2017-2018年福建省漳州市平和县九年级(上)期中数学试卷和答案
福建省漳州市九年级上学期数学期中考试试卷
福建省漳州市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)如图,在直径为AB的半圆O上有一动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()A .B .C .D .2. (1分)二次函数y=ax2+bx+c的图象如图所示,则点(b,)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (1分)对抛物线y=-x2+2x-3而言,下列结论正确的是()A . 与x轴有两个交点B . 开口向上C . 与y轴交点坐标是(0,3)D . 顶点坐标是(1,-2)4. (1分) (2019七下·武昌期中) 如果小华在小丽北偏东40°的位置上,那么小丽在小华的()A . 南偏西50°B . 北偏东50°C . 南偏西40°D . 北偏东40°5. (1分)如图,在以O为圆心的两个圆中,大圆的半径为5,小圆的半径为3,则与小圆相切的大圆的弦长为()A . 4B . 6C . 8D . 106. (1分)下列说法中正确的是()A . 已知a,b,c是三角形的三边,则a2+b2=c2B . 在直角三角形中两边和的平方等于第三边的平方C . 在Rt△ABC中,∠C=90°,所以a2+b2=c2D . 在Rt△ABC中,∠B=90°,所以a2+b2=c27. (1分) (2019九上·句容期末) 下列关于二次函数y=-x2-2x+3说法正确的是()A . 当时,函数最大值4B . 当时,函数最大值2C . 将其图象向上平移3个单位后,图象经过原点D . 将其图象向左平移3个单位后,图象经过原点8. (1分) (2017九上·鄞州月考) 如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A .B .C .D .9. (1分)(2017·临泽模拟) 抛物线y=ax2+bx+c(a≠0)的图象如图所示,则下列说法正确的是()A . b2﹣4ac<0B . abc<0C .D . a﹣b+c<010. (1分)如图,点P在⊙O的直径BA延长线上,PC与⊙O相切,切点为C,点D在⊙O上,连接PD、BD,已知PC=PD=BC.下列结论:①PD与⊙O相切;②四边形PCBD是菱形;③PO=AB;④∠PDB=120°.其中,正确的个数是()A . 4个B . 3个C . 2个D . 1个二、填空题 (共6题;共6分)11. (1分) (2020·武汉模拟) 已知抛物线y=ax2+bx+c经过点(﹣1,5),且无论m为何值,不等式a+b≥am2+bm 恒成立,则关于x的方程ax2+bx+c=5的解为________.12. (1分)(2019·南京模拟) 如图,在⊙O中,AB是直径,C是弧AB的中点,CD是弦,若∠C=60°,AB =2 ,则弦CD的长为________.13. (1分) (2017九上·重庆期中) 如图,CD为⊙O的直径,AB⊥CD于E,DE=8cm,CE=2cm,则AB =________cm.14. (1分)将二次函数y=﹣2( x﹣1)2﹣2的图象向左平移1个单位,在向上平移1个单位,则所得新二次函数图象顶点为________.15. (1分)如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB于C,D,若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是________16. (1分)函数y=x,y=x2和y= 的图象如图所示,若x2>x>,则x的取值范围是________.三、解答题 (共9题;共17分)17. (2分)(2017·呼和浩特模拟) 已知二次函数y=x2﹣(2k+1)x+k2+k(k>0)(1)当k= 时,将这个二次函数的解析式写成顶点式;(2)求证:关于x的一元二次方程x2﹣(2k+1)x+k2+k=0有两个不相等的实数根.18. (1分)小明将一幅三角板如图所示摆放在一起,发现只要知道其中一边的长就可以求出其它各边的长,若已知,求的长.19. (1分)(2017·永嘉模拟) 如图,在方格纸中,线段AB的两个端点都在小方格的格点上,AB=5,请找到一个格点P,连结PA,PB,使得△PAB为等腰三角形(请画出两种,若所画三角形全等,则视为一种).20. (2分) (2016八上·沂源开学考) 如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.(1)求抛物线的解析式;(2)一辆货运卡车高4.5m,宽2.4m,它能通过该隧道吗?(3)如果该隧道内设双行道,为了安全起见,在隧道正中间设有0.4m的隔离带,则该辆货运卡车还能通过隧道吗?21. (2分)如图,正五边形ABCDE中.(1) AC与BE相交于P,求证:四边形PEDC为菱形;(2)延长DC、AE交于M点,连BM交CE于N,求证:CN=EP;(3)若正五边形边长为2,直接写出AD的长为________.22. (2分) (2017八下·钦州港期末) 已知二次函数(1)求证:无论m为任何实数,该二次函数的图像与x轴都有两个交点;(2)当该二次函数的图像经过点(3,6)时,求此二次函数的解析式.23. (2分) (2019八下·嘉兴开学考) 某大厦服装台在销售中发现:每件进价为50元,售价定为90元的“米奇”牌童装平均每天可售20件.为了迎接“六一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装每降价1元,那么平均每天可多售出2件,要想平均每天在销售这种童装上盈利1200元.(1)每件童装的售价应定降价多少元?(2)请你设计一个方案,使每天在销售此童装的盈利最高,最高利润是多少元?24. (2分)(2017·港南模拟) 如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B(3,0).(1)求b、c的值;(2)如图1直线y=kx+1(k>0)与抛物线第一象限的部分交于D点,交y轴于F点,交线段BC于E点.求的最大值;(3)如图2,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.问在直线BC下方的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.25. (3分)(2017·常德) 如图,已知抛物线的对称轴是y轴,且点(2,2),(1,)在抛物线上,点P 是抛物线上不与顶点N重合的一动点,过P作PA⊥x轴于A,P C⊥y轴于C,延长PC交抛物线于E,设M是O关于抛物线顶点N的对称点,D是C点关于N的对称点.(1)求抛物线的解析式及顶点N的坐标;(2)求证:四边形PMDA是平行四边形;(3)求证:△DPE∽△PAM,并求出当它们的相似比为时的点P的坐标.参考答案一、单选题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共17分)17-1、17-2、18-1、19-1、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。
漳州市平和县2017年中考数学模拟试卷(word版含答案)
福建省漳州市平和县2017年中考数学模拟试卷(解析版)一、选择题(共10小题,每小题4分,满分40分)1.如图,点A,B,C,D在数轴上,其中表示互为相反数的点是()A.点A与点D B.点B与点D C.点A与点C D.点B与点C【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:2与﹣2互为相反数,故选:A.【点评】本题考查了数轴、相反数,在一个数的前面加上负号就是这个数的相反数.2.如图,一个水平放置的六棱柱,这个六棱柱的左视图是()A.B.C.D.【分析】根据从左往右看水平放置的六棱柱,所得的图形进行判断即可.【解答】解:由题可得,六棱柱的左视图是两个相邻的长相等的长方形,如图:故选B.【点评】本题主要考查了三视图,解题时注意:从左往右看几何体所得的图形是左视图.3.a6可以表示为()A.a3•a2 B.(a2)3C.a12÷a2D.a7﹣a【分析】根据同底数幂的乘法,幂的乘方底数不变指数相乘,同底数幂的除法,可得答案.【解答】解:(a2)3=a2×3=a6,故选:B.【点评】本题考查了幂的乘方,熟记法则并根据法则计算是解题关键.4.下列交通标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、不是轴对称图形,也不是中心对称图形,故本选项错误;D、既是轴对称图形又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.若﹣a≥b,则a≤﹣2b,其根据是()A.不等式的两边都加上(或减去)同一个整式,不等号的方向不变B.不等式的两边都乘(或除以)同一个正数,不等号的方向不变C.不等式的两边都乘(或除以)同一个负数,不等号的方向改变D.以上答案均不对【分析】根据不等式的基本性质3即可求解.【解答】解:若﹣a≥b,则a≤﹣2b,其根据是不等式的两边都乘(或除以)同一个负数,不等号的方向改变,故选:C.【点评】主要考查了不等式的基本性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向改变.6.若一组数据3,x,4,5,6的众数是5,则这组数据的中位数是()A.3 B.4 C.5 D.6【分析】先根据众数是一组数据中出现次数最多的数据,求得x,再由中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:∵一组数据3,x,4,5,6的众数是5,∴x=5,从小到大排列此数据为:3,4,5,5,6.处在第3位的数是5.所以这组数据的中位数是5.故选C.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而错误,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.2016年漳州市生产总值突破3000亿元,数字3000亿用科学记数法表示为()A.3×1012B.30×1011C.0.3×1011D.3×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将3000亿用科学记数法表示为:3×1011.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.如图,在△ABC中,AB=5,BC=3,AC=4,点E,F分别是AB,BC的中点.以下结论错误的是()A.△ABC是直角三角形B.AF是△ABC的中位线C.EF是△ABC的中位线D.△BEF的周长为6【分析】根据勾股定理等逆定理、三角形的中位线的性质,一一判断即可.【解答】解:A、正确.∵AB=5,BC=3,AC=4,∴AB2=BC2+AC2,∴△ACB是直角三角形,故正确.B、错误.AF是△ABC的中线,不是中位线.C、正确.∵点E,F分别是AB,BC的中点,∴EF是△ABC的中位线,故正确.D、正确.易知EF=AC=2,EB=AB=,FB=BC=,∴△EFB的周长=6,故正确,故选B.【点评】本题考查三角形的中位线定理、勾股定理的逆定理等知识,解题的关键是灵活运用所学知识解决问题,属于基础题.9.如图,点O是△ABC外接圆的圆心,若⊙O的半径为5,∠A=45°,则的长是()A.πB.π C.πD.π【分析】连接OB、OC,如图,先利用圆周角定理得到∠BOC=2∠A=90°,然后利用弧长公式【解答】解:连接OB、OC,如图,∠BOC=2∠A=90°,所以的长==π.故选D.【点评】本题考查了弧长的计算:记住弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R).也考查了圆周角定理.10.如图1,在矩形ABCD中,动点P从点B出发,沿BC→CD→DA运动至点A停止.设点P运动的路程为x,△ABP的面积为y,y关于x的函数图象如图2所示,则m的值是()A.6 B.8 C.11 D.16【分析】首先结合题意可得当点P运动到点C,D之间时,△ABP的面积不变,则可得当BC=5,CD=6,继而求得答案.【解答】解:动点P从点B出发,沿BC、CD、DA运动至点A停止,∵当点P运动到点C,D之间时,△ABP的面积不变.函数图象上横轴表示点P运动的路程,∴x=5时,y开始不变,说明BC=5,∴△ABC的面积为:y=×AB×5=15.∴AB=6,∵四边形ABCD为矩形,∴CD=AB=6,∴M=5+6=11.故选:C.【点评】本题考查了动点问题的函数图象.注意解决本题应首先看清横轴和纵轴表示的量,找到面积不变的开始与结束,得到BC,CD的具体值.二、填空题(共6小题,每小题4分,共24分)11.分解因式:x3﹣4x2y+4xy2=x(x﹣2y)2.【分析】先提取公因式x,然后利用完全平方差公式进行二次分解即可.【解答】解:x3﹣4x2y+4xy2=x(x2﹣2xy+4y2)=x(x﹣2y)2.故答案是:x(x﹣2y)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.12.已知正n边形的一个内角为135°,则边数n的值是8.【分析】根据多边形的相邻的内角与外角互为邻补角求出每一个外角的度数,再根据多边形的边数等于外角和除以每一个外角的度数进行计算即可得解.【解答】解:∵正n边形的一个内角为135°,∴正n边形的一个外角为180°﹣135°=45°,n=360°÷45°=8.故答案为:8.【点评】本题考查了多边形的外角,利用多边形的边数等于外角和除以每一个外角的度数是常用的方法,求出多边形的每一个外角的度数是解题的关键.13.在一个不透明的布袋中装有4个红球和a个白球,它们除颜色不同外,其余均相同,若从中随机摸出一球,摸到红球的概率是,则a的值是6.【分析】根据摸到红球的概率为列出关于a的方程,求出a的值即可.【解答】解:∵袋中装有4个红球和a个白球,∴球的总个数为4+a,∵从中随机摸出一个球,摸到红球的概率为,∴=,解得,a=6.故答案为:6.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.如图,在△ABC中,∠ACB=90°,将△ACD沿CD折叠,使点A恰好落在BC边上的点E 处.若∠B=25°,则∠BDE=40度.【分析】根据三角形内角和定理求出∠A的度数,根据翻折变换的性质求出∠CED的度数,根据三角形内角和定理求出∠∠BDE.【解答】解:∵将△ACD沿CD折叠,使点A恰好落在BC边上的点E处,∴∠CED=∠A,∵∠ACB=90°,∠B=25°,∴∠A=65°,∴∠CED=65°,∴∠BDE=65°﹣25°=40°;故答案为:40.【点评】本题考查的是翻折变换和三角形内角和定理,理解翻折变换的性质、熟记三角形内角和等于180°是解题的关键.15.若实数a满足a2﹣2a﹣1=0,则2a2﹣4a+2015的值是2017.【分析】将(a2﹣2a)看作一个整体并求出其值,再代入代数式进行计算即可得解.【解答】解:∵a2﹣2a﹣1=0,∴a2﹣2a=1,∴2a2﹣4a+2015=2(a2﹣2a)+2015=2×1+2015=2017.故答案为:2017.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.16.定义:式子1﹣(a≠0)叫做a的影子数.如:3的影子数是1﹣=,已知a1=﹣,a2是a1的影子数,a3是a2的影子数,…,依此类推,则a2017的值是﹣.【分析】根据题意分别得出a2,a3,a4的值,得出变化规律,进而得出a2017的值.【解答】解:∵a1=﹣,a2是a1的影子数,∴a2=1﹣=3,∵a3是a2的影子数,∴a3=1﹣=,∴a4=1﹣=﹣…,依此类推,每3个数据一循环,2017÷3=672…1,则a2017的值是:﹣.故答案为:﹣.【点评】此题主要考查了数字变化规律,正确得出数字之间变化规律是解题关键.三、解答题(共9小题,共86分)17.(8分)计算:|﹣2|+3tan30°+2﹣2.【分析】首先计算乘方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|﹣2|+3tan30°+2﹣2=2﹣+3×+=【点评】此题主要考查了实数的运算,负整数指数幂以及特殊角的三角函数值的求法,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(8分)先化简,再求值:,其中x=2.【分析】先将分式化简,然后将x的值代入即可求出答案.【解答】解:原式===.当x=2时,原式=【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(8分)如图,在8×8的正方形网格中,△ABC的顶点和线段EF的端点都在边长为1的小正方形的格点上.请你在图中找出一点D(仅一个点即可),连结DE,DF,使△DEF 与△ABC全等,并给予证明.【分析】根据题意找到一个格点D,使DE=AB=、DF=AC=或DF=AB=、DE=AC=,即可根据“SSS”判定俩三角形全等.【解答】解:解法一、如图1或图2的点D,连结DE,DF.∵在△DEF中,,EF=2.在△ABC中,,BC=2.∴DE=AB,DF=AC,EF=BC.∴△DEF≌△ABC(SSS).解法二、如图3或图4的点D,连结DE,DF.证明:∵在△DEF中,,EF=2,在△ABC中,,BC=2.∴DF=AB,DE=AC,EF=BC.∴△DFE≌△ABC(SSS).【点评】本题主要考查作图﹣应用设计作图及全等三角形的判定,熟练掌握勾股定理及全等三角形的判定是解题的关键.20.(8分)如图,在四边形ABCD中,对角线AC,BD相交于点O,且OB=OD.点E在线段OA上,连结BE,DE.给出下列条件:①OC=OE;②AB=AD;③BC⊥CD;④∠CBD=∠EBD.请你从中选择两个条件,使四边形BCDE是菱形,并给予证明.你选择的条件是:①②或①④或②④(只填写序号).【分析】可以选①②或①④或②④,根据菱形的判定方法一一判断即可.【解答】解:方法一:选①②.∵OB=OD,OC=OE,∴四边形BCDE是平行四边形,∵AB=AD,OB=OD,∴AO⊥BD,即EC⊥BD,∴平行四边形BCDE是菱形.,方法二:选①④.∵OB=OD,OC=OE,∴四边形BCDE是平行四边形,∴BC∥DE,∴∠CBD=∠BDE,∵∠CBD=∠EBD,∴∠BDE=∠EBD,∴BE=DE,∴平行四边形BCDE是菱形.方法三:选②④.解法一:∵AB=AD,OB=OD,∴AO⊥BD,即EC⊥BD,∴∠BOC=∠BOE=90°,∵∠CBD=∠EBD,BO=BO,∴△BOC≌△BOE,∴OE=OC,又∵OB=OD,∴四边形BCDE是平行四边形,又∵EC⊥BD,∴平行四边形BCDE是菱形.解法二:∵AB=AD,OB=OD,∴AO⊥BD,即EC⊥BD,∴EC垂直平分BD,∴BE=DE,BC=DC,∵∠BOC=∠BOE=90°,∠CBD=∠EBD,BO=BO,∴△BOC≌△BOE,∴BE=BC,∴BE=DE=BC=DC,∴四边形BCDE是菱形.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质、菱形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)为了落实漳州市教育局关于全市中小学生每天阅读1小时的文件精神.某校对七年级(3)班全体学生一周到图书馆的次数做了调查统计,以下是调查过程中绘制的还不完整的两个统计图.请你根据统计图表中的信息,解答下列问题:(1)求图表中m,n的值;(2)该年级学生共有300人,估计这周到图书馆的次数为“4次及以上”的学生大约有多少人?35 10 m 8 12人数【解答】解:(1)该班学生总数为:10÷20%=50,则m=50﹣5﹣10﹣8﹣12=15,n=×100=16;(2)∵该班学生一周到图书馆的次数为“4次及以上”的占×100%=24%,∴300×24%=72,∴该年级学生这周到图书馆的次数为“4次及以上”的学生大约有72人.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.22.(10分)如图,直线y1=kx+2与反比例函数y2=的图象交于点A(m,3),与坐标轴分别交于B,C两点.(1)若y1>y2>0,求自变量x的取值范围;(2)动点P(n,0)在x轴上运动,当n为何值时,|PA﹣PC|的值最大?并求最大值.【分析】(1)由点A的纵坐标利用反比例函数图象上点的坐标特征即可求出点A的坐标,再根据两函数图象的上下位置关系,即可得出当y1>y2>0时,自变量x的取值范围;(2)由点A的坐标利用待定系数法即可求出直线AB的函数解析式,利用一次函数图象上点的坐标特征可求出点B、C的坐标,再根据三角形的三边关系即可确定当点P与点B重合时,|PA﹣PC|的值最大,利用两点间的距离公式即可求出此最大值.【解答】解:(1)当y2==3时,x=1,∴点A的坐标为(1,3).观察函数图象,可知:当x>1时,直线在双曲线上方,∴若y1>y2>0,自变量x的取值范围为x>1.(2)将A(1,3)代入y1=kx+2中,3=k+2,解得:k=1,∴直线AB的解析式为y1=x+2.当x=0时,y1=x+2=2,∴点C的坐标为(0,2),∴AC==.当y1=x+2=0时,x=﹣2,∴点B的坐标为(﹣2,0).当点P于点B重合时,|PA﹣PC|的值最大,此时n=﹣2,|PA﹣PC|=AC=.∴当n为﹣2时,|PA﹣PC|的值最大,最大值为.【点评】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的三边关系,解题的关键是:(1)利用反比例函数图象上点的坐标特征求出点A的坐标;(2)利用三角形的三边关系确定点P的位置.23.(10分)如图,在△ABC中,AC=BC,以BC边为直径作⊙O交AB边于点D,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若⊙O的半径等于,cosB=,求线段DE的长.【分析】(1)连接OD,根据等腰三角形的性质证明证明OD∥AC即可得出DE是⊙O的切线;(2)根据cosB==可求出BD与CD的长度,可利用等面积求出DE,也可利用△ACD∽△AD求出DE的长度.【解答】解:(1)证明:连结OD.∵AC=BC,∴∠A=∠B,∵OB=OD,∴∠B=∠ODB,∴∠A=∠ODB,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线,(2)如图,连结CD.∵⊙O的半径等于,∴BC=3,∠CDB=90°,在Rt△CDB中,cosB==,∴BD=1,,∵AC=BC=3,∠CDB=90°.∴AD=BD=1,解法一:在Rt△ADC中,,解法二:∵∠A=∠A,∠ADC=∠AED=90°,∴△ACD∽△ADE.∴.∴【点评】本题考查圆的综合问题,涉及切线的判定,等腰三角形的性质,锐角三角函数,勾股定理等知识,综合程度较高.24.(12分)如图,已知抛物线y=x2+bx+c与直线y=﹣x+3相交于坐标轴上的A,B两点,顶点为C.(1)填空:b=﹣4,c=3;(2)将直线AB向下平移h个单位长度,得直线EF.当h为何值时,直线EF与抛物线y=x2+bx+c 没有交点?(3)直线x=m与△ABC的边AB,AC分别交于点M,N.当直线x=m把△ABC的面积分为1:2两部分时,求m的值.【分析】(1)由直线y=﹣x+3交坐标轴于A,B两点,求出A(0,3),B(3,0),再把A,B两点的坐标代入y=x2+bx+c,得到关于b、c的二元一次方程组,解方程组即可求解;(2)根据“上加下减”的平移规律得出直线EF的解析式为y=﹣x+3﹣h,再把y=﹣x+3﹣h代入y=x2﹣4x+3,整理得到x2﹣3x+h=0.根据直线EF与抛物线没有交点,得出△=(﹣3)2﹣4×1×h=9﹣4h<0,解不等式即可求出h的取值范围;(3)先求出抛物线y=x2﹣4x+3的顶点C的坐标,利用待定系数法求出直线AC的解析式为y=﹣2x+3.设直线AC交x轴于点D,则D(,0),BD=.再求出S△ABC=S△ABD+S△BCD=3.由直线x=m把△ABC的面积分为1:2两部分,分两种情况讨论:①=,②=,分别求出m的值即可.【解答】解:(1)∵直线y=﹣x+3交坐标轴于A,B两点,∴A(0,3),B(3,0),把A(0,3),B(3,0)代入y=x2+bx+c,得,解得.故答案为﹣4,3;(2)∵将直线AB:y=﹣x+3向下平移h个单位长度,得直线EF,∴可设直线EF的解析式为y=﹣x+3﹣h.把y=﹣x+3﹣h代入y=x2﹣4x+3,得x2﹣4x+3=﹣x+3﹣h.整理得:x2﹣3x+h=0.∵直线EF与抛物线没有交点,∴△=(﹣3)2﹣4×1×h=9﹣4h<0,解得h>.∴当h>时,直线EF与抛物线没有交点;(3)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点C(2,﹣1).设直线AC的解析式为y=mx+n.则,解得,∴直线AC的解析式为y=﹣2x+3.如图,设直线AC交x轴于点D,则D(,0),BD=.∴S△ABC=S△ABD+S△BCD=××3+××1=3.∵直线x=m与线段AB、AC分别交于M、N两点,则0≤m≤2,∴M(m,﹣m+3),N(m,﹣2m+3),∴MN=(﹣m+3)﹣(﹣2m+3)=m.∵直线x=m把△ABC的面积分为1:2两部分,∴分两种情况讨论:①当=时,即=,解得m=±;②当=时,即=,解得m=±2∵0≤m≤2,∴m=或m=2.∴当m=或2时,直线x=m把△ABC的面积分为1:2两部分.【点评】本题是二次函数综合题,其中涉及到抛物线与直线的交点,利用待定系数法求一次函数、二次函数的解析式,二次函数的性质,二次函数与一元二次方程的关系,三角形的面积等知识,综合性较强,难度适中.利用方程思想、数形结合与分类讨论是解题的关键.25.(14分)操作与探究综合实践课,老师把一个足够大的等腰直角三角尺AMN靠在一个正方形纸片ABCD的一侧,使边AM与AD在同一直线上(如图1),其中∠AMN=90°,AM=MN.(1)猜想发现老师将三角尺AMN绕点A逆时针旋转α.如图2,当0<α<45°时,边AM,AN分别与直线BC,CD交于点E,F,连结EF.小明同学探究发现,线段EF,BE,DF满足EF=BE﹣DF;如图3,当45°<α<90°时,其它条件不变.①填空:∠DAF+∠BAE=45度;②猜想:线段EF,BE,DF三者之间的数量关系是:EF=BE+DF.(2)证明你的猜想;(3)拓展探究在45°<α<90°的情形下,连结BD,分别交AM,AN于点G,H,如图4连结EH,试证明:EH⊥AN.【分析】(1)①由全等三角形的性质即可得出结论;②由全等三角形的性质即可得出答案;(2)延长CB至点K,使BK=DF,连结AK,由SAS证明△ABK≌△ADF,得出AK=AF,∠BAK=∠DAF.由等腰直角三角形的性质得出∠MAN=∠N=45°,即可证出∠DAF+∠BAE=45°.证出∠EAF=∠EAK.由SAS证明△AEF≌△AEK,得出EF=EK.即可得出EF=BE+DF.(3)连结AC.证明△ADH∽△ACE.得出,再证明△ADC∽△AHE.得出∠ADC=∠AHE=90°.即可得出结论.【解答】(1)解:①∠DAF+∠BAE=45°;故答案为:45;②线段EF,BE,DF三者之间的数量关系是EF=BE+DF;故答案为:EF=BE+DF;(2)证明:如图3,延长CB至点K,使BK=DF,连结AK.∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABK=∠D=90°.在△ABK和△ADF中,,∴△ABK≌△ADF(SAS),∴AK=AF,∠BAK=∠DAF.∵∠AMN=90°,AM=MN,∴∠MAN=∠N=45°,∴∠DAF+∠BAE=45°.∴∠EAK=∠BAK+∠BAE=45°,∴∠EAF=∠EAK.在△AEF和△AEK中,,∴△AEF≌△AEK(SAS).∴EF=EK.∴EF=BE+DF.(3)证明:如图4,连结AC.∵四边形ABCD是正方形,∴∠ACE=∠ADH=∠CAD=45°.∵∠EAF=45°,∴∠EAF=∠CAD=45°.∴∠CAE=∠DAH,∴△ADH∽△ACE.∴.∴,又∵∠CAD=∠EAF=45°,∴△ADC∽△AHE.∴∠ADC=∠AHE=90°.∴EH⊥AN.【点评】本题是四边形综合题目,考查了正方形的性质,全等三角形的性质和判定,相似三角形的判定与性质等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.。
福建省漳州市九年级上学期数学期中考试试卷
福建省漳州市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、精心选一 (共12题;共12分)1. (1分) (2019九上·萧山月考) 若 ,则 = ()A . 3:2B . 2:3C . 2:1D . 1:22. (1分)(2019·本溪模拟) 下列事件中必然发生的事件是()A . 一个图形平移后所得的图形与原来的图形不全等B . 不等式的两边同时乘以一个数,结果仍是不等式C . 200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D . 随意翻到一本书的某页,这页的页码一定是偶数3. (1分) (2019九上·大同期中) 抛物线的顶点坐标为()A . (-2, 2)B . (2, -2)C . (2, 2)D . (-2, -2)4. (1分) (2016九上·太原期末) 已知△ABC∽△ ,△ 的面积为6 ,周长为△ABC周长的一半,则△ABC的面积等于()A . 1.5B . 3C . 12D . 245. (1分) (2019九上·无锡月考) 已知⊙O的半径为5㎝,P到圆心O的距离为6㎝,则点P在⊙O()A . 外部B . 内部C . 圆上D . 不能确定6. (1分)把抛物线y=-x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的表达式()A . y=-(x-1)2+3B . y=-(x+1)2+3C . y=-(x-1)2-3D . y=-(x+1)2-37. (1分)(2019·温州) 若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A .B .C .D .8. (1分)如图,在边长为1的正方形中,以各顶点为圆心,对角线的长的一半为半径在正方形内画弧,则图中阴影部分的面积为()A . 2-πB . πC . -1D .9. (1分)如图,P是Rt△ABC的斜边BC上异于B、C的一点,过P点作直线截△ABC,使截得的三角形与△ABC 相似,满足这样条件的直线共有()A . 1条B . 2条C . 3条D . 4条10. (1分)(2018·嘉兴模拟) 如图,AB是⊙O的直径,C是⊙O上的一点,OD⊥BC于点D,AC=6,则OD的长为()A . 2B . 3C . 3.5D . 411. (1分)(2017·莒县模拟) 函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A . 1个B . 2个C . 3个D . 4个12. (1分)(2018·深圳模拟) 如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG∥CD,连接EF,DG,下列结论中正确的有()①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2= AE•EG;④若AB=4,AD=5,则CE=1.A . ①②③④B . ①②③C . ①③④D . ①②二、细心填一填 (共6题;共6分)13. (1分)(2017·平南模拟) 任取不等式组的一个整数解,则能使关于x的方程:2x+k=﹣1的解为非负数的概率为________.14. (1分)如果将抛物线y=x2+2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是________ .15. (1分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线AP,交CD于点M.若∠ACD=120°,则∠MAB的度数为________ .16. (1分)如图,在⊙O中,直径AB⊥弦CD,∠A=28°,则∠D=________.17. (1分)设点O为投影中心,长度为1的线段AB平行于它在面H内的投影A′B′,投影A′B′的长度为3,且O到直线AB的距离为1.5,那么直线AB与直线A′B′的距离为________ .18. (1分)(2017·阿坝) 如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为________.三、用心做一做 (共8题;共18分)19. (2分)如图,在6×6的正方形方格中,每个小正方形的边长都为1,顶点都在网格线交点处的三角形,△ABC是一个格点三角形.①在图①中,请判断△ABC与△DEF是否相似,并说明理由;②在图②中,以O为位似中心,再画一个格点三角形,使它与△ABC的位似比为2:1③在图③中,请画出所有满足条件的格点三角形,它与△ABC相似,且有一条公共边和一个公共角.20. (2分) (2016九下·巴南开学考) 甲、乙两校分别选派相同人数的选手参加中国成语大赛,每人成绩为A、B、C、D、E五个等级中的一种,已知两校得A等的人数相同,现将甲、乙两校比赛成绩绘制成了如图统计图,请根据图象回答问题:(1)两校选派的学生人数分别为________名,甲校学生参加比赛获B等成绩人数在扇形统计图中的圆心角为________°;请将乙校学生得分条形统计图补充完整________;(2)甲校得E的学生中有2人是女生,乙校得E的学生中有2人是男生,现准备从这四名学生中选两名参加表演赛,请用列表或画树状图的方法求出所选的两名学生刚好是一男一女的概率.21. (1分)要测量旗杆高CD ,在B处立标杆AB=2.5cm,人在F处.眼睛E、标杆顶A、旗杆顶C在一条直线上.已知BD=3.6m,FB=2.2m,EF=1.5m.求旗杆的高度.22. (3分) (2016九上·扬州期末) 定义符号min{a,b}的含义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.如:min{1,﹣2}=﹣2,min{﹣1,2}=﹣1.(1)求min{x2﹣1,﹣2};(2)已知min{x2﹣2x+k,﹣3}=﹣3,求实数k的取值范围;(3)已知当﹣2≤x≤3时,min{x2﹣2x﹣15,m(x+1)}=x2﹣2x﹣15.直接写出实数m的取值范围.23. (2分) (2017九上·钦州期末) 如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2 ,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.24. (2分) (2020九上·卫辉期末) 某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元),设每件商品的售价上涨x元(x 为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?25. (3分) (2017八下·徐州期末) 如图,已知直线a∥b,a、b之间的距离为4cm.A、B是直线a上的两个定点,C、D是直线b上的两个动点(点C在点D的左侧),且AB=CD=10cm,连接AC、BD、BC,将△ABC沿BC翻折得△A1BC.(1)当A1、D两点重合时,AC=________cm;(2)当A1、D两点不重合时,①连接A1D,求证:A1D∥BC;②若以点A1、C、B、D为顶点的四边形是矩形,求AC的长.26. (3分) (2020八上·武汉期末) 如图,四边形ABCD中,AB∥CD,AB⊥BC,AB=BC,AB>CD,AE⊥BD于E交BC于F.(1)若AB=2CD;①求证:BC=2BF;②连CE,若DE=6,CE=,求EF的长;(2)若AB=6,则CE的最小值为________.参考答案一、精心选一 (共12题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、细心填一填 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、用心做一做 (共8题;共18分)19-1、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、26-1、26-2、。
2017-2018学年第一学期期中质量调研模拟检测·九年级数学试题[PDF版含答案解析]
20. 解:(1)如图 1,点 M 就是要找的圆
心. 正确即可 (2)证明:由 A(0,4),可得小正方形 的边长为 1,从而 B(4,4)、C(6,2)
(2) ∵m>-t, ∴取 m=0, 方程为 x2-2x=0,
解得 x1=0,x2=2. 19. 解:(1)由图可知,花圃的面积为 (100-2a)(60-2a)=4a2-320a+6000; (2) 由已知可列式: 100×60(100-2a) (60-2a) = ×100×60, 解得:a1=5,a2=75(舍去), 所以通道的宽为 5 米;
A.
m
B.
期中模考·九年级数学(解析卷) 第 1 页 共 15 页
t
m
C.
t
m
D. 1m
8. 如图(见第 1 页),在直角梯形 ABCD 中,AB∥CD,AB⊥BC,以 BC 为直径的⊙O 与 AD 相切,点 E 为 AD 的中点,下列结论正确 的个数是( ) .. (1)AB+CD=AD; (3)AB•CD=
期中模考·九年级数学(解析卷) 第 5 页 共 15 页
23. (12 分)已知:△ABC 内接于⊙O,D 是 上一点,OD⊥BC,垂足为 H. (1)如图 1,当圆心 O 在 AB 边上时,求证:AC=2OH; (2)如图 2,当圆心 O 在△ABC 外部时,连接 AD、CD,AD 与 BC 交于点 P,请你证 明:∠ACD=∠APB; (3)在(2)的条件下,如图 3,连接 BD,E 为⊙O 上一点,连接 DE 交 BC 于点 Q、 交 AB 于点 N,连接 OE,BF 为⊙O 的弦,BF⊥OE 于点 R 交 DE 于点 G,若 ∠ACD-∠ABD=2∠BDN,AC=5 ,BN=3 ,tan∠ABC=t,求 BF 的长.
福建省漳州市平和县2017年中考数学模拟试卷(含答案)
福建省漳州市平和县2017年中考数学模拟试卷(解析版)一、选择题(共10小题,每小题4分,满分40分)1.如图,点A,B,C,D在数轴上,其中表示互为相反数的点是()A.点A与点D B.点B与点D C.点A与点C D.点B与点C【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:2与﹣2互为相反数,故选:A.【点评】本题考查了数轴、相反数,在一个数的前面加上负号就是这个数的相反数.2.如图,一个水平放置的六棱柱,这个六棱柱的左视图是()A.B.C.D.【分析】根据从左往右看水平放置的六棱柱,所得的图形进行判断即可.【解答】解:由题可得,六棱柱的左视图是两个相邻的长相等的长方形,如图:故选B.【点评】本题主要考查了三视图,解题时注意:从左往右看几何体所得的图形是左视图.3.a6可以表示为()A.a3•a2 B.(a2)3C.a12÷a2D.a7﹣a【分析】根据同底数幂的乘法,幂的乘方底数不变指数相乘,同底数幂的除法,可得答案.【解答】解:(a2)3=a2×3=a6,故选:B.【点评】本题考查了幂的乘方,熟记法则并根据法则计算是解题关键.4.下列交通标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、不是轴对称图形,也不是中心对称图形,故本选项错误;D、既是轴对称图形又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.若﹣a≥b,则a≤﹣2b,其根据是()A.不等式的两边都加上(或减去)同一个整式,不等号的方向不变B.不等式的两边都乘(或除以)同一个正数,不等号的方向不变C.不等式的两边都乘(或除以)同一个负数,不等号的方向改变D.以上答案均不对【分析】根据不等式的基本性质3即可求解.【解答】解:若﹣a≥b,则a≤﹣2b,其根据是不等式的两边都乘(或除以)同一个负数,不等号的方向改变,故选:C.【点评】主要考查了不等式的基本性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向改变.6.若一组数据3,x,4,5,6的众数是5,则这组数据的中位数是()A.3 B.4 C.5 D.6【分析】先根据众数是一组数据中出现次数最多的数据,求得x,再由中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:∵一组数据3,x,4,5,6的众数是5,∴x=5,从小到大排列此数据为:3,4,5,5,6.处在第3位的数是5.所以这组数据的中位数是5.故选C.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而错误,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.2016年漳州市生产总值突破3000亿元,数字3000亿用科学记数法表示为()A.3×1012B.30×1011C.0.3×1011D.3×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将3000亿用科学记数法表示为:3×1011.故选D【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.如图,在△ABC中,AB=5,BC=3,AC=4,点E,F分别是AB,BC的中点.以下结论错误的是()A.△ABC是直角三角形B.AF是△ABC的中位线C.EF是△ABC的中位线D.△BEF的周长为6【分析】根据勾股定理等逆定理、三角形的中位线的性质,一一判断即可.【解答】解:A、正确.∵AB=5,BC=3,AC=4,∴AB2=BC2+AC2,∴△ACB是直角三角形,故正确.B、错误.AF是△ABC的中线,不是中位线.C、正确.∵点E,F分别是AB,BC的中点,∴EF是△ABC的中位线,故正确.D、正确.易知EF=AC=2,EB=AB=,FB=BC=,∴△EFB的周长=6,故正确,故选B.【点评】本题考查三角形的中位线定理、勾股定理的逆定理等知识,解题的关键是灵活运用所学知识解决问题,属于基础题.9.如图,点O是△ABC外接圆的圆心,若⊙O的半径为5,∠A=45°,则的长是()A.πB.πC.πD.π【分析】连接OB、OC,如图,先利用圆周角定理得到∠BOC=2∠A=90°,然后利用弧长公式求解.【解答】解:连接OB、OC,如图,∠BOC=2∠A=90°,所以的长==π.故选D.【点评】本题考查了弧长的计算:记住弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R).也考查了圆周角定理.10.如图1,在矩形ABCD中,动点P从点B出发,沿BC→CD→DA运动至点A停止.设点P运动的路程为x,△ABP的面积为y,y关于x的函数图象如图2所示,则m的值是()A.6 B.8 C.11 D.16【分析】首先结合题意可得当点P运动到点C,D之间时,△ABP的面积不变,则可得当BC=5,CD=6,继而求得答案.【解答】解:动点P从点B出发,沿BC、CD、DA运动至点A停止,∵当点P运动到点C,D之间时,△ABP的面积不变.函数图象上横轴表示点P运动的路程,∴x=5时,y开始不变,说明BC=5,∴△ABC的面积为:y=×AB×5=15.∴AB=6,∵四边形ABCD为矩形,∴CD=AB=6,∴M=5+6=11.故选:C.【点评】本题考查了动点问题的函数图象.注意解决本题应首先看清横轴和纵轴表示的量,找到面积不变的开始与结束,得到BC,CD的具体值.二、填空题(共6小题,每小题4分,共24分)11.分解因式:x3﹣4x2y+4xy2=x(x﹣2y)2.【分析】先提取公因式x,然后利用完全平方差公式进行二次分解即可.【解答】解:x3﹣4x2y+4xy2=x(x2﹣2xy+4y2)=x(x﹣2y)2.故答案是:x(x﹣2y)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.12.已知正n边形的一个内角为135°,则边数n的值是8.【分析】根据多边形的相邻的内角与外角互为邻补角求出每一个外角的度数,再根据多边形的边数等于外角和除以每一个外角的度数进行计算即可得解.【解答】解:∵正n边形的一个内角为135°,∴正n边形的一个外角为180°﹣135°=45°,n=360°÷45°=8.故答案为:8.【点评】本题考查了多边形的外角,利用多边形的边数等于外角和除以每一个外角的度数是常用的方法,求出多边形的每一个外角的度数是解题的关键.13.在一个不透明的布袋中装有4个红球和a个白球,它们除颜色不同外,其余均相同,若从中随机摸出一球,摸到红球的概率是,则a的值是6.【分析】根据摸到红球的概率为列出关于a的方程,求出a的值即可.【解答】解:∵袋中装有4个红球和a个白球,∴球的总个数为4+a,∵从中随机摸出一个球,摸到红球的概率为,∴=,解得,a=6.故答案为:6.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.如图,在△ABC中,∠ACB=90°,将△ACD沿CD折叠,使点A恰好落在BC边上的点E 处.若∠B=25°,则∠BDE=40度.【分析】根据三角形内角和定理求出∠A的度数,根据翻折变换的性质求出∠CED的度数,根据三角形内角和定理求出∠∠BDE.【解答】解:∵将△ACD沿CD折叠,使点A恰好落在BC边上的点E处,∴∠CED=∠A,∵∠ACB=90°,∠B=25°,∴∠A=65°,∴∠CED=65°,∴∠BDE=65°﹣25°=40°;故答案为:40.【点评】本题考查的是翻折变换和三角形内角和定理,理解翻折变换的性质、熟记三角形内角和等于180°是解题的关键.15.若实数a满足a2﹣2a﹣1=0,则2a2﹣4a+2015的值是2017.【分析】将(a2﹣2a)看作一个整体并求出其值,再代入代数式进行计算即可得解.【解答】解:∵a2﹣2a﹣1=0,∴a2﹣2a=1,∴2a2﹣4a+2015=2(a2﹣2a)+2015=2×1+2015=2017.故答案为:2017.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.16.定义:式子1﹣(a≠0)叫做a的影子数.如:3的影子数是1﹣=,已知a1=﹣,a2是a1的影子数,a3是a2的影子数,…,依此类推,则a2017的值是﹣.【分析】根据题意分别得出a2,a3,a4的值,得出变化规律,进而得出a2017的值.【解答】解:∵a1=﹣,a2是a1的影子数,∴a2=1﹣=3,∵a3是a2的影子数,∴a3=1﹣=,∴a4=1﹣=﹣…,依此类推,每3个数据一循环,2017÷3=672…1,则a2017的值是:﹣.故答案为:﹣.【点评】此题主要考查了数字变化规律,正确得出数字之间变化规律是解题关键.三、解答题(共9小题,共86分)17.(8分)计算:|﹣2|+3tan30°+2﹣2.【分析】首先计算乘方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|﹣2|+3tan30°+2﹣2=2﹣+3×+=【点评】此题主要考查了实数的运算,负整数指数幂以及特殊角的三角函数值的求法,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(8分)先化简,再求值:,其中x=2.【分析】先将分式化简,然后将x的值代入即可求出答案.【解答】解:原式===.当x=2时,原式=【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(8分)如图,在8×8的正方形网格中,△ABC的顶点和线段EF的端点都在边长为1的小正方形的格点上.请你在图中找出一点D(仅一个点即可),连结DE,DF,使△DEF 与△ABC全等,并给予证明.【分析】根据题意找到一个格点D,使DE=AB=、DF=AC=或DF=AB=、DE=AC=,即可根据“SSS”判定俩三角形全等.【解答】解:解法一、如图1或图2的点D,连结DE,DF.∵在△DEF中,,EF=2.在△ABC中,,BC=2.∴DE=AB,DF=AC,EF=BC.∴△DEF≌△ABC(SSS).解法二、如图3或图4的点D,连结DE,DF.证明:∵在△DEF中,,EF=2,在△ABC中,,BC=2.∴DF=AB,DE=AC,EF=BC.∴△DFE≌△ABC(SSS).【点评】本题主要考查作图﹣应用设计作图及全等三角形的判定,熟练掌握勾股定理及全等三角形的判定是解题的关键.20.(8分)如图,在四边形ABCD中,对角线AC,BD相交于点O,且OB=OD.点E在线段OA上,连结BE,DE.给出下列条件:①OC=OE;②AB=AD;③BC⊥CD;④∠CBD=∠EBD.请你从中选择两个条件,使四边形BCDE是菱形,并给予证明.你选择的条件是:①②或①④或②④(只填写序号).【分析】可以选①②或①④或②④,根据菱形的判定方法一一判断即可.【解答】解:方法一:选①②.∵OB=OD,OC=OE,∴四边形BCDE是平行四边形,∵AB=AD,OB=OD,∴AO⊥BD,即EC⊥BD,∴平行四边形BCDE是菱形.,方法二:选①④.∵OB=OD,OC=OE,∴四边形BCDE是平行四边形,∴BC∥DE,∴∠CBD=∠BDE,∵∠CBD=∠EBD,∴∠BDE=∠EBD,∴BE=DE,∴平行四边形BCDE是菱形.方法三:选②④.解法一:∵AB=AD,OB=OD,∴AO⊥BD,即EC⊥BD,∴∠BOC=∠BOE=90°,∵∠CBD=∠EBD,BO=BO,∴△BOC≌△BOE,∴OE=OC,又∵OB=OD,∴四边形BCDE是平行四边形,又∵EC⊥BD,∴平行四边形BCDE是菱形.解法二:∵AB=AD,OB=OD,∴AO⊥BD,即EC⊥BD,∴EC垂直平分BD,∴BE=DE,BC=DC,∵∠BOC=∠BOE=90°,∠CBD=∠EBD,BO=BO,∴△BOC≌△BOE,∴BE=BC,∴BE=DE=BC=DC,∴四边形BCDE是菱形.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质、菱形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)为了落实漳州市教育局关于全市中小学生每天阅读1小时的文件精神.某校对七年级(3)班全体学生一周到图书馆的次数做了调查统计,以下是调查过程中绘制的还不完整的两个统计图.请你根据统计图表中的信息,解答下列问题:(1)求图表中m,n的值;(2)该年级学生共有300人,估计这周到图书馆的次数为“4次及以上”的学生大约有多少人?七年级(3)班学生到图书馆的次数统计表到图书馆的次数0次1次2次3次4次及以上人数 5 10 m 812【分析】(1)由一次的人数除以占的百分比得出总人数,确定出m与n的值即可;(2)求出4次及以上占的百分比,乘以300即可得到结果.【解答】解:(1)该班学生总数为:10÷20%=50,则m=50﹣5﹣10﹣8﹣12=15,n=×100=16;(2)∵该班学生一周到图书馆的次数为“4次及以上”的占×100%=24%,∴300×24%=72,∴该年级学生这周到图书馆的次数为“4次及以上”的学生大约有72人.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.22.(10分)如图,直线y1=kx+2与反比例函数y2=的图象交于点A(m,3),与坐标轴分别交于B,C两点.(1)若y1>y2>0,求自变量x的取值范围;(2)动点P(n,0)在x轴上运动,当n为何值时,|PA﹣PC|的值最大?并求最大值.【分析】(1)由点A的纵坐标利用反比例函数图象上点的坐标特征即可求出点A的坐标,再根据两函数图象的上下位置关系,即可得出当y1>y2>0时,自变量x的取值范围;(2)由点A的坐标利用待定系数法即可求出直线AB的函数解析式,利用一次函数图象上点的坐标特征可求出点B、C的坐标,再根据三角形的三边关系即可确定当点P与点B重合时,|PA﹣PC|的值最大,利用两点间的距离公式即可求出此最大值.【解答】解:(1)当y2==3时,x=1,∴点A的坐标为(1,3).观察函数图象,可知:当x>1时,直线在双曲线上方,∴若y1>y2>0,自变量x的取值范围为x>1.(2)将A(1,3)代入y1=kx+2中,3=k+2,解得:k=1,∴直线AB的解析式为y1=x+2.当x=0时,y1=x+2=2,∴点C的坐标为(0,2),∴AC==.当y1=x+2=0时,x=﹣2,∴点B的坐标为(﹣2,0).当点P于点B重合时,|PA﹣PC|的值最大,此时n=﹣2,|PA﹣PC|=AC=.∴当n为﹣2时,|PA﹣PC|的值最大,最大值为.【点评】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的三边关系,解题的关键是:(1)利用反比例函数图象上点的坐标特征求出点A的坐标;(2)利用三角形的三边关系确定点P的位置.23.(10分)如图,在△ABC中,AC=BC,以BC边为直径作⊙O交AB边于点D,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若⊙O的半径等于,cosB=,求线段DE的长.【分析】(1)连接OD,根据等腰三角形的性质证明证明OD∥AC即可得出DE是⊙O的切线;(2)根据cosB==可求出BD与CD的长度,可利用等面积求出DE,也可利用△ACD∽△AD求出DE的长度.【解答】解:(1)证明:连结OD.∵AC=BC,∴∠A=∠B,∵OB=OD,∴∠B=∠ODB,∴∠A=∠ODB,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线,(2)如图,连结CD.∵⊙O的半径等于,∴BC=3,∠CDB=90°,在Rt△CDB中,cosB==,∴BD=1,,∵AC=BC=3,∠CDB=90°.∴AD=BD=1,解法一:在Rt△ADC中,,解法二:∵∠A=∠A,∠ADC=∠AED=90°,∴△ACD∽△ADE.∴.∴【点评】本题考查圆的综合问题,涉及切线的判定,等腰三角形的性质,锐角三角函数,勾股定理等知识,综合程度较高.24.(12分)如图,已知抛物线y=x2+bx+c与直线y=﹣x+3相交于坐标轴上的A,B两点,顶点为C.(1)填空:b=﹣4,c=3;(2)将直线AB向下平移h个单位长度,得直线EF.当h为何值时,直线EF与抛物线y=x2+bx+c 没有交点?(3)直线x=m与△ABC的边AB,AC分别交于点M,N.当直线x=m把△ABC的面积分为1:2两部分时,求m的值.【分析】(1)由直线y=﹣x+3交坐标轴于A,B两点,求出A(0,3),B(3,0),再把A,B两点的坐标代入y=x2+bx+c,得到关于b、c的二元一次方程组,解方程组即可求解;(2)根据“上加下减”的平移规律得出直线EF的解析式为y=﹣x+3﹣h,再把y=﹣x+3﹣h代入y=x2﹣4x+3,整理得到x2﹣3x+h=0.根据直线EF与抛物线没有交点,得出△=(﹣3)2﹣4×1×h=9﹣4h<0,解不等式即可求出h的取值范围;(3)先求出抛物线y=x2﹣4x+3的顶点C的坐标,利用待定系数法求出直线AC的解析式为y=﹣2x+3.设直线AC交x轴于点D,则D(,0),BD=.再求出S△ABC=S△ABD+S△BCD=3.由直线x=m把△ABC的面积分为1:2两部分,分两种情况讨论:①=,②=,分别求出m的值即可.【解答】解:(1)∵直线y=﹣x+3交坐标轴于A,B两点,∴A(0,3),B(3,0),把A(0,3),B(3,0)代入y=x2+bx+c,得,解得.故答案为﹣4,3;(2)∵将直线AB:y=﹣x+3向下平移h个单位长度,得直线EF,∴可设直线EF的解析式为y=﹣x+3﹣h.把y=﹣x+3﹣h代入y=x2﹣4x+3,得x2﹣4x+3=﹣x+3﹣h.整理得:x2﹣3x+h=0.∵直线EF与抛物线没有交点,∴△=(﹣3)2﹣4×1×h=9﹣4h<0,解得h>.∴当h>时,直线EF与抛物线没有交点;(3)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点C(2,﹣1).设直线AC的解析式为y=mx+n.则,解得,∴直线AC的解析式为y=﹣2x+3.如图,设直线AC交x轴于点D,则D(,0),BD=.∴S△ABC=S△ABD+S△BCD=××3+××1=3.∵直线x=m与线段AB、AC分别交于M、N两点,则0≤m≤2,∴M(m,﹣m+3),N(m,﹣2m+3),∴MN=(﹣m+3)﹣(﹣2m+3)=m.∵直线x=m把△ABC的面积分为1:2两部分,∴分两种情况讨论:①当=时,即=,解得m=±;②当=时,即=,解得m=±2∵0≤m≤2,∴m=或m=2.∴当m=或2时,直线x=m把△ABC的面积分为1:2两部分.【点评】本题是二次函数综合题,其中涉及到抛物线与直线的交点,利用待定系数法求一次函数、二次函数的解析式,二次函数的性质,二次函数与一元二次方程的关系,三角形的面积等知识,综合性较强,难度适中.利用方程思想、数形结合与分类讨论是解题的关键.25.(14分)操作与探究综合实践课,老师把一个足够大的等腰直角三角尺AMN靠在一个正方形纸片ABCD的一侧,使边AM与AD在同一直线上(如图1),其中∠AMN=90°,AM=MN.(1)猜想发现老师将三角尺AMN绕点A逆时针旋转α.如图2,当0<α<45°时,边AM,AN分别与直线BC,CD交于点E,F,连结EF.小明同学探究发现,线段EF,BE,DF满足EF=BE﹣DF;如图3,当45°<α<90°时,其它条件不变.①填空:∠DAF+∠BAE=45度;②猜想:线段EF,BE,DF三者之间的数量关系是:EF=BE+DF.(2)证明你的猜想;(3)拓展探究在45°<α<90°的情形下,连结BD,分别交AM,AN于点G,H,如图4连结EH,试证明:EH⊥AN.【分析】(1)①由全等三角形的性质即可得出结论;②由全等三角形的性质即可得出答案;(2)延长CB至点K,使BK=DF,连结AK,由SAS证明△ABK≌△ADF,得出AK=AF,∠BAK=∠DAF.由等腰直角三角形的性质得出∠MAN=∠N=45°,即可证出∠DAF+∠BAE=45°.证出∠EAF=∠EAK.由SAS证明△AEF≌△AEK,得出EF=EK.即可得出EF=BE+DF.(3)连结AC.证明△ADH∽△ACE.得出,再证明△ADC∽△AHE.得出∠ADC=∠AHE=90°.即可得出结论.【解答】(1)解:①∠DAF+∠BAE=45°;故答案为:45;②线段EF,BE,DF三者之间的数量关系是EF=BE+DF;故答案为:EF=BE+DF;(2)证明:如图3,延长CB至点K,使BK=DF,连结AK.∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABK=∠D=90°.在△ABK和△ADF中,,∴△ABK≌△ADF(SAS),∴AK=AF,∠BAK=∠DAF.∵∠AMN=90°,AM=MN,∴∠MAN=∠N=45°,∴∠DAF+∠BAE=45°.∴∠EAK=∠BAK+∠BAE=45°,∴∠EAF=∠EAK.在△AEF和△AEK中,,∴△AEF≌△AEK(SAS).∴EF=EK.∴EF=BE+DF.(3)证明:如图4,连结AC.∵四边形ABCD是正方形,∴∠ACE=∠ADH=∠CAD=45°.∵∠EAF=45°,∴∠EAF=∠CAD=45°.∴∠CAE=∠DAH,∴△ADH∽△ACE.∴.∴,又∵∠CAD=∠EAF=45°,∴△ADC∽△AHE.∴∠ADC=∠AHE=90°.∴EH⊥AN.【点评】本题是四边形综合题目,考查了正方形的性质,全等三角形的性质和判定,相似三角形的判定与性质等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.。
福建省漳州市九年级上学期数学期中试卷
福建省漳州市九年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A . 40ºB . 35ºC . 25ºD . 20º2. (2分) (2018九上·信阳月考) 若点(x1 , y1)、(x2 , y2)、(x3 , y3)都是反比例函数y= 的图象上的点,并且x1<0<x2<x3 ,则下列各式中正确的是()A . y1<y3<y2B . y1<y2<y3C . y3<y2<y1D . y2<y3<y13. (2分) (2019九下·揭西期中) 抛物线y=-(x+2)2-5的顶点坐标是()A . (2,-5)B . (-2,-5)C . (2,5)D . (-2,5)4. (2分) (2019九上·合肥月考) 已知反比例函数 y=的图象如图所示,则二次函数 y =ax 2-2x和一次函数 y=bx+a 在同一平面直角坐标系中的图象可能是()A .B .C .D .5. (2分) (2019九上·未央期末) 如图,在同一平面直角坐标系巾,反比例函数y= 与一次函数y=kx+3(k 为常数,且k>0)的图象可能是()A .B .C .D .6. (2分) (2017九上·凉州期末) 如图,过反比例函数y= (x>0)的图像上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A . 2B . 3C . 4D . 57. (2分) (2019九上·淮北月考) 抛物线不具有的性质是()A . 开口向上B . 对称轴是y轴C . 当时,随的增大而增大D . 顶点坐标是8. (2分)若把抛物线y=x2-2x+1先向右平移2个单位,再向下平移3个单位,所得到的抛物线的函数关系式为y=ax2+bx+c,则b、c的值为()A . b=2,c=-2B . b=-8,c=14C . b=-6,c=6D . b=-8,c=189. (2分)(2020·温州模拟) 若反比例函数y= 的图象经过点(2,-1),则k的值为()A . -2B . 2C .D .10. (2分)(2013·贺州) 当a≠0时,函数y=ax+1与函数y= 在同一坐标系中的图象可能是()A .B .C .D .11. (2分)(2020·平阳模拟) 如图,在△ABC中,D为AB边上一点,E为CD中点,AC= ,∠ABC=30°,∠A=∠BED=45°,则BD的长为().A .B .C .D .12. (2分) (2017九上·曹县期末) 如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;② ;③ac-b+1=0;④OA·OB= .其中正确结论的个数是()A . 4B . 3C . 2D . 1二、填空题 (共8题;共11分)13. (1分)如图,两个反比例函数y=和y=﹣的图象分别是l1和l2 .设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则△PAB的面积为________ .14. (1分)写一个你喜欢的实数m的值________ ,使得事件“对于二次函数,当x <﹣3时,y随x的增大而减小”成为随机事件.15. (1分)(2017·安徽模拟) 如图,抛物线y1=(x﹣2)2﹣1与直线y2=x﹣1交于A、B两点,则当y2≥y1时,x的取值范围为________.16. (2分)(2016·鄂州) 如图,已知直线y=k1x+b与x轴、y轴相交于P、Q两点,与y= 的图象相交于A(﹣2,m)、B(1,n)两点,连接OA、OB,给出下列结论:①k1k2<0;②m+ n=0;③S△AOP=S△BOQ;④不等式k1x+b 的解集是x<﹣2或0<x<1,其中正确的结论的序号是________.17. (1分)(2020·湖州模拟) 如图,是将一正方体货物沿坡面AB装进汽车货厢的平面示意图,已知长方体货厢的高度BC为2.6米,斜坡AB的坡比为1:2.4,现把图中的货物继续向前平移,当货物顶点D与C重合时,仍可把货物放平装进货厢,则货物的高度BD不能超过________米.18. (2分) (2018九上·北仑期末) 某体育用品商店购进一批滑板,每块滑板利润为30元,一星期可卖出80块.商家决定降价促销,根据市场调查,每降价1元,则一星期可多卖出4块.设每块滑板降价x元,商店一星期销售这种滑板的利润是y元,则y与x之间的函数表达式为________.19. (2分) (2020八上·广元期末) 如图,在中,,,BC边上的中线,线段AC为________.20. (1分)(2020·峨眉山模拟) 定义:对于平面直角坐标系中的线段和点M,在中,当边上的高为2时,称M为的“等高点”,称此时为的“等高距离”.(1)若点P的坐标为(1,2),点Q的坐标为(4,2),则在点A (1,0), ( ,4),C (0,3)中,的“等高点”是点________;(2)若 (0,0),=2,当的“等高点”在y轴正半轴上且“等高距离”最小时,点Q的坐标是________.三、解答题 (共7题;共30分)21. (10分) (2020七下·锡山期末) 计算:(1);(2) .22. (10分)(2012·湖州) 如图,已知反比例函数y= (k≠0)的图象经过点(﹣2,8).(1)求这个反比例函数的解析式;(2)若(2,y1),(4,y2)是这个反比例函数图象上的两个点,请比较y1、y2的大小,并说明理由.23. (2分)(2018·毕节模拟) 综合与探究:如图,抛物线y= x2﹣ x﹣4与x轴交与A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,B,C的坐标.(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.24. (2分)如图,一艘海轮位于灯塔P的北偏东53°方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.(参考数据:sin53°=0.80,cos53°=0.60,tan53°=0.33,=1.41)(1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数);(2)用方向和距离描述灯塔P相对于B处的位置.25. (2分) (2020九下·萧山月考) 在面积都相等的所有矩形中,当其中一个矩形的一边长为4时,它的另一边长为6。
2017-2018学年度九年级上学期数学期中考试卷及答案
2017-2018学年第一学期期中考试九年级数学试题1. 计算()23-的结果是()A.3B.3- C.3± D.92. 若P(x,-3)与点Q(4,y)关于原点对称,则x+y=()A、7B、-7C、1D、-13. 下列二次根式是最简二次根式的是()4. 一元二次方程22350xx++=的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断5. 用配方法解方程0142=++xx,则配方正确的是()A、3)2(2=+x B、5)2(2-=+x C、3)2(2-=+x D、3)4(2=+x6. 如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=3,那么BC=(). A. 4 B.5 C. 6 D.7二、填空题(共8小题,每小题3分,满分24分)7. 2-x在实数范围内有意义,则x的取值范围是.8. 221x-=的二次项系数是,一次项系数是,常数项是 .9. 一只蚂蚁沿图中所示的折线由A点爬到了C点,则蚂蚁一共爬行了______cm.(图中小方格边长代表1cm)NMOCBA10. 关于x 的一元二次方程04)2(22=-+-+m mx x m 有一根为0,则m= . 11. 对于任意不相等的两个数a,b ,定义一种运算*如下:ba b a b a -+=*,如523232*3=-+=,那么)5(*3-= .12. 有4个命题:①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弦是通过圆心的弦;④在同圆或等圆中,相等的两条弦所对的弧是等弧,其中真命题是_________。
13. 有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转22.5︒,第.2.次.旋转后得到图①,第.4.次.旋转后得到图②…,则第20次旋转后得到的图形与图①~图④中相同的是____. (填写序号)14. 等腰三角形两边的长分别为方程02092=+-x x 的两根,则三角形的周长是.三、解答题(共4小题,每小题6分,共24分) 15. 解方程:x(x-2)+x-2=016. 计算:0)15(282218-+--17. 下面两个网格图均是4×4正方形网格,请分别在两个网格图中选取两个白色的单位正方形并涂黑,使整个网格图满足下列要求.图① 图② 图③ 图④18. 如图,大正方形的边长为515+,小正方形的边长为515-,求图中的阴影部分的面积.四、(本大题共2小题,每小题8分,共16分)19. 数学课上,小军把一个菱形通过旋转且每次旋转120°后得到甲的图案。
(答案)-度第一学期九年级期中联考数学科试卷.docx
2017-2018学年度第一学期九年级期中联考数学科试卷(答案)13、-3 14、2400 15、6 16、三、解答题:17、解:(1)x2+4x+2=0移项,得:x2+4x=﹣2,配方,得:x2+4x+4=﹣2+4,……………………1分即(x+2)2=2,………………………………………..2分解这个方程,得:x+2=±;即x1=-2+,x2=-2﹣.………….……………3分(2)3x2+2x﹣1=0;这里a=3,b=2,c=﹣1,∵△=4+12=16,……………………1分∴x=,……………………2分∴x1=,x2=﹣1.……………………3分(3)(2x+1)2=﹣3(2x+1)(2x+1)2+3(2x+1)=0,(2x+1)[(2x+1)+3]=0,……………………1分(2x+1)(2x+4)=0,……………………2分解得:x1=﹣,x2=﹣2.……………………3分(其它方法参考给分)18、(1)10 ,80 ……………………2分(2)列表得:∵两次摸球可能出现的结果共有12种,每种结果出现的可能性相同,而所获购物券的金额不低于50元的结果共有6种.……………………5分∴该顾客所获购物券的金额不低于50元的概率是:.……………………6分19、解:(1) 如图,AC,BD即为所求。
…………………2分(2)如图,∵AE∥PO∥BF,∴△AEC∽△POC,△BFD∽△OPD,…………………3分∴,,PA BO DE F即,,解得:PO=3.3m.…………………5分答:路灯的高为3.3m.…………………6分20、证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠B+∠C=180°,∠ADF=∠DEC.…………………1分∵∠AFD+∠AFE=180°,∠AFE=∠B∴∠AFD=∠C…………………2分∴△ADF∽△DEC;…………………3分(2)解:∵四边形ABCD是平行四边形,∴CD=AB=4,由(1)知△ADF∽△DEC,∴,…………………4分∴DE=12…………………6分在Rt△ADE中,由勾股定理得:==6.…………7分21、解:(1)200+400x…………………1分(2)设应将每千克小型西瓜的售价降低x元,根据题意,得[(3-2)-x](200+-24=200可化为:50x2-25x+3=0,…………………4分解这个方程,得x1=0.2,x2=0.3.…………………6分为使每天的销量较大,应降价0.3元,即定价3-0.3=2.7元/千克.答:应将每千克小型西瓜的售价定为2.7元/千克.…………………7分22、解:(1)2t,10﹣4t…………………2分(2)设运动的时间为t秒,由勾股定理得,OC==10,1)当CQ=CP时,2t=10﹣4t,解得,t=,此时CP=2×=,∴AP=8﹣=,P 点坐标为(,6)…………………3分2)当PC=PQ 时,如图①,过点p 作OC 的垂线交OC 于点E ,CQ=10﹣4t ,CP=2t . CE==5-2t 易证△CEP ∽△CAO , ∴,即:解得 t=∴P 点坐标为(,6),…………………4分3)当QC=PQ 时,如图②,过点Q 作AC 的垂线交AC 于点F , CQ=10﹣4t ,CP=2t ,CF=t ∵△CFQ ∽△CAO , ∴,即:∴t=则P 点坐标为(,6),综上所述,P 点坐标为(,6),(,6),(,6);…………………5分(3)如图③,连接EG ,由题意得:△AOE ≌△AFE , ∴∠EFG=∠OBC=90°,∵E 是OB 的中点,∴EG=EG ,EF=EB=4, 在Rt △EFG 和Rt △EBG 中,,∴Rt △EFG ≌Rt △EBG (HL )……………6分 ∴∠3=∠4∵∠1+∠2+∠3+∠4=180°,∠1=∠2 ∴∠2+∠3=90°,可证△AOE ∽△EBG 。
人教版2017-2018学年九年级(上)期中考试数学试卷(含答案)
2017-2018学年上学期期中考试九年级数学试卷(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括辅助线)请一律用黑色签字笔完成;一、选择题 (本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑。
1、在﹣5,0,﹣2,1这四个数中,最小的数是( )A .﹣5B .﹣2C .0D .12、下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3、下列计算正确的是( )A .532x x x =+B .2x ·63x x =C .()532x x =D .235x x x =÷4、下列调査中,适合采用全面调査(普査)方式的是 ( )A .对嘉陵江水质情况的调査B .对端午节期间市场上粽子质量情况的调査C .对某班50名同学体重情况的调査D .对某类烟花爆竹燃放安全情况的调査5、对于二次函数2(1)2y x =-+的图象,下列说法正确的是( ).A .开口向下B .对称轴是1x =-C .顶点坐标是(1,2)D .与x 轴有两个交点 6、若m 是关于x 的一元二次方程02=++m nx x 的根,且m ≠0,则n m +的值为( )A.1-B.1C.21-D.21 7、将抛物线y =(x -4)2+2向右平移1个单位,再向下平移3个单位,则平移后抛物线的 表达式为( )A .y =(x -3)2+5B .y =(x -3)2-1C .y =(x -5)2+5D .y =(x -5)2-18、共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的为( )A .21000(1)1000440x +=+B .21000(1)440x +=C .2440(1)1000x +=D .1000(12)1000440x +=+9、在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图象可能是( )A B C D10、下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为( )A .50B .60C .64D .7211、如图,在Rt △ABC 中,∠ABC =90°,AB =BC =2,将△ABC 绕点C 逆时针旋转60°,得到△MNC ,连结BM ,则BM 的长是( )A.4B. 13+C. 23+D. 712、在﹣2、﹣1、0、1、2、3这六个数中,随机取出一个数,记为a ,若数 a 使关于x 的分式方程3233ax x x+=---的解是正实数,且使得二次函数y =﹣x 2+(2 a ﹣1)x +1的图象,在x >2时,y 随x 的增大而减小,则满足条件的所有a 之和是( )A .﹣2B .﹣1C .1D .2二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13、据报道,西部地区最大的客运枢纽系统﹣﹣重庆西站,一期工程已经完成90%,预计在年内建成投入使用。
福建省漳州市九年级上学期数学期中考试试卷
福建省漳州市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018八上·肇庆期中) 下面有4个汽车标志图案,其中是轴对称图形的是()A . ②③④B . ①②③C . ①②④D . ①③④2. (2分) (2019九上·思明期中) 已知点A(a,﹣1)与B(2,b)是关于原点O的对称点,则()A . a=﹣2,b=﹣1B . a=﹣2,b=1C . a=2,b=﹣1D . a=2,b=13. (2分)(2017·濮阳模拟) 把抛物线y=﹣x2向左平移2个单位,再向上平移3个单位,平移后的抛物线的解析式为()A . y=﹣(x﹣2)2﹣3B . y=﹣(x+2)2﹣3C . y=﹣(x+2)2+3D . y=﹣(x﹣2)2+34. (2分) (2017九上·相城期末) 下列方程有实数根的是()A .B .C .D .5. (2分) (2020九上·台州月考) 抛物线y=x2-4x+7的顶点坐标是()A . (2,3)B . (-2,3)C . (2,-3)D . (-2,-3)6. (2分) (2017九上·顺德月考) 如图,将矩形ABCD绕点A顺时针旋转90o后,得到矩形AB’C’D’,若CD=8,AD=6,连接CC’,那么CC’的长是()A . 20B . 100C . 10D . 107. (2分)已知关于x的方程x2+kx+6=0的一个根为x=﹣2,则实数k的值为()A . 5B . -5C . 4D . -38. (2分)某工厂计划在长24米、宽20米的空地中间划出一块32平方米的长方形建一住房,并且四周剩余空地一样宽,那么这宽度应是()A . 14米B . 8米C . 14米或8米D . 以上都不对9. (2分) (2019九上·鸠江期中) 已知抛物线与直线相交,若,则的取值范围是().A .B .C .D . 或10. (2分)如图4,菱形ABCD的对角线长分别为a、b,以菱形ABCD各边的中点为顶点作矩形A1B1C1D1 ,然后再以矩形A1B1C1D1的中点为顶点作菱形A2B2C2D2 ,……,如此下去,得到四边形A2011B2011C2011D2011的面积用含a、b的代数式表示为()A .B .C .D .二、填空题 (共5题;共5分)11. (1分) (2018九上·扬州期中) 请你写出一个有一根为1的一元二次方程:________.12. (1分)若x=1是方程x2+bx=3的一个根,则b=________ .13. (1分) (2020九下·宁波月考) 如图,在Rt△AOB中,∠AOB=90°,AO=3,BO=4,将△AOB绕顶点O逆时针旋转α(0<α<90°),得到△A'OB',A'B'与OB相交于点E,若△OA'E为等腰三角形,则线段B'E的长度为________。
漳州市九年级上学期数学期中考试试卷
漳州市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共11题;共22分)1. (2分)计算(-2.8)+3+1+(-3)+2.8+(-4)的结果为()A . 0B . -3C . -8D . 52. (2分)(2016·黄石模拟) 如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A . ①②B . ②③C . ②④D . ③④3. (2分) (2011八下·新昌竞赛) 为使有意义,x的取值范围是()A . x>B . x≥C . x≠D . x≥ 且x≠4. (2分)若A(﹣,y1),B(,y2),C(,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y1 , y2 , y3的大小关系是()A . y1<y2<y3B . y2<y1<y3C . y3<y1<y2D . y1<y3<y25. (2分) (2019七下·滦南期末) 如图,在△ABC中,CD是∠ACB的外角平分线,且CD∥AB,若∠ACB=100°,则∠B的度数为()A . 35°B . 40oC . 45oD . 50o6. (2分) (2019八下·长春期末) 在Rt△ABC中,∠C=90°,AB=13,AC=12,则sinB的值是()A .B .C .D .7. (2分)将一枚硬币抛掷两次,则这枚硬币两次正面都向上的概率为()A .B .C .D .8. (2分) (2017八下·萧山期中) 一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90,则这五个数据的中位数是()A . 90B . 95C . 100D . 1059. (2分) (2018七上·利川期末) A、B两地相距48km,一艘轮船从A地顺流航行至B地,比从B地逆流航行至A地少用2h,已知水流速度为5km/h,求该轮船在静水中的航行速度是多少km/h?若设该轮船在静水中的速度为xkm/h,则可列方程()A . =2B . =2C . =2D . =210. (2分)关于代数式a+2b的叙述正确的是()A . a与b的和的2倍B . a与2的和的b倍C . a与2b的和D . a加上2与b的和11. (2分)已知AC为矩形ABCD的对角线,则图中∠1与∠2一定不相等的是().A .B .C .D .二、填空题 (共6题;共7分)12. (1分)(2019·连云港) 如图,点A、B、C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为________.13. (2分) (2019八下·淮安月考) 医生一般绘制________统计图来反映病人的体温变化情况;14. (1分)(2019·道外模拟) 不等式组的解集为________.15. (1分) (2017八上·武昌期中) 等腰三角形的两边分别为1和2,则其周长为________.16. (1分) (2017九上·沂源期末) 如图1,把一个长为m、宽为n的长方形(m>n)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长(用含m,n的式子表示)为________.17. (1分)如图,正三角形ABC的边长为2,点A,B在半径为的圆上,点C在圆内,将正三角形ABC绕点A逆时针旋转,当点C第一次落在圆上时,点C运动的路线长是________.三、解答题 (共8题;共86分)18. (10分)(2017·南山模拟) 计算:2cos60°﹣(﹣3)﹣3+(π﹣)0﹣|﹣2|.19. (7分) (2019八下·邳州期中) 家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调査.(1)下列选取样本的方法最合理的一种是________.(只需填上正确答案的序号)①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2)本次抽样调査发现,接受调査的家庭都有过期药品,现将有关数据呈现如图:①m=▲ ,n=▲;②补全条形统计图;③根据调査数据,你认为该市市民家庭处理过期药品最常见的方式是什么?④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.20. (11分)如图,在平面直角坐标系中,三个顶点的坐标分别为,,,将绕点逆时针旋转后,点,分别落在点,处.(1)在所给的平面直角坐标系中画出旋转后的;(2)求点旋转到点所经过的弧形路线的长.21. (2分) (2016九上·乐至期末) 如图,某市对位于笔直公路上的两个小区A、B的供水路线进行优化改造,测得供水站M在小区A的南偏东60°方向,在小区B的西南方向,小区B到供水站M的距离为300米,(1)求供水站M到公路AB的垂直距离MD的长度.(2)求小区A到供水站M的距离.(结果可保留根号)22. (15分)平面直角坐标系xOy中,有点P(a,b),实数a,b,m满足以下两个等式:2a﹣3m+1=0,3b﹣2m﹣16=0(1)当a=1时,点P到x轴的距离为________;(2)若点P落在x轴上,点P平移后对应点为P′(a+15,b+4),求点P和P′的坐标;(3)当a≤4<b时,求m的最小整数值.23. (15分) (2020九下·长春月考) 阅读理解:我们学习过直角三角形斜边上的中线等于斜边的一半,即:如图1,在中,,若点D是斜边的中点,则灵活应用:如图2,中,,点D是的中点,将沿翻折得到连接.(1)线段的长是________;(2)判断的形状并说明理由;(3)线段的长是________.24. (15分) (2017·徐州模拟) 平面直角坐标系中,抛物线y=ax2+bx+2过点A(﹣3,0)、B (1,0),与y 轴交于点C,抛物线的顶点为D,点G在抛物线上且其纵坐标为2.(1) a=________,b=________,D(________,________).(2) P是线段AB上一动点(点P不与A、B重合),点P作x轴的垂线交抛物线于点E.①若PE=PB,试求E点坐标;②在①的条件下,PE、DG交于点M,在线段PE上是否存一点N,使得△DMN与△DCO相似?若存在,试求出相应点的坐标;③在①的条件下,点F是坐标轴上一点,且点F到EC、ED的距离相等,试直接写出EF的长度.25. (11分) (2017九上·义乌月考) 如图,已知抛物线与x轴交于A(-1,0),B(4,0),与y轴交于C(0,-2).(1)求抛物线的解析式;(2) H是C关于x轴的对称点,P是抛物线上的一点,当△PBH与△AOC相似时,求符合条件的P点的坐标(求出两点即可);(3)过点C作CD∥AB,CD交抛物线于点D,点M是线段CD上的一动点,作直线MN与线段AC交于点N,与x 轴交于点E,且∠BME=∠BDC,当CN的值最大时,求点E的坐标.参考答案一、单选题 (共11题;共22分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、二、填空题 (共6题;共7分)12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共8题;共86分)18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、25-1、25-2、。
福建省漳州市九年级上学期期中数学试卷
福建省漳州市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)三角形的两边长分别是3和6,第三边是方程x2-6x+8=0 的解,则这个三角形的周长是()A . 11B . 13C . 11或13D . 11和132. (2分)一元二次方程mx2﹣2x+1=0总有实数根,则m应满足的条件是()A . m>1B . m≤1C . m<1且m≠0D . m≤1且m≠03. (2分)如图所示的测量旗杆的方法,已知AB是标杆,BC表示AB在太阳光下的影子,叙述错误的是()A . 可以利用在同一时刻,不同物体与其影长的比相等来计算旗杆的高B . 只需测量出标杆和旗杆的影长就可计算出旗杆的高C . 可以利用△ABC∽△EDB,来计算旗杆的高D . 需要测量出AB、BC和DB的长,才能计算出旗杆的高4. (2分)某鱼塘里养了200条鲤鱼、若干条草鱼和150条罗非鱼,该鱼塘主通过多次捕捞实验后发现,捕捞到草鱼的频率稳定在0.5左右.若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率为()A .B .C .D .5. (2分)如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是()A . 4或4.8B . 3或4.8C . 2或4D . 1或66. (2分)如图,△ABC中,∠A=60°,BM⊥AC于点M,CN⊥AB于点N,BM,CN交于点O,连接MN.下列结论:①∠AMN=∠ABC;②图中共有8对相似三角形;③BC=2MN.其中正确的个数是()A . 1个B . 2个C . 3个D . 0个二、填空题 (共6题;共7分)7. (1分)若关于x的方程(a+3)x2﹣2x+a2﹣9=0有一个根为0,则a=________.8. (1分)如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是________ .9. (1分) (2018九上·黑龙江月考) 如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑________米.10. (1分)(2020·上海模拟) 已知点P把线段AB分成AP和BP(AP>BP)两段,如果AP是AB和BP的比例中项,那么AP:AB的值为________ 。
九年级数学上册:期中试卷(含答案)【精品】
………………第4题图D .15.已知关于的一元二次方程m 2+2-1=0有两个不相等的实数根,则m 的取值范围是( ). A .m >-1且m ≠0B .m <1且m ≠0C .m <-1D .m >16.将函数y =2的图象向左、右平移后,得到的新图象的解析式不可能...是( ). A .y =(+1)2B .y =2+4+4C .y =2+4+3D .y =2-4+47.下列说法中正确的个数有( ).①垂直平分弦的直线经过圆心;②平分弦的直径一定垂直于弦;③一条直线平分弦,那么这条直线垂直这条弦;④平分弦的直线,必定过圆心;⑤平分弦的直径,平分这条弦所对的弧. A .1个B .2个C .3个D .4个8.两年前生产1吨甲种药品的成本是5000元.随着生产技术的进步,成本逐年下降,第二年的年下降率是第1年的年下降率的2倍,现在生产1吨甲种药品成本是2400元.为求第一年的年下降率,假设第一年的年下降率为,则可列方程( ). A .5000(1--2)=2400B .5000(1-)2=2400C .5000--2=2400D .5000(1-) (1-2)=24009.如图所示,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P的坐标为(2a ,b +1),则a 与b 的数量关系为( ). A .a =b B .2a -b =1 C .2a +b =-1 D .2a +b =110.如图所示是抛物线y=a 2+b +c (a ≠0)的部分图象,其顶点坐标为(1,n ),且与轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a -b +c >0;②3a +b =0;③b 2=4a (c -n );④一元二次方程a 2+b +c =n -1有两个不相等的实根.其中正确结论的个数是( ).A .1个B .2个C .3个D .4个第10题图MN第9题图二、填空题 (本大题共4小题,每小题5分,满分20分)11.已知抛物线y =(m +1) 2开口向上,则m 的取值范围是___________.12.若抛物线y =2-2-3与轴分别交于A 、B 两点,则线段AB 的长为____________.13.如图所示,⊙O 的半径OA =4,∠AOB =120°,则弦AB 长为____________.14.如图所示,在四边形ABCD 中,∠ABC =30°,将△DCB 绕点C 顺时针旋转60°后,点D 的对应点恰好与点A 重合,得到△ACE ,若AB =6,BC =8,则BD =_____________. 三、(本大题共2小题,每小题8分,满分16分)15.如图所示,在正方形网格中,每个小正方形的边长均为1个单位.将△ABC 向下平移4个单位,得到△A ′B ′C ′,再把△A ′B ′C ′绕点C ′顺时针旋转90°,得到△A ″B ″C ″,请你作出△A ′B ′C ′和△A ″B ″C ″(不要求写作法).16. 已知关于的一元二次方程(a -1)2-+a 2-1=0的一个根是0,求a 的值.第14题图第13题图四、(本大题共2小题,每小题8分,满分16分)17.如图所示,在⊙O 中,半径OC ⊥弦AB ,垂足为D ,AB =12,CD =2.求⊙O 半径的长.18. 已知二次函数y=a 2+b 的图象经过点(2,0)和(-1,6). (1)求二次函数的解析式; (2)求它的对称轴和顶点坐标.五、(本大题共2小题,每小题10分,满分20分)19.为丰富职工业余生活,某单位要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?20.如图所示,二次函数y=-m2+4m的顶点坐标为(0,2),矩形ABCD的顶点B,C在轴上,A、D在抛物线上,矩形ABCD在抛物线与轴所围成的图形内,且点A在点D的左侧.(1)求二次函数的解析式;(2)设点A的坐标为(,y),试求矩形ABCD的周长p关于自变量的函数解析式,并求出自变量的取值范围;(3)是否存在这样的矩形ABCD,使它的周长为9?试证明你的结论.六、(本题满分12分)我市高新区某企业接到一批产品的生产任务,按要求必须在14天21.内完成.已知每件产品的出厂价...为60元.工人甲第天生产的产品数量为y件,y与满足如下关系:7.5(04)510(414)x xyx x≤≤⎩≤⎧=⎨+<.(1)工人甲第几天生产的产品数量为70件?(2)设第天生产的产品成本....为p元/件,p与的函数图象如图.工人甲第天创造的利润为W元,求W与的函数关系式,并求出第几天时,利润最大,最大利润是多少?七、(本题满分12分)22.如果关于的一元二次方程a2+b+c=0(a≠0)有两个不相等的实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,方程2-6+8=0的两个根是2和4,则方程2-6+8=0就是“倍根方程”.(1)若一元二次方程2-3+c=0是“倍根方程”,则c= ;(2)若(-2) (m-n)=0(m≠0)是“倍根方程”,求代数式4m2-5mn+n2的值;(3)若方程a2+b+c=0(a≠0)是倍根方程,且相异两点M(1+t,s),N(4-t,s),都在抛物线y=a2+b+c上,求一元二次方程a2+b+c=0 (a≠0)的根.八、(本题满分14分) 23.已知,点O 是等边△ABC 内的任一点,连接OA ,OB(1)如图1所示,已知∠AOB =150°,∠BOC =120°,将△BOC 按顺时针方向旋转60°得△ADC .①求∠DAO 的度数;②用等式表示线段OA ,OB ,OC 之间的数量关系,并证明;(2)设∠AOB =α,∠BOC =β.①当α,β满足什么关系时,OA+OB+OC 有最小值?请在图2由;②若等边△ABC 的边长为1,请你直接写出OA+OB+OC 的最小值. AB D A B O图1图22017~2018学年度第一学期期中考试九年级数学参考答案一、选择题(本大题共10小题,每小题4分,共40分)11.m>-1;12.4;13.14.10三、(本大题共2小题,每小题8分,满分16分)15.解:如图,△A′B′C′和△A″B″C″为所作.................................................................8分16.解:∵一元二次方程(a+1)2﹣a+a2﹣1=0的一个根为0,∴a+1≠0且a2﹣1=0,......................................................................................4分∴a=1........................................................................................8分四、(本大题共2小题,每小题8分,满分16分)17.解:连接AO. ................................................................2分∵半径OC⊥弦AB,∴AD=BD.∵AB =12,∴AD =BD =6.设⊙O 的半径为R ,∵CD =2,∴OD =R -2, 在Rt △AOD 中,OA 2=OD 2+AD 2,即:R 2=(R -2)2+62. ................................................................6分 ∴R =10.答:⊙O 的半径长为10. ................................................................8分18.解:(1)依题意,得:⎩⎨⎧=-=+6024b a b a ,解得:⎩⎨⎧-==42b a∴二次函数的解析式为:x x y 422-=. ................................................................4分 (2)对称轴为=1,顶点坐标为(1,-2). ................................................................8分五、(本大题共2小题,每小题10分,满分20分)19.解:设应邀请支球队参加比赛. ................................................................1分由题意,得28)1(21=-x , ................................................................6分 解得:1=8,2=-7(舍去),答:应邀请8支球队参加比赛. ................................................................10分20.解:(1)∵二次函数y =-m 2+4m 的顶点坐标为(0,2),∴4m =2,即m =12, ∴抛物线的解析式为:2212+=x y . ..............................................................2分 (2)∵A 点在轴的负方向上坐标为(,y ),四边形ABCD 为矩形,BC 在轴上,∴AD ∥轴,又∵抛物线关于y 轴对称,∴D 、C 点关于y 轴分别与A 、B 对称. ∴AD 的长为-2,AB 长为y ,∴周长p =2y -4=2(-122+2)-4=-2-4+4. ..................................6分 ∵A 在抛物线上,且ABCD 为矩形,又∵抛物线y =﹣122+2与轴交于(-2,0)与(2,0), ∴由图象可知﹣2<<2.综上所述,p =-2-4+4,其中-2<<2. ..................................8分(3)不存在.假设存在这样的p ,即:-2-4+4=9,解此方程,无实数解.∴不存在这样的p . .....................................................................................10分六、(本题满分12分)21.解:(1)根据题意,得:若7.5=70,得:=283>4,不符合题意;若5+10=70. 解得: =12答:工人甲第12天生产的产品数量为70件. ...............................................................2分(2)由函数图象知,当0≤≤4时,p =40,当4<≤14时,设p =+b ,将(4,40)、(14,50)代入,联立方程组,解得:=1,b =36.∴P =+36. .....................................................................................5分 ①当0≤≤4时,W =(60-40)×7.5=150.∵W 随的增大而增大,∴当=4时,W 最大=600元;②当4<≤14时,W =(60--36)(5+10)=-52+110+240=-5(-11)2+845,∴当=11时,W 最大=845.∵845>600,∴当=11时,W 取得最大值,845元.答:第11天时,利润最大,最大利润是845元. .....................................12分七、(本题满分12分)22.解:(1)c =2; ....................................................................................2分∴4n m n m ==或.∵()()22454m mn n m n m n -+=--,∴4m 2-5mn +n 2=0. .....................................6分 (3)∵方程()200ax bx c a ++=≠是倍根方程,不妨设12=2,x x∵相异两点()()1,,4,M t s N t s +-都在抛物线2y ax bx c =++上,分八、(本题满分14分)23.解:(1)①∵∠AOB =150°,∠BOC =120°,∴∠AOC =360°-150°-120°=90°又∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC .∴∠OCD =60°,∠D =∠BOC =120°∴∠DAO =180°+180°-∠AOC -∠OCD -∠D =90°. ......................................2分 ②连接OD .∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC .∴△ADC ≌△BOC ,∠OCD =60°∴CD =OC ,∠ADC =∠BOC =120°,AD =OB∴△OCD 是等边三角形∴OC =OD =CD .又∵∠DAO =90°∴OA 2+AD 2=OD 2即OA 2+OB 2=OC 2 ....................................................................................6分(2)①当α=β=120°时,OA +OB +OC 有最小值. ...........................................................8分将△AOC 绕点C 按顺时针旋转60°得△A ′O ′C ,连接OO ′则OC =O ′C ,OA =O ′A ′,且△OCO ′是等边三角形,∴∠C O O ′ =∠CO ′O =60°,OC =OO ′又∵∠A ′O ′C =∠AOC =∠BOC =120°∴B ,O ,O ′,A ′四点共线∴OA +OB +OC = O ′A ′+OB +OO ′=BA ′时,值最小. ...............................................12分...................................................................................14分【注:以上各题解法不唯一,只要合理,均应酌情赋分】。
福建省最新2017-2018年九年级上学期期中考试数学试卷
上学期期中考试九年级数学试卷试题卷一、选择题(每小题4分,共40分,并将选择题答案填入答题卷相对应的表中) 1.下列方程中是一元二次方程的是( )A. B.012=-x C. 02=++c bx ax D.623=-x2.用配方法解一元二次方程0122=--x x ,则方程变形为( )A.1)1(2=-xB.1)1(2=+xC.2)1(2=-xD.2)1(2=+x3.一枚均匀的正四面体骰子,它的四个面上的点数分别是1、2、3、4,抛掷这 枚四面体骰子,四个面朝下的可能性相同。
则朝下的面是奇数的概率是( ) A.21 B. 31 C.41 D. 514.菱形具有而矩形不具有的性质是( )A. 对角线互相垂直B.对角线互相平分C. 对角线相等D. 四个角都是直角 5.如图,在四边形ABCD 中,点O 是对角线的交点, 能判定这个四边形是正方形的是( )A.AC=BD ,AB ∥CB ,AD ∥BCB.AD ∥BC ,∠BAD =∠BCDC.AO=CO ,BO=DO ,AB=BCD.AO=BO=CO=DO ,AC ⊥6. 如图,在Rt △ABC 中,︒=∠90ACB ,AB CD ⊥于D , 则图中相似三角形有( )A. 1对B.2对C.3对D.4对 7.如图,在矩形ABCD 中,AB =2AD ,E 是CD 上一点,且AE =AB , 则∠CBE 等于( ) A. 15°B.22.5°C. 30°D.以上答案都不对8.已知△ABC 的三边长分别为6 cm ,7.5 cm ,9 cm ,△DEF 的一边长为4 cm ,若想得到这两个三角形相似,则△DEF 的另两边长是下列的( )A .2 cm ,3 cmB .4 cm ,5 cmC .5 cm ,6 cmD .6 cm ,7 cm装 订 线学校: 班级: 姓名: 学号:BC第6题第7题ODCBA第5题9.如图所示,四边形ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件:①∠APB =∠EPC ;②∠APE =∠APB ;③P 是BC 的中点;④BP ∶BC =2∶3.其中能推出△ABP ∽△ECP 的有( ) A .1个 B .2个 C .3个 D .4个 10.已知 ,则的值是( )A. 2B.1C. 2或-1D. 1或 二、填空题(每空4分,共32分) 11.方程的一般形式为___________________.12.如果52=b a ,那么=-bb a . 13.某种商品售价经过两次降价后,新售价为原售价的81%, 则平均每次降 %14. 小红、小芳、小明在一起做游戏时需要确定作游戏的先后顺序, 他们约定用“锤子、剪刀、布”的方式确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年福建省漳州市平和县九年级(上)期中数学试卷一、选择题(每题4分,共40分.每题只有一个正确选项)1.(4分)下列方程中是一元二次方程的是()A.2x﹣3=0 B.x2﹣2=0 C.x2+2x=x2﹣1 D.x﹣=32.(4分)在数1、2、3和4中,是方程x2+x﹣12=0的根的为()A.1 B.2 C.3 D.43.(4分)关于x的方程3x2﹣2x﹣5=0的二次项系数和一次项系数分别是()A.3,﹣2 B.3,2 C.3,5 D.5,24.(4分)一元二次方程x2﹣x﹣3=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根5.(4分)下列命题中,错误的是()A.两组对边分别平行的四边形是平行四边形B.有一个角是直角的平行四边形是矩形C.有一组邻边相等的平行四边形是菱形D.内错角相等6.(4分)菱形的对角线不一定具备的性质是()A.对角线相等B.对角线垂直C.对角线互相平分 D.对角线平分内角7.(4分)甲、乙、丙三人站成一排拍照,则甲站在中间的概率是()A.B.C.D.8.(4分)若正方形的对角线长为2cm,则这个正方形的面积为()A.4cm2B.2cm2C.cm2D.2cm29.(4分)根据下列表格中的对应值,判断一元二次方程x2﹣4x+2=0的解的取值范围是()A.0<x<0.5,或3.5<x<4 B.0.5<x<1,或3<x<3.5C.0.5<x<1,或2<x<2.5 D.0<x<0.5,或3<x<3.510.(4分)如图,在矩形ABCD中,AD=10,AB=6,E为BC上一点,DE平分∠AEC,则CE的长为()A.1 B.2 C.3 D.4二、填空题(每小题4分,共24分)11.(4分)已知菱形的两条对角线长分别为8cm、6cm,则它的边长为cm.12.(4分)方程x(x﹣4)=0的解是.13.(4分)关于x的方程(m﹣2)x2﹣4x+3=0是一元二次方程,则m满足的条件是.14.(4分)如图,在△ABC中,∠ACB=90°,AB=10cm,点D为AB的中点,则CD=cm.15.(4分)如图,菱形ABCD的对角线相交于点O,请你添加一个条件:,使得该菱形为正方形.16.(4分)袋子里有8个白球,n个红球,经过大量实验,从中任取一个球恰好是白球的概率是,则n的值是.三、解答题(共9题,满分86分.解答应写出文字说明、证明过程或演算步骤)17.(10分)解方程:(1)x2+6x﹣7=0(2)5x2=4x.18.(8分)在矩形ABCD中,对角线AC与BD相交于点O,∠ACB=30°,BD=4,求矩形ABCD的面积.19.(8分)已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C 作BD的平行线,过点D作AC的平行线,两线相交于点P,求证:四边形CODP 是菱形.20.(8分)某公司今年10月份的营业额为2500万元,按计划12月的营业额要达到3600万元,问该公司11月,12月两个月营业额的月均增长率是多少.21.(8分)袋中装有1个红球,1个白球和1个黄球,它们除颜色外都相同.随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,问两次都摸到红球的概率是多少?(用树状图或列表法求解)22.(8分)某百货大楼某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调查,如果每件童装降价1元,那么平均每天就可多售出2件.为了使百姓得到实惠,要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?23.(10分)如图,在△ABC中,AD为BC边上的中线,延长AD至E,使DE=AD,连接BE,CE.(1)请判断四边形ABEC的形状;(2)当△ABC满足什么条件时,四边形ABEC是矩形?24.(12分)先阅读理解下面的例题,再按要求解答下列问题:例题:(a)求代数式y2+4y+8的最小值.(b)求代数式﹣2x2+4x+6的最大值解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(b)﹣2x2+4x+6=﹣2(x2﹣2x)+6=﹣2(x﹣1)2+8∵﹣2(x﹣1)2≤0∴﹣2(x﹣1)2+8≤8∴﹣2x2+4x+6的最大值是8.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙足够长)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设BC=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?25.(14分)如图①,点O是边长为的正方形ABCD的对角线交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,以OG、OE为边作正方形OEFG,连接AG、DE.(1)求证:AG=DE;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<180°)得到正方形OE′F′G′,如图②.①在旋转过程中,这两个正方形重合部分的面积会发生变化吗?证明你的结论;②在旋转过程中,当AG′=时,求α的度数.2017-2018学年福建省漳州市平和县九年级(上)期中数学试卷参考答案与试题解析一、选择题(每题4分,共40分.每题只有一个正确选项)1.(4分)下列方程中是一元二次方程的是()A.2x﹣3=0 B.x2﹣2=0 C.x2+2x=x2﹣1 D.x﹣=3【解答】解:A、2x﹣8=0属于一元一次方程,故本选项错误;B、方程x2﹣2=0符合一元二次方程的定义,故本选项正确;C、由原方程得到2x+1=0,属于一元一次方程,故本选项错误;D、x﹣=3是分式方程;故本选项错误;故选:B.2.(4分)在数1、2、3和4中,是方程x2+x﹣12=0的根的为()A.1 B.2 C.3 D.4【解答】解:方程左边因式分解得:(x+4)(x﹣3)=0,得到:x+4=0或x﹣3=0,解得:x=﹣4或x=3,故选:C.3.(4分)关于x的方程3x2﹣2x﹣5=0的二次项系数和一次项系数分别是()A.3,﹣2 B.3,2 C.3,5 D.5,2【解答】解:一元二次方程3x2﹣2x﹣5=0的二次项系数和一次项系数分别是:3,﹣2故选:A.4.(4分)一元二次方程x2﹣x﹣3=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根【解答】解:∵△=(﹣1)2﹣4×1×(﹣3)=13>0,∴该方程有两个不相等的实数根.故选:B.5.(4分)下列命题中,错误的是()A.两组对边分别平行的四边形是平行四边形B.有一个角是直角的平行四边形是矩形C.有一组邻边相等的平行四边形是菱形D.内错角相等【解答】解:A、两组对边分别平行的四边形是平行四边形,正确.B、有一个角是直角的平行四边形是矩形,正确.C、有一组邻边相等的平行四边形是菱形,正确.D、内错角相等,错误,缺少条件两直线平行,内错角相等.故选:D.6.(4分)菱形的对角线不一定具备的性质是()A.对角线相等B.对角线垂直C.对角线互相平分 D.对角线平分内角【解答】解:菱形具有的性质是:对角线互相垂直且平分,对角线所在直线是对称轴.菱形对角线不相等.故选:A.7.(4分)甲、乙、丙三人站成一排拍照,则甲站在中间的概率是()A.B.C.D.【解答】解:画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以甲站在中间的概率==.故选:B.8.(4分)若正方形的对角线长为2cm,则这个正方形的面积为()A.4cm2B.2cm2C .cm2D.2cm2【解答】解:∵四边形ABCD是正方形,对角线长为2cm,∴AC⊥BD,AC=BD=2cm,∴正方形ABCD的面积S=AC×BD=×2cm×2cm=2cm2,故选:B.9.(4分)根据下列表格中的对应值,判断一元二次方程x2﹣4x+2=0的解的取值范围是()A.0<x<0.5,或3.5<x<4 B.0.5<x<1,或3<x<3.5C.0.5<x<1,或2<x<2.5 D.0<x<0.5,或3<x<3.5【解答】解:根据下列表格中的对应值,得x=0.5时,x2﹣4x+2=0.25,x=1.5时,x2﹣4x+2=﹣1;x=3时,x2﹣4x+2=﹣1,x=3.5时,x2﹣4x+2=0.25,判断一元二次方程x2﹣4x+2=0的解的取值范围是0.5<x<1,或3<x<3.5,故选:B.10.(4分)如图,在矩形ABCD中,AD=10,AB=6,E为BC上一点,DE平分∠AEC,则CE的长为()A.1 B.2 C.3 D.4【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠ADE,又∵∠DEC=∠AED,∴∠ADE=∠AED,∴AE=AD=10,在直角△ABE中,BE===8,∴CE=BC﹣BE=AD﹣BE=10﹣8=2.故选:B.二、填空题(每小题4分,共24分)11.(4分)已知菱形的两条对角线长分别为8cm、6cm,则它的边长为5cm.【解答】解:如图,不妨令AC=6cm,BD=8cm,∵四边形ABCD是菱形,∴AO=AC=3cm,BO=BD=4cm,且AC⊥BD,∴△ABO是直角三角形,∴AB==5cm.故答案为:5.12.(4分)方程x(x﹣4)=0的解是x 1=0,x2=4.【解答】解:x(x﹣4)=0,x=0,x﹣4=0,x1=0,x2=4,故答案为:x1=0,x2=4.13.(4分)关于x的方程(m﹣2)x2﹣4x+3=0是一元二次方程,则m满足的条件是m≠2.【解答】解:由题意得:m﹣2≠0,解得:m≠2.14.(4分)如图,在△ABC中,∠ACB=90°,AB=10cm,点D为AB的中点,则CD=5cm.【解答】解:∵∠ACB=90°,点D为AB的中点,∴CD=AB=5cm.故答案为:5.15.(4分)如图,菱形ABCD的对角线相交于点O,请你添加一个条件:AC=BD 或AB⊥BC,使得该菱形为正方形.【解答】解:根据对角线相等的菱形是正方形,可添加:AC=BD;根据有一个角是直角的菱形是正方形,可添加的:AB⊥BC;故添加的条件为:AC=BD或AB⊥BC.16.(4分)袋子里有8个白球,n个红球,经过大量实验,从中任取一个球恰好是白球的概率是,则n的值是4.【解答】解:袋子里有8个白球,n个红球,若从中任取一个球恰好是白球的概率是,根据题意可得:=,解得n=4.故答案为:4.三、解答题(共9题,满分86分.解答应写出文字说明、证明过程或演算步骤)17.(10分)解方程:(1)x2+6x﹣7=0(2)5x2=4x.【解答】解:(1)x2+6x﹣7=0(x﹣1)(x+7)=0,x﹣1=0或x+7=0,解得x1=1,x2=﹣7;(2)5x2=4x,5x2﹣4x=0,x(5x﹣4)=0,x=0或5x﹣4=0,解得x1=0,x2=.18.(8分)在矩形ABCD中,对角线AC与BD相交于点O,∠ACB=30°,BD=4,求矩形ABCD的面积.【解答】解:∵在矩形ABCD中,∠ACB=30°,BD=4,∴∠ABC=90°,AC=BD=4,∴AB=AC=2,∴BC==2,∴S=AB•BC=4.矩形ABCD19.(8分)已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C 作BD的平行线,过点D作AC的平行线,两线相交于点P,求证:四边形CODP 是菱形.【解答】证明:∵DP∥AC,CP∥BD∴四边形CODP是平行四边形,∵四边形ABCD是矩形,∴BD=AC,OD=BD,OC=AC,∴OD=OC,∴四边形CODP是菱形.20.(8分)某公司今年10月份的营业额为2500万元,按计划12月的营业额要达到3600万元,问该公司11月,12月两个月营业额的月均增长率是多少.【解答】解:设该公司11月,12月两个月营业额的月均增长率是x.根据题意得2500(1+x)2=3600,解得x1=0.2,x2=﹣2.2(不合题意,舍去).答:该公司11月,12月两个月营业额的月均增长率是20%.21.(8分)袋中装有1个红球,1个白球和1个黄球,它们除颜色外都相同.随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,问两次都摸到红球的概率是多少?(用树状图或列表法求解)【解答】解:画树形图得:∵共有9种等可能的结果,两次都摸到红球的有1种情况,∴两次都摸到红球的概率=.22.(8分)某百货大楼某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调查,如果每件童装降价1元,那么平均每天就可多售出2件.为了使百姓得到实惠,要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?【解答】解:设每件童装应降价x元,根据题意列方程得,(40﹣x)(20+2x)=1200,解得x1=20,x2=10(因为为了使百姓得到实惠,不合题意,舍去),答:每件童装降价20元.23.(10分)如图,在△ABC中,AD为BC边上的中线,延长AD至E,使DE=AD,连接BE,CE.(1)请判断四边形ABEC的形状;(2)当△ABC满足什么条件时,四边形ABEC是矩形?【解答】解:(1)四边形ABEC是平行四边形;理由如下:∵AD为BC边上的中线,∴BD=CD,∵DE=AD,∴四边形ABEC是平行四边形(对角线互相平分的四边形是平行四边形);(2)当∠BAC=90°,四边形ABEC是矩形;理由如下:∵四边形ABEC是平行四边形,∠BAC=90°,∴四边形ABEC是矩形(有一个角是直角的平行四边形是矩形).24.(12分)先阅读理解下面的例题,再按要求解答下列问题:例题:(a)求代数式y2+4y+8的最小值.(b)求代数式﹣2x2+4x+6的最大值解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(b)﹣2x2+4x+6=﹣2(x2﹣2x)+6=﹣2(x﹣1)2+8∵﹣2(x﹣1)2≤0∴﹣2(x﹣1)2+8≤8∴﹣2x2+4x+6的最大值是8.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙足够长)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设BC=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?【解答】解:(1)m2+m+4=(m+)2+,∵(m+)2≥0,∴(m+)2+≥,则m2+m+4的最小值是;(2)4﹣x2+2x=﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5;(3)由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∵﹣2x2+20x=﹣2(x﹣5)2+50∵﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.25.(14分)如图①,点O是边长为的正方形ABCD的对角线交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,以OG、OE为边作正方形OEFG,连接AG、DE.(1)求证:AG=DE;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<180°)得到正方形OE′F′G′,如图②.①在旋转过程中,这两个正方形重合部分的面积会发生变化吗?证明你的结论;②在旋转过程中,当AG′=时,求α的度数.【解答】(1)证明:∵四边形ABCD是正方形,∴OA=OC=OB=OD,AC⊥BD,∠OAD=∠ODA=∠OCD=45°,∴∠AOG=∠DOE=90°,∵OG=2OD,OE=2OC,∴OG=OE,在△AOG和△DOE中,,∴△AOG≌△DOE(SAS),∴AG=DE;(2)解:①两个正方形重合部分的面积不变化;理由如下:如图1所示:∵∠AOD=∠G′OE′,∴∠DOM=∠CON,在△ODM和△OCN中,,∴△ODM≌△OCN(ASA),∴△ODM的面积=△OCN的面积,∴四边形OMDN的面积=△OCD的面积=正方形ABCD的面积,即两个正方形重合部分的面积不会发生变化;②当α为锐角时,如图1所示:∵四边形ABCD是正方形,∴BC=AB=,∠ABC=90°,OA=OD=AC,∴AC=AB=2,∴OA=1,∴OG′=OG=2OD=2,∵OA2+AG′2=12+()2=4,OG′2=4,∴OA2+AG′2=OG′2,∴△AOG′是直角三角形,∠OAG′=90°,∵OA=OG′,∴∠AG′O=30°,∴∠AOG′=60°,∴∠DOG′=90°﹣60°=30°,即α=30°;当旋转到如图2所示位置,当AG′=时,α=180°﹣30°=150°;综上所述:α的度数为30°或150°.。