高考数学平面向量与解析几何

合集下载

高考复习资料:平面向量与解析几何

高考复习资料:平面向量与解析几何

第18讲 平面向量与解析几何在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。

用向量法解决解析几何问题思路清晰,过程简洁,有意想不到的神奇效果。

著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。

这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。

一、知识整合平面向量是高中数学的新增内容,也是新高考的一个亮点。

向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。

而在高中数学体系中,解析几何占有着很重要的地位,有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程。

二、例题解析例1、(2000年全国高考题)椭圆14922=+y x 的焦点为F ,1F 2,点P 为其上的动点,当∠F 1P F 2为钝角时,点P 横坐标的取值范围是___。

解:F 1(-5,0)F 2(5,0),设P (3cos θ,2sin θ)21PF F ∠ 为钝角∴ 123cos ,2sin )3cos ,2sin )PF PF θθθθ⋅=-⋅-( =9cos 2θ-5+4sin 2θ=5 cos 2θ-1<0解得:55cos 55<<-θ ∴点P 横坐标的取值范围是(553,553-) 点评:解决与角有关的一类问题,总可以从数量积入手。

本题中把条件中的角为钝角转化为向量的数量积为负值,通过坐标运算列出不等式,简洁明了。

例2、已知定点A(-1,0)和B(1,0),P 是圆(x-3)2+(y-4)2=4上的一动点,求22PA PB +的最大值和最小值。

新高考高中数学顺序 -回复

新高考高中数学顺序 -回复

新高考高中数学顺序 -回复
新高考高中数学的学习顺序可以按照以下顺序进行:
1. 函数与方程:包括函数的基本概念、初等函数、反函数、方程的解法等内容;
2. 三角函数与解三角形:包括三角函数的概念、性质、图像与解析式、解三角形等内容;
3. 平面向量与解析几何:包括平面向量的定义、运算、数量积、向量的共线与垂直、解析几何中直线、圆等内容;
4. 数列与数列极限:包括数列的定义、等差数列、等比数列、递推数列、数列极限等内容;
5. 导数与微分:包括导数的定义、基本导数、高次导数、导数的应用、微分的定义与性质等内容;
6. 不定积分与定积分:包括不定积分的概念、基本积分、换元积分法、分部积分法、定积分的概念、定积分的计算等内容;
7. 几何证明与解析几何证明:包括几何证明的基本方法、几何图形的性质证明、平面解析几何证明等内容;
8. 概率与统计:包括随机事件、概率的计算、排列与组合、统计的概念、数据分析等内容;
9. 三角函数与数列的扩展:包括三角函数的进一步扩展、数列的进一步深入等内容;
10. 空间几何与立体几何:包括空间几何中的点、直线、平面
的位置关系、立体几何中的球、锥、柱等内容。

以上是一种参考顺序,根据学校和教材的不同,顺序可能会有所调整。

建议根据自己的实际情况,灵活应用,并根据教材进行学习。

向量在平面几何、解析几何中的应用

向量在平面几何、解析几何中的应用

摘要:向量在平面几何与解析几何中多有应用,在历年来的高考试卷中也涉及部分向量知识。

向量知识不但让难题迎刃而解,还可让学生形成通用性规则,利用平面向量视角研究几何问题将取得良好成果与进展。

关键词:平面向量平面几何解析几何高中数学一、引言使用向量方法解题存在对应解题步骤,各步骤间联系紧密,存在逻辑顺序,在审题后需仔细核对题目题干,寻求问题突破口,在将几何问题转化为代数问题后,可实现题目的高精度运算,达到预期目的。

因此类题型具有复杂特点,在学生做题量得到提升后,学生对解答此类题目将拥有独到的个人见解,不但让图形对应特征得以描述,也让问题解决难度有所降低,下面将对相关题型与具体解题思路进行说明论证,在同学们阅读对应题干时,需带着对问题的解决思路求解。

二、向量教学存在的问题向量是高中数学的一大重点内容,在历年的高考试卷中有所涉及,也常与其他学科一同考试,为此提升向量教学效率,让学生灵活掌握向量知识,在拥有基本阅读审题能力的同时,提前了解向量习题的解题策略,不但有效保证做题效率,还让学生在复习前即可拥有一定知识储备,但现阶段教学存在的问题也较明显。

1.课内教学内容与高考试题具有脱轨性。

学生在学习人教版数学教材时,会学到复杂、零碎的知识,教师讲解新知识点时,也会向学生传授以往讲授过的知识点,用温故而知新的教学方法试图让学生快速进入学习状态,并建立对应向量学习思维。

高考试卷题量有限,不但要做到对高中阶段全部知识的灵活考查,还要做到面面俱到、照顾各个学习层次学生,并具有区分性,向量本身具有一定基础性,学生在初中阶段即接触过向量知识,在培养学生独立完成习题能力的同时,即使学生完全掌握教材教学内容,也不一定做对高考对应的向量试题,在与平面几何和立体几何综合出题考查的同时,学生对知识的综合运用能力也将决定做题准确率与效率。

面临新高考的改革,数学教师还需明确自身育人使命,适当给学生传授高考习题解题技巧,改变以往题海战术的陈旧教学模式,让学生热爱学习数学学科知识,并善于发现生活中的数学元素。

平面向量与解析几何

平面向量与解析几何

平面向量与解析几何平面向量是解析几何中的重要概念,它们在研究平面几何问题时具有广泛而深入的应用。

本文将介绍平面向量的定义、运算规则以及与解析几何的关系。

一、平面向量的定义平面向量是具有大小和方向的有向线段,用符号表示。

设向量A的起点为点P,终点为点Q,记作A=→PQ。

平面向量还可以用坐标表示。

设A的坐标为(x1, y1),起点在原点O,则A=→OP=(x1, y1)。

二、平面向量的运算1. 向量的加法向量的加法满足平行四边形法则。

设有向量A=→PQ,向量B=→RS,则A+B=→QS。

2. 向量的数乘向量的数乘是指将向量的长度放大或缩小。

设有向量A=→PQ,k为实数,则kA=→P'Q',其中P'为向量A的起点,Q'为向量A的终点,且P'Q'的长度为k倍于PQ的长度。

3. 内积运算内积也称点积,表示两个向量的数量积。

设向量A=→PQ,向量B=→RS,A的坐标为(x1, y1),B的坐标为(x2, y2),则A·B=x1x2+y1y2。

4. 外积运算外积也称叉积,表示两个向量的向量积。

设向量A=→PQ,向量B=→RS,A的坐标为(x1, y1),B的坐标为(x2, y2),则A×B=(0,0, x1y2-x2y1)。

三、平面向量与解析几何的关系通过平面向量的运算,我们可以研究解析几何中的一些常见问题。

1. 直线的方程设有点A(x1, y1)和点B(x2, y2),则点A和点B构成的直线的方程可以表示为:(y-y1)/(x-x1)=(y2-y1)/(x2-x1)。

2. 两条直线的关系设直线L1的方程为(a1x+b1y+c1=0),直线L2的方程为(a2x+b2y+c2=0),则L1与L2平行的条件是a1/a2=b1/b2,L1与L2垂直的条件是a1a2+b1b2=0。

3. 两个向量的夹角设有向量A=→PQ,向量B=→RS,夹角θ的余弦可以由它们的内积表示为:cosθ=(A·B)/(|A||B|)。

高考数学(理)之平面向量 专题04 平面向量在平面几何、三角函数、解析几何中的应用(解析版)

高考数学(理)之平面向量 专题04  平面向量在平面几何、三角函数、解析几何中的应用(解析版)

平面向量04 平面向量在平面几何、三角函数、解析几何中的应用一、具本目标: 一)向量的应用1.会用向量方法解决某些简单的平面几何问题.2.会用向量方法解决简单的力学问题与其他一些实际问题. 二)考点解读与备考:1.近几年常以考查向量的共线、数量积、夹角、模为主,基本稳定为选择题或填空题,难度较低;2.常与平面几何、三角函数、解析几何等相结合,以工具的形式进行考查,常用向量的知识入手.力学方面应用的考查较少.3.备考重点:(1) 理解有关概念是基础,掌握线性运算、坐标运算的方法是关键;(2)解答与平面几何、三角函数、解析几何等交汇问题时,应注意运用数形结合的数学思想,将共线、垂直等问题,通过建立平面直角坐标系,利用坐标运算解题.4.难点:向量与函数、三角函数、解析几何的综合问题.以向量形式为条件,综合考查了函数、三角、数列、曲线等问题.要充分应用向量的公式及相关性质,会用向量的几何意义解决问题,有时运用向量的坐标运算更能方便运算. 二、知识概述:常见的向量法解决简单的平面几何问题: 1.垂直问题:(1)对非零向量a r 与b r ,a b ⊥⇔r r.(2)若非零向量1122(,),(,),a x y b x y a b ==⊥⇔r r r r.2.平行问题:(1)向量a r 与非零向量b r共线,当且仅当存在唯一一个实数λ,使得 .(2)设1122(,),(,)a x y b x y ==r r是平面向量,则向量a r 与非零向量b r 共线⇔ .【考点讲解】3.求角问题:(1)设,a b r r是两个非零向量,夹角记为α,则cos α= .(2)若1122(,),(,)a x y b x y ==r r是平面向量,则cos α= .4.距离(长度)问题:(1)设(,)a x y =r,则22a a ==r r ,即a =r .(2)若1122(,),(,)A x y B x y ,且a AB =r u u u r ,则AB AB ==u u u r.【答案】1.1212(1)0,(2)0.a b x x y y ⋅=+=r r2.(1)a b λ=r r,(2)12210x y x y -=3.(1)a b a b ⋅⋅r r r r.4.(1)22x y +【优秀题型展示】 1. 在平面几何中的应用:已知ABC D 中,(2,1),(3,2),(3,1)A B C ---,BC 边上的高为AD ,求点D 和向量AD u u u r的坐标.【解析】设点D 坐标(x ,y ),由AD 是BC 边上的高可得⊥,且B 、D 、C 共线,∴⎪⎩⎪⎨⎧=⋅//0∴⎩⎨⎧=+---+=--⋅+-0)1)(3()2)(3(0)3,6()1,2(y x y x y x ∴⎩⎨⎧=+---+=+---0)1)(3()2)(3(0)1(3)2(6y x y x y x ∴⎩⎨⎧=+-=-+012032y x y x解得⎩⎨⎧==11y x ∴点D 坐标为(1,1),AD =(-1,2). 【答案】AD =(-1,2)【变式】已知四边形ABCD 的三个顶点(02)A ,,(12)B --,,(31)C ,,且2BC AD =u u u r u u u r,则顶点D 的坐标为 ( ) A .722⎛⎫ ⎪⎝⎭,B .122⎛⎫- ⎪⎝⎭,C .(32),D .(13),【解析】设22(,),(3,1)(1,2)(4,3),(,2),,37222x x D x y BC AD x y y y 祆==镲镲镲=---==-\\眄镲-==镲镲铑u u u r u u u rQ , 【答案】A【变式】已知正方形OABC 的边长为1,点D E 、分别为AB BC 、的中点,求cos DOE ∠的值.【解析】以OA OC 、为坐标轴建立直角坐标系,如图所示.由已知条件,可得114.225⋅==∴∠=⋅u u u r u u u ru u u r u u u r u u u r u u u r (1,),(,1),cos =OD OE OD OE DOE OD OE2.在三角函数中的应用:已知向量3(sin ,)4a x =r ,(cos ,1)b x =-r .设函数()2()f x a b b =+⋅r r r ,已知在ABC ∆中,内角A B C 、、的对边分别为a bc 、、,若a =2b =,sin B =()4cos(2)6f x A π++([0,]3x π∈)的取值范围.【解析】 由正弦定理得或 . 因为,所以4A π=.因为+.所以, ,, 所以. 【答案】()⎥⎦⎤⎢⎣⎡--∈⎪⎭⎫ ⎝⎛++212,12362cos 4πA x f sin ,sin sin 24a b A A A B π===可得所以43π=A a b >()2())4f x a b b x π=+⋅=+r r r 32()⎪⎭⎫⎝⎛++62cos 4πA x f =)4x π+12-0,3x π⎡⎤∈⎢⎥⎣⎦Q 112,4412x πππ⎡⎤∴+∈⎢⎥⎣⎦()21262cos 4123-≤⎪⎭⎫ ⎝⎛++≤-πA x f3.在解析几何中的应用:(1)已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,且|OA →+OB →|=|OA →-OB →|,其中O 为坐标原点,则实数a 的值为________.【解析】如图所示,以OA 、OB 为边作平行四边形OACB , 则由|OA →+OB →|=|OA →-OB →|得, 平行四边形OACB 是矩形,OA →⊥OB →.由图象得,直线y =-x +a 在y 轴上的截距为±2.【答案】±2(2)椭圆的焦点为F F ,点P 为其上的动点,当∠F P F 为钝角时,点P 横坐标的取值范围是 .【解析】法一:F 1(-,0)F 2(,0),设P (3cos ,2sin ).为钝角,.∴=9cos 2-5+4sin 2=5 cos 2-1<0.解得: ∴点P 横坐标的取值范围是(). 14922=+y x ,121255θθ21PF F ∠Θ123cos ,2sin )3cos ,2sin )PF PF θθθθ⋅=-⋅-u u u r u u u u r(θθθ55cos 55<<-θ553,553-ODC BA【答案】() 法二:F 1(-,0)F 2(,0),设P (x,y ).为钝角,∴ ()()125,5,PF PF x y x y •=--⋅-u u u r u u u u r225x y =+-=25109x -<. 解得:353555x -<<.∴点P 横坐标的取值范围是(). 【答案】() 2. 在物理学中的应用:如图所示,用两条成120º的等长的绳子悬挂一个灯具,已知灯具的重量为10N ,则每根绳子的拉力是 .]【解析】 ∵绳子的拉力是一样的(对称) ,∴OA =OB ,∴四边形OADB 为菱形 .∵∠AOB =120º ,∴∠AOD =60º .又OA =OB =AD , ∴三角形OAD 为等边三角形 ,∴OD =OA . 又根据力的平衡得OD =OC =10 , ∴OA =10 ,∴OA =OB =10 . ∴每根绳子的拉力大小是10N. 【答案】10N553,553-5521PF F ∠Θ553,553-553,553-【真题分析】1.【2017年高考全国II 卷理数】已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是( )A .2-B .32-C .43- D .1-【解析】如图,以BC 为x 轴,BC 的垂直平分线DA 为y 轴,D 为坐标原点建立平面直角坐标系,则A ,(1,0)B -,(1,0)C ,设(,)P x y ,所以()PA x y =-u u u r ,(1,)PB x y =---u u u r,(1,)PC x y =--u u u r ,所以(2,2)PB PC x y +=--u u u r u u u r ,22()22)22(PA PB PC x y y x y ⋅+=-=+-u u u r u u u r u u u r233)222-≥-,当(0,2P 时,所求的最小值为32-,故选B . 【答案】B2.【2018年高考上海卷】在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且||2EF =u u u r ,则AE BF ⋅u u u r u u u r的最小值为___________.【解析】根据题意,设E (0,a ),F (0,b );∴2EF a b =-=u u u r;∴a =b +2,或b =a +2;且()()1,2,AE a BF b ==-u u u r u u u r ,;∴2AE BF ab ⋅=-+u u u r u u u r; 当a =b +2时,()22222AE BF b b b b ⋅=-++⋅=+-u u u r u u u r;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅u u u r u u u r 的最小值为﹣3,同理求出b =a +2时,AE BF ⋅u u u r u u u r的最小值为﹣3.故答案为:﹣3.【答案】-33.【2018年高考江苏卷】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r,则点A 的横坐标为___________.【解析】设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=e ,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭u u u r u u u r ,由0AB CD ⋅=u u u r u u u r 得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-,因为0a >,所以 3.a = 【答案】34.【2017年高考全国I 卷理数】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |=___________. 【解析】方法一:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+=oa b a a b b ,所以|2|+==a b .方法二:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为【答案】5.【2017年高考江苏卷】如图,在同一个平面内,向量OA u u u r ,OB uuu r ,OC uuu r 的模分别为1,1,2,OA u u u r 与OCuuu r的夹角为α,且tan α=7,OB uuu r 与OC uuu r 的夹角为45°.若OC mOA nOB =+u u u r u u u r u u u r(,)m n ∈R ,则m n +=___________.【解析】由tan 7α=可得sin 10α=,cos 10α=,根据向量的分解,易得cos 45cos sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩0210n m +=-=⎩,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==,所以3m n +=. 【答案】36.【2017年高考浙江卷】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是___________.【解析】设向量,a b 的夹角为θ,则-==a b+==a b ++-=a b a b令y =[]21016,20y =+,据此可得:()()maxmin 4++-==++-==a b a ba b a b ,即++-a b a b 的最小值是4,最大值是【答案】4,7. 【2016·江苏卷】如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA →=4, BF →·CF →=-1,则BE →·CE →的值是________.【解析】 设AB →=a ,AC →=b ,则BA →·CA →=(-a )·(-b )=a ·b =4.又∵D 为BC 中点,E ,F 为AD 的两个三等分点,则AD →=12(AB →+AC →)=12a +12b ,AF →=23AD →=13a +13b ,AE →=13AD →=16a +16b ,BF →=BA →+AF →=-a +13a +13b =-23a +13b ,CF →=CA →+AF →=-b +13a +13b =13a -23b ,则BF →·CF →=⎝⎛⎭⎫-23a +13b ·⎝⎛⎭⎫13a -23b =-29a 2-29b 2+59a ·b =-29(a 2+b 2)+59×4=-1. 可得a 2+b 2=292.又BE →=BA →+AE →=-a +16a +16b =-56a +16b ,CE →=CA →+AE →=-b +16a +16b =16a -56b ,则BE →·CE →=⎝⎛⎭⎫-56a +16b ·⎝⎛⎭⎫16a -56b =-536(a 2+b 2)+2636a ·b =-536×292+2636×4=78.【答案】 788.【2017年高考江苏卷】已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【解析】(1)因为co ()s ,sin x x =a,(3,=b ,a ∥b,所以3sin x x =. 若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan 3x =-.又[]0πx ∈,,所以5π6x =.(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅=-=+a b . 因为[]0πx ∈,,所以ππ7π[,]666x +∈,从而π1cos()62x -≤+≤. 于是,当ππ66x +=,即0x =时,()f x 取到最大值3; 当π6x +=π,即5π6x =时,()f x取到最小值-【答案】(1)5π6x =;(2)0x =时,()f x 取到最大值3;5π6x =时,()f x取到最小值-.1.已知数列{}n a 为等差数列,且满足32015BA a OB a OC =+u u u r u u u r u u u r ,若()AB AC R λλ=∈u u u r u u u r,点O 为直线BC 外一点,则12017a a +=( )A. 0B. 1C. 2D. 4【解析】∵32015BA a OB a OC =+u u u r u u u r u u u r , ∴32015OA OB a OB a OC -=+u u u r u u u r u u u r u u u r, 即()320151OA a OB a OC =++u u u r u u u r u u u r , 又∵()AB AC R λλ=∈u u u r u u u r,∴3201511a a ++=, ∴12017320150a a a a +=+=. 【答案】A2.直角ABC V 中, AD 为斜边BC 边的高,若1AC =u u u r , 3AB =u u u r,则CD AB ⋅=u u u r u u u r ( )【模拟考场】A .910 B . 310 C . 310- D . 910-【解析】依题意BC =22,AC AC CD CB CD CB =⋅==103cos ==BC AB B,所以有9cos 310CD AB CD AB B ⋅=⋅⋅==u u u r u u u r u u u r u u u r . 【答案】A3.已知正三角形ABC 的边长为,平面ABC 内的动点P ,M 满足1AP =uu u r ,PM MC =uuu r uuu r ,则2BMuuu r 的最大值是( ) A.B. C. D.【解析】本题考点是向量与平面图形的综合应用.由题意可设D 为三角形的内心,以D 为原点,直线DA 为x 轴建立平面直角坐标系,由已知易得1220,DA ADC ADB D D BDC B C ∠=∠====∠=︒u u u r u u u r u u u r. 则()((2,0,1,,1,.A B C --设(),,P x y 由已知1AP =u u u r ,得()2221x y -+=,又11,,,,,22x x PM MC M BM ⎛⎛-+=∴∴= ⎝⎭⎝⎭u u u u r u u u u r u u u u r()(22214x y BM -++∴=u u u u r ,它表示圆()2221x y -+=上点().x y 与点(1,--距离平方的14,()22max149144BM⎫∴==⎪⎭u u u u r ,故选B.【答案】B4.已知曲线C :x =直线l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=u u u r u u u r r,则m 的取值范围为 .【解析】本题考点是向量线性运算与解析几何中点与直线的位置关系的应用.由0AP AQ +=u u u r u u u r r知A 是PQ的中点,设(,)P x y ,则(2,)Q m x y --,由题意20x -≤≤,26m x -=,解得23m ≤≤.3244344943637+433237+【答案】[2,3]5.在平面直角坐标系中,O 为原点,()),0,3(),3,0(,0,1C B A -动点D 满足CD u u u r=1,则OA OB OD ++u u u r u u u r u u u r 的最大值是_________.【解析】本题的考点是参数方程中的坐标表示, 圆的定义与 三角函数的值域.由题意可知C 坐标为()3,0且1CD =,所以动点D 的轨迹为以C 为圆心的单位圆,则D 满足参数方程3cos sin D D x y θθ=+⎧⎨=⎩(θ为参数且[)0,2θπ∈),所以设D 的坐标为()[)()3cos ,sin 0,2θθθπ+∈, 则OA OB OD ++=u u u r u u u r u uu r=因为2cos θθ+=所以OA OB OD ++的最大值为1==+故填1【答案】1+6.在△ABC 中,∠ABC =120°,BA =2,BC =3,D ,E 是线段AC 的三等分点,则BD →·BE →的值为________. 【解析】 由题意得BD →·BE →=(BA →+AD →)·(BC →+CE →)=⎝⎛⎭⎫BA →+13AC →·⎝⎛⎭⎫BC →+13CA → =⎣⎡⎦⎤BA →+13(BC →-BA →)·⎣⎡⎦⎤BC →+13(BA →-BC →)=⎝⎛⎭⎫13BC →+23BA →·⎝⎛⎭⎫23BC →+13BA → =29BC →2+59BC →·BA →+29BA →2=29×9+59×2×3×cos 120°+29×4=119. 【答案】1197.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF . 若AE →·AF →=1,则λ的值为________. 【解析】法一、 如图,AE →=AB →+BE →=AB →+13BC →,AF →=AD →+DF →=AD →+1λDC →=BC →+1λAB →,所以AE →·AF →=⎝⎛⎭⎫AB →+13BC →·⎝⎛⎭⎫BC →+1λAB →=⎝⎛⎭⎫1+13λAB →·BC →+1λAB →2+13BC →2=⎝⎛⎭⎫1+13λ×2×2×cos 120°+4λ+43=1,解得λ=2.法二、 建立如图所示平面直角坐标系.由题意知:A (0,1),C (0,-1),B (-3,0),D (3,0).由BC =3BE ,DC =λDF .可求点E ,F 的坐标分别为E ⎝⎛⎭⎫-233,-13,F ⎝⎛⎭⎫3⎝⎛⎭⎫1-1λ,-1λ, ∴AE →·AF →=⎝⎛⎭⎫-233,-43·⎝⎛⎭⎫3⎝⎛⎭⎫1-1λ,-1λ-1=-2⎝⎛⎭⎫1-1λ+43⎝⎛⎭⎫1+1λ=1,解得λ=2. 【答案】28.在△ABC 中,∠A =60°,AB =3,AC =2,若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________.【解析】AB →·AC →=3×2×cos 60°=3,AD →=13AB →+23AC →,则AD →·AE →=⎝⎛⎭⎫13AB →+23AC →·(λAC →-AB →)=λ-23AB →·AC →-13AB →2+2λ3AC →2=λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311.【答案】3119.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =__________;y =__________.【解析】MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →,∴x =12,y =-16.【答案】 12 -1610.在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分别在线段BC 和DC 上,且BE →=λBC →,DF →=19λDC →,则AE →·AF →的最小值为________.【解析】法一 在梯形ABCD 中,AB =2,BC =1,∠ABC =60°,可得DC =1,AE →=AB →+λBC →,AF →=AD →+19λDC →,∴AE →·AF →=(AB →+λBC →)·(AD →+19λDC →)=AB →·AD →+AB →·19λDC →+λBC →·AD →+λBC →·19λDC →=2×1×cos 60°+2×19λ+λ×1×cos 60°+λ·19λ×cos 120°=29λ+λ2+1718≥229λ·λ2+1718=2918,当且仅当29λ=λ2,即λ=23时,取得最小值为2918.法二 以点A 为坐标原点,AB 所在的直线为x 轴建立平面直角坐标系,则B (2,0),C ⎝⎛⎭⎫32,32,D ⎝⎛⎭⎫12,32.又BE →=λBC →,DF →=19λDC →,则E ⎝⎛⎭⎫2-12λ,32λ,F ⎝⎛⎭⎫12+19λ,32,λ>0,所以AE →·AF →=⎝⎛⎭⎫2-12λ⎝⎛⎭⎫12+19λ+34λ=1718+29λ+12λ≥1718+229λ·12λ=2918,λ>0, 当且仅当29λ=12λ,即λ=23时取等号,故AE →·AF →的最小值为2918.【答案】291811.已知矩形ABCD 的边AB =2,AD =1.点P ,Q 分别在边BC ,CD 上,且∠P AQ =π4,则AP →·AQ →的最小值为________.【解析】法一(坐标法) 以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,则A (0,0),B (2,0),D (0,1).设∠P AB =θ,则AP →=(2,2tan θ),AQ →=⎝⎛⎭⎫tan ⎝⎛⎭⎫π4-θ,1,0≤tan θ≤12. 因为AP →·AQ →=(2,2tan θ)·⎝⎛⎭⎫tan ⎝⎛⎭⎫π4-θ,1=2tan ⎝⎛⎭⎫π4-θ+2tan θ=2(1-tan θ)1+tan θ+2tan θ=41+tan θ+2tan θ-2=41+tan θ+2(tan θ+1)-4≥42-4,当且仅当tan θ=2-1时,“=”成立,所以AP →·AQ →的最小值为42-4.法二(基底法) 设BP =x ,DQ =y ,由已知得,tan ∠P AB =x2,tan ∠QAD =y ,由已知得∠P AB +∠QAD =π4,所以tan ∠P AB +tan ∠QAD 1-tan ∠P AB tan ∠QAD =1,所以x +2y 2=1-xy2,x +2y =2-xy ≥2x ·2y ,解得0<xy ≤6-42,当且仅当x =2y 时,“=”成立.AP →·AQ →=22·(4+x 2)(1+y 2)=22·(xy )2+(x +2y )2-4xy +4=22·(xy )2+(2-xy )2-4xy +4=(xy )2-4xy +4=2-xy ≥42-4. 【答案】 42-412.设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则y x =________.【解析】 ∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k 2=3,得k =±3,即yx =± 3.【答案】 ±313.在△ABC 中,已知AB =1,AC =2,∠A =60°,若点P 满足AP →=AB →+λAC →,且BP →·CP →=1,则实数λ的值为________.【解析】 由AB =1,AC =2,∠A =60°,得BC 2=AB 2+AC 2-2AB ·AC ·cos A =3,即BC = 3.又AC 2=AB 2+BC 2,所以∠B =90°.以点A 为坐标原点,AB →,BC →的方向分别为x 轴,y 轴的正方向建立平面直角坐标系,则B (1,0),C (1,3).由AP →=AB →+λAC →,得P (1+λ,3λ),则BP →·CP →=(λ,3λ)·(λ,3λ-3)=λ2+3λ(λ-1)=1,即4λ2-3λ-1=0,解得λ=-14或λ=1.【答案】 -14或114.证明:同一平面内,互成120°的三个大小相等的共点力的合力为零.【证明】如图,用r a ,r b ,r c 表示这3个共点力,且r a ,r b ,rc 互成120°,模相等,按照向量的加法运算法则,有:r a +r b +r c = r a +(r b +r c )=r a +u u u rOD .又由三角形的知识知:三角形OBD 为等边三角形, 故r a 与u u u r OD 共线且模相等,所以:u u u r OD = -r a ,即有:r a +r b +r c =0r .15.在直角坐标系xOy 中,已知点(1,1),(2,3),(3,2)A B C ,点(,)P x y 在ABC ∆三边围成的区域(含边界)上,且(,)OP mAB nAC m n R =+∈u u u r u u u r u u u r.(1)若23m n ==,求||OP u u u r ;(2)用,x y 表示m n -,并求m n -的最大值.【解析】(1)(1,1),(2,3),(3,2)A B C Q (1,2)AB ∴=u u u r ,(2,1)AC =u u u r.Q OP mAB nAC =+u u u r u u u r u u u r ,又23m n ==.22(2,2)33OP AB AC ∴=+=u u u r u u u r u u u r,|OP ∴u u u r(2)OP mAB nAC =+u u u r u u u r u u u rQ (,)(2,2)x y m n m n ∴=++即22x m ny m n=+⎧⎨=+⎩,两式相减得:m n y x -=-.令y x t -=,由图可知,当直线y x t =+过点(2,3)B 时,t 取得最大值1,故m n -的最大值为1.【答案】(1)(2)m n y x -=-,1.16.如图,在直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1,动点P 在边BC 上,且满足AP →=mAB →+nAD →(m ,n 均为正实数),求1m +1n的最小值.【解析】 如图,建立平面直角坐标系,得A (0,0),B (4,0),D (0,4),C (1,4),则AB →=(4,0),AD →=(0,4).设AP →=(x ,y ),则BC 所在直线为4x +3y =16. 由AP →=mAB →+nAD →,即(x ,y )=m (4,0)+n (0,4),得x =4m ,y =4n (m ,n >0), 所以16m +12n =16,即m +34n =1,那么1m +1n =⎝⎛⎭⎫1m +1n ⎝⎛⎭⎫m +34n =74+3n 4m +m n ≥74+23n 4m ·m n =74+3=7+434(当且仅当3n 2=4m 2时取等号). 17.已知向量m =(cos α,-1),n =(2,sin α),其中α∈⎝⎛⎭⎫0,π2,且m ⊥n . (1)求cos 2α的值; (2)若sin(α-β)=1010,且β∈⎝⎛⎭⎫0,π2,求角β的值. 【解析】 (1)由m ⊥n ,得2cos α-sin α=0,sin α=2cos α,代入cos 2α+sin 2α=1,得5cos 2α=1, 又α∈⎝⎛⎭⎫0,π2,则cos α=55,cos 2α=2cos 2α-1=-35. (2)由α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,得α-β∈⎝⎛⎭⎫-π2,π2.因为sin(α-β)=1010,所以cos(α-β)=31010,而sin α=1-cos 2α=255, 则sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=255×31010-55×1010=22.因为β∈⎝⎛⎭⎫0,π2,所以β=π4.。

平面向量与空间解析几何

平面向量与空间解析几何

平面向量与空间解析几何平面向量和空间解析几何是数学中重要的概念,它们在几何学和物理学中扮演着重要的角色。

平面向量是一个有大小和方向的量,可以表示为有序对(x, y)。

在二维空间中,平面向量通常用于描述平面内的位置关系、运动方向等。

空间解析几何则是研究三维空间中点、直线、平面等几何对象的性质和关系的数学分支。

平面向量定义平面向量可以用有向线段表示,其大小为线段的长度,方向为线段的方向。

平面向量的加法、减法和数乘等运算可以通过坐标运算来实现。

两个平面向量(x1, y1)和(x2, y2)的加法为(x1+x2, y1+y2),减法为(x1-x2, y1-y2),数乘为k * (x, y) = (k*x, k*y)。

运算性质•交换律:a + b = b + a•结合律:a + (b + c) = (a + b) + c•分配律:k * (a + b) = k * a + k * b空间解析几何点和坐标在空间解析几何中,三维空间中的一个点可以用有序三元组(x, y, z)表示,其中x, y, z分别是点在三个坐标轴上的投影。

两点之间的距离可以通过距离公式计算得到。

直线和平面一条空间直线可以通过一个点和一个方向向量来唯一确定,方向向量可以是直线上任意两点的向量差。

空间平面可以通过一个点和两个不共线的方向向量来唯一确定。

方向余弦方向余弦是描述向量在空间中的方向性质的参数。

一个向量(a, b, c)的方向余弦分别为cosα = a/sqrt(a^2+b^2+c^2),cosβ = b/sqrt(a^2+b^2+c^2),cosγ = c/sqrt(a^2+b^2+c^2)。

应用平面向量和空间解析几何在现实生活中有着广泛的应用。

在工程学中,它们可以用于描述力的合成、速度的方向等;在计算机图形学中,可以用于图形的变换和计算;在物理学中,可以描述空间中的物体运动等。

总的来说,平面向量和空间解析几何不仅是数学中的重要概念,也是现实生活中不可或缺的工具,它们帮助我们更好地理解和描述空间中的种种现象和规律。

高考数学各知识点分值占比

高考数学各知识点分值占比

高考数学各知识点分值占比在高考数学中,各个知识点的分值占比是非常重要的。

不同的知识点在考试中所占的比重不同,理解和掌握各个知识点的分值占比对于备考是非常有帮助的。

首先,我们先来了解一下高考数学的整体结构。

高考数学主要包括基础知识与解题能力两个方面。

基础知识主要是对数学概念和公式的掌握,而解题能力则是对于所学内容的应用与理解能力。

在高考数学中,数学知识点的分值占比大致可以分为四个部分:必修一、必修二、选修一和选修二。

必修一和必修二分值占比较高,大约占到了总分的50%左右,而选修一和选修二则分别占到了总分的25%左右。

因此,基础知识点要占到了高考数学的重要部分。

接下来,我们来具体分析一下各个知识点的分值占比。

在必修一中,重点知识点主要包括集合与命题、函数与方程、三角函数和数列等内容。

这些知识点的掌握对于高考数学至关重要,因为它们在考试中所占的分值比例较高。

在必修一中,命题与函数的占比较高,大约为30%,数列与三角函数的占比则略低一些,分别为15%和10%左右。

因此,在备考过程中,我们应该重点关注命题与函数的学习与掌握。

在必修二中,重点知识点主要包括平面向量、立体几何、解析几何和数理统计等内容。

这些知识点在高考数学中的分值占比也较高。

平面向量和解析几何分别占到了总分的15%左右,而立体几何和数理统计则分别占到了总分的10%左右。

因此,在备考中我们需要重点关注平面向量和解析几何的学习与掌握。

在选修一和选修二中,重点知识点的分值占比较低,分别为总分的25%左右。

选修一的重点知识点主要包括数学综合应用、数学史、方程与不等式、数学思想方法等内容。

选修二的重点知识点主要包括概率与统计、数学建模等内容。

虽然这些知识点的分值占比较低,但是在备考中我们也不能忽视它们的学习与掌握。

综上所述,高考数学各知识点的分值占比是不容忽视的。

在备考过程中,我们应该根据各个知识点的分值占比来合理分配学习时间和精力。

重点关注必修一和必修二中的知识点,特别是命题与函数、平面向量和解析几何等内容。

北京高考数学各部分难度及分值

北京高考数学各部分难度及分值

北京高考数学各部分难度及分值北京高考数学考试分为两部分,即必修部分和选修部分。

必修部分的考试内容包括“函数和导数”、“平面向量”、“解析几何”、“三角函数”、“立体几何”、“统计与概率”六个章节,而选修部分的考试内容包括“数列与数学归纳法”、“极限与连续”、“导数应用和微分方程”三个章节。

必修部分的难度及分值如下所示:1.函数和导数(60分):这是数学考试的开篇,主要涵盖函数的基本性质和图像、导数的概念及其应用。

难度适中,占总分的10%。

2.平面向量(60分):包括向量的基本运算、共线与垂直、平面向量的坐标表示及其运算、向量的线性运算等内容。

此部分相对来说难度较大,占总分的10%。

3.解析几何(90分):涉及平面直角坐标、直线的方程与性质、圆的方程与性质、两点间距离、面积等内容。

考查内容多样,其中一些概念较为抽象,学生应掌握才能较好完成题目。

占总分的15%。

4.三角函数(45分):主要包括三角函数的基本性质、单调性、最值、递推公式等,难度适中,占总分的7.5%。

5.立体几何(45分):包括空间几何体的直线和平面、空间中的平行关系、体积、表面积等内容。

难度一般,占总分的7.5%。

6.统计与概率(60分):主要包括基本统计指标、频率统计、概率等内容。

难度适中,占总分的10%。

选修部分的难度及分值如下所示:1.数列与数学归纳法(30分):包括数列的定义及通项公式、数列的运算、数学归纳法等内容。

难度相对较小,占总分的5%。

2.极限与连续(30分):主要包括函数极限的定义与性质、无穷小与无穷大、函数连续性等内容。

难度一般,占总分的5%。

3.导数应用和微分方程(30分):考察导数在实际问题中的应用、微分方程的解法等内容。

难度适中,占总分的5%。

总体来说,北京高考数学考试的必修部分难度适中,选修部分难度相对较小,且各部分的分值分配合理。

学生在备考过程中应注重对基础知识的掌握和题型的熟悉,扎实提升解题能力,以便在考试中取得好成绩。

平面向量在解析几何中的应用

平面向量在解析几何中的应用

平面向量在解析几何中的应用
解析几何是学习数学中非常重要的一个领域,它用图形来操作几何问题。

在解析几何中,一方面涉及表达几何图形中形状和大小的变化,另一方面也涉及有关平面两物体的关系或者克服已知信息,求出未知信息的方法。

在解析几何的应用中,平面向量是运用的非常普遍的概念。

平面向量是指在三维空间中,只由两个分量构成的空间向量,其分量向量都从端点指向一个空间点,是从端点指向空间点的有序偏移量。

向量的加法是平面向量能够运用的基本技巧,向量的加法可以从矢量图中看出来,矢量图是在平面上用线按照指定的规则连接两个点所绘制出来的图形。

比如在两个向量的加法运算中,指向同一点的两个向量,如果是正向量,对其进行相加,则可以得到指向该点的向量的方向和大小的改变;如果是反向量,对其进行相加,则可以得到相反的方向和大小的改变。

平面向量也可以用来解决一些更加复杂的几何问题,比如传统的莱布尼茨公式可以用来解决求取直线与平面的交点问题。

该公式利用向量与数值乘法相加,把求解交点问题转化为求解方程组的问题。

另外,平面向量也可以应用于求解解析几何中一些可能涉及标准坐标的问题,如果两个点的坐标分别为(x1,y1)和(x2,y2),则它们之间的连线就是一个向量,其方向可以由向量的偏移量来描述,如(x2-x1,y2-y1)。

这时,我们就可以使用平面向量对连线进行描述,也可以使用向量进行旋转、缩放和投影等变换。

总之,平面向量在解析几何中有着普遍的应用,要想正确的使用平面向量,除了掌握平面向量的基本概念,还应该深入了解向量的性质和用途,以达到最佳的效果。

2023年新考案 微专题5 数学工具——平面向量在解题中的应用(共22张PPT)

2023年新考案 微专题5 数学工具——平面向量在解题中的应用(共22张PPT)

21
目录
(2)若 θ∈
π
0,
2
,向量 m= ,n=(1-cos θ,sinθ-2cos θ),求 m·n 的最
小值及对应的 θ 的值.
【解析】由题意得 C(cosθ,sinθ),m= =(cosθ+1,sin θ),
π
4
则 m·n=1-cos2θ+sin2θ-2sin θcosθ=1-cos 2θ-sin 2θ=1- 2sin 2θ+ ,
要使·最小,则与方向相反,即点 P 在线段 AD 上,则
(2·)min=-2||||,问题转化为求||||的最大值.
3
又||+||=||=2× = 3,
2
| |+| | 2
3 2 3
∴||||≤
=
= ,
2
2
4

3 3
[·(+ )]min=(2·)min=-2× =- .故选
4
(1)若 θ= ,设点 D 为线段 OA 上的动点,求| + |的最小值;
2 2
2 2
【解析】
(1)设 D(t,0)(0≤t≤1),由题意知 C - ,
-
2
2
+t,
2
2
,所以 +=
,
所以| +|2= t2
2
2 2 1
+ ,
2
2
2
2
所以当 t= 时,| +|有最小值,最小值为 .
即点 B 在圆(x-2)2+y2=1 上运动.
∵=a-b,∴|a-b|的最小值即点 B 到射线 OA 的距离的最小值,为圆心(2,0)
到射线 y= 3x(x≥0)的距离减去圆的半径,

【高考复习】高考数学核心考点中的六大模块

【高考复习】高考数学核心考点中的六大模块

【高考复习】高考数学核心考点中的六大模块盘点近年高考数学核心考点中的六大模块:第一:三角部分,包括三角函数,解三角形,平面向量,以这三个为主,并进行一些综合。

第二:概率统计数据。

文科就是概率和统计数据,理科就是概率统计数据与随机变量,它在里面重新加入了报读当中的随机变量的内容。

随机变量的内容就是理科特别必须回去实地考察的。

第三:立体几何。

文科是立体几何,理科则要求立体几何以及空间向量,也就是说理科生需要定量地去分析这个立体几何的问题,而不单单是了解立体几何的一些空间关系。

第四:数列部分。

数列部分文理建议就是差不多的。

按照往年来看,数列在理科里面小题考核通常就是以数列入背景的压轴题。

第五:解析几何。

解析几何部分是很多同学的坎,这块坎主要在三个方面,1、对于题面不熟悉,不能很好地翻译成代数语言。

2,翻译成代数语言之后,化解水平不到位。

3,解析几何里面有很多的细节容易丢失。

第六:函数和导数。

这个模块就是这几年命题变化比较显著的一个地方。

以往的函数、导数的一个问题,就更加女性主义于是常规地分类探讨这样一些基本的考核方法,但是现在的命题特点已经变化了,使学生利用导数这样一个工具回去研究函数,也就说道导数就像是一把尺子一样,像是一个裁缝,我量你这个函数短什么样子,从而对你展开一系列的分析。

但是很多时候我们只注重了怎么用尺子,却没注重至这个尺子用完了之后这个结果彰显出来什么特征。

与此同时这一块的文字描述也就是很多学生难犯下的问题,经常可以用一些很高端的语言,但是就是不给分数的,我们必须回去说道得很精确。

平面向量与平面解析几何的联系知识点总结

平面向量与平面解析几何的联系知识点总结

平面向量与平面解析几何的联系知识点总结平面向量和平面解析几何是高中数学中重要的概念和工具。

它们在几何图形的描述、方程的求解和数学推理中有着广泛的应用。

本文将总结平面向量与平面解析几何的联系知识点,并探讨它们之间的重要关系。

一、平面向量的基本概念和表示方法平面向量是空间中的有向线段,具有大小和方向。

它可以用一个具有大小和方向的箭头表示。

常用的表示方法有坐标表示和分量表示。

1. 坐标表示:假设平面上有两个点A(x1, y1)和B(x2, y2),则以A 为起点,B为终点的向量AB可以用坐标表示为向量(a, b),其中a = x2 - x1, b = y2 - y1。

其中,x1、y1为向量的起点坐标,x2、y2为向量的终点坐标。

2. 分量表示:向量AB的分量表示为(ABx, ABy),其中ABx为向量AB在x轴上的投影,ABy为向量AB在y轴上的投影。

分量表示形式方便进行向量的运算和推导。

二、平面解析几何的基本概念和表示方法平面解析几何是用代数方法研究平面上的几何问题。

它通过线性方程和坐标表示来研究几何图形的性质和关系。

1. 直线的解析方程:设直线L的解析方程为Ax + By + C = 0,其中A、B、C为常数,x、y为变量。

通过解析方程可以确定直线L在平面上的位置和方向。

2. 圆的解析方程:设圆C的解析方程为(x - a)^2 + (y - b)^2 = r^2,其中(a, b)为圆心的坐标,r为半径长度。

解析方程确定了圆C在平面上的位置和半径。

三、平面向量与平面解析几何的关系平面向量和平面解析几何有着密切的联系,它们可以相互转化、相互补充,共同应用于几何问题的研究。

1. 平移变换:平移变换是平面向量的一种基本运算,也是几何图形的一种基本变换。

平移变换可以通过平面向量的加法来表示。

设向量u 表示平移的位移,则点P(x, y)经过平移变换得到的新点P'(x', y')的坐标可以表示为(x', y') = (x, y) + u。

平面向量与解析几何的关系

平面向量与解析几何的关系

平面向量与解析几何的关系从数学的角度来看,平面向量是向量代数和解析几何两个分支中的重要概念。

平面向量不仅可以用于解释运动、力和速度等物理现象,还可以应用于解析几何中的线性方程组、平面的交点和几何形状的变换等问题。

本文将探讨平面向量与解析几何之间的密切关系。

一、平面向量的定义与性质在解析几何中,平面向量常常表示为带有箭头的有向线段,通常用一个字母加上箭头来表示,如向量a。

平面向量具有长度(模)和方向两个属性,可以通过两点之间的坐标差来表示。

设A(x1, y1)和B(x2,y2)是平面上的两点,则向量AB可以表示为向量a = (x2 - x1, y2 - y1)。

平面向量有很多重要的性质。

例如,向量的模可以通过勾股定理得到,即|AB| = √((x2 - x1)^2 + (y2 - y1)^2)。

此外,向量还满足位移定律、加法和数乘等运算规律,这些性质为后续的解析几何问题奠定了基础。

二、平面向量在解析几何中的应用1. 向量的加法和减法平面向量的加法和减法是解析几何中常见的运算。

对于向量a =(x1, y1)和向量b = (x2, y2),它们的加法可以表示为a + b = (x1 + x2, y1+ y2),减法可以表示为a - b = (x1 - x2, y1 - y2)。

这些运算可以简化解析几何中线段的延长、平行线的判定以及图形的相似性等问题的计算过程。

2. 向量积在解析几何中,平面向量的向量积常常被用来判断两个向量之间的关系和求解相关的几何问题。

向量积的结果是一个新的向量,其方向垂直于已知向量所在的平面。

设向量a = (x1, y1)和向量b = (x2, y2),它们的向量积的计算公式为a × b = x1y2 - x2y1。

通过向量积,我们可以判断两个向量是否共线、垂直,进而应用于解析几何中直线的平行和垂直关系的判定、求解交点等问题。

3. 向量的数量积数量积是平面向量中另一个重要的运算。

高考数学知识点归纳(完整版)

高考数学知识点归纳(完整版)

高考数学知识点归纳(完整版)高考数学知识点归纳第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。

是高考的重点和难点。

第五,概率和统计这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。

主要考察对定理的熟悉程度、运用程度。

第七,解析几何高考的难点,运算量大,一般含参数。

高考数学知识点高考数学必考知识点归纳必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解) 高考数学必考知识点归纳必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。

这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。

这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程高考数学必考知识点归纳必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

高考数学必考知识点归纳必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。

2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。

09年理科占到5分,文科占到13分。

高考数学必考知识点归纳必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。

上海高考数学书本选修2

上海高考数学书本选修2

上海高考数学书本选修2《上海高考数学书本选修2》是上海高中数学教材中的一本选修教材,适用于高中二年级学生。

本书主要内容包括解析几何、排列组合与二项式定理、概率与统计、数学演绎等内容,下面我将分别对每个章节进行详细介绍。

第一章是解析几何,该章内容涉及到直线、圆的性质、曲线的性质、向量的运算、平面向量的应用等。

通过学习解析几何,学生可以掌握直线、圆和曲线的基本性质,并且能够运用向量的运算和平面向量的应用解决一些实际问题。

这对于培养学生的几何直观和创造力具有重要意义。

第二章是排列组合与二项式定理,该章内容涉及到排列、组合和二项式定理等。

通过学习排列组合与二项式定理,学生可以掌握排列、组合的概念和计算方法,并且能够理解和运用二项式定理解决一些实际问题。

这对于培养学生的逻辑思维和问题解决能力具有重要意义。

第三章是概率与统计,该章内容涉及到概率、统计和抽样调查等。

通过学习概率与统计,学生可以掌握概率的基本概念和计算方法,并且能够运用统计的方法进行数据的整理和分析。

这对于培养学生的数理思维和数据分析能力具有重要意义。

第四章是数学演绎,该章内容涉及到数学演绎、数学归纳法和函数极限等。

通过学习数学演绎,学生可以掌握数学演绎的基本过程和方法,并且能够运用数学归纳法证明一些数学命题。

同时,学生还可以理解和运用函数极限的概念和计算方法。

这对于培养学生的抽象思维和严谨逻辑具有重要意义。

总之,《上海高考数学书本选修2》是一本很好的高中数学教材,内容涵盖了解析几何、排列组合与二项式定理、概率与统计、数学演绎等多个知识领域。

通过学习本书,学生可以提高数学思维能力和问题解决能力,为高考数学打下坚实的基础。

近5年高考数学高一知识点

近5年高考数学高一知识点

近5年高考数学高一知识点近5年高考数学高一知识点分析近年来,高考数学考试的内容呈现出多样化的趋势,考察的知识点也愈发广泛和深入。

本文将围绕近5年高考数学中的高一知识点展开分析,帮助同学们更好地理解和掌握这些知识点。

一、函数与方程高一数学中,函数与方程作为数学的基础内容,占据了较大的比重。

在近5年的高考数学中,函数的概念及其性质一直是考点之一。

考生应熟练掌握函数的定义、图像与性质,包括常见函数如线性函数、二次函数、指数函数等的图像特征和变化规律。

方程的解法也是考试中的常见题型,特别是一元二次方程和一次不等式的求解,考生应掌握这些解法的基本思路和技巧。

二、平面向量与解析几何平面向量与解析几何是高中数学中的重点内容,也是高考数学中的热点考点。

在近5年的高考数学中,平面向量与坐标向量的运算、向量的夹角及垂直、平行、共线的判定等都是考生需要掌握的知识点。

解析几何中,直线与圆的性质、直线的方程及其应用、三角形的面积等也经常出现在考试中。

解析几何需要考生具备一定的空间想象力和几何思维能力,通过多做题和思考,可以提高解析几何的应用能力。

三、数列与数学归纳法数列与数学归纳法是高一数学中的重要知识点,同时也是高考数学中常见的考点。

近5年来,等差数列和等比数列的性质及其应用经常出现在高考试卷中。

考生应熟练掌握数列的概念、通项公式和求和公式,并能熟练应用于问题求解。

此外,数学归纳法在证明数列性质中的应用也是考生需要掌握的内容。

四、导数与函数的应用导数作为微积分的重要概念,在高考数学中占据了重要地位。

近5年高考数学中,函数的极值、最值、单调性、曲线的凹凸性等都是高频考点。

考生应熟练掌握导数的定义、运算法则以及函数的性质,特别是相关定理和定律的应用。

在解题过程中,注意运用导数的概念和性质,灵活运用求导法则和反函数关系,能够有效地解决各类导数和函数的应用问题。

五、三角函数与三角恒等变换三角函数是高中数学中的难点之一,也是高考数学中的重要内容。

平面向量与解析几何练习题

平面向量与解析几何练习题

平面向量与解析几何练习题解析几何是现代数学的重要分支之一,其研究对象是空间中的点、向量和几何对象的性质与关系。

而平面向量作为解析几何的基础,具有重要的应用价值。

下面将通过一些练习题,来巩固和应用平面向量与解析几何的知识。

一、证明题1. 证明平面上一点A(x1,y1)到直线Ax+By+C=0的距离为:d=|Ax1+By1+C|/√(A^2+B^2)。

2. 证明向量AB与向量AC的夹角满足:cos∠BAC=(AB·AC)/(|AB|·|AC|)。

二、计算题1. 已知A(2, 1), B(5, -3),求向量AB。

2. 已知向量a(3, 4),b(-2, 1)和c(5, -2),求向量a+b-c的模。

3. 设向量a=(3, -2),b=(-1, 5),求向量a·b和|a×b|。

4. 已知向量a=(1, 2),b=(-3, 4),求向量a+b和向量a-b的模。

三、综合应用题1. 已知三角形ABC,点A(1, 2), B(4, 3),C(2, -1),求AB和AC的单位向量。

2. 已知平面内一三角形ABC,点A(-1, 4), B(3, -2),C(x, y),若三角形ABC为等腰直角三角形,求点C的坐标。

3. 设平面向量a与b的模分别为3和4,且∠(a, b)=π/3,求其数量积a·b。

4. 在平面内,设单位向量a、b满足a·b=0,向量c=2a-3b,求向量c 的模和c与向量a的夹角。

通过以上的练习题,我们对平面向量和解析几何的相关知识进行了巩固和应用。

解析几何在数学中具有重要的地位,通过深入学习和练习,我们可以更好地理解和应用解析几何在实际问题中的解决方法。

希望通过对这些题目的学习,能够进一步提升解析几何的能力,为今后的学习和工作打下坚实的基础。

高考数学知识点占比分析

高考数学知识点占比分析

高考数学知识点占比分析高考作为我国学生升学选拔的最重要考试之一,对学生的数学知识的掌握有着较高的要求。

在备考过程中,了解各个知识点的占比情况能够帮助考生合理分配学习时间和精力,有针对性地进行复习。

一、函数与导数(20%)函数与导数是高考数学中的重要知识点,占据了整个数学部分的20%。

这部分内容涵盖了函数的基本概念、常见函数的性质和图像以及导数的定义和基本公式等。

在考试中,通常会涉及到函数的极值、最值问题以及函数图像的变化等题型。

因此,考生在备考过程中需要重点掌握函数与导数的相关知识,并能够熟练运用。

二、平面向量和立体几何(15%)平面向量和立体几何是高考数学中的另一个重要板块,占据了15%的比重。

平面向量主要包括向量的定义、加法、数量积和向量的共线与垂直问题等。

立体几何则涉及到空间中的点、直线、面的位置关系,常见的题型有平面与直线的位置关系、平面与平面的位置关系等。

考生在备考过程中需要熟练掌握平面向量和立体几何的相关知识,并能够理解和应用。

三、数列与数学归纳法(10%)数列与数学归纳法是高考数学中比重较大的一个知识点,占据了10%的比重。

数列是数学中的一个重要概念,指的是按照一定规律排列的一组数。

数学归纳法是一种证明方法,能够用来证明关于正整数的命题。

在考试中,常见的数列题型有递推关系、通项公式和数列的性质等。

考生在备考过程中需要掌握不同类型数列的求和公式和性质,并能够应用数学归纳法进行证明。

四、三角函数(10%)三角函数是高考数学中不可忽视的知识点之一,占据了10%的比重。

三角函数的相关知识包括常见角的定义、三角函数的性质和基本公式等。

在考试中,考生经常会遇到三角函数的求值、方程和不等式等题型。

因此,考生在备考过程中需要熟练掌握三角函数的相关知识,并能够运用到解题中。

五、概率与统计(10%)概率与统计是高考数学中比重较大的一个知识点,占据了10%的比重。

概率与统计主要涉及到事件的概率计算、统计指标的计算以及统计图表的分析等。

平面向量与解析几何交汇题的分类解析

平面向量与解析几何交汇题的分类解析

平面向量与解析几何交汇题的分类解析湖北省广水市第一高级中学 (432700) 刘才华 Email:lch2019@平面向量既有大小又有方向,它具备数与形的双重身份,因此平面向量与解析几何交汇题,要善于分析清楚向量式的几何意义,借助向量形的特征使抽象的问题直观化、形象化;也要善于运用向量的坐标运算,借助向量数的特征用代数的方法研究几何图形的性质.一、利用向量式的几何意义求解定值问题例1 已知过点(0,1)A 的直线l 与⊙c :1)3()2(22=-+-y x 相交与M 、N 两点. 求证:AM AN ⋅为定值.解 如图1示,由于向量AM 、AN共线且同方向, ∴||||AM AN AM AN ⋅=⋅ ,作圆的切线AT ,由圆的切割线定理,则 222||||||||817AM AN AT AC r ⋅==-=-= ,∴AM AN ⋅为定值.例2 已知1OF =(3,0)-,2OF=(3,0)(O 为坐标原点),动点M 的轨迹为c ,且M 满足:12||||10MF MF +=.(1) 求动点M 的轨迹方程;(2) 若点P 和Q 是曲线c 上的任意两点,且0OP OQ ⋅= ,求222PQOP OQ⋅ 的值.解 (1)∵1212||||10||6MF MF F F +=>=,∴动点M 的轨迹c 为椭圆,且210a =,26c =,∴5a =,3c =,则4b =,∴点M 的轨迹方程为2212516x y +=. (2) 向量式2222222||||()||||||||PQ PQPQ OP OQ OP OQ OP OQ ==⋅⋅⋅ 如图2示,∵0OP OQ ⋅=,∴POQ ∆为直角三角形,∴POQ ∆的面积为11||||||22S OP OQ PQ d =⋅=⋅ ,∴d =∴向量式22221PQ d OP OQ=⋅ ,即为原点到直线PQ 的距离d 的平方的倒数. 图2图1设PQ 的方程为y kx m =+,联立2212516y kx m x y =+⎧⎪⎨+=⎪⎩得222(1625)50254000k x kmx m +++-=,设11(,)P x y 、22(,)Q x y ,则有1222122501625254001625km x x k m x x k ⎧+=-⎪⎪+⎨-⎪⋅=⎪+⎩, 由12121212()()OP OQ x x y y x x kx m kx m ⋅=+=++⋅+221212(1)()0k x x km x x m =++++= ∴22222222540050(1)016251625b k m k m k k -+-+=++,化简得2241400(1)m k =+,即22400141m k =+,∴2222400141m d k ===+, 若斜率k 不存在,则OP 的方程为y x =,联立2212516y xx y =⎧⎪⎨+=⎪⎩得x =∴直线PQ的方程为x =PQ的距离d =240041d =.∴综合上述2222141400PQ d OP OQ==⋅ . 二、利用向量的坐标运算求解轨迹方程例3 设过点(,)P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P关于y 轴对称,O 为坐标原点,若2BP PA = ,且1OQ AB ⋅=.求P 点的轨迹方程解 由题意设(,0)A a 、(0,)B b ,且0a >、0b >.∵2BP PA =,即(,)2(,)x y b a x y -=--,∴222x a x y b y =-⎧⎨-=-⎩, 即323a x b y ⎧=⎪⎨⎪=⎩, ∴3(,0)2A x 、(0,3)B y ,3(,3)2AB x y =-又点Q 与点P 关于y 轴对称知,∴(,)Q x y -,OQ=(,)x y -,则2233(,)(,3)3122OQ AB x y x y x y ⋅=-⋅-=+= ,又302a x =>,30b y =>,∴0x >且0y >. ∴P 点的轨迹方程为223312x y +=(0x >且0y >). 三、利用向量证明几何图形中的位置关系例4 设A 、B 分别为椭圆22143x y +=的左、右顶点,且点P 是右准线上不同点(4,0)的任意一点,若直线AP 、BP 分别与椭圆相交于异于A 、B 的点M 、N .证明:点B 在以MN 为直径的圆内.解 如图3示,要证点B 在以MN 为直径的圆内,只需证2MBN π∠>,即要证0BM BN ⋅<.由题意得(2,0)A -、(2,0)B ,右准线方程为4x =. ∴设点(4,)P t 且0t ≠,11(,)M x y 、22(,)N x y , 则直线AP 的方程为(2)6t y x =+,PB 直线方程为(2)2t y x =-∵点M 、N 分别在直线AP 、PB 上,∴11(2)6t y x =+,22ty =∴21212(2)(2)12t y y x x =+-, 联立22(2)6143t y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩消去y 得到2222(27)44(27)0t x t x t +++-=, ∵2-,1x 是方程的两根,∴2124(27)227t x t --⋅=+,即2122(27)27t x t-=+, ∴11221212(2,)(2,)(2)(2)BM BN x y x y x x y y ⋅=-⋅-=--+21212(2)(2)(2)(2)12t x x x x =--++-2112[2(2)](2)12t x x x =-++-=2225(2)27t x t -+ ∵22(,)N x y 是椭圆上异于A 、B 的点,∴22x <.又0t ≠,∴BM BN ⋅=2225(2)027t x t -<+. ∴点B 在以MN 为直径的圆内.图3。

平面向量与解析几何练习题计算平面向量与解决相关几何问题

平面向量与解析几何练习题计算平面向量与解决相关几何问题

平面向量与解析几何练习题计算平面向量与解决相关几何问题在解析几何中,平面向量是一种重要的数学工具,被广泛应用于平面几何中的计算和问题解决。

平面向量具有大小和方向,可以进行向量的加法、减法、数量乘法等运算,同时还可以通过平面向量来解决一些相关的几何问题。

本文将通过一些练习题的计算和解决过程,来展示平面向量在解析几何中的应用。

题目一:已知向量A(2, -1)和向量B(3, 4),求向量A与向量B的和。

解析:向量的加法是平面向量运算中最基本也是最常见的一种运算。

两个向量的和就是将两个向量的对应分量相加得到的新向量。

解答:向量A与向量B的和是(2+3, -1+4),即向量A与向量B的和为(5, 3)。

题目二:已知向量C(1, 2)和向量D(-3, 5),求向量C减去向量D的结果。

解析:向量的减法是指将减数向量的相反向量加到被减数向量上,即相当于进行向量的加法运算。

解答:向量C减去向量D的结果是(1-(-3), 2-5),即向量C减去向量D的结果为(4, -3)。

题目三:已知向量E(3, -2)和数k=4,求数量乘法kE的结果。

解析:数量乘法是指将数与向量的每个分量分别相乘得到的新向量。

解答:数量乘法kE的结果是(4×3, 4×(-2)),即数量乘法kE的结果为(12, -8)。

题目四:已知直线L过点P(2, 3)和点Q(5, -1),求直线L的方向向量。

解析:直线的方向向量可以通过两点确定。

将两点的坐标视为向量,直线的方向向量就是由这两个点的向量相减得到的。

解答:直线L的方向向量为(5-2, -1-3),即直线L的方向向量为(3, -4)。

题目五:已知直线L的法线向量为(2, 3),且过直线L上一点A(1, -1),求直线L的方程。

解析:直线的方程可以通过直线上一点和直线的法线向量求得。

直线的方程一般形式为Ax + By + C = 0,其中A、B、C分别为方程的系数。

解答:由题意可知,直线L的法线向量为(2, 3),过直线L上一点A(1, -1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学平面向量与解析几何Document number【980KGB-6898YT-769T8CB-246UT-18GG08】第18讲 平面向量与解析几何在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。

用向量法解决解析几何问题思路清晰,过程简洁,有意想不到的神奇效果。

着名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。

这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。

一、知识整合平面向量是高中数学的新增内容,也是新高考的一个亮点。

向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。

而在高中数学体系中,解析几何占有着很重要的地位,有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程。

二、例题解析例1、(2000年全国高考题)椭圆14922=+y x 的焦点为F ,1F 2,点P 为其上的动点,当∠F 1P F 2为钝角时,点P 横坐标的取值范围是___。

解:F 1(-5,0)F 2(5,0),设P (3cos θ,2sin θ)21PF F ∠ 为钝角∴ 123cos ,2sin )3cos ,2sin )PF PF θθθθ⋅=-⋅-(=9cos 2θ-5+4sin 2θ=5 cos 2θ-1<0解得:55cos 55<<-θ ∴点P 横坐标的取值范围是(553,553-) 点评:解决与角有关的一类问题,总可以从数量积入手。

本题中把条件中的角为钝角转化为向量的数量积为负值,通过坐标运算列出不等式,简洁明了。

例2、已知定点A(-1,0)和B(1,0),P 是圆(x-3)2+(y-4)2=4上的一动点,求22PA PB +的最大值和最小值。

分析:因为O 为AB 的中点,所以2,PA PB PO +=故可利用向量把问题转化为求向量OP 的最值。

解:设已知圆的圆心为C ,由已知可得:{1,0},{1,0}OA OB =-=0,1OA OB OA OB ∴+=⋅=-又由中点公式得2PA PB PO += 所以222()2PA PB PA PB PA PB +=+-⋅=2(2)2()()PO OA OP OB OP --⋅-=224222(PO OA OB OP OP -⋅-+⋅ =222OP + 又因为{3,4}OC = 点P 在圆(x-3)2+(y-4)2=4上所以5,2,OC CP == 且OP OC CP =+所以OC CP OP OC CP OC CP -≤=+≤+即37OP ≤≤ 故2222022100PA PB OP ≤+=+≤所以22PA PB +的最大值为100,最小值为20。

点评:有些解几问题虽然没有直接用向量作为已知条件出现,但如果运用向量知识来解决,也会显得自然、简便,而且易入手。

例3、(2003年天津高考题)O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足(OA OP ++=λ,[)∞∈+,0λ,则P 的轨迹一定通过△ABC 的( )(A )外心 (B )内心 (C )重心 (D )垂心分析:因为||||AB AC AB AC AB AC 、分别是与、同向的单位向量,由向量加法的平行四边形则知||||AB AC AB AC +是与∠ABC 的角平分线(射线)同向的一个向量,又()ABACOP OA AP AB AC λ-==+,知P 点的轨迹是∠ABC 的角平分线,从而点P 的轨迹一定通过△ABC 的内心。

反思:根据本题的结论,我们不难得到求一个角的平分线所在的直线方程的步骤;(1) 由顶点坐标(含线段端点)或直线方程求得角两边的方向向量12v v 、;(2) 求出角平分线的方向向量1212v v v v v =+(3) 由点斜式或点向式得出角平分线方程。

{直线的点向式方程:过P (00,x y ),其方向向量为(,)v a b ,其方程为00x x y y a b--=} 例4、(2003年天津)已知常数0>a ,向量(0,)(1,0)c a ==,i ,经过原点O 以c i λ+为方向向量的直线与经过定点),0(a A 以2i c λ-为方向向量的直线相交于点P ,其中R ∈λ.试问:是否存在两个定点F E 、,使得PE PF +为定值,若存在,求出F E 、的坐标;若不存在,说明理由.(本小题主要考查平面向量的概念和计算,求轨迹的方法,椭圆的方程和性质,利用方程判定曲线的性质,曲线与方程的关系等解析几何的基本思想和综合解题能力.)解:根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在两定点,使得点P 到两定点距离的和为定值.∵(0,)(1,0)c a ==,i , ∴c i λ+=(λ,a ),2i c λ-=(1,-2λa ). 因此,直线OP 和AP 的方程分别为 ax y =λ 和 ax a y λ2-=-.消去参数λ,得点),(y x P 的坐标满足方程222)(x a a y y -=-.整理得 .1)2()2(81222=-+a a y x ……① 因为,0>a 所以得:(i )当22=a 时,方程①是圆方程,故不存在合乎题意的定点E 和F ; (ii )当220<<a 时,方程①表示椭圆,焦点)2,2121(2a a E -和)2,2121(2a a F --为合乎题意的两个定点; (iii )当22>a 时,方程①也表示椭圆,焦点))21(21,0(2-+a a E 和))21(21,0(2--a a F 为合乎题意的两个定点. 点评:本题以平面向量为载体,考查求轨迹的方法、利用方程判定曲线的性质、曲线与方程的关系等解析几何的基本思想和综合解题能力。

去掉平面向量的背景,我们不难看到,本题即为下题:在△OAP 中,O (0,0)、A (0,a )为两个定点,另两边OP 与AP 的斜率分别是(0),2a a λλλ≠-,求P 的轨迹。

而课本上有一道习题(数学第二册(上)第96页练习题4):三角形ABC 的两个顶点A 、B 的坐标分别是(-6,0)、(6,0),边AC 、BC 所在直线的斜率之积等于49-,求顶点C 的轨迹方程。

通过本例可见高考题目与课本的密切关系。

例5.(2004年天津卷理22)椭圆的中心是原点O ,它的短轴长为22,相应于焦点F (c ,0)(0>c )的准线l 与x 轴相交于点A ,|OF|=2|FA|,过点A 的直线与椭圆相交于P 、Q 两点.(1)求椭圆的方程及离心率;(2)若0=⋅,求直线PQ 的方程;(3)设λ=(1>λ),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证明λ-=.分析:本小题主要考查椭圆的标准方程和几何性质,直线方程,平面向量的计算,曲线和方程的关系等解析几何的基本思想方法和综合解题能力.(1)解:由题意,可设椭圆的方程为)2(12222>=+a y ax . 由已知得⎪⎩⎪⎨⎧-==-).(2,2222c c a c c a 解得2,6==c a 所以椭圆的方程为12622=+y x ,离心率36=e . (2)解:由(1)可得A (3,0).设直线PQ 的方程为)3(-=x k y .由方程组⎪⎩⎪⎨⎧-==+)3(,12622x k y y x 得062718)13(2222=-+-+k x k x k 依题意0)32(122>-=∆k ,得3636<<-k . 设),(),,(2211y x Q y x P ,则13182221+=+k k x x , ① 136272221+-=k k x x . ②由直线PQ 的方程得)3(),3(2211-=-=x k y x k y .于是]9)(3[)3)(3(2121221221++-=--=x x x x k x x k y y . ③ ∵0=⋅,∴02121=+y y x x . ④由①②③④得152=k ,从而)36,36(55-∈±=k . 所以直线PQ 的方程为035=--y x 或035=-+y x(2)证明:),3(),,3(2211y x y x -=-=.由已知得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=-=-.126,126,),3(3222221212121y x y x y y x x λλ 注意1>λ,解得λλ2152-=x 因),(),0,2(11y x M F -,故),1)3((),2(1211y x y x -+-=--=λ),21(),21(21y y λλλλ--=--=. 而),21(),2(222y y x FQ λλ-=-=,所以FQ FM λ-=. 三、总结提炼由于向量具有几何形式和代数形式的“双重身份”,使向量与解析几何之间有着密切联系,而新课程高考则突出了对向量与解析几何结合考查,这就要求我们在平时的解析几何教学与复习中,应抓住时机,有效地渗透向量有关知识,树立应用向量的意识。

应充分挖掘课本素材,在教学中从推导有关公式、定理,例题讲解入手,让学生去品位、去领悟,在公式、定理的探索、形成中逐渐体会向量的工具性,逐渐形成应用向量的意识,在教学中还应注重引导学生善于运用一些问题的结论,加以引申,使之成为解题方法,体会向量解题的优越性,在教学中还应注重引导学生善于运用向量方法解题,逐步树立运用向量知识解题的意识。

相关文档
最新文档