八年级数学二次根式的混合运算

合集下载

八年级数学二次根式教学设计6篇

八年级数学二次根式教学设计6篇

八年级数学二次根式教学设计6篇二次根式的混合运算(1)教学目的:会进行二次根式的加减、乘混合运算。

重点:二次根式的加减乘混合运算。

难点:运算法则的综合运用。

关键:掌握混合运算顺序和步骤。

教学过程:复习提问:1.叙述二次根式加减法的两个步骤。

2.填空:当a≥0,b≥0时,;3.叙述单项式乘以多项式运算顺序;4.叙述多项式乘以多项式的运算法则。

二次根式的乘法:(a≥0,b≥0)二次根式的除法:(a≥0,b>0)新课:形如的式子,表示什么?a需要满足什么条件?根据平方根的定义,当a≥0时,表示a的算术平方根,是一个非负数,它的平方等于a;当a16.1第一课时二次根式的概念教学目标:1、解决实际问题,体会学习二次根式是实际的需要。

2、通过二次根式概念的学习,经历观察、概括的思维过程,理解二次根式的概念。

3、通过二次根式概念的建立,理解二次根式中被开方数中字母的取值范围。

教学重点:二次根式概念的理解。

教学难点:二次根式概念的理解。

教学方法:自主学习问题启发相结合。

教学手段:多媒体课件、学案。

教学过程:一、复习1、式子(﹣3)2中,-3叫2叫2、求数4,5,10,49,0的平方根和算术平方根,4的立方根是3、-4有没有算术平方根?我们已经学习了平方根和算术平方根的定义,引进了一个新的符号word/media/image1_1.png。

今天我们学习一个和前面的算术平方根有关的知识:二次根式2、探究定义1、观察:完成课本第二页“思考”的内容。

观察word/media/image2_1.png,word/media/image3_1.png,word/media/image4_1.png,word/media/image5_1.png这些式子在形式上有什么共同特点?2、思考:(1)都含有word/media/image1_1.png(2)被开方数都是非负数(S表示面积,h是高度。

)。

3、归纳:二次根式的定义形如word/media/image6_1.png(a≥0)的式子叫作二次根式,根号下的数叫作被开方数。

人教版初中数学八年级下册16.3.2《二次根式的混合运算》教案

人教版初中数学八年级下册16.3.2《二次根式的混合运算》教案
在教学方法上,我也要不断尝试创新。例如,利用多媒体教学手段,以动画或图像的形式展示二次根式的混合运算过程,让学生更加直观地理解。同时,引入一些趣味性的数学游戏,让学习变得更加轻松愉快。
最后,关注学生的个体差异,对于学习有困难的学生,给予更多的关心和指导。在课后,我会主动询问他们是否理解课堂内容,针对他们的疑问进行解答,帮助他们克服学习难点。
4.培养学生的抽象思维能力:通过二次根式的混合运算,让学生从具体实例中抽象出数学规律,提升学生的数学抽象思维水平。
三、教学难点与重点
1.教学重点
a.掌握二次根式的乘除法则:\(\sqrt{a} \times \sqrt{b} = \sqrt{ab}\)(a≥0,b≥0)和\(\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}\)(a≥0,b>0);
c.了解二次根式的乘方运算:\((\sqrt{a})^n = \sqrt{a^n}\)(n为正整数);
举例:通过\((\sqrt{2})^2\)和\((\sqrt{3})^3\)等例题,强调乘方运算的规则。
2.教学难点
a.理解并运用二次根式乘除法则进行简化时的步骤和方法;
难点解析:学生在进行\(\sqrt{18} \times \sqrt{2}\)等计算时,可能会忽略先简化根号内的乘积,直接相乘,导致计算复杂。教师需强调先简化根号内的乘积,再进行乘法运算。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式混合运算的基本概念、运算法则和实际应用。同时,我们也通过实践活动和小组讨论加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

部编数学八年级下册专题02二次根式的混合运算(解析版)(重点突围)含答案

部编数学八年级下册专题02二次根式的混合运算(解析版)(重点突围)含答案

专题02二次根式的混合运算
【考点导航】
目录
【典型例题】 (1)
【考点一二次根式的乘除运算】 (1)
【考点二最简二次根式的判断】 (2)
【考点三同类二次根式】 (3)
【考点四已知同类二次根式求参数】 (5)
【考点五二次根式混合运算】 (6)
【考点六二次根式的分母有理化】 (7)
【考点七已知字母的值,化简求值】 (9)
【考点八比较二次根式的大小】 (10)
【过关检测】 (12)
【典型例题】
【考点一二次根式的乘除运算】
【考点二最简二次根式的判断】
【变式训练】
【考点三同类二次根式】
【考点四已知同类二次根式求参数】
【考点五二次根式混合运算】
【考点六二次根式的分母有理化】
【考点七已知字母的值,化简求值】
【变式训练】
【考点八比较二次根式的大小】
【过关检测】。

八年数学下二次根式加减乘除混合运算考点与讲解二次根式加减乘除混合运算考点与讲解

八年数学下二次根式加减乘除混合运算考点与讲解二次根式加减乘除混合运算考点与讲解

二次根式加减乘除混合运算考点与解析1.计算:.考点:二次根式的乘除法.专题:计算题.分析:按照•=,从左至右依次相乘即可.解答:解:,=2.点评:本题考查二次根式的乘法运算,比较简单,注意在运算时要细心.2.计算:﹣32+×+|﹣3|考点:二次根式的混合运算;特殊角的三角函数值.分析:分别利用特殊角的三角函数值以及绝对值的性质化简求出即可.解答:解:﹣32+×+|﹣3|=﹣9+×+3﹣=﹣5﹣.点评:此题主要考查了二次根式的混合运算以及特殊角的三角函数值、绝对值的性质等知识,正确化简各数是解题关键.3.计算:(﹣1)2015+sin30°+(2﹣)(2+).考点:二次根式的混合运算;特殊角的三角函数值.分析:运用﹣1的奇次方等于﹣1,30°角的正弦等于,结合平方差公式进行计算,即可解决问题.解答:解:原式=﹣1++4﹣3=.点评:该题主要考查了二次根式的混合运算、特殊角的三角函数值等知识点及其应用问题;牢固掌握特殊角的三角函数值、灵活运用二次根式的混合运算法则是正确进行代数运算的基础和关键.4.计算:.考点:二次根式的混合运算.专题:计算题.分析:先根据二次根式的乘除法法则得到原式=﹣+2,然后利用二次根式的性质化简后合并即可.解答:解:原式=﹣+2=4﹣+2=4+.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后进行二次根式的加减运算.5.计算:(1)sin60°﹣|﹣|﹣﹣()﹣1(2)(1+)÷.考点:二次根式的混合运算;分式的混合运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:(1)根据特殊角的三角函数值、分母有理化和负整数指数幂的意义得到原式=﹣﹣﹣2,然后合并即可;(2)先把括号内合并和除法运算化为乘法运算,然后约分即可.解答:解:(1)原式=﹣﹣﹣2=﹣2;(2)原式=•=x.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数指数幂和分式的混合运算.6.计算:(2015﹣π)0+|﹣2|+÷+()﹣1.考点:二次根式的混合运算;零指数幂;负整数指数幂.分析:首先根据零指数幂、负整数指数幂的运算方法,二次根式的除法的运算法则,以及绝对值的求法计算,然后根据加法交换律和结合律,求出算式(2015﹣π)0+|﹣2|+÷+()﹣1的值是多少即可.解答:解:(2015﹣π)0+|﹣2|+÷+()﹣1.=1+3=(1+2+3)=6+0=6点评:(1)此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a0=1(a≠0);(2)00≠1.(3)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a﹣p=(a≠0,p为正整数);(2)计算负整数指数幂时,一定要根据负整数指数幂的意义计算;(3)当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(4)此题还考查了绝对值的非负性和应用,要熟练掌握.7.化简:(1)(2)(3).考点:二次根式的混合运算.专题:计算题.分析:(1)、(2)利用二次根式的性质把二次根式化为最简二次根式;(3)根据平方差公式计算.解答:解:(1)原式=4;(2)原式=;(3)原式=(﹣)(+)=3﹣2=1.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.8.计算:(1)(2)﹣5+6(3)×﹣(4)﹣π(精确到0.01).考点:二次根式的混合运算.分析:(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)根据二次根式的乘法法则运算;(4)把≈1.414,π=3.142代入原式进行近似计算即可.解答:解:(1)原式=2+4﹣=5;(2)原式=4﹣+=3;(3)原式=﹣=20﹣3=17;(4)原式≈0.5+1.414﹣3.142≈﹣1.23.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.9.计算:﹣﹣()2+|2﹣|.考点:二次根式的混合运算.专题:计算题.分析:先把各二次根式化为最简二次根式,再根据绝对值的意义去绝对值,然后合并即可.解答:解:原式=2﹣﹣2+2﹣=.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.10.计算:()﹣1﹣|2﹣1|+.考点:二次根式的混合运算;负整数指数幂.专题:计算题.分析:根据负整数指数幂和分母有理化的意义得到原式3﹣2+1+,然后合并即可.解答:解:原式=3﹣(2﹣1)+=3﹣2+1+=4﹣.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数指数幂.11.计算:+(﹣)+.考点:二次根式的混合运算.分析:先进行二次根式的化简和乘法运算,然后合并.解答:解:原式=+1+3﹣3+=4﹣.点评:本题考查了二次根式的混合运算,解答本题的关键是掌握二次根式的化简和乘法法则.12.计算:()﹣2﹣+(﹣6)0﹣.考点:二次根式的混合运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=4﹣4+1﹣,然后进行二次根式的除法运算后合并即可.解答:解:原式=4﹣4+1﹣=1﹣2=﹣1.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.13.计算:(2﹣)2+﹣()﹣1.考点:二次根式的混合运算;负整数指数幂.专题:计算题.分析:根据完全平方公式和负整数指数幂的意义得到原式=4﹣4+3﹣3,然后合并即可.解答:解:原式=4﹣4+3﹣3=1﹣.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数指数幂.14.计算(1)(2).考点:二次根式的混合运算;零指数幂;负整数指数幂.分析:(1)先算负指数幂,0次幂和绝对值,再进一步合并即可;(2)先利用平方差公式和二次根式的性质化简,再进一步合并即可.解答:解:(1)原式=2﹣1+3=4;(2)原式=2﹣3+﹣2=﹣3.点评:此题考查二次根式的混合运算,正确掌握二次根式的性质化简以及乘法计算公式是解决问题的关键.15.(1)计算:4×÷﹣2sin30°﹣()﹣1(2)化简:÷﹣.考点:二次根式的混合运算;分式的混合运算;负整数指数幂;特殊角的三角函数值.分析:(1)分别进行二次根式的乘法运算、除法运算,特殊角的三角函数值,负整数指数幂等运算,然后合并;(2)根据分式的混合运算法则求解.解答:解:(1)原式=10÷﹣2×﹣2=10﹣1﹣2=7;(2)原式=•﹣=﹣=.点评:本题考查了二次根式的混合运算、特殊角的三角函数值、负整数指数幂等知识,掌握运算法则是解答本题的关键.16.计算:(1)+(﹣2013)0﹣()﹣1+|﹣3|(2)÷﹣×+.考点:二次根式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:(1)根据零指数幂和负整数指数幂的意义得到原式=3+1﹣2+3,然后进行加减运算;(2)根据二次根式的乘除法则运算.解答:解:(1)原式=3+1﹣2+3=5;(2)原式=﹣+2=4﹣+2=4+.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.17.计算(1)÷+﹣3(2)(+)(﹣).考点:二次根式的混合运算.专题:计算题.分析:(1)先进行二次根式的除法运算,再先把各二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算.解答:解:(1)原式=+2﹣3=0;(2)原式==a﹣2b.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18.(1)(2).考点:二次根式的混合运算.专题:计算题.分析:(1)先进行乘方和开方运算,再进行乘法运算,然后进行减法运算;(2)先去括号,然后合并即可.解答:解:(1)原式=4+4×(﹣)=4﹣3=1;(2)原式=2+2﹣=2+.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.19.计算题:(1)+﹣;(2)(1+)(﹣)﹣(2﹣1)2.考点:二次根式的混合运算.分析:(1)先进行二次根式的化简,然后合并;(2)先进行二次根式的乘法运算,然后合并.解答:解:(1)原式=3+﹣=4﹣;(2)原式=﹣+﹣3﹣13+4=4﹣2﹣13.点评:本题考查了二次根式的混合运算,解答本题的关键是掌握二次根式的乘法法则以及二次根式的化简.20.计算(1)+(3+)(2)(﹣)×2(3)先化简,再求值.(a+)﹣(﹣b),其中a=2,b=3.考点:二次根式的混合运算;二次根式的化简求值.专题:计算题.分析:(1)先把各二次根式化为最简二次根式,然后合并即可;(2)根据二次根式的乘法法则运算;(3)先把各二次根式化为最简二次根式得到原式=+2﹣+,然后合并后把a和b的代入即可.解答:解:(1)原式=3+3+2=8;(2)原式=2﹣2=4﹣;(3)原式=+2﹣+=+3当a=2,b=3时,原式=+3.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了二次根式的化简求值.。

冀教版数学八年级上册15.4《二次根式的混合运算》教学设计

冀教版数学八年级上册15.4《二次根式的混合运算》教学设计

冀教版数学八年级上册15.4《二次根式的混合运算》教学设计一. 教材分析冀教版数学八年级上册15.4《二次根式的混合运算》是学生在学习了二次根式的性质和运算法则的基础上进行学习的。

这一节内容主要让学生掌握二次根式的混合运算方法,提高学生解决实际问题的能力。

教材通过例题和练习题的形式,引导学生掌握二次根式的混合运算方法,培养学生的运算能力和思维能力。

二. 学情分析学生在学习本节内容前,已经掌握了二次根式的性质和运算法则,具备了一定的数学基础。

但部分学生在进行混合运算时,容易混淆运算法则,对于复杂的二次根式混合运算,可能会出现错误。

因此,在教学过程中,需要针对学生的实际情况,进行针对性的指导和训练。

三. 教学目标1.让学生掌握二次根式的混合运算方法。

2.提高学生解决实际问题的能力。

3.培养学生的运算能力和思维能力。

四. 教学重难点1.重点:二次根式的混合运算方法。

2.难点:对于复杂二次根式混合运算的计算方法和思路。

五. 教学方法采用案例教学法、问题驱动法、分组讨论法等,引导学生通过自主学习、合作交流,掌握二次根式的混合运算方法。

六. 教学准备1.教师准备:教材、教案、PPT、黑板、粉笔等。

2.学生准备:教材、笔记本、文具等。

七. 教学过程1.导入(5分钟)教师通过一个实际问题,引入二次根式的混合运算。

例如:一个正方体的体积是8立方厘米,求这个正方体的棱长。

2.呈现(10分钟)教师通过PPT展示二次根式的混合运算的例题和练习题,让学生观察和分析,引导学生发现二次根式混合运算的规律和方法。

3.操练(10分钟)教师引导学生进行二次根式的混合运算的练习,让学生在实践中掌握运算方法。

教师可适时给予提示和指导,帮助学生克服困难。

4.巩固(10分钟)教师通过一些具有代表性的题目,让学生进行二次根式的混合运算,巩固所学知识。

教师可学生进行交流和讨论,分享各自的解题思路和方法。

5.拓展(10分钟)教师给出一些综合性的题目,让学生进行二次根式的混合运算,提高学生的解决问题的能力。

第6讲 二次根式的混合运算与化简求值(解析版)

第6讲  二次根式的混合运算与化简求值(解析版)

第06讲二次根式的混合运算与化简求值一.解答题1.(2023秋•新蔡县期中)计算:;【分析】(1)先计算二次根式的除法,再算减法,即可解答;【解答】解:(1)=3﹣2+=3﹣2+2=3;2.(2023秋•和平区校级期中)计算:(1)()﹣1+(1﹣)0+|﹣2|;(2)÷﹣×+.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先计算二次根式的乘除法,再算加减,即可解答.【解答】解:(1)()﹣1+(1﹣)0+|﹣2|=2+1+2﹣=5﹣;(2)÷﹣×+=﹣+4=﹣+4=4﹣2+4=2+4.3.(2023秋•金塔县期中)计算:(1);(2);(3);(4).【分析】(1)把各个二次根式化成最简二次根式,然后合并同类二次根式即可;(2)先把各个二次根式化成最简二次根式,然后利用乘法分配律进行计算即可;(3)先根据二次根式的乘法法则进行计算,再把二次根式化成最简二次根式,进行合并即可;(4)先根据二次根式的除法法则进行计算,再把二次根式化成最简二次根式,进行合并即可;【解答】解:(1)原式==;(2)原式==9+1=10;(3)原式===;(4)原式===4.(2023秋•太原期中)计算下列各题:(1);(2);(3);(4).【分析】(1)先化简,然后合并同二次根式即可;(2)先算乘法,再化简即可;(3)根据完全平方公式将式子展开,然后合并同类二次根式和同类项即可;(4)先化简,然后合并同二次根式即可.【解答】解:(1)=3﹣5+4=2;(2)===;(3)=20﹣4+1+4=21;(4)=﹣3+5=.5.(2023秋•郓城县期中)计算:(1)﹣+;(2)|﹣1|+﹣;(3)+×﹣|2﹣|;(4)﹣(+1)2﹣(+3)×(﹣3).【分析】(1)先把每一个二次根式化成最简二次根式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答;(3)先化简各式,然后再进行计算即可解答;(4)利用完全平方公式,平方差公式,进行计算即可解答.【解答】解:(1)﹣+=3﹣2+=2;(2)|﹣1|+﹣=﹣1+3﹣2=;(3)+×﹣|2﹣|=2+5×﹣(﹣2)=2+2﹣+2=3+2;(4)﹣(﹣(+3)×(﹣3)=﹣(4+2)﹣(5﹣9)=﹣4﹣2+4=﹣2.6.(2023秋•太和区期中)计算:(1);(2);(3);(4);(5);(6).【分析】(1)先计算二次根式的乘法,再算加减,即可解答;(2)先把每一个二次根式化成最简二次根式,然后再进行计算即可解答;(3)先计算二次根式的乘除法,再算加减,即可解答;(4)先计算二次根式的乘除法,零指数幂,再算加减,即可解答;(5)先化简各式,然后再进行计算即可解答;(6)利用完全平方公式,平方差公式进行计算,即可解答.【解答】解:(1)=﹣5=6﹣5=1;(2)=+3﹣3=;(3)=(﹣)÷=÷﹣÷=﹣=2﹣;(4)=+1﹣=+1﹣4=﹣3;(5)=﹣3+4﹣+﹣1=0;(6)=3﹣2+2﹣(6﹣1)=3﹣2+2﹣5=﹣2.7.(2022秋•青羊区校级期末)计算:(1);(2)|﹣2|+(2023+π)0+﹣(﹣)﹣2.【分析】(1)先计算二次根式的乘法,再算加减,即可解答;(2)先计算二次根式的乘除法,再算加减,即可解答.【解答】解:(1)=2+﹣3+=3﹣2;(2)|﹣2|+(2023+π)0+﹣(﹣)﹣2=2﹣+1+﹣4=2﹣+1+3﹣4=2﹣.8.(2023秋•锦江区校级期中)计算:(1);(2).【分析】(1)先化简各式,然后再进行计算即可解答;(2)利用平方差公式,完全平方公式进行计算,即可解答.【解答】解:(1)=1+|5﹣5|﹣=1+5﹣5﹣3=5﹣7;(2)=3﹣4+4﹣(3﹣2)=3﹣4+4﹣1=6﹣4.9.(2023秋•汝阳县期中)计算:(1)5;(2)()2﹣(2+3)2024(2﹣3)2023.【分析】(1)先计算二次根式的乘法,再算加减,即可解答;(2)先计算二次根式的乘法,再算加减,即可解答.【解答】解:(1)5=+﹣×﹣×2=+﹣5﹣2=﹣5;(2)()2﹣(2+3)2024(2﹣3)2023.=2﹣2+1﹣[(2+3)2023(2﹣3)2023]×(2+3)=2﹣2+1﹣[(2+3)(2﹣3)]2023×(2+3)=2﹣2+1﹣(8﹣9)2023×(2+3)=2﹣2+1﹣(﹣1)2023×(2+3)=2﹣2+1﹣(﹣1)×(2+3)=2﹣2+1+2+3=6.10.(2023秋•皇姑区校级期中)计算:(1)﹣(+1)2+(+1)(﹣1).(2)﹣(﹣1)2023+(π﹣2021)0﹣|5﹣|﹣()﹣2;【分析】(1)利用平方差公式,完全平方公式进行计算,即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)﹣(+1)2+(+1)(﹣1)=3﹣(2+2+1)+3﹣1=3﹣2﹣2﹣1+3﹣1=﹣1;(2)﹣(﹣1)2023+(π﹣2021)0﹣|5﹣|﹣()﹣2=﹣(﹣1)+1﹣(﹣5)﹣4=1+1﹣3+5﹣4=3﹣3.11.(2023秋•潞城区校级期中)阅读与思考.下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.双层二次根式的化简二次根式的化简是一个难点,稍不留心就会出错,我在上网还发现了一类带双层根号的式子,就是根号内又带根号的式子、它们能通过完全平方公式及二次根式的性质消掉外面的一层根号.例如:要化简,可以先思考(根据1)..通过计算,我还发现设(其中m,n,a,b都为正整数),则有a+b.∴a=m2+2n2,b=2mn.这样,我就找到了一种把部分化简的方法.任务:(1)文中的“根据1”是完全平方式,b=2mn.(2)根据上面的思路,化简:.(3)已知,其中a,x,y均为正整数,求a的值.【分析】(1)根据完全平方公式进行解答即可;(2)根据题干中提供的信息,进行变形计算即可;(3)根据,得出a=x2+3y2,4=2xy,根据x,y为正整数,求出x=2,y=1或x=1,y=2,最后求出a的值即可.【解答】解:(1)的根据是完全平方公式;∵,∴a=m2+2n2,b=2mn.故答案为:完全平方公式;2mn.(2)===.(3)由题意得,∴a=x2+3y2,4=2xy,∵x,y为正整数,∴x=2,y=1或x=1,y=2,∴a=22+3×12=7或a=12+3×22=13.12.(2023秋•龙泉驿区期中)已知x=,y=.(1)求x2+y2+xy的值;(2)若x的小数部分是m,y的小数部分是n,求(m+n)2021﹣的值.【分析】(1)先利用分母有理化化简x和y,从而求出x+y和xy的值,然后再利用完全平方公式进行计算,即可解答;(2)利用(1)的结论可得:m=2﹣,n=﹣1,然后代入式子中进行计算,即可解答.【解答】解:(1)∵x===2﹣,y===2+,∴x+y=2﹣+2+=4,xy=(2﹣)(2+)=4﹣3=1,∴x2+y2+xy=(x+y)2﹣xy=42﹣1=16﹣1=15;(2)∵1<<2,∴﹣2<﹣<﹣1,∴0<2﹣<1,∴2﹣的小数部分是2﹣,∴m=2﹣,∵1<<2,∴3<2+<4,∴2+的小数部分=2+﹣3=﹣1,∴n=﹣1,∴(m+n)2021﹣=(2﹣+﹣1)2021﹣(n﹣m)=12021﹣[﹣1﹣(2﹣)]=1﹣(﹣1﹣2+)=1﹣+1+2﹣=4﹣2.13.(2023秋•双流区校级期中)阅读下列材料,然后回答问题.在进行二次根式运算时,我们有时会碰上这样的式子,其实我们还可以将其进一步化简:﹣1,以上这种化简的步骤叫作分母有理化.(1)化简:;(2)已知的整数部分为a,小数部分为b,求a2+b2的值.(3)计算:+++…++.【分析】(1)利用分母有理化进行计算,即可解答;(2)先利用分母有理化进行化简,然后再估算出的值的范围,从而估算出2+的值的范围,进而可求出a,b的值,最后代入式子中进行计算,即可解答;(3)先利用分母有理化化简各式,然后再进行计算即可解答.【解答】解:(1)===﹣,故答案为:﹣;(2)===2+,∵1<3<4,∴1<<2,∴3<2+<4,∴2+的整数部分是3,小数部分=2+﹣3=﹣1,∴a=3,b=﹣1,∴a2+b2=32+(﹣1)2=9+3﹣2+1=13﹣2;(3)+++…++=+++…++=﹣1+﹣+﹣+…+﹣+﹣=﹣1=10﹣1=9.14.(2023秋•大东区期中)观察下列各式:第一个式子:=1=1+(1﹣);第二个式子:=1=1+();第三个式子:=1=1+();…(1)求第四个式子为:;(2)求第n个式子为:(n为正整数)(用n表示);(3)求+…+的值.【分析】(1)观察题中所给式子各部分的变化规律即可解决问题.(2)利用(1)中的发现即可解决问题.(3)根据(2)中的结论即可解决问题.【解答】解:(1)观察题中所给式子可知,第四个式子为:.故答案为:.(2)由(1)中的发现可知,第n个式子为:.故答案为:(n为正整数).(3)原式==1×2022+=2022+1﹣=.15.(2023秋•晋中期中)阅读与思考:观察下列等式:第1个等式=;第2个等式;第3个等式:;…按照以上规律,解决下列问题:(1)=4﹣;(填计算的结果)(2)计算:.【分析】(1)利用分母有理化进行化简计算,即可解答;(2)利用材料的规律进行计算,即可解答.【解答】解:(1)===4﹣,故答案为:4﹣;(2)=(﹣1+﹣+2﹣+…+﹣)×(+1)=(﹣1)×(+1)=2023﹣1=2022.16.(2023秋•郁南县期中)综合探究:像,…两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如与,2与等都是互为有理化因式.在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.例如:;.根据以上信息解答下列问题(1)与+互为有理化因式;(2)请你猜想=﹣;(n为正整数)(3)<(填“>”“<”或“=”);(4)计算:(+++…+)×(+1).【分析】(1)利用互为有理化因式的定义,即可解答;(2)利用分母有理化进行化简计算,即可解答;(3)先求出它们的倒数,然后再进行比较,即可解答;(4)利用分母有理化先化简各数,然后再进行计算即可解答.【解答】解:(1)与+互为有理化因式,(2)==﹣,故答案为:﹣;(3)∵==+,==+,+>+,∴>,∴<,故答案为:<;(4)(+++…+)×(+1)=[+++…+]×(+1)=(+++…+)×(+1)=(﹣1+﹣+﹣+…+﹣)×(+1)=(﹣1)×(+1)=×(2023﹣1)=×2022=1011.17.(2023秋•平阴县期中)阅读下列材料,然后解决问题.在进行二次根式的化简时,我们有时会遇到形如,,的式子,其实我们可以将其进一步化简:,=,如上这种化简的步骤叫做“分母有理化”.(1)化简=,=,=﹣.(2)化简:.【分析】(1)利用例题的解题思路进行计算,即可解答;(2)先进行分母有理化,然后再进行计算即可解答.【解答】解:(1)==,==,===﹣,故答案为:;;﹣;(2)=+++=+++=(﹣1+﹣+﹣+﹣)=.18.(2023春•莱芜区月考)观察下列一组等式,然后解答问题:,,,,…….(1)利用上面的规律,计算:;(2)请利用上面的规律,比较与的大小.【分析】(1)归纳总结得到一般性规律,计算即可求出式子的值;(2)利用得出的规律将与进行转化,再进行比较即可.【解答】解:(1)原式===;(2)由题意得,,,∵,∴.19.(2023春•宁海县期中)已知:a=+2,b=﹣2,求:(1)ab的值;(2)a2+b2﹣3ab的值;(3)若m为a整数部分,n为b小数部分,求的值.【分析】(1)代入求值即可;(2)代入求值,可将(1)的结果代入;(3)根据题意估算出m、n的值,代入分式,化简计算.【解答】解:(1)∵a=+2,b=﹣2,∴ab=(+2)(﹣2)=7﹣4=3;(2)∵a=+2,b=﹣2,ab=3,∴a2+b2﹣3ab=a2+b2﹣2ab﹣ab=(a﹣b)2﹣ab=[(+2)﹣(﹣2)]2﹣3=(+2﹣+2)2﹣3=42﹣3=16﹣3=13;(3)∵m为a整数部分,n为b小数部分,a=+2,b=﹣2,∴m=4,n=b=﹣2∴===,∴的值.20.(2023•沈丘县校级开学)已知a,b,c是△ABC的三边长.(1)若a,b,c满足(a﹣b)(b﹣c)=0,试判断△ABC的形状;(2)化简:﹣.【分析】(1)根据若ab=0,则a=0或b=0,求出a与b,b与c的关系,进行解答即可;(2)先根据三角形三边关系,判断a+b﹣c和a﹣b﹣c的正负,再利用二次根式的性质进行计算化简即可.【解答】解:(1)∵a,b,c满足(a﹣b)(b﹣c)=0,∴a﹣b=0或b﹣c=0,∴a=b或b=c,∴△ABC是等腰三角形;(2)∵a,b,c是△ABC的三边长,∴a+b>c,a﹣b<c,∴a+b﹣c>0,a﹣b﹣c<0,∴=a+b﹣c﹣(﹣a+b+c)=a+b﹣c+a﹣b﹣c=2a﹣2c21.(2023•江北区开学)求值:(1)若,,求的值;(2)若的整数部分为a,小数部分为b,求的值.【分析】(1)先求出ab和a+b的值,然后利用完全平方公式进行计算即可解答;(2)先利用分母有理化进行化简可得=,然后估算出的值的范围,从而求出a,b 的值,然后代入式子中进行计算,即可解答.【解答】解:(1)∵,,∴ab=(﹣1)(+1)=3﹣1=2,a+b=﹣1++1=2,∴=====4,∴的值为4;(2)==,∵4<7<9,∴2<<3,∴5<3+<6,∴<<3,∴的整数部分为2,小数部分为﹣2=,∴a=2,b=,∴=22+(1+)×2×+=4+7﹣1+=10+=,∴的值为.22.(2023春•清江浦区期末)像、、…两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式,例如,和、与、与等都是互为有理化因式,在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)计算:①=,②=;(2)计算:.【分析】(1)①分子、分母都乘即可;②分子、分母都乘即可;(2)第一项分子、分母都乘以,第二项分子、分母都乘以,再计算即可.【解答】解:(1)①,故答案为:;②,故答案为:;(2)===2+﹣﹣1=1.23.(2023春•珠海校级期中)观察式子:,反过来:,∴,仿照上面的例子:(1)化简①;②;(2)如果x+y=m,xy=n且x>y>0,化简.【分析】(1)模仿示例将更号里面算式变形为完全平方式的形式进行化简;(2)将算式变形为,再运用二次根式的性质进行化简.【解答】解:(1)①====+1;②====;(2)∵x+y=m,xy=n且x>y>0,∴====+.24.(2023春•濮阳期中)已知,,求下列代数式的值.(1)a2﹣2ab+b2;(2)a2﹣b2.【分析】(1)先计算a+b和a﹣b的值,将原式分解因式,再将a﹣b的值代入计算即可;(2)将原式分解因式,再将a+b和a﹣b的值代入计算即可.【解答】解:(1)∵,,∴,,∴a2﹣2ab+b2=(a﹣b)2=42=16;(2)a2﹣b2=(a+b)(a﹣b)==.25.(2023春•张店区期末)阅读材料,解答下列问题.材料:已知,求的值.小明同学是这样解答的:∵==5﹣x﹣2+x=3,∵,∴,这种方法称为“构造对偶式”.问题:已知.(1)求的值;(2)求x的值.【分析】(1)利用例题的解题思路进行计算,即可解答;(2)利用(1)的结论可得2=5,从而可得=2.5,进而可得9+x=6.25,然后进行计算即可解答.【解答】解:(1)∵(﹣)(+)=()2﹣()2=9+x﹣3﹣x=6,∵,∴=2,∴的值为2;(2)由(1)得:﹣=2,+=3,∴2=5,∴=2.5,∴9+x=6.25,∴x=﹣2.75,∴x的值为﹣2.75.。

2023八年级数学上册第二章实数7二次根式第3课时二次根式的混合运算教案(新版)北师大版

2023八年级数学上册第二章实数7二次根式第3课时二次根式的混合运算教案(新版)北师大版
教学资源准备
1.教材:确保每位学生都提前准备好北师大版《数学》八年级上册教材,翻到第二章实数7二次根式相关内容,以便课堂上随时翻阅和标注。
2.辅助材料:
-准备与二次根式混合运算相关的教学图片,如含有二次根式的实际应用题目图片,以直观展示数学在生活中的运用。
-制作动态图表,展示二次根式乘除运算的过程,帮助学生理解运算规则。
-设计课堂小测验,测试学生对二次根式混合运算规则的理解程度和运算能力,根据测试结果调整教学策略,针对性地进行辅导。
-利用课堂反馈表,让学生自我评价学习效果,反思学习过程,促进学生的自我管理和自我提升。
2.作业评价:
-对学生的课后作业进行认真批改,点评作业中的亮点和不足,及时反馈学生的学习效果,帮助学生明确自己的学习进步和需要改进的地方。
简要回顾本节课学习的二次根式混合运算内容,强调重点和难点。肯定学生的表现,鼓励他们继续努力。
布置作业:
根据本节课学习的内容,布置适量的课后作业,巩固学习效果。提醒学生注意作业要求和时间安排,确保作业质量。
学生学习效果
1.知识与技能:
-学生能够理解并掌握二次根式混合运算的规则,包括二次根式的乘除法运算,以及与整数、分数的混合运算。
-学生通过对比、归纳等学习方法,加深了对二次根式混合运算规则的理解,提高了逻辑思维能力和数学素养。
3.情感态度与价值观:
-学生在学习过程中,逐渐消除了对二次根式混合运算的恐惧和畏难情绪,增强了自信心和耐心。
-学生认识到数学与现实生活的紧密联系,培养了学以致用的意识,增强了学习数学的兴趣和动力。
-学生通过拓展知识的学习,拓宽了知识视野,激发了探索学科前沿的兴趣,培养了创新精神和探索意识。
核心素养数学学习后,已具备了一定的数学基础和逻辑思维能力。在本章节的学习中,他们在知识层面,对二次根式的概念和基本性质有初步了解,但混合运算的掌握程度参差不齐。在能力方面,学生的运算能力和问题解决能力有待提高,特别是将二次根式与整数、分数结合进行混合运算时,需要加强练习以提升熟练度和准确性。

人教版八年级数学下册教案:第十六章二次根式的混合运算

人教版八年级数学下册教案:第十六章二次根式的混合运算
举例:化简根式√18 + √48,学生需掌握将根式化简为最简形式的方法。
(2)二次根式的乘除法法则:理解和掌握二次根式的乘除法法则,能够正确进行相关运算;
举例:计算(3√2) / (√6),学生需掌握分子分母的根式相乘除的法则。
(3)二次根式的加减法法则:理解和掌握二次根式的加减法法则,能够正确进行混合运算;
4.培养学生空间想象力:通过二次根式的混合运算,使学生能够在脑海中构建几何图形,提高空间想象力;
5.培养学生团队合作意识:在讨论与分享解题过程中,促进学生之间的交流与合作,培养团队协作能力。
三、教学难点与重点
1.教学重点
(1)二次根式的性质与化简:掌握二次根式的性质,如乘除法法则、加减法法则,并能熟练化简二次根式;
举例:计算√3 + √5 - √2,学生需掌握不同根式相加减的方法。
(4)二次根式混合运算的解题步骤与技巧:掌握混合运算的解题步骤,灵活运用相关技巧;
举例:解决类似√(2 + √3)的题目,学生需学会利用分母有理化等方法简化计算。
2.教学难点
(1)根式化简:对于部分学生来说,找到二次根式的最简形式可能会存在困难;
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次根式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
举例:计算类似√7 - √6 + √3 - √2的表达式时,学生需要掌握如何将同类项合并。

八年级二次根式混合运算

八年级二次根式混合运算

八年级二次根式混合运算嘿,大家好呀!今天咱们来聊聊一个有趣的话题,二次根式。

听起来是不是有点高大上?别担心,今天我们就用轻松幽默的方式来剖析一下这个看似复杂的东西。

想象一下,如果你在和朋友一起讨论数学,你会用什么样的方式呢?当然是轻松自在,开开玩笑,让大家都能明白。

好啦,废话不多说,咱们开始吧!什么是二次根式呢?简单来说,就是我们常见的那种“√”符号,比如说√9,哎,大家应该都知道这个等于3吧?没错,二次根式就是用来找一个数的平方根的工具。

就像你想知道一块蛋糕分给几个人最好,不如先计算一下这块蛋糕的大小,简单明了。

这玩意儿在数学里可是个大咖呢,很多复杂的运算都离不开它。

就像咱们平时买菜,总得先知道一斤多少块儿,再决定买几斤,是吧?大家在做题的时候,会看到像√(a + b) 这种形式,感觉复杂得像个数学怪兽。

但它们就像小猫咪,乍一看吓人,仔细一瞧,原来还是很可爱的。

把这个表达式搞定,得把里面的数理清楚。

想象一下,就像在拼图,拼对了,图案就出来了。

比如你有个√(9 + 16),把它合起来,得√25,结果就是5。

多简单呀!数学这东西,有时候就是那么直白,没什么好害怕的。

有时候事情会变得复杂。

你可能会遇到像√(x^2 + 4x + 4) 这种情况,哎呀,看起来好复杂啊。

可别急,咱们可以试着把它变得简单些。

先把里面的式子整理一下,像拆开包子一样,把它变成(x + 2)^2。

然后呢,√((x + 2)^2)就是x + 2了。

哇,突然间变简单了!这种瞬间的爽感,就像在看一场精彩的球赛,最后一球进了,真是太过瘾了!说到这里,很多小伙伴可能会想,二次根式究竟有什么用呢?嘿,别小看这玩意儿,生活中处处都有它的影子。

比如,你在计算一个房间的面积,或者在测量某个物体的高度,甚至在计算行车路线的时候,都会用到平方和平方根。

就像做菜,没点调料怎么行?没有根式,很多事情都没法进行下去。

学习二次根式的过程也能让我们脑洞大开。

想象一下,跟小伙伴一起研究这些运算,可能你会发现一个更快捷的方法,像发现了新大陆一样,让人兴奋不已!学习数学就像是侦探破案,得一步一步分析,找出答案的线索,最后把真相大白于天下。

人教版八年级下册数学精品教学课件 第16章 二次根式 第2课时 二次根式的混合运算

人教版八年级下册数学精品教学课件 第16章 二次根式 第2课时 二次根式的混合运算

典例精析
例2 甲、乙两个城市间计划修建一条城际铁路, 其 中有一段路基的横断面设计为上底宽 4 2 m,下底 宽6 2 m,高 6 m 的梯形,这段路基长 500 m,那 么这段路基的土石方 (即路基的体积,其中路基的体积 =路基横断面面积×路基的长度)为多少立方米呢?
4 2m
6m
6 2m
利用乘法公式进行二次根式的运算
问题1 整式乘法运算中的乘法公式有哪些?
平方差公式:(a + b)(a - b) = a2- b2;
完全平方公式:(a + b)2 = a2 + 2ab + b2; (a - b)2 = a2 - 2ab + b2.
问题2 整式的乘法公式对于二次根式的运算也适用吗?
前面我们已经知
道二次根式运算
类比整式运算, 所以适用
解:∵3 10 4,
∴ a 3,b 10 3 .
∴ a2 b2 32 ( 10 3)2
3 10 3 3 10 3 10 6 10
6 10 10.
1.下列计算中正确的是( B )
A. 3( 3 1 ) 3 3
B.( 12- 27) 3 1
C. 32 1 2 2 2
(1) (3 2 3) 27+ 6 3 ; (2)(2023 3)0 + 3 12 - 6 . 2
解:(1) 原式 6 3 3 3 3 6
3 3 .
(2) 原式 1+2 3 3 3
32.
归纳 有绝对值符号的,同括号一样,先去绝对值,注 意去掉绝对值后,得到的数应该为正数.
D. 3( 2 3) 6 2 3
2.计算:( 2+ 3)2 24 5 .
3. 设 a

沪教版八年级数学上册,二次根式的混合运算

沪教版八年级数学上册,二次根式的混合运算

二次根式的混合运算C0知识梳理)知识回顾2、二次根式的加减法法则二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.注意:(1)二次根式的加减常分为两大步骤进行,第一步化简:第二步合并;(2)在合并前应注意要先判断清楚它们中哪些二次根式的被开方数是相同的:在合并时类似于以前学过的合并同类项,只需将根号外的因式进行加减.被开方数和根指数不变.3、二次根式的乘除法法则两个二次根式相乘,被开方数相乘,根指数不变。

两个二次根数相除,被开方数相除,根指数不变。

C©教学重•难点)重点:掌握二次根式的混合运算。

难点:能正确的进行二次根式的运算。

1小明从不念书却得了模范生,为什么答案:2什么车子寸步难行?答案:3哪一个月有二十八天?答案:c例I 、己知实数x 、y 满足|》一5| +心+ 4=0,求代数式(x+v) + (^+y)2 + …+ (x+y 严"的值。

例2、己知a 、b 是实数.旦+ + 问a 、卜之间有怎样的关系?例 3、已知“ 十 ' =』5 + 2、信,a-b = yl5-2^6 ,求(^|)2008 的值.例4、求满足Ovxvy 及、页志=& + /7的不同整数对(x・y)的个数口例5,先化简,再求值:a 2 + 2ab + 力"U * * (“ + b)"〃 * 力) « V a —b 叫a= --, b=—=---。

V3-1 <3 + 1当堂练习「)1、已知实数X、y满足|x—201|+Jy+200=0,求代数式(x+y)+(x+y)2+…+(x+y)‘加的值。

2、己知a+b=-Jl+4^3,a—b=J7-4>/5,求(W~)2<*IS 的值。

—13、求满足0<x<y及71539=^+77的不同整数对(X,Y)的个数。

4、B^(V3-V2)2000-x=(73+V22()01,求X的值.检测)a1、已知实数X、y满足k-iq+V7m=0,求代数式(x+y)+(jc+y)2+..・+(x+y)««的值。

二次根式混合运算的法则

二次根式混合运算的法则

二次根式混合运算的法则二次根式混合运算,听起来是不是有点高大上?咱们可以把它变得简单又有趣。

咱们要明白,什么是二次根式。

就是那种像√2、√3的东西,乍一看有点神秘,实则就是一种数的表现形式。

想象一下,二次根式就像是数学界的小精灵,它们时不时冒出来,让我们惊讶又无奈。

有些人一看到它们,就像看到鬼一样,心里咯噔一下。

不过别担心,今天咱们就来聊聊这玩意儿,轻松一点儿,嘿嘿。

在处理这些二次根式的时候,有一个很重要的法则,叫做“根式的和与差”。

你可以把它想象成一场数学派对,根式们都在聚会。

有些喜欢一起,像√2和√8,嘿,它们的和是√10。

这就像朋友们在一起,愉快地聊天,不愿意分开。

不过,别搞错了,√2和√3是不能合在一起的,咱们的根式朋友可不是随便交的。

它们各有各的脾气,混在一起就尴尬了。

咱们再聊聊“根式的乘法与除法”。

想象一下,乘法就像二次根式们一起合力打怪,嘿,两个人合力可真强。

比如说,√2乘√3,哎呀,这可是√6!好厉害呀,像打游戏一样,力量翻倍了。

至于除法,那就更简单了,二次根式们相互之间分个清楚。

√6除以√2,结果是√3,这就好比一个人带着包裹,把另一个人的包裹拿走,轻松又简单。

在这场二次根式的游戏中,还有一个超级重要的法则,那就是“根号外的数”。

如果在根号外面有个数字,比如2,那么这就意味着它是个强大的助攻。

√2乘以2,那可真是厉害了,直接变成2√2!就像是给小精灵加了buff,立刻变得强大无比。

看到没,数学其实也是有点魔法的,嘿嘿。

当然了,二次根式的混合运算还有很多小细节要注意。

比如说,根式里的数要尽量简化,就像把一堆杂乱的东西收拾整齐,让它们看起来更漂亮。

√8其实可以简化成2√2,瞬间变得高大上,简直是变魔术一样。

如果你发现有些根式很复杂,别着急,慢慢拆解,找到简单的形式,感觉就像在解开一个谜一样,乐趣无穷。

运算过程中的小错误也很常见,像是走路时绊了一下,嘿,这很正常。

数学这条路,偶尔也会有点崎岖。

二次根式的混合运算

二次根式的混合运算

二次根式的混合运算1. 引言在数学中,二次根式是一种形如√a的数,其中a为非负实数。

二次根式可以进行加减乘除等基本运算,也可以与整数、有理数等进行混合运算。

本文将介绍如何进行二次根式的混合运算,包括加减、乘法以及除法。

2. 二次根式的加减运算2.1 加法运算对于两个二次根式的加法运算,我们只需要将它们的根号内的数相加,并保持根号不变。

例如:√a + √b = √(a + b)2.2 减法运算对于两个二次根式的减法运算,我们也只需要将它们的根号内的数相减,并保持根号不变。

例如:√a - √b = √(a - b)3. 二次根式的乘法运算二次根式的乘法运算稍微复杂一些,需要使用到一条性质,即:两个二次根式的乘积等于根号内两个数的乘积。

例如:√a * √b = √(a * b)4. 二次根式的除法运算二次根式的除法运算同样需要使用到一条性质,即:两个二次根式的除法等于根号内两个数的除法。

例如:√a / √b = √(a / b)5. 混合运算的例子为了更好地理解二次根式的混合运算,举个例子:假设有以下的运算:√8 + √2 - √18 * √3 / √4首先,我们可以将各个二次根式的根号内的数进行化简:√8 = √(4 * 2) = 2√2 √18 = √(9 * 2) = 3√2 √4 = 2然后,将化简后的结果带入原表达式中:2√2 + √2 - 3√2 * √3 / 2继续进行混合运算:2√2 + √2 - 3√6 / 2最后,将所有的二次根式及有理数进行合并得到最终结果:2√2 + √2 - (3 / 2)√66. 结论本文介绍了二次根式的混合运算,包括加减、乘法以及除法。

通过理解和应用这些运算规则,我们可以更方便地处理涉及二次根式的数学问题。

希望本文的内容能够帮助读者在学习和应用二次根式时更加得心应手。

二次根式的混合运算 北师大版数学八年级上册

二次根式的混合运算   北师大版数学八年级上册
2.7(3)二次根式的混合运算
北师版·八年级上册·第二章
知识回顾
运算法则:
a b ab (a 0,b 0)
( a)2 a
a a (a 0,b 0) bb
运算律: 各种运算律同样适用于实数的运算.
知识回顾
运算法则:
a b ab (a 0,b 0) ( a)2 a
a a (a 0,b 0) bb
练一练:
化简下列式子:
(1) 1 2 3
(2) 2 5 3
答案: (1)2 3;
(2) 5 3.
做一做:
如图所示,图中小正方形的边长为1,试求图中 梯形ABCD的面积. 你有哪些方法?
答案:S梯形ABCD=18
作业:
1. 《名校课堂》P29-30
2 92 42 18
2
3 22 2 4
10
练一练 计算:
(1) 2 1 5 10
(3)( 18 1 ) 8 2
(2) 12 3 1 3
(4)2 75 8 27
(4)解:原式 2 253 4 2 93
10 3 2 2 3 3
7 32 2
想一想:
2 的倒数是

1 1 2 2 1 2 2 2 2 2 2
(3)( 24 1 ) 3 (4) 25 99 18
6
2
(4)解:原式 25 2 99 9 2
22
Hale Waihona Puke 2 99 3 2 21 2 99 2
99 化简后与其他的 非同类二次根式,结 果可以直接保留.
练一练 计算:
(1) 2 1 5 10
(3)( 18 1 ) 8 2
(2) 12 3 1 3
(2) 18 8 1 8

八年级数学下册教学课件-二次根式的混合运算

八年级数学下册教学课件-二次根式的混合运算

(1) ( 2 − 6 ) × ( 2 + 6 ) 
(2) (2 5 + 2 )2
(3) (2 2 −3 3 ) × (3 3 + 2 2)
(4) ( 2 − 2 ) × (3 + 2 2 ) 
化简求值:已知x= 3,
〖(x−2)〗^2−(x−2)(x+2)+2√3
求代数式( − 2)2 − − 2 + 2 + 2 3的值 .
2−5
= 2 × 2 -5× 2+ 3× 2 -3×5
= 2-5 2+3 2-15
= 5 × 5 - 5 × 3+ 3 × 5 - 3× 3
= 5 × 5 - 3× 3
=5-3=2
=- 13 - 2 2
观察式子5结构,你想到了什么?
( 5 + 3 )( 5 − 3)
=
5
=5-3
=2
2

3
2
02
练一练
− =(3+2 5)(3-2 5)(3+2 5- 3+2 5)
=[ 3
2−
=-44 5
2 5
2
](4 5)
02
练一练
1.已知 =

,

=
+


,求

− 的值.

【详解】
3− 2
3+ 2
,y=

2
2
3+ 2
3− 2
∴y−x=

= 2,
2
2
3− 2 3+ 2 1
xy=

人教版八年级数学下册《二次根式的混合运算》教案及教学反思

人教版八年级数学下册《二次根式的混合运算》教案及教学反思

人教版八年级数学下册《二次根式的混合运算》教案及教学反思一、教学目标1.了解混合运算的概念;2.学会对含有数字、字母或根式等多种形式的二次根式进行混合运算;3.掌握二次根式的平方与相乘公式;4.培养学生的证明与推理能力。

二、教学重点1.对含有数字、字母或根式等多种形式的二次根式进行混合运算;2.掌握二次根式的平方与相乘公式。

三、教学难点1.对含有数字、字母或根式等多种形式的二次根式进行混合运算;2.培养学生的证明与推理能力。

四、教学过程1.概念讲解混合运算是指同时使用加法、减法、乘法和除法的一种复杂运算。

2.基础知识回顾引导学生回顾二次根式的定义及基本操作:加减、乘除、开平方、化简等。

3.混合运算的例题讲解(1)$\\sqrt{3}+2\\sqrt{3}-\\sqrt{2}=\\ ?$解:$\\sqrt{3}+2\\sqrt{3}=3\\sqrt{3}$$\\therefore\\ \\sqrt{3}+2\\sqrt{3}-\\sqrt{2}=3\\sqrt{3}-\\sqrt{2}$(2)$(2+\\sqrt{3})(2-\\sqrt{3})\\div\\sqrt{2}=\\ ?$解:$(2+\\sqrt{3})(2-\\sqrt{3})=4-3=1$$\\therefore\\ (2+\\sqrt{3})(2-\\sqrt{3})\\div\\sqrt{2}=\\dfrac{1}{\\sqrt{2}}=\\dfrac {\\sqrt{2}}{2}$4.综合例题讲解(1)$3\\sqrt{5}-2\\sqrt{20}+4\\sqrt2=$解:$3\\sqrt{5}-2\\sqrt{20}+4\\sqrt2=3\\sqrt{5}-4\\sqrt{5}+4\\sqrt2=4\\sqrt2-\\sqrt5$(2)$\\dfrac{2\\sqrt{x}}{\\sqrt{y}}\\times\\dfrac{\\sqrt{y}}{\\sqrt{2x}}+\\dfrac{3\\sqrt{y}}{\\s qrt{x}}\\times \\dfrac{\\sqrt{3x}}{\\sqrt{y}}=$解:$\\dfrac{2\\sqrt{x}}{\\sqrt{y}}\\times\\dfrac{\\sqrt{y}}{\\sqrt{2x}}+\\dfrac{3\\sqrt{y}}{\\s qrt{x}}\\times\\dfrac{\\sqrt{3x}}{\\sqrt{y}}=2\\sqrt{\\dfrac{x}{2x}} +3\\sqrt{\\dfrac{3x}{x}}=2\\sqrt{\\dfrac{1}{2}}+3\\sqr t3=\\sqrt{2}+3\\sqrt{3}$5.拓展练习练习题:(视频配套)五、教学反思通过本次教学,我发现学生对混合运算的理解程度有所不足,需要针对不同难度的例题进行讲解和练习。

二次根式的混合运算

二次根式的混合运算

二次根式的混合运算一、混合运算的定义混合运算是指将不同类型的运算在同一个表达式中进行计算的过程。

在数学中,混合运算常常涉及到加法、减法、乘法、除法等基本运算规则。

二、二次根式的定义二次根式是指具有平方根的数学表达式。

一般情况下,二次根式的形式为√(a × b)或√(a / b),其中a和b为实数。

需要注意的是,a和b不能是负数。

三、二次根式的混合运算规则在进行二次根式的混合运算时,需要按照以下规则进行计算:1.二次根式的加法运算:当两个二次根式具有相同的根数和次方数时,可以进行加法运算。

例如:√2 + √3 = √(2 + 3) = √52.二次根式的减法运算:当两个二次根式具有相同的根数和次方数时,可以进行减法运算。

例如:√5 - √3 = √(5 - 3) = √23.二次根式的乘法运算:可以将二次根式的根数和次方数相乘。

例如:√2 × √3 = √(2 × 3) = √64.二次根式的除法运算:可以将二次根式的根数和次方数相除。

例如:√6 ÷ √2 = √(6 ÷ 2) = √35.二次根式的乘方运算:可以将二次根式的根数和次方数进行乘方计算。

例如:(√2)² = √(2²) = √4 = 2四、二次根式混合运算的示例示例一:计算√3 + √5 - √2根据混合运算的规则,我们可以首先进行加法运算,然后再进行减法运算。

即:√3 + √5 - √2 = √(3 + 5) - √2 = √8 - √2由于√8不能继续简化,最后的结果为√8 - √2。

示例二:计算√2 × √3 ÷ √5根据混合运算的规则,我们可以先进行乘法运算,然后再进行除法运算。

即:√2 × √3 ÷ √5 = √(2 × 3) ÷ √5 = √6 ÷ √5由于√6不能被√5整除,所以最后的结果为√6÷ √5。

人教版八年级下册数学《二次根式的混合运算》二次根式说课教学复习课件

人教版八年级下册数学《二次根式的混合运算》二次根式说课教学复习课件


随堂练习
3.已知= − , 则代数式(+ ) + + + 的值是(C

A.
4.已知=


, =
.+


. −
,则 + +=_______.


随堂练习
5.计算:
(1) (1+ )(2- );
解: (1+ )(2- )
问卷调查,统计如下表所示:
颜色
学生人数
黄色 绿色 白色 紫色 红色
100
180
220
80
750
学校决定采用红色,可用来解释这一现象的统计知识是( C )
A. 平均数
C. 众数
B. 中位数
D. 方差
课堂检测
基 础 巩 固 题
2.学习了《数据的分析》后,某同学对学习小组内甲、乙、丙、
丁四名同学的数学月考成绩进行了统计,发现他们的平均成绩
这些平均数受这个人的影响,而中位数是210件,众数
是210件,因此我们认为以210件为规定量比较科学.
巩固练习
1.甲、乙两位同学在几次数学测验中,各自的平均分都
是88分,甲的方差为0.61,乙的方差为0.72,则( A
A、甲的成绩比乙的成绩稳定
B、乙的成绩比甲的成绩稳定
C、甲、乙两人的成绩一样好
D、甲、乙两人的成绩无法比较
=( )²+2× ×1+1²
=5-2
=3+2 +1
=3.
=4+2 .
典例精析
例3
计算下列各式:

(1)



解:

+

( −)( +)
+
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式的混合运算(1)
教学目的:会进行二次根式的加减、乘混合运算。

重点:二次根式的加减乘混合运算。

难点:运算法则的综合运用。

关键:掌握混合运算顺序和步骤。

教学过程: 复习提问:
1.叙述二次根式加减法的两个步骤。

2.填空:当a ≥0,b ≥0时,________=⋅b a ; 3.叙述单项式乘以多项式运算顺序; 4.叙述多项式乘以多项式的运算法则。

二次根式的乘法:ab b a =
⋅(a ≥0,b ≥0)
二次根式的除法:b a
b
a
=
(a ≥0,b>0)
新课:
形如a 的式子,a 表示什么?a 需要满足什么条件?根据平方根的定义,当a ≥0时,
a 表示a 的算术平方根,是一个非负数,它的平方等于a ;当a<0时,a 无意义。

形如a (a ≥0)的式子叫做二次根式。

有如下性质: (1))
0(0≥≥a a a 表示非负数且被开方数a 必须大于等于零
(2)
)0()(2
≥=a a a ; (3)|a |a
2
=;
2a 表示2a 的算术平方根,若0x ,a x 2
2≥=,
则2a x =
如当a=2,-3,-0.1时,
22,22222==;
3)3(,)3(3222=--=;
1.0)1.0(,)1.0(1.0222=--=。

所以x=|a|,即
|a |a 2=
例1计算: (1)6)3527
8
(⋅- 解:6)3569
2
(
-= 2153
4
-=。

(2))3225)(65(-+
解:26310310225-+-=
219=。

例2计算:
(1))2332)(2332(-+;
(2)2
)534(+;
(3)2
)336(-。

解:(1)原式2
2)23()32(-=
=12-18 =-6;
(2)原式2
2)53(53424+⋅-+=
52461+=;
(3)2
)336(-
22)33(3362)6(+⋅⋅-=
21833-=。

3.(1)已知y<0,化简64y x (2)当x>1时,化简1x 2x 2
+-
(3)化简:a b
(要求分母不带根号)

解:(1)
|y x |)y x (y x 3223264== ∵y<0

3
264y x y x -= (2)1x 2x 2
+-
2)1x (-=
=|x-1| ∵x>1
∴1x 1x 2x 2
-=+-
(3)a a b a
a a
b a
b
=
⋅⋅=
4.比较大小(1)
6221,17,272
解:1)
14274272
=⨯=
2316241622
1
=⨯= 因为
1723114<<
所以176221272
<<
A 组
1.计算:
(1)182712⨯÷
(2)14
)84232821(
⋅-
(3)32)274483(÷- (4))26)(26(+-
解:(1)182712⨯÷
182712
⨯=
2282⨯== 22=
(2)14
)8423
2821(
⋅-
148423142821⨯-⨯=
614232142122⨯-⨯=
6212761423
21421-=⨯⨯-⨯⨯=
(3)32)274483(÷-
327
2434823-
=
921623
-=
32423
⨯-⨯=
=0
(4))26)(26(+
-
22)2()6(-=
=6-2 =4
2.计算(1)27412732+- (
解:(1)27412732+-
3343273222⨯+⨯-=
31231432+-=(同类二次根式) 3)12142(+-=(合并同类二次根式)
=0;
5.化简求值
(3)当23y ,23x -=+=
时,求33x y y x +的值
3)因为23y ,23x -=+=
所以123)23)(23(x y =-=-+
=
102122)32(x y 2)y x (y x 2222=-=-=-+=+
所以10101)y x (x y x y y x 2
233=⨯=+=+
【同步达纲练习】
1.计算:
48331
4
124--
答案:3316
-
2
C 组的练习
已知:实数x 、y 满足21
x 11x y +
-+-<
化简:|x-y|
解:由于x-1≥0, 且1-x ≥0
所以x=1,
21y <
所以|x-y|=1-y
四、问题探究:若41224|11|-++-=--++b a c b a 求a+2b-3c 的值 解:依题意041b 22a 4|11c |
b a =++-----++
0|11|]112)1[(]424)2[(=--+++-+++---c b b a a 0|11c |]11b 2)1b [(]42a 4)2a [(22=--+++-+++---
0|11c |)11b ()22a (22=--+-++--
因为
0|11|0)11(,0)22(2
2≥--≥-+≥--c b a , 所以011c .011b ,022a =--=-+=-- 所以11c ,11b ,22a =-=+=- 所以a-2=4,b+1=1,c-1=1 所以a=6,b=0,c=2 所以a+2b-3c =6-3×2=0
二次根式的混合运算(2)
教学目的:
1.掌握有理化因式的概念;
2.会找含有二次根式的代数式的有理化因式; 3.了解二次根式转化为有理化思想。

重点:掌握有理化因式的概念和求法。

难点:求二次根式的有理化因式。

关键:掌握开方如y b x a 的二次根式的有理化因式。

教学过程: 复习提问:
(1)把下列各式的分母有理化:
(1)
7
327-;
(2)y
x a +2。

2.计算:(1))223)(223(-+; (2))1(1322++a a
新课: 例1计算:
(1))63)(63(-+
(2))52)(52(by ax by ax +-。

解:(1)原式2
2)6()3(-=
=3-6 =-3;
(2)原式22)5()2(by ax -= =4ax-25by
一般地,y b x a +与y b x a -互为有理化因式。

例2指出下列各式的有理化因式。

(1)13; (2)x +1; (3)35-; (4)22+x ; (5)c ab +; (6)32+;
(7)22b a a ++; (8)b a xy 2-。

解:(1)13; (2)x +1; (3)35+; (4)22+x ; (5)c ab -; (6)32-; (7)22b a a +-; (8)b a xy 2
+。

练习:P209-3
小结:有理化概念,以及找出有理化因式。

作业:习题11.6 A 组 3。

相关文档
最新文档