高中数学不等式知识点总结

合集下载

高中不等式知识点的归纳总结

高中不等式知识点的归纳总结

高中不等式知识点的归纳总结高中不等式知识点的归纳总结引言:不等式是高中数学中的重要内容,它在数学问题和实际应用中具有广泛的应用。

掌握不等式的基本概念和解题方法对于学生的数学能力发展至关重要。

本篇文章将对高中不等式的各个知识点进行归纳总结,并提供相关的解题技巧和实例,帮助读者在学习和应用不等式时更加深入理解。

一、不等式基本概念1. 不等式符号:大于、小于、大于等于、小于等于符号的含义和表示方法。

2. 不等式的解集:解集表示不等式中使不等式成立的数值范围。

3. 解不等式的方法:加减法、乘除法、绝对值法等常用的解不等式的方法。

二、一元一次不等式1. 一元一次不等式的定义和性质:介绍一元一次不等式形式、性质和解集的概念。

2. 一元一次不等式的解法:从加减法、乘除法到绝对值法的详细解题步骤和注意事项。

3. 实际问题中的应用:将实际问题转化为一元一次不等式,并求解实际问题。

三、一元二次不等式1. 一元二次不等式的定义和性质:介绍一元二次不等式形式、性质和解集的概念。

2. 一元二次不等式的解法:使用图像法、符号法、区间法等方法解一元二次不等式。

3. 实际问题中的应用:将实际问题转化为一元二次不等式,并求解实际问题。

四、多项式不等式1. 多项式不等式的定义和性质:介绍多项式不等式的定义、性质和解集的概念。

2. 多项式不等式的解法:使用图像法、符号法、区间法等方法解多项式不等式。

3. 实际问题中的应用:将实际问题转化为多项式不等式,并求解实际问题。

五、绝对值不等式1. 绝对值不等式的定义和性质:介绍绝对值不等式的定义、性质和解集的概念。

2. 绝对值不等式的解法:使用绝对值定义、分情况讨论、不等式的性质等方法解绝对值不等式。

3. 实际问题中的应用:将实际问题转化为绝对值不等式,并求解实际问题。

结论:高中不等式知识点的归纳总结对于学生的数学学习和应用具有重要的指导意义。

通过本文的介绍,读者可以清晰地了解不等式的基本概念、解题方法和实际应用,并通过解题实例加深对不等式知识点的理解和掌握。

高中数学不等式知识点

高中数学不等式知识点

高中数学不等式知识点数学作为一门抽象的学科,有着严密的逻辑和精确的计算方法。

在高中数学中,不等式是一个重要的知识点。

不等式的概念和应用不仅仅存在于数学领域,也在现实生活中扮演着重要的角色。

本文将通过对不等式的定义、性质和解题方法的探讨,帮助读者深入了解高中数学不等式知识点。

一、不等式的定义和性质不等式是用于表示两个数之间大小关系的符号。

常见的不等式符号有“大于”、“小于”、“不小于”、“不大于”等。

不等式中常见的数学符号有小于号(<)、大于号(>)、小于等于号(≤)、大于等于号(≥)。

不等式的定义为:设a和b为两个实数,如果a和b满足某种约束关系,就可表示为a≤b或a≥b。

当a和b之间存在一个不等于号,即a<b或a>b时,称之为真不等式;当a和b之间存在一个等于号,即a≤b或a≥b时,称之为假不等式。

不等式的性质有:1. 若a>b,则-a<-b。

2. 若a>b且c>0,则ac>bc。

3. 若a>b且c<0,则ac<bc。

4. 若a>b且c>0,则(a+c)>(b+c)。

5. 若a>b且c<0,则(a+c)<(b+c)。

二、一元一次不等式的解法一元一次不等式是指只含有一个未知数x,并且该未知数的最高次数为1的不等式。

解一元一次不等式可以采用图像法、等价变形法或区间法等方法。

图像法:首先将不等式转化为等式,画出对应的直线,然后确定不等式符号代表的方向。

最后根据图像确定解的区间。

等价变形法:通过等价变形将不等式化简为等价的简单不等式,然后求解。

例如,对于不等式3x+2>5x-1,可以将其化简为2x<3,然后解出x的取值范围。

区间法:根据不等式的性质,将未知数的取值范围划分成若干个区间,在每个区间上判断不等式的真假,并确定解的范围。

三、一元二次不等式的解法一元二次不等式是指含有一个未知数x,并且该未知数的最高次数为2的不等式。

高一基本不等式知识点涵盖

高一基本不等式知识点涵盖

高一基本不等式知识点涵盖在高中数学学习中,不等式是一个非常重要的概念。

掌握不等式的基本知识点对于解决各类数学问题至关重要。

本文将对高一基本不等式知识点进行全面涵盖,帮助同学们更好地理解和应用不等式。

1. 不等式的定义不等式是数学中用不等号表示的一种关系。

常见的不等号包括大于号(>)、小于号(<)、大于等于号(≥)、小于等于号(≤)。

例如,a > b表示a大于b,a < b表示a小于b。

2. 不等式的性质(1)等号两侧加(减)相同的数,不等式的关系不变。

例如,如果a > b,则a + c > b + c。

(2)等号两侧乘(除)相同的正数,不等式的关系不变。

例如,如果a > b,则ac > bc(c > 0)。

(3)等号两侧乘(除)相同的负数,不等式的关系改变。

例如,如果a > b,则ac < bc(c < 0)。

(4)两个不等式相加(减),不等式的关系保持不变。

例如,如果a > b 且 c > d,则a + c > b + d。

(5)两个不等式相乘(除),不等式的关系无法确定。

例如,如果a > b 且 c > d,则ac和bd的大小关系无法确定。

3. 不等式的解集表示一元不等式的解集通常用数轴上的区间表示。

例如,对于不等式x > 3,其解集为x属于(3, +∞)。

4. 不等式的图像表示(1)一元不等式的图像表示是数轴上的一段区间。

例如,对于不等式x > 3,其图像表示为一个在数轴上从3开始的箭头。

(2)二元不等式的图像表示是二维平面上的一部分。

例如,对于不等式y > x,其图像表示为一条斜线,线上方的点属于不等式的解集。

5. 不等式的求解方法(1)根据不等式的性质进行变形求解。

例如,对于不等式2x - 3 > 5,我们可以先将其变形为2x > 8,然后得出x > 4。

高中不等式知识点总结

高中不等式知识点总结

高中不等式知识点总结摘要:一、不等式的基本概念1.不等式的定义2.不等式的符号表示二、不等式的基本性质1.对称性2.传递性3.可加性4.乘法原则三、常见不等式的解法1.作差比较法2.作商比较法3.韦达定理四、实际应用1.生活中的应用2.数学中的应用正文:一、不等式的基本概念不等式是数学中的一种基本概念,用于表示两个数的大小关系。

不等式的定义很简单,就是一个比较式,用符号">"或"<"来表示大小关系。

例如,x > y表示x大于y,x < y表示x小于y。

二、不等式的基本性质不等式有许多基本性质,这里我们介绍四个常见的性质。

1.对称性:如果x > y,则y < x。

这就是说,不等式两边同时改变符号,不等式的方向不会改变。

2.传递性:如果x > y,且y > z,则x > z。

这就是说,如果一个数大于另一个数,而另一个数又大于第三个数,那么第一个数一定大于第三个数。

3.可加性:如果x > y,且a > 0,则x + a > y + a。

这就是说,如果一个数大于另一个数,而加上的一个正数,那么第一个数一定大于第二个数。

4.乘法原则:如果x > y,且m > 0,则x * m > y * m。

这就是说,如果一个数大于另一个数,而乘上的一个正数,那么第一个数一定大于第二个数。

三、常见不等式的解法有许多方法可以解不等式,这里我们介绍三种常用的方法。

1.作差比较法:如果x > y,则x - y > 0。

我们可以通过作差来比较两个数的大小。

2.作商比较法:如果x > y,则x / y > 1。

我们可以通过作商来比较两个数的大小。

3.韦达定理:如果x > y,则(x + y) / 2 > (x - y) / 2。

我们可以通过韦达定理来比较两个数的大小。

完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。

②传递性:a>b。

b>c则a>c。

③可加性:a>b等价于a+c>b+c,其中c为任意实数。

同向可加性:a>b,c>d,则a+c>b+d。

异向可减性:a>b,cb-d。

④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。

⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。

异向正数可除性:a>b>0,0bc。

a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。

⑧倒数法则:a>b>0,则1/a<1/b。

2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。

a^2+b^2>=2ab,当且仅当a=b时取等号。

a+b/2>=√ab,当且仅当a=b时取等号。

a+b+c/3>=∛abc,当且仅当a=b=c时取等号。

a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。

a+b+c>=3√abc,当且仅当a=b=c时取等号。

a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。

a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。

3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。

a+b)/2<=√(a^2+b^2),对任意实数a,b成立。

a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。

a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。

a+b)/2>=√ab,对任意正实数a,b成立。

高中数学知识点不等式的性质及解法

高中数学知识点不等式的性质及解法

高中数学知识点不等式的性质及解法高中数学中,不等式的性质及解法是一个重要的知识点。

它涉及到不等式的基本性质、不等式的加减乘除、不等式的等价变形以及一元一次不等式、一元二次不等式等不等式类型的解法。

下面将详细介绍不等式的性质及解法。

一、不等式的性质1.两边加减同一个数不等号方向不变。

2.两边乘除同一个正数不等号方向不变,同一个负数不等号方向改变。

3.如果两个不等式成立,则它们的和、差、乘积、商仍然成立。

4.如果两个不等式的符号方向相反,求和时不等式方向不确定,求差时等式方向不确定,求积时反而求商时等式方向相反。

5.无论何时,两边加上相等的数,不等式的大小不变。

二、一元一次不等式对于一元一次不等式,常规的解法是将其转化为等价的不等式进行求解。

具体步骤如下:1. 化简:将不等式中的所有项移到一边,化简为标准形式ax+b<0或ax+b>0。

2.等价变形:根据不等式的性质,进行乘除法或加减法,将不等式变形为更简单的形式。

3.解不等式:根据等价变形后的不等式,确定x的取值范围。

三、一元二次不等式对于一元二次不等式,可以利用抛物线的性质进行求解。

具体分为以下几种情况:1.一元二次不等式的根在抛物线的两侧,此时,可以通过求解抛物线与x轴的交点来确定不等式的解集。

2.一元二次不等式的根在抛物线上,此时,可以通过根的位置确定抛物线在不等式中的符号。

3.一元二次不等式的根在抛物线的一侧,此时,可以根据抛物线的开口方向来确定不等式的解集。

四、综合应用在实际问题中,不等式的应用非常广泛,比如在经济学、物理学、生物学等领域中的一些实际问题往往可以转化为不等式进行求解。

这时候,除了要掌握不等式的基本性质和解法外,还需要注意问题的本质,合理进行变量的定义和范围的确定。

综上所述,不等式的性质及解法在高中数学中占据很重要的地位。

掌握不等式的基本性质,熟悉不等式的加减乘除运算,能够灵活运用不等式的等价变形以及一元一次不等式、一元二次不等式的解法,对于提高解题能力和培养数学思维都非常有帮助。

(完整版)高中数学不等式知识点总结

(完整版)高中数学不等式知识点总结

选修4--5知识点1、不等式的基本性质①(对称性)a b b a >⇔>②(传递性),a b b c a c >>⇒>③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>,(异向可减性)d b c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d >><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且⑦(开方法则)0,1)a b n N n >>∈>且 ⑧(倒数法则)b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b +≥()a b R +∈,,(当且仅当a b =时取到等号).变形公式:a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭ 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:1122a b a b --+≤≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭ 222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n +++≥+++③二维形式的三角不等式:≥1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式: 2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法 常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)kk k <- 211,(1)k k k>+=⇒<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或 2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解⑴2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩⑵2()0(0)()f x a a f x a ≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化.10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法: ⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是: ①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩ ⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:y z x =或;y b z x a -=-③“距离”型:22z x y =+或z = 22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。

(完整版)高中数学人教版必修五不等式知识点最完全精炼总结,推荐文档

(完整版)高中数学人教版必修五不等式知识点最完全精炼总结,推荐文档

△>0
Байду номын сангаас
ax
b(a
x 0)
x
b
a b
(a (a
0) 0)
a
△=0
△<0
y=ax2+bx+c
y
的图象
(a>0)
x1 O
x2x
y
O x1
x
y x
O
ax2+bx+c=0 有两相异实根 (a>0)的根 x1, x2 (x1<x2)
有两相等实根
x1=x2=
b 2a
ax2+bx+c>0 {x|x<x1,或 x>x2} {x|x≠ b }
一.不等式知识要点
1.两实数大小的比较
a b a b 0 a b a b 0 a b a b 0
2.不等式的性质:8条性质.
3.基 本不 等式 定理
且且且且 且且且且 且且且且 且且且且
a 2 b 2 2ab
a2
b2
1 (a b)2 2
值。
z ax by z x2 y2
z y x
6
练习:1.求满足 | x | + | y | ≤4 的整点(横、纵坐标为整数)的
个数。
2.且且且且且且且f
(x)
2
log2
x
1 log2
x
(0
x
1)
34.f(x)=x+ 1 且x4且且且且且 x1
4.求函数 f ( x) ( x 1)2 4 ( x 1) 的最小值.
(5)一元二次方程根的分布问题: 方法:依据二次函数的图像特征从:开口方向、判别式、对称 轴、

高三数学不等式知识点

高三数学不等式知识点

高三数学不等式知识点高三数学不等式知识点11.一元一次不等式的解法任何一个一元一次不等式经过变形后都可以化为ax>b或axb而言,当a>0时,其解集为(ab,+∞),当a例1:解关于x的不等式ax-2>b+2x解:原不等式化为(a-2)x>b+2①当a>2时,其解集为(b+2a-2,+∞)②当a③当a=2,b≥-2时,其解集为φ④当a=2且b2.一元二次不等式的解法任何一个一元二次不等式都可化为ax2+bx+c>0或ax2+bx+c0)的`形式,然后用判别式法来判断解集的各种情形(空集,全体实数,部分实数),如果是空集或实数集,那么不等式已经解出,如果是部分实数,则根据“大于号取两根之外,小于号取两根中间”分别写出解集就可以了。

例2:解不等式ax2+4x+4>0(a>0)解:△=16-16a①当a>1时,△②当a=1时,△=0,则x≠-2,故其解集(-∞,-2)∪(-2,+∞)③当a0,其解集(-∞,-2-21-aa)∪(-2+21-aa,+∞)3.不等式组的解法将不等式中每个不等式求得解集,然后求交集即可.高三数学不等式知识点21、建立良好的学习数学习惯,会使自己学习感到有序而轻松。

高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。

学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的`特殊语言,并永久记忆在自己的脑海中。

良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

2、针对自己的学习情况,采取一些具体的措施(1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。

记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

(2)建立数学纠错本。

把平时容易出现错误的知识或推理记载下来,以防再犯。

争取做到:找错、析错、改错、防错。

完整版高中数学不等式知识点总结3篇

完整版高中数学不等式知识点总结3篇

完整版高中数学不等式知识点总结第一篇:基本不等式和二元平均数不等式一、基本不等式:基本不等式又称柯西不等式,是数学中重要的基本工具,对于解决不等式问题有重大意义。

基本不等式的形式如下:$$(a_1^2 + a_2^2 + … + a_n^2)(b_1^2 + b_2^2 + … + b_n^2) \geqslant (a_1b_1 + a_2b_2 + … + a_nb_n)^2$$其中$a_1,a_2,…,a_n$ 和$b_1,b_2,…,b_n$ 是任意实数。

基本不等式的证明过程多种多样,这里给出一种简单易懂的证明方法:设$x=a_1b_1+a_2b_2+…+a_nb_n$,则 $x^2$ 可以表示为:$$x^2={(a_1b_1+a_2b_2+…+a_nb_n)}^2$$$$={a_1}^2{b_1}^2+{a_2}^2{b_2}^2+…+{a_n}^2{b_n}^ 2+2a_1b_1a_2b_2+2a_1b_1a_3b_3+…+2a_{n-1}b_{n-1}a_nb_n$$又因为:$${a_1}^2+{a_2}^2+…+{a_n}^2\geqslant2a_1a_2+2a_1a_3+…+2a_{n-1}a_n$$$${b_1}^2+{b_2}^2+…+{b_n}^2\geqslant2b_1b_2+2b_1b_3+…+2b_{n-1}b_n$$因此:$${a_1}^2{b_1}^2+{a_2}^2{b_2}^2+…+{a_n}^2{b_n}^2 \geqslant 2a_1b_1a_2b_2+2a_1b_1a_3b_3+…+2a_{n-1}b_{n-1}a_nb_n$$故:$$x^2={a_1}^2{b_1}^2+{a_2}^2{b_2}^2+…+{a_n}^2{b_ n}^2+2a_1b_1a_2b_2+2a_1b_1a_3b_3+…+2a_{n-1}b_{n-1}a_nb_n$$$$\leqslant({a_1}^2+{a_2}^2+…+{a_n}^2)({b_1}^2+{ b_2}^2+…+{b_n}^2)$$即为所求基本不等式。

高中数学不等式知识点

高中数学不等式知识点

不等式知识点归纳:一、不等式的概念与性质1、实数的大小顺序与运算性质之间的关系:0>-⇔>b a b a 0<-⇔<b a b a 0=-⇔=b a b a 2、不等式的性质:(1)a b b a <⇔> , a b b a >⇔< (反对称性) (2)c a c b b a >⇒>>, ,c a c b b a <⇒<<, (传递性) (3)c b c a b a +>+⇒>,故b c a c b a ->⇒>+ (移项法则) 推论:d b c a d c b a +>+⇒>>, (同向不等式相加) (4)bc ac c b a >⇒>>0,,bc ac c b a <⇒<>0, 推论1:bd ac d c b a >⇒>>>>0,0 推论2:n n b a b a >⇒>>0 推论3:n n b a b a >⇒>>0不等式的性质是解、证不等式的基础,对于这些性质,关键是正确理解和熟练运用,要弄清每一个条件和结论,学会对不等式进行条件的放宽和加强。

3、常用的基本不等式和重要的不等式(1)0,0,2≥≥∈a a R a 当且仅当”取“==,0a (2)ab b a R b a 2,,22≥+∈则 (3)+∈R b a ,,则ab b a 2≥+(4)222)2(2b a b a +≤+4、最值定理:设,0,x y x y >+≥由(1)如积P y x P xy 2(有最小值定值),则积+=(2)如积22()有最大值(定值),则积S xy S y x =+即:积定和最小,和定积最大。

运用最值定理求最值的三要素:一正二定三相等 5、均值不等式:两个正数的均值不等式:ab ba ≥+2三个正数的均值不等是:33abc c b a ≥++n 个正数的均值不等式:nn n a a a na a a 2121≥+++6、四种均值的关系:两个正数b a 、的调和平均数、几何平均数、算术平均数、均方根之间的关系是2211222b a b a ab b a +≤+≤≤+ 小结:在不等式的性质中,要特别注意下面4点:1、不等式的传递性:若a>b,b>c, 则a>c,这是放缩法的依据,在运用传递性时,要注意不等式的方向,否则易产生这样的错误:为证明a>c,选择中间量b,在证出a>b,c>b,后,就误认为能得到a>c 。

高中数学不等式知识点总结

高中数学不等式知识点总结

弹性学制数学讲义不等式(4课时)★知识梳理1、不等式的基本性质①(对称性)a b b a >⇔>②(传递性),a b b c a c >>⇒>③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>,(异向可减性)d b c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d >><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且⑦(开方法则)0,1)a b n N n >>∈>且 ⑧(倒数法则)b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b +≥()a b R +∈,,(当且仅当a b =时取到等号).变形公式:a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭ 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号). ⑥0,2baab a b >+≥若则(当仅当a=b 时取等号)0,2b aab a b <+≤-若则(当仅当a=b 时取等号) ⑦b an b n a m a mb a b<++<<++<1,(其中000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:1122a b a b --+≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭ 222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n +++≥+++③二维形式的三角不等式:≥1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立. ⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式: 2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法: ①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小), 如211,(1)kk k <- 211,(1)k k k >+=⇒<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或 2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a ≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化.10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法:⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是:①当0a =时 0,0;b c ⇒=> ②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=< ②当0a ≠时00.a <⎧⇒⎨∆<⎩⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:y z x =或;y b z x a -=-③“距离”型:22z x y =+或z =22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。

(完整版)高中数学不等式知识点总结(最新整理)

(完整版)高中数学不等式知识点总结(最新整理)

⑴当 a 1 时, a f (x) ag(x) f (x) g(x)
⑵当 0 a 1时, a f (x) ag(x) f (x) g(x)
规律:根据指数函数的性质转化. 10、对数不等式的解法
f (x) 0
loga f (x) loga g(x) g(x) 0
⑴当 a 1 时,
(x) (x)
g(ቤተ መጻሕፍቲ ባይዱ0
x)
0
(“ 或 ” 时同理)
规律:把分式不等式等价转化为整式不等式求解.
8、无理不等式的解法:转化为有理不等式求解
f (x) 0

f
(x)
a(a
0)
f
(x)
a2
f (x) 0

f
(x)
a(a
0)
f
(x)
a2

f
(x)
g(x)
f (x)
g
(
x)
f (x)
a b,c 0 ac bc ⑤(同向正数可乘性) a b 0, c d 0 ac bd
a b 0, 0 c d a b
(异向正数可除性)
cd
⑥(平方法则) a b 0 an bn (n N ,且n 1)
⑦(开方法则) a b 0 n a n b(n N ,且n 1)
a
b
0
1
1 ;a
b
0
1
1
⑧(倒数法则)
ab
ab
2、几个重要不等式
① a2 b2 2ab a,b R ,(当且仅当 a b 时取" " 号).
ab a2 b2 .
变形公式:
2
②(基本不等式)
a b ab 2

高中数学不等式知识点总结

高中数学不等式知识点总结

高中数学不等式知识点总结
一、不等式的性质
1、非负性:对任意实数$a$,有 $a\geq0$;
2、对称性:对任意实数$a, b$,有 $a \gt b$ 等价于 $-a\lt -b$;
4、抽象性:不等式也是数的一种,即式子的值既可以是数,也可以是不等式;
1、绝对值不等式:$|x|\gt a$;
2、分组不等式:$\frac{x-a}{b} \gt c$;
1、速算不等式:
(3) $x-ay+by^2 \gt c$;
(1) 无穷不等式:$x \lt +\infty$;
(3) 大于等于零的不等式:$x \ge 0$;
(1) 确定不等式的种类;
(2) 求解出不等式的解集;
(3) 对不等式的解集进行分析。

(1) 速算不等式的解法:将不等式化简,然后在图表中求解;
(2) 特殊不等式的解法:如无穷不等式的解法为将不等式化简,根据此不等式轴线上的点,选择合适的区间,在该区间上求出不等式的解。

高中数学不等式知识点

高中数学不等式知识点

高中数学不等式知识点解决不等式问题需要使用基本概念、方法、规律来解决特定问题。

高中数学中的不等式是一种表达问题的方式,涉及到数学方法尤其重要,不仅可以研究数理问题,而且还可以帮助学生更好地理解和掌握数学概念,下面就对一些常见的不等式知识点进行介绍。

一、构造不等式不等式的形式是:表达式的不等关系,表达式可以是多个数的加减乘除等运算,或其他形式的数学运算,构造不等式是需要根据问题需要精心安排,一般总结一下几个原则:1. 确定不等式两边的表达式。

根据问题的要求,从左到右,先确定不符合条件的取值,再构造出对应的不等式;2. 确定不等号的方向。

考虑问题的情况,确定可能的极端情况,确定不等号的方向;3. 确定两边表达式的大小关系.根据不等号的方向,确定表达式的大小关系;4. 优化不等式的表达式.根据大小关系,优化不等式表达式,使其更加规范。

二、解不等式(一元一次不等式)解一元一次不等式主要有两种方式:(1)求解不等式的解集。

即求出解后可以满足不等式的条件的取值集合;(2)绘制不等式的图象。

把该不等式的解集用直线划分成(几)段,其中在符号上面的一段为解集,并且在解集各段正确标注符号,这就是解不等式图象的目的。

一元多次不等式的求解一般使用分组加减法,可以利用其中的一项进行转化,使原来多个不等号形式变成单一不等号。

1. 把一元多次不等式化为一元二次方程。

也就是带有一个等号的一元多次不等式,可以通过表达式的运算,将其转化为一元二次不等式;2. 把多个不等号展开成单等号或单不等号形式。

在一元二次不等式中,展开一个不等号式,转换成单一等号或单不等号形式;3. 把混合不等式转换成分组的形式。

多个不等式可以分组形式处理,然后使用分组加减法,将混合不等式变为两个不等式;不变式就是一个用不等式表达的定义域,这种定义域非常常见,只要列出不变式的形式,就能得到这类定义域的解。

不变式的解有两个基本步骤:一是将不变式展开成一系列的不等式,二是将这些不等式的解求出来,然后得到定义域的表达:1. 展开不变式得到其中的不等式。

不等式高中数学知识点

不等式高中数学知识点

不等式高中数学知识点不等式高中数学知识点1.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.(2)解分式不等式的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);(3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.2.利用重要不等式以及变式等求函数的最值时,务必注意a,b (或 a ,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).3.常用不等式有: (根据目标不等式左右的运算结构选用)a、b、c R, (当且仅当时,取等号)4.比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法5.含绝对值不等式的性质:6.不等式的恒成立,能成立,恰成立等问题(1)恒成立问题若不等式在区间上恒成立,则等价于在区间上若不等式在区间上恒成立,则等价于在区间上(2)能成立问题(3)恰成立问题数学考试答题技巧按部作答,争取每一分这里的按部作答主要是指学生在考试的过程中解答大题的时候。

对于一些比较复杂,难懂的题目,我们可以庖丁解牛,一步一步的解答。

这样一来。

我们可以可能将这道题解答出一半或者是四分之三,我们都知道现在的判题规则是按部给分也就是说学生列出了式子或者是解答对了一半都会得到相应的分数。

这就要求各位老师和同学们一定要注意暗部作答。

不要因为题目的难易程度而盲目的选择放弃,毕竟一道大题十分,做出来一半也就得到了五分到对于学生成绩来说五分还是非常重要的。

小编,建议在我们做大题时一定要注重按部作答这一规则。

因为我们在解答的过程中,如果分不清可以便于我们后期的检查以及教师的教师阅卷,使阅卷时清晰明了一目了然。

高中数学不等式知识点

高中数学不等式知识点

不等式知识点概括 :一、不等式的观点与性质1、实数的大小次序与运算性质之间的关系:2、不等式的性质:( 1) a b b a, a b b a(反对称性)( 2)a b, b c a c, a b, b c a c(传达性)( 3) a b a c b c ,故 a b c a c b (移项法例)推论: a b, c d a c b d(同向不等式相加)( 4)a b, c0ac bc, a b, c0ac bc推论 1:a b0, c d0ac bd推论 2:a b0 a n b n推论 3:a b0n a n b不等式的性质是解、证不等式的基础,对于这些性质,要点是正确理解和娴熟运用,要弄清每一个条件和结论,学会对不等式进行条件的放宽和增强。

3、常用的基本不等式和重要的不等式( 1) a R, a20, a0当且仅当 a0,取“”( 2)a, b R,则 a2 b 22ab( 3)a, b R ,则 a b 2 ab(4) a 2b2( a b)2224、最值定理 : 设 x, y0,由x y 2 xy(1)如积xy P(定值),则积x y有最小值2 P( 2)如积x y S(定值),则积xy有最大值(S )2 2即 : 积定和最小,和定积最大。

运用最值定理求最值的三因素:一正二定三相等5、均值不等式 :a b两个正数的均值不等式:ab2三个正数的均不等是:a b c3 abc3n 个正数的均不等式:a1a2an n a1 a2 a nn6、四种均的关系:两个正数 a、b 的和均匀数、几何均匀数、算均匀数、均方根之的关系是小 : 在不等式的性中,要特注意下边 4 点:1、不等式的性:若 a>b,b>c,a>c, 是放法的依照,在运用性,要注意不等式的方向,否易生的:明a>c, 中量 b, 在出 a>b,c>b,后,就能获得a>c。

2、同向不等式可相加但不可以相减,即由 a>b,c>d ,能够得出 a+c>b+d, 但不可以得 a—c>b—d。

高中数学不等式知识点总结

高中数学不等式知识点总结

高中数学不等式知识点总结一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。

总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。

扩展资料高中数学不等式知识点总结:1、用符号〉,=,〈号连接的式子叫不等式。

2、性质:①如果x>y,那么y<z;如果yy;(对称性)②如果x>y,y>z;那么x>z;(传递性)③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)⑥如果x>y>0,m>n>0,那么xm>yn;⑦如果x>y>0,那么x的.n次幂>y的n次幂(n为正数),x的n 次幂<y的n次幂(n为负数)。

或者说,不等式的基本性质有:①对称性;②传递性;③加法单调性,即同向不等式可加性;④乘法单调性;⑤同向正值不等式可乘性;⑥正值不等式可乘方;⑦正值不等式可开方;⑧倒数法则。

3、分类:①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

②一元一次不等式组:a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

高中数学不等式知识点归纳

高中数学不等式知识点归纳

高中数学不等式知识点归纳什么是不等式一般地,用纯粹的大于号“>”、小于号“,≥,≤,≠)连接的式子叫做不等式。

通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。

高中数学基本不等式知识点数学知识点1.不等式性质比较大小方法:(1)作差比较法(2)作商比较法不等式的基本性质①对称性:a > bb > a②传递性: a > b, b > ca > c③可加性: a > b a + c > b + c④可积性: a > b, c > 0ac > bc⑤加法法则: a > b, c > d a + c > b + d⑥乘法法则:a > b > 0, c > d > 0 ac > bd⑦乘方法则:a > b > 0, an > bn (n∈N)⑧开方法则:a > b > 0数学知识点2.算术平均数与几何平均数定理:(1)如果a、b∈R,那么a2 + b2 ≥2ab(当且仅当a=b时等号)(2)如果a、b∈R+,那么(当且仅当a=b时等号)推广:如果为实数,则重要结论(1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。

数学知识点3.证明不等式的常用方法:比较法:比较法是最基本、最重要的方法。

当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。

综合法:从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修4--5知识点1、不等式的基本性质 ①(对称性)a b b a >⇔> ②(传递性),a b b c a c >>⇒> ③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>, (异向可减性)d b c a d c b a ->-⇒<>, ④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒>(异向正数可除性)0,0a b a b c d c d >><<⇒>⑥(平方法则)0(,1)n na b a b n N n >>⇒>∈>且 ⑦(开方法则)0(,1)n na b a b n N n >>⇒>∈>且⑧(倒数法则)b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式) 2a bab +≥ ()a b R +∈,,(当且仅当a b =时取到等号).变形公式: 2a b a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭ 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号).⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b aab a b <+≤-若则(当仅当a=b 时取等号)⑦b an b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<<⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:2211222a b a b ab a b --++≤≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤⎪⎝⎭ 222().2a b a b ++≥②幂平均不等式:222212121...(...).n n a a a a a a n +++≥+++③二维形式的三角不等式:22222211221212()()x y x y x x y y +++≥-+-1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式: 设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理): 设1212...,...n na a ab b b ≤≤≤≤≤≤为两组实数.12,,...,nc c c 是12,,...,nb b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...na a a ===或12...nb b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)kk k <- 211,(1)k k k >+ 2212,21k k k k k k =⇒<++- *12(,1)1k N k k k k >∈>++等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或 2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根. 三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边. 6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解. 8、无理不等式的解法:转化为有理不等式求解⑴2()0()(0)()f x f x a a f x a ≥⎧>>⇔⎨>⎩⑵2()0()(0)()f x f x a a f x a ≥⎧<>⇔⎨<⎩⑶2()0()0()()()0()0()[()]f x f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或 ⑷2()0()()()0()[()]f x f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩ ⑸()0()()()0()()f x f x g x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法: ⑴当1a >时,()()()()f x g x aa f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化.10、对数不等式的解法⑴当1a >时,()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时,()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化. 11、含绝对值不等式的解法:⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f xg x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥②(0);x a x a x a a ≥⇔≥≤-≥或③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集. 13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有:⑴讨论a 与0的大小; ⑵讨论∆与0的大小; ⑶讨论两根的大小.14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是: ①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩ ⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤ ⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题常见的目标函数的类型: ①“截距”型:;z Ax By =+②“斜率”型:y z x =或;y bz x a -=-③“距离”型:22z x y =+或22;z x y =+ 22()()z x a y b =-+-或22()().z x a y b =-+-在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。

相关文档
最新文档