第十二章多元回归分析
第12章-多重线性回归分析
6 因变量总变异的分解
P
(X,Y)
Y
(Y Y) (Y Y)
(Y Y)
Y X
Y
Y
9
Y的总变异分解
Y Y Yˆ Y Y Yˆ
Y Y 2 Yˆ Y 2 Y Yˆ 2
总变异 SS总
回归平方和 剩余平方和
SS回
SS剩
10
Y的总变异分解
病程 (X2)
10.0 3.0 15.0 3.0 4.0 6.0 2.9 9.0 5.0 2.0 8.0 20.0
表 12-1 脂联素水平与相关因素的测量数据
空腹
回归模空型腹 ?
瘦素
脂联 BMI 病程 瘦素
脂联
(X3)
血糖 (X4)
素(Y)
(X1)
(X2)
(X3)
血糖 素(Y) (X4)
5.75 13.6 29.36 21.11 9.0 4.90 6.0 17.28
H 0: 1 2 3 4 0 ,即总体中各偏回归系数均为0; H 1:总体中各偏回归系数不为0或不全为0;
= 0.05。
2 计算检验统计量: 3 确定P值,作出推断结论。
拒绝H0,说明从整体上而言,用这四个自变量构成 的回归方程解释糖尿病患者体内脂联素的变化是有统 计学意义的。
的平方和 (Y Yˆ)2为最小。
只有一个自变量
两个自变量
例12-1 为了研究有关糖尿病患者体内脂联素水平的影响因 素,某医师测定30例患者的BMI、病程、瘦素、空腹血糖, 数据如表12-1所示。
BMI (X1)
24.22 24.22 19.03 23.39 19.49 24.38 19.03 21.11 23.32 24.34 23.82 22.86
12章 多元线性回归
统计学第十二章 多元线性回归一. 选择题1. 在多元线性回归分析中,t 检验是用来检验( ) A 总体线性关系的显著性 B.各回归系数的显著性 C.样本线性关系的显著性 D .H 0:β1=β2=…βk =02.在多元线性回归模型中,若自变量x i 对因变量y 的影响不显著,那么它的回归系数 βi 的取值( )A.可能为0B.可能为1C.可能小于0 D 可能大于13.在多元线性回归方程 y i ˆ=βˆ0+x 11ˆβ+x 22ˆβ+…+xkkβˆ中,回归系数βˆi表示( ) A.自变量x i 变动1个单位时,因变量y 的平均变动额为βˆiB.其他变量不变的条件下,自变量x i 变动1个单位时,因变量y的平均变动额为βˆiC.其他变量不变的条件下,自变量x i 变动1个单位时,因变量y的变动总额为βˆiD.因变量y 变动1个单位时,因变量x i 的变动总额为βˆi4.设自变量的个数为5个,样本容量为20。
在多元回归分析中,估计标准误差的自由度为( )A.20B.15C.14D.18 5.在多元回归分析中,通常需要计算调整的多重判定系数R a2,这样可以避免的值()A. 由于模型中自变量个数的增加而越来越接近1B. 由于模型中自变量个数的增加而越来越接近0C. 由于模型中样本容量的增加而越来越接近0D. 由于模型中样本容量的增加而越来越接近16.在多元线性回归分析中,如果F检验表明线性关系显著,则意味着()A.在多个变量中至少有一个自变量与因变量之间的线性关系显著B.所有的自变量与因变量之间的线性关系都显著C.在多个变量中至少有一个自变量与因变量之间的线性关系不显著D.所有的自变量与因变量之间的线性关系都不显著7.在多元线性回归分析中,如果t检验表明回归系数βi不显著,则意味着()A.整个回归方程的线性关系不显著B.整个回归方程的线性关系显著C.自变量x i与因变量之间的线性关系不显著D.自变量x i与因变量之间的线性关系显著8.设多元线性回归方程为Yˆ=βˆ0+x11ˆβ+x22ˆβ+…+xkkβˆ,若自变量x i的回归系数βˆi的取值接近0,这表明()A.因变量y对自变量ix的影响不显著B.因变量y对自变量ix的影响显著C.自变量ix对因变量y的影响不显著D.自变量x对因变量y的影响显著i9.一家出租汽车公司为确定合理的管理费用,需要研究出租车司机每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(a=0.05)根据上表计算的判定系数为()A. 0.9229B. 1.1483C. 0.3852D. 0.851610. 一家出租汽车公司为确定合理的管理费用,需要研究出租车四级每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(α=0.05)根据上表计算的估计标准误差为()A. 306.18B. 17.50C. 16.13D. 41.9311. 一家出租汽车公司为确定合理的管理费用,需要研究出租车司机每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(α=0.05)根据上表计算的用于检验线性关系的统计量F=()A. 306.18B. 48.80C. 5.74D. 41.9312.一家产品销售公司在30个地区设有销售分公司。
多元回归分析及其应用
多元回归分析及其应用多元回归分析是一种统计分析方法,可以用来研究多个自变量对一个因变量的影响关系。
相比于简单回归分析,多元回归分析考虑了更多因素的影响,能够更准确地描述变量之间的关系。
本文将介绍多元回归分析的基本原理和应用,以及如何进行该分析的步骤和解读结果。
一、多元回归分析的基本原理多元回归分析建立在线性回归的基础上,使用线性方程来描述因变量与自变量之间的关系。
它的基本模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y表示因变量,X1、X2...Xn表示自变量,β0、β1...βn表示模型的系数,ε表示误差项。
多元回归分析的目标是通过拟合最佳的模型,得到各个自变量的系数,以及判断自变量对因变量的影响是否显著。
二、多元回归分析的步骤进行多元回归分析时,需要按照以下步骤进行:1. 数据收集与准备:收集与研究问题相关的数据,并进行数据清洗与整理,确保数据的准确性和完整性。
2. 模型设定:根据研究问题和数据特点,选择适当的模型。
根据自变量和因变量的关系类型,可以选择线性回归、多项式回归、对数回归等各种模型。
3. 模型拟合:使用统计软件进行多元回归分析,拟合出最佳模型。
统计软件会给出各个自变量的系数、截距项以及模型的可靠性指标。
4. 模型诊断:对模型进行诊断,检查模型的合理性和符合假设的程度。
可以通过观察残差图、相关系数矩阵、变量的显著性检验等方法来评估模型的质量。
5. 结果解读:根据模型的系数和统计指标,对结果进行解读。
判断自变量对因变量的影响是否显著,并分析各个自变量之间的相互影响。
三、多元回归分析的应用领域多元回归分析在各个学科和领域都有广泛的应用。
以下是其中几个具体领域的示例:1. 经济学:多元回归分析可以用来研究经济变量之间的关系,如GDP、失业率、通货膨胀率等。
2. 医学:多元回归分析可以帮助医学研究人员研究不同因素对疾病发展的影响,如药物剂量、生活方式等。
多元回归分析范文
多元回归分析范文多元回归分析是一种统计分析方法,用于探究多个自变量与一个因变量之间的关系。
它是简单回归分析的扩展,可以更准确地预测因变量的值,并提供对自变量的影响程度的评估。
在本文中,将介绍多元回归分析的原理、步骤和应用,并将其与其他相关的统计分析方法进行比较。
Y=β0+β1X1+β2X2+β3X3+…+βnXn+ε其中,β0为常数项,β1,β2,β3为自变量的系数,ε为误差项。
多元回归分析的目标是通过估计自变量的系数,找到一个最佳的拟合线来预测因变量的值。
1.数据收集:收集包括因变量和自变量在内的相关数据。
2.数据预处理:处理缺失值、异常值等数据,进行变量转换和标准化等操作。
3.模型拟合:使用最小二乘法估计自变量的系数,并通过显著性检验确定哪些自变量对因变量有显著影响。
4.模型评价:通过诸如回归系数、拟合优度等指标评价模型的拟合效果。
5.模型预测:利用拟合好的模型进行因变量的预测。
多元回归分析的应用非常广泛。
在社会科学领域,可以用于预测人们的投票行为、消费行为等。
在经济学中,可以用于分析商品价格与销量之间的关系,以及其他经济因素对市场产生的影响。
在医学领域,可以用于分析多个因素对疾病发生的影响。
在工程领域,可以用于预测产品性能与各个因素之间的关系。
与其他统计分析方法相比,多元回归分析的优点在于可以同时考虑多个自变量对因变量的影响,提供更全面的预测能力。
它可以揭示多个自变量之间的相互作用效应和各自的独立影响,并通过系数的大小提供对各个自变量的相对重要性的评估。
此外,多元回归分析还可以控制其他变量,剔除掉与因变量无关的影响。
然而,多元回归分析也存在一些局限性,如对线性假设的依赖、需要满足一些基本假设(如线性无关性、同方差性等)等。
总之,多元回归分析是一种重要的统计分析方法,可应用于多个领域。
通过分析多个自变量与一个因变量之间的关系,可以提供更准确的预测和深入的解释。
然而,在应用多元回归分析时,需要注意对数据的收集和预处理,并且验证模型的拟合优度和假设的合理性。
第十二章 回归分析
回归分析
如果我们将存在相关的两个变量,一个作为自变 量,另一个作为因变量,并把两者之间不十分稳 定的、准确的关系,用数学方程式来表达,则可 利用该方程由自变量的值来估计、预测因变量的 估计值,这一过程称为回归分析。 相关表示两个变量之间的双向相互关系,回归表 示一个变量随另一个变量做不同程度变化的单向 关系。
• 线性回归的基本假设
– – – – 线性关系 正态分布 独立性假设 误差等分散性假设
• 回归方程的建立
– 步骤:1)作散点图;2)设直线方程;3)选定具体方 法,计算表达式中的a和b;4)将a和b代入表达式,得 到回归方程。 – 方法:1)平均数法;2)最小二乘法。 • 最小二乘法:在配置回归线时,回归系数b的确定原则是 使散布图上各点距回归线上相应点的纵向距离平方和为最 小,这种求b的方法即最小二乘法。
• 回归分析与相关分析的关系
– 理解: • 同属相关分析; • 对称设计与不对称设计。 – 回归系数与相关系数的关系 • 相关系数是两个回归系数的几何平均数。
第二节 一元线性回归方程的检验
• 估计误差的标准差
某一X值相对应的诸Y 值,是以Y的平均数YX 为中 ˆ 心呈正态分布的。而与某一X值相对应的回归值 Y 就是与该X值相对应的那些诸Y值的平均数YX的估 ˆ 计值。由 Y 估计YX 会有一定的误差。误差大小 与X值相对应的诸Y值分布范围有关,范围大,误 差大,估计的准确性、可靠性小,范围小,误差小, 估计的准确性、可靠性大。 ˆ 我们需要一个用来描述由Y 估计YX 时误差大小的 指标,即估计误差的标准差。平均数与标准差未知, 样本的无偏估计量为:
a YX Y bYX X
• 列回归方程式(见教材)
多元回归分析
12.1回归方程为y=25.0287−0.04971x1+1.928169x2各回归系数的意义为:β1=-0.04971,表示在x2不变的情况下,x1每增加一个单位,y减少0.04971个单位;β2=1.928169,表示在x1不变的情况下,x2每增加一个单位,y增加1.928169个单位。
其他信息:多重判定系数R2=0.210896调整多重判定系数R a2=-0.01456多重判定系数和调整多重判定系数表明:该多元回归方程的拟合效果较差,在因变量y的变差中,能被估计的回归方程所解释的比例很少。
Significance F=0.436485475表明,y与x1、x2之间的线性关系不显著。
P-value=0.653301和0.231624表明,自变量x1、x2对因变量y的影响均不显著。
当x1=200,x2=7时,y的预测值为25.0287−0.04971∗200+1.928169∗7=28.583883 12.23个自变量,15个观测值。
回归方程为y=657.0534+5.710311x1−0.416917x2−3.471481x3F=8.961759>F(3,11)=3.587s e=109.429596多重判定系数R2=0.709650调整多重判定系数R a2=0.630463多重判定系数和调整多重判定系数表明:该多元回归方程的拟合效果较好,调整后,在因变量y的变差中,能被估计的回归方程所解释的比例为63.0463%。
从F检验可以看出,y与x1、x2、x3之间的线性关系显著。
从t检验可以看出,自变量x1、x3对因变量y的影响显著,而x2对因变量y的影响不显著。
12.3(1)所以y与x1、x2之间的线性关系显著。
(2)所以,β1显著。
(3)所以,β2显著。
12.4(1)回归方程为y=88.63768+1.603865x1(2)回归方程为y=83.23009+2.290184x1+1.300989x2(3)不相等。
多元回归分析
多元回归分析引言多元回归分析是一种统计方法,用于探究自变量对因变量的影响程度。
它通过建立一个数学模型,分析多个自变量与一个因变量之间的关系,以预测因变量的变化。
本文将介绍多元回归分析的基本原理、应用场景和步骤。
基本原理多元回归分析建立了一个包含多个自变量的线性回归方程,如下所示:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y为因变量,X1、X2、…、Xn为自变量,β0、β1、β2、…、βn为回归系数,ε为误差项。
回归系数表示自变量对因变量的影响程度。
多元回归分析可以通过最小二乘法估计回归系数,即找到使误差项平方和最小的系数值。
在得到回归系数后,可以通过对自变量的设定值,预测因变量的值。
应用场景多元回归分析广泛应用于各个领域,例如经济学、社会科学和工程学等。
以下是一些常见的应用场景:1.经济学:多元回归分析可以用于预测经济指标,如国内生产总值(GDP)和通货膨胀率。
通过分析多个自变量,可以了解各个因素对经济发展的影响程度。
2.社会科学:多元回归分析可以用于研究社会现象,如教育水平和收入水平之间的关系。
通过分析多个自变量,可以找出对收入水平影响最大的因素。
3.工程学:多元回归分析可以用于预测产品质量,如汽车的油耗和引擎功率之间的关系。
通过分析多个自变量,可以找到影响产品质量的关键因素。
分析步骤进行多元回归分析时,以下是一般的步骤:1.收集数据:收集自变量和因变量的数据,并确保数据的可靠性和有效性。
2.数据预处理:对数据进行清洗和转换,以消除异常值和缺失值的影响。
3.变量选择:根据实际问题和领域知识,选择合适的自变量。
可以使用相关性分析、变量逐步回归等方法来确定自变量。
4.拟合模型:使用最小二乘法估计回归系数,建立多元回归模型。
5.模型评估:通过检验残差分布、解释变量的显著性和模型的拟合程度等指标,评估多元回归模型的质量。
6.预测分析:使用已建立的多元回归模型,对新的自变量进行预测,得到因变量的预测值。
多元回归分析总结分析
第十二章 多元回归分析在许多实际问题中,影响因变量的因素有一个时,我们用一元回归分析解决问题,但是影响因变量的因素往往有多个,此时问题就上升到了一个因变量同多个自变量的多元回归问题。
当因变量与自变量之间为线性关系时,我们称之为多元线性回归。
多元性性回归分析的原理同一元线性回归基本相同,但计算上要复杂得多。
本章知识结构如下:1、 建立回归模型 εββββ+++++=xx x k k y K 22110 回归方程 xx x k k y ββββ++++=K 22110 2、 利用最小二乘法对参数进行估计 参数包括ββββkK210,, 3、 写出回归方程xx x k k y ββββ++++=K 22110 4、 方程拟合优度的检验 5、 线性关系检验6、 回归系数的检验检验单个自变量对因变量的影响是否显着,检验步骤同线性关系的检验,检验过程中可能会因为“多重共线性”问题导致某些自变量无法通过检验。
7、 利用回归方程进行预测 利用给定的k 个自变量,求出因变量y 的平均值的预测区间和个别值的预测区间。
8、 变量选择——我称之为“模型的简化” 主要方法 原理:对统计量进行显着性检验,将一个或一个以上的自变量引入模型,如果增加一个自变量会使得残差平方和(SSE )明显减少,则将该自变量留在模型中,否则剔除。
9、多重共线性问题 1、产生原因:自变量之间的相关性 2、检验方法方法一:多重判定系数 R2方法二:估计标准误差 Se 1) 提出假设 2) 计算统计量)1,(~)1(----=k n k F k n SSE KSSR F 3) 作出决策 αα,,,P F Fa) 向前选择 b) 向后剔除 c) 逐步回归 a) 计算各对自变量之间的相关系数,并对各相关系数进行显着性检验; b) 当模型的线性关系进行F 检验显着时,几乎所有回归系数βi 的t 检验却不显着;c) 回归系数与预期的的相反;多 元 回 归 分 析主要知识点:建立的回归模型中回归系数和误差项分别代表的含义:回归系数)2,1,0(k i iK =β表示当其他 1-k 个自变量不变时,第i 个自变量一个单位因变量y 的平均变动量;误差项ε表示不能由各个自变量与y 之间的线性关系所解释的变异性。
多元回归分析
多元回归分析在经济学、社会学、心理学、医学等领域的实证研究中,多元回归分析是一种重要的统计方法。
它能够帮助研究者建立模型,估计各个变量的影响力,并对研究问题作出预测。
本文将介绍多元回归分析的概念、基本假设、模型建立、参数估计、模型诊断和解释结果等方面。
一、概念多元回归分析是一种用来研究因变量与多个自变量之间关系的统计方法。
在多元回归分析中,我们以因变量为被解释变量,以自变量为解释变量,建立一个多元线性回归模型,然后用样本数据估计各个系数,进而对总体进行推断。
通常,我们所研究的因变量与自变量之间是存在着某种联系的。
这种联系可以是线性关系,也可以是非线性关系。
我们可以通过多元回归模型来表达和解释完整的联系。
二、基本假设在进行多元回归分析时,我们需要基于以下三个基本假设:1.线性假设:多元回归模型中,因变量与自变量之间的关系是线性的。
2.独立假设:所有观测量之间都是相互独立的。
3.常态假设:模型的误差项服从正态分布。
三、模型建立建立一个多元回归模型通常有以下几个步骤:1.选择自变量:确定那些自变量对目标变量具有影响。
2.确定函数形式:使用线性函数或者非线性函数建立多元回归模型。
3.估计参数:使用样本数据来估计函数中的系数。
4.模型检验:验证模型是否可以拟合样本数据以及是否可以推广到总体。
五、参数估计在确定自变量和函数形式之后,我们需要使用已有数据来估计模型中的系数。
在多元线性回归中,一般采用最小二乘法对模型中的系数进行估计。
最小二乘法会尝试选择一组系数,使得用这组系数确定的模型与观测值之间的残差平方和最小。
残差平方和表示由于模型和观测值之间的差异而产生的差异的度量。
六、模型诊断模型的诊断是一个非常重要的步骤,用于检查多元回归模型的各种假设是否得到满足。
模型诊断的两个步骤:1.检查多元回归模型的基本假设是否得到满足。
这包括线性假设、独立假设和常态假设。
2.分析模型的残差以检查模型是否存在某种偏差。
如果存在偏差,可能会导致模型不准确,预测不可信。
多元回归分析
多元回归分析多元回归分析是一种常用的统计方法,用于研究多个自变量对一个因变量的影响。
该方法可以帮助研究人员理解不同自变量对因变量的相对重要性,并建立预测模型。
本文将介绍多元回归分析的基本原理和应用,并通过一个实例来说明其实际应用价值。
多元回归分析的基本原理是基于线性回归模型。
线性回归模型的基本形式是:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y表示因变量,X1至Xn表示自变量,β0至βn表示回归系数,ε表示误差项。
多元回归分析通过求解最小二乘法来估计回归系数,以找到最佳拟合线。
回归系数的估计结果可以反映不同自变量对因变量的影响。
多元回归分析的应用十分广泛,特别是在社会科学、经济学以及市场营销等领域。
例如,研究人员可以使用多元回归分析来探索广告投资对销售额的影响,或者研究不同因素对消费者购买行为的影响。
为了更好地理解多元回归分析的应用,我们以市场营销领域的一个案例为例。
假设某公司希望了解其产品销售额与广告投资、价格和竞争公司销售额之间的关系。
研究人员首先收集了一段时间内的数据,包括广告投资、产品价格和竞争公司销售额的信息。
在进行多元回归分析之前,研究人员需要对数据进行预处理,包括数据清洗、变量选择和变量转换等。
然后,他们可以根据以上模型构建一个方程,以评估广告投资、价格和竞争公司销售额对销售额的影响。
通过对数据进行多元回归分析,研究人员可以得到各自变量的回归系数。
这些系数可以告诉他们不同自变量对销售额的相对重要性。
例如,如果广告投资的回归系数较大,则说明广告投资对销售额的影响较大;反之,如果竞争公司销售额的回归系数较大,则说明竞争对销售额的影响较大。
通过多元回归分析的结果,研究人员可以得出一些结论,并提出相应的建议。
例如,如果广告投资对销售额的影响较大,公司可以考虑增加广告投资以提高销售额。
如果价格对销售额的影响较大,公司可以考虑调整产品价格以更好地满足消费者需求。
第十二章 回归分析要点
-131-第十二章 回归分析前面我们讲过曲线拟合问题。
曲线拟合问题的特点是,根据得到的若干有关变量的一组数据,寻找因变量与(一个或几个)自变量之间的一个函数,使这个函数对那组数据拟合得最好。
通常,函数的形式可以由经验、先验知识或对数据的直观观察决定,要作的工作是由数据用最小二乘法计算函数中的待定系数。
从计算的角度看,问题似乎已经完全解决了,还有进一步研究的必要吗?从数理统计的观点看,这里涉及的都是随机变量,我们根据一个样本计算出的那些系数,只是它们的一个(点)估计,应该对它们作区间估计或假设检验,如果置信区间太大,甚至包含了零点,那么系数的估计值是没有多大意义的。
另外也可以用方差分析方法对模型的误差进行分析,对拟合的优劣给出评价。
简单地说,回归分析就是对拟合问题作的统计分析。
具体地说,回归分析在一组数据的基础上研究这样几个问题:(i )建立因变量y 与自变量m x x x ,,,21 之间的回归模型(经验公式); (ii )对回归模型的可信度进行检验;(iii )判断每个自变量),,2,1(m i x i =对y 的影响是否显著;(iv )诊断回归模型是否适合这组数据;(v )利用回归模型对y 进行预报或控制。
§1 多元线性回归回归分析中最简单的形式是x y 10ββ+=,y x ,均为标量,10,ββ为回归系数,称一元线性回归。
它的一个自然推广是x 为多元变量,形如m m x x y βββ+++= 110 (1)2≥m ,或者更一般地)()(110x f x f y m m βββ+++= (2)其中),,(1m x x x =,),,1(m j f j =是已知函数。
这里y 对回归系数),,,(10m ββββ =是线性的,称为多元线性回归。
不难看出,对自变量x 作变量代换,就可将(2)化为(1)的形式,所以下面以(1)为多元线性回归的标准型。
1.1 模型在回归分析中自变量),,,(21m x x x x =是影响因变量y 的主要因素,是人们能控制或能观察的,而y 还受到随机因素的干扰,可以合理地假设这种干扰服从零均值的正态分布,于是模型记作⎩⎨⎧++++=),0(~2110σεεβββN x x y m m (3) 其中σ未知。
多元回归分析
基本介绍
Hale Waihona Puke 通常影响因变量的因素有多个,这种多个自变量影响一个因变量的问题可以通过多元回归分析来解决。例如, 经济学知识告诉我们,商品需求量Q除了与商品价格P有关外,还受到替代品的价格、互补品的价格,和消费者收 入等因素,甚至还包括商品品牌Brand这一品质变量(品质变量不能用数字来衡量,需要在模型中引入虚拟变量) 的影响。多元回归分析应用的范围更加广泛。由于线性回归分析比较简单和普遍,下面首先介绍多元线性回归, 在线性分析基础上,逐步引入虚拟变量回归和一类能够变换成线性回归的曲线回归模型 。
多元回归分析
数理统计方法
目录
01 基本介绍
03 引进虚拟变量
02 多元回归模型 04 曲线回归
多元回归分析(Multiple Regression Analysis)是指在相关变量中将一个变量视为因变量,其他一个或 多个变量视为自变量,建立多个变量之间线性或非线性数学模型数量关系式并利用样本数据进行分析的统计分析 方法。另外也有讨论多个自变量与多个因变量的线性依赖关系的多元回归分析,称为多元多重回归分析模型(或 简称多对多回归)。
感谢观看
当虚拟变量的引入形式只影响回归方程的截距,我们称为加法模型。引入虚拟变量的另外一种形式是乘法模 型,这时引入虚拟变量后并不影响模型的截距,而是影响了斜率。当然,在模型设定时也可能同时引入加法和乘 法,同时改变模型的截距和斜率。
曲线回归
前面我们在模型中都假定Y和之间是线性关系,从广义的线性角度来讲,下面所讲的曲线模型是通过变量替换 而转化成线性的模型。表1列出了常用的可以通过变量替换而转化成线性的曲线模型 。
多元回归模型
多元回归模型的数学形式 设因变量为Y,影响因变量的k个自变量分别为,假设每一个自变量对因变量Y的影响都是线性的,也就是说, 在其他自变量不变的情况下,Y的均值随着自变量的变化均匀变化,这时我们把 称为总体回归模型,把称为回归参数。回归分析的基本任务是: 任务1:利用样本数据对模型参数作出估计。 任务2:对模型参数进行假设检验。 任务3:应用回归模型对因变量(被解释变量)作出预测。 模型的基本假定 为了保证多元回归分析的参数估计、统计检验以及置信区间估计的有效性,与一元线性回归分析类似,我们 需要对总体回归模型及数据作一些基本假定。 假定1:随机误差项的概率分布具有零均值,即。 假定2:随机误差项的概率分布对于不同的自变量表现值而言,具有同方差。
第十二章 回归分析预测法
全面分析影响预测对象的相关因素, 全面分析影响预测对象的相关因素,确定自变量 1、首先对所有影响因素进行分析 2、比较相关因素,找出最主要的影响因素 比较相关因素, 选择回归预测模型, 选择回归预测模型,确定模型参数 实际预测 检验预测模型和预测结果的可靠性程度
三、随机误差项的影响因素
人们的随机行为 回归模型中 省略的变量
回归分析预测法 从各种经济现象之间的相关关系出发, 从各种经济现象之间的相关关系出发, 通过对与预测对象有联系的现象变动趋势的 分析, 分析,推算预测对象未来状态数量表现的一 种预测法。 种预测法。
回归分析预测法的基本步骤 (一)根据预测的目的,选择确定自变量和 根据预测的目的, 因变量 (二)收集历史统计资料 分析.计算并建立回归 (二)收集历史统计资料,分析.计算并建立回归 收集历史统计资料,分析 预测模型 (三)进行相关分析 (四)检验回归预测模型 计算预测误差 检验回归预测模型,计算预测误差 回归预测模型 (五)计算并确定预测值
回归模型 定义:
回归分析是对具有相关关系的变量之间的 数量变化规律进行测定, 数量变化规律进行测定,研究某一随机变量 因变量)与其他一个或几个普通变量( (因变量)与其他一个或几个普通变量(自变 之间的数量变动关系, 量)之间的数量变动关系,并据此对因变量进 行估计和预测的分析方法。 行估计和预测的分析方法。由回归分析求出的 关系式, 关系式,称为回归模型
P( − t α < t < t α ) = 1 − α
2 2
即
P( −t α <
2
ɵ βi − βi sβɵ
i
i
< tα ) = 1− α
2
ɵ ɵ P ( βi − t α × sβɵ < βi < βi + t α × sβɵ ) = 1 − α
贾俊平统计学第十二章 多元线性回归_09
12 - 32
Excel 输出结果的分析
SPSS共线性诊断
• • 自变量间的相关系数矩阵,观察是否存在自变量的相关系数非 常高。一般,相关系数>0.9将会存在共线性问题;相关系数在 0.8以上可能有问题 容忍度(Tolerance):容忍度即以每个自变量作为应变量对其 他自变量进行回归分析时得到的残差比例,大小用1减决定系 数来表示。该指标越小,说明该自变量被其余自变量预测的越 精确,共线性可能就越严重。陈希孺根据经验得出:如果某个 自变量的容忍度小于0.1,则可能存在共线性问题严重 方差膨胀因子(Variance inflation factor,VIF):实际上是容忍 度的倒数,VIF越大,说明共线性问题可能越严重 特征根(Eigenvalue):实际上是对自变量进行主成分分析, 如果相当多维度的特征根约等于0,则可能有较严重的共线性 条件指数(Condition Index):当某些维度的该指标数值大于 30时,可能存在共线性 12 - 33
12 - 35
多重共线性
(例题分析 例题分析) 例题分析
1. tα/2(25-2)=2.0687,所有统计量 α/2(25-2)=2.0687 ,所有统计量t>t 所以均拒绝原假设, 说明这4个自变量两两之间 , 所以均拒绝原假设 , 说明这 个自变量两两之间 都有显著的相关关系 由表Excel输出的结果可知 , 回归模型的线性关系 输出的结果可知, 由表 输出的结果可知 显著(Significance-F= 1.03539E-06<α=0.05)。 而 显著 = α 。 回 归 系 数 检 验 时 却 有 3 个 没 有 通 过 t 检 验 (PValue=0.074935 、 0.862853 、 0.067030>α=0.05) α 。这也暗示了模型中存在多重共线性 固定资产投资额的回归系数为负号(-0.029193) , 固定资产投资额的回归系数为负号 与预期的不一致
什么是多元回归分析如何解释多元回归模型的系数
什么是多元回归分析如何解释多元回归模型的系数多元回归分析是一种常用的统计分析方法,用于探索多个自变量与一个因变量之间的关系。
它广泛应用于各个领域,如经济学、社会学、心理学等,以及市场营销、医学研究和社会科学等实践中。
在多元回归分析中,我们通常使用一个多元回归模型来描述因变量和自变量之间的关系。
该模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y表示因变量,X1、X2、...、Xn表示自变量,β0、β1、β2、...、βn为回归系数,ε为误差项。
回归系数表示了自变量对因变量的影响程度,即自变量的单位变化对因变量的单位变化的贡献。
解释多元回归模型的系数时,通常需要考虑以下几个方面:1. 回归系数的大小和方向:回归系数的大小反映了自变量对因变量的影响程度,可以通过系数的绝对值大小来比较不同自变量之间的影响力。
正系数表示自变量的增加与因变量的增加呈正相关,负系数表示自变量的增加与因变量的增加呈负相关。
2. 系数的显著性:在多元回归分析中,我们通常会计算每个回归系数的显著性,以判断该系数是否真正对因变量有影响。
常用的统计检验方法有t检验和F检验。
如果回归系数的p值小于设定的显著性水平(通常为0.05),则认为该系数是显著的,即它对因变量的影响是统计上显著的。
3. 系数与实际含义的对应关系:解释回归系数时,需要将其与具体的自变量及因变量的实际含义相对应。
例如,如果自变量表示年龄,回归系数为0.5,可以解释为每增加一岁,因变量的平均值将增加0.5个单位。
4. 系数的解释可能存在的限制:在解释回归系数时,需要注意可能存在的限制因素。
例如,回归模型仅能描述自变量与因变量之间的关系,并不能表示因果关系。
此外,可能存在未观察到的变量对结果的影响,这也需要在解释系数时予以考虑。
5. 系数的解释应综合实际背景:在解释回归系数时,需要将其放在实际背景下进行分析,考虑相关领域的理论和专业知识。
多元回归分析总结分析
第十二章 多元回归分析在许多实际问题中,影响因变量的因素有一个时,我们用一元回归分析解决问题,但是影响因变量的因素往往有多个,此时问题就上升到了一个因变量同多个自变量的多元回归问题。
当因变量与自变量之间为线性关系时,我们称之为多元线性回归。
多元性性回归分析的原理同一元线性回归基本相同,但计算上要复杂得多。
本章知识结构如下:1、 建立回归模型 εββββ+++++=xx x k k y K 22110 回归方程 xx x k k y ββββ++++=K 22110 2、 利用最小二乘法对参数进行估计 参数包括ββββkK210,, 3、 写出回归方程xx x k k y ββββ++++=K 22110 4、 方程拟合优度的检验 5、 线性关系检验6、 回归系数的检验检验单个自变量对因变量的影响是否显著,检验步骤同线性关系的检验,检验过程中可能会因为“多重共线性”问题导致某些自变量无法通过检验。
7、 利用回归方程进行预测 利用给定的k 个自变量,求出因变量y 的平均值的预测区间和个别值的预测区间。
8、 变量选择——我称之为“模型的简化” 主要方法 原理:对统计量进行显著性检验,将一个或一个以上的自变量引入模型,如果增加一个自变量会使得残差平方和(SSE )明显减少,则将该自变量留在模型中,否则剔除。
9、多重共线性问题 1、产生原因:自变量之间的相关性 2、检验方法 方法一:多重判定系数 R2方法二:估计标准误差 Se 1) 提出假设 2) 计算统计量)1,(~)1(----=k n k F k n SSE KSSR F 3) 作出决策 αα,,,P F Fa) 向前选择 b) 向后剔除 c) 逐步回归 a) 计算各对自变量之间的相关系数,并对各相关系数进行显著性检验; b) 当模型的线性关系进行F 检验显著时,几乎所有回归系数βi 的t 检验却不显著;c) 回归系数与预期的的相反;多 元 回 归 分 析主要知识点:建立的回归模型中回归系数和误差项分别代表的含义:回归系数)2,1,0(k i iK =β表示当其他 1-k 个自变量不变时,第i 个自变量一个单位因变量y 的平均变动量;误差项ε表示不能由各个自变量与y 之间的线性关系所解释的变异性。
多元回归分析方法
多元回归分析方法一、简介多元回归分析是一种经济学和统计学中常用的分析方法,它可以用来研究多个自变量对一个因变量的影响关系。
在实际问题中,我们往往需要考虑多个因素对某个现象的影响,多元回归分析可以帮助我们揭示这种复杂关系。
二、回归模型回归分析基于回归模型,常见的多元回归模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βkXk + ε,其中Y是因变量,Xi是自变量,βi是对应的回归系数,ε是随机误差项。
回归系数反映了自变量对因变量的影响程度,通过对样本数据进行估计,我们可以得到回归系数的估计值。
三、数据收集与准备在进行多元回归分析之前,我们需要收集和准备相关的数据。
这包括确定因变量和自变量的测量指标,选择合适的样本规模,保证数据的有效性和可靠性。
同时,对于因变量和自变量之间可能存在的非线性关系,我们需要进行适当的变量转换或添加高阶项,以确保模型的拟合程度。
四、回归模型的选择在进行多元回归分析时,我们需要选择合适的回归模型。
这可以通过观察数据的分布情况、变量之间的关系以及领域知识来进行判断。
常见的回归模型包括线性回归、多项式回归和逻辑回归等。
选择合适的模型能够提高分析的准确性和可解释性。
五、模型拟合与评估在得到回归模型的估计值后,我们需要评估模型的拟合程度和预测能力。
常见的评估指标包括均方误差(MSE)、决定系数(R-squared)和F统计量等。
通过这些指标,我们可以判断模型的拟合优度和自变量的显著性,进而确定模型是否可靠以及变量是否具有统计显著性。
六、多重共线性检验多元回归分析中存在一个重要的问题,即多重共线性。
当自变量之间存在强相关关系时,容易导致模型估计结果的不稳定和不可靠。
因此,在进行多元回归分析之前,必须对自变量进行多重共线性的检验。
常用的方法包括方差膨胀因子(VIF)和特征值分解等。
七、模型解释与应用通过对多元回归模型的估计和评估,我们可以得到自变量对因变量的影响程度和方向,并进行合理的解释。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这一形式可以简写为: b A1Y 由于系数矩阵是一个对称的方阵,且一般满秩,因 此可求逆,有解,且是唯一解
当方程仅为二元或三元时,可用行列式或消元法求
解,但方程多元时,手工计算很麻烦,且不太可
能,因此必须借助统计软件进行求解
例题请参阅《兽医统计学》P149~150 猪的瘦肉量是猪育种工作中一个非常重要的指标, 一般认为,猪的瘦肉量与猪的眼肌面积、胴体长、 背膘厚有关 今根据三江白猪育种组对 54 头杂种猪的资料,得 到如下一级数据,试作多元回归分析
令 Y y y , X1 x1 x1 , X 2 x2 x2 ,..., X m xm xm 则
Q Y b1 X 1 b2 X 2 ... bm X m
2
分别求 Q 对 bi 的偏微分,并令之为 0:
Q 2 Y b1 X 1 b2 X 2 ... bm X m X 1 0 b1 Q 2 Y b1 X 1 b2 X 2 ... bm X m X 2 0 b2 ... Q 2 Y b1 X 1 b2 X 2 ... bm X m X m 0 bm
本章介绍多元回归的最基本知识,运用多元 回归进行多项式回归分析的一般步骤,回 归方程的显著性检验
矩阵的复习:
什么叫矩阵
方阵
对称阵 单位阵 行列式 矩阵的运算 矩阵的求逆
在许多情况下,影响一个变量的因素往往有许多个,
因此,仅用简单回归进行预测其结果不够理想,
因此应当研究一个依变量和多个自变量的关系
时,xi 每变化一个单位,y 发生变化的平均量
二、多元回归方程的一般配置方法
多元回归方程中 bi 的求解是通过最小二乘法来确定的
即所选取的 bi 必须使得离回归平方和 Q 最小,即:
ˆ y b0 b1 x1 b2 x2 ... bm xm 为最小 Q y y
2 1
b1 X 1Y b X Y 2 2 m 2 ... ... 2 Xm X mY bm
m
1 2
得: b1
2
X b X X
i i i i
SPxi x j
SPxi y
Y
2
y n
2
SS y
用矩阵形式表示之:
X 12 X1 X 2 ... X1 X m
X X X
1 2 2
2
... ...
X X X X
1
X
2
X m ...
1
... bm
... X1 X m
2
X X X
2 2
... ...
X X X X
1
X
2
X m ...
2 m 2 Xm
m
1
X 1Y X Y 2 ... X mY
整理之,得正规方程组:
b1 X 1 b2 X 1 X 2 ... bm X 1 X m X 1Y
2 2 b1 X 1 X 2 b2 X 2 ... bm X 2 X m X 2Y
...
其中:
2 i
2 b1 X 1 X m b2 X 2 X m ... bm X m X mY
ˆ b0 b1x1 b2 x2 ... bm xm y
其中,b0 是常数项: b0 y b1x1 b2 x2 ... bm xm
而 b1、b2、…、bi、...、bm 分别为 x1、x2、…、
xi、…、xm 对 y 的偏回归系数
Bi 的含义是当 x1、x2、…、xi-1、xi+1、…、xm 固定不变
X xi xi x
2
2 i
x
i
2
n
SS xi n xi y n x x
i j
X i X j xi xi x j x j xi x j X Y x x y y x y
这种研究多个自变量和一个依变量的关系就是多元 回归分析,简单回归分析仅研究一个自变量和依 变量的关系,因此可以将简单回归看作是多元回 归的一种特例,是多元回归的基础
这里所研究的多元回归也是线性回归,称为多元线
性回归
有两个自变量(x1、x2)时,称二元线性回归
有三个自变量(x1、x2、x3)时,称三元线性回归
有m 元自变量(xi)时,称 m 元线性回归
以此类推
例如:影响家畜发病的因素有很多种,如致病菌、
营养、环境、消毒、污染、抗病力、药物等
又如:影响动植物生化指标的因素也很多,既有外
部因素,也有内部因素 又如:影响牧场经营效益的因素有规模、品种、饲 料、饲养密度、管理水平、药物的使用、保健成 本、防疫等 其中,有些影响因素是数量性质的,而有些虽是质 量性质的,但可以进行量化
2 2
为了使方程的求解容易一些,先消去 b0
消去 b0:b0 y b1x1 b2 x2 ... bm xm
ˆ Q y y
2
代入Q式:
2
y y b1 x1 b2 x2 ... bm xm b1 x1 b2 x2 ... bm xm [ y y b1 x1 x1 b2 x2 x2 ... bm xm xm ]2
将这些影响因素(自变量)与被影响的因素(依变
量)组合成一个线性函数,即建立一个多元线性
回归方程来定量地说明这种回归关系,其效果往
往好于一般的分析
第一节 偏回归与复回归
一、偏回归
设影响依变量 y 的自变量 xi 有 m 个
( i = 1 , 2 , … , m)
我们可以建立一个多元线性回归方程: