又 A+B+C=π,所以 B=3π,又由
sin C=2sin A,得 c=2a,所以 b2=a2+4a2-2a·2acosπ3=3a2,c2
=a2+b2,即△ABC 为直角三角形,所以 C=2π,A=23π-2π=π6.
热点与突破
审题与答题
x2=ACcos∠CAD=10 13cos(45°-θ)=30. y2=ACsin∠CAD=10 13sin(45°-θ)=20. 所以过点 B,C 的直线 l 的斜率为 k=2, 故直线 l 的方程为 y=2x-40. 又点 E(0,-55)到直线 l 的距离为 d=|0+515+-440|=3 5<7. 所以船会进入警戒水域.
知识与方法
热点与突破
审题与答题
[规律方法] 求解此类问题,一要注意从问题的不断转化中寻求解
题的突破口,如求A→B·A→C,需要求出 bc,由三角形的面积及 cos A,
可求出 sin A,二要注意求解本题第(2)问时,应该结合第(1)问中的 结论.
知识与方法
热点与突破
审题与答题
【训练 2】 (2013·山东卷)设△ABC 的内角 A,B,C 所对的边分别 为 a,b,c,且 a+c=6,b=2,cos B=79. (1)求 a,c 的值; (2)求 sin(A-B)的值. 解 (1)由余弦定理,得 cos B=a2+2ca2c-b2=a2+2ac2c-4=79,即 a2+c2-4=194ac. ∴(a+c)2-2ac-4=194ac,∴ac=9. 由aa+ c=c= 9,6, 得 a=c=3.

新高考数学(理)之三角函数与解三角形 专题04 三角恒等变换(解析版)

新高考数学(理)之三角函数与解三角形 专题04 三角恒等变换(解析版)

新高考数学(理)三角函数与平面向量04 三角恒等变换一、具本目标:1.两角和与差的三角函数公式 (1)会用向量的数量积推导出两角差的余弦公式;(2)能利用两角差的余弦公式导出两角差的正弦、正切公式;(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;2.简单的三角恒等变换:能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)3.(1) 已知两角的正余弦,会求和差角的正弦、余弦、正切值. (2) 会求类似于15°,75°,105°等特殊角的正、余弦、正切值. (3) 用和差角的正弦、余弦、正切公式化简求值. (4)逆用和差角的正弦、余弦、正切公式化简求值. (5) 会配凑、变形、拆角等方法进行化简与求值. 二、知识概述:知识点一 两角和与差的正弦、余弦、正切公式两角和与差的正弦公式: ()sin sin cos cos sin α+β=αβ+αβ,()sin sin cos cos sin α-β=αβ-αβ.两角和与差的余弦公式:()cos cos cos sin sin α+β=αβ-αβ, ()cos cos cos sin sin α-β=αβ+αβ. 两角和与差的正切公式:()tan tan tan 1tan tan α+βα+β=-αβ,【考点讲解】()tan tan tan 1tan tan α-βα-β=+αβ.【特别提醒】公式的条件:1. 两角和与差的正弦、余弦公式中的两个角α、β为任意角.2.两角和与差的正切公式中两个角有如下的条件:(),,,.2222k k k k k z ππππα+β≠π+α-β≠π+α≠π+β≠π+∈知识点二 公式的变用1. 两角和与差的正弦公式的逆用与辅助角公式:()22sin cos sin a x b x a b x +=++ϕ(其中φ角所在的象限由a,b 的符号确定,φ的值由tan baϕ=确定),在求最值、化简时起着重要的作用. 2. ()tan tan tan 1tan tan α+βα+β=-αβ变形为()()tan tan tan 1tan tan α+β=α+β-αβ,()tan tan tan 1tan tan α+βα+β=-αβ变形为()tan tan tan tan 1tan α+βαβ=-α+β.()tan tan tan 1tan tan α-βα-β=+αβ变形为()()tan tan tan 1tan tan α-β=α-β+αβ,()tan tan tan 1tan tan α-βα-β=+αβ变形为()tan tan tan tan 1tan α-βαβ=-α-β来使用. 条件为:(),,,.2222k k k k k z ππππα+β≠π+α-β≠π+α≠π+β≠π+∈ 知识点三 二倍角公式: 1.22tan sin 22sin cos 1tan ααααα==+ 2222221tan cos 2cos sin 2cos 112sin 1tan ααααααα-=-=-=-=+ 22tan tan 21tan ααα=-2. 常见变形:(1)22cos 1sin 2αα-=,22cos 1cos 2αα+=(2)()2cos sin 2sin 1ααα+=+,()2cos sin 2sin 1ααα-=-;(3)αα2cos 22cos 1=+,αα2sin 22cos 1=-.3.半角公式:2cos 12sin αα-±=,2cos 12cos αα+±=,αααcos 1cos 12tan+-±=,αααααsin cos 1cos 1sin 2tan-=+=.1.【2019年高考全国Ⅱ卷文理】已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=( ) A .15B .55 C .33D .255【解析】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查.2sin 2cos21αα=+Q ,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭Q ,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,5sin 5α∴=,故选B . 【答案】B2.【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为( ) A .2B .3C .4D .5【解析】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=,得sin 0x =或cos 1x =,[]0,2πx ∈Q ,0π2πx ∴=、或.()f x ∴在[]0,2π的零点个数是3,故选B .【答案】B3.【2018年高考全国Ⅰ卷文数】已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为 4【真题分析】【解析】本题考查的是二倍角公式及余弦型函数的周期及最值问题.根据题意有()135cos 21(1cos 2)2cos 2222f x x x x =+--+=+,所以函数()f x 的最小正周期为2ππ2T ==,且最大值为()max 35422f x =+=,故选B. 【答案】B4.【2018年高考全国Ⅰ卷】若1sin 3α=,则cos2α=( ) A .89 B .79 C .79- D .89-【解析】本题主要考查二倍角公式及求三角函数的值.2217cos 212sin 12()39αα=-=-⨯=.故选B. 【答案】B5.【2018年高考全国Ⅰ卷文数】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -=( )A .15 B .55 C .255D .1 【解析】本题主要考查任意角的三角函数和三角恒等变換根据条件,可知,,O A B 三点共线,从而得到2b a =,因为22212cos22cos 12131a ⎛⎫=-=⋅-= ⎪+⎝⎭αα,解得215a =,即55a =,所以525a b a a -=-=. 【答案】B6.【2017年高考全国Ⅰ卷文数】已知4sin cos 3αα-=,则sin 2α=( ) A .79-B .29-C .29D .79【解析】()2sin cos 17sin 22sin cos 19ααααα--===--.所以选A. 【答案】A7.【2019年高考全国Ⅰ卷文数】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 【解析】23π()sin(2)3cos cos 23cos 2cos 3cos 12f x x x x x x x =+-=--=--+23172(cos )48x =-++, 1cos 1x -≤≤Q ,∴当cos 1x =时,min ()4f x =-,故函数()f x 的最小值为4-.【答案】4-8.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________.【解析】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,函数()2sin 2f x x ==1cos 42x -,周期为π2. 【答案】π29.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 . 【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-.πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭()2222222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭2222tan 1tan =2tan 1ααα⎛⎫+- ⎪+⎝⎭, 当tan 2α=时,上式22222122==22110⎛⎫⨯+-⨯ ⎪+⎝⎭; 当1tan 3α=-时,上式=22112()1()2233[]=1210()13⨯-+--⨯-+. 综上,π2sin 2.410α⎛⎫+= ⎪⎝⎭ 【答案】21010.【2018年高考全国Ⅰ卷文数】已知5π1tan()45-=α,则tan =α__________. 【解析】本题主要考查三角恒等变换,考查考生的运算求解能力.5πtan tan5πtan 114tan 5π41tan 51tan tan 4ααααα--⎛⎫-=== ⎪+⎝⎭+⋅,解方程得3tan 2=α.故答案为32. 【答案】3211.【2018年高考全国Ⅱ理数】已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 【解析】本题主要考查三角恒等变换.因为sin cos 1+=αβ,cos sin 0+=αβ,所以()()221sin cos 1,-+-=αα所以11sin ,cos 22==αβ, 因此()22111111sin sin cos cos sin cos 1sin 1.224442+=+=⨯-=-+=-+=-αβαβαβαα【答案】12-12.【2017年高考江苏卷】若π1tan(),46-=α则tan =α .【解析】11tan()tan7644tan tan[()]14451tan()tan 1446ααααππ+-+ππ=-+===ππ---.故答案为75. 【答案】7513.【2018年高考全国Ⅰ理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【解析】()()212cos 2cos 24cos 2cos 24cos 1cos 2f x x x x x x x ⎛⎫'=+=+-=+-⎪⎝⎭, 所以当1cos 2x <时函数单调递减,当1cos 2x >时函数单调递增,从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z ,函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z , 所以当π2π,3x k k =-∈Z 时,函数()f x 取得最小值,此时33sin ,sin222x x =-=-, 所以()min 33332222f x ⎛⎫=⨯--=- ⎪ ⎪⎝⎭,故答案是332-.【答案】332-14.【2017年高考全国Ⅱ理数】函数()23sin 3cos 4f x x x =+-(π0,2x ⎡⎤∈⎢⎥⎣⎦)的最大值是 . 【解析】本题主要考查的是三角函数式的化简及三角函数的问题转化为二次函数的问题,二次函数、二次方程与二次不等式统称“三个二次”化简三角函数的解析式的综合考查.()2223131cos 3cos cos 3cos cos 1442f x x x x x x ⎛⎫=-+-=-++=--+ ⎪ ⎪⎝⎭,由自变量的范围:π0,2x ⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈,当3cos 2x =时,函数()f x 取得最大值1.【答案】115.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域. 【解析】本题主要考查三角函数及其恒等变换等基础知识.(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+,故2sin cos 0x θ=,所以cos 0θ=. 又[0,2π)θ∈,因此π2θ=或3π2. (2)2222ππππsin sin 124124y fx f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 2133621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭3π1cos 223x ⎛⎫=-+ ⎪⎝⎭. 因此,函数的值域是33[1,1]22-+. 【答案】(1)π2θ=或3π2;(2)33[1,1]22-+. 16.【2018年高考北京卷文数】已知函数2()sin 3sin cos f x x x x =+.(1)求()f x 的最小正周期; (2)若()f x 在区间[,]3m π-上的最大值为32,求m 的最小值. 【解析】本题主要考查二倍角公式、辅助角公式、正弦函数的性质. (1)1cos 23311π1()sin 2sin 2cos 2sin(2)2222262x f x x x x x -=+=-+=-+, 所以()f x 的最小正周期为2ππ2T ==. (2)由(1)知π1()sin(2)62f x x =-+.因为π[,]3x m ∈-,所以π5ππ2[,2]666x m -∈--.要使得()f x 在π[,]3m -上的最大值为32,即πsin(2)6x -在π[,]3m -上的最大值为1. 所以ππ262m -≥,即π3m ≥.所以m 的最小值为π3.【答案】(1)π;(2)π3.1. sin15°sin105°的值是( ) A .14 B .14-C .34D .34-【解析】本题的考点二倍角的正弦和诱导公式:sin15°sin105°=sin15°cos15°=12sin30°=14,故选A . 【答案】A2.已知sin2α=13,则cos 2(π4α-)=( ) A .34 B .23 C .45 D .56【解析】本题考点二倍角的余弦,三角函数的化简求值.∵sin2α=13,∴cos 2(π4α-)=π11cos 211sin 22232223αα⎛⎫+-+⎪+⎝⎭===.故选B . 【答案】B3.已知sin α=45-,α∈(π,3π2),则tan 2α等于( ) A .-2 B .12 C .12-或2 D .-2或12【解析】∵sin α=45-,α∈(π,3π2),∴cos α=35-,∴tan α=43.∵α∈(π,3π2),∴2α∈(π2,3π4),∴tan 2α<0. tan α=22tan21tan 2αα- =43,即2tan 22α+ 3tan2α-2=0,解得tan2α=-2,或tan2α=12(舍去),故选A .【答案】A【模拟考场】4.设π0,2α⎛⎫∈ ⎪⎝⎭,π0,4β⎛⎫∈ ⎪⎝⎭,且tan α=1sin 2cos 2ββ+,则下列结论中正确的是( ) A .2π4αβ-=B .π24αβ+=C .π4αβ-=D .π4αβ+= 【解析】本题的考点二倍角的余弦,二倍角的正弦..tan α=()222sin cos 1sin 2sin cos 1tan cos 2cos sin cos sin 1tan ββββββββββββ++++===---πtan 4β⎛⎫=+ ⎪⎝⎭ 因为π0,2α⎛⎫∈ ⎪⎝⎭,πππ,442β⎛⎫+∈ ⎪⎝⎭,所以π4αβ-=.故选C . 【答案】C5.已知角αβ,均为锐角,且cos α=35,tan (α−β)=−13,tan β=( ) A .13 B .913 C .139D .3【解析】∵角α,β均为锐角,且cos α=35,∴sin α=21cos α- =45,tan α=43,又tan (α−β)=tan tan 1+tan tan αβαβ-=4tan 341+tan 3ββ-=−13, ∴tan β=3,故选D .【答案】D6.设α为锐角,若π3cos()65α+=,则πsin()12α-=( ) A .210 B .210- C .45 D .45- 【解析】因为α为锐角,所以ππ2π,663α⎛⎫+∈ ⎪⎝⎭,因为π3cos()65α+=,所以π4sin()65α+=,故πππππsin()sin sin cos 126464ααα⎡⎤⎛⎫⎛⎫-=+-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ππ2432cos sin 6425510α⎛⎫⎛⎫+=-= ⎪ ⎪⎝⎭⎝⎭.故选A.【答案】A7.设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( )A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关【解析】本题考查的是二倍角的降幂公式与三角函数的最小正周期,先利用三角恒等变换(降幂公式)化简函数()f x ,再判断b 和c 的取值是否影响函数()f x 的最小正周期.21cos 2cos 21()sin sin sin sin 222-=++=++=-+++x x f x x b x c b x c b x c ,其中当0=b 时,cos 21()22=-++x f x c ,此时周期是π;当0≠b 时,周期为2π,而c 不影响周期.故选B . 【答案】B8.已知34cos sin =-αα,则=α2sin ( ) A .97- B .92- C .92 D .97【解析】本题的考点是二倍角的正弦正逆用,将34cos sin =-αα两边平方()2234cos sin ⎪⎭⎫ ⎝⎛=-αα, 化简后可得916cos sin 2cos sin 22=-+αααα即=α2sin 97-.【答案】A 9.函数()⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=6cos 3sin 51ππx x x f 的最大值为( ) A .56B .1C .53D .51【解析】将()⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=6cos 3sin 51ππx x x f 化简,利用两角和、差的正余弦公式及辅助角公式,三角函数 最值的性质可以求得函数最大值.由()6sin sin 6cos cos 3sin cos 3cos sin 51ππππx x x x x f ++⎪⎭⎫ ⎝⎛+= x x x x sin 21cos 23cos 103sin 101+++=⎪⎪⎭⎫ ⎝⎛+=+=x x x x cos 23sin 2156cos 533sin 53⎪⎭⎫ ⎝⎛+=3sin 56πx , 因为13sin 1≤⎪⎭⎫ ⎝⎛+≤-πx ,所以函数的最大值为56.【答案】A10.若tan 2tan 5πα=,则3cos()10sin()5παπα-=-( ) A.1 B.2 C.3 D.4【解析】本题考点是两角和与差的正弦(余弦)公式,同角间的三角函数关系,三角函数的恒等变换. 三角恒等变换的主要是求值,在求值时只要根据求解目标的需要,结合已知条件选用合适的公式计算.本例应用两角和与差的正弦(余弦)公式化简所求式子,利用同角关系式求出使已知条件可代入的值,然后再化简,求解过程中注意公式的顺用和逆用.3cos()10sin()5παπα-=-33cos cos sin sin 1010sin cos cos sin 55ππααππαα+-33cos tan sin 1010tan cos sin 55ππαππα+=-33cos 2tan sin 105102tan cos sin 555ππππππ+=- 33cos cos 2sin sin 510510sin cos 55ππππππ+==333cos cos sin sin sin sin 510510510sin cos 55ππππππππ++ =333cos cos sin 5101010sin cos 55ππππππ⎛⎫-+ ⎪⎝⎭=13cos sin 1025sin cos 55ππππ+1cos cos 10210sin cos 55ππππ+=1cos cos 1021014sin 210πππ+= 3cos103cos 10ππ==.【答案】C11.已知向量a r =(sin θ,2-),b r =(1,cos θ),且a r ⊥b r ,则sin 2θ+cos 2θ的值为( )A .1B .2C .12D .3 【解析】本题考点是三角函数的恒等变换及化简求值,数量积判断两个平面向量的垂直关系.由题意可得a r ·b r =sin θ-2cos θ=0,即tan θ=2.∴sin 2θ+cos 2θ=2222sin cos +cos cos +sin θθθθθ=22tan +11+tan θθ=1,故选A . 【答案】A12.已知cos θ=-725,θ∈(-π,0),则sin 2θ+cos 2θ=( )A .125B .15±C .15D .15- 【解析】∵cos θ=-725,θ∈(-π,0), ∴cos 22θ-sin 22θ=(cos 2θ+sin 2θ)(cos 2θ-sin 2θ)<0,2θ∈(π2-,0), ∴sin 2θ+cos 2θ<0,cos 2θ-sin 2θ>0,∵(sin 2θ+cos 2θ)2=1+sin θ=1-491625-=125,∴sin 2θ+cos 2θ=15-.故选D .【答案】D13. =+οο75sin 15sin .【解析】本题考查的是三角恒等变换及特殊角的三角函数值的求解. 法一、6sin15sin 75sin15cos152sin(1545)2+=+=+=o o o o o o . 法二、6sin15sin 75sin(4530)sin(4530)2sin 45cos302+=-++==o o o o o o o o . 法三、62626sin15sin 75442-++=+=o o . 【答案】62. 14.在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 .【解析】本题考查的是三角恒等变换及正切的性质,本题要求会利用三角形中隐含的边角关系作为消元依据,同时要记住斜三角形ABC 中恒有tan tan tan tan tan tan A B C A B C =++,sin sin(B C)2sin sin tan tan 2tan tan A B C B C B C =+=⇒+=,因此tan tan tan tan tan tan tan 2tan tan 22tan tan tan tan tan tan 8A B C A B C A B C A B C A B C =++=+≥⇒≥,即最小值为8.【答案】8.15.【2018江苏卷16】已知,αβ为锐角,4tan 3α=,5cos()5αβ+=-. (1)求cos2α的值;(2)求tan()αβ-的值.【解析】(1)因为,,所以. 4tan 3α=sin tan cos ααα=4sin cos 3αα=因为,所以, 因此,. (2)因为为锐角,所以.又因为,所以, 因此.因为,所以, 因此,. 16.【2016高考山东理数】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A B A B B A +=+ (Ⅰ)证明:a +b =2c ;(Ⅱ)求cos C 的最小值.【解析】试题分析:(Ⅰ)根据两角和的正弦公式、正切公式、正弦定理即可证明;(Ⅱ)根据余弦定理公式表示出cosC ,由基本不等式求cos C 的最小值.试题解析:()I 由题意知sin sin sin sin 2cos cos cos cos cos cos A B A B A B A B A B ⎛⎫+=+ ⎪⎝⎭, 化简得()2sin cos sin cos sin sin A B B A A B +=+,即()2sin sin sin A B A B +=+.因为A B C π++=,所以()()sin sin sin A B C C π+=-=.从而sin sin =2sin A B C +.由正弦定理得2a b c +=.()∏由()I 知2a b c +=, 所以 2222222cos 22a b a b a b c C ab ab +⎛⎫+- ⎪+-⎝⎭==311842b a a b ⎛⎫=+-≥ ⎪⎝⎭, 当且仅当a b =时,等号成立.故 cos C 的最小值为12. 17.已知函数()22sin sin 6f x x x π⎛⎫=-- ⎪⎝⎭,R x ∈ 22sin cos 1αα+=29cos 25α=27cos22cos 125αα=-=-,αβ(0,π)αβ+∈5cos()5αβ+=-225sin()1cos ()5αβαβ+=-+=tan()2αβ+=-4tan 3α=22tan 24tan 21tan 7ααα==--tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+(I)求()f x 最小正周期;(II)求()f x 在区间[,]34p p -上的最大值和最小值. 【解析】本题考点两角和与差的正余弦公式、二倍角的正余弦公式、三角函数的图象与性质.综合运用三角 知识,从正确求函数解析式出发,考查最小正周期的求法与函数单调性的应用,从而求出函数的最大值与最小值,体现数学思想与方法的应用.(I) 由已知,有1cos 21cos211313()cos2sin 2cos2222222x x f x x x x π⎛⎫-- ⎪⎛⎫-⎝⎭=-=+- ⎪⎝⎭ 311sin 2cos2sin 24426x x x π⎛⎫--=- ⎪⎝⎭. 所以()f x 的最小正周期22T ππ==. (II)因为()f x 在区间[,]36p p --上是减函数,在区间[,]64p p -上是增函数, 113(),(),()346244f f f πππ-=--=-=,所以()f x 在区间[,]34p p -上的最大值为34,最小值为12-. 【答案】(I)π; (II) max 3()4f x =,min 1()2f x =-.。

三角函数恒等变换含答案及高考题

三角函数恒等变换含答案及高考题

三角函数恒等变形的基本策略。

(1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ·cotx=tan45°等。

(2)项的分拆与角的配凑。

如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α=(α+β)-β,β=2βα+-2βα-等。

(3)降次与升次。

(4)化弦(切)法。

(4)引入辅助角。

asin θ+bcos θ=22b a +sin(θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。

1.已知tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan ==xxx ,又sin 2x +cos 2x =1, 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx 解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x 2.求)330cos()150sin()690tan()480sin()210cos()120tan(----的值.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=3.若,2cos sin cos sin =+-xx xx ,求sin x cos x 的值.解:法一:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得 ,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x 所以⋅-=103cos sin x x 法二:因为,2cos sin cos sin =+-xx xx 所以sin x -cos x =2(sin x +cos x ),所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有⋅-=103cos sin x x 4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证. 法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证. 5.求函数)6π2sin(2+=x y 在区间[0,2π ]上的值域. 解:因为0≤x ≤2π,所以,6π76π26π,π20≤+≤≤≤x x 由正弦函数的图象, 得到],1,21[)6π2sin(-∈+x所以y ∈[-1,2]. 6.求下列函数的值域.(1)y =sin 2x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ). 解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3,令t =cos x ,则,413)21(413)21(3)(],1,1[222++-=++-=++-=-∈t t t t y t利用二次函数的图象得到].413,1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,)4πsin(+x ,则]2,2[-∈t 则,,12--=t t y 利用二次函数的图象得到].21,45[+-∈y7.若函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44=T ,T =16,所以⋅=8πω又由)28πsin(22ϕ+⨯=,得到可以取).4π8πsin(2.4π+=∴=x y ϕ8.已知函数f (x )=cos 4x -2sin x cos x -sin 4x .(Ⅰ)求f (x )的最小正周期; (Ⅱ)若],2π,0[∈x 求f (x )的最大值、最小值. 数xxy cos 3sin 1--=的值域.解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x )4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x所以最小正周期为π.(Ⅱ)若]2π,0[∈x ,则]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8π3=x 时,f (x )取最小值为.2-1. 已知2tan =θ,求(1)θθθθsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值.解:(1)2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin 324122221cos sin 2cos sin cos sin 222-=++-=+θθ+θθ-θθ=. 说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。

三角恒等变换与解三角形

三角恒等变换与解三角形

三角恒等变换与解三角形三角恒等变换是解三角形中常用的方法之一。

通过利用三角函数之间的关系,可以简化复杂的三角形问题,从而解决解题难题。

本文将介绍常见的三角恒等变换,并结合实例来说明其在解三角形问题中的应用。

一、三角恒等变换的定义三角恒等变换指的是一些等式或关系式,通过其变换可以得到与原三角函数等价的另一种表达式。

这些变换可以方便我们在求解三角形问题时进行化简和变形。

下面将介绍几种常见的三角恒等变换:1. 余弦定理余弦定理是三角形中常用的恒等变换之一,可以用来求解三角形的边长或角度。

余弦定理表达式如下:\[c^2 = a^2 + b^2 - 2ab \cos(C)\]其中,\(a\)、\(b\)、\(c\)表示三角形的边长,\(C\)表示夹角\(c\)的对应角。

2. 正弦定理正弦定理也是解三角形问题中常用的恒等变换。

正弦定理表达式如下:\[\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}\]其中,\(a\)、\(b\)、\(c\)表示三角形的边长,\(A\)、\(B\)、\(C\)表示三角形的对应角度。

3. 余角恒等变换余角恒等变换可以将三角函数中的一个角的正弦、余弦、正切、余切等函数转化为另一个角的相应三角函数表达式。

例如,\(sin(\pi -\theta) = sin\theta\)、\(cos(\pi - \theta) = -cos\theta\)等。

二、三角恒等变换在解三角形中的应用三角恒等变换在解三角形问题中是十分有用的。

通过对已知条件进行恒等变换,可以从中发现一些隐藏的关系,从而简化问题。

例如,已知三角形的两边和一夹角,可以使用余弦定理求解第三边的长度。

而当已知三角形的两边和三个角度之一时,可以使用正弦定理求解三角形的三个角度。

通过利用三角恒等变换,可以将复杂的计算问题转化为简单的代数计算,进而解决三角形问题。

下面通过一个具体的例子来说明三角恒等变换在解三角形中的应用。

高一数学三角函数三角恒等变换解三角形试题答案及解析

高一数学三角函数三角恒等变换解三角形试题答案及解析

高一数学三角函数三角恒等变换解三角形试题答案及解析1.(本小题满分12分)已知函数.(1)化简;(2)已知常数,若函数在区间上是增函数,求的取值范围;(3)若方程有解,求实数a的取值范围.【答案】(1)f(x)(2)(3)【解析】(1)························· 4分(2) ∵由∴的递增区间为∵在上是增函数∴当k = 0时,有∴解得∴的取值范围是····················· 8分(3) 解一:方程即为从而问题转化为方程有解,只需a在函数的值域范围内∵当;当∴实数a的取值范围为················ 12分解二:原方程可化为令,则问题转化为方程在[– 1,1]内有一解或两解,设,若方程在[– 1,1]内有一个解,则解得若方程在[– 1,1]内有两个解,则解得∴实数a的取值范围是[– 2,]2.已知函数(1)求函数f(x)的最小正周期及单调递增区间;(2)在中,A、B、C分别为三边所对的角,若a=f(A)=1,求的最大值.【答案】(1),单调增区间;(2)【解析】(1)首先借助于基本三角函数公式将函数式化简为的最简形式,周期由的系数求解,求增区间需令,解得的范围得到单调区间;(2)中由的值求得角,借助于三角形余弦定理可得到关于两边的关系式,进而结合不等式性质得到关于的不等式,求得范围试题解析:(1),所以函数的最小正周期为.由得所以函数的单调递增区间为.(2)由可得,又,所以。

三角恒等变换的基本公式与应用

三角恒等变换的基本公式与应用

三角恒等变换的基本公式与应用三角恒等变换是指由三角函数之间的关系,通过变换得到等价关系的过程。

它们是解决三角函数计算和证明题非常有用的工具。

本文将介绍三角恒等变换的基本公式、根据这些公式的应用以及相关的数学问题。

一、基本公式1. 正弦定理对于任意三角形ABC,其三边长度分别为a、b、c,夹角分别为A、B、C,则正弦定理表达式如下:a/sin(A) = b/sin(B) = c/sin(C)该定理可以用于求解三角形的边长或角度,甚至用于构造和证明三角形的性质。

2. 余弦定理对于任意三角形ABC,其三边长度分别为a、b、c,夹角分别为A、B、C,则余弦定理表达式如下:c² = a² + b² - 2abcos(C)该定理可以用于求解三角形的边长或角度,尤其适用于解决非特殊角的计算问题。

3. 正弦、余弦、正切的关系三角函数的基本关系:sin²(A) + cos²(A) = 1tan(A) = sin(A)/cos(A)这些关系可以通过三角函数间的相互转化和运算来推导和应用。

二、应用1. 角度推导与证明三角恒等变换的基本公式可以用于推导和证明角度之间的关系。

例如,我们可以利用正弦定理推导两角和差公式:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)这个公式在三角函数运算中非常常用。

2. 三角函数的化简与计算三角函数的公式化简是三角恒等变换的重要应用之一。

例如,我们可以利用tan(A) = sin(A)/cos(A)将复杂的三角函数表达式化简为更简洁的形式。

另外,当我们需要计算某些特殊角度的三角函数值时,也可以利用三角恒等变换的公式得到准确的数值结果。

3. 三角方程的求解三角方程是指含有未知角度的方程。

解决三角方程的关键是将其转化为已知角度的三角函数公式。

通过利用三角恒等变换的公式,我们可以将复杂的三角方程转化为简单的代数方程,从而求解出未知角度的值。

正弦定理余弦定理(解析版)

正弦定理余弦定理(解析版)

考点31 正弦定理、余弦定理【命题解读】高考对正弦定理和余弦定理的考查较为灵活,题型多变,往往以小题的形式独立考查正弦定理或余弦定理,以解答题的形式综合考查定理的综合应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换等结合考查,试题难度控制在中等或以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等 【基础知识回顾】1.正弦定理a sin A =b sin B =csin C =2R (R 为△ABC 外接圆的半径).a 2=b 2+c2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C .3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高); (2)S △ABC =12ab sin C =12bc sin A =12ac sin B ; (3)S =12r (a +b +c )(r 为三角形的内切圆半径).1、 在△ABC 中,若AB =13,BC =3,C =120°,则AC 等于( )A .1B .2C .3D .4 【答案】:A 【解析】:设在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则a =3,c =13,C =120°,由余弦定理得13=9+b 2+3b ,解得b =1或b =-4(舍去),即AC =1. 2、 已知△ABC ,a =5,b =15,A =30°,则c 等于( )A .2 5 B.5 C .25或 5 D .均不正确【答案】:C 【解析】:∵a sin A =b sin B ,∴sin B =b sin A a =155·sin 30°=32.∵b >a ,∴B =60°或120°. 若B =60°,则C =90°,∴c =a 2+b 2=2 5. 若B =120°,则C =30°,∴a =c = 5.3、 在△ABC 中,A =60°,AB =2,且△ABC 的面积为32,则BC 的长为( )A.32B.3 C .2 3 D .2 【答案】:B 【解析】:因为S =12AB ·AC sin A =12×2×32AC =32,所以AC =1, 所以BC 2=AB 2+AC 2-2AB ·AC cos A =3.所以BC = 3. 4、 在△ABC 中,cos C 2=55,BC =1,AC =5,则AB 等于( )A .4 2 B.30 C.29 D .25【答案】:A 【解析】:∵cos C 2=55,∴cos C =2cos 2C 2-1=2×⎝⎛⎭⎫552-1=-35.在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos C =52+12-2×5×1×⎝⎛⎭⎫-35=32,∴AB =32=4 2.故选A.5、 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定【答案】:B 【解析】:由正弦定理得sin B cos C +sin C cos B =sin 2A , ∴sin(B +C )=sin 2A ,即sin(π-A )=sin 2A ,sin A =sin 2A . ∵A ∈(0,π),∴sin A >0,∴sin A =1, 即A =π2,∴△ABC 为直角三角形.6、在△ABC 中,cos 2B 2=a +c2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .等边三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形 【答案】:B 【解析】:∵cos 2B 2=1+cos B 2,cos 2B 2=a +c2c ,∴(1+cos B )·c =a +c ,∴a =cos B ·c =a 2+c 2-b 22a , ∴2a 2=a 2+c 2-b 2,∴a 2+b 2=c 2,∴△ABC 为直角三角形.7、 △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin C +c sin B =4a sin B sin C ,b 2+c 2-a 2=8,则△ABC的面积为 . 【答案】:233 【解析】:由b sin C +c sin B =4a sin B sin C , 得sin B sin C +sin C sin B =4sin A sin B sin C ,因为sin B sin C ≠0,所以sin A =12.因为b 2+c 2-a 2=8,所以cos A =b 2+c 2-a 22bc >0, 所以bc =833,所以S △ABC =12×833×12=233.8、 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A -3cos C cos B =3c -a b ,则sin Csin A 的值为__________. 【答案】:3 【解析】:由正弦定理a sin A =b sin B =csin C ,得cos A -3cos C cos B =3c -a b =3sin C -sin A sin B , 即(cos A -3cos C )sin B =(3sin C -sin A )·cos B , 化简可得sin(A +B )=3sin(B +C ),又知A +B +C =π,所以sin C =3sin A ,因此sin Csin A =3.考向一 运用正余弦定理解三角形例1、(2020届山东实验中学高三上期中)在ABC △中,若3,120AB BC C ==∠=,则AC =( ) A .1 B .2C .3D .4【答案】A 【解析】余弦定理2222?cos AB BC AC BC AC C =+-将各值代入 得2340AC AC +-=解得1AC =或4AC =-(舍去)选A.变式1、(2021·山东泰安市·高三三模)在中,,,,则( )ABC .D .【答案】DABC3AC =2BC =3cos 4C =tan A =33【解析】由余弦定理可以求出,有可判断,进而可以求出. 【解析】由余弦定理得:, 所以,因为,所以,所以, 故选:D .变式2、【2020江苏淮阴中学期中考试】在ABC 中,如果sin :sin :sin 2:3:4A B C =,那么tan C =________.【答案】【解析】∵sin A :sin B :sin C =2:3:4,∴由正弦定理可得:a :b :c =2:3:4,∴不妨设a =2t ,b =3t ,c =4t ,则cos C 2222224916122234a b c t t t ab t t +-+-===-⨯⨯,∵C ∈(0,π),∴tanC ==答案为变式3、(2020届山东省泰安市高三上期末)在△ABC 中,内角A ,B ,C 的对边分别为,,a b c ,若cos cos sin A B C a b c +=,22265b c a bc +-=,则tan B =______. 【答案】4 【解析】∵cos cos sin A B Ca b c+=, ∴由正弦定理得cos cos sin sin sin sin A B CA B C+=, ∴111tan tan A B+=, 又22265b c a bc +-=,∴由余弦定理得62cos 5A =,∴3cos 5A =,∵A 为ABC ∆的内角,∴4sin 5A =,∴4tan 3A =,∴tan 4B =, 故答案为:4.2AB =AB BC =A C =tan A 2222232cos 3223244AB AC BC BC AC C =+-⋅=+-⨯⨯⨯=2AB =AB BC =A C =3cos cos 4A C ==tan 3A =变式4、(2020届山东省潍坊市高三上期中)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知10a b +=,5c =,sin 2sin 0B B +=. (1)求a ,b 的值: (2)求sin C 的值.【答案】(1)3a =,7b =;(2. 【解析】(1)由sin 2sin 0B B +=,得2sin cos sin 0B B B +=, 因为在ABC ∆中,sin 0B ≠,得1cos 2B =-, 由余弦定理2222cos b a c ac B =+-,得22215252b a a ⎛⎫=+-⨯⨯⨯-⎪⎝⎭, 因为10b a =-,所以2221(10)5252a a a ⎛⎫-=+-⨯⨯⨯- ⎪⎝⎭, 解得3a =,所以7b =.(2)由1cos 2B =-,得sin B =由正弦定理得5sin sin 7214c C B b ==⨯=方法总结:本题考查正弦定理、余弦定理的公式.在解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.考查基本运算能力和转化与化归思想.考向二 利用正、余弦定理判定三角形形状例2、已知a ,b ,c 分别是△ABC 三个内角A ,B ,C 的对边,下列四个命题中正确的是( )A .若tan A +tanB +tanC >0,则△ABC 是锐角三角形 B .若a cos A =b cos B ,则△ABC 是等腰三角形 C .若b cos C +c cos B =b ,则△ABC 是等腰三角形D .若a cos A =b cos B =ccos C ,则△ABC 是等边三角形 【答案】:ACD 【解析】:∵tan A +tan B +tan C =tan A tan B tan C >0, ∴A ,B ,C 均为锐角,∴选项A 正确;由a cos A =b cos B 及正弦定理,可得sin 2A =sin 2B , ∴A =B 或A +B =π2,∴△ABC 是等腰三角形或直角三角形,∴选项B 错; 由b cos C +c cos B =b 及正弦定理, 可知sin B cos C +sin C cos B =sin B , ∴sin A =sin B ,∴A =B ,∴选项C 正确;由已知和正弦定理,易知tan A =tan B =tan C , ∴选项D 正确.变式1、△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且2a sin A =(2b +c)sin B +(2c +b)sin C.(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状. 【解析】 (1)由已知,根据正弦定理得:2a 2=(2b +c)b +(2c +b)c ,即a 2=b 2+c 2+bc ,由余弦定理得:a 2=b 2+c 2-2bc cos A ,故cos A =-12,A =120°.(2)由(1)得:sin 2A =sin 2B +sin 2C +sin B sin C ,∵A =120°,∴34=sin 2B +sin 2C +sin B sin C ,与sin B +sin C=1联立方程组解得:sin B =sin C =12,∵0°<B <60°,0°<C <60°,故B =C =30°,∴△ABC 是等腰钝角三角形.变式2、(1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形【答案】 (1)B (2)C 【解析】(1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac ,所以b =c . 又(b +c +a )(b +c -a )=3bc , 所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12. 因为A ∈(0,π),所以A =π3, 所以△ABC 是等边三角形.方法总结: 判定三角形形状的途径:①化边为角,通过三角变换找出角之间的关系;②化角为边,通过代数变形找出边之间的关系.正(余)弦定理是转化的桥梁.考查转化与化归思想. 考点三 运用正余弦定理研究三角形的面积考向三 运用正余弦定理解决三角形的面积例3、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知b cos C +c cos B =2a cos A . (1) 求角A 的大小;(2) 若AB →·AC →=3,求△ABC 的面积. 【解析】:(1) (解法1)在△ABC 中,由正弦定理,及b cos C +c cos B =2a cos A , 得sin B cos C +sin C cos B =2sin A cos A , 即sin A =2sin A cos A .因为A ∈(0,π),所以sin A ≠0, 所以cos A =12,所以A =π3.(解法2)在△ABC 中,由余弦定理,及b cos C +c cos B =2a cos A , 得b a 2+b 2-c 22ab +c a 2+c 2-b 22ac =2a b 2+c 2-a 22bc , 所以a 2=b 2+c 2-bc ,所以cos A =b 2+c 2-a 22bc =12. 因为A ∈(0,π),所以A =π3.(2) 由AB →·AC →=cb cos A =3,得bc =23,所以△ABC 的面积为S =12bc sin A =12×23×sin60°=32变式1、在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cosA -3sinB cos B . (1) 求角C 的大小;(2) 若sin A =45,求△ABC 的面积. 【解析】:(1) 由题意得 1+cos2A 2-1+cos2B 2=32sin 2A -32sin 2B , 即32sin 2A -12cos 2A =32sin 2B -12cos 2B ,sin ⎝⎛⎭⎫2A -π6=sin ⎝⎛⎭⎫2B -π6.由a ≠b ,得A ≠B .又A +B ∈(0,π),得2A -π6+2B -π6=π,即A +B =2π3,所以C =π3. (2) 由c =3,sin A =45,a sin A =c sin C ,得a =85. 由a <c ,得A <C ,从而cos A =35,故sin B =sin(A +C )=sin A cos C +cos A sin C =4+3310, 所以,△ABC 的面积为S =12ac sin B =83+1825.变式2、(2020届山东实验中学高三上期中)在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,若32sin sin sin ,cos 5B AC B =+=,且6ABC S ∆=,则b =__________. 【答案】4【解析】已知等式2sin sin B A sinC =+,利用正弦定理化简得:2b a c =+,3cos ,5B =∴可得4sin 5B ==,114sin 6225ABC S ac B ac ∆∴==⨯=,可解得15ac =,∴余弦定理可得,2222cos b a c ac B =+-()()221cos a c ac B =+-+=23421515b ⎛⎫-⨯⨯+ ⎪⎝⎭,∴可解得4b =,故答案为4.变式3、【2020江苏溧阳上学期期中考试】在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若3b =,222sin sin 3sin A B C -=,1cos 3A =-,则ABC ∆的面积是______.【解析】3b =,222sin sin 3sin A B C -=,∴由正弦定理可得2222339a c b c =+=+,又1cos 3A =-,∴由余弦定理可得22222cos 92a b c bc A c c =+-=++,223992c c c ∴+=++,解得1c =,又sin A ==,11sin 3122ABC S bc A ∆∴==⨯⨯.方法总结:1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.考向三 结构不良题型例4、(2020届山东省烟台市高三上期末)在条件①()(sin sin )()sin a b A B c b C +-=-,②sin cos()6a Bb A π=+,③sin sin 2B Cb a B +=中任选一个,补充到下面问题中,并给出问题解答.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,6b c +=,a =, . 求ABC ∆的面积. 【解析】 若选①:由正弦定理得(a b)()(c b)a b c +-=-, 即222b c a bc +-=,所以2221cos 222b c a bc A bc bc +-===,因为(0,)A π∈,所以3A π=.又2222()3a b c bc b c bc =+-=+-,a =6bc +=,所以4bc =,所以11sin 4sin 223ABC S bc A π∆==⨯⨯= 若选②:由正弦定理得sin sin sin cos()6A B B A π=+.因为0B π<<,所以sin 0B ≠,sin cos()6A A π=+,化简得1sin sin 2A A A =-,即tan 3A =,因为0A π<<,所以6A π=.又因为2222cos6a b c bc π=+-,所以2222bc =24bc =-所以111sin (246222ABC S bc A ∆==⨯-⨯=- 若选③:由正弦定理得sin sinsin sin 2B CB A B +=, 因为0B π<<,所以sin 0B ≠,所以sinsin 2B CA +=,又因为BC A +=π-, 所以cos 2sin cos 222A A A=,因为0A π<<,022A π<<,所以cos 02A≠,1sin 22A ∴=,26A π=,所以3A π=.又2222()3a b c bc b c bc =+-=+-,a =6bc +=,所以4bc =,所以11sin 4sin 223ABC S bc A π∆==⨯⨯= 变式1、(2020届山东省德州市高三上期末)已知a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边,若ABC ∆同时满足下列四个条件中的三个:①b ac -=②2cos 22cos 12A A +=;③a =④b =(1)满足有解三角形的序号组合有哪些?(2)在(1)所有组合中任选一组,并求对应ABC ∆的面积. (若所选条件出现多种可能,则按计算的第一种可能计分) 【解析】(1)由①()33b a c c a b -+=+得,()2223a c b +-=-,所以222cos 2a c b B ac +-== 由②2cos 22cos 12AA +=得,22cos cos 10A A +-=, 解得1cos 2A =或cos 1A =-(舍),所以3A π=,因为1cos 32B =-<-,且()0,B π∈,所以23B π>,所以A B π+>,矛盾.所以ABC ∆不能同时满足①,②. 故ABC ∆满足①,③,④或②,③,④; (2)若ABC ∆满足①,③,④,因为2222cos b a c ac B =+-,所以28623c c =++⨯,即2420c c +-=.解得2c =.所以ABC ∆的面积1sin 2S ac B ==若ABC ∆满足②,③,④由正弦定理sin sin a b A B==sin 1B =,所以c =ABC ∆的面积1sin 2S bc A ==变式2、(2020cos )sin b C a c B -=;②22cos a c b C +=;③sin sin2A Cb A += 这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足________________,b =4a c +=,求ABC ∆的面积.【解析】cos sin )sin sin B C A C B -=. 由sin sin()sin cos cos sin A B C B C B C =+=+,得sin sin sin B C C B =. 由0C π<<,得sin 0C ≠.所以sin B B =.又cos 0B ≠(若cos 0B =,则sin 0,B =22sin cos 0B B +=这与22sin cos 1B B +=矛盾),所以tan B = 又0B π<<,得23B π=.由余弦定理及b =得22222cos3a c ac π=+-, 即212()a c ac =+-.将4a c +=代入,解得4ac =.所以1sin 2ABC S ac B =△1422=⨯⨯= 在横线上填写“22cos a c b C +=”. 解:由22cos a c b C +=及正弦定理,得2sin sin 2sin cos A C B C ++=.又sin sin()sin cos cos sin A B C B C B C =+=+, 所以有2cos sin sin 0B C C +=. 因为(0,)C π∈,所以sin 0C ≠. 从而有1cos 2B =-.又(0,)B π∈, 所以23B π=由余弦定理及b =得22222cos3a c ac π=+-即212()a c ac =+-.将4a c +=代入, 解得4ac =.所以11sin 4222ABCSac B ==⨯⨯=在横线上填写“sin sin2A Cb A +=”解:由正弦定理,得sin sin sin 2BB A A π-=.由0A π<<,得sin A θ≠,所以sin 2B B =由二倍角公式,得2sincos 222B B B =.由022B π<<,得cos 02B ≠,所以sin 22B =. 所以23B π=,即23B π=.由余弦定理及b =得22222cos3a c ac π=+-. 即212()a c ac =+-.将4a c +=代入, 解得4ac =.所以1sin 2ABC S ac B =△142=⨯=1、【2020年高考全国III 卷理数】在△ABC 中,cos C =23,AC =4,BC =3,则cos B = A .19B .13C .12D .23【答案】A 【解析】在ABC 中,2cos 3C =,4AC =,3BC =,根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅,2224322433AB =+-⨯⨯⨯,可得29AB = ,即3AB =, 由22299161cos22339AB BC AC B AB BC +-+-===⋅⨯⨯,故1cos 9B =. 故选:A .2、【2018年高考全国Ⅱ理数】在ABC △中,cos25C =,1BC =,5AC =,则AB =A . BCD .【答案】A【解析】因为223cos 2cos 121,255C C ⎛⎫=-=⨯-=- ⎪ ⎪⎝⎭所以22232cos 125215325AB BC AC BC AC C AB ⎛⎫=+-⋅=+-⨯⨯⨯-== ⎪⎝⎭,则 A.3、【2018年高考全国Ⅲ理数】ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2B .π3 C .π4D .π6【答案】C【解析】由题可知2221sin 24ABCa b c S ab C +-==△,所以2222sinC a b c ab +-=, 由余弦定理2222cos a b c ab C +-=,得sin cos C C =,因为()0,πC ∈,所以π4C =,故选C.4、【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.【答案】【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =,解得c c ==-,所以2a c ==,11sin 222ABC S ac B ==⨯=△ 5、【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.【答案】5,10【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,5AC ,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以BD =ππcos cos()cos cos sin sin 4410ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.6、【2018年高考浙江卷】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =b =2,A =60°,则sin B =___________,c =___________.【答案】7,3【解析】由正弦定理得sinsin a A b B =,所以πsin sin 3B ==由余弦定理得22222cos ,742,3a b c bc A c c c =+-∴=+-∴=(负值舍去).7、(2020届山东省枣庄市高三上学期统考)ABC ∆的内角A ,B ,C 的对边分别为,,a b c ,已知()2cos cos 0a c B b A ++=.(I )求B ;(II )若3,b ABC =∆的周长为3ABC +∆的面积. 【解析】 (Ⅱ)()2cos cos 0a c B b A ++=,()sin 2sin cos sin cos 0A C B B A ∴++=,()sin cos sin cos 2sin cos 0A B B A C B ++=,()sin 2cos sin 0A B B C ++=, ()sin sin A B C +=.1cos 2B ∴=-,20,3B B ππ<<∴=.(Ⅱ)由余弦定理得221922a c ac ⎛⎫=+-⨯-⎪⎝⎭, ()2229,9a c ac a c ac ++=∴+-=,33,a b c b a c ++=+=∴+= 3ac ∴=,11sin 322ABCSac B ∴==⨯=. 8、(2020届山东省潍坊市高三上期中)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知10a b +=,5c =,sin 2sin 0B B +=.(1)求a ,b 的值: (2)求sin C 的值. 【解析】(1)由sin 2sin 0B B +=,得2sin cos sin 0B B B +=, 因为在ABC ∆中,sin 0B ≠,得1cos 2B =-, 由余弦定理2222cos b a c ac B =+-,得22215252b a a ⎛⎫=+-⨯⨯⨯-⎪⎝⎭, 因为10b a =-,所以2221(10)5252a a a ⎛⎫-=+-⨯⨯⨯- ⎪⎝⎭, 解得3a =,所以7b =.(2)由1cos 2B =-,得sin 2B =由正弦定理得5sin sin 7c C B b ===9、【2020年新高考全国Ⅱ卷】在①ac =sin 3c A =,③c =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角,,A B C 的对边分别为,,a b c ,且sin A B =,6C π=,________? 注:如果选择多个条件分别解答,按第一个解答计分. 【解析】方案一:选条件①.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a .222=b c =.由①ac =1a b c ==.因此,选条件①时问题中的三角形存在,此时1c =. 方案二:选条件②.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a .222=b c =,6B C π==,23A π=.由②sin 3c A =,所以6c b a ===.因此,选条件②时问题中的三角形存在,此时c = 方案三:选条件③.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a .222=b c =.由③c =,与b c =矛盾.因此,选条件③时问题中的三角形不存在.。

专题解析:三角恒等变换与解三角形

专题解析:三角恒等变换与解三角形

三角恒等变换与解三角形核心考点(一)三角恒等变换【核心知识】1.两角和与差的余弦、正弦及正切公式①cos (α+β)=cos αcos β-sin αsin β②cos (α-β)=cos αcos β+sin αsin β③sin (α+β)=sin αcos β+cos αsin β④sin (α-β)=sin αcos β-cos αsin β⑤tan (α+β)=tan α+tan β1-tan αtan β(α≠k π+π2,k ∈Z ,β≠k π+π2,k ∈Z ,α+β≠k π+π2,k ∈Z )⑥tan (α-β)=tan α-tan β1+tan αtan β(α≠k π+π2,k ∈Z ,β≠k π+π2,k ∈Z ,α-β≠k π+π2,k ∈Z )2.二倍角公式:①sin 2α=2sin αcos α②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α③tan2α=2tan α1-tan 2α(α≠k π+π2,k ∈Z ,2α≠k π+π2,k ∈Z ,α≠k π±π4,k ∈Z )3.辅助角公式:a cos x +b sin x x +ba 2+b 2sin 令sin θ=aa 2+b 2,cos θ∴a cos x +b sin x =a 2+b 2sin (x +θ),其中θ为辅助角,tan θ=ab .4.降幂公式①sin 2α=1-cos2α2②cos 2α=1+cos2α2③sin αcos α=12sin 2α【典例引领·研明】【典例】(1)(2020·全国卷Ⅲ)已知sin θ+sin 1,则sin ()A .12B .33C .23D .22解析:选B .∵sin θ+sin =32sin θ+32cos θ=3sin 1,∴sin =33.故选B .(2)已知黄金三角形是一个等腰三角形,其底与腰的长度的比值为黄金比值(即黄金分割值5-12,该值恰好等于2sin 18˚),则sin 100˚cos 26˚+cos 100˚sin 26˚=()A .-5+24B .5+24C .-5+14D .5+14解析:选D .由已知可得2sin 18˚=5-12,故sin 18˚=5-14,则sin 100˚cos 26˚+cos 100˚sin 26˚=sin 126˚=sin (36˚+90˚)=cos 36˚=1-2sin 218˚=1-2×(5-14)2=5+14.故选D .(3)(多选)下列各式中值为12的是()A .1-2cos 275°B .sin135°cos 15°-cos 45°cos 75°C .tan 20°+tan 25°+tan 20°tan 25°D .cos 35°1-sin 20°2cos 20°解析:选BD.对于A ,1-2cos 275°=-cos 150°=cos 30°=32,A 错误;对于B ,sin 135°cos 15°-cos 45°cos 75°=sin 45°sin 75°-cos 45°cos 75°=-cos 120°=12,B 正确;对于C ,∵tan 45°=1=tan 20°+tan 25°1-tan 20°tan 25°,∴1-tan 20°tan 25°=tan 20°+tan 25°,∴tan20°+tan 25°+tan 20°tan 25°=1,C 错误;对于D ,cos 35°1-sin 20°2cos 20°=cos 35°(cos 10°-sin 10°)22(cos 10°+sin 10°)(cos 10°-sin 10°)=cos 35°2(cos 10°+sin 10°)=cos 45°cos 10°+sin 45°sin 10°2(cos 10°+sin 10°)=22(cos 10°+sin 10°)2(cos 10°+sin 10°)=12,D 正确;故选BD.(4)(2022·浙江高考)若3sin α-sin β=10,α+β=π2,则sin α=______,cos 2β=____________.解析:∵α+β=π2,∴sin β=cos α,∵3sin α-cos α=10,α-1010cos =10,令sin θ=1010,cos θ=31010,则10sin (α-θ)=10,∴α-θ=π2+2k π,k ∈Z ,即α=θ+π2+2k π,∴sin α=sin +π2+2k cos θ=31010,则cos 2β=2cos 2β-1=2sin 2α-1=45.答案:3101045【解题方法】———————————————————————————————●1.三角函数求值的类型及方法(1)常值代换:常用到“1”的代换,1=sin 2θ+cos 2θ=tan45°等.(2)项的拆分与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等.(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次.(4)弦、切互化:一般是切化弦.【对点集训·练透】1.(2021·全国高考甲卷)若αtan2α=cos α2-sin α,则tan α=()A .1515B .55C .53D .153解析:选A .∵tan 2α=cos α2-sin α,∴tan 2α=sin 2αcos 2α=2sin αcos α1-2sin 2α=cos α2-sin α,∵αcos α≠0,∴2sin α1-2sin 2α=12-sin α,解得sin α=14,∴cos α=1-sin 2α=154,∴tan α=sin αcos α=1515.故选A .2.(2022·江苏盐城二模)计算2cos 10°-sin 20°cos 20°所得的结果为()A .1B .2C .3D .2解析:选C .2cos 10°-sin 20°cos 20°=2cos (30°-20°)-sin 20°cos 20°=3cos 20°+sin 20°-sin 20°cos 20°=3.3.已知αsin +=13,则tan α的值为____________.解析:∵sin 2cos 2α=13,α∴sin α=1-cos 2α2=33,cos α=1+cos 2α2=63,∴tan α=sin αcos α=22.答案:224.(2022·湖南郴州二模)如图,以Ox 为始边作角α(0<α<π),终边与单位圆相交于点P ,已知点P -35,,则sin 2α+cos 2α+11+tan α=________.解析:由三角函数定义,得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos α(sin α+cos α)sin α+cos αcos α=2cos 2α=2=1825.答案:1825核心考点(二)利用正、余弦定理解三角形【核心知识】1.正弦定理及其变形a sin A =b sin B =c sin C=2R (2R 为△ABC 外接圆的直径).【变形】a =2R sin A ,b =2R sin B ,c =2R sin C .sin A =a 2R ,sin B =b 2R ,sin C =c 2R.a ∶b ∶c =sin A ∶sin B ∶sin C .2.余弦定理及其推论、变形a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C .【推论】cos A =b 2+c 2-a 22bc,cos B =a 2+c 2-b 22ac,cos C =a 2+b 2-c 22ab.【变形】b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C .3.射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =a cos B +b cos A ,称为“射影定理”.4.面积公式S△ABC=12bc sin A=12ac sin B=12ab sin C.角度1利用正、余弦定理进行边角计算【例1】(2021·福建漳州模拟)在△ABC中,角A,B,C的对边分别为a,b,c,已知(2b -c)cos A=a cos C,则A=()A.π6B.π3C.2π3D.5π6解析:选B.法一∵(2b-c)cos A=a cos C,∴由正弦定理得(2sin B-sin C)cos A=sin A cos C,∴2sin B cos A=sin A cos C+sin C cos A=sin(A+C)=sin B,∵0<B<π,∴cos A=12,又0<A<π,∴A=π3.法二∵(2b-c)cos A=a cos C,∴2b cos A=a cos C+c cos A=b,∴cos A=12,又0<A<π,∴A=π3.【例2】已知△ABC的内角A,B,C的对边分别为a,b,c,且3a cos C-c sin A=3b.(1)求角A;(2)若c=2,且BC边上的中线长为3,求b.解:(1)由题意,3a cos C-c sin A=3b,由正弦定理得3sin A cos C-sin C sin A=3sin B,因为B=π-A-C,所以3sin A cos C-sin C sin A=3sin(A+C),得3sin A cos C-sin C sin A=3sin A cos C+3cos A sin C,得-sin C sin A=3cos A sin C,因为sin C≠0,所以sin A=-3cos A,即tan A=-3,又A∈(0,π),所以A=2π3.(2)在△ABC中,由余弦定理得a2=b2+c2-2bc cos A=b2+4+2b①,cos B=a2+c2-b22ac=a2+4-b24a.设BC的中点为D,则在△ABD中,cos B2×a2×c=a24+12a,所以a 2+4-b 24a =a 24+12a ,得a 2+4-2b 2=0②,由①②可得,b 2-2b -8=0,所以b =4.【解题方法】———————————————————————————————●(1)求边:利用公式a =b sin A sin B ,b =a sin B sin A ,c =a sin Csin A 或其他相应变形公式求解.(2)求角:先求出正弦值,再求角,即利用公式sin A =a sin B b ,sin B =b sin A a ,sin C =c sin Aa或其他相应变形公式求解.(3)已知两边和夹角或已知三边可利用余弦定理求解.(4)灵活利用式子的特点转化:如出现a 2+b 2-c 2=λab 形式用余弦定理,等式两边是关于边或角的正弦的齐次式用正弦定理.(5)常常应用A +B +C =π减少未知角的个数.【对点练】1.(2022·山西大同二模)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B .(1)证明:A =2B ;(2)若cos B =23,求cos C 的值.解:(1)证明:由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin (A +B )=sin B +sin A ·cos B +cos A sin B ,于是sin B =sin (A -B ).又A ,B ∈(0,π),故0<A -B ,所以B =π-(A -B )或B =A -B ,因此A =π(舍去)或A =2B ,所以,A =2B .(2)由cos B =23得sin B =53,cos 2B =2cos 2B -1=-19,故cos A =-19,sin A =459,cos C =-cos (A +B )=-cos A cos B +sin A sin B =2227.2.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A cos C +c sin A cos B =15a4.(1)求sin A ;(2)若a =32,b =4,求c .解:(1)因为b sin A cos C +c sin A cos B =15a4,所以由正弦定理,得sin B sin A cos C +sin C sin A cos B =15sin A4,因为sin A ≠0,所以sin B cos C +sin C cos B =154,所以sin (B +C )=154,所以sin (π-A )=154,所以sin A =154.(2)因为△ABC 为锐角三角形,所以A 为锐角,因为sin A =154,所以cos A =14.因为a =32,b =4,由余弦定理得(32)2=42+c 2-2×4×c ×14,所以c 2-2c -2=0,所以c =3+1.角度2与面积和周长有关的问题【例3】(2022·北京高考)在△ABC 中,sin 2C =3sin C .(1)求∠C ;(2)若b =6,且△ABC 的面积为63,求△ABC 的周长.解:(1)因为C ∈(0,π),则sin C >0,由已知可得3sin C =2sin C cos C ,可得cos C =32,因此,C =π6.(2)由三角形的面积公式可得S △ABC =12ab sin C =32a =63,解得a =4 3.由余弦定理可得c 2=a 2+b 2-2ab cos C =48+36-2×43×6×32=12,∴c =23,所以,△ABC 的周长为a +b +c =63+6.【例4】(2022·湖南益阳二模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin A +3cos A =0,a =27,b =2.(1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.解:(1)由已知可得tan A =-3,所以A =2π3.在△ABC 中,由余弦定理得28=4+c 2-4c cos 2π3,即c 2+2c -24=0.解得c =-6(舍去),c =4.(2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6.故△ABD 面积与△ACD 面积的比值为12AB ·AD ·sinπ612AC ·AD =1.又△ABC 的面积为12×4×2sin ∠BAC =23,所以△ABD 的面积为 3.【解题方法】———————————————————————————————●(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用含该角的公式.(2)与面积有关的问题,一般要利用正弦定理或余弦定理进行边和角的互化.三角形面积公式还可用其他几何量表示:S =12(a +b +c )r ,其中a +b +c 为三角形的周长,r 为三角形内切圆的半径.【对点练】3.(2021·新高考全国Ⅱ卷)在△ABC 中,角A ,B ,C 所对的边为a ,b ,c ,且满足b =a +1,c =a +2.(1)若2sin C =3sin A ,求△ABC 的面积;(2)是否存在正整数a ,使得△ABC 为钝角三角形?若存在,求a ;若不存在,说明理由.解:(1)2sin C =3sin A ⇒2c =3a ,∵c =a +2,∴2(a +2)=3a ,∴a =4,∴b =a +1=5,c =a +2=6,∴cos A =b 2+c 2-a 22bc =52+62-422×5×6=34,∴sin A =1-cos 2A =74,∴S △ABC =12bc sin A =12×5×6=1574.(2)存在.由于c >b >a ,故要使△ABC 为钝角三角形,只能是C 为钝角.cos C =a 2+b 2-c 22ab <0⇒a 2+b 2<c 2⇒a 2+(a +1)2<(a +2)2⇒a 2-2a -3<0⇒-1<a <3,又a >0,∴a ∈(0,3).考虑构成△ABC 的条件,可得a +b >c ⇒a +(a +1)>a +2⇒a >1.综上,a ∈(1,3).又a 为正整数,∴a =2,∴存在a =2,使得△ABC 为钝角三角形.4.(2022·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知4a =5c ,cos C =35.(1)求sin A 的值;(2)若b =11,求△ABC 的面积.解:(1)由于cos C =35,0<C <π,则sin C =45.因为4a =5c ,由正弦定理知4sin A =5sin C ,则sin A =54sin C =55.(2)因为4a =5c ,由余弦定理,得cos C =a 2+b 2-c 22ab=a 2+121-165a 222a =11-a 252a=35,即a 2+6a -55=0,解得a =5,而sin C =45,b =11,所以△ABC 的面积S =12ab sin C =12×5×11×45=22.角度3最值与范围问题【例5】(2019·全国高考Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sin A +C2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.解:(1)由题设及正弦定理得sin A sin A +C2=sin B sin A .因为sin A ≠0,所以sinA +C2=sin B .由A +B +C =180°,可得sinA +C 2=cos B 2,故cos B 2=2sin B 2cos B2.因为cos B 2≠0,故sin B 2=12,因此B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =34a .由正弦定理得a =c sin A sin C =sin (120°-C )sin C=32tan C +12.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°.由(1)知A +C =120°,所以30°<C <90°,故12<a <2,从而38<S △ABC <32.因此,△ABC 面积的取值范围是(38,32).【例6】(2022·河北沧州二模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2(tan A +tan B )=tan A cos B +tan Bcos A.(1)证明:a +b =2c ;(2)求cos C 的最小值.解:(1)证明:由题意知=sin A cos A cos B +sin Bcos A cos B ,化简得2(sin A cos B +sin B cos A )=sin A +sin B ,即2sin (A +B )=sin A +sin B ,因为A +B +C =π,所以sin (A +B )=sin (π-C )=sin C .从而sin A +sin B =2sin C .由正弦定理得a +b =2c .(2)由(1)知c =a +b 2,所以cos C =a 2+b 2-c 22ab =2ab -14≥12,当且仅当a =b 时,等号成立.故cos C 的最小值为12.【解题方法】———————————————————————————————●求解三角形中最值、范围问题的方法(1)函数法:建立有关的函数关系式,利用角的范围求解;(2)基本不等式法:当三角形中一组边角成对已知时,一般考虑余弦定理,转化为圆内接三角形,利用不等式可求周长最大值问题.【对点练】5.(2021·内蒙古包头一模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin 2B -sin 2A -sin 2C =sin A sin C .(1)求B ;(2)若b =3,当△ABC 的周长最大时,求它的面积.解:(1)由正弦定理得b 2-a 2-c 2=ac ,∴cos B =a 2+c 2-b 22ac =-12,∵B ∈(0,π),∴B =2π3.(2)由余弦定理得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac +ac =(a +c )2-ac =9,∴ac =(a +c )2-9(当且仅当a =c 时取等号),∴a +c ≤23,∴当a =c =3时,△ABC 周长取得最大值,此时S △ABC =12ac sin B =32×32=334.6.(2022·新高考全国Ⅰ卷)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A1+sin A=sin 2B 1+cos 2B.(1)若C =2π3,求B ;(2)求a 2+b 2c 2的最小值.解:(1)因为cos A 1+sin A =sin 2B 1+cos 2B=2sin B cos B 2cos 2B =sin Bcos B ,即sin B =cos A cos B -sin A sin B =cos (A +B )=-cos C =12,而0<B <π2,所以B =π6.(2)由(1)知,sin B =-cos C >0,所以π2<C <π,0<B <π2,而sin B =-cos C =sin所以C =π2+B ,即有A =π2-2B ,所以a 2+b 2c 2=sin 2A +sin 2Bsin 2C=cos 22B +1-cos 2B cos 2B =(2cos 2B -1)2+1-cos 2B cos 2B=4cos 2B +2cos 2B -5≥28-5=42-5,当且仅当cos 2B =22时取等号,所以a 2+b 2c2的最小值为42-5.核心考点(三)解三角形的综合应用角度1与平面几何有关的解三角形问题【例1】(2020·全国Ⅰ卷)如图,在三棱锥P ­ABC 的平面展开图中,AC =1,AB =AD =3,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =________.解析:在△ABC 中,AB ⊥AC,AC =1,AB =3,所以BC =2.在△ABD 中,AB ⊥AD,AD =3,AB =3,所以BD = 6.在△ACE 中,AC =1,AE =AD =3,∠CAE =30°,由余弦定理得CE 2=AC 2+AE 2-2AC ·AE ·cos ∠CAE =1+3-2×1×3×32=1,所以CE =1.在△BCF 中,BC =2,FC =CE =1,BF =BD =6,由余弦定理得cos ∠FCB =FC 2+BC 2-FB 22FC ·BC =1+4-62×1×2=-14.答案:-14【例2】(2021·新高考全国Ⅰ卷)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b 2=ac ,点D 在边AC 上,BD sin ∠ABC =a sin C .(1)证明:BD =b ;(2)若AD =2DC ,求cos ∠ABC .解:(1)证明:由题设,BD =a sinC sin ∠ABC,由正弦定理知c sin C =b sin ∠ABC ,即sin C sin ∠ABC =c b,∴BD =acb ,又b 2=ac ,∴BD =b ,得证.(2)由题意知,BD =b ,AD =2b3,DC =b 3,∴cos ∠ADB =b 2+4b 29-c 22b ·2b 3=13b 29-c 24b 23,同理cos ∠CDB =b 2+b 29-a 22b ·b 3=10b 29-a 22b 23,∵∠ADB =π-∠CDB ,∴13b 29-c 24b 23=a 2-10b 292b 23,整理得2a 2+c 2=11b 23,又b 2=ac ,∴2a 2+b 4a 2=11b 23,整理得6a 4-11a 2b 2+3b 4=0,解得a 2b 2=13或a 2b 2=32,由余弦定理知,cos ∠ABC =a 2+c 2-b 22ac=43-a 22b 2,当a 2b 2=13时,cos ∠ABC =76>1不合题意;当a 2b 2=32时,cos ∠ABC =712.综上,cos ∠ABC =712.【解题方法】———————————————————————————————●(1)分析平面几何图形,寻找一个含有三个独立条件的三角形并求解,将解得的边、角再用于求解其他三角形.(2)如果两个三角形有共同的边或角,也可列方程求解.【对点练】1.(2022·山东临沂一模)如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ;(2)求BD ,AC 的长.解:(1)在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin (∠ADC -∠B )=sin ∠ADC cos B -cos ∠ADC sin B =437×12-17×32=3314.(2)在△ABD 中,由正弦定理,得BD =AB ·sin ∠BAD sin ∠ADB =8×3314437=3.在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B =82+52-2×8×5×12=49,所以AC =7.2.(2022·湖南株洲二模)如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值;(2)求BE 的长.解:设∠CED =α.(1)在△CDE 中,由余弦定理,得EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC .于是由题设知,7=CD 2+1+CD ,即CD 2+CD -6=0.解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得EC sin ∠EDC=CDsin α.于是,sin α=CD ·sin2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知,0<α<π3,于是由(1)知,cos α=1-sin 2α=1-2149=277.而∠AEB =2π3-α,所以cos ∠AEB =coscos 2π3cos α+sin 2π3sin α=-12cos α+32sin α=-12×277+32×217=714.在Rt △EAB 中,cos ∠AEB =EA BE =2BE,故BE =2cos ∠AEB=2714=47.角度2正、余弦定理的实际应用【例3】如图所示,为了测量A ,B 处岛屿的距离,小明在D 处观测,A ,B 分别在D 处的北偏西15˚、北偏东45˚方向,再往正东方向行驶40n mile 至C 处,观测B 在C 处的正北方向,A 在C 处的北偏西60˚方向,则A ,B 两处岛屿间的距离为()A .206n mileB .406n mileC .20(1+3)n mileD .40n mile解析:选A .在△ACD 中,∠ADC =15˚+90˚=105˚,∠ACD =30˚,所以∠CAD =45˚,由正弦定理可得:CD sin ∠CAD =ADsin ∠ACD,解得AD =CD sin ∠ACDsin ∠CAD=40×1222=20 2.在Rt △DCB 中,∠BDC =45˚,所以BD =2CD =40 2.在△ABD 中,由余弦定理可得:AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB =800+3200-2×202×402×12=2400,解得AB =20 6.【例4】如图,小明同学为了估算索菲亚教堂的高度,在索菲亚教堂的正东方向找到一座建筑物AB ,高为(153-15)m ,在它们之间的地面上的点M (B ,M ,D 三点共线)处测得楼顶A ,教堂顶C 的仰角分别是15˚和60˚,在楼顶A 处测得塔顶C 的仰角为30˚,则小明估算索菲亚教堂的高度为()A .20mB .30mC .203mD .303m解析:选D .由题意知:∠CAM =45˚,∠AMC =105˚,所以∠ACM =30˚.在Rt △ABM 中,AM =AB sin ∠AMB =ABsin 15˚,在△ACM 中,由正弦定理得AM sin 30˚=CMsin 45˚,所以CM =AM ·sin 45˚sin 30˚=AB ·sin 45˚sin 15˚·sin 30˚,在Rt △DCM 中,CD =CM ·sin 60˚=AB ·sin 45˚·sin 60˚sin 15˚·sin 30˚=(153-15)×22×326-24×12=30 3.【解题方法】———————————————————————————————●应用三角知识解决实际问题的模型【对点练】3.小明去海边钓鱼,将鱼竿AB摆成如图所示的样子.已知鱼竿=4.2m,海平面EC与地面AM相距0.9m,鱼竿甩出后,BC,CD均为钓鱼线,线长共5m,鱼竿尾端离岸边0.3m,即AM=0.3m,假设水下钓鱼线CD与海平面垂直,水面上的钓鱼线BC与海平面的夹角为45˚,鱼竿与地面的夹角为30˚,则鱼钩D到岸边的距离约为________.(结果保留两位小数,3≈1.732)解析:如图,过点B作BN⊥CE,垂足为N,过点A作AG⊥BN,垂足为G.∵AB=4.2m,鱼竿与地面的夹角为30˚,∴BG=2.1m,AG=2.13m.∵海平面EN与地面AM相距0.9m,∴BN=2.1+0.9=3m,∵水面上的钓鱼线BC45˚,∴CN=BN=3m,∴C到岸边的距离为3+2.13-0.3≈6.34m.又水下钓鱼线CD与海平面垂直,∴鱼钩D到岸边的距离约为6.34m.答案:6.34m。

专题二 第2讲 三角恒等变换与解三角形

专题二 第2讲 三角恒等变换与解三角形

c,已知 bsin 2A=asin B,且 c=2b,则ab等于
A.3
1 B.3
3 C. 3
√D. 3
因为bsin 2A=asin B,
所以2bsin Acos A=asin B,
利用正弦定理可得2abcos A=ab, 所以 cos A=12,又 c=2b, 所以 cos A=b2+2cb2c-a2=b2+44bb22-a2=12, 解得ab= 3.
(2)(2022·全国乙卷)记△ABC的内角A,B,C的对边分别为a,b,c,已 知sin Csin(A-B)=sin Bsin(C-A). ①证明:2a2=b2+c2;
方法一 由sin Csin(A-B)=sin Bsin(C-A),
可得sin Csin Acos B-sin Ccos Asin B
abcos C= 2 ,2bccos A=b2+c2-a2, 将上述三式代入(*)式整理,得2a2=b2+c2.
方法二 因为A+B+C=π, 所以sin Csin(A-B)=sin(A+B)sin(A-B) =sin2Acos2B-cos2Asin2B =sin2A(1-sin2B)-(1-sin2A)sin2B =sin2A-sin2B, 同理有sin Bsin(C-A)=sin(C+A)sin(C-A)=sin2C-sin2A. 又sin Csin(A-B)=sin Bsin(C-A), 所以sin2A-sin2B=sin2C-sin2A,即2sin2A=sin2B+sin2C, 故由正弦定理可得2a2=b2+c2.
所以 cos α=
415,tan
α=csoins
αα=
15 15 .
2sin α 方法二 因为 tan 2α=1-2tatnanα2α=1-cocssoinαs22αα =c2ossi2nα-αcsoisnα2α=21s-in 2αscions2αα,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题解析
例1:在 中, ,解此三角形。
习题1:已知 的三个内角的比是 ,那么对应的三边之比 =()
A B C D
例2、在 中,AC=2,BC=1,
(1)求AB的值。(2)求
习题2(1)在 中, 分别为A,B,C的对边, , ,则 =
(2)在 中, ,则
例3、(判断三角形形状)在 中,已知角A,B,C的对边分别为 ,且 ,是判断 的形状。
15、(1)2(2)
(1)、求函数 的解析式和定义域;(2)求 的最大值
11、已知在 中,A,B,C的对边分别为 , ,
(1)求角C的大小(2)若 求 的面积。
12、已知函数 的最小正周期为 ,
(1)求 的单调递增区间
(2)在 中,A,B,C的对边分别为 ,满足 ,求函数 的取值范围。
13、在 中, ;(1)求 的值。(2)设 ,求 的面积
14、在 中,A,B,C的对边分别为 ,
(1)求C;(2)若 求 。
15、在 中,A,B,C的对边分别为 ,且满足
(1)求 的面积(2)若 ,求a的值。
答案:
基础题:1-5DBAБайду номын сангаасC 6、
中档题:1-6AADBAD 7、 8、 9、2、
10、(1) (2)
11、(1) (2) 12、(1) (2)
13、(1) (2) 14、(1) (2)
②已知一个三角形的两边及其夹角,求其他两个边和角
③已知两边及一边的对角,求第三边
(3)余弦定理的变形:
3、三角形面积公式:
4、几个重要的结论:
5、仰角和俯角
与目标视线在同一铅垂线平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角。
6、方位角
从某点的指北方线起,依顺时针方向到目标方向的线之间的水平夹角,叫方位角
中档题
1、已知在 中,A,B,C的对边分别为 ,若 且 ,则b=
A 2 B C D
2、已知在 中,若 ,则 是()
A等腰三角形B直角三角形C等边三角形D等腰直角三角形
3、设A是 最小内角,则 的取值范围是()
A B C D
4、如果满足 的 的恰有1个,那么k的取值范围()
A B C D 或
5、如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为()
正弦定理和余弦定理及其应用
一、知识梳理
1、正弦定理:(1) (R为外接圆半径)
(2)正弦定理作用:①已知三角形的任意两个角与以便,求其他角和边
②已知三角形的两边与其中一边的对角,求其他边和角
(3)正弦定理的其他形式:
① ②

2、余弦定理:(1):
(2)余弦定理的作用:①已知一个三角形的三边,求这个三角形的三个角
习题3、(1)在 中,若 ,则在 的形状是
(2)在 中,若 ,试判断这个三角形的形状为
例4、 的三个内角 的对边分别是 ,如果 ,求证:
习题4、设 的三边长分别为 ,求证:
例5、(正、余弦定理的应用) 的内角满足 。
(1)求A(2)若 的面积为4,证明 的周长不小于 。
习题5、设 的内角 的对边长分别为 , 求B。
例8、如图,测量人员沿直线MNP的方向心测量电视塔AB的高度,测得AB的仰角分别是 且 求塔高AB。
习题8,航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的高度为海拔10000m,速度为 。飞机先看到山顶的俯角为 ,经过420s后又看到山顶的俯角为 ,求山顶的海拔高度(取 )
练习题:
基础题:1、在 中, 则 ()
例6、如图:已知 ,求AD的长。
习题6、已知 分别是 中的角 的对边,且
(1)求角B的大小。(2) ,求 的值。
例7、隔河看河对岸目标A,B,但不能到达。在岸边选取相距 km。的C,D两点,同时测得 , (A,B,C,D在同一平面内),求两目标A,B之间的距离。
习题7、某人在M汽车站的北偏西 的方向上的A处,观察到点C处有一辆汽车沿公路向M站行驶。公路的走向是M站的北偏东 。开始时,汽车到A的距离为31千米,汽车前进20千米后,到A的距离缩短了10千米,则汽车还需行驶多远,才能到达M汽车站?
A锐角三角形B直角三角形C钝角三角形D由增加的长度决定
6、已知在 中, ,则 的周长是()
A B C D
7、已知在 中, ,则边AC上的高为
8、已知在 中,角 的对边分别为 ,若 成等差数列, , 的面积为 ,则
9、在锐角 中,BC=1,B=2A,则 的值等于,AC的取值范围是
10、在 中,已知内角 ,边 ,设内角 ,周长为y。
A B C D
2、在 中,若 ,则B的值为()
A B C D
3、在 中,若 , ,则 等于()
A 2 B C D
4、在 中, ,则 ()
A B C D
5、在 中, ,则 的面积是( )
A 9 B18 C D
6、如右图、D,C,B在地平面同一直线上,DC=10cm,从D,C两地测得A的仰角分别为 , ,则A点距地面的距离等于
相关文档
最新文档