期末冲刺130一元一次方程详讲+有理数过关
一元一次方程应用题典型例题综合讲解[1]
一元一次方程解应用题典型例题1、分配问题:例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?变式2:某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?2、匹配问题:例题2、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。
为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?3、利润问题(1)一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______.变式:一件衣服的进价为x元,若要利润率是20%,应把售价定为________.(2)一件衣服的进价为x元,售价为80元,若按原价的8折出售,利润是______元,利润率是__________.变式1:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是______元,利润率是__________.变式3:一件商品每件的进价为250元,按标价的九折销售时,利润为15.2%,这种商品每件标价是多少?变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?变式5:一件商品按成本价提高20%标价,然后打九折出售,售价为270元.这种商品的成本价是多少?变式6:某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,买这两件衣服总的是盈利还是亏损,或是不盈不亏?4、工程问题:(1)甲每天生产某种零件80个,3天能生产个零件。
七年级数学上学期期末复习一元一次方程1新人教版
3一元一次方程【学习目标】1.通过对本章所学知识的复习梳理,能熟练准确地解一元一次方程.进一步体会解法依据和转化思想方法.2.养成良好的学习品质和勇于克服困难的精神.【学习重点】熟练准确地解一元一次方程.【学习难点】解一元一次方程的依据.【知识梳理】一、 一元一次方程和方程的解的概念1.已知方程23)2(6+=+m m x 与方程01=-x 的解相同, 则m 的值是 .2.将方程43+=x x 变形成43=-x x 的依据是 . 3.下列各式是一元一次方程的是( )A .321=+B .23+xC .323=+xD . 3=+y x4.若02=-b a ,则下列各等式不能成立的是( )A .b a 2=B .222-=-b aC .b b a 3=+D .22b a = 5.下列变形中,正确的是( )A .由x x 253=-,得523=+x xB .由23=-x ,得23-=x C .由()412=-x ,得21=-x D .由032=y ,得23=y 二、解一元一次方程的一般步骤:6.解方程:12x -=3-312-x ,请详细写出步骤及依据.【课堂探究】问题1:解方程(1)4)20(34-=--x x (2)612131--=-x x问题2:已知841+=x y ,)2(32-=x y(1)当x 取何值时,1y 比2y 大2? (2)当x 取何值时,1y 与2y 互为相反数?【随堂检测】1.x 的三倍减去7,等于它的两倍加上5,用方程表示为 . 2.已知2331m n -=+,则23m n -= .3.若x =-4是方程()m x x m -=-41的解,则=m .4.解方程(1))2(46)2(34--=+-x x x (2)223146y y +--=【课后作业】1.x 的3倍减去2得5,用方程表示为 ;2.若4=x 是方程关于x 的方程235=-m x 的解,则m 的值是 .3.若a 2与a -1互为相反数,则=a .4.已知17562=++b a ,则=-+253b a .5.对于方程612121--=-x x ,下列变形中正确的是( ) A .12633--=-x x B .12613+-=-x xC .)12(11)(3--=-x xD .12633+-=-x x6.解下列方程(1))3(23)1(73+-=--x x x (2)3713321-+=-x x7. k 取何值时,代数式31+k 的值比213+k 的值小4?8.已知甲有图书80本,乙有图书48本,要使甲、乙两人的图书一样多,应从甲调到乙多少本 图书?9.元旦期间,甲、乙两商场都在开展促销活动.甲商场的促销方式是全场“7折”,即按商品原价的70 出售;乙商场的促销方式是“满200省90”,即按商品原价每买满..200元,实际花费就可省去90元.(1)若小红打算只用140元购物,她在哪个商场能买到原价更高的商品?最高原价是多少元?(2)若小红需购买原价在400元以内(不含400元)的商品,则她购买商品的原价为多少时,在两商场实际花费的金额相等?。
人教版七年级数学上册期末常考题型过关练习:计算题专项(三)
七年级数学上册期末常考题型过关练习:计算题专项(一)一.有理数混合运算1.计算:(1)16÷(﹣2)3﹣(﹣)×(﹣4)+(﹣1)2020;(2)﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].2.计算:(1)2﹣(﹣4)+6÷(﹣2)+(﹣3)×2(2)﹣12+(﹣3)2﹣24×()3.计算:(1)﹣10﹣8÷(﹣2)×(﹣);(2)(﹣+﹣)×12+(﹣1)2020.4.有理数的计算:(1)﹣42×|﹣1|﹣(﹣5)+2;(2)(﹣56)×(﹣1)÷(﹣1)×.5.计算(1)(﹣5)+(+7)﹣(﹣3)﹣(+20)(2)25÷×(﹣)+(﹣2)×(﹣1)2019二.解一元一次方程6.先化简,再求值:(1)5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=﹣,b=.(2)﹣2x2﹣[3y2﹣2(x2﹣y2)+6],其中x=﹣1,y=﹣2.7.先化简,再求值(1)﹣(4a2+2a﹣1)+3a2﹣3a,其中a=﹣.(2)(3m2﹣mn+5)﹣2(5mn﹣4m2+2),其中m2﹣mn=2.8.化简或化简求值:(1)化简:(2ab+a2b)+3(2a2b﹣5ab)(2)先化简,再求值:(﹣x2+3xy﹣2y)﹣2(﹣x2+4xy﹣y2),其中x=3,y=﹣29.先化简,再求值(1)ab﹣3a2﹣2b2﹣5ab+3a2+4ab,其中a=2,b=﹣1;(2)6(x2y+xy2﹣x)﹣(4x2y+2xy2+8x),其中x=,y=1.10.(1)化简:4x2﹣(x2+y)+2(y﹣2x2)(2)先化简,再求值:,其中a=2,b=.三.整式混合运算11.解方程:(1)2x﹣(x+6)=3x+2(x﹣1).(2).12.解下列方程:(1)6﹣5x=3(4﹣x);(2)﹣=1.13.解方程:(1)5x+2=3x+6(2)14.解方程(1)8x﹣(3x+5)=20(2)﹣1=15.解方程:(1)2x﹣9=7x+6;(2).四.一元一次方程应用16.已知A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,已知甲车速度为115千米/时,乙车速度为85千米/时.(1)两车相向而行,几小时后相遇?(2)两车同向而行,几小时后相距420千米?17.如图1,已知数轴上有三点A,B,C.点A,C对应的数分别是﹣40和20,点B是AC 的中点.(1)请直接写出点B对应的数:;(2)如图2,动点P,Q分别从A,C两点同时出发向左运动,点P,Q的速度分别为2个单位长度/秒,3个单位长度/秒,点E为线段PQ的中点.设运动的时间为t秒(t>0).①当t为何值时,点B与点E的距离是5个单位长度?②当点E在点A的右侧时,m▪AE+QC的值不随时间的变化而改变,请求出m的值.18.今年姚强上初一,父母是清洁工,需要很早离家去清理打扫街道,早晨不能送姚强去学校上学.于是,他的父母每月会给姚强100元作为乘车费,平时姚强会选择公交车上学,但时间紧张的时候,他会选择打出租车去上学.其中,两种不同乘车方式的价格如表所示:乘车方式公交车出租车价格(元/次) 2 6已知姚强10月份早晨上学共计乘车23次,不仅没有把100元乘车费用完,而且还剩余34元,求姚强10月份早晨上学乘坐公交车的次数和打出租车的次数各是多少?19.为了提倡节约用电,某地区规定每月用电量不超过a千瓦时,居民生活用电基本价格为每千瓦时0.50元,若每月用电量超过a千瓦时,则超过部分按基本电价提高20%收费.(1)若居住在此地区的小明家十月份用电100千瓦时,共交电费54元,求a.(2)若居住在此地区的小刚家十一月份共用电200千瓦时,应交电费多少元?(3)若居住在此地区的小芳家十二月份月份的平均电费为0.56元,则小芳家十二月份共用电多少千瓦时?应交电费多少元?20.如图:是某月份的月历表,请你认真观察月历表,回答以下问题:(1)如果圈出同一行的三个数,用a表示中间的数,则第一个数,第三个数怎样表示?(2)如果圈出同一列的三个数,用a表示中间的数,则第一个数,第三个数怎样表示?(3)如果圈出如图所示的任意9个数,这9个数的和可能是207吗?如果可能,请求出这9个数;如果不可能,请说明理由.参考答案1.解:(1)16÷(﹣2)3﹣(﹣)×(﹣4)+(﹣1)2020=16÷(﹣8)﹣+1=﹣2﹣+1=﹣;(2)﹣14﹣(1﹣0.5)××[2﹣(﹣3)2]=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=.2.解:(1)2﹣(﹣4)+6÷(﹣2)+(﹣3)×2 =2+4+(﹣3)+(﹣6)=﹣3;(2)﹣12+(﹣3)2﹣24×()=﹣1+9﹣6+9+2=13.3.解:(1)==﹣10﹣2=﹣12;(2)===.4.解:(1)﹣42×|﹣1|﹣(﹣5)+2=﹣16×+5+2=﹣8+5+2=﹣1;(2)(﹣56)×(﹣1)÷(﹣1)×=(﹣56)×(﹣)×(﹣)×=﹣24.5.解:(1)(﹣5)+(+7)﹣(﹣3)﹣(+20)=﹣5+7+3﹣20=﹣25+10=﹣15;(2)25÷×(﹣)+(﹣2)×(﹣1)2019=25××(﹣)+(﹣2)×(﹣1)=﹣12+2=﹣10.6.解:(1)原式=15a2b﹣5ab2﹣ab2﹣3a2b=12a2b﹣6ab2,当a=﹣,b=时,原式=1+=1;(2)原式=﹣2x2﹣y2+x2﹣y2﹣3=﹣x2﹣y2﹣3,当x=﹣1,y=﹣2时,原式=﹣1﹣10﹣3=﹣14.7.解:(1)原式=﹣6a2﹣3a++3a2﹣3a=﹣3a2﹣6a+,当a=﹣时,原式=﹣3×(﹣)2﹣6×(﹣)+=﹣+4+=4;(2)原式=3m2﹣mn+5﹣10mn+8m2﹣4=11m2﹣11mn+1=11(m2﹣mn)+1,当m2﹣mn=2时,原式=22+1=23.8.解:(1)原式=2ab+a2b+6a2b﹣15ab=7a2b﹣13ab;(2)原式=﹣x2+3xy﹣2y+x2﹣8xy+3y2=﹣5xy﹣2y+3y2,当x=3,y=﹣2时,原式=﹣5×3×(﹣2)﹣2×(﹣2)+3×(﹣2)2=30+4+12=46.9.解:(1)原式=(ab﹣5ab+4ab)+(﹣3a2+3a2)﹣2b2=﹣2b2,当a=2,b=﹣1时,原式=﹣2;(2)原式=6x2y+4xy2﹣3x﹣6x2y﹣3xy2﹣12x=xy2﹣15x,当x=,y=1时,原式=×1﹣15×=﹣5=﹣4.10.解:(1)原式=4x2﹣x2﹣y+2y﹣4x2=﹣x2+y;(2)原式=2a2b+ab2﹣3﹣3a2b﹣ab2+6=3﹣a2b,当a=2,b=时,原式=3﹣2=1.11.解:(1)2x﹣(x+6)=3x+2(x﹣1),去括号,得 2x﹣x﹣6=3x+2x﹣2,移项,得 2x﹣x﹣3x﹣2x=﹣2+6,合并同类项,得﹣4x=4,系数化为1,得x=﹣1;(2)去分母得:2x﹣5﹣9x﹣3=6,移项合并得:﹣7x=14,解得:x=﹣2.12.解:(1)去括号得,6﹣5x=12﹣3x,移项合并得:﹣2x=6,(2)去分母得,3(x+1)﹣2(1﹣x)=6,去括号得:3x+3﹣2+2x=6,移项合并得:5x=5,解得:x=1.13.解:(1)移项,合并同类项,可得:2x=4,系数化为1,可得:x=2.(2)去分母,可得:5(x+4)﹣2(x﹣3)=2,去括号,可得:5x+20﹣2x+6=2,移项,合并同类项,可得:3x=﹣24,系数化为1,可得:x=﹣8.14.解:(1)去括号得:8x﹣3x﹣5=20,移项合并得:5x=25,解得:x=5;(2)去分母得:6y﹣3﹣12=10y﹣14,移项合并得:﹣4y=1,解得:y=﹣.15.解:(l)移项合并同类项得:﹣5x=15,解得:x=﹣3;(2)去分母,得4(2x﹣3)﹣5(x﹣2)=﹣20,去括号,得8x﹣12﹣5x+10=﹣20,移项,得8x﹣5x=﹣20+12﹣10,合并同类项,得3x=﹣18,系数化为1,得x=﹣6.16.解:(1)设两车相向而行,x小时后相遇,则(115+85)x=450∴200x=450,答:两车相向而行,2.25小时后相遇.(2)设两车同向而行,x小时后相距420千米,①(115﹣85)x=450﹣420∴30x=30,解得x=1②(115﹣85)x=450+420∴30x=870,解得x=29答:两车同向而行,1小时或29小时后相距420千米.17.解:(1)点B对应的数是﹣10;故答案为:﹣10(2)①PB=AB+AP=﹣10﹣(﹣40)+2t=30+2tPQ=20﹣(﹣40)+2t﹣3t=60﹣t,∵E是PQ的中点,∴PE=PQ=(60﹣t)=30﹣t当E在B的左侧时,BE=PB﹣PE=30+2t﹣(30﹣)=BE=t=5,∴t=2,当E在B的右侧时∴BE=PE﹣PB=30﹣t﹣(30+2t)=t∴BE=t=5,∴t=﹣2答:当t=2时,点B与点E的距离是5个单位长度.②依题意,得:AE=+40=30﹣t,QC=3t,∴mAE+QC=m(30﹣t)+3t=30m+(m+3)t,∵mAE+QC的值不随时间的变化而改变∴m+3=0,解得:m=;,答:当m=时,mAE+QC的值不随时间的变化而改变18.解:设乘公交车x次,则打出租车(23﹣x)次,依题意,得:2x+6(23﹣x)=100﹣34.2x+138﹣6x=66x=18所以23﹣x=5.答:乘坐公交车的次数18次,打出租车的次数5次.19.解:(1)∵100×0.5=50(元)<54元,∴该户用电超出基本用电量.根据题意得:0.5a+0.5×(1+20%)×(100﹣a)=54.解得:a=60.(2)0.5×60+(200﹣60)×0.5×120%=114(元);(3)设小芳家十二月份共用电x千瓦时,根据题意得:0.5×60+(x﹣60)×0.5×120%=0.56x,解得:x=150.∴0.56x=0.56×150=84.答:小房家十二月份共用电150千瓦时,应交电费84元.20.解:(1)同一行中的第一个数为:a﹣1.第三个数为:a+1;(2)同一列中的第一个数为:a﹣7.第三个数为:a+7.(3)设9个数中间的数为:x,则这九个数分别为:x+8,x+7,x+6,x﹣1,x,x+1,x﹣8,x﹣7,x﹣6,则这9个数的和为:(x+8)+(x+7)+(x+6)+(x﹣1)+(x+1)+x+(x﹣8)+(x﹣7)+(x﹣6)=9x.所以:当9个数的和为207时,即:9x=207解得:x=23.所以:此时的九个数分别是:15 16 1722 23 2429 30 31.学海迷津:数学学习十大方法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
2023-2024年人教版七年级上册数学期末一元一次方程应用题专题训练(含答案)
2023-2024年人教版七年级上册数学期末一元一次方程应用题专题训练1.一艘船在甲码头到乙码头顺流行驶,用了2小时;再从乙码头返回甲码头逆水行驶,用了3小时,已知这艘船在静水中航行的速度为15千米/小时,则水流的速度为多少千米每小时?2.一艘船从甲码头到乙码头顺流而行,用了2.5 h;从乙码头返回甲码头逆流而行,用了3 h.已知水流的速度是2 km/h,求船在静水中的平均速度.3.某中学学生步行到郊外旅行,七年级(1)班学生组成前队,步行速度为4千米/小时,七(2)班的学生组成后队,速度为6千米/小时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/小时.(1)后队追上前队需要多长时间?(2)后队追上前队的时间内,联络员走的路程是多少?(3)七年级(1)班出发多少小时后两队相距2千米?4.鄞州公园计划在园内的坡地上栽种树苗和花圃,树苗和花苗的比例是1:25,已知每人每天种植树苗3棵或种植花苗50棵,现有15人参与种植劳动.(1)怎样分配种植树苗和花苗的人数,才能使得种植任务同时完成?(2)现计划种植树苗60棵,花苗1500棵,要求在3天内完成,原有人数能完成吗?如果完成,请说明理由;如不能完成,请问至少派多少人去支援才能保证3天内完成任务?5.某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.请列方程解决下列问题:(1)现有20块相同的金属原料,问最多能加工多少个这样的零件?(2)若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽恰好配套吗?说明理由(3)若把块相同的金属原料全部加工完,为了使这样加工出来的螺栓与螺帽恰好配套,请求出所满足的条件.6.红星纺织厂为了应对疫情需求,安排甲、乙两个车间生产防疫口罩.第一周甲、乙两个车间各生产5天后,乙车间周六加班多生产1天,结果两个车间生产的口罩数量一样多:第二周甲、乙两个车间各生产4天后乙车间又多生产口罩3000个,结果甲车间比乙车间仍多生产口罩1000个.(1)甲、乙两车间每天生产口罩各多少个?(2)第三周,纺织厂又接到生产40000个口罩的订单,且要求必须4天完成任务,同时甲车间要抽调一半的工人去生产防护服,因此,甲车间生产口罩的效率只有原来的一半,厂部要求乙车间必须提高口罩生产效率,保证按时完成任务,乙车间生产效率提高的百分比是多少?7.请根据图中提供的信息,回答下列问题:(1)一个水瓶是多少元?(2)商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买个水瓶和个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)n n 520要2个桶底才能构成一个铁桶,为使每天生产的桶身和桶底刚好配套,应该安排生产桶身和桶底的工人各多少名?15.某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)该中学库存多少套桌椅?(2)在修理过程中,学校要派一名工人进行质量监督,并且付给他每天10元生活补助费,现有三种修理方案, A 方案:由甲单独修理;B 方案:由乙单独修理;C 方案:甲、乙合作同时修理.你认为哪种方案省时又省钱?为什么?16.某超市进行新年促销活动,将某种年货礼包按原价的9折销售,此时的利润率为12.5%.若这种年货礼包的进价为每个80元(1)年货礼包的原售价是多少元?(2)开展促销活动后,实际销量为按原价销售时的3倍,则实际利润和未开展促销活动时相比,是增多,不变,还是减少?请通过计算说明.17.某工厂中秋节前要制作一批盒装月饼,每盒装4块大月饼和6块小月饼,制作1块大月饼要用面粉,1块小月饼要用面粉.(1)若制作若干盒月饼共用了面粉,请问制作大小两种月饼各用了多少面粉?(2)在(1)的条件下,已知制作一个精美月饼包装盒的成本为5元,面粉的进价为25元/千克,在不计其它成本的情况下,工厂想达到的利润率,则应如何制定每盒月饼的出厂价?18.为进一步加强居民对电信诈骗的防范意识,提高对电信诈骗的鉴别、自我保护能力,营造全民反诈的浓厚氛围,我校志愿者积极配合社区开展反诈骗宣传工作,志愿者们准备印制一些反诈骗宣传小册子,利用中秋国庆假期到公园里开展防诈骗、反诈骗宣传活0.05kg 0.02kg 640kg 50%参考答案:13.(1)48(2)该户居民3月份用水4t ,4月份用水11t 14.(1)(2)30名工人生产桶身,36名工人生产桶底15.(1)该中学库存桌椅960套.(2)选择C 方案省时又省钱.16.(1)100元(2)增多17.(1)制作大月饼用了面粉,制作小月饼用了面粉(2)每盒月饼的出厂价应定为26元18.(1)印刷册,两家的印刷总费用是相等(2)乙店是打七五折优惠19.(1),(2)若交费时间为1年,选择方案一更合适,(3)交费时间为10个月时,两种方案费用相同20.(1)这个公司要加工960件新产品(2)该公司应选择第③种方案,由两个工厂合作同时完成时,既省钱,又省时间18400kg 240kg 403004000M x =+6001000N x =+。
一元一次方程(压轴必刷30题)—2024学年七年级数学上册同步讲义(浙教版)(解析版)
一元一次方程(压轴必刷30题5种题型专项训练)一.一元一次方程的定义(共1小题)1.(2022春•雁峰区校级月考)已知(m2﹣9)x2﹣(m﹣3)x+6=0是以x为未知数的一元一次方程,如果|a|≤|m|,那么|a+m|+|a﹣m|的值为()A.2B.4C.6D.8【分析】根据一元一次方程的定义,则x2系数为0,且x系数≠0,得出m=﹣3;由|a|≤|m|,得a﹣m≥0,a+m≤0,∴|a+m|+|a﹣m|=﹣a﹣m+a﹣m=﹣2m=6.【解答】解:∵一元一次方程则x2系数为0,且x系数≠0∴m2﹣9=0,m2=9,m=±3,﹣(m﹣3)≠0,m≠3,∴m=﹣3,|a|≤|﹣3|=3,∴﹣3≤a≤3,∴m≤a≤﹣m,∴a﹣m≥0,|a﹣m|=a﹣m,a+m≤0,|a+m|=﹣a﹣m,∴原式=﹣a﹣m+a﹣m=﹣2m=6.故选:C.【点评】本题主要考查了如何去绝对值以及一元一次方程的定义:只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1.根据一元一次方程的定义求m的值.去绝对值时注意a+m、a﹣m 与0的关系.二.一元一次方程的解(共2小题)2.(2022秋•拱墅区月考)若关于x的方程(k﹣2019)x﹣2017=7﹣2019(x+1)的解是整数,则整数k的取值个数是()A.2B.3C.4D.6【分析】原方程依次去括号,移项,合并同类项,系数化为1,得到关于k的x的值,根据“该方程的解是整数”,得到几个关于k的一元一次方程,解之即可.【解答】解:方程(k﹣2019)x﹣2017=7﹣2019(x+1)整理化简,可得kx=5,即x=,∵该方程的解是整数,k为整数,∴x=1或﹣1或5或﹣5,即=1或﹣1或5或﹣5,解得:k=5或﹣5或1或﹣1,∴整数k的取值个数是4个,故选:C.【点评】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.3.(2021秋•天门月考)已知a,b为定值,关于x的方程=1﹣,无论k为何值,它的解总是1,则a+b=.【分析】把x=1代入方程=1﹣,得:=1﹣,整理可得(2+b)k+2a﹣4=0,再根据题意可得2+b=0,2a﹣4=0,进而可得a、b的值,从而可得答案.【解答】解:把x=1代入方程=1﹣,得:=1﹣,2(k+a)=6﹣(2+bk),2k+2a=6﹣2﹣bk,2k+bk+2a﹣4=0,(2+b)k+2a﹣4=0,∵无论k为何值,它的解总是1,∴2+b=0,2a﹣4=0,解得:b=﹣2,a=2.则a+b=0.故答案为:0.【点评】本题主要考查方程解的定义,由k可以取任何值得到a和b的值是解题的关键.三.解一元一次方程(共3小题)4.(2021春•余杭区校级月考)用⊕表示一种运算,它的含义是:A⊕B=.如果,那么3⊕4=.【分析】根据题中的新定义化简已知等式求出x的值,所求式子利用新定义化简后,将x的值代入计算即可求出值.【解答】解:根据题中的新定义得:2⊕1=+=,去分母得:2+x=10,即x=8,则3⊕4=+=+=.故答案为:【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.5.(2021秋•潮安区期末)小东同学在解一元一次方程时,发现这样一种特殊现象:x+=0的解为x=﹣,而﹣=﹣1;2x+=0的解为x=﹣,而﹣=﹣2.于是,小东将这种类型的方程作如下定义:若一个关于x的方程ax+b=0≠0)的解为x=b﹣a,则称之为“奇异方程”.请和小东一起进行以下探究:(1)若a=﹣1,有符合要求的“奇异方程”吗?若有,求出该方程的解;若没有,请说明理由;(2)若关于x的方程ax+b=0(a≠0)为奇异方程,解关于y的方程:a(a﹣b)y+2=(b+)y.【分析】(1)把a=﹣1代入原方程解得:x=b,若为“奇异方程”,则x=b+1,由于b≠b+1,根据“奇异方程”定义即可求解;(2)根据“奇异方程”定义得到a(a﹣b)=b,方程a(a﹣b)y+2=(b+)y可化为by+2=(b+)y,解方程即可求解.【解答】解:(1)没有符合要求的“奇异方程”,理由如下:把a=﹣1代入原方程解得:x=b,若为“奇异方程”,则x=b+1,∵b≠b+1,∴不符合“奇异方程”定义,故不存在;(2)∵ax+b=0(a≠0)为奇异方程,∴x=b﹣a,∴a(b﹣a)+b=0,a(b﹣a)=﹣b,a(a﹣b)=b,∴方程a(a﹣b)y+2=(b+)y可化为by+2=(b+)y,∴by+2=by+y,2=y,解得y=4.【点评】考查了解一元一次方程,关键是熟悉若一个关于x的方程ax+b=0(a≠0)的解为x=b﹣a,则称之为“奇异方程”.6.(2020秋•丰城市校级期中)(1)小玉在解方程去分母时,方程右边的“﹣1”项没有乘6,因而求得的解是x=10,试求a的值.(2)当m为何值时,关于x5m+3x=1+x的解比关于x的方程2x+m=5m的解大2?【分析】(1)把x=10代入错误的去分母得到的方程,求出a的值即可;(2)表示出两方程的解,由题意求出m的值即可.【解答】解:(1)错误去分母得:4x﹣2=3x+3a﹣1,把x=10代入得:a=3;(2)方程5m+3x=1+x,解得:x=,方程2x+m=5m,解得:x=2m,根据题意得:﹣2m=2,去分母得:1﹣5m﹣4m=4,解得:m=﹣.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.四.同解方程(共1小题)7.(2022秋•义乌市月考)已知关于x的方程:2(x﹣1)+1=x与3(x+m)=m﹣1有相同的解,求以y为未知数的方程的解.【分析】根据方程1可直接求出x的值,代入方程2可求出m,把所求m和x代入方程3,可得到关于y的一元一次方程,解答即可.【解答】解:解方程2(x﹣1)+1=x得:x=1将x=1代入3(x+m)=m﹣1得:3(1+m)=m﹣1解得:m=﹣2将x=1,m=﹣2代入得:,解得:.【点评】本题解决的关键是能够求解关于x的方程,根据同解的定义建立方程.五.一元一次方程的应用(共23小题)8.(2022秋•义乌市校级月考)已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发,速度为每秒2个单位,点N从点B出发,速度为M点的3倍,点P从原点出发,速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?(3)当时间t满足t1<t≤t2时,M、N两点之间,N、P两点之间,M、P两点之间分别有55个、44个、11个整数点,请直接写出t1,t2的值.【分析】(1)由题意列出方程可求解;(2)分两种情况讨论,列出方程可求解;(3)M、N、P三点之间整数点的多少可看作它们之间距离的大小,M、N两点距离最大,M、P两点距离最小,可得出M、P两点向右运动,N点向左运动,结合数轴分类讨论分析即可.【解答】解:(1)设运动时间为t秒,由题意可得:6+8+2t+6t=54,∴t=5,∴运动5秒点M与点N相距54个单位;(2)设运动时间为t秒,由题意可知:M点运动到6+2t,N点运动到﹣8+6t,P点运动到t,当t<1.6时,点N在点P左侧,MP=NP,∴t﹣(﹣8+6t)=6+2t﹣t,∴6+t=8﹣5t,∴t=s;当t>1.6时,点N在点P右侧,MP=NP,∴﹣8+6t﹣t=6+2t﹣t,∴6+t=﹣8+5t,∴t=s,∴运动s或s时点P到点M,N的距离相等;(3)由题意可得:M、N、P三点之间整数点的多少可看作它们之间距离的大小,M、N两点距离最大,M、P M、P两点向右运动,N点向左运动①如图,当t1=5s时,P在5,M在16,N在﹣38,再往前一点,MP之间的距离即包含11个整数点,NP之间有44个整数点;②当N继续以6个单位每秒的速度向左移动,P点向右运动,若N点移动到﹣39时,此时N、P之间仍为44个整数点,若N点过﹣39时,此时N、P之间为45 个整数点,故t2=+5=s∴t1=5s,t2=s.【点评】本题考查了一元一次方程在数轴上的动点问题中的应用,理清题中的数量关系、数形结合,是解题的关键.9.(2020秋•温州期末)七年(1)(2)两班各40人参加垃圾分类知识竞赛,规则如图.比赛中,所有同学均按要求一对一连线,无多连、少连.(1)分数5,10,15,20中,每人得分不可能是分.(2)七年(1)班有4人全错,其余成员中,满分人数是未满分人数的2倍;七年(2)班所有人都得分,最低分人数的2倍与其他未满分人数之和等于满分人数.①问(1)班有多少人得满分?②若(1)班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高?【分析】(1)根据得分规则课判断出不可能得的分数;(2)①设(1)班未满分的人数是x人,则满分的人数是2x人,列方程即可;②分别计算出两班得分的情况计算出两个班的总分,再比较即可.【解答】解:(1)∵共有4条线,可能全部连错,得0分,可能1条线对,3条线错,得5分,可能2条线对,2条线错,得10分,可能3条线对,则第4条也对,得20分,∴每人得分不可能是15分;故答案为:15.(2)①设(1)班未得满分的有x人,得满分的有2x人,依题意得:x+2x=40﹣4,解得x=12,2x=24.答:(1)班得满分的有24人;②∵(1)班除0分外,最低得分人数与其他未满分人数相等,∴得5分的和得10分的都是6人,∴(1)班总分为:24×20+6×10+6×5=570(分);设(2)班最低得分a人,其余未满分b人,则满分人数为(2a+b)人,∴总分为:5a+10b+20(2a+b)=(45a+30b)分,∵a+b+2a+b=40,∴(2)班总分为:45a+30b=15(3a+2b)=600(分)>570(分),∴(2)班总分高.【点评】本题考查一元一次方程的应用,找到等量关系列出方程是解题关键.10.(2021秋•瓯海区月考)某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)该中学库存多少套桌椅?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:a、由甲单独修理;b、由乙单独修理;c、甲、乙合作同时修理.你认为哪种方案省时又省钱?为什么?【分析】(1)通过理解题意可知本题的等量关系,即甲单独修完这些桌凳的天数=乙单独修完的天数+20天,列方程求解即可;(2)分别计算,通过比较选择最省钱的方案.【解答】解:(1)设该中学库存x套桌椅,则;解得x=960.答:该中学库存960套桌椅.(2)设a、b、c三种修理方案的费用分别为y1、y2、y3元,则y1=(80+10)×=5400,y2=(120+10)×=5200,y3=(80+120+10)×=5040,综上可知,选择方案c更省时省钱.答:方案c省时省钱.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.此题要掌握工作量的有关公式:工作总量=工作时间×工作效率.11.(2020秋•鹿城区期末)十一期间,各大商场掀起购物狂潮,现有甲、乙、丙三个商场开展的促销活动如表所示:根据以上活动信息,解决以下问题:(1)三个商场同时出售一件标价290元的上衣和一条标价270元的裤子,王阿姨想买这一套衣服,她应该选择哪家商场?(2)黄先生发现在甲、乙商场同时出售一件标价380元的上衣和一条标价300多元的裤子,最后付款额也一样,请问这条裤子的标价是多少元?(3)丙商场又推出“先打折”,“再满100减50元”的活动.张先生买了一件标价为630元的上衣,张先生发现竟然比没打折前多付了18.5元钱,问丙商场先打了多少折后再参加活动?【分析】(1)按照不同的优惠方案算出实际花的钱数,再比较得出答案即可;(2)设这条裤子的标价为x元,按照优惠方案算出实际付款数,根据付款额一样,列方程求解即可;(3)先设丙商场先打了x折后再参加活动,折后减50n(0≤n<6),根据打折后比没打折前多付了18.5元钱,列方程求解.【解答】解:(1)选甲商城需付费用为(290+270)×0.6=336(元);选乙商城需付费用为290+(270﹣200)=360(元);选丙商城需付费用为290+270﹣5×50=310(元).∵310<336<360,∴选择丙商城最实惠.(2)设这条裤子的标价为x元,根据题意得:(380+x)×0.6=380+x﹣100×3,解得:x=370,答:这条裤子的标价为370元.(3)设丙商场先打了x折后再参加活动,折后减50n(0≤n<6且n为整数),根据题意得:(630×﹣50n)﹣(630﹣6×50)=18.5,整理得63x﹣50n=348.5,当n=0时,63x=348.5,可再优惠3×50=150元,与n=0矛盾,舍去当n=1时,63x=398.5,可再优惠3×50=150元,与n=1矛盾,舍去当n=2时,63x=448.5,可再优惠4×50=200元,与n=2矛盾,舍去当n=3时,63x=498.5,可再优惠4×50=200元,与n=3矛盾,舍去当n=4时,63x=548.5,可再优惠5×50=250元,与n=4矛盾,舍去当n=5时,63x=598.5,满足题意,此时x=9.5答:丙商场先打了9.5折后再参加活动.出合适的等量关系列出方程进行求解.12.(2020秋•永嘉县校级期末)某班级组织学生集体春游,已知班级总人数多于20人,其中有15名男同学,景点门票全票价为30元,对集体购票有两种优惠方案.方案一:所有人按全票价的90%购票;方案二:前20人全票,从第21人开始每人按全票价的80%购票;(1)若共有35名同学,则选择哪种方案较省钱?(2)当女同学人数是多少时,两种方案付费一样多?【分析】(1)方案一的收费=学生人数×30×90%,方案二的收费=20×30+(学生人数﹣20)×30×80%,将两者的收费进行比较,从而确定选择何种方案更省钱;(2)设女同学人数是x人时,两种方案付费一样多,列出方程求解即可.【解答】解:(1)方案一收费为:35×30×90%=945(元),方案二收费为:20×30+(35﹣20)×30×80%=960(元),∵960>945,∴方案一更省钱;(2)设女同学人数是x人时,两种方案付费一样多,由题意得(15+x)×30×90%=20×30+(15+x﹣20)×30×80%,解得:x=25,答:当女同学人数是25人时,两种方案付费一样多.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.13.(2021秋•临海市月考)已知数轴上两点A、B对应的数分别为﹣1,3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值.若不存在,请说明理由?(3)当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B以每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?【分析】(1)根据点P到点A、点B的距离相等,结合数轴可得答案;(2)此题要分两种情况:①当P在AB左侧时,②当P在AB右侧时,然后再列出方程求解即可;(3)点P、点A、点B B的运动速度最快,点P的运动速度最慢.故P点总位于A点右侧,B可能追上并超过A.P到A、B的距离相等,应分两种情况讨论.【解答】解:(1)如图,若点P到点A、点B的距离相等,P为AB的中点,BP=P A.依题意得3﹣x=x﹣(﹣1),解得x=1;(2)由AB=4,若存在点P到点A、点B的距离之和为5,P不可能在线段AB上,只能在A点左侧,或B点右侧.①P在点A左侧,P A=﹣1﹣x,PB=3﹣x,依题意得(﹣1﹣x)+(3﹣x)=5,解得x=﹣1.5;②P在点B右侧,P A=x﹣(﹣1)=x+1,PB=x﹣3,依题意得(x+1)+(x﹣3)=5,解得x=3.5;(3)设运动t分钟,此时P对应的数为﹣t,B对应的数为3﹣20t,A对应的数为﹣1﹣5t.①B未追上A时,P A=PB,则P为AB中点.B在P的右侧,A在P的左侧.P A=﹣t﹣(﹣1﹣5t)=1+4t,PB=3﹣20t﹣(﹣t)=3﹣19t,依题意有1+4t=3﹣19t,解得t=;②B追上A时,A、B重合,此时P A=PB.A、B表示同一个数.依题意有﹣1﹣5t=3﹣20t,解得t=.即运动或分钟时,P到A、B的距离相等.【点评】此题主要考查了一元一次方程的应用,以及数轴,关键是理解题意,表示出两点之间的距离,利用数形结合法列出方程.14.(2020秋•永嘉县校级期末)为弘扬中华优秀文化传统,某中学在2014年元旦前夕,由校团委组织全校30支,毛笔20支,共需1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①后来校团委决定调整设奖方案,扩大表彰面,需要购买上面的两种笔共60支(每种笔的单价不变).张老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领1322元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么账肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的账算错了.②张老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为不大于10元的整数,请通过计算,直接写出签字笔的单价可能为元.【分析】(1)设钢笔得单价为x元,则毛笔单价为(x+6)元,根据题意列出方程,求出方程的解即可得到结果;(2)①设单价为19元得钢笔y支,则单价为25元的毛笔为(60﹣y)支,根据题意列出方程,求出方程的解即可得到结果;②设单价为19元的钢笔z支,签字笔的单价为a元,根据题意列出关系式,根据z,a为整数,确定出a与z的值,即可得到结果.【解答】解:(1)设钢笔的单价为x元,则毛笔的单价为(x+6)元,由题意得:30x+20(x+6)=1070,解得:x=19,则x+6=25,答:钢笔的单价为19元,毛笔的单价为25元;(2)①设单价为19元的钢笔y支,则单价为25元的毛笔为(60﹣y)支,根据题意得:19y+25(60﹣y)=1322,解得:y=,不合题意,即张老师肯定搞错了;②设单价为19元的钢笔z支,签字笔的单价为a元,根据题意得:19z+25(60﹣z)=1322﹣a,即6z=178+a,由a,z都是整数,且178+a应被6整除,经验算当a=2时,6z=180,即z=30,符合题意;当a=8时,6z=186,即z=31则签字笔的单价为2元或8元.故答案为:2或8.【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.15.(2020秋•苍南县期末)一家电信公司推出手机话费套餐活动,具体资费标准见表:(1)已知小聪办理的是月租费为88元的套餐,小明办理的是月租费为118元的套餐,他们某一月的主叫时间都为m分钟(m>360).①请用含m的代数式分别表示该月他们的话费,化简后填空:小聪该月的话费为元;小明该月的话费为元.②若该月小聪比小明的话费还要多14元,求他们的通话时间.(2)若小慧的两个手机号码分别办理了58元、88元套餐.该月她的两个号码主叫时间共为220分钟,总话费为152元,求她两个号的主叫时间分别可能是多少分钟.【分析】(1)①用“根据话费=套餐费+主叫超时费”求出总话费;②因为m>360分钟,所以两人的话费均由套餐费和主叫超时费两部分组成,根据具体数字列出式子即可;(2)可设办理了58元套餐的主叫时间为x分钟,分类进行讨论求解即可.【解答】解:(1)①小聪该月的话费为:88+0.20(m﹣150)=58+0.2m,小明该月的话费为:118+0.15(m﹣350)=65.5+0.15m,故答案为:(58+0.2m),(65.5+0.15m);②58+0.2m=65.5+0.15m+14,解得:m=430,答:他们的通话时间为430分钟;(2)设办理了58元套餐的主叫时间为x分钟,依题意得:①当58元套餐的主叫时间超过限定时间,88元套餐没有超过限定时间时,得:58+0.25(x﹣50)+88=152,解得:x=74,则88元套餐的主叫时间为:220﹣74=146(分钟);②当58元套餐的主叫时间没有超过限定时间,88元套餐超过限定时间时,得:58+88+0.2(220﹣x﹣150)=152,解得:x=40,则88元套餐的主叫时间为:220﹣40=180(分钟);③当58元套餐的主叫时间超过限定时间,88元套餐超过限定时间时,得:58+0.25(x﹣50)+88+0.2(220﹣x﹣150)=152,解得:x=130,则88元套餐的主叫时间为:220﹣130=90(不符合题意).综上所述,小慧58元、88元套餐的主叫时间分别可能是74分钟,146分钟或40分钟,180分钟.【点评】本题考查了一元一次方程的应用,能读懂数表弄清数量关系是解题关键.16.(2020秋•拱墅区期末)某快递公司每件普通物品的收费标准如表:例如:寄往省内一件1.7千克的物品,运费总额为:10+8×(0.5+0.5)=18元.寄往省外一件3.2千克的物品,运费总额为:15+12×(2+0.5)=45元.(1)小丁同时寄往省内一件2千克的物品和省外一件2.7千克的物品,各需付运费多少元?(2)小丽同时寄往省内和省外同一件a千克的物品,已知a超过2,且a的整数部分是m,小数部分小于0.5,请用含字母的代数式表示这两笔运费的差.(3)某日小丁和小丽同时在该快递公司寄物品,小丁寄往省外,小丽寄往省内,小丁的运费比小丽的运费多43元,物品的重量比小丽多1.5千克,则小丁和小丽共需付运费多少元?【分析】(1)根据表中给出的运费计算方式分别计算运费即可;(2)利用已知条件分别求出同一件a千克的物品寄往省内和省外需付的运费,再用寄往省外付的运费﹣寄往省内付的运费即可求解;(3)设小丽的物品重(x+a)千克,x为正整数,a为小数部分,则小丁的物品重(x+a+1.5)千克,分①0<a≤0.5时,②0.5<a<1时两种情况,根据小丁的运费比小丽的运费多43元列出方程求解,再列式计算求出小丁和小丽共需付的运费.【解答】解:(1)寄往省内一件2千克的物品需付运费:10+8=18(元),∵超过1千克即要续重,续重以0.5千克为计重单位(不足0.5千克按0.5千克计算),∴寄往省外一件2.7千克的物品需付运费:15+12×2=39(元),∴小丁寄往省内的费用18元,寄往省外的费用39元;(2)省内:10+8(m﹣1+0.5)=(8m+6)元,省外:15+12(m﹣1+0.5)=(12m+9)元,12m+9﹣(8m+6)=12m+9﹣8m﹣6=(4m+3)元,∴这两笔运费的差(4m+3)元;(3)设小丽的物品重(x+a)千克,x为正整数,a为小数部分,小丁的物品重(x+a+1.5)千克,①0<a≤0.5时,小丽:10+8(x﹣1)+0.5×8=(8x+6)元,小丁:15+12(x﹣1)+2×12=(12x+27)元,∴12x+27﹣(8x+6)=43,解得:x=5.5(不是正整数,舍去);②0.5<a<1时,小丽:10+8(x﹣1)+1×8=(8x+10)元小丁:15+12(x﹣1)+2.5×12=(12x+33)元12x+33﹣(8x+10)=43解得:x=5,小丁和小丽共需付运费:8×5+10+12×5+33=143(元).∴小丁和小丽共需付运费143元.费计算方式分别列出寄往省内和省外需付的运费的代数式.17.(2022秋•义乌市月考)已知点O是数轴的原点,点A、B、C在数轴上对应的数分别是﹣12、b、c,且b、c满足(b﹣9)2+|c﹣15|=0,动点P从点A出发以2单位/秒的速度向右运动,同时点Q从点C出发,以1个单位/秒速度向左运动,O、B两点之间为“变速区”,规则为从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速,从点B运动到点O期间速度变为原来的3倍,之后立刻恢复原速,运动时间为秒时,P、Q两点到点B的距离相等.【分析】根据(b﹣9)2+|c﹣15|=0,可得B表示的数是9,C表示的数是15,由已知分四种情况讨论:①当0≤t≤6时,P在线段OA上,Q在线段BC上,此时不存在P、Q两点到点B的距离相等;②当6<t≤9时,P、Q都在线段OB上,t﹣6=9﹣3(t﹣6),解得t=,③当9<t≤15时,P在线段OB上,Q在线段OA上,此时不存在P、Q两点到点B的距离相等;④当t>15时,P在射线BC上,Q在射线OA上,9+2(t﹣15)﹣9=9﹣[﹣(t﹣9)],解得t=30.【解答】解:∵(b﹣9)2+|c﹣15|=0,∴b﹣9=0,c﹣15=0,∴b=9,c=15,∴B表示的数是9,C表示的数是15,①当0≤t≤6时,P在线段OA上,Q在线段BC上,此时不存在P、Q两点到点B的距离相等;②当6<t≤9时,P、Q都在线段OB上,P表示的数为t﹣6,Q表示的数是9﹣3(t﹣6),∴P、Q两点到点B的距离相等只需t﹣6=9﹣3(t﹣6),解得t=,③当9<t≤15时,P在线段OB上,Q在线段OA上,此时不存在P、Q两点到点B的距离相等;④当t>15时,P在射线BC上,Q在射线OA上,P表示的数为9+2(t﹣15),Q表示的数是﹣(t﹣9),∴P、Q两点到点B的距离相等只需9+2(t﹣15)﹣9=9﹣[﹣(t﹣9)],解得t=30,综上所述,P、Q两点到点B的距离相等,运动时间为秒或30秒,故答案为:或30.【点评】本题考查一元一次方程的应用,涉及数轴上的动点表示的数,两点间的距离等知识,解题的关键是分类讨论.18.(2021秋•义乌市月考)如图,已知一周长为30cm的圆形轨道上有相距10cm的A、B两点(备注:圆形轨道上两点间的距离是指圆上这两点间的较短部分展直后的线段长).动点P从A点出发,以7cm/s的速度,与此同时,动点Q从B点出发,以5cm/s的速度,按同样的方向运动,设运动时间为t(s),在P、Q第二次相遇前,当动点P、Q在轨道上相距14cm时,则t=秒.【分析】设经过ts,P、Q两点相距14cm,分相遇前和相遇后两种情况建立方程求出其解;分点P,Q只能在直线AB上相遇,而点P旋转到直线AB上的时间分两种情况,所以根据题意列出方程分别求解.【解答】解:共有4种可能:①7t+10﹣5t=14,解得:t=2;②7t+10﹣5t=16,解得:t=3;③7t+10﹣5t=44,解得:t=17;④7t+10﹣5t=46,解得:t=18.综上所知,t=2、3、17或18.故答案为:2、3、17或18.【点评】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系是解决问题的关键.19.(2022秋•拱墅区期末)如图,已知数轴上点A表示的数为10,点B位于点A左侧,AB=15.动点P从点A出发,以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)当点P在A、B两点之间运动时,①用含t的代数式表示PB的长度;②若PB=2P A,求点P所表示的数;(2)动点Q从点B出发,以每秒5个单位长度的速度沿数轴向右匀速运动,当点Q到达点A后立即原速返回.若P,Q两点同时出发,其中一点运动到点B时,两点停止运动.求在这个运动过程中,P,Q 两点相遇时t的值.【分析】(1)①读懂题意,列代数式即可;②根据题意列关于t的一元一次方程,再求解即可;(2)读懂题意,分析整个运动过程,根据第一次相遇,第二次相遇路程上的关系列方程求解.【解答】解:(1)①∵点A表示的数为10,点B位于点A左侧,AB=15,∴点B表示的数为10﹣15=﹣5,∴点P在A、B=15﹣2t;②∵PB=2P A,∴15﹣2t=2×2t,∴t=2.5,∴P A=2×2.5=5,∴10﹣5=5,∴点P所表示的数为5;(2)在这个运动过程中,P,Q两点有两次相遇,设P,Q两点第一次相遇的时间为t秒,根据题意得(2+5)t=15,∴t=;设P,Q两点第二次相遇的时间为t秒,根据题意得2t+15=5t,∴t=5,∴在这个运动过程中,P,Q两点相遇时t的值为秒或5秒.【点评】本题考查了列代数式,数轴,一元一次方程的应用,解题的关键是掌握数轴知识,读懂题意,能根据题意列出正确的代数式和一元一次方程.20.(2022秋•江北区期中)数轴上点A表示﹣8,点B表示6,点C表示12,点D表示18.如图,将数轴在原点O和点B、C处各折一下,得到一条“折线数轴”.在“折线数轴”上,把两点所对应的两数之差的绝对值叫这两点间的和谐距离.例如,点A和点D在折线数轴上的和谐距离为|﹣8﹣18|=26个单位长度.动点M从点A出发,以4个单位/秒的速度沿着折线数轴的正方向运动,从点O运动到点C期间速度变为原来的一半,过点C后继续以原来的速度向终点D运动;点M从点A出发的同时,点N从点D出发,一直以3个单位/秒的速度沿着“折线数轴”负方向向终点A运动,其中一点到达终点时,两点都停止运动.设运动的时间为t秒.(1)当t=2秒时,M、N两点在折线数轴上的和谐距离|MN|为;(2)当点M、N都运动到折线段O﹣B﹣C上时,O、M两点间的和谐距离|OM|=(用含有t的代数式表示);C、N两点间的和谐距离|CN|=(用含有t的代数式表示);t=时,M、N两点相遇;(3)当t=时,M、N两点在折线数轴上的和谐距离为4个单位长度;当t=时,M、O两点在折线数轴上的和谐距离与N、B两点在折线数轴上的和谐距离相等.【分析】(1)当t=2秒时,M表示的数是﹣8+2×4=0,N表示的数是18﹣3×2=12,即的M、N两点在折线数轴上的和谐距离|MN|为|12﹣0|=12;(2)当点M、N都运动到折线段O﹣B﹣C上,即t≥2时,M表示的数是×(t﹣2)=2t﹣4,N表示的数是12﹣3(t﹣2)=18﹣3t,而M、N两点相遇时,M、N表示的数相同,即得额2t﹣4=18﹣3t,可解得答案;(3)根据M、N两点在折线数轴上的和谐距离为4个单位长度,得|2t﹣4﹣(18﹣3t)|=4,可解得t=或t=,由t=2时,M运动到O,同时N运动到C,知t<2时,不存在M、O两点在折线数轴上的和谐距离与N、B两点在折线数轴上的和谐距离相等,当2≤t≤8,即M在从点O运动到点C时,有2t﹣4=|6﹣(18﹣3t)|,可解得t=8或t=,当8<t≤时,M在从C运动到D,速度变为4个单位/秒,不存在M、O两点在折线数轴上的和谐距离与N、B两点在折线数轴上的和谐距离相等,即可得答案.【解答】解:(1)当t=2秒时,M表示的数是﹣8+2×4=0,N表示的数是18﹣3×2=12,∴M、N两点在折线数轴上的和谐距离|MN|为|12﹣0|=12,故答案为:12;(2)由(1)知,2秒时M运动到O,N运动到C,∴当点M、N都运动到折线段O﹣B﹣C上,即t≥2时,M表示的数是×(t﹣2)=2t﹣4,N表示的数是12﹣3(t﹣2)=18﹣3t,∴O、M两点间的和谐距离|OM|=|2t﹣4﹣0|=2t﹣4,C、N两点间的和谐距离|CN|=|12﹣(18﹣3t)|=3t ﹣6,∵M、N两点相遇时,M、N表示的数相同,∴2t﹣4=18﹣3t,解得t=,故答案为:2t﹣4,3t﹣6,;(3)∵M、N两点在折线数轴上的和谐距离为4个单位长度,∴|2t﹣4﹣(18﹣3t)|=4,即|5t﹣22|=4,∴5t﹣22=4或5t﹣22=﹣4,解得t=或t=,由(1)知,t=2时,M运动到O,同时N运动到C,∴t<2时,不存在M、O两点在折线数轴上的和谐距离与N、B两点在折线数轴上的和谐距离相等,当2≤t≤8,即M在从点O运动到点C时,2t﹣4=|6﹣(18﹣3t)|,即|3t﹣12|=2t﹣4,∴3t﹣12=2t﹣4或3t﹣12=4﹣2t,。
七年级上册数学期末知识点巩固:《一元一次方程》
七年级上册数学期末知识点巩固:《一元一次方程》知识点对朋友们的学习非常重要,大家一定要认真掌握,查字典数学网为大家整理了七年级上册数学期末知识点巩固:《一元一次方程》,让我们一起学习,一起进步吧!1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程解法的一般步骤:化简方程----------分数基本性质去分母----------同乘(不漏乘)最简公分母去括号----------注意符号变化移项----------变号(留下靠前)合并同类项--------合并后符号这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录并且阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。
如此下去,除假期外,一年便可以积累40多则材料。
如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
人教版七年级上册数学 期末满分突破专练 一元一次方程 实际应用
人教版七年级上册数学期末满分突破专练一元一次方程实际应用1.某校初一(1)、(2)两个班共104人去某地参观.每班人数都在60以内,其中(1)班人数较少,不到50人.该展览的门票价格规定:单张票价格为15元;购票人数在51﹣100人每人门票价为13元;100人以上每人门票价为10元.经估算,如果两班都以班为单位分别购票,则一共应付1448元;如果两班联合起来,作为一个团体购票,则可以节省不少钱.请问:①两班各有多少名学生?②两班联合起来购票能省多少钱?2.随着经济水平的不断提高,越来越多的人选择到电影院去观看电影,体验视觉盛宴,并且更多人通过网上平台购票,快捷且享受更多优惠,电影票价格也越来越便宜.电影《我和我的祖国》从网上平台购买1张电影票的价格比在现场购买一张电影票的价格少10元,从网上平台购买4张电影票的价格和现场购买2张电影票的价格共为200元.(1)请问《我和我的祖国》的电影票在网上平台和现场购票单价各为多少元?(2)“国庆”当天,某电影院仍然以这两种方式销售电影票,它们的单价都不变,当天网上平台和现场售出电影票数为500张,经统计,当天售出电影票总票数中有a%通过网上平台售出,其余均由电影院现场售出,且当天票房总收益为17000元,求a的值.3.清代诗人徐子云曾写过一首诗:巍巍古寺在山林,不知寺内几多僧.三百六十四只碗,看看用尽不差争.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧?意思是:山林中有一座古寺,不知道寺内有多少僧人.已知一共有364只碗,刚好能够用完.每三个僧人一起吃一碗饭,每四个僧人一起吃一碗羹.请问寺内一共有多少僧人?请解答上述问题.4.甲、乙两车都从A地出发,在路程为360千米的同一道路上驶向B地.甲车先出发匀速驶向B地.10分钟后乙车出发,乙车匀速行驶3小时后在途中的配货站装货耗时20分钟.由于满载货物,乙车速度较之前减少了40千米/时.乙车在整个途中共耗时小时,结果与甲车同时到达B地.(1)甲车的速度为千米/时;(2)求乙车装货后行驶的速度;(3)乙车出发小时与甲车相距10千米?5.下表是某网约车公司的专车计价规则:计费项目起租价里程费时长费远途费单价15元 2.5元/公里 1.5元/分1元/公里注:车费由起租价、里程费、时长费、远途费四部分构成,其中起租价15元含10分钟时长费和5公里里程费,远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收1元.(1)若琪琪乘坐专车,行车里程为20公里,行车时间为30分,则需付车费元;(2)若琪琪乘坐专车,行车里程为x(7<x≤10)公里,平均时速为40km/h,则琪琪应付车费多少元?(用含x的代数式表示)(3)琪琪与婷婷各自乘坐专车,行车车费之和为76元,里程之和为15公里(其中婷婷的行车里程不超过5公里).如果行驶时间均为20分钟,那么这两辆专车此次的行驶路程各为多少公里?6.如图,在数轴上A点表示的数是﹣8,B点表示的数是2.动线段CD=4(点D在点C的右侧),从点C 与点A重合的位置出发,以每秒2个单位的速度向右运动,运动时间为t秒.(1)①已知点C表示的数是﹣6,试求点D表示的数;②用含有t的代数式表示点D表示的数;(2)当AC=2BD时,求t的值.(3)试问当线段CD在什么位置时,AD+BC或AD﹣BC的值始终保持不变?请求出它的值并说明此时线段CD 的位置.7.某车间有60名工人,平均每人每天可以加工大齿轮3个或小齿轮4个,已知1个大齿轮和4个小齿轮配为一套,问如何安排工人使生产的产品刚好配套?8.某船从A地顺流而下到达B地,然后逆流返回到达A地,一共用了8小时.已知此船在静水中的速度为8千米/小时,水流的速度为2千米/小时.求A、B两地之间的路程.9.一家服装店在换季时积压了一批服装,为了缓解资金的压力,决定打折销售,其中一条裤子的成本为80元,按标价五折出售将亏30元.(1)求这条裤子的标价是多少元?(2)另一件上衣按标价打九折出售,和这条裤子合计卖了230元,两件衣服恰好不赢不亏,求这件上衣的标价是多少元?10.根据国家发改委实施“阶梯电价”的有关文件要求,某县结合地方实际,决定对居民生活用电实行“阶梯电价”收费,具体收费标准见下表一户居民一个月用电量的范围电费价格(单位:元/千瓦•时)不超过150千瓦•时的部分 a超过150千瓦•时,但不超过230千瓦•时的部分 b超过230千瓦•时的部分a+0.332019年10月份,该县居民甲用电100千瓦•时,交费64元;居民乙用电200千瓦•时,交费134.5元.(1)根据题意,求出上表中a和b的值;(2)实行“阶梯电价”收费以后,该县居民当月用电多少千瓦•时时,其当月的平均电价为0.67元?。
人教版七年级数学上册期末专题复习课件解一元一次方程
C. 若 x = y ,则 x -5= y +5
D.
若 = ,则 x = y
4
4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
-27
6. 已知3 m +7 n =4 n -9,则( m + n )3的值是
.
7. (1) 用“>”“<”或“=”填空:若 a - b <0,则 a
期末专题复习
解一元一次方程
考向一
方程的相关概念
1. 下列方程中,属于一元一次方程的是(
D )
A. 2 x2-1=0
B. x - y =12
1
C. x +4=
D. 6 x =0
2
2. 若( m -3) ||− =5是一元一次方程,则 m 的值是( B )
A. 3
B. -3
1
2
3
C. 3或-3
若 a - b =0,则 a
=
<
b;
> b.
b ;若 a - b >0,则 a
(2) 试用(1)中的方法比较3 x2-2 x +7与4 x2-2 x +8的大小.
解:3 x2-2 x +7-(4 x2-2 x +8)=- x2-1.因为 x2大于或等于0,
所以- x2小于或等于0.所以- x2-1<0.所以3 x2- x +7<4 x2-2 x +8
入,得-4-1=-2+ a -1,解得 a =-2.把 a =-2代入原方程,
−
−
得
=
-1,解得 x =-4
期末复习初一(上)第五章《一元一次方程》.docx
期末复习 初一(上)第五章《一元一次方程》一、 复习目标:1. 掌握等式、方程、一元一次方程以及方程的解等基本概念,了解方程的基本变形在解方程 时的作用。
2. 会解一元一次方程,掌握一元一次方程的解法的一般步骤,并能正确灵活地加以运用。
3. 能以一元一次方程为工具解决一些简单的实际问题,包插列方程,求解方程、所根据问题 的实际意义检验所得结果是否合理。
4. 在经历“问题情境 ------- 建立数学模型 -------- 解释、应用与拓展”的过程中体会一元一次方程在数学应用中的价值。
培养运用数学知识,去分析解决实际问题的能力,提高创新能 力。
二、 思维导图解答 检验并且末知数的次数都是 ____________________________ ,这样的方程叫一元 程。
___________________________________ ,叫做方程的解。
2. 等式的两个性质① __________________________________________② ____________________________________ 3. 移项法则:方程屮的任何一项,都可以在 __________4. 解一元一次方程的一般步骤: ______________________注意:① 去分母时,既要不漏乘不含分母的项,又要注意分数线的括号作用,去分母时分子要加括号;② 去括号时须正确运用乘法分配律和去扌舌号法则,不要漏乘括•号内的某些项,如果括号前而是 负号,去掉括号和它前而的负号,括号中的每一项都要变号; ③ 移项时一定要变号,同时不能漏项;④ 系数化为1时,系数只能做分母,如果系数是字母,要强调其不为0。
5. 列一元一次方程解决实际应用问题的一般步骤:— 注意:① 在设未知数时,采用哪种方法设,要根据所找的相等关系而定,不能生搬硬套,一般直接设 未知数法居多,不管用哪种方法,要本着简单、容易的原则,设未知数要表明代表的意义;② 大部分应用问题的数量关系都是通过包含运算意义的词语体现出來的,如:和、差、倍、分、 增加、减少、超过、提前、儿比儿多儿,解题时要抓住这些关键词寻找等量关系;③ 选择不同的等量关系,所列的方程也就不同,但其结果是一样的。
一元一次方程的解法(知识解读+真题演练+课后巩固)(原卷版)
第02讲 一元一次方程的解法1.会通过去分母解一元一次方程;2.归纳一元一次方程解法的一般步骤,体会解方程中化归和程序化的思想方法;3.体会建立方程模型解决问题的一般过程;4.体会方程思想,增强应用意识和应用能力.知识点1 解一元一次方程 解一元一次方程的步骤: 1. 去分母两边同乘最简公分母 2.去括号(1)先去小括号,再去 中括号,最后去大括号 (2)乘法分配律应满足分配到每一项 注意 :特别是去掉括号,符合变化 3.移项(1)定义: 把含有未知数的项移到方程的一边,不含有未知数的项移到另一边; (2)注意: ①移项要变符号 ; ②一般把含有未知数的项移到左边 ,其余项移到右边 . 4. 合并同类项(1)定义: 把方程中的同类项分别合并,化成“ ax = b ”的形式( a ≠ 0 ); (2)注意:合并同类项时,把同类项的系数相加,字母不变. 5. 系数化为 1(1)定义: 方程两边同除以未知数的系数 a ,得 abx =; (2)注意:分子、分母不能颠倒【题型1 解一元一次方程】【典例1】解一元一次方程:5x+3=3x﹣15.【变式1-1】解方程:5x﹣8=2x﹣3.【变式1-2】解方程:2x+2=3x﹣2.【典例2】解下列一元一次方程:(1)3(x+1)﹣2=2(x﹣3);(2).【变式2-1】解方程:(1)4x+5=3(x﹣1);(2)﹣=1.【变式2-2】解方程:(1)3x﹣5(2x﹣4)=7﹣4(x﹣1);(2).【变式2-3】解方程:(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)=1.【题型2 一元一次方程的整数解问题】【典例3】是否存在整数k,使关于x的方程(k﹣4)x+6=1﹣5x有整数解?并求出解.【变式3-1】当整数k为何值时,方程9x﹣3=kx+14有正整数解?并求出正整数解.【变式3-2】若关于x的方程ax﹣3=0有正整数解,则整数a的值为()A.1或﹣1或3或﹣3B.1或3C.1D.3【题型3 根据两个一元一次方程的解之间的关系求参数】【典例4】若代数式与的值的和为5,则m的值为()A.18B.10C.﹣7D.7【变式4-1】若P=2a﹣2,Q=2a+3,且3P﹣Q=1,则a的值是()A.0.4B.2.5C.﹣0.4D.﹣2.5【变式4-2】若的值与x﹣7互为相反数,则x的值为()A.1B.C.3D.﹣3【变式4-3】若式子﹣2a+1的值比a﹣2的值大6,则a等于()A.1B.2C.﹣1D.﹣2【变式4-4】已知A=2x+1,B=5x﹣4,若A比B小1,则x的值为()A.2B.﹣2C.3D.﹣3【题型4 错解一元一次方程的问题】【典例5】一位同学在解方程5x﹣1=()x+3时,把“()”处的数字看错了,解得,这位同学把“()”处的数字看成了()A.3B.﹣C.﹣8D.8【变式5-1】某同学解方程2x﹣3=ax+3时,把x的系数a看错了,解得x=﹣2,他把x的系数看成了()A.5B.6C.7D.8【变式5-2】某同学解方程5y﹣1=口y+4时,把“口”处的系数看错了,解得y =﹣5,他把“口”处的系数看成了()A.5B.﹣5C.6D.﹣6【变式5-3】小明同学在解方程5x﹣1=mx+3时,把数字m看错了,解得x=﹣,则该同学把m看成了()A.3B.C.8D.﹣8【变式5-4】某同学解方程2x﹣3=ax+3时,把x的系数a看错了,解得x=﹣2,他把x的系数a看成了下列哪个数?()A.5B.6C.7D.8【题型5 一元一次方程的解与参数无关】【典例6】定义一种新运算:a⊙b=5a﹣b.(1)计算:(﹣6)⊙8=;(2)若(2x﹣1)⊙(x+1)=12,求x的值;(3)化简:(3xy﹣2x﹣3)⊙(﹣5xy+1),若化简后代数式的值与x的取值无关,求y的值.【变式6-1】(1)先化简,再求值:已知代数式A=(3a2b﹣ab2),B=(﹣ab2+3a2b),求5A﹣4B,并求出当a=﹣2,b=3时5A﹣4B的值.(2)对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).规定:(a,b)★(c,d)=ad﹣bc,如:(1,2)★(3,4)=1×4﹣2×3=﹣2根据上述规定解决下列问题:①有理数对(5,﹣3)★(3,2)=.②若有理数对(﹣3,x)★(2,2x+1)=15,则x=.③若有理数对(2,x﹣1)★(k,2x+k)的值与x的取值无关,求k的值.【变式6-2】(1)已知多项式3x2+my﹣8与多项式﹣nx2+2y+7的差与x,y的值无关,求n m+mn的值.(2)解方程=1﹣.【题型6 一元一次方程的解在新定义中运用】【典例7】定义“※”运算为“a※b=ab+2a”,若(3※x)+(x※3)=14,则x等于()A.1B.2C.﹣1D.﹣2【变式7-1】新定义一种运算“☆”,规定a☆b=ab+a﹣b.若2☆x=x☆2,则x的值为.【变式7-2】规定一种新的运算:a*b=2﹣a﹣b,求*=1的解是.【变式7-3】已知a,b,c,d为有理数,现规定一种新的运算=ad﹣bc,那么当=18时,x的值是.1.(2022•百色)方程3x=2x+7的解是()A.x=4B.x=﹣4C.x=7D.x=﹣7 2.(2022•海南)若代数式x+1的值为6,则x等于()A.5B.﹣5C.7D.﹣7 3.(2021•温州)解方程﹣2(2x+1)=x,以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x 4.(2023•陇西县校级模拟)定义aⓧb=2a+b,则方程3ⓧx=4ⓧ2的解为()A.x=4B.x=﹣4C.x=2D.x=﹣2 5.(2023•青山区一模)若的值与x﹣7互为相反数,则x的值为()A.1B.C.3D.﹣3 6.(2023•怀远县二模)方程=1去分母正确的是()A.2(3x﹣1)﹣3(2x+1)=6B.3(3x﹣1)﹣2(2x+1)=1C.9x﹣3﹣4x+2=6D.3(3x﹣1)﹣2(2x+1)=6 7.(2021•广元)解方程:+=4.8.(2021•桂林)解一元一次方程:4x﹣1=2x+5.9.(2021•西湖区校级自主招生)以下是圆圆解方程=1的解答过程.解:去分母,得3(x+1)﹣2(x﹣3)=1.去括号,得3x+1﹣2x+3=1.移项,合并同类项,得x=﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.10.(2022秋•陵城区期末)解方程(1)18(x﹣1)﹣2x=﹣2(2x﹣1);(2).1.(2023春•榆树市期末)一元一次方程8x=2x﹣6的解是()A.x=1B.x=0C.x=﹣2D.x=﹣1 2.(2022秋•汾阳市期末)方程3x﹣2(x﹣3)=5去括号变形正确的是()A.3x﹣2x﹣3=5B.3x﹣2x﹣6=5C.3x﹣2x+3=5D.3x﹣2x+6=5 3.(2023•乐东县一模)代数式5x﹣7与13﹣2x互为相反数,则x的值是()A.B.2C.﹣2D.无法计算4.(2022秋•宜城市期末)定义“※”运算为“a※b=ab+2a”,若(3※x)+(x※3)=14,则x等于()A.1B.2C.﹣1D.﹣2 5.(2022秋•泸县期末)如果表示ad﹣bc,若=4,则x的值为()A.﹣2B.C.3D.6.(2022秋•潮安区期末)设a⊕b=3a﹣b,且x⊕(2⊕3)=1,则x等于()A.3B.8C.D.7.(2022秋•泰山区期末)王林同学在解关于x的方程3m+2x=4时,不小心将+2x看作了﹣2x,得到方程的解是x=1,那么原方程正确的解是()A.x=2B.x=﹣1C.x=D.x=5 8.(2022秋•碑林区校级期末)小亮在解方程3a+x=7时,由于粗心,错把+x 看成了﹣x,结果解得x=2,则a的值为()A.B.a=3C.a=﹣3D.9.(2022秋•六盘水期末)已知代数式6x﹣12与4+2x的值互为相反数,那么x 的值等于.10.(2022秋•嘉祥县期末)解下列方程:(1)2x﹣3(2x﹣3)=x+4;(2).。
2018最新人教版七年级上数学一元一次方程经典题型讲解及答案
2018最新⼈教版七年级上数学⼀元⼀次⽅程经典题型讲解及答案知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价×100%(2)商品利润率=商品利润商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打⼏折出售,就是按原价的百分之⼏⼗出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品⼀律按⼋折优惠出售,已知某种⽪鞋进价60元⼀双,⼋折出售后商家获利润率为40%,问这种⽪鞋标价是多少元?优惠价是多少元?2. ⼀家商店将某种服装按进价提⾼40%后标价,⼜以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.⼀家商店将⼀种⾃⾏车按进价提⾼45%后标价,⼜以⼋折优惠卖出,结果每辆仍获利50元,这种⾃⾏车每辆的进价是多少元?4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则⾄多打⼏折?5.⼀家商店将某种型号的彩电先按原售价提⾼40%,然后在⼴告中写上“⼤酬宾,⼋折优惠”.经顾客投拆后,拆法部门按已得⾮法收⼊的10 倍处以每台2700元的罚款,求每台彩电的原售价?知能点2:⼯程问题⼯作量=⼯作效率×⼯作时间⼯作效率=⼯作量÷⼯作时间⼯作时间=⼯作量÷⼯作效率完成某项任务的各⼯作量的和=总⼯作量=16. ⼀件⼯作,甲独作10天完成,⼄独作8天完成,两⼈合作⼏天完成?7. ⼀件⼯程,甲独做需15天完成,⼄独做需12天完成,现先由甲、⼄合作3天后,甲有其他任务,剩下⼯程由⼄单独完成,问⼄还要⼏天才能完成全部⼯程?8. ⼀个蓄⽔池有甲、⼄两个进⽔管和⼀个丙排⽔管,单独开甲管6⼩时可注满⽔池;单独开⼄管8⼩时可注满⽔池,单独开丙管9⼩时可将满池⽔排空,若先将甲、⼄管同时开放2⼩时,然后打开丙管,问打开丙管后⼏⼩时可注满⽔池?9.⼀批⼯业最新动态信息输⼊管理储存⽹络,甲独做需6⼩时,⼄独做需4⼩时,甲先做30分钟,然后甲、⼄⼀起做,则甲、⼄⼀起做还需多少⼩时才能完成⼯作?10.某车间有16名⼯⼈,每⼈每天可加⼯甲种零件5个或⼄种零件4个.在这16名⼯⼈中,⼀部分⼈加⼯甲种零件,其余的加⼯⼄种零件.?已知每加⼯⼀个甲种零件可获利16元,每加⼯⼀个⼄种零件可获利24元.若此车间⼀共获利1440元,?求这⼀天有⼏个⼯⼈加⼯甲种零件?11.⼀项⼯程甲单独做需要10天,⼄需要12天,丙单独做需要15天,甲、丙先做3天后,甲因事离去,⼄参与⼯作,问还需⼏天完成?知能点3:⾏程问题基本量之间的关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题快⾏距+慢⾏距=原距(2)追及问题快⾏距-慢⾏距=原距(3)航⾏问题顺⽔(风)速度=静⽔(风)速度+⽔流(风)速度逆⽔(风)速度=静⽔(风)速度-⽔流(风)速度13. 甲⼄两⼈在同⼀道路上从相距5千⽶的A、B两地同向⽽⾏,甲的速度为5千⽶/⼩时,⼄的速度为3千⽶/⼩时,甲带着⼀只狗,当甲追⼄时,狗先追上⼄,再返回遇上甲,再返回追上⼄,依次反复,直⾄甲追上⼄为⽌,已知狗的速度为15千⽶/⼩时,求此过程中,狗跑的总路程是多少?12. 甲、⼄两站相距480公⾥,⼀列慢车从甲站开出,每⼩时⾏90公⾥,⼀列快车从⼄站开出,每⼩时⾏140公⾥。
有理数和一元一次方程的解法
要你选择两个比赛用球,你会选择哪两个?用绝
对值的形式说明你的理由。
16
六、有理数的运算:
(一)有理数的加法:
同号两数相加,取 的符号,并把绝对值 ;
异号两数相加,绝对值相等时
,绝对值不等时,
取
符号,并用
;
注:异号相加大减小,符号跟着大的走
(二)有理数的乘法:
几个有理数相乘,积的符号由负因数的个数决定, 再把绝对值相乘作为积的绝对值。
30
练习:
1、下列方程中是一元一次方程的有 。
16x 9 5
2x 9 5x
x2 9 0 3x 2y 1 y 3
31
2.关于x的方程x3m-1+7m-5=0是一元一次方程, 则m= ,x= 。
3.关于的方程 (a =1)1x是a 一元一次方程,则 a= 。
4、判断下列解方程的步骤是否正确,错误的改正过来
28
(五)等式性质: 1.等式的两边同时加上或减去相同的数,等 式仍然成立。 2.等式的两边同时乘以同一个数或除以同一 个不为0的数,等式仍然成立。 注:等式的性质是解方程的理论依据,但 解方程时方程两边同乘的数也不能为0。
29
(六)解一元一次方程的一般步骤: 1.去分母(方程两边同乘以各分母的最小公倍数) 2.去括号 3.移项(移项要变号) 4.合并同类项 5.系数化为1 (方程两边同除以未知数的系数)
21
(4)某日小明在一南北方向的跑道上练习折返跑。他 从A地出发,每次折返的时候记录下自己的跑步情况如 下(向南为正方向,单位:米) 56, -91, 61, -96 现在他在A地的什么方向?距A地多远?共跑了多少米 ? (5)某校对初三女生进行了百米测验,达标成绩为18 秒,下面是一小组8名女生的成绩纪录。其中“+”号表 示成绩大于18秒。 +1, -0.8, 0, +1.2, +0.1, 0, -0.5, +0.6 (1)这个小组女生的达标率是_________。 (2)这一组女生的平均成绩是多少秒?
【精析精练】2019人教版数学七年级上单元冲刺复习:第三章一元一次方程
2019年七年级数学上册期末复习一元一次方程知识点+易错题一元一次方程知识点总结一、等式与方程1.等式:(1)定义:含有等号的式子叫做等式.(2)性质:①等式两边同时加上(或减去)同一个整式,等式的值不变.若错误!未找到引用源。
那么错误!未找到引用源。
②等式两边同时乘以一个数或除以同一个不为0的整式,等式的值不变.若错误!未找到引用源。
那么有错误!未找到引用源。
或错误!未找到引用源。
(错误!未找到引用源。
)③对称性:若错误!未找到引用源。
,则错误!未找到引用源。
.④传递性:若错误!未找到引用源。
,错误!未找到引用源。
则错误!未找到引用源。
.(3)拓展:①等式两边取相反数,结果仍相等.如果错误!未找到引用源。
,那么错误!未找到引用源。
②等式两边不等于0时,两边取倒数,结果仍相等.如果错误!未找到引用源。
,那么错误!未找到引用源。
③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:(1)定义:含有未知数的等式叫做方程.(2)说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样!③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.二、一元一次方程1.一元一次方程的概念:(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.(2)一般形式:错误!未找到引用源。
一元一次方程例题讲解及答案.doc
一元一次方程例题讲解及答案.doc去括号,得12 兀+ 66-25 + 10x30. 移项、合并同类项,得22 兀=-11.解这个方程,得例3列方程求下列问题的解:in = -6 —元一次方程课标要求:1?解一元一次方程及其解的意义.2.理解方程变形的基木原理,能在解方程屮正确应用.3.掌握一元一次方程中移项、系数化为1等基本步骤,会解一元一次方程,并会对方程的解进行检验.4.能根据具体情境中的数量关系,列出方程,解决简单的实际问题.中招考点一元一次方程概念及解法,一元一次方程的应用,能利用一元一次方程解决生活屮的实际问题.典型例题例1解方程生巴一土空=1.6(2X4-11)-5(5-2X)=1X 30.系数化为1,得说明:注意在解方程过程中正确进行有理数及整式的运算,步骤不宜过于简单. 例2已知兀=-2是关于兀的方程2(x-m) = 8x-4m的解,求加的值.分析:本题已知方程的解,要求方程中待确定的字母系数,可以像解数字系数的方程一样, 先求出方程的解,再进行比较;也可以根据方程的解的定义:能使方程两边代数式的值相等的未知数的取值叫做方程的解,将工=-2代入原方程,转化为关于加的方程求解.解1解关于兀的方稈:lx-Im = 8x-4m .因为已知方程的解是兀=-2,所以巴=-2,即m=-63解2因为x = -2是方程的解,所以2(-2-m) = 8(-2) 一4/n .解:去分母,强化训练1.选择题(1)下列方程变形正确的是(Y — 1A?由 -- =0得x-l = 55r — 1C.由---- =1 得X -1 = 55 ).YB.由一一1 = 0得x-l = 05D?由兰一1 = 1得兀一5 = 1(1)甲乙两车分别从相距360千米的两地相向开出,己知甲车速度是60千米/小时.乙车速度是40千米/小时.若甲车先开1小时,问乙车开出多少时间后两车相遇?(2)小陈和老师一起整理了一篇教学材料,准备打印成稿.按篇幅估计老师单独打字需4个小时,小陈单独打字需6个小时,后来小陈先打了一个小时后,老师开始一起打.问还需多少小时完成?分析:方程是刻画现实世界数量之间相等关系的一个重要数学模型,通过对实际问题中数量关系的分析,列出相关的代数式,进而建立方程,可以把复杂的实际问题转化为纯数学问题来解决.这一过程的关键是要透过纷繁多变的问题的表象,抓住数量关系的实质,抽象为数学问题.因此,常有面目迥异的情形,在学习屮我们不能机械地记忆、套用某些题型而忽略了问题的本质.像上述两个问题,不论是甲、乙两车还是师、生两人,主要的等量关系都是两个对象所完成数量的和等于总量,而其中一个对象所完成的数量又分为两部分;前一小时的和后來的.请同学们注意强化训练第8题两个问题中数量关系和解法的比较. 解:(1)设乙车开出兀小时后两车相遇,根据题意,得60(1 + 兀)+ 40x = 360 ?解这个方程得经检验,符合题意.答乙车开出3小吋两车相遇.(2)设老师开始打字后还需兀小时完成,扣+兀)+*=1.解这个方程得答老师开始打字后还需要2个小时完成.D.(2)下列方程后所列出的解不正确的是().x 2 ----- 1—23(2) 0.7x +1.37 = 1.5x-0.23;(3) x-3(20-x) = 3x-7(9-x);(4)2x-ll + 4x5(5)A.7B. ±7 C ?3 D ?7 或 3(4) 一种书包经两次降价10%,现在售价Q 元,则原售价为( )元.A. 81%? C ?80%aD.-^81% 80%2 .填空题(1) 若关于兀的方程、x = 5-k 的解是x = -3 ,则比= __________________ .3 (2) 当兀= ___________ 时,代数式2x4-3与6-4兀的值相等. 3. 解下列方程:(1) 3x-2 = -5(x-2);4.当x = -2时,代数式x 2+bx-2的值是12,求当x = 2时,这个代数式的值.5. 初一 (4)班课外乒乓球组买了两副乒乓球板,若每人付9元,则多了 5元,后来组长收了每人8元,自己多付了 2元,问两副乒乓球板价值多少?3y+ 6856(6)6 ?请你编制-道关于兀的方程,形如一咛冷使它的解在】到2之间.7.已y = ax3 +bx-8,当x = 3时,y = 5 .求当兀=一3日寸,y的值.8.应用方程解下列问题:(1)某车间原计划每周装配36台机床,预计若干周完成任务,在装配了三分之一后,改进操作技术,功效提高了一倍,结果提前一周半完成任务?求这次任务需装配的机床总台数.(2)某人有急事,预定搭乘一辆小货车从A地赶住B地,实际上他乘小货车行了三分路后改乘出租车,车速提高了一倍,结果提前一个半小时到达.己知小货车的车速是36千米 /小时,求两地间的路程.一元一次方程参考答案13 11.(1) C (2) C (3) D (4) B2. (1) 6 (2) 一3?(1) x = - (2) x = 2(3) x = -2 2 27(4) x = —(5) y = 2(6) j = -6 4. -8 (提示:先求得方=一5 ) 5?两副乒乓球拍2价值58元6?略(提示:本题解答不唯一,任収符合条件的一个根,如x = -,代入原方程,2即能得到一个对应的加的值)7. -21 (提示:将已知条件代入后可求得27a + 36 = 13,当兀=一3 时,j =-27a-3^-8 =-(27a+ 3*)-8 = -13-8 = -21 )2 28. (1)装配机床总台数162台(提示:设共装配机床x台,根据题意,3—二一--;或72 36 2设共装配机床3兀台,根据题意,得竺二—72 36 2(2)两地间的路程为162千米(提示:与第(1)题具有相同的等量关系和方程)解:(1)由②得代入①,得解得代入③,得所以方程组的解是(2)①+(§)x6,得即代入①,得x = 7 -3y.3(7-3J)-4J =-5.y = 2.x = 1.x = l,y = 2.32 兀= 16,1x =—,2J = -l第6部分二元一次方程组课标要求1.了解二元一次方程组及其解的概念,会将二元一次方程化为用含一个未知数的代数式表示另一个未知数的形式,会检验未知数的一组对应值是否为二元一次方程的解.2.了解二元一次方程组、方程组的解、解方程组等基本概念,掌握用消元法解方程组的基本思想;通过“消元”,转化为一元一次方程.3.会灵活应用代入消元法和加减消元法解二元一次方程组.4.能应用二元一次方程组解决简单的实际问题.中招考点二元一次方程概念及解法,代入法和加减法解方程组,用含一个未知数的代数式表示另一个未知数,会检验未知数的一组对应值是否为二元一次方程的解,能应用二元一次方程组解决简单的实际问题.典型例题例1解下列方程组:j3x-4J = -5, ①小严①(1)—(2) 5 1 _x+ 3j = 7; ②5x + —y = 2.②2分析:要结合方程组中方程的系数特征,合理选择消元的方法?通常方程中系数比较简单,尤其当一个未知数系数的绝对值是1时,可选用代入消元法,一般常采用加减消元法.Y =—所以方程组的解是2'y=~1 2例2已知关于工、y的方程组戶[尸& 与[x-2y = 5y有相同的解,求(l-2m)x + 2y = \-n ?[兀兀 + 丿=m + 1.“2、兀值?分析:这里两个方程组屮都有待定系数,但并未知道具体的解,不能应用方程解的定义,代入后转化为关于加、H的方程来解.注意到两个方程组中都有一个方程的系数是已知的.且根据方程组的解的定义,本题“相同的解”也就是方程组!2x_3j=8,的解,因此,这个解可[x-2y = 5.y* — 1 f 1 — 2"? — 4 _ 1 —U以先予求出:~ :这时再将它代入另两个方程组,得几 ~ '[y = -2. [n-2 = m + 1.解这个方程组,得m = -l,7i = 2.例3某公园的学生门票价格如下:1 初一甲、乙两个班共104人,若分别购票,需1240元.两个班合起来购票,能否节约一些?或己知甲班人数稍多一些,请求出两班各有多少人?2若不知道两班学生总数及各班人数的多少,你能求出各班人数吗?分析本题具有较大的开放性?在第(1)个问题中,首先应根据题意,判断各班人数的大致范围:两班共104人,则至少有一个班级人数50,但总票价1240元不是11的倍数,说明另一个班级人数不超过50.根据这些信息,可以着手应用列方程组求解.在第二个问题中,减弱了条件,两班学生的总数也是未知数.比较上述分析,共同之处是两班人数不可能是同一范围内的数(因为1240不是13、11、9的倍数),不同之处是少了一个方程.则应该用到求二元一次方程的整数解的知识,同吋还应根据实际情况,选取合适的解.解(1)设初一甲班学生兀人,初一乙班学生y人,根据题意,两班票价总数1240不是13 或11的倍数,所以甲班人数大于50,乙班人数小于50.可得方程组x + y = 104,llx + 13j = 1240?1240-13兀n = 112—兀 +8-2x11= 112—兀 +2(4-兀)H(1)3兀一丿=2,5x + 4y = 1.3x + 5y = 42.(4)j5/n +7" = 26,[4,72 + 6〃= 18. 解这个方程组,得经检验,符合题意.y = 4&答:初一甲班学生56人,初一乙班学生48人.(2)设两个班级人数分别为兀人和y人,根据实际情况,其屮兀、J 的值是不超过100的正整数,且X <卩根据题意,得方程13x + llj = 124 0?将方程变形为含X的代数式表示”得所以4-x是11的倍数,依次取工=4,15,26,37,48.求出对应的y = l 0& 95,82,69,56.根据实际情况,我们选取甲、乙两班人数分别为37人、69人、69人、37人、48人、56人或56人、48人四种比较合理的解答.强化训练1?填空题(1)已知4兀+ 5y —20 = 0 ,用含工的代数式表示只得___________________________当y = _4 时,X= ______________________________ .(2)己知x = 3』=一2是关于兀、丿的方程2兀一加丿+ 2加一2 = 0的解,贝【J:m= _______ .(3)己知|2x +J-3|+(X-3J +2)2 =0 ,贝ij x-y= ___________________(4)己知关于的方程组:%二亠的解’与y相等’则" ------------------------------------2.解下列方程组:(2) x3-t 丄、,十门.e 小「2兀一y = 2a + b 3.已知关于兀、丿的万程组彳 .[x^2y = a-b.的解是{二求…的值.4.已知当x = l 吋,代数式ax + b 的值等于2;当x = 2吋,代数式ax+ b 的值是1.求当x = 5 时,这个代数式的值.5?甲、乙两件商品成本共400元,甲商品按30%的利润定价,乙商品按20%的利润定价.后应顾客的要求,两种商品都按定价的90%出售,商店仍获利55?4元.求两种商品的成本各是多少?6. 求方程4x + 3y = 31的正整数解.7. 探索用适当的方法解下列方程组:(1)8. 某校课外阅读小组同学每人订甲、乙两份杂志,甲杂志是月刊,每月一期定价2?2元:乙杂志是双月刊,两个月一期定价2?6元.每位同学都是一份杂志订半年,另一份杂志订全年. 经统计,甲杂志订费858元,乙杂志订费429元,求这个阅读小组的人数.J17x + 23j = 57, [23兀+ 17y = 63;x + y-z = 5, (3) ? 2x + 3j+ z = 10,x-2y-z = 20.第6部分二元一次方程组1. (1) 丁=20一4兀]05 (2) -1 (3) 0 (4) 4 2. (1)9x ——,17 (2)7 y = ?17口⑶y = 6.X =29 7 = -!(4)m = 15.n = —7.3a = 2° 4. -2 5?甲商品成本260元,乙商品成本140元b = -5.商品成本兀元,乙商品成本J元,根据题意得方程组x + j = 400,x(l + 30%) x 90% + y (1 + 20%) x 90% = 400 + 55.4 6.x2 =4,兀1 =y=9; J2=5;l j3=l.(提示:I — x先将方程化为y = 10-x + —;或先确定y是1与9之间的奇数)37. (1) X =29J = 1(提示:将两式分别相减和相加,得x-y = t)x+j=3?(2) x = l,1y = -2(3)35X~T,j = -5, 8?这个阅读小组有40人(提示:设订甲种杂志全年的学5 Z_3'生兀人,订乙种杂志全年的学生y人,列方程组2.2x12兀+ 2?2x6y = 85& 曰解得<〔2.6x3 兀+ 2?6x6y = 429.x = 25,)y = 15.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章:一元一次方程一、知识回顾 知识结构图:概念、定义:1.含有一个未知数,未知数的次数都是1,这样的方程叫做一元一次方程。
3等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
5.等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。
6.把等式一边的某项变号后移到另一边,叫做移项。
7.实际问题的常见类型(1)利息问题:①相关公式:本金×利率×期数=利息(未扣税); ②相等关系:本息=本金+利息.(2)利润问题:①相关公式:利润率=利润÷进价; ②相等关系:利润=售价-进价.(3)等积变形问题:①相关公式:长方体的体积=长×宽×高;圆柱的体积=底面积×高.②相等关系:变形前的体积=变形后的体积.(4)工程问题①数量关系:工作量=工作时间×工作效率.②相等关系:总工作量=各部分工作量的和.(5)行程问题:①相关数量关系:路程=时间×速度;②相等关系: (相遇问题)两者路程和=总路程;(追及问题)两者路程差=相距路程.二、考点解析考点一考查基本概念例1.若关于x的方程2(x-1)-a=0的解是3,则a的值是()A.4 B.-4 C.5 C.-5例2.一个一元一次方程的解为2,请写出这个方程:.考点二考查一元一次方程的构建例3.如果单项式4x2y a+3与-2x2y3-2a是同类项,那么a为()A.-2B.-1C.0D.1例4.某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x元,则得到方程()A.x=150×25%B.25%x=150C.150-x=25%xD.150-x=25%考点三 考查一元一次方程的解法例5.解方程:x -=2-.考点三 考查一元一次方程的应用例6. 某同学在A 、B 两家超市发现他看中的英语学习机的单价相同,书包单价也相同,英语学习机和书包单价之和是452元,且英语学习机的单价比书包单价的4倍少8元.(1)求该同学看中的英语学习机和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打7.5折销售;超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的英语学习机、书包,那么在哪一家购买更省钱?三、重点突破——一元一次方程的实际问题和差倍分问题(年龄问题、比例问题、日历问题)1、姐姐4年前的年龄是妹妹的2倍,今年年龄是妹妹的1.5倍,求姐姐今年的年龄。
2、1992年,妈妈52岁,儿子25岁,哪一年妈妈的年龄是儿子的4倍.3、爸爸和女儿两人岁数加起来是91岁,当爸爸岁数是女儿现在岁数两倍的时候,女儿岁数是21-x 31+x爸爸现在岁数的,那么爸爸现在的年龄是多少岁,女儿现在年龄是多少岁.4、建筑工人在施工中,使用一中混凝土,是由水、水泥、黄沙、碎石搅拌而成的,这四种原料的重量的比是0.7:1:2:4.7,搅拌这种混凝土2100千克,分别需要水、水泥、黄沙、碎石多少千克?5、小名出去旅游四天,已知四天日期之和为65,求这四天分别是哪几日?等积问题1、直径为30厘米,高为50厘米的圆柱形瓶里存满了饮料,现把饮料倒入底面直径为10厘米的圆柱形小杯中,刚好倒满20杯,求小杯子的高。
2、用60米长的篱笆,围成一个长方形的花圃,若长比宽的2倍少3米,则长方形的面积是多少?3、将一个长、宽、高分别为15厘米、12厘米和8厘米的长方体钢块,锻造成一个底面边长为12厘米的正方形的长方体零件钢坯。
试问是锻造前长方体钢块的表面积大,还是锻造后的长方体零件钢坯的表面积大?请计算回答。
行程问题(航行问题、相遇问题、追及问题、火车过桥问题)1、一艘轮船,航行于甲、乙两地之间,顺水用5小时,逆水比顺水多用2小时。
已知轮船在静水中的速度是每小时52千米,求水流的速度?2、小红和小明绕周长为1200米的湖晨练,小红的速度为85米/分,小明比她快10米/分,(1)如果两人同时同向同一地点开跑,多少分钟两人会相遇?(2)如果两人同时相向同地开跑,多少分钟两人会相遇?(3)如果小红在小明前面200米两人同时反向开跑,多少分钟两人会相遇?3、甲乙两人骑自行车,从相距60千米的两地相向而行,甲每小时走12千米,乙每小时走10千米,如甲走15分钟后乙再出发,问甲出发后几小时与乙相遇?4、敌军和我军相距27千米,敌军以4千米/小时的速度逃跑,我军迅速以7千米/小时的速度追击敌军,需几小时可以追上?5、一列火车以每分钟1千米的速度通过一座长400米的桥,用了半分钟,则火车本身的长度为多少米?6、小强、小芳、小亮在郊游,看到远处一列火车匀速通过一个隧道后,产生了以下对话.各位同学,请根据他们的对话求出这列火车的长。
劳力调配及配套问题1、甲车队有15辆汽车,乙车队有28辆汽车,现调来10辆汽车分给两个车队,使甲车队车数比乙车队车数的一半多2辆,应分配到甲乙两车队各多少辆车?小亮:我爸爸参与过这个隧道的修建,他告诉我隧道长500米. 小芳:整列火车完全在隧道里的时间是 20秒 小强:火车从开始进入隧道到完全开出隧道共用30秒2、某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10人,又知二个大齿轮和三个小齿轮配套一套,问应如何安排劳力使生产的产品刚好成套?3、某队有55人,每人每天平均挖土2.5方或运土3方,为合理安排劳力,使挖出的土及时运走,应如何分配挖土和运土人数?销售盈亏问题1、某种衣服因换季打折销售,每件衣服如果按标价的5折出售将亏60元;而如果按标价的8折出售将赚120元。
问这件衣服的标价和成本各是多少元?2、某商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少元?3、团体购买公园门票,票价如下:购票人数:1~50人 51~100人 100人以上每人门票价分别是 65元 55元 45元问题:今有甲,乙两个旅游团,若分别购票,两团总计应付门票费6570元,若合在一起作为一个团体购票,总计应须付5040元,问这两个旅游团各有多少人?银行利率问题1.小颖的爸爸为了准备小颖3年后读高中的费用,准备用1万元参加教育储蓄,•已知教育储蓄一年期的利率为2.25%,三年期的利率为2.70%,现在有两种存法(1)一年,下一年连本带息再存一年,到期后连本带息再存一年(2)接存一个三年期.请你帮着计算一下,小颖的爸爸应选择哪一种储蓄方式?数字问题1.有一个两位数,个位数字是十位数字的4倍,把这个两位数的数字对调位置后,新的两位数比原两位数多54,则原两位数为多少?2.若有一个七位自然数,它的第一位数字是3,若把3移到末位,其他数位上的数字顺序不变,则新数等于这个原数的2倍还多11,求原来的七位数?余不足问题1、用化肥若干千克给一块麦田施肥,每亩用6千克,还差17千克;每亩用5千克,还多3千克,这块麦田有多少亩?2、毕业生在礼堂入座,1条长凳坐3人,有25人坐不下;1条长凳坐4人,正好空出4条长凳,则共有多少名毕业生?长凳有多少条?3、有一次数学竞赛共20题,规定做对一题得5分,做错或不做的题每题扣2分,小景得了86分,问小景对了几题?工程问题1、有一个水池,用两个水管注水。
如果单开甲管,2小时30分注满水池,如果单开乙管,5小时注满水池.(1)如果甲、乙两管先同时注水20分钟,然后由乙单独注水。
问还需要多少时间才能把水池注满?(2)假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。
如果三管同时开放,多少小时才能把一空池注满水?2、一项工程,甲单独完成需要9天,乙单独完成需要12天,丙单独完成需要15天。
若甲、丙先做3天后,甲因故离开,由乙接替甲工作,问还需多少天能完成这项工程的?方案问题1、某中学要添置某种教学仪器,方案1:到商店购买,每件需要8元;方案2:•学校自己制作,每件4元,另外需要制作工具的租用费120元,设需要仪器x件.(1)分别求出方案1和方案2的总费用;(2)当购制仪器多少件时,两种方案的费用相同;(3)若学校需要仪器50件,问采用哪种方案便宜?请说明理由.2、张老师带领该校七年级“三好学生”去开展夏令营活动,甲旅行社说:“如果老师买全票一张,则学生可享受半价优惠。
”乙旅行社说:“包括老师在内按全票价的6折优惠。
”若全票价为240元,当学生从数为多少人时,两家旅行社的收费一样多?3、某校七年级组织学生秋游,如果租用若干辆45座的客车,则有15人无座位;如果租用60座的客车,则可比45座的客车少租2辆,且保证人人有座而无空位。
求:(1)七年级共有多少名学生?(2)若45座客车的租金为每辆420元,60座客车的租金为每辆600元,那么应如何安排客车的型号和数量,使得租金最少?是多少元?其它问题有一个只允许单向通过的窄道口,通常情况下,每分种可以通过9人,一天,王老师到达道口,此时,自己前面还有36个人等待通过(假定先到的先过,王老师过道口的时间忽略不计),通过道口,还需7分钟到达学校。
(1)此时,若绕道而行,要15分钟到达学校,从节省时间考虑,王老师应选择绕道去学校,还是选择是通过拥挤的道口去学校?(2)若在王老师等人的维持下几分钟后,秩序恢复正常(维持秩序期间,每分钟若有3人通过道口),结果王老师比拥挤情况下提前6分钟通过道口问维持秩序的时间是多少?四、思想总结1.方程的思想:方程的思想就是把末知数看成已知数,让代替未知数的字母和已知数一样参与运算,这是一种很重要的数学思想,很多问题都能归结为方程来处理。
2、数形结合的思想:数形结合的思想是指在研究问题的过程中,由数思形,由形思数,把数和形结合起来分析问题的思想方法。
本章在列方程解应用题时常采用画图,列表格的方法展示数量关系。
使问题更形象、直观。
3、“化归思想”:所谓化归思想,是指在如解数学问题时,如果对当前的问题感到困惑,可把它先进行交换,使之筒化,并得到解决的思维方法。
如本章解方程的过程,就是把形式比较复杂的方程,逐步化简为最简方程ax=b(a=0),从而求出方程的解,通过对解一元一次方程的学习要体会并掌据化归这一数学思想方法。
五、第一章知识点过关测试(内容:有理数1.1---1.3)一、选择题(每题4分,共40分)1.有理数6的相反数是( ) A.-6 B.6 C. D.-2.如果向东走4千米记为+4千米,那么走了-2千米表示( )A.向北走了2千米B.向西走了2千米C.向南走了2千米D.向东走了2千米 3.下列各式中,不正确的是( )A.-(-16)>0B.C.D.4.如果两个非零有理数的和为零,那么它们的商是( )A.0B.-1C.+1D.±1 5.在数轴上,下面说法不正确...的是( ) A.在两个有理中数绝对值大的离原点远 B.在两个有理数中较大的在右边C.在两个有理数中,较大的离原点远D.在两个负有理数中,较大的离原点近 6.若与互为相反数,则下列式子不成立的是( ) A. B.a=-b C. D.b=-a 7.一个有理数的相反数大于它本身,这个数是( )A.负有理数B. 零C.正有理数D.不可能存在 8.下列说法:(1)在+3和+4之间没有正数; (2)在0与-1之间没有负数;(3)在+1和+2之间有很多个正分数; (4)在0.1和0.2之间没有正分数,则正确的是( )A.(3)B.(4)C.(1)(2)(3)D.(3)(4)9.某商店规定:用4个矿泉水空瓶可以换取矿泉水一瓶.小明现有16个矿泉水空瓶,若小明只用这16个矿泉水空瓶,且不再花钱,那么他最多可以换矿泉水( ) A.3瓶 B.4瓶 C.5瓶 D.6瓶 10.下列叙述正确的是:( ) A.若,则a=b B.若 C.若a<b,则 D.若,则61612.02.0-=7574->-06<-a b 0=-b a 0=+b a b a =b a b a >>则,b a <b a =b a ±=二、填空题(每题4分,共20分) 11.式子:-(-5)表示的意义是.12.-的绝对值是.13.小于5的非负整数是.14.数轴上离开原点5个单位的数是,其和为.15.a 为最小的正整数,b 为a 的相反数,c 为绝对值最小的数,则a-b-(-c )=. 三、解答题(共40分)16.(10分)把下列各数填在相应的集合里:-5 +0.62 4 0 -1.1 -6.4 -7 -7. 正整数集合{ …}负整数集合{ …} 非负数集合{ …} 负数集合{ …} 正数集合{ …} 17.(10分)计算:⑴-20+(-14)-(-18)-13 ⑵(-5)+(-8)-(+8)-(+2)18.(10分)比较大小:-[-(-0.3)]和-∣-∣ 19.(10分)某检修站检修线路,甲小组乘一辆汽车,约定向东为正,从A 地出发到收工时,行走记录为(单位:千米):+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.同时,乙小组也从A 地出发,沿南北方向的公路检修线路,约定向北为正,行走记录为:-17,+9,-2,+8,+6,+9,-5,-1,+4,-7,-8.(1)分别计算收工时,甲、乙两组各在A 地的什么方位?分别距A 地多远? (2)若每千米汽车耗油0.3升,求出发到收工时两组各耗油多少升?563167312121757231本章精练二(内容:有理数1.4---本章末)一、选择题(每题4分,共36分)1.在32)5(,5,)5(),5(-------中正数有( )A.1个B.2个C.3个D.4个2.乘积)3()3()3()3(-⨯-⨯-⨯-记法正确的是( )A. B. C. D.3.下列运算正确的是( )A. B. C. D.4.近似数4.20×104的有效数字有( )A.5个B.3个C.2个D.1个5.我国最长的河流长江全长约为6300千米,用科学记数法表示为( )A.63×102千米B.6.3×102千米C.6.3×103千米D.6.3×104千米6.下列各对数中,数值相等的是( )A.-27与(-2)7B.-32与(-3)2C.-3×23与-32×2D.-(-3)2与-(-2)37.将边长为1的正方形对折5次后,得到图形的面积是( )A.0.03125B.0.0625C.0.125D.0.258.如果有5个有理数,其中至少有一个有理数是正数,且它们的积是负数,那么这五个因数中,负因数的个数是( )A.1B.2或4C.5D.1和39.计算:(-2)100+(-2)101的结果是( )A.2100B.-1C.-2D.-2100二、填空题(每题4分,共20分) 10.计算-1÷9×=.11.()2=16, (-)3=. 12.若,则当a=1时,A=;当a=-1时,A=.13.如果式子(x-8)2+3有最小值时,那么5x-30=.14.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为1,p 是数轴到原点距离为1的数,那么122013++++-m abcdb a cd p 的值是. 三、解答题(共40分)15.(共12分)计算:43-4)3(-4)3(+-4)3(--422=-4)2(2-=-6)2(3-=-9)3(2=-913210032a a a a A ++++=(1)(-0.25)(-1.63)400 (2)-72+2(-3)2+(-6)16.(10分)一天小明和小冬利用温差来测量山峰的高度。