八年级下册测试题答案

合集下载

八年级下册数学试题及答案

八年级下册数学试题及答案

八年级下册数学试题及答案注意:根据提供的题目要求,由于无法提供具体的试题内容及答案,下文中将以示例的方式进行描述。

请根据实际情况和格式要求自行填写试题及答案。

八年级下册数学试题及答案1. 选择题(1) 计算表达式的值:6 + 3 × 2 - 8 ÷ 4 = ?解析:首先按照乘除优先于加减的原则进行计算。

答案:6 + 3 × 2 - 8 ÷ 4 = 6 + 6 - 2 = 10(2) 若正整数x满足4x - 6 = 18,则x的值为多少?解析:将已知的等式转化为求解x的方程。

答案:4x - 6 = 184x = 18 + 6 = 24x = 24 ÷ 4 = 62. 填空题(1) 已知α是锐角,则α的补角为__________。

解析:补角指两个角的度数之和为90°。

答案:90° - α(2) 如果a:b = 2:3,且b:c = 4:5,则a:c = ________。

解析:根据比例关系进行计算,a与b之间的比例系数乘积为2×3,b与c之间的比例系数乘积为4×5。

答案:2:3 = 8:12,4:5 = 12:15,故a:c = 8:15。

3. 解答题(1) 计算下列各式的值:(3x - 2)^2,其中x = 4。

解析:将x = 4代入表达式,进行平方运算。

答案:(3x - 2)^2 = (3×4 - 2)^2 = (12 - 2)^2 = 10^2 = 100(2) 一间房间的长是宽的3倍,周长是42米。

求房间的长和宽。

解析:设房间的宽为x,则房间的长为3x。

根据周长的计算公式,得到2(x + 3x) = 42。

答案:2(4x) = 428x = 42x = 42 ÷ 8 = 5.25因为房间的长和宽为整数,所以宽为5米,长为15米。

以上是八年级下册数学试题及答案的部分示例。

在实际应用中,根据具体的教材和题库准备试题,以及针对每一道题目提供合适的解析和答案解答。

八年级下册物理第八章测试题附答案

八年级下册物理第八章测试题附答案

八年级下册物理第八章测试题附答案第八章测试题一、填空题1.正确认识力和运动的关系,推翻“力是维持物体运动的原因”的物理学家是XXX,建立惯性定律的物理学家是XXX。

2.一切物体在没有受到外力的时候,总保持匀速直线运动状态或静止状态,这就是牛顿第一定律。

3.重N的直升飞机,悬停在空中,则直升飞机受到的空气作用力是N,方向向上,若直升飞机做匀速直线飞行,则直升飞机受到的是平衡力。

4.同学们骑自行车上学,当停止用力蹬脚踏时,自行车仍然能向前运动,这是由于惯性的缘故;但自行车运动会越来越慢,最后停下来,这是由于自行车受到了摩擦力的作用。

5.一位乘客站在匀速直线行驶的轮船甲板上,他受到的重力和支持力是一对平衡力,与甲板的摩擦力是0N(不考虑空气阻力)。

6.一个重为50N的物体沿水平路面做匀速直线运动,需加10N的水平拉力,则它在运动时受到的摩擦力为10N;若将该物体用绳悬挂起来,物体静止时绳对物体的拉力为50N;若使物体竖直向下匀速运动,则向上的拉力应为50N。

7.用弹簧测力计拉着重200N的物体在水平桌面上做匀速直线运动,当速度为4m/s时,弹簧测力计的示数为20N,若速度为1m/s时,该物体受到的摩擦力为10N,合力为190N,若将拉力增大,当弹簧测力计的示数变为30N时,物体受到的摩擦力为20N,此时物体受到的合力为220N。

8.空降兵在降落伞打开后的一段时间内将匀速下落,它的体重为650N,伞重200N,若人受到的阻力忽略不计,则伞对人的拉力为850N,伞受到的阻力为0N。

9.物体受到同一直线上两个力的作用,已知其中一个力的大小为60N,方向向西,它们的合力方向向东,大小为20N,则另一个力的大小是40N,方向向西。

10.如图1所示,水平地面上有甲、乙两个物体叠放在一起。

已知甲物体的质量为4kg,乙物体的质量为6kg。

有一大小为10N的水平向左的拉力F作用在乙物体上后,甲、乙两物体仍保持静止状态。

八年级下册数学试题及答案

八年级下册数学试题及答案

八年级下册数学试题及答案在这里,我为您提供一份八年级下册数学试题及答案,以满足您所需。

Part I:选择题(共40分)请从每题所给的四个选项中选出一个正确答案。

1. 已知函数y = 2x - 3,求当x = 4时,y的值是多少?A. 5B. 6C. 7D. 82. 以下哪个数字是有理数?A. πB. √2C. -5D. e3. 小倩拥有6本书,她卖了其中的3本。

这是一个什么比例?A. 1:3B. 2:1C. 3:2D. 3:14. 将一个整数n加上4,再除以3,得到的结果是7,则n的值是多少?A. 18B. 43C. 12D. 215. 一个螺旋线规律如下:0, 2, 4, 6, ...,则第10个数是多少?A. 12B. 14C. 16D. 186. 在一张长方形纸片上,纸片的宽度是纸片长度的一半。

如果纸片的周长是12厘米,纸片的面积是多少平方厘米?A. 12B. 16C. 18D. 247. 如果p = 5,q = 2,并且r = 3,那么p + 2q - r的值是多少?A. 3B. 5C. 9D. 118. 将一个圆形分成相等的12份,每份的圆心角是多少度?A. 10°B. 20°C. 30°D. 40°9. 以下哪个数字是一个无理数?A. -3B. 0C. 2D. √510. 在一个数字序列中,下一个数是前一个数的两倍。

已知前两个数分别是3和6,求该数列的第6个数。

A. 96B. 192C. 384D. 768Part II:解答题(共60分)请参考下面的题目,用文字或运算法则进行解答。

1. 在一个数字序列中,第一个数是2,第二个数是5,从第三个数开始,每个数都是前两个数的和。

请列出该数列的前10个数。

解答:2, 5, 7, 12, 19, 31, 50, 81, 131, 2122. 解方程:3x + 2 = 17解答:3x + 2 = 173x = 17 - 23x = 15x = 15 ÷ 3x = 53. 计算下列各题。

人教版八年级下册数学《期中检测试题》(含答案)

人教版八年级下册数学《期中检测试题》(含答案)

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10小题,每小题3分,计30分每小题只有一个选项是符合题意的)1. 下列式子中,是分式的是()A.12a-B.3xπ-C. ﹣3xD.2xy+2. 我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( )A. B. C. D.3. 若a<b,则下列不等式变形正确的是()A. ﹣3a<﹣3bB. a﹣3>b﹣3C. am<bmD. 2a<2b4. 如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于D,E两点,若∠B=80°,∠C=35°,则∠BAD 的度数为()A. 65°B. 35°C. 30°D. 25°5. 已知点A(x+3,2﹣x)在第四象限,则x的取值范围是()A. x>2B. x>﹣3C. ﹣3<x<2D. x<26. 下列说法正确的是()A. 对角线相等四边形是平行四边形B. 一组对边平行,另一组对边相等的四边形是平行四边形C. 一组对边相等,一组对角相等的四边形是平行四边形D. 一组对边平行且相等的四边形是平行四边形7. 如图,平行四边形ABCD的周长为52,对角线AC,BD相交于点O,点E是CD的中点,BD=18,则△DOE的周长是( )A. 22B. 26C. 31D. 358. △ABC与△DBC如图放置,已知,∠ABC=∠BDC=90°,∠A=60°,BD=CD=22,将△ABC沿BC方向平移至△A'B'C'位置,使得A'C边恰好经过点D,则平移的距离是()A. 1B. 22﹣2C. 23﹣2D. 26﹣49. 若关于x方程333x m mx x++--=3的解为正数,则m的取值范围是()A. m<92B. m<92且m≠32C. m>﹣94D. m>﹣94且m≠﹣3410. 如图,△ABC中,∠ACB=90°,点D,E分别在BC,AC边上,且AE=4,BD=6,分别连接AD,BF,点M,N 分别是AD,BE的中点,连接MN,则线段MN的长()5 B. 3 C. 213二、填空题(共4小题,每小题3分,计12分)11. 已知a﹣b=2,则222a bab+-值_____.12. 若凸n 边形的内角和为1440°,则从一个顶点出发引的对角线条数是_____ 13. 若分式2||123x x x ---值为0,则x 的值为_____. 14. 如图,点D 是等边△ABC 外部一点,∠ADC =30°,BD =8,则四边形ABCD 面积的最小值为_____.三、解答题(共9小题,计58分)15. 因式分解:(1)x 3﹣8x 2+16x ;(2)x (x 2﹣5)﹣4x .16. 解不等式组253(2)123x x x x +≤+⎧⎪-⎨≤⎪⎩,并把解集在数轴上表示出来. 17. 先化简,再求值:(m +252m +-)324m m -÷-,其中m =﹣1. 18. 如图,四边形ABCD 中,∠A =∠C =90°,若AB =BC .求证:BD 平分∠ABC .19. 已知在平面直角坐标系中,A (﹣2,0)、B (3,﹣1)、C (2,2),格中每一格表示一个单位长度,请解答以下问题:(1)求作出△ABC ;(2)将△ABC 平移,使得平移后点C 的对应点为原点,A 、B 的对应点分别为A 1,B 1,请作出平移后的△A 1B 1O ,并直接写出平移的距离为 ;(3)将△ABC 绕点A 逆时针旋转90°,得到△AB 2C 2,B 、C 的对应点分别为B 2、C 2,请作出△AB 2C 2,并求出B 2、C 2点的坐标.20. 如图,平行四边形ABCD中,延长BC至E,使得CE=12BC,连接DE,F是AD的中点,连接CF.(1)求证:四边形CEDF是平行四边形:(2)若AB=8,AD=10,∠B=60°,求四边形ABCF的面积.21. “抗击疫情,八方支援”截至2020年2月19日,全国已有278支医疗队、32395名医务人员从各地驰援湖北,小明和爸爸经过商量打算用自己的压岁钱购买A、B两种品牌消毒酒精捐赠当地医院,已知A品牌消毒酒精每桶的价格比B品牌消毒酒精每桶的价格多20元,用3000元购进A品牌消毒酒精和用1800元购进B 品牌消毒酒精数量相同.(1)A品牌消毒酒精每桶的价格和B品牌消毒酒精每桶的价格各是多少元?(2)小明计划用不超过1560元的压岁钱购进A,B两种品牌消毒酒精共40桶,其中A品牌消毒酒精的数量不低于B品牌消毒酒精数量的一半,小明有几种购买方案?22. 如图,两个一次函数y=kx+b与y=mx+n的图象分别为直线l1和l2,l1与l2交于点A(1,p),l1与x轴交于点B(﹣2,0),l2与x轴交于点C(4,0)(1)填空:不等式组0<mx+n<kx+b解集为;(2)若点D和点E分别是y轴和直线l2上的动点,当p=32时,是否存在以点A、B、D、E为顶点的四边形是平行四边形?若存在,请求出点E的坐标;若不存在,请说明理由.23. 已知:在△ABC中,AB=AC=5,BC=6,将△ABC绕点C顺时针旋转,得到△A1B1C,旋转角为α(0°≤α≤360°).(1)如图①,当α=60°时,连接A1B交B1C于点D,则A1B的长是;(2)如图②,当点B1在线段BA的延长线上时,求线段AB1的长;(3)如图③,点E是BC上的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,线段EF1的长是否存在最大值和最小值?若存在请求出线段EF1长度的最大值与最小值的差;若不存在,请说明理由.答案与解析一、选择题(共10小题,每小题3分,计30分每小题只有一个选项是符合题意的) 1. 下列式子中,是分式的是( ) A. 12a - B. 3x π- C. ﹣3x D. 2x y + [答案]A[解析][分析]利用分式定义可得答案.[详解]解:A 、12a -的分母含字母,是分式,故此选项符合题意; B 、3x π-的分母不含字母,不是分式,是整式,故此选项不合题意; C 、﹣3x 的分母不含字母,不是分式,是整式,故此选项不合题意; D 、2x y +的分母不含字母,不是分式,是整式,故此选项不合题意; 故选:A .[点睛]本题考查分式的定义,熟练掌握分式的定义是解答本题的关键.判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.注意π不是字母,是常数,所以分母中含π的代数式不是分式,是整式.2. 我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( )A. B. C. D.[答案]B[解析]试题分析:根据轴对称图形与中心对称图形的概念求解.解:A 、不是轴对称图形,也不是中心对称图形.故错误;B 、轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选B.点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3. 若a<b,则下列不等式变形正确的是()A. ﹣3a<﹣3bB. a﹣3>b﹣3C. am<bmD. 2a<2b[答案]D[解析][分析]根据不等式的性质逐一进行判断即可.[详解]解:∵a<b,∴﹣3a>﹣3b,故A错误;∵a<b,∴a﹣3<b﹣3,故B错误;∵a<b,当m>0时,am<bm,故C错误;∵a<b,∴2a<2b,故D正确.故选:D.[点睛]本题考查了不等式的性质,掌握知识点是解题关键.4. 如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于D,E两点,若∠B=80°,∠C=35°,则∠BAD 的度数为()A. 65°B. 35°C. 30°D. 25°[答案]C[解析][分析]根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.[详解]解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=35°,∵∠B=80°,∠C=35°,∴∠BAC=65°,∴∠BAD=∠BAC﹣∠DAC=65°﹣35°=30°,故选:C.[点睛]本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5. 已知点A(x+3,2﹣x)在第四象限,则x的取值范围是()A. x>2B. x>﹣3C. ﹣3<x<2D. x<2[答案]A[解析][分析]根据第四象限内点的坐标特征得到3020xx+>⎧⎨-<⎩,然后解不等式组即可.[详解]解:∵点A(x+3,2﹣x)在第四象限,∴30 20 xx+>⎧⎨-<⎩,解得x>2. 故选:A.[点睛]本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6. 下列说法正确的是()A. 对角线相等的四边形是平行四边形B. 一组对边平行,另一组对边相等的四边形是平行四边形C. 一组对边相等,一组对角相等的四边形是平行四边形D. 一组对边平行且相等的四边形是平行四边形[答案]D[解析][分析]根据平行四边形的判定方法分别对各个选项进行判断即可.[详解]解:∵对角线互相平分的四边形是平行四边形,∴选项A不符合题意;∵一组对边平行,另一组对边相等的四边形不一定是平行四边形,∴选项B不符合题意;C、∵一组对边相等,一组对角相等的四边形不一定是平行四边形,∴选项C不符合题意;∵一组对边平行且相等的四边形是平行四边形,∴选项D符合题意;故选:D.[点睛]本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解题的关键.7. 如图,平行四边形ABCD的周长为52,对角线AC,BD相交于点O,点E是CD的中点,BD=18,则△DOE的周长是( )A. 22B. 26C. 31D. 35[答案]A[解析][分析]利用平行四边形的性质,三角形中位线定理即可解决问题.[详解]解:∵平行四边形ABCD的周长为52,∴BC+CD=26,∵OD=OB,DE=EC,∴OE+DE=12(BC+CD)=13,∵BD=18,∴OD=12BD=9,∴△DOE的周长为13+9=22.故选:A.[点睛]本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形中位线定理.8. △ABC与△DBC如图放置,已知,∠ABC=∠BDC=90°,∠A=60°,BD=CD=22,将△ABC沿BC方向平移至△A'B'C'位置,使得A'C边恰好经过点D,则平移的距离是()A. 1B. 2﹣2C. 3﹣2D. 6﹣4[答案]C[解析][分析]过点D作DJ⊥BC于J,根据勾股定理求出BC,利用等腰直角三角形的性质求出DJ、BJ、JC,利用平行线分线段成比例定理求出JC′即可解决问题.[详解]解:过点D作DJ⊥BC于J.∵DB =DC =2∠BDC =90°,∴BC ()()222222+4,DJ =BJ =JC =2,∵∠ABC =90°,∠A =60°,∴∠ACB =30°,∴AC=2AB ,∵AB 2+42=(2AB)2,∴A′B′=AB 43, ∵DJ//A′B′, ∴DJ A B ''=C J C B''', 434C J ', ∴C′J =3∴JB′=4﹣3,∴BB′=2﹣(4﹣3=3 2.故选:C .[点睛]本题考查了平移的性质,直角三角形的性质,等腰三角形的性质,勾股定理,以及平行线分线段成比例定理.9. 若关于x 的方程333x m m x x++--=3的解为正数,则m 的取值范围是( ) A. m <92B. m <92且m≠32C. m >﹣94 D. m >﹣94且m≠﹣34 [答案]B[解析][详解]解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.10. 如图,△ABC中,∠ACB=90°,点D,E分别在BC,AC边上,且AE=4,BD=6,分别连接AD,BF,点M,N 分别是AD,BE的中点,连接MN,则线段MN的长()A. 5B. 3C. 32D. 13[答案]D[解析][分析]取AB的中点F,连接NF、MF,根据直角三角形的性质得到∠CAB+∠CBA=90°,根据三角形中位线定理分别求出MF、NF,以及∠MFN=90°,根据勾股定理计算,得到答案.[详解]解:取AB的中点F,连接NF、MF,△ABC中,∵∠ACB=90°,∴∠CAB+∠CBA=90°, ∵AM=MD,AF=FB,∴MF是△ABD的中位线,∴MF=12BD=3,MF//BC,∴∠AFM=∠CBA,同理,NF=12AE=2,NF//AC,∴∠BFN=∠CAB,∴∠AFM+∠BFN=∠CAB+∠CBA=90°,∴∠MFN=90°,∴MN故选:D.[点睛]本题考查了三角形的中位线,平行线的性质,以及勾股定理等知识,三角形的中位线平行于第三边,并且等于第三边的一半.二、填空题(共4小题,每小题3分,计12分)11. 已知a﹣b=2,则222a bab+-的值_____.[答案]2[解析][分析]根据完全平方公式解答即可.[详解]解:∵a﹣b=2,∴222a bab +-=2222a ab b-+=2 ()2a b -=222=2,故答案为:2.[点睛]本题主要考查了完全平方公式,熟记公式是解答本题的关键.12. 若凸n 边形的内角和为1440°,则从一个顶点出发引的对角线条数是_____ [答案]7[解析][分析]根据凸n 边形的内角和为1440°,求出凸n 边形的边数,即可得出从一个顶点出发可引出(n ﹣3)条对角线.[详解]解:∵凸n 边形的内角和为1440°, ∴(n ﹣2)×180°=1440°,解得:n =10,∴:10﹣3=7.故答案为:7.[点睛]本题考查多边形内角和定理,解题关键是根据多边形内角和定理求出凸n 边形的边数.13. 若分式2||123x x x ---的值为0,则x 的值为_____. [答案]1[解析][分析]根据分子为零列出方程求解,然后验证分母是否为0可得答案.[详解]解:∵分式2||123x x x ---的值为0, ∴|x|﹣1=0,∴x=±1,当x=1时,x 2﹣2x ﹣3=-4≠0,当x=-1时,x 2﹣2x ﹣3=0,∴x =1,故答案为:1.[点睛]本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.14. 如图,点D是等边△ABC外部一点,∠ADC=30°,BD=8,则四边形ABCD面积的最小值为_____.[答案]163﹣16[解析][分析]过点D作DE⊥DC,且使得DE=DA,连接AE;过点A作AM⊥CD于点M,根据全等三角形的判定得△ABD≌△ACE,设等边三角形ABC的边长为a,等边三角形ADE的边长为b,根据等边三角形的性质、全等三角形的性质,得到四边形ABCD面积的表达式,进而即可求解.[详解]解:过点D作DE⊥DC,且使得DE=DA,连接AE;过点A作AM⊥CD于点M,如下图所示:∵DE⊥DC,∴∠EDC=90°,∵∠ADC=30°,∴∠EDA=60°,∵DE=DA,∴三角形ADE是等边三角形,∴AD =AE ,∠DAE =60°,∴∠CAE =∠CAD +∠DAE =∠CAD +60°,∵△ABC 是等边三角形,∴AB =AC ,∠BAC =60°,∴∠BAD =∠BAC +∠CAD =60°+∠CAD ,∴∠BAD =∠CAE ,在△ABD 与△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴CE =BD ,∵BD =8,∴CE =8,设等边三角形ABC 的边长为a ,等边三角形ADE 的边长为b ,直角三角形DEC 中,CE =8,DE =b ,∴2264DC b =-,在直角三角形AMD 中,∠ADC =30°,AD =b ,∴AM =12b , ∴DM =32b , ∴CM =264b -﹣32b , 在直角三角形ACM 中,222AC AM CM =+,∴222213()(64)22a b b b =+--, ∵ABCD S 四边形=S △ABC +S △ACD =12×a×32 a +12DC·AM=12×a×32a +12×12b×264b -, =222313()(64)422b b b ⎡⎤+--⎢⎥⎣⎦ +14b 264b -==∴当b²=32时,即b=,ABCDS四边形最小值1322⨯16,故答案为:16.[点睛]本题主要考查全等三角形的判定与性质、等边三角形的性质、旋转的性质,解题关键是根据题意求出边之间的关系.三、解答题(共9小题,计58分)15. 因式分解:(1)x3﹣8x2+16x;(2)x(x2﹣5)﹣4x.[答案](1)x(x﹣4)2;(2)x(x+3)(x﹣3).[解析][分析](1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提取公因式,再利用平方差公式分解即可.[详解]解:(1)原式=x(x2﹣8x+16)=x(x﹣4)2;(2)原式=x(x2﹣5﹣4)=x(x+3)(x﹣3).[点睛]此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16. 解不等式组253(2)123x xx x+≤+⎧⎪-⎨≤⎪⎩,并把解集在数轴上表示出来.[答案]﹣1≤x≤3,数轴见解析[解析][分析]先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集,然后画数轴表示即可.[详解]解:253(2)123x x x x +≤+⎧⎪⎨-≤⎪⎩①②, 由①式得x≥﹣1,由②得x≤3,所以﹣1≤x≤3, .[点睛]本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.17. 先化简,再求值:(m +252m +-)324m m -÷-,其中m =﹣1. [答案]﹣2m ﹣6,﹣4.[解析][分析] 把m +2看成21m +,先计算括号里面的,再算乘法,化简后代入求值. [详解]解:(m +252m +-)324m m -÷- =(2512m m +--)()223m m-⋅-, ()2224523m m m m---=⋅--, ()()()332223m m m m m-+-=⋅-- =﹣2(m +3)=﹣2m ﹣6,当m=﹣1时,原式=﹣2×(﹣1)﹣6=2﹣6=﹣4.[点睛]本题考查了分式的化简求值.掌握分式的加减乘除运算是关键.18. 如图,四边形ABCD中,∠A=∠C=90°,若AB=BC.求证:BD平分∠ABC.[答案]详见解析[解析][分析]利用HL证明Rt△ABD≌Rt△CBD可得∠ADB=∠CDB,进而证明结论.[详解]证明:∵∠A=∠C=90°,在Rt△ABD和Rt△CBD中,AB=BC,BD=BD,∴Rt△ABD≌Rt△CBD(HL),∴∠ADB=∠CDB,∴BD平分∠ABC.[点睛]本题主要考查全等三角形的判定与性质,证明Rt△ABD≌Rt△CBD是解题的关键.19. 已知在平面直角坐标系中,A(﹣2,0)、B(3,﹣1)、C(2,2),格中每一格表示一个单位长度,请解答以下问题:(1)求作出△ABC;(2)将△ABC平移,使得平移后点C的对应点为原点,A、B的对应点分别为A1,B1,请作出平移后的△A1B1O,并直接写出平移的距离为;(3)将△ABC绕点A逆时针旋转90°,得到△AB2C2,B、C的对应点分别为B2、C2,请作出△AB2C2,并求出B2、C2点的坐标.[答案](1)作图见解析;(2)22;(3)作图见解析;B2(﹣4,4),C2(﹣1,5)[解析][分析](1)根据点的坐标作出三角形即可;(2)分别作出A,B的对应点A1,B1即可;(3)分别作出B,C的对应点B2、C2即可.[详解]解:(1)如图,△ABC即为所求;(2)如图△A1B1O即为所求,平移的距离为22;故答案22.(3)如图△A B2C2即为所求B2、C2点的坐标分别为(﹣4,4),(﹣1,5)[点睛]本题考查了作图-旋转变换,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20. 如图,平行四边形ABCD中,延长BC至E,使得CE=1BC,连接DE,F是AD的中点,连接CF.2(1)求证:四边形CEDF是平行四边形:(2)若AB=8,AD=10,∠B=60°,求四边形ABCF的面积.[答案](1)证明见解析;(2)3[解析][分析](1)由平行四边形的性质得AD//BC,且AD=BC,证出DF=CE,即可得出四边形CEDF是平行四边形;(2)过点D作DH⊥BE于点H,由直角三角形的性质得CH=12CD=4,DH3CH=3由梯形面积公式即可得出答案.[详解](1)证明:在ABCD中,AD//BC,且AD=BC.∵F是AD的中点,∴AF=DF=12 AD.又∵CE=12 BC,∴DF=CE,∵DF//CE,∴四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H.在ABCD中,∵∠B=60°,AD//BC,∴∠B=∠DCE=60°,CD=AB=8,BC=AD=10, ∴∠CDH=30°,∴CH=12CD=4,DH22843由(1)得:AF=12AD=5,∴四边形ABCF的面积=12(AF+BC)×DH=12(5+10)×33.[点睛]本题考查了平行四边形的判定与性质、勾股定理、含30°角的直角三角形的性质、梯形面积公式等知识;熟练掌握平行四边形的判定与性质是解题的关键.21. “抗击疫情,八方支援”截至2020年2月19日,全国已有278支医疗队、32395名医务人员从各地驰援湖北,小明和爸爸经过商量打算用自己的压岁钱购买A 、B 两种品牌消毒酒精捐赠当地医院,已知A 品牌消毒酒精每桶的价格比B 品牌消毒酒精每桶的价格多20元,用3000元购进A 品牌消毒酒精和用1800元购进B 品牌消毒酒精数量相同.(1)A 品牌消毒酒精每桶的价格和B 品牌消毒酒精每桶的价格各是多少元?(2)小明计划用不超过1560元的压岁钱购进A ,B 两种品牌消毒酒精共40桶,其中A 品牌消毒酒精的数量不低于B 品牌消毒酒精数量的一半,小明有几种购买方案?[答案](1)A 品牌消毒酒精每桶的价格是50元,B 品牌消毒酒精每桶的价格是30元;(2)5种[解析][分析](1)设B 品牌消毒酒精每桶价格为x 元,A 品牌消毒酒精每桶的价格为(x +20)元,根据“用3000元购进A 品牌消毒酒精和用1800元购进B 品牌消毒酒精数量相同”列出方程求解即可;(2)设购买A 品牌消毒酒精m 桶,根据“用不超过1560元的压岁钱购进A ,B 两种品牌消毒酒精共40桶,其中A 品牌消毒酒精的数量不低于B 品牌消毒酒精数量的一半”列出一元一次不等式组,求解即可.[详解]解:(1)设B 品牌消毒酒精每桶的价格为x 元,A 品牌消毒酒精每桶的价格为(x +20)元,根据题意得, 3000180020x x=+, 解得,x =30,经检验:x =30是原分式方程的解,且符合题意,∴x +20=30+20=50,答:A 品牌消毒酒精每桶的价格是50元,B 品牌消毒酒精每桶的价格是30元;(2)设购买A 品牌消毒酒精m 桶,则购买B 品牌消毒酒精(40﹣m )桶,根据题意得,5030(40)15601(40)2m m m m +-≤⎧⎪⎨≥-⎪⎩, 解得,40183m ≤≤ , ∵m 为正整数,∴m =14或m =15或m =16或m =17或m =18,∴共有5种购买方案.[点睛]本题考查了分式方程的应用和一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题意,列出方程和不等式组是解题的关键.22. 如图,两个一次函数y =kx +b 与y =mx +n 的图象分别为直线l 1和l 2,l 1与l 2交于点A (1,p ),l 1与x 轴交于点B (﹣2,0),l 2与x 轴交于点C (4,0)(1)填空:不等式组0<mx +n <kx +b 的解集为 ;(2)若点D 和点E 分别是y 轴和直线l 2上的动点,当p =32时,是否存在以点A 、B 、D 、E 为顶点的四边形是平行四边形?若存在,请求出点E 的坐标;若不存在,请说明理由.[答案](1)1<x <4;(2)E 点为(3,12),(﹣1,52),(﹣3,72). [解析][分析](1)观察图象即可求解; (2)已知点A 、B 、C 时,用待定系数法分别求出直线AB 与AC 的解析式;点A 、B 、D 、E 为顶点的四边形是平行四边形,有三种情况:①四边形ABDE 为平行四边形;②四边形EBDA 是平行四边形;③四边形EBAD 为平行四边形.[详解]解:(1)由图象可知满足0<mx +n <kx +b 的部分为A 点与C 点之间的部分,∴1<x <4;(2)∵p =32, ∴A (1, 32), 将点A 与B 代入y =kx +b ,得3220k b k b ⎧=+⎪⎨⎪-+=⎩,∴121k b ⎧=⎪⎨⎪=⎩,∴y =12x +1, 将点A 与点C 代入y =mx +n ,得3240m n m n ⎧+=⎪⎨⎪+=⎩, ∴122m n ⎧=-⎪⎨⎪=⎩,∴y =﹣12x +2, ①如图1:当四边形ABDE 为平行四边形时,∵E 在直线l 2上,此时,BD ∥AC ,∴BD 所在直线解析式为y =﹣12x ﹣1, ∴D (0,﹣1),∵DE∥AB,∴DE所在直线解析式为y=12x﹣1,∵﹣12x+2=12x﹣1,可得x=3,∴E(3,12);②如图2:当四边形EBDA是平行四边形时, 则有BD∥AC,∴BD所在直线解析式为y=﹣12x﹣1,∴D(0,﹣1),∴AD的直线解析为y=52x+1,∵AD∥BE,∴BE所在直线解析为y=52x+5,∵﹣12x+2=52x+5,解得x=﹣1,∴E(﹣1,52 );③如图3:当四边形EBAD为平行四边形时,设D(0,a),E(m,﹣12m+2),此时AE的中点M的横坐标为12m +,BD中点M的横坐标为﹣1,∴﹣1=12m +,∴m=﹣3,∴E(﹣3,72 );综上所述:满足条件的E点为(3,12),(﹣1,52),(﹣3,72).[点睛]本题考查一次函数的综合应用;熟练掌握代入法求函数解析式,平行四边形的性质与直线平行的关系灵活结合是解题的关键.23. 已知:在△ABC中,AB=AC=5,BC=6,将△ABC绕点C顺时针旋转,得到△A1B1C,旋转角为α(0°≤α≤360°).(1)如图①,当α=60°时,连接A1B交B1C于点D,则A1B的长是;(2)如图②,当点B1在线段BA的延长线上时,求线段AB1的长;(3)如图③,点E是BC上的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,线段EF1的长是否存在最大值和最小值?若存在请求出线段EF1长度的最大值与最小值的差;若不存在,请说明理由.[答案](1)4+33;(2)115;(3)存在;365.[解析][分析](1)根据旋转的性质可知△BCB1是等边三角形,根据线段的垂直平分线的判定得A1B垂直平分线段CB1,利用勾股定理求出BD、A1D即可解决问题;(2)过A作AF⊥BC于F,过C作CE⊥AB于E,利用面积法求出CE的长,根据勾股定理求出BE的长,进而可求线段AB1的长;(3)过C作CF⊥AB于F,以C为圆心CF为半径画圆交BC于F1,和以C为圆心BC为半径画圆交BC的延长线于F1,得出最大和最小值解答即可.[详解]解:(1)如图1中,∵CB=CB1,∠BCB1=60°,∴△BCB1是等边三角形,∴BC=BB1,∵A1C=A1B1,∴A1B垂直平分线段CB1,∴A1B⊥B1C,B1D=DC.∵△BCB1是等边三角形,BD是高,BC=6,∴∠CBD=30°,∴CD=12BC=3,∴BD =2263-=33, 在Rt △A 1DC 中,A 1D =221AC CD -=2254-=4, ∴A 1B =A 1D +BD =4+33,故答案为4+33;(2)过A 作AF ⊥BC 于F ,过C 作CE ⊥AB 于E ,如图2:∵AB =AC ,AF ⊥BC ,BC =6,∴BF =CF =3,∴AF=2253=4-,∴S △ABC =12BC ×AF=12. ∵B 1C =BC =6, ,CE ⊥AB ,∴B 1B =2BE ,∵EC =2ABC S AB ∆=245, ∴BE=2224186=55⎛⎫- ⎪⎝⎭,则BB 1=365, 故AB 1=365﹣5=115; (3)如图3,过C 作CF ⊥AB 于F ,此时在Rt △BFC 中,∵112 2ABCAB CF S⋅==,∴CF=245,∴CF1=245,如图,以C为圆心CF为半径画圆交BC于F1,EF1有最小值,此时EF1的最小值为245﹣3=95;如图,以C为圆心BC为半径画圆交BC的延长线于F1,EF1有最大值;此时EF1=EC+CF1=3+6=9,∴线段EF1最大值与最小值的差为9﹣95=365.[点睛]此题考查了旋转的性质、等边三角形的判定、等腰三角形的性质、线段的垂直平分线的判定和性质、勾股定理、三角形的面积等知识,关键是根据旋转的性质和三角形的面积公式进行解答.。

八年级下册Unit 1 What’s the matter 测试题(附答案)

八年级下册Unit 1 What’s the matter 测试题(附答案)

八年级下册Unit1 What’s the matter? 测试题一、选择填空。

(15 分)1. ------ I have a headache.A. What’s the matter, Judy?B. Where are you, Judy?C. Who are you?D. What are you doing, Judy?2.He stay at home and look after mother yesterday.A.needed toB. mustC. have toD. has to3.I th ink walking is our health.A.good atB. bad atC. well inD. good for4.We should not eat junk food.A.too manyB. too muchC. many tooD. much too5.--- How is the young man?---A.He is twelve.B. He’s much better.C. He is a doctor.D. He’s Allan.6.It’s important to eat a diet.A.balancedB. balanceC. balancingD. balances7.He often has sports. , football, basketball and ping-pong.A.For an exampleB. For exampleC. For the exampleD. For a example8.You should not eat 24 hours.A.something inB. nothing forC. anything forD. everything at9.--- My m other is ill.---A.Don’t worry.B. No hurry.C. I’m sorry to hear that.D. OK.10.--- I feel stressed out. I have so much work to do every day.--- You’d better not work too hard. It’s good for you to take some , I think.A.healthB. exerciseC. lessonD. work11.If I spend more minutes on it, now I can save your leg.A.littleB. a littleC. fewD. a few12.Before she got to Canada, she didn’t hear a single English .A.speakingB. spokenC. saidD. to say13.The day before yesterday the man gave me advice.A.a goodB. such a goodC. so good aD. a piece of good14.Please the door and you get into the hall.A.close, beforeB. close, afterC. open, whileD. open, until15.Such a officer be honest, she got her money in a dishonest way.A.can’tB. may notC. shouldn’tD. mustn’t二、完形填空(10 分)Different countries have different food. If you go to 1 , you may find 2 fish and chip shops along the 3 . Fish and chips are the 4 popular fast food in England. People often5 this kind of food at shops,6 sometimes they put the food7 paper bags and take it 8 or to their work place.Chinese fast food is also 9 in England, Australia and the US, but the most popular fast food in the US is 10 . It’s very delicious.( ) 1. A. Australia B. China C. England D. the US( ) 2. A. many B. much C. little D. few( ) 3. A. roads B. streets C. ways D. rivers( ) 4. A. very B. much C. more D. most( ) 5. A. have B. take C. sell D. put( ) 6. A. for B. so C. but D. and( ) 7. A. on B. into C. away D. out of( ) 8. A. home B. office C. school D. house( ) 9. A. different B. delicious C. cheap D. popular( )10. A. pizza B. dumplings C. fried-chicken D. fish and chips三、阅读理解(20 分)AMary had some troubles, so she went to see the doctor. He was a new doctor, and did not know her. So he first asked her some questions. One of the questions was," What is your age?"“Well...”Mary answered,“ I don’t quite remember, doctor, but I will try to think. “She thought for a while and then said, " Yes, I remember now, doctor. When I married(结婚),I was twenty-two years old, and my husband was thirty then. Now he is sixty, I know, and that is twice thirty. And so I am twice twenty- two. That is forty-four, isn’t it?"()1. Mary went to see the doctor because_.A. she had a headacheB. she had a feverC. she had caught a coldD. she didn't feel well()2. At first the doctorA. asked her some questionsB. examined her carefullyC.gave her some medicineD. asked her to have a rest()3. The doctor's first question was“”.A.You are no more than forty, are you?B. Do y ou have a fever?C. What is your age?D. Have you had any medicine?()4. Mary .A.answered the doctor's questions at once.B.answere d the question after thinking for a w hile.C.just kept silent.D.refused to tell her age.()5. Mary should be .A. forty-fourB. forty-fiveC. fiftyD. fifty-twoBImagine the situation. You are driving along a desert or on a mountain.You have no idea where you are. You passed the last house two hours ago.Then your car breaks down. It is night and it is cold. You have no mobilephone. What do you do? Well, next time take a GPS with you. This inventionmay be able to help you. It is a device(装置) which uses satellites (卫星) tofind the user’s position(位置). It can find your position to within 20 metres.A GPS cannot start your car, but at least you will know where you are.GPS, which means Global Positioning System, is a small radio receiver. It looks like a mobile phone. You can hold it in your hand, or put in your pocket. It is sometimes put into a watch or a telephone. We also find GPS devices in cars, planes, or boats. Some of these devices have electronic maps, so you know where you are. For example, in a city they can tell you the name of the street.There are three parts to the Global Positioning System. The first part is the receiver. You can hold it in your hand, or have it fixed into your car, plane, etc. The second part is a group of satellites orbiting the Earth. The receiver contacts at least four of the satellites and calculates(计算) its position. The thirdpart of the system is a network of ground stations. They are all over the world. They control thesatellites and make sure they are working well.Some people think that in the future the GPS will be as common as the mobile. They are bec oming cheaper and more and more accurate(精确的). There are also new uses for the GPS. Perhaps they will become like watches. Everyone will have one and you will never be lost again.6.A ccording to the passage, with the help of the GPS, people .(2)can’t be lost in a new city(3)can’t find their way in different countries(4)can learn about the culture of an unknown place(5)can spend the least time getting to another place7.We can learn from the passage that .A.t here are three parts to the GPSB.a GPS can’t be put into a watchC.a GPS can help you start your carD.t he GPS are becoming more and more expensive8.T he underlined word “They” in paragraph 3 means“”.A.ReceiversB. GPS devicesC. SatellitesD. Ground stations9.The passage is mainly about .A. the history of the GPSB. the introduction of the GPSC. the shape of the GPSD. the three parts of the GPS10. What can we infer(推断) from the passage?A.All GPS d evices have electronic maps.B.People in many countries will use the GPS for free.C.The receiver of the GPS contacts at least five of the satellites.D.The GPS will become more and more common in everyday life.四、词汇(10 分)(一)根据句子意思和首字母补全单词。

八年级下册英语试题及答案

八年级下册英语试题及答案

八年级下册英语试题及答案一. 选择题1. - How often do you go to the library?- I __________ go to the library twice a week.A. alwaysB. sometimesC. usuallyD. never答案: B. sometimes2. - _______ do you brush your teeth?- Twice a day.A. How oftenB. How longC. How muchD. How many 答案: A. How often3. - _____ is your mother?- She is a doctor.A. WhatB. WhereC. WhoD. How答案: C. Who二. 填空题1. I'm sorry, but I don't _______ your name.答案: know2. Linda often helps her mother _______ housework on weekends.答案: with3. The train _______ at 9 o'clock in the morning.答案: leaves三. 完型填空It was a sunny day and John and his friends decided to go hiking in the mountains. They packed their backpacks with food and water, and started their 1.After walking for about an hour, they spotted a small lake. John's friend, Mike, said, "I'm so hot and thirsty. Let's 2 here and have a drink."John agreed and they all sat down by the lake. Mike 3 into the lake and started drinking the water. Suddenly, he felt something moving in his mouth. He quickly 4 the water out and realized that it was a small fish.Everyone laughed at Mike and John said, "That's why you should always 5 water before drinking it in the wild."1. A. adventure B. journey C. trip D. experience答案: C. trip2. A. stop B. rest C. play D. swim答案: A. stop3. A. jumped B. fell C. dived D. ran答案: C. dived4. A. spit B. pour C. swallow D. drink答案: A. spit5. A. boil B. filter C. test D. clean答案: D. clean四. 阅读理解My name is Julie and I am a student at Maplewood Middle School.I love playing the piano, and I have been taking piano lessons for three years. Music has always been a big part of my life, and I enjoy playing different genres such as classical, jazz, and pop.1. How long has Julie been taking piano lessons?答案: Three years.2. What genres of music does Julie enjoy playing?答案: Classical, jazz, and pop.3. Why does Julie practice the piano every day?答案: It helps her relax and express her emotions.4. What was Julie asked to do by her music teacher?答案: Perform at the school's talent show.5. How did Julie feel after her performance at the talent show?答案: Nervous but also excited, and encouraged to continue pursuing her passion for music.五. 书面表达请根据以下提示,给你的美国朋友Tom写一封电子邮件,介绍中国传统节日春节。

新人教版八年级语文下册期末测试卷及答案【完整】

新人教版八年级语文下册期末测试卷及答案【完整】

新人教版八年级语文下册期末测试卷及答案【完整】满分:120分考试时间:120分钟一、语言的积累与运用。

(35分)1、下列加横线字字音正确的一项是()A.篡(cuàn)改娴(xián)熟悄(qiāo)然殚(dān)精竭虑B.教诲(huǐ)潇(xiāo)洒不辍(chuò)屏息敛(liǎn)声C.翘(qiáo)首落(luò)弟燥(zào)热锐不可当(dàng)D.镌刻(juān)仲(zhòng)裁遗嘱(zhǔ)抑(yì)扬顿挫3、下列加点成语运用不恰当的一项是( )A.就算海枯石烂....,我也会朝着自己梦想的方向努力。

B.目前,住房价格一涨再涨,令购房者叹为观止....。

C.你也许有困惑,而今天困惑中的探索正是明天豁然开朗....的准备。

D.因为这个项目技术含量高,攻关难度大,所以涉及的研究领域至今无人问津....。

4、下面句子中没有语病的一项是()A.这种网络社交工具的广泛使用,加快了信息流通的速度和质量。

B.电视节目《爸爸去哪儿》火了,孩子们的表现给观众留下了美好而深刻的印象。

C.身在边缘之人往往能欣赏到一些不为人知的独一无二的独特景观。

D.通过他一辈子的奋斗,使他的生活状况大为改观。

5、下列各项判断与分析中,不正确的一项是( )A.我们不应该对古人读书的正确态度滥加粗暴的不讲理的非议。

(这个句子的谓语是“滥加”)B.那树有一点佝偻,露出老态,但是坚固稳定,树顶像刚炸开的焰火一样繁密。

(这句话运用拟人和比喻的修辞手法,写出那树虽老但枝繁叶茂的状态) C.“狂澜”“沉湎”“鞠躬尽瘁”“呕心沥血”(这四个词感情色彩相同) D.防止校园欺凌事件不再发生,不让戾气弥漫整个校园,是一个系统工程,需要多方面、多领域齐心协力。

(这个句子是个病句,否定不当)6、下列语句排序,最恰当的一项是()①一个成功的实验需要的是眼光、勇气和毅力。

部编人教版2023--2024学年度第二学期八年级语文下册期末测试卷及答案(含两套题)

部编人教版2023--2024学年度第二学期八年级语文下册期末测试卷及答案(含两套题)

部编人教版2023--2024学年度第二学期期末测试卷及答案八年级 语文(满分:120分 时间:120分钟)第一部分 积累与运用(共24分)一、(完成1-5题,共16分)1.(2分)下列词语中,每对加点字的读音都相同的一项是( ) A .束缚./学识渊博. 勉强./强.词夺理 B .挑.逗/挑.拨离间 瞭.望/眼花缭.乱 C .消长./草长.莺飞 炫.耀/目眩.神迷 D .哺.育/相辅.相成 衰竭./怒不可遏.2.(2分)下列词语书写没有错别字的一项是( ) A .偏僻 狡辩 和颜悦色 平易进人 B .燎原 帷幕 人情事故 出类拔萃 C .眼眶 襁褓 相辅相承 销声匿迹 D .抉择 震撼 分崩离析 天衣无缝3.(2分)下面加点成语运用有误的一项是( )A .要过年了,全家老小都开始了大扫除,没有人袖手旁观....。

B .深秋的老屋一片萧瑟,杂草参差繁乱,无人修剪,鸟儿也不曾停留,这真是草长莺飞....。

C .再平凡的工作,我们都不能漫不经心....地应付,而要以认真负责、一丝不苟的态度来对待。

D .随着大学生的毕业旅行与中小学生暑期旅行的接踵而至....,暑期旅游市场也洋溢着青春的气息。

4.(2分)下列语句中没有语病的一项是( )A .丰富多彩的劳动实践活动,对我们品德的培养、智慧潜能的激发有着非常大的影响。

B .青羊区开展“青扬杯”中小学生艺术展演活动,得到家长支持,广泛引起社会关注。

C .成都地铁建设有序推进,这无疑不是有效缓解成都市交通运输压力的重要举措之一。

D .随处可见的大运会志愿者忙碌的身影,为迎接大运会已成为展现志愿者风采的舞台。

5.(8分)“双减”政策出台后,引发热议。

班级以此为契机开展主题活动,请你参与并完成任务。

(1)下面是同学们搜集到的资料,请用简洁的语言说说“双减”后应怎么布置作业。

(3分) 材料一作业在精不在多,老师要控制每天布置的作业的总量,摒弃机械重复的无效作业。

最新人教版八年级物理下册期末测试题(附答案)

最新人教版八年级物理下册期末测试题(附答案)

最新人教版八年级物理下册期末测试题(附答案)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. 下列哪个选项描述了光的反射定律的正确内容?()A. 入射角等于反射角B. 反射光线与入射光线在同一平面内C. 反射光线与入射光线在法线两侧D. 入射光线、反射光线和法线在同一平面内2. 下列哪种情况会导致物体受到浮力?()A. 物体在空气中B. 物体在水中C. 物体在真空中D. 物体在液体中3. 下列哪个选项描述了串联电路的特点?()A. 电流在各个电阻中是相等的B. 电压在各个电阻中是相等的C. 电流在各个电阻中是相等的,电压在各个电阻中是相等的D. 电流在各个电阻中是相等的,电压在各个电阻中是不相等的4. 下列哪个选项描述了并联电路的特点?()A. 电流在各个电阻中是相等的B. 电压在各个电阻中是相等的C. 电流在各个电阻中是相等的,电压在各个电阻中是相等的D. 电流在各个电阻中是不相等的,电压在各个电阻中是相等的5. 下列哪个选项描述了电磁感应现象的正确内容?()A. 电流在导体中产生磁场B. 磁场在导体中产生电流C. 电流在磁场中产生力D. 力在磁场中产生电流二、判断题(每题1分,共20分)1. 光的折射现象是指光从一种介质进入另一种介质时,传播方向发生改变的现象。

()2. 浮力的大小与物体的密度有关。

()3. 串联电路中,电流在各个电阻中是相等的。

()4. 并联电路中,电压在各个电阻中是相等的。

()5. 电磁感应现象是指磁场在导体中产生电流的现象。

()三、填空题(每空1分,共10分)1. 光的反射定律包括三个要素:入射光线、反射光线和______。

2. 浮力的大小等于物体排开液体的______。

3. 串联电路中,电流在各个电阻中是______。

4. 并联电路中,电压在各个电阻中是______。

5. 电磁感应现象是指磁场在导体中产生______。

四、简答题(每题10分,共10分)1. 请简述光的折射定律的内容。

八年级语文下册第2课《回延安》测试题-部编版(含答案)

八年级语文下册第2课《回延安》测试题-部编版(含答案)

八年级语文下册第2课《回延安》测试题-部编版(含答案)学校:___________姓名:___________班级:___________考号:___________一、选择题1.给下列句子选词填空,正确的一项是()(1)手抓黄土我不放,紧紧儿________在心窝上。

(2)几回回梦里回延安,双手________定宝塔山。

(3)满心话登时说不出来,一头________在亲人怀。

A.靠抱扑B.贴搂靠C.靠绕扎D.贴搂扑2.下列对课文的理解不正确的一项是()A.《回延安》是一首以陕北民歌“信天游”形式写成的诗歌,分为五个部分:回延安、忆延安、话延安、赞延安、祝延安。

B.诗人描绘团聚的场面时,突出了带有陕北地方特色的事物,如米酒、油馍、窑洞、红窗花等,烘托了热闹的气氛。

C.“一头扑在亲人怀”淋漓尽致地表现了诗人回到延安时无比激动的心情,可以从一个“扑”字看出来。

D.“千万条腿来千万只眼”所用的修辞手法是排比,表明变化之大,看也看不出来。

“一条条”“一座座”“一盏盏”“一排排”几句排比,在数量上运用叠词,有陕北方言的特色。

3.下列句子顺序排列恰当..的一项是()①人们已认识到,家风是一辈又一辈先人生活的结晶,所以要向后代传递出正能量。

①古人撰写在门框上的“忠厚传家久”“持家尊古训”,就是一种传统的家风。

①俗话说:“龙生龙,凤生凤,老鼠的儿子会打洞。

”是对古今家风的一种诠释。

①家风就是家庭的风气,它是一个家庭的传统和文化。

①而今父母懂规矩,知书达理,有这样良好的文化氛围,后人自会获得很好的熏陶。

A.①①①①①B.①①①①①C.①①①①①D.①①①①①4.依次填入横线上的词语正确的一项是()①每当夜间疲倦,正想偷懒时,仰面在灯光中黑瘦的面貌,似乎正要说出抑扬顿挫的话来。

①我母亲我最严,她是慈母兼任严父。

①我这熊熊地燃烧着的生命,我这快要使我全身炸裂的怒火,难道就不能出光明了吗?①16年后,探险家余纯顺又在那里遇难,更给罗布泊增添了几分色彩。

八年级下册数学期末试卷测试卷附答案

八年级下册数学期末试卷测试卷附答案

八年级下册数学期末试卷测试卷附答案一、选择题1.函数3y x =+中,自变量x 的取值范围是( ) A .x >3 B .x ≥3 C .x >﹣3 D .x ≥﹣3 2.下列各组数中,不能构成直角三角形的一组是 ( )A .7,24,25B .41,4,5C .3,4,5D .4,5,63.下列说法中:①一组对边平行,另一组对边相等的四边形是平行四边形 ②对角线相等的四边形是矩形 ③有一组邻边相等的矩形是正方形④对角线互相垂直的四边形是菱形,正确的个数是( ).A .1个 B .2个 C .3个D .4个4.一年级(1)班部分同学背诵课文《人之初》的时间(单位:s )26,42,30,40,29,29,27,29,28,30,设平均数为P ,众数为Z ,中位数为W ,则( ) A .P= ZB .P=WC .Z=WD .P= Z=W5.在 △ABC 中, AC = 9 , BC = 12 , AB = 15 ,则 AB 边上的高是( ) A .365B .1225C .94D .3346.如图,点E 为ABCD 边AD 上一点,将ABE △沿BE 翻折得到FBE ,点F 在BD 上,且EF DF =.52C ∠=︒那么ABE ∠的度数为( )A .38°B .48°C .51°D .62°7.如图所示,2AB =,则数轴上点C 表示的数为( )A .3B .5C 13D 58.如图1,在矩形ABCD 中,E 是CD 上一点,动点P 从点A 出发沿折线AE →EC →CB 运动到点B 时停止,动点Q 从点A 沿AB 运动到点B 时停止,它们的速度均为每秒1cm .如果点P 、Q 同时从点A 处开始运动,设运动时间为x (s ),△APQ 的面积为ycm 2,已知y 与x 的函数图象如图2所示,以下结论:①AB =5cm ;②cos ∠AED =35 ;③当0≤x ≤5时,y=225x ;④当x =6时,△APQ 是等腰三角形;⑤当7≤x ≤11时,y =55522x +.其中正确的有( )A .2个B .3个C .4个D .5个二、填空题9.若26x -有意义,则x 的取值范围是____________.10.菱形的两条对角线分别是6cm ,8cm ,则菱形面积为_________.11.如图一根竹子长为8米,折断后竹子顶端落在离竹子底端4米处,折断处离地面高度是________米.12.如图,在Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,3ACD BCD ∠=∠,点E 是斜边AB 的中点,若2CD =,则CE 的长为_____.13.若直线y=2x+1平移后过点(-1,2),则平移后直线的解析式为___________________.14.如图,已知矩形ABCD 中(AD >AB),EF 经过对角线的交点O ,且分别交AD ,BC 于E ,F ,请你添加一个条件:______,使四边形EBFD 是菱形.15.如图,直线142y x =-+与坐标轴分别交于点A ,B ,点P 是线段AB 上一动点,过点P作PM ⊥x 轴于点M ,作PN ⊥y 轴于点N ,连接MN ,则线段MN 的最小值为_________.16.如图,四边形ABCD是矩形纸片,AD=10,CD=8.在CD边上取一点E,将纸片沿AE 翻折,使点D落在BC边上的点F处.则AF=__;CF=__;DE=__.三、解答题17.计算:(1)80205-+;+-.(2)(53)(53)18.我国古代数学著作《九章算术》中“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,折断后竹子顶端落地,离竹子底端3尺处.折断处离地面的高度是多少?(1丈=10尺)19.如图,方格纸中的每个小正方形的边长均为1,小正方形的顶点称为格点.已知A、B、C都是格点.∠是直角,请在图1补全他的思路;(1)小明发现图2中ABC(2)请借助图3用一种不同于小明的方法说明ABC ∠是直角. 20.如图,在正方形ABCD 中,点E ,F 在AC 上,且AF CE =.求证:(1)BE DE =. (2)四边形BEDF 是菱形. 21.阅读下列材料,然后回答问题:在进行类似于二次根式231+的运算时,通常有如下两种方法将其进一步化简:方法一:222(31)2(31)3131(31)(31)(3)1--===-++-- 方法二:2231(3)1(31)(31)3131313131--+-====-++++(1)请用两种不同的方法化简:253+; (2)化简:111142648620202018++++++++.22.甲、乙两家采摘园的草莓品质相同,销售价格都是每千克50元,两家均推出了“周末”优惠方案,甲采摘园的优惠方案是:游客进园需购买100元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需要购买门票,采摘的草莓超过6千克后,超过部分五折优惠.优惠期间,设某游客的草莓采摘量为x (x >6)千克,在甲采摘园所需总费用为y 1元,在乙采摘园所需总费用为y 2元. (1)求y 1、y 2关于x 的函数解析式; (2)如果你是游客你会如何选择采摘园? 23.图1,在正方形ABCD 中,,P 为线段BC 上一点,连接,过点B 作,交CD 于点Q .将沿所在直线对折得到,延长交于点N .(1)求证:.(2)若,求AN 的长.(3)如图2,延长交BA 的延长线于点,若,记的面积为,求与x 之间的函数关系式.24.如图,在平面直角坐标系xOy 中,直线384y x =-+分别交x 、y 轴于点A 、B ,将正比例函数2y x =的图像沿y 轴向下平移3个单位长度得到直线l ,直线l 分别交x 、y 轴于点C 、D ,交直线AB 于点E .(1)直线l 对应的函数表达式是__________,点E 的坐标是__________; (2)在直线AB 上存在点F (不与点E 重合),使BF BE =,求点F 的坐标; (3)在x 轴上是否存在点P ,使2PDO PBO ∠=∠?若存在,求点P 的坐标;若不存在,请说明理由.25.已知,△ABC 为等边三角形,BC 交y 轴于点D ,A (a ,0)、B (b ,0),且a 、b 满足方程269-10a a b +++=.(1)如图1,求点A 、B 的坐标以及CD 的长.(2)如图2,点P 是AB 延长线上一点,点E 是CP 右侧一点,CP=PE ,且∠CPE =60°,连接EB,求证:直线EB必过点D关于x轴的对称点.(3)如图3,若点M在CA延长线上,点N在AB的延长线上,且∠CMD=∠DNA,试求AN-AM的值是否为定值?若是请计算出定值是多少,若不是请说明理由.【参考答案】一、选择题1.D解析:D【分析】根据二次根式的意义,被开方数是非负数即可求解.【详解】解:根据题意得:x+3≥0,解得x≥﹣3.故自变量x的取值范围是x≥﹣3.故选D.【点睛】本题主要考查了二次根式有意义的条件,自变量的取值范围,解题的关键在于能够熟练掌握二次根式有意义的条件.2.D解析:D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.【详解】解:A、72+242=252,能构成直角三角形,故此选项不符合题意;B、42+52=2,能构成直角三角形,故此选项不符合题意;C、32+42=52,能构成直角三角形,故此选项不符合题意;D、52+42≠62,不能构成直角三角形,故此选项符合题意.故选:D.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.A解析:A【解析】【分析】分别对各个结论进行判断,即可得出答案.【详解】解:一组对边平行,另一组对边相等的四边形可能是平行四边形或梯形,故①错误;对角线相等的平行四边形是矩形,,故②错误; 有一组邻边相等的矩形是正方形,故③正确; 对角线互相垂直平分的四边形是菱形,故④错误; 故选:A . 【点睛】本题主要考查平行四边形的判定、矩形的判定、正方形的判定、菱形的判定;熟练掌握特殊四边形的判定方法是解题的关键.4.C解析:C 【解析】 【分析】分别求出这组数据的平均数,中位数,众数进行判断即可. 【详解】解:由题意得:平均数264230402929272928303110P +++++++++==把这组数据重新排列如下:26,27,28,29,29,29,30,30,40,42, ∴处在最中间的两个数为29、29, ∴中位数2929292W +==, ∵29出现了3次,出现的次数最多, ∴众数29Z =, ∴Z W =, 故选C . 【点睛】本题主要考查了求中位数,众数和平均数,解题的关键在于能够熟练掌握三者的定义.5.A解析:A 【分析】首先由题目所给条件判断△ABC 是直角三角形,再按照面积法求解即可. 【详解】解:∵222291281144225AC BC +=+=+=,2215225AB ==, ∴222AC BC AB +=.∴△ABC 是直角三角形且90C =∠. ∴由直角三角形面积的计算方法1122S AC BC AB h ==,可知AB 边上的高是91236155⨯=. 故选A. 【点睛】本题考查了勾股定理的逆定理和用面积法求直角三角形斜边上的高的知识,属于基础题型.6.C解析:C 【解析】 【分析】由平行四边形的性质和折叠的性质得出∠BFE =∠A =52°,∠FBE =∠ABE ,由等腰三角形的性质和三角形的外角性质得出∠EDF =∠DEF =12∠BFE =26°,由三角形内角和定理求出∠ABD =102°,即可得出∠ABE 的度数. 【详解】解:∵四边形ABCD 是平行四边形, ∴∠A =∠C =52°,由折叠的性质得:∠BFE =∠A =52°,∠FBE =∠ABE , ∵EF =DF ,∴∠EDF =∠DEF =12∠BFE =26°, ∴∠ABD =180°-∠A -∠EDF =102°, ∴∠ABE =12∠ABD =51°, 故选:C . 【点睛】本题考查了平行四边形的性质、折叠的性质、等腰三角形的性质、三角形的外角性质、三角形内角和定理;熟练掌握平行四边形的性质和等腰三角形的性质是解决问题的关键.7.C解析:C 【解析】 【分析】根据题意得OB OC =,在Rt ABO 中,利用勾股定理可得13OB =,从而得到13OC OB ==,即可求解.【详解】 解:如图,由题意知:3OA =,2AB =,BA OC ⊥,OB OC =.90BAO ∴∠=︒.在Rt ABO 中,90BAO ∠=︒,22223213OB OA AB ∴=++13OC OB ∴=∴数轴上点C 13故选:C . 【点睛】本题主要考查了勾股定理,数轴与实数,尺规作图——作一条线段等于已知线段,熟练掌握相关知识点是解题的关键.8.B解析:B 【分析】根据图中相关信息即可判断出正确答案. 【详解】解:图2知:当57x ≤≤ 时y 恒为10,∴当5x =时,点Q 运动恰好到点B 停止,且当57x ≤≤ 时点P 必在EC 上, 5AB cm ∴=,故①正确; ∵当57x ≤≤ 时点P 必在EC 上,且当7x > 时,y 逐渐减小, ∴当7x = 时,点Q 在点B 处,点P 在点C 处,此时10y =,47BC cm AE EC cm ∴+=,=,设EC acm =,则7AE a cm =(﹣), 5DE a cm =(﹣), 在Rt ADE ∆ 中,由勾股定理得:222457a a +(﹣)=(﹣),解得:2a =,235EC cm DE cm AE cm ∴=,=,=, 35DE cos AED AE ∴∠==,故②正确; 当05x ≤≤ 时,由5AE cm = 知点P 在AE 上,过点P 作PH AB ⊥,如图:35DE cos EAB cos AED AE ∠∠===, 45sin EAB ∴∠=,AP AQ xcm ==,45PH xcm ∴=,212•25y AQ PH y ∴===x ,故③正确;当6x = 时,5AQ AB cm ==,172PQ cm AP cm =,=, APQ ∴∆ 不是等腰三角形,故④不正确;当711x ≤≤时,点P 在BC 上,点Q 和点B 重合,115555(74)2222y AQ PQ x x ==⨯⨯+-=-+ 故⑤ 不正确; 故选B . 【点睛】本题主要考查了动点问题的函数图像,理解题意,读懂图像信息,灵活运用所学知识是解题关键,属于中考选择题中的压轴题.二、填空题 9.3x ≥【解析】 【分析】根据被开方数大于或等于0,列式计算即可得解. 【详解】解:∵∴2x -6≥0, 解得x ≥3. 故答案为:x ≥3. 【点睛】本题考查二次根式有意义的条件.解题的关键是明确二次根式的被开方数是非负数. 10.24cm 2 【解析】 【分析】根据菱形面积的计算公式,即可求解. 【详解】解:菱形面积为对角线乘积的一半,可得菱形面积168242⨯⨯=(cm 2)故答案为24cm 2. 【点睛】此题主要考查了菱形面积的计算,掌握菱形面积的计算公式是解题的关键. 11.3 【解析】 【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x 米,则斜边为(8-x )米.利用勾股定理解题即可. 【详解】解:设竹子折断处离地面x 米,则斜边为(8-x )米, 根据勾股定理得:x 2+42=(8-x )2 解得:x=3.∴折断处离地面高度是3米,故答案为:3.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.12.2【分析】根据角之间的关系求得45DEC ∠=︒,从而求得CE 的长.【详解】解:∵3ACD BCD ∠=∠,90ACB ∠=︒∴22.5BCD ∠=︒又∵CD AB ⊥∴9022.5BCD B BAC ∠=︒-∠=∠=︒,90CDE ∠=︒又∵点E 是斜边AB 的中点∴CE AE =∴22.5ECA BAC ∠=∠=︒∴45BEC ∠=︒∴CDE △为等腰直角三角形 ∴2CE故答案为2.【点睛】此题主要考查了直角三角形的有关性质,熟练掌握勾股定理、斜边中线等于斜边一半等性质是解题的关键.13.2 4.y x =+【分析】由平移的性质可设平移后的解析式为:2y x b =+,再利用待定系数法求解即可得到答案.【详解】解:设平移后的解析式为:2y x b =+,把()1,2-代入2y x b =+得:()212,b ⨯-+=4,b ∴=所以平移后的解析式为:2 4.y x =+故答案为:2 4.y x =+【点睛】本题考查的是一次函数的图像的平移,及利用待定系数法求解函数解析式,掌握一次函数的平移的特点是解题的关键.14.E解析:EF ⊥BD【分析】通过证明△OBF ≌△ODE ,可证四边形EBFD 是平行四边形,若四边形EBFD 是菱形,则对角线互相垂直,因而可添加条件:EF ⊥BD .【详解】当EF ⊥BD 时,四边形EBFD 是菱形.理由:∵四边形ABCD 是矩形,∴AD ∥BC ,OB=OD ,∴∠FBO=∠EDO ,在△OBF 和△ODE 中EDO FBO BO DOEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OBF ≌△ODE (ASA ),∴OE=OF ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,∴四边形EBFD 是菱形.故答案为:EF ⊥BD.【点睛】本题考查了矩形的性质,平行四边形的判定,菱形的判定,以及全等三角形的判定方法,熟练掌握性质及判定方法是解答本题的关键.15.【分析】如图,连接,依题意,四边形是矩形,则,当时,最小,底面积法求得即可.【详解】如图,连接,PM ⊥x 轴,PN ⊥y 轴,四边形是矩形,,当时,最小,直线与坐标轴分别交于点A ,B ,【分析】如图,连接OP ,依题意,四边形OMPN 是矩形,则OP MN =,当OP AB ⊥时,OP 最小,底面积法求得OP 即可.【详解】如图,连接OP ,PM ⊥x 轴,PN ⊥y 轴,90AOB ∠=︒∴四边形OMPN 是矩形,∴OP MN =,∴当OP AB ⊥时,OP 最小, 直线142y x =-+与坐标轴分别交于点A ,B , 令0,4x y ==,)4(0,A ∴令0,8y x ==,(0,8)B ∴4,8OA OB ∴==,22224845AB OA OB ∴=++=当OP AB ⊥时,1122ABC S OA OB OP AB =⨯=⨯△, 8545OA OB OP AB ⨯∴=== ∴MN OP ==85. 85. 【点睛】 本题考查了矩形的性质,勾股定理,垂线段最短,找到MN OP =是解题的关键. 16.4 5【分析】先根据矩形的性质得AB=CD=8,在RtΔABF 中,利用勾股定理计算BF=6,再根据矩形的性质得AD=CB=10 ,则CF=BC−BF=4;设DE=x ,则EF=x解析:4 5【分析】先根据矩形的性质得AB=CD=8,在RtΔABF 中,利用勾股定理计算BF=6,再根据矩形的性质得AD=CB=10 ,则CF=BC−BF=4;设DE=x ,则EF=x , EC=8−x ,然后在 RtΔECF 中根据勾股定理得到42+(8−x)2=x 2 ,再解方程即可得到DE 的长.【详解】解:根据折叠可得AF =AD =10,∵四边形ABCD 是矩形,∴BC=AD=10,在Rt△ABF中, AB2+FB2=AF2,∴FB=6.∴FC=10﹣6=4,设DE=x,则EF=x,EC=8﹣x,在Rt△ECF中,∵CE2+FC2=EF2,∴42+(8﹣x)2=x2,解得x=5.则DE=5.故答案为:10,4,5.【点睛】本题考查了图形的折叠,矩形的性质和勾股定理,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题17.(1)3;(2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式=(2)原式=5﹣3=2.【点睛】本题考查的是二次根式解析:(1)2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式==(2)原式=5﹣3=2.【点睛】本题考查的是二次根式的加减运算,二次根式的混合运算,掌握利用平方差公式进行简便运算是解题的关键.18.55尺【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x )尺,利用勾股定理解题即可.【详解】设竹子折断处离地面x 尺,则斜边为(10﹣x )尺,根据勾股定理得:解析:55尺【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x 尺,则斜边为(10﹣x )尺,利用勾股定理解题即可.【详解】设竹子折断处离地面x 尺,则斜边为(10﹣x )尺,根据勾股定理得:x 2+32=(10﹣x )2.解得:x =4.55,答:折断处离地面的高度为4.55尺.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.19.(1)见解析;(2)见解析【解析】【分析】(1)先利用勾股定理求出三角形三边的长,然后用勾股定理的逆定理进行判断即可;(2)过A 点作于,过作于,然后证明≌,得到,在证明即可得到答案.【详解解析:(1)见解析;(2)见解析【解析】【分析】(1)先利用勾股定理求出三角形三边的长,然后用勾股定理的逆定理进行判断即可; (2)过A 点作AD BE ⊥于D ,过C 作CE DB ⊥于E ,然后证明ADB △≌BEC △,得到ABD BCE ∠=∠,在证明90ABD EBC ∠+∠=即可得到答案.【详解】解:(1)∵AB221310BC ,AC ∴222AB BC AC +=, ∴ABC 是直角三角形,∴90ABC ∠=.(2)过A 点作AD BE ⊥于D ,过C 作CE DB ⊥于E ,由图可知:AD BE =,BD CE =,90ADB BEC ∠=∠=,在ADB △和BEC △中,AD BE ADB BEC BD CE =⎧⎪∠=∠⎨⎪=⎩, ∴ADB △≌BEC △(SAS ),∴ABD BCE ∠=∠,在BEC △中,180BEC BCE EBC ∠+∠+∠=,∴18090BCE EBC BEC ∠+∠=-∠=,∴90ABD EBC ∠+∠=,∵D ,B ,E 三点共线,∴180ABD EBC ABC ∠+∠+∠=,∴()18090ABC ABD EBC ∠=-∠+∠=.【点睛】本题主要考查了勾股定理和勾股定理的逆定理,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.20.(1)见解析;(2)见解析【分析】(1)根据边角边证明全等即可得出结论;(2)同理可得,然后证明,即可得出,结论可得.【详解】解:(1)∵四边形是正方形,∴,,在和中,,∴,∴解析:(1)见解析;(2)见解析【分析】(1)根据边角边证明ABE ADE ≅△△全等即可得出结论;(2)同理可得BFC DFC ≅△△,然后证明()ABE CBF SAS ≅△△,即可得出BE BF DE DF ===,结论可得.【详解】解:(1)∵四边形ABCD 是正方形,∴AB AD CD BC ===,45DAE BAE BCF DCF ∠=∠=∠=∠=︒,在ABE △和ADE 中,AB AD BAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩, ∴()ABE ADE SAS ≅△△,∴BE DE =.(2)同理可得BFC DFC ≅△△,可得BF DF =,∵AF CE =,∴AF EF CE EF -=-,即AE CF =,在ABE △和CBF 中,AB BC BAE BCF AE CF =⎧⎪∠=∠⎨⎪=⎩, ∴()ABE CBF SAS ≅△△,∴BE BF =,∴BE BF DE DF ===,∴四边形BEDF 是菱形.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,菱形的判定等知识点,熟练掌握全等三角形的判定定理是解本题的关键.21.(1);(2)【解析】【分析】(1)首先理解题意,根据题目的解析,即可利用两种不同的方法化简求得答案;(2)结合题意,可将原式化为(-+-+-+…+-),继而求得答案.【详解】解:(1)解析:(12【解析】【分析】(1)首先理解题意,根据题目的解析,即可利用两种不同的方法化简求得答案;(2)结合题意,可将原式化为12,继而求得答案.【详解】解:(1)2()()222-(2)原式=1212. 故答案为2. 【点睛】 此题考查了分母有理化的知识.此题难度较大,解题的关键是理解题意,掌握分母有理化的两种方法.22.(1),;(2)当采摘量等于10千克时,在甲、乙两采摘园所需费用相同;当采摘量超过10千克时,选择乙采摘园;当采摘量超过6千克且少于10千克时,选择甲采摘园【分析】(1)根据题意列出关系式,化简解析:(1)130100y x =+,225150y x =+;(2)当采摘量等于10千克时,在甲、乙两采摘园所需费用相同;当采摘量超过10千克时,选择乙采摘园;当采摘量超过6千克且少于10千克时,选择甲采摘园【分析】(1)根据题意列出关系式,化简即可得到结论;(2)分别令12y y =,12y y >,12y y <求出对应x 的值或取值范围,从而得出结论.【详解】解:(1)由题意可得:1100500.630100y x x =+⨯=+,2506(6)500.525150y x x =⨯+-⨯⨯=+,即1y 关于x 的函数解析式是1230100,y x y =+关于x 的函数解析式是225150y x =+; (2)当12y y =时,即:3010025150x x +=+,解得10x =,即当采摘量等于10千克时,在甲、乙两采摘园所需费用相同;当12y y >时,即:3010025150x x +>+,解得10x >,即当采摘量超过10千克时,选择乙采摘园;当12y y <时,即:3010025150x x +<+,解得10x <,即当采摘量超过6千克且少于10千克时,选择甲采摘园;由上可得,当采摘量等于10千克时,在甲、乙两采摘园所需费用相同;当采摘量超过10千克时,选择乙采摘园;当采摘量超过6千克且少于10千克时,选择甲采摘园.【点睛】本题考查了一次函数的实际应用,正确理解题意列出函数关系式是解题的关键. 23.(1)证明见解析;(2);(3).【分析】(1)先证,再据ASA 证明△ABP ≌△BCQ ,可证得BP=CQ ;(2)连接,先证,得到,设AN=x ,用x 表示出ND ;再求出DQ 和的值,再在RT △NDQ解析:(1)证明见解析;(2);(3). 【分析】(1)先证,再据ASA 证明△ABP ≌△BCQ ,可证得BP=CQ ; (2)连接,先证,得到,设AN=x ,用x 表示出ND ;再求出DQ 和的值,再在RT △NDQ 中用勾股定理列方程求解;(3)作QG ⊥AB 于G ,先证MB=MQ 并设其为y ,再在RT △MGQ 中用勾股定理列出关于x 、y 的方程,并用x 表示y ;用y 表示出△MBQ 的面积,用x 表示出△的面积.最后据用x 、y 表示出S ,并把其中的y 用x 代换即可.【详解】(1)在正方形ABCD 中,,,,,,,.(2)在正方形ABCD 中连接,如下图:由折叠知BC=,又AB=BC,∠BAN=90°∴,,,,,,,设,,,,,.(3)如下图,作,垂足为G,由(1)知∵∠MBQ=∠CQB=∠MQB∴BM=MQ设,则.,,,故.【点睛】此题综合考查了正方形性质、三角形全等,勾股定理等知识点,其关键是要熟练掌握相关知识,能灵活应用.24.(1),;(2)存在,;(3)或【解析】【分析】(1)根据一次函数平移的方法求出直线l 对应的函数表达式,再联立两个直线解析式求出交点坐标;(2)作轴于M ,轴于N ,利用,得到F 点的横坐标,再代解析:(1)23y x =-,()4,5;(2)存在,()4,11F -;(3)()4,0P 或()4,0-【解析】【分析】(1)根据一次函数平移的方法求出直线l 对应的函数表达式,再联立两个直线解析式求出交点坐标;(2)作EM y ⊥轴于M ,FN y ⊥轴于N ,利用()EBM FBN AAS ≌,得到F 点的横坐标,再代入解析式求出F 点纵坐标即可;(3)在y 轴正半轴上取一点Q ,使3OQ OD ==,利用等腰三角形的性质得PBO BPQ ∠=∠,即可求出5PQ BQ ==,再由勾股定理求出OP 的长,得到点P 坐标. 【详解】解:(1)正比例函数2y x =的图像沿y 轴向下平移3个单位长度,得23y x =-, 联立两个直线解析式,得38423y x y x ⎧=-+⎪⎨⎪=-⎩,解得45x y =⎧⎨=⎩, ∴()4,5E ,故答案是:23y x =-,()4,5;(2)如图,作EM y ⊥轴于M ,FN y ⊥轴于N ,∴4EM =,90EMB FNB ∠=∠=︒,∵BE BF =,EBM FBN ∠=∠,∴()EBM FBN AAS ≌,∴4FN EM ==, 在384y x =-+中,当4x =-时,11y =, ∴()4,11F -;(3)易知()0,8B ,()0,3D -,∴8OB =,3OD =,如图,在y 轴正半轴上取一点Q ,使3OQ OD ==,∵90POB ∠=︒,OQ OD =,∴PQ PD =,∴PDO PQO PBO BPQ ∠=∠=∠+∠,∵2PDO PBO ∠=∠,∴PBO BPQ ∠=∠,∴5PQ BQ ==,∴由勾股定理得:4OP =,∴()4,0P 或()4,0-.【点睛】本题考查一次函数综合,解题的关键是掌握一次函数解析式的求法,以及利用数形结合思想解决一次函数与几何综合问题.25.(1)A (﹣3,0),B (1,0),CD =2;(2)证明见详解;(3)6,理由见详解;【分析】(1)由题意可知:a=-3,b=1,OA =3,OB =1,AB =BC =AC =4,在Rt △ODB 中,求出解析:(1)A (﹣3,0),B (1,0),CD =2;(2)证明见详解;(3)6,理由见详解;【分析】(1)由题意可知:a =-3,b =1,OA =3,OB =1,AB =BC =AC =4,在Rt △ODB 中,求出OD ,DB 即可解决问题.(2)如图2中,连接EC ,设BE 交PC 于K .由△ACP ≌△BCE (SAS ),推出∠APC =∠CEB ,可证∠KBP =∠KCE =60°勾股定理求出OF ,可得D ,F 关于x 轴对称,即可解决问题;(3)如图3中,作DH ⊥AC 于H .想办法证明△DHM ≌△DON 即可解决问题;【详解】解:(1)∵269-10a a b +++=∴23-10a b ++=()∴a =-3,b =1,∴A (﹣3,0),B (1,0),如图1中,∵△ABC 是等边三角形,∴∠ABC =60°,AB =BC =AC ,∵A (﹣3,0),B (1,0),∴OA =3,OB =1,∴AB =BC =AC =4,在Rt △ODB 中,30,ODB ∠=︒2,BD ∴=∴CD =BC ﹣BD =2.(2)如图2中,连接EC ,设BE 交PC 于K .∵CP=PE,∠CPE=60°,∴△CPE是等边三角形,∴∠PCE=60°,CP=CE,∵△ABC是等边三角形,∴∠ACB=∠PCE=60°,∴∠ACP=∠BCE,∵CA=CB,CP=CE,∴△ACP≌△BCE(SAS),∴∠APC=∠CEB,∵∠PKB=∠EKC,∠ECK+∠CKE+∠CEK=180°,∠KBP+∠PKB+∠KPB=180°,∴∠KBP=∠KCE=60°,∴∠OBF=∠PBK=60°,∵∠BOF=90°,OB=1,∴BF=2∴OF=22413-=-=,BF OB∵223,=-=OD BD OB∴OD=OF,∴D,F关于x轴对称,∴直线EB必过点D关于x轴的对称点.(3)是定值,理由如下:如图3中,作DH⊥AC于H.在Rt△CDH中,∵∠CHD=90°,∠C=60°,CD=2,∴CH=1,∴DH=∴AH=3,∵OD∴DH=OD,∵∠DHM=∠DON,∠M=∠DNO,∴△DHM≌△DON(AAS),∴HM=ON,∴AN﹣AM=OA+ON﹣(HM﹣AH)=3+3=6.【点睛】本题属于三角形综合题,考查了等边三角形的性质和判定,解直角三角形,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

人教版八年级下册数学《期中检测试题》附答案解析

人教版八年级下册数学《期中检测试题》附答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________第I 卷一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列各式:3,2x ,32,2)2(x x +≥-其中二次根式的个数为( )A. B. C. D.2. 下列四组线段中,可以构成直角三角形的是( )A. 4,5,6B. 1.5,2,2.5C. 2,3,4D. 1,2, 3 3. 下列计算正确是( )A. 239-=B. ()233=C. ()233-=-D. 239=4. 杨伯家小院子的四棵小树E 、F 、G 、H 刚好在其四边形院子ABCD 各边的中点上,若在四边形EFGH 内种上小草,则这块草地的形状是( )A. 平行四边形B. 矩形C. 正方形D. 菱形5. 下列命题中,真命题是( )A. 对角线互相垂直的四边形是菱形B. 对角线互相垂直平分的四边形是正方形C. 对角线相等的四边形是矩形D. 对角线互相平分的四边形是平行四边形6. 如图,在▱ABCD 中,AC 、BD 为对角线,BC =6,BC 边上的高为4,则阴影部分的面积为( )A. 3B. 6C. 12D. 247. 如图,已知在Rt ABC 中,90,8ACB AB ∠=︒=,分别以,AC BC 为直径作半圆,面积分别记为12,S S ,则12S S +等于( )A. 2πB. 4πC. 6πD. 8π 8. 计算:()910232()3+⨯-=( ) A. 23+ B. 23- C. 23-+ D. 23--9. 用四张大小一样的长方形纸片拼成一个正方形ABCD (如图),它的面积是48,已知长方形的一边长33,AE =图中空白部分是一个正方形,则这个小正方形的周长为( )A. 23B. 43C. 83D. 310. 如图所示,在矩形ABCD 中,12,20AB AC ==,两条对角线相交于点.以OB OC 、为邻边作第个1OBB C ,对角线相交于点1A ,再以11A B 、1A C 为邻边作第个111A B C C ,对角线相交于点1O ;再以11O B 、11O C 为邻边作第个1121O B B C ……依此类推.则第个平行四边形的面积为( )A. B. C. D.第II 卷二、填空题(每题4分,满分24分,将答案填在答题纸上)11. 若二次根式x 2-有意义,则x 的取值范围是___.12. 若实数a 、b 满足240a b ++-=,则a b=_____. 13. 若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝2. 14. 如图,在平行四边形ABCD 中,添加一个条件____,使平行四边形ABCD 是矩形.15. 如图,把矩形纸片ABCD 沿EF 折叠,使点落在边AD 上的点处,点落在点处,已知10,4,2AD CD B D =='=.则AE =____.16. 如图,小明在A 时测得某树的影长为2m,B 时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为_____m.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.) 17. 计算:(1)54520+- (2)()(227227)+-.18. 如图,ABCD 中,E 、F 分别在AD 、BC 上,且//EF AB .求证:EF CD =.19. 如图,在ABC 中,AB =BC ,D 、E 、F 分别是BC 、AC 、AB 边上的中点.(1)求证:四边形BDEF 是菱形.(2)若10,AB cm =求四边形BDEF 的周长.20. 如图所示的一块空地,已知4,3,90,13,AD m CD m ADC AB m ==∠=︒=12BC m =,求这块空地的面积.21. 如图所示,ABCD 是一个正方形花园,,是它的两个门,且DE CF =.要修建两条路BE 和AF ,这两条路等长吗?它们有什么位置关系?为什么?22. 问题背景:在△ABC 中,AB 、BC 、AC 三边的长分别为5、10、13,求这个三角形的面积小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC 的高,而借用网格就能计算出它的面积.(1)请你利用上述方法求出△ABC 的面积.(2)在图2中画△DEF ,DE 、EF 、DF 三边的长分别为2、8、10①判断三角形形状,说明理由.②求这个三角形的面积.(直接写出答案)23. 如图,在四边形ABCD 中,连接AC 、BD ,已知90,ACB ADB ∠=∠=︒且点,E F 分别为AB 、CD 的中点,连接EF .(1)求证:EF CD ⊥.(2)若26AB CD ,求EF 的长.24. 先阅读下列材料,再解决问题:我们定义一组对边平行,另一组对边不平行的四边形叫做梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.如图,,E F 分别是梯形ABCD 的两腰AB 和CD 的中点,即EF 为梯形ABCD 的中位线.请同学们思考梯形的中位线与两底有何数量关系与位置关系?并给予证明.猜想:已知:求证:证明:25. 如图所示,在四边形ABCD 中,//,90AD BC A ∠=︒,12,21,16AB BC AD ===.动点从点出发,沿射线BC 方向以每秒个单位长度的速度运动,动点Q 同时从点出发,在线段AD 上以每秒个单位长度的速度向点运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为秒.(1)填空:AQ = ;BP = ;的取值范围是 .(2)设DPQ 的面积为,请用含的式子表示.(3)当t = 时,PD PQ =.(4)当为何值时,以点,,,P C D Q 为顶点的四边形是平行四边形.答案与解析第I卷一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.x≥-其中二次根式的个数为()2)A. B. C. D.[答案]C[解析][分析]根据二次根式的定义逐一进行判断即可得答案.[详解∵x2≥0,x≥-是二次根式,x≥-,∵x≥-2,∴x+2≥0,2)2)综上二次根式有三个,故选C.a≥的式子是二次根式是解题的关键.[点睛]本题考查了二次根式的判断,)02. 下列四组线段中,可以构成直角三角形的是( )A. 4,5,6B. 1.5,2,2.5C. 2,3,4D. , 3[答案]B[解析]试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可:A、42+52=41≠62,不可以构成直角三角形,故本选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C、22+32=13≠42,不可以构成直角三角形,故本选项错误;D 、()2221233+=≠,不可以构成直角三角形,故本选项错误.故选B .考点:勾股定理的逆定理.3. 下列计算正确的是( )A. 239-=B. ()233=C. ()233-=-D. 239=[答案]B[解析][分析]根据二次根式运算法则即可求解.[详解]A .23-,二次根号下不能为负,故A 选项错误B .()233=,故B 选项正确 C .()233-=,故C 选项错误D .233=,故D 选项错误故选:B[点睛]本题考查了二次根式的运算法则,二次根式的性质,被开方数要大于零.4. 杨伯家小院子的四棵小树E 、F 、G 、H 刚好在其四边形院子ABCD 各边的中点上,若在四边形EFGH 内种上小草,则这块草地的形状是( )A. 平行四边形B. 矩形C. 正方形D. 菱形 [答案]A[解析][分析]连接BD 、AC ,根据中位线定理可得四边形是平行四边形,即可得到结果;[详解]如图所示,连接AC 、BD ,∵E 、F 、G 、H 是四边形ABCD 各边的中点,∴∥∥EH BD FG ,12EH FG BD ==, ∴四边形EFGH 是平行四边形,故答案选A .[点睛]本题主要考查了中点四边形的知识点,准确构造三角形,借助中位线求解是解题的关键. 5. 下列命题中,真命题的是( )A. 对角线互相垂直的四边形是菱形B. 对角线互相垂直平分的四边形是正方形C. 对角线相等的四边形是矩形D. 对角线互相平分的四边形是平行四边形[答案]D[解析][分析]根据平行四边形、矩形、菱形、正方形的判定定理进行判断即可.[详解]对角线互相垂直且平分的四边形是菱形,故A 是假命题;对角线互相垂直平分且相等的四边形是正方形,故B 是假命题;对角线相等且平分的四边形是矩形,故C 是假命题;对角线互相平分的四边形是平行四边形,故D 是真命题.故选D .[点睛]本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6. 如图,在▱ABCD 中,AC 、BD 为对角线,BC =6,BC 边上的高为4,则阴影部分的面积为( )A. 3B. 6C. 12D. 24[答案]B[解析][分析] 根据平行四边形的性质可得出阴影部分的面积为平行四边形面积的14,再由平行四边形的面积得出答案即可.[详解]∵四边形ABCD 为平行四边形,∴OA =OC ,OB =OD ,∴111646244BOC ABC ABCD S S S ===⨯⨯=, 故选:B .[点睛]本题考查了平行四边形的面积和性质,解题的关键是掌握平行四边形的性质:对角线互相平分. 7. 如图,已知在Rt ABC 中,90,8ACB AB ∠=︒=,分别以,AC BC 为直径作半圆,面积分别记为12,S S ,则12S S +等于( )A. 2πB. 4πC. 6πD. 8π[答案]D[解析][分析]根据半圆面积公式结合勾股定理,知S 1+S 2等于以斜边为直径的半圆面积问题得解.[详解]∵在Rt ABC 中,90ACB ∠=︒,8AB =,∴22264AC BC AB +==, ∵22111228AC S AC ππ⎛⎫== ⎪⎝⎭,22211228BC S BC ππ⎛⎫== ⎪⎝⎭, ∴()2222212111188888S S AC BC AC BC AB πππππ+=+=+==. 故选:D .[点睛]本题主要考查了勾股定理的应用,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.8. 计算:(91022(+⨯-=( )A. 2B. 2C. 2-D. 2-[答案]B[解析][分析]逆用同底数幂的乘法法则把(102-转化成((922-⨯-,然后运用积的乘方运算法则以及平方差公式计算即可.[详解](91022(⨯99((222(=+⨯⨯ 9(222(⎡⎤=+⨯-⎣⎦2=-故选:B .[点睛]本题考查了同底数幂的乘法,积的乘方,二次根式,平方差公式的应用,逆用同底数幂的乘法法则把()1023-转化成()()92323-⨯-是解题的关键. 9. 用四张大小一样的长方形纸片拼成一个正方形ABCD (如图),它的面积是48,已知长方形的一边长33,AE =图中空白部分是一个正方形,则这个小正方形的周长为( )A. 23B. 43C. 3D. 3[答案]C[解析] [分析] 通过正方形的面积求出边长为48,根据图形之间的联系求出空白小正方形的边长3-233即可求解.[详解]解:∵正方形ABCD 的面积是48,∴3∵3∴333∴空白小正方形的边长333∴小正方形的周长为3故选C .[点睛]本题考查了正方形的面积与边长;解题的关键是能够观察出图形之间的联系. 10. 如图所示,在矩形ABCD 中,12,20AB AC ==,两条对角线相交于点.以OB OC 、为邻边作第个1OBB C ,对角线相交于点1A ,再以11A B 、1A C 为邻边作第个111A B C C ,对角线相交于点1O ;再以11O B 、11O C 为邻边作第个1121O B B C ……依此类推.则第个平行四边形的面积为( )A.B. C. D.[答案]C[解析][分析] 首先分别求得几个平行四边形的面积,即可得到规律:第n 个平行四边形的面积为1922n ,继而求得答案. [详解]解:∵在矩形ABCD 中,AB=12,AC=20,∴22201216-=,∴S 矩形ABCD =AB•BC=192,OB=OC ,∵以OB ,OC 为邻边作第1个平行四边形OBB 1C ,∴平行四边形OBB 1C 是菱形,OA 1是△ABC 的中位线, 可知111122OA AB OB ==, ∴112OB AB ==, ∴111116129622OBB C S BC OB ==⨯⨯=, 111111111612482222A B C C S BC OB ==⨯⨯⨯=, ∴第n 个平行四边形面积为:1922n , ∴第6个平行四边形的面积是:619232=, 故选:C .[点睛]此题考查了平行四边形的性质以及矩形的性质,通过计算找到规律是解题的关键.第II 卷二、填空题(每题4分,满分24分,将答案填在答题纸上)11. 若二次根式x 2-有意义,则x 的取值范围是___.[答案]x 2≥[解析][详解]试题分析:根据题意,使二次根式2x -有意义,即x ﹣2≥0,解得x≥2.故答案是x≥2.[点睛]考点:二次根式有意义的条件.12. 若实数a 、b 满足240a b ++-=,则a b =_____. [答案]﹣12 [解析]根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则a b =﹣12.故答案是﹣12. 13. 若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝2. [答案]24[解析]已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=12ab=12×6×8=24cm 2, 故答案为24.14. 如图,在平行四边形ABCD 中,添加一个条件____,使平行四边形ABCD 是矩形.[答案]90A ∠=︒ (答案不唯一)[解析][分析]根据矩形的判定条件进行添加即可;[详解]根据判定条件:有一个角是90︒的平行四边形是矩形,只要有一个内角是90︒即可得出答案, 故90A ∠=︒(答案不唯一).[点睛]本题主要考查了矩形的判定,准确理解判定条件是解题的关键.15. 如图,把矩形纸片ABCD 沿EF 折叠,使点落在边AD 上的点处,点落在点处,已知10,4,2AD CD B D =='=.则AE =____.[答案][解析][分析]根据折叠的性质可得AE=A′E ,AB=A′B′,在Rt △A′B′E 中,根据勾股定理即可得到AE 的长.[详解]∵四边形ABCD 矩形,∴AB=CD=4,∠B=90,由折叠性质可得AE=A′E ,AB=A′B′=4,∠B′A′E=∠B=90,在Rt △A′B′E 中,A′B′2+A′E 2=B′E 2,42+A′E2=(10-2-A′E)2,解得A′E=3,即AE的长为3.故答案为:3.[点睛]本题考查了折叠的性质,矩形的性质以及勾股定理的应用,熟练掌握折叠的性质是关键.16. 如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为_____m.[答案]4[解析][分析]根据题意,画出示意图,易得:Rt△EDC∽Rt△CDF,进而可得EDDC=DCFD;即DC2=ED•FD,代入数据可得答案.[详解]如图:过点C作CD⊥EF,由题意得:△EFC是直角三角形,∠ECF=90°, ∴∠EDC=∠CDF=90°,∴∠E+∠ECD=∠ECD+∠DCF=90°,∴∠E=∠DCF,∴Rt△EDC∽Rt△CDF,有EDDC=DCFD;即DC2=EDFD,代入数据可得DC 2=16,DC =4;故答案为4.[点睛]本题考查了相似三角形的应用,能够将实际问题转化为相似三角形的问题是解题的关键.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.) 17. 计算:(1)54520+- (2)()(227227)+-.[答案](1)25;(2)1[解析][分析](1)根据二次根式的加减运算法则计算即可;(2)根据二次根式的乘法运算法则结合平方差公式计算即可.[详解]解:()1原式53525=+- 4525=-25=.()2原式()()22227=- 87=-1=. [点睛]本题考查二次根式的运算,熟练掌握二次根式四则运算的法则是解题的关键.18. 如图,在ABCD 中,E 、F 分别在AD 、BC 上,且//EF AB .求证:EF CD =.[答案]证明见解析.[解析][分析]根据平行四边形的性质可得//,//AD BC AB CD ,再通过//EF AB 可判定四边形ABFE 是平行四边形,可得EF=CD .[详解]证明:四边形ABCD 是平行四边形,//,//AD BC AB CD ∴//,EF AB//,EF CD ∴四边形CDEF 是平行四边形EF CD ∴=.[点睛]此题主要考查了平行四边形的判定和性质,关键是掌握平行四边形对边平行且相等,两组对边分别平行的四边形是平行四边形.19. 如图,在ABC 中,AB =BC ,D 、E 、F 分别是BC 、AC 、AB 边上的中点.(1)求证:四边形BDEF 是菱形.(2)若10,AB cm =求四边形BDEF 的周长.[答案](1)证明见解析;(2)菱形BDEF 的周长为20cm .[解析][分析](1)由D 、E 、F 分别是BC 、AC 、AB 边上的中点,根据三角形中位线的性质,可得EF ∥BC ,ED ∥AB ,EF=12BC ,DE=12AB ,又由AB=BC ,即可证得四边形BDEF 是菱形; (2) 由三角形中位线的性质,可求得BF 的长,进而求得周长为4BF .[详解]解:(1)证明:D E F 、、分别是BC AC AB 、、边上的中点,// ,//,EF BC DE AB ∴ 11,22EF BC DE AB ==, 四边形BDEF 是平行四边形,又,AB BC =,DE EF ∴=平行四边形BDEF 是菱形.(2)10,AB =且是AB 边上的中点,15,2BF AB cm ∴== 由(1)知,四边形BDEF 是菱形,菱形BDEF 的周长为44520=⨯=BF cm .故答案为:20cm .[点睛]此题考查了菱形的判定与性质以及三角形中位线的性质.注意掌握三角形中位线定理的应用是解此题的关键.20. 如图所示的一块空地,已知4,3,90,13,AD m CD m ADC AB m ==∠=︒=12BC m =,求这块空地的面积.[答案]这块空地的面积是224m .[解析][分析]连接AC ,先利用勾股定理求出AC ,再根据勾股定理的逆定理判定△ABC 是直角三角形,那么△ABC 的面积减去△ACD 的面积就是所求的面积.[详解]连接AC ,90ADC ∠=︒,222224325AC AD DC ∴=+=+=12,13BC m AB m ==,22222251216913AC BC AB ∴+=+===,90ACB ∴∠=︒,()211512342422ACB ACD S S m ∴-=⨯⨯-⨯⨯= 这块空地的面积是224m .[点睛]本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC 是直角三角形是解题的关键,同时考查了直角三角形的面积公式.21. 如图所示,ABCD 是一个正方形花园,,是它的两个门,且DE CF =.要修建两条路BE 和AF ,这两条路等长吗?它们有什么位置关系?为什么?[答案]相等,BE AF ⊥,理由见解析[解析][分析]由DE =CF 可得AE =DF ,则可得△DAF ≌△ABE ,然后根据全等三角形的对应角相等可得出BE 与AF 的关系.[详解]解:BE =AF ,BE ⊥AF ;理由:∵四边形ABCD是正方形,∴AD=CD,DE=CF,∴AE=DF,又∠BAE=∠D=90°,AB=AD,∴△BAE≌△ADF∴BE=AF,∠ABE=∠F AD,∵∠ABE+∠AEB=90°,∴∠F AD+∠AEB=90°,∴BE⊥AF.故BE=AF,BE⊥AF.[点睛]本题考察了正方形的性质,全等三角形的判定与性质,主要利用了正方形的四条边都相等,每一个角都是直角的性质,同角的余角相等的性质,利用三角形全等证明相等的边是常用的方法之一,要熟练掌握并灵活运用.22. 问题背景:在△ABC中,AB、BC、AC三边的长分别为5、10、13,求这个三角形的面积小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你利用上述方法求出△ABC的面积.(2)在图2中画△DEF,DE、EF、DF2、810①判断三角形的形状,说明理由.②求这个三角形的面积.(直接写出答案)[答案](1)72;(2)画图见解析;①△DEF 是直角三角形,理由见解析;②2 [解析] 试题分析:(1)根据题目设置的问题背景,结合图形进行计算即可;(2)根据勾股定理,找到DE 、EF 、DF 的长分别为2、8、10,由勾股定理的逆定理可判断△DEF 是直角三角形.解:(1)S △ABC =3×3﹣12×1×2﹣12×2×3﹣12×1×3=72; (2)如图所示:∵DE =2,EF =22,DF =10,∴DE 2+EF 2=DF 2,∴△DEF 是直角三角形.△DEF 的面积=111231122132222⨯-⨯⨯-⨯⨯-⨯⨯=. 点睛:本题考查了勾股定理及作图的知识,解答本题关键是仔细理解问题背景,构图法求三角形的面积是经常用到的,同学们注意仔细掌握.23. 如图,在四边形ABCD 中,连接AC 、BD ,已知90,ACB ADB ∠=∠=︒且点,E F 分别为AB 、CD 的中点,连接EF .(1)求证:EF CD ⊥.(2)若26AB CD ,求EF 的长.[答案](1)证明见解析;(2)332EF =.[解析][分析](1)如图(见解析),先根据直角三角形的性质可得12CE AB =,12DE AB =,从而可得CE DE =,再根据等腰三角形的判定可得CDE △是等腰三角形,然后根据等腰三角形的三线合一即可得证;(2)先分别求出CE 、CF 的长,再结合(1)的结论,利用勾股定理即可得.[详解](1)如图,连接EC 和ED点是AB 的中点,90ACB ADB ∠=∠=︒在Rt ABC 中,12CE AB = 在Rt ABD △中,12DE AB = CE DE ∴=CDE ∴是等腰三角形又点是CD 的中点,即EF 是等腰CDE △的底边CD 上的中线EF CD ∴⊥;(2)26AB CD ==3CD ∴= 由(1)已证:132CE AB == 又点是CD 的中点1322CF CD ∴== 则在Rt CEF 中,由勾股定理得:22332EF CE CF =-=.[点睛]本题考查了直角三角形的性质、等腰三角形的判定与性质、勾股定理等知识点,掌握理解等腰三角形的三线合一是解题关键.24. 先阅读下列材料,再解决问题:我们定义一组对边平行,另一组对边不平行的四边形叫做梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.如图,,E F分别是梯形ABCD的两腰AB和CD的中点,即EF为梯形ABCD的中位线.请同学们思考梯形的中位线与两底有何数量关系与位置关系?并给予证明.猜想:已知:求证:证明:[答案]猜想:12EF AD BC;////EF AD BC;已知:如图,,E F分别是梯形ABCD的两腰AB和的中点;求证:12EF AD BC;////EF AD BC;证明见解析.[解析][分析]根据题意写出猜想、已知和求证.连接AF并延长交BC于点G,则△ADF≌△GCF,可以证得EF是△ABG 的中位线,利用三角形的中位线定理即可证得.[详解]猜想:12EF AD BC;////EF AD BC已知:如图,,E F分别是梯形ABCD的两腰AB和的中点.求证:12EF AD BC;////EF AD BC.证明:如图,连接AF并延长交BC于点G.∵AD∥BC,点F是CD中点,∴∠DAF=∠G,DF=FC,在△ADF和△GCF中,DAF G DFA CFG DF FC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△GCF (AAS ),∴AF=FG ,AD=CG .又∵点E 是AB 中点,∴EF 是ABG 的中位线,∴EF ∥BG ,EF=12BG , 即EF ∥AD ∥BC ,EF=12(AD+BC). [点睛]本题是通过猜想并且证明梯形的中位线定理,考查了三角形中位线定理,全等三角形的判定和性质,通过辅助线转化成三角形的中位线的问题是解题的关键.25. 如图所示,在四边形ABCD 中,//,90AD BC A ∠=︒,12,21,16AB BC AD ===.动点从点出发,沿射线BC 方向以每秒个单位长度的速度运动,动点Q 同时从点出发,在线段AD 上以每秒个单位长度的速度向点运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为秒.(1)填空:AQ = ;BP = ;的取值范围是 .(2)设DPQ 的面积为,请用含的式子表示.(3)当t = 时,PD PQ =.(4)当为何值时,以点,,,P C D Q 为顶点的四边形是平行四边形.[答案](1),2,016t t t ≤≤;(2)966S t =-;(3)163t =;(4)当5t =或373时,以点,,,P C D Q 为顶点的四边形是平行四边形.[解析][分析](1)按照路程等于速度乘以时间,求解AQ ,BP ;时间最小为0,最大为点Q 动到点D 所花费的时间;(2)通过做垂直辅助线,根据已知条件并结合三角形面积公式求解本题(3)根据等腰三角形以及矩形的性质,结合三线合一以及路程公式求解本题;(4)本题需要根据动点情况分类讨论,并结合平行四边形性质列方程求解.[详解](1)∵距离=速度时间,Q 的运动速度为1,P 的运动速度为2,运动时间为t ,∴AQ=t ,BP=2t .∵AD=16,当点Q 运动到点D 时,动点停止运动,∴t 最大值为16,最小值为0,故016t ≤≤.(2)如图,过点作PM QD ⊥,∵//,90AD BC A ∠=︒,∴四边形ABPM 矩形,∴PM=AB=12.又∵AQ=t∴16QD t =-.()11161296622QDP S QD PM t t =••=⨯-⨯=-△. (3)由上一问可知四边形ABPM 是矩形,2AM BP t ∴==.又PD PQ =,2DM QM AM AQ BP AQ t t t ∴==-=-=-=,216AD AM DM t t =+=+=即316t =,163t ∴=. (4)当在线段BC 上时,因为平行四边形PCDQ ,则DQ PC =,∵16DQ t =-,212PC t =-,16212t t ∴-=-,解得:5t =;当在BC 延长线上时,同理:DQ=PC ,221PC t =-,16221t t ∴-=-, 解得:373t =; 综上所述:当5t =或373时,以点,,,P C D Q 为顶点的四边形是平行四边形. [点睛]本题考查几何动点问题,首先需要对运动路径有清晰理解,并且利用未知数表示未知线段,求解时具体问题具体分析,如本题主要利用面积公式,平行四边形性质求解,动点问题通常需要分类讨论.。

人教版八年级下册数学《期中测试题》含答案

人教版八年级下册数学《期中测试题》含答案

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.下列各式是二次根式是( ) A.3-B.2C.33D.3π-2.在直角三角形中,若勾为3,股为4,则弦为( ) A. 5B. 6C. 7D. 83.式子1x -在实数范围内有意义,则的取值范围是( ) A 0x >B. 1x -C. 1xD. 1x ≤4.下列线段不能组成直角三角形的是( ) A. a =6,b =8,c =10 B. a =1,b =2,c =3 C. a =1,b =1,c =2D. a =2,b =3,c =65.在平行四边形ABCD 中,5AB =,3BC =.则平行四边形ABCD 的周长是( ). A. 16B. 13C. 10D. 86.下列各式中,计算不正确的是( ) A. 2(3)3=B.2(3)3-=- C. 2(3)3-= D. 2(3)3--=-7.在▱ABCD 中,∠A :∠B :∠C :∠D 可能是( ) A. 1:2:3:4B. 2:3:2:3C. 2:2:1:1D. 2:3:3:28.如图,在▱ABCD 中,下列结论一定成立的是( )A. AC ⊥BDB. ∠BAD +∠ABC =180°C. AB =ADD. ∠ABC =∠BCD9.如图,数轴上的点表示的数是-1,点表示的数是1,CB AB ⊥于点,且2BC =,以点为圆心,AC 为半径画弧交数轴于点,则点表示的数为( )A. 221-B. 22C. 2.8D. 221+10.已知在同一平面内,直线a ,b ,c 互相平行,直线a 与b 之间的距离是3cm ,直线b 与c 之间的距离是5cm ,那么直线a 与c 的距离是( ) A. 2cmB. 8cmC. 8或2cmD. 不能确定二.填空题(共8小题)11.计算12的结果是______.12.如果一个无理数a 与8的积是一个有理数,写出a 的一个值是______.13.如图,△ABC 中,∠ACB =90°,以它的各边为边向外作三个正方形,面积分别为S 1,S 2,S 3,已知S 1=6,S 2=8,则S 3=_____.14.如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC+BD=16,则△BOC 周长为_____.15.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行__________米.16.如图,点D ,E ,F 分别是△ABC 的AB ,BC ,CA 边的中点.若△DEF 的周长为10,则△ABC 的周长为_____.17.如图,将一张矩形纸片沿着AE 折叠后,点D 恰好与BC 边上的点F 重合,已知AB =6cm ,BC =10cm ,则EC 的长度为_____cm .18.如图,▱ABCD 的对角线AC,BD 交于点O,AE 平分∠BAD 交BC 于点E,且∠ADC=60°,AB =12BC,连结OE.下列结论:①∠CAD=30°;②S ▱ABCD =AB·AC;③OB=AB ;④OE =14BC,成立结论有______.(填序号)三.解答题(共7小题)19.计算:(1036|21|(3)π++- (2)(24827)3÷20.计算252)52)(52)+-21.如图,▱ABCD 的对角线AC ,BD 相交于O ,AE =CF .求证:DE =BF .22.已知:如图,△ABC中,AB=4,∠ABC=30°,∠ACB=45°,求△ABC的面积.23.如图,点E是平行四边形ABCD边CD上的中点,AE、BC的延长线交于点F,连接DF,求证:四边形ACFD 为平行四边形.24.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=1BC.若2AB=12,求EF的长.25.规定:[m]为不大于m的最大整数;(1)填空:[3.2]=,[﹣4.8]=;(2)已知:动点C在数轴上表示数a,且﹣2≤[a]≤4,则a取值范围;(3)如图:OB=1,AB⊥OB,且AB=10,动点D在数轴上表示的数为t,设AD﹣BD=n,且6≤[n]≤7,求t的取值范围.答案与解析一.选择题(共10小题)1.下列各式是二次根式的是( ) A.B.C.D.[答案]B [解析] [分析]二次根式有意义的条件是被开方数是非负数,即可判断.[详解]解:A 、﹣3<0,,故选项不符合题意; B 、符合二次根式,符合题意; C 、是三次根式,故选项不符合题意;D 、3﹣π<0,,故选项不符合题意. 故选:B .[点睛],必须有a≥0.2.在直角三角形中,若勾为3,股为4,则弦为( ) A. 5 B. 6C. 7D. 8[答案]A [解析]分析:直接根据勾股定理求解即可. 详解:∵在直角三角形中,勾为3,股为4,故选A .点睛:本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.3.,则的取值范围是( ) A. 0x > B. 1x -C. 1xD. 1x ≤[答案]C[分析]根据二次根式有意义的条件进行求解即可. [详解]由题意得:x-1≥0, 解得:x ≥1, 故选C.[点睛]本题考查了二次根式有意义的条件,熟知二次根式的被开方数为非负数是解题的关键. 4.下列线段不能组成直角三角形的是( )A. a =6,b =8,c =10B. a =1,b ,cC. a =1,b =1,cD. a =2,b =3,c[答案]D [解析] [分析]根据勾股定理的逆定理对四个选项进行逐一分析即可.[详解]解:A 、∵62+82=102,∴能组成直角三角形,故本选项不符合题意;B 、∵12+)2=2,∴能组成直角三角形,故本选项不符合题意;C 、∵12+12=2,∴能组成直角三角形,故本选项不符合题意;D 、∵22+32≠)2,∴不能组成直角三角形,故本选项符合题意. 故选:D .[点睛]本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.5.在平行四边形ABCD 中,5AB =,3BC =.则平行四边形ABCD 的周长是( ). A. 16 B. 13C. 10D. 8[答案]A [解析]根据平行四边形的性质:平行四边形的对边相等可得DC=5,AD=3,然后再求出周长即可. [详解]∵四边形ABCD 是平行四边形, ∵AB=CD ,AD=BC , ∵AB=5,BC=3, ∴DC=5,AD=3,∴平行四边形ABCD 的周长为:5+5+3+3=16, 故选A .[点睛]此题主要考查了平行四边形的性质,关键是掌握平行四边形的对边相等. 6.下列各式中,计算不正确的是( )A. 23= 3=-C. 2(3=D. 3=-[答案]B [解析] [分析]按照根式的运算规则运算即可.[详解]解:A. 23=,正确,B.3=-,错误,3=,C. 2(3=,正确,D. 3=-,正确, 所以选B.[点睛]a =的运用.7.在▱ABCD 中,∠A :∠B :∠C :∠D 可能是( ) A. 1:2:3:4 B. 2:3:2:3C. 2:2:1:1D. 2:3:3:2[答案]B [解析]由平行四边形的对角相等得出∠A =∠C ,∠B =∠D ,即可得出结果. [详解]解:∵四边形ABCD 是平行四边形, ∴∠A =∠C ,∠B =∠D ,∴∠A :∠B :∠C :∠D 可能是2:3:2:3; 故选:B .[点睛]本题考查了平行四边形的对角相等的性质;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.8.如图,在▱ABCD 中,下列结论一定成立的是( )A. AC ⊥BDB. ∠BAD +∠ABC =180°C. AB =ADD. ∠ABC =∠BCD[答案]B [解析] [分析]根据平行四边形的性质判断即可.[详解]解:A 、∵四边形ABCD 是菱形,∴AC ⊥BD ,选项不能成立; B 、∵四边形ABCD 是平行四边形,∴∠BAD+∠ABC =180°,选项成立; C 、∵四边形ABCD 是菱形,∴AB =AD ,选项不能成立;D 、∵四边形ABCD 是平行四边形,∴∠ABC+∠BCD =180°,选项不成立; 故选:B .[点睛]本题考查了平行四边形性质;熟练掌握平行四边形的性质是解题的关键.9.如图,数轴上的点表示的数是-1,点表示的数是1,CB AB ⊥于点,且2BC =,以点为圆心,AC 为半径画弧交数轴于点,则点表示的数为( )A. 221B. 22C. 2.8D. 221[答案]A[解析][分析]根据勾股定理求出AC,根据实数与数轴的概念求出点D表示的数.[详解]解:由题意得,AB=2,由勾股定理得,AC2222AB BC,2222∴AD=2则OD=2,即点D表示的数为22,故选A.[点睛]本题考查的是勾股定理、实数与数轴,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.10.已知在同一平面内,直线a,b,c互相平行,直线a与b之间的距离是3cm,直线b与c之间的距离是5cm,那么直线a与c的距离是( )A. 2cmB. 8cmC. 8或2cmD. 不能确定[答案]C[解析][分析]分(1)直线a在直线b、c外,(2)直线a在直线b、c之间两种情况,画出图形(1)(2),根据图形进行计算即可.[详解]解:有两种情况:如图(1)直线a与c的距离是3厘米+5厘米=8厘米;(2)直线a与c的距离是5厘米-3厘米=2厘米.故选C.[点睛]本题考查平行线之间的距离,注意需分两种情况讨论求解是解题的关键.二.填空题(共8小题)11.12______.[答案]3[解析][分析]根据二次根式的乘法公式化简即可.[详解]12434323⨯==故答案为:3[点睛]此题考查的是二次根式的化简,掌握二次根式的乘法公式是解决此题的关键.12.如果一个无理数a8,写出a的一个值是______.[答案2.[解析][分析]=一个无理数a与22,那么即可判断a2是同类二次根式,即可写出a的值, 82答案不唯一.=∴由题意得一个无理数a与2的积是有理数,[详解]82∴a与2是同类二次根式,答案不唯一.故答案为:2.[点睛]本题主要考查实数的性质以及同类二次根式的性质,解题的关键是掌握有理数和无理数的基本定义以及同类二次根式的积为有理数即可.13.如图,△ABC中,∠ACB=90°,以它的各边为边向外作三个正方形,面积分别为S1,S2,S3,已知S1=6,S2=8,则S3=_____.[答案]14.[解析][分析]根据勾股定理即可得到结论.详解]解:∵∠ACB=90°,S1=6,S2=8,∴AC2=6,BC2=8,∴AB2=14,∴S3=14,故答案为:14.[点睛]本题考查了勾股定理,正方形的面积,正确的识别图形是解题的关键.14.如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为_____.[答案]14[解析][分析]根据平行四边形的性质,三角形周长的定义即可解决问题;[详解]解:∵四边形ABCD是平行四边形,∴AD=BC=6,OA=OC,OB=OD,∵AC+BD=16,∴OB+OC=8,∴△BOC的周长=BC+OB+OC=6+8=14,故答案为14.点睛:本题考查平行四边形的性质.三角形的周长等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行__________米.[答案]10[解析][分析]从题目中找出直角三角形并利用勾股定理解答.[详解]解:过点D作DE⊥AB于E,连接BD.在Rt△BDE中,DE=8米,BE=8−2=6米.根据勾股定理得BD=10米.故填:10.[点睛]注意作辅助线构造直角三角形,解题的关键是熟知勾股定理的应用.16.如图,点D,E,F分别是△ABC的AB,BC,CA边的中点.若△DEF的周长为10,则△ABC的周长为_____.[答案]20[解析][分析]先根据中位线性质得:AB=2EF,BC=2DF,AC=2DE,由周长得:EF+DE+DF=10,所以2EF+2DE+2DF=20,即AB+BC+AC=20.[详解]∵点D,E,F分别是△ABC的AB,BC,CA边的中点,∴EF、DE、DF为△ABC的中位线,∴AB=2EF,BC=2DF,AC=2DE,∵△DEF的周长为10,∴EF+DE+DF=10,∴2EF+2DE+2DF=20,∴AB+BC+AC=20,∴△ABC的周长为20.故答案为:20.[点睛]本题考查了三角形中位线的性质,解题的关键在于根据中位线等于第三边的一半转换求解.17.如图,将一张矩形纸片沿着AE折叠后,点D恰好与BC边上的点F重合,已知AB=6cm,BC=10cm,则EC 的长度为_____cm.[答案]3.[解析][分析]先根据翻折变换的性质得出Rt△ADE≌Rt△AEF,再先设EC的长为x,则AF=10cm,EF=DE=(8﹣x)cm,在Rt△ABF中由勾股定理得:AB2+BF2=AF2,已知AB、AF的长可求出BF的长,又CF=BC﹣BF=10﹣BF,在Rt△ECF中由勾股定理可得:EF2=EC2+CF2,即:(8﹣x)2=x2+(10﹣BF)2,将求出的BF的值代入该方程求出x的值,即求出了EC的长.[详解]解:∵△AEF由△ADE翻折而成,∴Rt△ADE≌Rt△AEF,∴∠AFE=90°,AD=AF=10cm,EF=DE,设EC=xcm,则DE=EF=CD﹣EC=(8﹣x)cm,在Rt△ABF中由勾股定理得:AB2+BF2=AF2,即82+BF2=102,∴BF=6cm,∴CF=BC﹣BF=10﹣6=4(cm),在Rt△ECF中由勾股定理可得:EF2=EC2+CF2,即(8﹣x)2=x2+42,∴64﹣16x+x2=x2+16,∴x=3(cm),即EC=3cm,故答案为:3.[点睛]本题考查是图形的翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.18.如图,▱ABCD的对角线AC,BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=12BC,连结OE.下列结论:①∠CAD=30°;②S▱ABCD=AB·AC;③OB=AB;④OE=14BC,成立的结论有______.(填序号)[答案]①②④[解析][分析]由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=12BC,得到AE=12BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=12BC,OB=12BD,且BD>BC,得到AB≠OB,故③错误;根据三角形的中位线定理得到OE=12AB,于是得到OE=14BC,故④正确.[详解]∵四边形ABCD是平行四边形, ∴∠ABC=∠ADC=60°,∠BAD=120°, ∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=12 BC,∴AE=12 BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=12BC,OB=12BD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA,∴OE=12AB , ∴OE=14BC ,故④正确. 故答案为①②④.[点睛]本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式,熟练掌握性质定理和判定定理是解题的关键.三.解答题(共7小题)19.计算:(10|1|(3)π+-(2)÷[答案](1);(2)2[解析][分析](1)直接利用二次根式的乘法运算法则以及绝对值的性质、零指数幂的性质分别计算得出答案;(2)直接化简二次根式进而利用二次根式的除法运算法则计算得出答案.[详解]解:(10|1|(3)π+-=1+1=;(2)÷=()==2.[点睛]此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.20.计算22)2)+-[答案][解析][分析]直接利用乘法公式计算得出答案.[详解]解:(5+2)2+(5+2)(5﹣2)=5+4+45+5﹣4=10+45.[点睛]此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.21.如图,▱ABCD的对角线AC,BD相交于O,AE=CF.求证:DE=BF.[答案]详见解析[解析][分析]根据平行四边形的性质可得BO=DO,AO=CO,再利用等式的性质可得EO=FO,然后再利用SAS定理判定△BOE≌△DOF,进而利用平行四边形的判定和性质解答即可.[详解]证明:连接BF,DE,∵四边形ABCD是平行四边形,∴BO=DO,AO=CO,∵AE=CF,∴AO﹣AE=CO﹣FO,∴EO=FO,在△BOE和△DOF中,0B DO BOE DOF EO FO =⎧⎪∠=∠⎨⎪=⎩,∴△BOE ≌△DOF (SAS ),∴BE =DF ,∠AEB =∠CFD ,∴∠BEO =∠DFO ,∴BE ∥DF ,∴四边形BEDF 是平行四边形,∴BF =DE .[点睛]此题主要考查了平行四边形的性质、全等三角形的判定与性质,熟练掌握平行四边形的对角线互相平分,证明三角形全等是解题的关键.22.已知:如图,△ABC 中,AB =4,∠ABC =30°,∠ACB =45°,求△ABC 的面积.[答案]3[解析][分析]作AD ⊥BC 于D ,利用30°的直角三角形的性质即可求得BD 、再根据勾股定理可求得AD 长,利用∠C =45°可求得AD=CD ,进而求得CD 的长度,即可得到BC 的长,然后利用三角形的面积公式即可求解.[详解]解:作AD ⊥BC 于D ,则∠ADB=∠ADC=90°, ∵∠B =30°,∠ADB=90°,∴AD =12AB =4; BD 22-AB AD 3∵∠C =45°,∠ADC=90°,∴∠DAC =∠C =45°,∴DC =AD =2,∴BC =BD +CD =3+2∴S △ABC =12AD •BC =23+2[点睛]本题考查了30°的直角三角形的性质,勾股定理,等腰三角形的判定,正确作出辅助线把三角形转化成两个直角三角形是关键.23.如图,点E 是平行四边形ABCD 边CD 上的中点,AE 、BC 的延长线交于点F ,连接DF ,求证:四边形ACFD 为平行四边形.[答案]证明见解析.[解析][分析]根据平行四边形的性质证出∠ADC=∠FCD ,然后再证明△ADE ≌△FCE 可得AD=FC ,根据一组对边平行且相等的四边形是平行四边形可得结论.[详解]证明:∵在▱ABCD 中,AD ∥BF .∴∠ADC=∠FCD .∵E 为CD 的中点,∴DE=CE .在△ADE 和△FCE 中,{AED FECADE FCE DE CE∠=∠∠=∠=,∴△ADE ≌△FCE(ASA)∴AD=FC .又∵AD ∥FC,∴四边形ACFD 是平行四边形.[点睛]此题主要考查了平行四边形的判定和性质,关键是掌握平行四边形两组对边分别平行.24.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=12BC.若AB=12,求EF的长.[答案]5[解析][分析]如图,连接DC,根据三角形中位线定理可得,DE=12BC,DE∥BC,又因CF=12BC,可得DE=CF,进而得出四边形DEFC是平行四边形,即可得出答案.[详解]解:连接DC,∵点D,E分别是边AB,AC的中点,∴DE=12BC,DE∥BC,∵CF=12 BC,∴DE=CF,∴四边形CDEF是平行四边形, ∴DC=EF,DC=12AB=5,所以EF=DC=5.考点:三角形中位线定理;平行四边形的判定与性质;直角三角形斜边上的中线.25.规定:[m]为不大于m的最大整数;(1)填空:[3.2]=,[﹣4.8]=;(2)已知:动点C在数轴上表示数a,且﹣2≤[a]≤4,则a的取值范围;(3)如图:OB=1,AB⊥OB,且AB=10,动点D在数轴上表示的数为t,设AD﹣BD=n,且6≤[n]≤7,求t的取值范围.[答案](1)3,-5;(2)﹣2≤a<5;(3)﹣134≤t<﹣54或134<t≤193.[解析][分析](1)根据[m]为不大于m的最大整数数即可求解;(2)根据[m]为不大于m的最大整数,可得﹣2≤a<5即可求解;(3)分两种情形:当点D在点B右边时,当点D在点B的左边时分别求解即可.[详解]解:(1)[3.2]=3,[﹣4.8]=﹣5.故答案为3,﹣5.(2)∵﹣2≤[a]≤4∴﹣2≤a<5.(3)如图,当点D在点B的右边时,∵6≤[n]≤7,∴6≤n<8,当n=8时(t﹣1)=8,解得t=134,当n=6时(t﹣1)=8,解得t=193,观察图象可知,134<t≤193.当点D在点B的左边时,同法可得﹣134≤t<﹣54,综上所述,满足条件t的值为﹣134≤t<﹣54或134<t≤193.[点睛]本题考查实数与数轴,勾股定理,无理方程等知识,解题的关键是理解题意,学会结合新定义考查估算无理数的大小,灵活运用所学知识解决问题.。

人教版八年级数学下册试题及参考答案

人教版八年级数学下册试题及参考答案

人教版八年级(下册)数学学科试题(考试时间:90分钟 总分:120分)题 号 一 二 三 总分 得 分一、选择题(每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1、如果分式x-11有意义,那么x 的取值范围是( ) A 、x >1 B 、x <1 C 、x ≠1 D 、x =12、己知反比例数xky =的图象过点(2,4),则下面也在反比例函数图象上的点是( ) A 、(2,-4) B 、(4,-2) C 、(-1,8) D 、(16,21)3、一直角三角形两边分别为3和5,则第三边为( )A 、4B 、34C 、4或34D 、24、用两个全等的等边三角形,可以拼成下列哪种图形( )A 、矩形B 、菱形C 、正方形D 、等腰梯形5、菱形的面积为2,其对角线分别为x 、y ,则y 与x 的图象大致为( )A B C D6、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考( )A 、众数B 、平均数C 、加权平均数D 、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为( )A 、120cmB 、360cmC 、60cmD 、cm 320第7题图 第8题图 第9题图8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为( )A 、16B 、14C 、12D 、109、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为( )A 、100B 、150C 、200D 、30010、下列命题正确的是( )A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。

八年级下册数学期末试卷测试卷附答案

八年级下册数学期末试卷测试卷附答案

八年级下册数学期末试卷测试卷附答案 一、选择题 1.式子10x -在实数范围内有意义,则x 的取值范围是( )A .x ≥10B .x ≠10C .x ≤10D .x >10 2.以下列三段线段的长为三边的三角形中,不能构成直角三角形的是( ) A .6,8,10 B .5,12,13 C .111,,345 D .9,40,413.在下列条件中,不能判定四边形为平行四边形的是( )A .对角线互相平分B .一组对边平行且相等C .两组对角分别相等D .对角线互相垂直 4.比赛中给一名选手打分时,经常会去掉一个最高分,去掉一个最低分,这样的评分方式一定不会改变选手成绩数据的( )A .众数B .平均数C .中位数D .方差5.如图,将△ABC 放在正方形网格中(图中每个小正方形边长均为1)点A ,B ,C 恰好在网格图中的格点上,那么∠ABC 的度数为( )A .90°B .60°C .30°D .45°6.如图,在Rt ABC 中,90ABC ∠=︒,点D 在边AC 上,2AB =,BD CD =,2BC AB =.若ABD △与EBD △关于直线BD 对称,则线段CE 的长为( )A .655B .755C .855D .9557.如图,将长方形纸片ABCD 沿AE 折叠,使点D 恰好落在BC 边上点F 处,若AB =3,AD =5,则EC 的长为( )A .1B .53C .32D .438.如图,直线m 与n 相交于点()1,3C ,m 与x 轴交于点()2,0D -,n 与x 轴交于点()2,0B ,与y 轴交于点A .下列说法错误的是( ).A .m n ⊥B .AOB DCB ∆∆≌C .BC AC =D .直线m 的函数表达式为3333y x =+ 二、填空题9.当代数式241x x --有意义时,x 应满足的条件_____. 10.已知菱形的两条对角线长分别为1和4,则菱形的面积为______.11.由四个全等的直角三角形组成如图所示的“赵爽弦图”,若直角三角形两直角边边长的和为3,面积为1,则图中阴影部分的面积为____________ .12.如图,在△ABC 中,点D ,E 分别是边AB ,AC 的中点,点F 是线段DE 上的一点.连接AF ,BF ,∠AFB =90°,且AB =10,BC =16,则EF 的长是_______13.在平面直角坐标中,点A (﹣3,2)、B (﹣1,2),直线y =kx (k ≠0)与线段AB 有交点,则k 的取值范围为___.14.如图,矩形ABCD 中,直线MN 垂直平分AC ,与CD ,AB 分别交于点M ,N .若DM =2,CM =3,则矩形的对角线AC 的长为_____.15.如图,将一块等腰直角三角板ABC 放置在平面直角坐标系中,90,ACB AC BC ∠=︒=,点A 在y 轴的正半轴上,点C 在x 轴的负半轴上,点B 在第二象限,AC 所在直线的函数表达式是22y x =+,若保持AC 的长不变,当点A 在y 轴的正半轴滑动,点C 随之在x 轴的负半轴上滑动,则在滑动过程中,点B 与原点O 的最大距离是_______.16.如图,矩形ABCD 中,AB=8,AD=5,点E 为DC 边上一个动点,把△ADE 沿AE 折叠,点D 的对应点D ’落在矩形ABCD 的对称轴上时,DE 的长为____________.三、解答题17.计算: ①33118(3)2⨯+-; ②2(32)24-+.18.如图,一根直立的旗杆高8米,一阵大风吹过,旗杆从点C 处折断,顶部(B )着地,离旗杆底部(A )4米,工人在修复的过程中,发现在折断点C 的下方1.25米D 处,有一明显裂痕,若下次大风将旗杆从D 处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?19.如图,每个小正方形的边长都为1,AB 的位置如图所示.(1)在图中确定点C ,请你连接CA ,CB ,使CB ⊥BA ,AC =5;(2)在完成(1)后,在图中确定点D ,请你连接DA ,DC ,DB ,使CD =10,AD =17,直接写出BD 的长.20.如图,ABCD 的对角线AC 的垂直平分线与AD 、BC 分别交于E 、F ,垂足为点O .(1)求证:四边形AFCE 是菱形. (2)若2AE ED =,6AC =,4EF =,则ABCD 的面积为 .21.阅读下列材料,然后回答问题:31+的运算时,通常有如下两种方法将其进一步化简: 22(31)2(31)3131(31)(31)(3)1--==++-- 2(3)1(31)(31)3131313131-+-====++++ (153+ (242648620202018++++++ 22.振兴加工厂中甲,乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2.5倍.两组各自加工零件的数量y (件)与时间x (时)之间的函数图象如图所示.(1)求甲组加工零件的数量y 与时间x 之间的函数解析式;(2)求出图中a 的值及乙组更换设备后加工零件的数量y 与时间x 之间的函数解析式.23.如图1,在一个平面直角三角形中的两直角边的平方之和一定等于斜边的平方。

人教版八年级下册语文期末测试卷【附答案】

人教版八年级下册语文期末测试卷【附答案】

人教版八年级下册语文期末测试卷【附答案】满分:120分考试时间:120分钟一、语言的积累与运用。

(35分)1、下列字音字形全都正确的一项是( )A.踌躇.(zhù) 丘壑.(hè) 巧妙绝仑.(lún) 锐不可当.(dǎnɡ)B.推崇.(chóng) 翘.首(qiào) 惟妙惟肖.(xiāo) 眼花瞭.乱(liáo)C.狼藉.(jí) 遒劲.(jìnɡ) 自出心裁.(cái) 殚.精竭虑(dān) D.畸.形(qī) 摄.取(shè) 络.绎不绝(luò) 油光可鉴.(jiàn)3、下列各句中加点成语使用不正确的一项是()A.黄旭华为中国核潜艇事业殚精竭虑....,“共和国勋章”当之无愧。

B.国家图书馆里的藏书,真可谓汗牛充栋....。

C.在这些有口皆碑....的铁的事实面前,犯罪嫌疑人沮丧地低下了头。

D.中国的莫言,在小说创作方面颇有建树....。

4、下列句子没有语病的一项是( )A.最近我县发生的几起重大交通事故,原因都是行人不遵守交通法规、闯红灯引发的。

B.今年六月以来,我市大部分地区气温都呈现飙升态势。

C.在各级党委政府的努力下,四年多以来,我国农村贫困人口每年减少大约1000万以上。

D.央视《中国诗词大会》将经典通俗化,有利于更多人研究、了解传统诗词。

5、下列句子使用修辞手法不同于其他三项的一项是()A.在高山上,我们沉默了那么久,终于可以敞开喉咙大声喧哗。

B.在这里,尽情欢歌处,夜凉如水,他们的心像一滴水一样晶莹。

C.因此,所有的水,都在稍作徘徊时,被急匆匆的后来者推着前行。

D.太阳出来了,我怕被迅速蒸发,借一阵微风跳下花朵,正好跳回浇花壶中。

6、下列句子排序正确的一项是()黑云压城。

乌云是凶悍的是可怕的。

_________________雨后的天空,再也看不见乌云。

苏教版八年级数学下册《二次根式》专项测试题及参考答案(1)

苏教版八年级数学下册《二次根式》专项测试题及参考答案(1)

苏教版八年级数学下册《二次根式》专项测试题及参考答案(1)八年级下册二次根式专项测试卷姓名。

得分:一、选择题(每题2分,共20分)1.下列根式中,与32是同类二次根式的是______。

A。

12.B。

8.C。

6.D。

32改写:与32同类的二次根式是哪一个?答案:D2.下列根式:2xy、8、ab3xy1、x+y,中,最简二次根式的个数是______。

A。

2个。

B。

3个。

C。

4个。

D。

5个改写:这些根式中,最简二次根式有几个?答案:B3.实数a在数轴上的位置如图,则______。

图略)改写:根据图,a的值是多少?答案:-24.(a-4)²+(a-11)²化简后为______。

A。

7.B。

-17.C。

2a-15.D。

无法确定改写:简化(a-4)²+(a-11)²,得到什么结果?答案:B5.若16-a²=4-a⁴+a,则a的取值范围是______。

A。

-4≤a≤4.B。

a>-4.C。

a≤4.D。

-4<a<4改写:满足16-a²=4-a⁴+a的a的范围是什么?答案:D6.设2=a,3=b,用含a,b的式子表示0.54,则下列表示正确的是______。

A。

0.3ab。

B。

3ab。

C。

0.1ab。

D。

0.1ab改写:用a和b表示0.54的式子是什么?答案:C7.化简(a-1)²/(2a-2)的结果是______。

A。

a-1.B。

1-a。

C。

-1-a。

D。

-a-1改写:简化(a-1)²/(2a-2),得到什么结果?答案:A8.若代数式(2-a)+(a-4)的值为2,则a的取值范围是______。

A。

a≥4.B。

a≤2.C。

2≤a≤4.D。

a=2或a=4改写:满足(2-a)+(a-4)=2的a的范围是什么?答案:C9.已知4x-8+x-y-m=0,当y>0时,则m的取值范围是______。

A。

0<m<1.B。

锦州市初中英语八年级下册Unit 8经典测试卷(含答案解析)

锦州市初中英语八年级下册Unit 8经典测试卷(含答案解析)

一、选择题1., or we'll be late for the exam and the teacher will be angry with us.A.Be careful B.Come in C.Hurry up D.Wait a moment C解析:C【解析】句意:快点,否则我们就要考试迟到了,老师会生气的。

A. Be careful 小心; B. Come in 进来;C. Hurry up 快点; D. Wait a moment稍等。

根据句意,故答案为C。

2.— How do you like your English teacher?— He is great. We friends since three years ago.A.were B.have madeC.have been D.have become C解析:C【解析】现在完成时态的用法。

由答句中的since three years ago知,主语用现在完成时态,且动词用延续性动词,因此选C。

3.(2017年山东泰安)It is accepted by everyone that knowledge is the most valuable_______ for human beings.A.standard B.treasure C.invention D.instruction B解析:B【解析】试题分析:句意:对于人类知识是最有价值的财富这一点被所有人接受。

A. standard 标准; B. treasure 财富,宝藏; C. invention发明; D. instruction指示,说明。

结合句意,故选B。

考点:考查名词的用法。

4.---Are you a fan of the science TV show Super Brain?---Yes, I'm always _______ by these people's great brain power.A.tired B.amazed C.bored D.satisfied B解析:B【分析】【详解】句意:--你是科技电视节目最强大脑的粉丝吗?--是的,我总是对那些人的智力感到很吃惊。

八年级下册生物试题(含答案)

八年级下册生物试题(含答案)

八年级下册生物试题(含答案)一、选择题1. 下列哪项是生物的共同特征?A. 需要营养B. 能呼吸C. 能运动D. 有细胞结构答案:A、B、D2. 下列哪个不是植物的光合作用产物?A. 氧气B. 葡萄糖C. 水D. 淀粉答案:C3. 下列哪种生物属于动物界?A. 细菌B. 酵母菌C. 蝴蝶D. 青霉菌答案:C4. 下列哪种生物属于植物界?A. 鲨鱼B. 紫菜C. 猩猩D. 蚂蚁答案:B5. 下列哪种生物属于真菌界?A. 细菌B. 酵母菌C. 青霉菌D. 以上都对答案:D二、填空题1. 细胞膜的主要功能是________和________。

答案:控制物质进出、保护细胞2. 植物的光合作用公式为________。

答案:二氧化碳 + 水 + 光能→ 氧气 + 葡萄糖3. 人类的遗传物质是________。

答案:DNA4. 生态系统由________、________和________三部分组成。

答案:生物群落、非生物环境、生物之间的相互关系5. 生物分类单位由大到小是________、________、________、________、________。

答案:界、门、纲、目、科三、简答题1. 请简要说明细胞的基本结构及其功能。

答案:细胞的基本结构包括细胞膜、细胞质、细胞核。

细胞膜控制物质进出、保护细胞;细胞质是细胞内所有细胞器的基质;细胞核包含遗传物质,控制细胞的生命活动。

2. 请简要介绍植物的光合作用过程及其意义。

答案:植物的光合作用过程是通过叶绿体利用光能将二氧化碳和水转化为氧气和葡萄糖。

光合作用对生物圈的意义在于:一是为植物自身和其他生物提供有机物和能量;二是释放氧气,维持大气中氧气和二氧化碳的平衡。

3. 请简要解释人类遗传物质的传递过程。

答案:人类遗传物质DNA位于染色体上,通过生殖细胞(精子和卵细胞)在亲子代间传递。

在有性生殖过程中,父母双方的染色体相互配对,形成新的个体,从而实现遗传信息的传递。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级单元题答案第一单元1、根据拼音写汉字。

湛嬉啸蜿2、略。

3、不设统一答案,意思与上下文吻合,符合语境,语言精炼简明即可(参考答案:花儿说:快乐就是为人们张开笑脸,释放宜人的芬芳。

快乐就是奉献啊。

)4、《鸟专题》:(1)不设统一答案。

如鸟的礼赞(赞歌)、鸟中精灵、我心中的鸟等感情鲜明、表意明确的主题皆可。

(2)不设统一答案。

例①雄鹰:茫茫苍穹,无处不是它搏击的舞台。

豪迈、壮烈、激越,是它翱翔的旋律。

它是为飞翔而生的。

例②海燕:像黑色的闪电高傲地飞翔在乌云翻滚、波浪滔天的大海上。

它是胜利的预言家,勇敢的战斗者。

(根据是否能表现所写鸟的特点、是否能由此生发感悟及语言表达情况给分,每一方面1分。

)5、①删去“五彩缤纷”;②“一课课”可改为“一篇篇”;③“映称”的“称”改“衬”;④“著名的”删去;⑤“名著”改为“名作”或“名家作品”;⑥删去“和我们的知识面”或在其前面添加“拓宽”(“拓展”、“丰富”等);⑦“每册书”改为“这册书”;⑧“按排”的“按”改为“安”;⑨“从中”与“使我们”;⑩“课外”与“丰富的”对调。

其他改法只要合理也可。

(改对1处得1分,得满4分为止。

超过7处的按前7处修改给分。

)二、阅读理解:(一)《海燕》6、写海鸥、海鸭、企鹅惊恐万状的丑态,是为了反衬海燕,突出海燕英勇无畏、乐观自信、敢于战斗的形象。

7.前一个“闪电”象征气焰嚣张的沙皇反动派势力;后一个“闪电”则比喻海燕矫健、勇猛的雄姿。

8、一方是凶狠、强大的乌云、狂风、雷声和闪电;一方是顽强、无畏、自信的海燕和大海。

最后的结果必然是海燕和大海取得胜利。

例句:“它在大笑,它又在号叫……它笑些乌云,它因为欢乐而号叫!”、“它从雷声的震怒里,早就听出了困乏,——它深信,乌云遮不住太阳,──是的,遮不住的!”“这是胜利的预言家在叫喊。

”(二)《向日葵》9、作者在天山脚下意外发现了不向阳的向日葵,由此引发了自己的反思。

10、秘密:向日葵不向阳;弥天大谎:向日葵向阳。

11、独立特行,敢于坚持自我。

(说出个性给分1分,说出喜欢或不喜欢的理由给2分。

)12、不设统一答案。

(只要言之成理即可。

观点明确,与文本内容联系密切,语言简明给3分;与短文有联系,中心较明确,语言较流畅给2分;与短文联系不密切,有一定的中心,语言尚可给1分;文不对题不给分。

)参考答案:盲从会使人更加远离真理;任何事物都有特殊和例外;要有独立的人格和思想;只有亲身体验才会了解事物的真谛等。

(三)《马说》13、(1)喂养(2)等同(一样)(3)怎么(4)马鞭(5)有时(6)尚且(7)并列而死(8)同“才”,才能。

14、翻译:(1)、日行千里的马,一顿有时能吃下一石粮食。

“马之千里”解释语序不当扣1分,“或”、“尽”等关键词未正确解释扣1分。

(2)、所以即使有名马(千里马),只是辱没在马夫的手里,和普通马一起死在马厩里,不拿“千里马”来称呼它。

(3)、这样的马,虽然有日行千里的能力,但是吃不饱,力气不足,才能和特长就显现不出来。

(4)、驱使它不按照正确的方法,喂养它又不能使它发挥日行千里的能力,它叫,却不能通晓它的意思。

15、策马、食马。

(2分。

每个1分。

如答“策之”、“食之”也可。

)16、围绕作者良好的愿望作答。

如渴望自己能得到当政者的赏识、任用。

也可从希望统治者不要埋没、摧残人才(或要识别、任用人才)方面回答。

(2分。

意对即可。

)17、答:此题为开放题。

问而后答,一锤定音;用问号,发人深省。

(四)课外文言文18、伯乐“还而视之,去而顾之”。

19、都说明了“世有伯乐,然后有千里马”这一观点。

也可用自己的话来回答。

如仅答“千里马常有,而伯乐不常有。

”一句扣1分。

(意对即可。

)第二单元一、积累与语言运用:1、迥;蒂;骈;骛;殉2. 付—副意—义唯—惟废—费3、略4.辽阔的大海蕴蓄着不尽的情思深邃的湖泊孕育着无限的希望广袤的星空绽放着智慧与花朵5.②将“提升自我”与“增长知识”位置对调④删去“和生活”6.(1)前者表示失败只是暂时的,我们要以更大的热情争取下一次的胜利。

后者表示胜利也只是暂时的,我们要珍视荣誉。

(2)胜不骄,败不馁。

(点拨:结合事例,分析总结语句的含义。

)7、略二、现代文阅读理解(一)8.对现有职业应采取“乐业”的态度。

9.(1)身入其中亲切有味。

(2)刻苦中快乐加增。

(3)因竞胜得快感。

(4)专心做事省却闲烦闷。

10.进一步论证“乐业”的重要性。

11.(1)懂得它的人不如爱好它的人,爱好它的人不如以实行它为快乐的人。

(2)他这个人啊,用功便忘记了吃饭,陶醉在学问里,便忘记了忧愁,不知道衰老就要到来,如此而已。

12.(言之成理即可)13.如“今日大热天气,我在这里喊破喉咙来讲,诸君扯直耳朵来听,有些人看着我们好苦;翻过来,倘若我们去赌钱去吃酒,还不是一样的淘神费力?”这一句结合演讲的情景,注意和听众现场交流,很有感染力。

714略15.首先要认识到劳苦总是免不掉的,其次要积极地从劳苦中找出快乐来。

16.略(二)17.知足安分达观应尽的责任没有尽(或“该做的事没有做完”)18.尽得大的责任,就得大快乐;尽得小的责任,就得小快乐。

19.(1)未尽责任,丢开不管(“推卸责任”和“逃避责任”亦可)(2)尽了责任,再无负担20.人人必须尽责任(或“人必须对生活负责”;“尽责虽苦却乐”)。

21.本文是从“最苦”和“最乐”两个侧面来谈“人要尽责任”的道理,“苦与乐”与本文的主要内容“谈责任”关系不大,所以不以“苦与乐”为题。

22.答案含有以下3个要点:①每一个人都有责任;②尽责任是我们生活的全部内容;③尽责任,就会快乐,否则,就会陷入痛苦。

(答案新颖、独到,可不受此3点的限制)三、文言文阅读23.略 24.略25.斯是陋室,惟吾德馨;理由:本文作者要说的是“陋室不陋”,而不陋的原因则是室主人的品德高尚,所以是这个句子(言之成理即可是)26.自然环境优美、交往人物不俗、生活情趣高雅;感情是:不慕荣利(高洁傲岸)、安贫乐道27.“陋”或“不陋”答案都应鼓励(因为题目是“你认为”但要提醒注意若作者认为则必不“不陋”)28.以古代名贤自况,表明自己也有古人的情趣与品质四、作文(略)第三单元1.振、沛、蓬、妨,写对2个得1分。

2.不设统一答案,参考:(1)国破山河在,城春草木深。

(2)会当凌绝顶,一览众山小。

(3)大漠孤烟直,长河落日圆。

(4)学而不思则罔,思而不学则殆。

1空1分,该空有错不得分。

3.不设统一答案,参考:(1)得饶人处且饶人。

(2)最可怕的敌人就是没有坚强的信念。

4.不设统一答案,参考:雨在告别,去向江河,舍弃了方塘的平静与惬意,才有奔腾千里的豪情和自由。

路在告别,去向四方,舍弃了都市的宽阔与平坦,才有穿行阡陌的昂扬和执著。

5.修改参考:(1)学习(2)“毅”改为“意”。

两横线都填对方可得满分(3)“将来”与“都希望自己”互换。

两横线都填对方可得满分(4)“而且”“所以”。

两横线都填对方可得满分1题1分。

6.(1)不设统一答案,参考:俗语“羊有跪乳之恩,鸦有反哺之情。

”应该敬老、爱幼等。

答对2点得3分,答出1方面给1分。

(2)答题参考:前者对小学生的要求都很明确,很具体;后者讲的基本是一些大道理,让人(一个小学生而已)觉得不知道该怎么做。

前者比较微观,从细小的地方作要求;后者比较宏观,但缺乏实际操作的方式。

视认识程度给3、2、1分。

7.科学家们探索物质最小微粒的部分过程。

8.是不是原子里面还有更小的微粒(物质)。

9.特点:本文开头从人们日常生活中经常接触到的现象说起来引出文章要论述的抽象的科学道理。

好处:更容易吸引读者,引起人们的阅读兴趣。

特点2分,好处1分。

10.说明了基本粒子的数量之多,人们研究的脚步远不能就此停止。

3分。

11.不设统一答案,参考:对任何事情应该有好奇心,对待科学应大胆假设并小心求证。

要有打破沙锅问到底的精神。

视认识的深刻程度给分。

12.飞行动物和游水动物的运动过程中它们的翅膀和尾巴的振动频率、振幅以及运动速度三者之间的关系———振动频率乘以振幅再除以运动速度,计算得到的数值总是落在0.2-0.4之间。

13.这一小节提出一些问题,并对这些问题进行追问。

作用是引起下文科学家们对这些问题的探究。

特点2分,作用1分。

14.特点:先举世界上最小的鸟的飞行规律,再举与此体形悬殊的游水动物海豚的例子。

这样的意在表明所有飞行动物和游水动物,不管体形大的还是体形小的动物都存在这样的运动常数。

特点1分,意图2分。

15.不设统一答案,参考:“几乎所有的飞行动物和游水动物的运动机制中都存在这个神秘的常数。

”“几乎”一词说明还有例外情况,删去就不准确了。

“甚至,不能排除,这一常数很可能对外星生物也同样适用。

”“可能”一词说明还只是推断,删去后变成了事实就不准确了。

每句及分析2分。

共4分。

16.它能够帮助生物学家们根据动物化石的身体构造,判断出那些早已灭绝了的动物曾经具有怎样的运动速度。

还能够帮助军方研制出各种高性能的飞行器。

不用原话回答不给分。

17.如:人们根据青蛙的眼睛特点研制了电子蛙眼;人们根据蝙蝠的飞行规律为飞机研制了机翼。

18.(1)发明(2)混合(3)靠着(4)交换着;完成。

写对2个括号得1分。

19.用完后再用火烤使药熔化了,用手掸去,一点也不会沾上脏东西。

20.刻字、胶泥、令坚(对两个得1分,全对得2分)21.用药物蒙铁板、设置铁范、密布字印、用火烧。

1线1分。

22.(1)(2分)百炼成钢,比喻人经过多次刻苦的锻炼,非常坚强,或成为优秀的人物。

(2)(2分)多揉多摔打第四单元一、1.颓;瞰;斓;梓;绰2.弦;纹;置;贯;栩、栩3.略4.略5. ⑪、范进;心理活动;⑫、胡屠户;动作描写;⑬、孔乙己;神态描写;⑭、奥楚蔑洛夫;语言描写二、(一)6.写寒冷的天气,渲染悲凉的气氛,为孔乙己出场作铺垫,暗示孔乙己悲惨的结局7.照应前面“打折了腿”,说明孔乙己的腿已成不起作用了,反映了遭遇的悲惨,也说明孔乙己的好喝成性,即使打折了腿,也要用“手”来喝酒。

8.取笑。

9.身体已成残废;衣食无着;被人嘲笑;根源:封建科举制度的毒害10.略(也可以直接用鲁迅先生对待孔乙己的态度:哀其不幸,怒其不争)(二)11.路边盼信撕毁通知(意对即可)12.突出天气酷热,衬托小夏、小秋盼信的急切心情。

13.比喻,生动形象地描绘出小夏、小秋震惊的神态。

14.可从两方面理解:“八月的阳光”既暗示生活的艰难,又象征亲情的温暖、社会的关爱15、16答略三、17—21答略四、22.答略第五单元一、积累与运用1、jǔjuéjǐnɡliànɡ2、B3、D4、①沉舟侧畔千帆过,病树前头万木春,②春蚕到死丝方尽,蜡炬成灰泪始干。

③夕阳西下,断肠人在天涯;乡书何外达,归雁络阳边。

相关文档
最新文档