2018年各地高考真题分类汇编 极坐标与绝对值不等式 学生版

合集下载

(2021年整理)2018高考数学试题分项版_极坐标参数方程[解析版]

(2021年整理)2018高考数学试题分项版_极坐标参数方程[解析版]

2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整)的全部内容。

2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整) 这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整)〉这篇文档的全部内容。

2017年高考数学试题分项版—极坐标参数方程(解析版)一、填空题1.(2017·北京理,11)在极坐标系中,点A在圆ρ2-2ρcos θ-4ρsin θ+4=0上,点P 的坐标为(1,0),则|AP|的最小值为________.1.【答案】1【解析】由ρ2-2ρcos θ-4ρsin θ+4=0,得x2+y2-2x-4y+4=0,即(x-1)2+(y-2)2=1,圆心坐标为C(1,2),半径长为1。

极坐标与参数方程高考真题58题(学生) (1)

极坐标与参数方程高考真题58题(学生) (1)

极坐标与参数方程高考真题1、(2018北京理10)在极坐标系中,直线cos sin a ρθρθ+=(0a >)与圆2cos ρθ=相切,则_______a =.2、(2018江苏21C )在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.3、(2018新课标Ⅰ理22)在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=. (1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.4、(2018新课标Ⅱ理22)在直角坐标系xOy 中,曲线C 的参数方程为2cos 4sin x θy θ=⎧⎨=⎩(θ为参数),直线l 的参数方程为1cos 2sin x t αy t α=+⎧⎨=+⎩(t 为参数). (1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.5、(2018新课标Ⅲ理22)在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.6、(2018天津理12)已知圆2220x y x +-=的圆心为C ,直线1232x y t ⎧=-+⎪⎪⎨⎪=-⎪⎩(t 为参数)与该圆相交于A ,B 两点,则ABC ∆的面积为_______.7、(2017新课标Ⅰ理22)在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为41x a ty t=+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到la .8、(2017新课标Ⅱ理22)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.9、(2017新课标Ⅲ理22)在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m my k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cosθ+sinθ),M 为l 3与C 的交点,求M 的极径.10、(2017北京理11)在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0),则|AP|的最小值为___________.11、(2017江苏21C )在平面坐标系中xOy 中,已知直线l 的参考方程为x 82t ty ⎧=-+⎪⎨=⎪⎩(t 为参数),曲线C的参数方程为2x 2s ,y ⎧=⎪⎨⎪=⎩(s 为参数)。

2018年高考数学真题专题汇编----极坐标与参数方程

2018年高考数学真题专题汇编----极坐标与参数方程

( 1)求 的取值范围; ( 2)求 AB 中点 P 的轨迹的参数方程.
4.【 2018 江苏卷 21C】在极坐标系中,直线 l 的方程为 4cos ,求直线 l 被曲线 C 截得的弦长.
sin( π 6
) 2 ,曲线 C 的方程为
参考答案
一、填空题
1.1 2
1
2.
2
二、解答题
1.解: ( 1)由 x cos , y sin 得 C2 的直角坐标方程为 ( x 1)2 y2 4.
2018 年高考数学真题专题汇编 ----
极坐标与参数方程
一、填空题
1. 【 2018 北京卷 10】在极坐标系中,直线 cos 则 a=_______2cos 相切,
x 2.【2018 天津卷 12】 )已知圆 x2 y2 2 x 0的圆心为 C,直线
2 1 t,
( 2)由( 1)知 C2 是圆心为 A( 1,0) ,半径为 2 的圆.
2 ( t 为参数 )
y 3 2t 2
与该圆相交于 A,B 两点,则 △ ABC 的面积为
.
二、解答题
1.【 2018 全国一卷 22】在直角坐标系 xOy 中,曲线 C1 的方程为 y k|x| 2.以坐标原点为 极点, x 轴正半轴为极轴建立极坐标系,曲线 C2 的极坐标方程为 2 2 cos 3 0 .
( 1)求 C2 的直角坐标方程; ( 2)若 C1 与 C2 有且仅有三个公共点,求 C1 的方程 .
x 2cos θ, 2【. 2018 全国二卷 22】在直角坐标系 xOy 中,曲线 C 的参数方程为 y 4sin θ( θ为参数) , 直线 l 的参数方程为
x 1 t cos α, ( t 为参数).

2018年高考数学分类汇编专题十三极坐标与参数方程

2018年高考数学分类汇编专题十三极坐标与参数方程

《2018年高考数学分类汇编》第十三篇:极坐标与参数方程一、填空题1. 【2018北京卷10】在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切,则a =__________.2.【2018天津卷12】)已知圆2220x y x +-=的圆心为C ,直线21,232⎧=-⎪⎪⎨⎪=-⎪⎩x y (t 为参数)与该圆相交于A ,B 两点,则ABC △的面积为 . 二、解答题1.【2018全国一卷22】在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=.(1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.2.【2018全国二卷22】在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数). (1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.3.【2018全国三卷22】在平面直角坐标系中,的参数方程为(为参数),xOy C 2cos 4sin x θy θ=⎧⎨=⎩,θl 1cos 2sin x t αy t α=+⎧⎨=+⎩,t C l C l (1,2)l xOy O ⊙cos sin x y θθ=⎧⎨=⎩,θ过点且倾斜角为的直线与交于两点. (1)求的取值范围;(2)求中点的轨迹的参数方程.4.【2018江苏卷21C 】在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长. 参考答案 一、填空题1.21+2.21 二、解答题1.解: (1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=.(2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为2221k =+,故43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点. (02,αl O ⊙A B ,αAB P当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,221k =+,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为4||23y x =-+. 2.解:(1)曲线C 的直角坐标方程为116422=+y x . 当时,的直角坐标方程为, 当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得ααα221cos 31)sin cos 2(4++-=+t t ,故, 于是直线的斜率.3.解:(1)的直角坐标方程为.当时,与交于两点. cos 0α≠l tan 2tan y x αα=⋅+-cos 0α=l 1x =l C t 22(13cos )4(2cos sin )80t t ααα+++-=C l (1,2)C 1t 2t 120t t +=2cos sin 0αα+=l tan 2k α==-O 221x y +=2απ=l O当时,记,则的方程为.与交于两点当且仅当,解得或,即或.综上,的取值范围是. (2)的参数方程为为参数,. 设,,对应的参数分别为,,,则,且,满足.于是,.又点的坐标满足所以点的轨迹的参数方程是为参数,. 4.解:因为曲线C 的极坐标方程为=4cos ρθ,所以曲线C 的圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为πsin()26ρθ-=,则直线l 过A (4,0),倾斜角为π6, 2απ≠tan k α=l 2y kx =-l O 22||11k <+1k <-1k >(,)42αππ∈(,)24απ3π∈α(,)44π3πl cos ,(2sin x t t y t αα=⎧⎪⎨=-+⎪⎩44απ3π<<)A B P A t B t P t 2A BP t t t +=A tB t 222sin 10t t α-+=22sin A B t t α+=2sin P t α=P (,)x y cos ,2sin .P P x t y t αα=⎧⎪⎨=-+⎪⎩P 2sin 2,22cos 2x y αα⎧=⎪⎪⎨⎪=--⎪⎩(α44απ3π<<)所以A为直线l与圆C的一个交点.设另一个交点为B,则∠OAB=π6.连结OB,因为OA为直径,从而∠OBA=π2,所以π4cos236AB==因此,直线l被曲线C截得的弦长为23。

高三数学-2018年全国各地高考试题-向量、不等式高考题选 精品

高三数学-2018年全国各地高考试题-向量、不等式高考题选 精品

2018年向量、不等式高考题选一、选择题1.不等式x x x <-24的解集是( )(2018年天津文1)A .(0,2)B .(2,+∞)C .(2,4)D .(-∞,0)∪(2,+∞)2.若不等式6|2|<+ax 的解集为(-1,2),则实数a 等于(2018年北京春理11)A .8B .2C .-4D .-83.不等式2112x x ++<的解集是( ) (2018年安徽春理5)A.{}10xx -<<B. 302x x ⎧⎫-<<⎨⎬⎩⎭C. 504x x ⎧⎫-<<⎨⎬⎩⎭D. {}20x x -<<4.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于( )(2018年北京理1)A .}1|{>x xB .}0|{>x xC .}1|{-<x xD .}11|{>-<x x x 或5.设5.1344.029.01)21(,8,4-===y y y ,则 ( )(2018年北京理2)A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 26.O 是平面上一 定点,A 、B 、C 是平面上不共线的三个点,动点P 满足 ).,0[(+∞∈++=λλOA OP 则P 的轨迹一定通过△ABC 的( )(2018年天津文8) A .外心 B .内心C .重心D .垂心7.设c bx ax x f a ++=>2)(,0,曲线)(x f y =在点))(,(00x f x P 处切处的倾斜角的取值范围为]4,0[π,则P 到曲线)(x f y =对称轴距离的取值范围为( )(2018年天津理7)A .]1,0[aB .]21,0[a C .|]2|,0[a b D .|]21|,0[ab - 8.已知双曲线中心在原点且一个焦点为与其相交于直线1),0,7(-=x y F M 、N 两点,MN 中点的横坐标为,32-则此双曲线的方程是( )(2018年天津理9)A .14322=-y x B .13422=-y x C .12522=-y x D .15222=-y x 9.若C z ∈且|22|,1|22|i z i z --=-+则的最小值是( )(2018年北京理6)A .2 B .3C .4D .510.a 1、b 1、c 1、a 2、b 2、c 2均为非零实数,不等式a 1x 2+b 1x +c 1>0和a 2x 2+b 2x +c 2>0的解集分别为集合M 和N ,那么“212121c c b b a a ==”是“M=N ”的( )(2018年上海理15)A .充分非必要条件.B .必要非充分条件.C .充要条件D .既非充分又非必要条件.二、填空题1.在正四棱锥P —ABCD 中,若侧面与底面所成二面角的大小为60°,则异面直线PA 与BC 所成角的大小等于 .(结果用反三角函数值表示)(2018年上海理5) 2.设集合A={x ||x |<4},B={x |x 2-4x +3>0}, 则集合{x |x ∈A 且}B A x ∉= (2018年上海理6)3.已知定点A (0,1),点B 在直线x +y=0上运动,当线段AB 最短时,点B 的坐标是 . (2018年上海文4)三、解答题1.(本小题满分12分)解不等式:.1)1(log )2(log 21221-->--x x x (2018年北京春理17)2、(本题满分12分)解不等式组:2680321{x x x x -+>+>-(2018年上海春17)3.(本小题满分12分)(2018年全国理19)已知.0>c 设P :函数x c y =在R 上单调递减. Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围.4.(本小题满分14分)(2018年北京理19)有三个新兴城镇,分别位于A ,B ,C 三点处,且AB=AC=a ,BC=2b.今计划合建一个中心医院,为同时方便三镇,准备建在BC 的垂直平分线上的P 点处,(建立坐标系如图) (Ⅰ)若希望点P 到三镇距离的平方和为最小, 点P 应位于何处? (Ⅱ)若希望点P 到三镇的最远距离为最小,点P 应位于何处?5.(本题满分12分)(2018年上海理18)已知平行六面体ABCD —A 1B 1C 1D 1中,A 1A ⊥平面ABCD ,AB=4,AD=2.若B 1D ⊥BC ,直线B 1D 与平面ABCD 所成的角等于30°,求平行六面体ABCD —A 1B 1C 1D 1的体积.6.(本题满分16分)共3个小题,第1小题满分4分,第2小题满分5分,第3小题满分7分. (2018年上海理21) 在以O 为原点的直角坐标系中,点A (4,-3)为△OAB 的直角顶点.已知|AB|=2|OA|,且点B 的纵坐标大于零. (1)求向量的坐标;(2)求圆02622=++-y y x x 关于直线OB 对称的圆的方程;(3)是否存在实数a ,使抛物线12-=ax y 上总有关于直线OB 对称的两个点?若不存在,说明理由:若存在,求a 的取值范围. 7.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. (2018年上海理20)如图,某隧道设计为双向四车道,车道总宽22米,要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状.(1)若最大拱高h 为6米,则隧道设计的拱宽l 是多少?(2)若最大拱高h 不小于6米,则应如何设 计拱高h 和拱宽l ,才能使半个椭圆形隧道的土方工程量最最小? (半个椭圆的面积公式为lh S 4π=,柱体体积为:底面积乘以高.本题结果精确到0.1米)8、(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分。

最新-2018年高考数学真题汇编 8:不等式 理 精品

最新-2018年高考数学真题汇编 8:不等式 理 精品

2018高考真题分类汇编:不等式1.【2018高考真题重庆理2】不等式0121≤+-x x 的解集为 A.⎥⎦⎤ ⎝⎛-1,21 B.⎥⎦⎤⎢⎣⎡-1,21 C.[)+∞⋃⎪⎭⎫ ⎝⎛-∞-,121. D.[)+∞⋃⎥⎦⎤ ⎝⎛-∞-,121, 对【答案】A2.【2018高考真题浙江理9】设a 大于0,b 大于0.A.若2a+2a=2b+3b ,则a >b B.若2a+2a=2b+3b ,则a >b C.若2a-2a=2b-3b ,则a >b D.若2a-2a=a b-3b ,则a <b 【答案】A3.【2018高考真题四川理9】某公司生产甲、乙两种桶装产品。

已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克。

每桶甲产品的利润是300元,每桶乙产品的利润是400元。

公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克。

通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A 、1800元B 、2400元C 、2800元D 、3100元【答案】C.4.【2018高考真题山东理5】已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =-的取值范围是(A )3[,6]2- (B )3[,1]2-- (C )[1,6]- (D )3[6,]2-【答案】A5.【2018高考真题辽宁理8】设变量x ,y 满足,15020010⎪⎩⎪⎨⎧≤≤≤+≤≤-y y x y x 则y x 32+的最大值为(A) 20 (B) 35 (C) 45 (D) 55 【答案】D【解析】画出可行域,根据图形可知当x=5,y=15时2x +3y 最大,最大值为55,故选D【点评】本题主要考查简单线性规划问题,难度适中。

该类题通常可以先作图,找到最优解求出最值,也可以直接求出可行域的顶点坐标,代入目标函数进行验证确定出最值。

各地高考真题分类汇编 极坐标与绝对值不等式 学生版

各地高考真题分类汇编  极坐标与绝对值不等式  学生版

极坐标与参数方程1.(2018年全国一·文科22)[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的方程为2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=.(1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.2.(2018年全国二·文科22) [选修4-4:坐标系与参数方程](10分)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.xOy C 2cos ,4sin x θy θ=⎧⎨=⎩θl 1cos ,2sin x t αy t α=+⎧⎨=+⎩t C l C l (1,2)l3.(2018年全国三·文科22) [选修4—4:坐标系与参数方程](10分)在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.学.科网(1)求的取值范围;(2)求中点的轨迹的参数方程.xOy O ⊙cos ,sin x y θθ=⎧⎨=⎩θ(0,αl O ⊙A B ,αAB P4.(2018年江苏)[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l的方程为πsin()26ρθ-=,曲线C的方程为4cosρθ=,求直线l被曲线C截得的弦长.绝对值不等式1.(2018年全国一·文科23)[选修4—5:不等式选讲](10分)已知()11f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若()01x ∈,时不等式()f x x >成立,求a 的取值范围.2.(2018年全国二·文科23) [选修4-5:不等式选讲](10分)设函数.(1)当时,求不等式的解集;(2)若,求的取值范围.()5|||2|f x x a x =-+--1a =()0f x ≥()1f x ≤a3.(2018年全国三·文科23) [选修4—5:不等式选讲](10分)设函数.(1)画出的图像;(2)当,,求的最小值.()|21||1|f x x x =++-()y f x =[0,)x ∈+∞()f x ax b ≤+a b+4.(2018年江苏)[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.。

【统一】2018全国各地高考数学试题汇编附答案解析

【统一】2018全国各地高考数学试题汇编附答案解析

【关键字】统一2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ1.已知集合,,那么▲.[答案]{1,8}2.若复数满足,其中i是虚数单位,则的实部为▲.[答案]23.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为▲.[答案]904.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为▲.[答案]85.函数的定义域为▲.[答案]6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为▲.[答案]7.已知函数的图象关于直线对称,则的值是▲.[答案]8.在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是▲.[答案]29.函数满足,且在区间上,则的值为▲.[答案]10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为▲.[答案]11.若函数在内有且只有一个零点,则在上的最大值与最小值的和为▲.[答案]-312.在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l交于另一点D.若,则点A的横坐标为▲.[答案]313.在中,角所对的边分别为,,的平分线交与点D,且,则的最小值为▲.[答案]914.已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n 的最小值为▲.[答案]2715.在平行六面体中,.求证:(1);(2).[答案]16.已知为锐角,,.(1)求的值;(2)求的值.[答案]17.某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.先规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.[答案]18.如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于两点.若的面积为,求直线l的方程.[答案]19.记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S点”.(1)证明:函数与不存在“S点”;(2)若函数与存在“S 点”,求实数a 的值;(3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S 点”,并说明理由. [答案]20.设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围; (2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示). [答案]2018 年普通高等学校招生全国统一考试(全国 I 卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

2018年全国各地高考数学试题及解答分类大全(不等式)

2018年全国各地高考数学试题及解答分类大全(不等式)

取得最大值, zmax 3 2 2 0 6 .
第 2页 (共 3页)
5.(2018
天津文、理)已知 a,b∈R,且
a–3b+6=0,则
2a+
1 8b
的最小值为__________.
5.【答案】 1 4
【解析】由 a 3b 6
0 可知 a
3b
6
,且 2a
1 8b
2a
2 3b
,因为对于任意
y y
4,
则目标函数
1,
z
3x
5
y
的最大值为
y 0,
()
(A)6 (B)19 (C)21 (D)45
2.【答案】C
【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标
函数在点
A
处取得最大值,联立直线方程:
x y x
5 y 1
,可得点
A
的坐标为
A
2,
3

据此可知目标函数的最大值为 zmax 3x 5 y 3 2 5 3 21 .故选 C.
二、填空
1.(2018 北京文)能说明“若 a b ,则 1 1 ”为假命题的一组 a , b 的值依次为_________. ab
1.【答案】1, 1 (答案不唯一)
第 1页 (共 3页)
【解析】使“若 a b ,则 1 1 ”为假命题,则“若 a b ,则 1 1 ”为真命题即可,只需取 a 1,b 1
x ,2x
0 恒成立,结
合均值不等式的结论可得: 2a 23b 2 2a 23b 2 26 1 . 4
当且仅当
2a
23b
a 3b 6

2018年高考数学分类汇编:不等式

2018年高考数学分类汇编:不等式

E 单元不等式E1 不等式的概念与性质 E2 绝对值不等式的解法 E3 一元二次不等式的解法 E4 简单的一元高次不等式的解法E5 简单的线性规划问题14.E5【2018·全国卷Ⅰ】 若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,,,则32z x y =+的最大值为 . 14.【答案】6【解析】不等式组表示的平面区域如图中阴影部分所示,当直线y=-32x+z2经过点A (2,0)时,z 最大,所以z max =3×2+2×0=6.14.E5【2018·全国卷Ⅱ】若x ,y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,,则z=x+y 的最大值为 . 14.【答案】9【解析】作出不等式组表示的可行域如图中阴影部分所示.当直线y x z =-+过点A (5,4)时,直线的纵截距z 最大,所以max 549z =+=.15.E5【2018·全国卷Ⅲ】 若变量x ,y 满足约束条件23024020x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,,则13z x y =+的最大值是 .15.3 【解析】 作出不等式组表示的可行域如图中阴影部分所示,由图易知目标函数在点A (2,3)处取得最大值,最大值为2+13×3=3.12.E5【2018·浙江卷】 若x ,y 满足约束条件0262x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩,,,则z=x+3y 的最小值是 ,最大值是 . 12.【答案】2-;8【解析】 作出如图中阴影部分所示的可行域,易知A (2,2),B (4,-2),C (1,1),目标函数表示斜率为-13的一组平行直线.由图可知,当直线x+3y-z=0经过点A 时,z 取得最大值,最大值为2+3×2=8;当直线x+3y-z=0经过点B 时,z 取得最小值,最小值为()4322+⨯-=-.13.E5【2018·北京卷】 若x ,y 满足x+1≤y ≤2x ,则2y-x 的最小值是 .13.3 【解析】 x ,y 满足的可行域如图中阴影部分所示,联立{y =x +1,y =2x ,得交点坐标为(1,2),由图可知,当目标函数z=2y-x 过点(1,2)时,z 有最小值,z min =2×2-1=3.E6 2a b+≤13.E6【2018·天津卷】已知,a b ∈R ,且360a b -+=,则123ab+的最小值为 . 【解题提示】运用基本不等式求解. 【答案】14【解析】由已知得36a b -=-,由基本不等式得1122284a b +≥==(当且仅当a=-3b=-3时取等号).E7 不等式的证明方法E8 不等式的综合应用 E9 单元综合8.E9【2018·北京卷】 设集合A={(x ,y )|x-y ≥1,ax+y>4,x-ay ≤2},则( ) A.对任意实数a ,(2,1)∈A B.对任意实数a ,(2,1)∉A C.当且仅当a<0时,(2,1)∉A D.当且仅当a ≤32时,(2,1)∉A8.D 【解析】当a=0时,A 为空集,排除A ;当a=2时,(2,1)∈A ,排除B ;当a=32时,作出可行域如图中阴影部分所示,由x y 13x y 42-=⎧⎪⎨+=⎪⎩,,得P (2,1),又∵ax+y>4,取不到边界值,∴(2,1)∉A.故选D.1.【2018·北京通州区期末】 已知a ,b ∈R ,a>b>0,则下列不等式一定成立的是( ) A . 1a >1b B . tan a>tan b C . |log 2a|>|log 2b| D . a ·2-b >b ·2-a1.D 【解析】 对于A ,a>b>0,则1a <1b ,故不成立;对于B ,不妨设a=3π4>b=π4>0,则tan 3π4=-1,tan π4=1,故不成立;对于C ,不妨设a=2,b=14,则|log 2a |=1,|log 2b |=2,故不成立.故选D . 2.【2018·唐山五校联考】 已知不等式x 2-bx-a ≥0的解集是{x|x ≤2或x ≥3},则不等式ax 2-bx-1>0的解集是( ) A .{x|2<x<3} B .{x |-12<x <-13} C .{x |13<x <12} D .{x |x <13或x <12}2.B 【解析】 ∵不等式x 2-bx-a ≥0的解集是{x|x ≤2或x ≥3},∴x 2-bx-a=0的解是x 1=2和x 2=3,∴{2+3=b ,2×3=-a ,解得{a =-6,b =5,则不等式ax 2-bx-1>0即为-6x 2-5x-1>0,解得{x |-12<x <-13}. 3.【2018·遵义联考】 已知O 是坐标原点,点A (-1,1),若点M (x ,y )为平面区域{x +y ≥2,x ≤1,y ≤2上的一个动点,则OA ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ 的取值范围是 . 3.【0,2】【解析】设z=OA⃗⃗⃗ ·OM ⃗⃗⃗⃗ =-x+y.在直角坐标系内作出可行域如图所示.由图可知,当直线z=-x+y 经过可行域内点C (0,2)时,z 有最大值,即(OA ⃗⃗⃗ ·OM ⃗⃗⃗⃗ )max =-0+2=2;当直线z=-x+y 经过可行域内点A (1,1)时,z 有最小值,即(OA ⃗⃗⃗ ·OM ⃗⃗⃗⃗ )min =-1+1=0.所以OA ⃗⃗⃗ ·OM ⃗⃗⃗⃗ 的取值范围为【0,2】.4. 【2018·衡水一中月考】 若x ,y 都是正数,且x+y=3,则4x+1+1y+1的最小值为 .4.95 【解析】 设m=x+1,n=y+1.∵x+y=3,∴{x =m -1,y =n -1,则m+n=5,∴4x+1+1y+1=4m +1n =(4m +1n )(m 5+n5)=45+4n 5m +m5n +15≥1+2√4n 5m·m 5n =95,当且仅当m=103,n=53,即x=73,y=23时取等号.。

2018年高考文科数学分类汇编:专题十三极坐标与参数方程

2018年高考文科数学分类汇编:专题十三极坐标与参数方程

《2018年高考文科数学分类汇编》第十三篇:极坐标与参数方程 解答题1.【2018全国一卷22】在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=.(1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.2.【2018全国二卷22】在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.3.【2018全国三卷22】在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.4.【2018江苏卷21C 】在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.参考答案 解答题xOy C 2cos 4sin x θy θ=⎧⎨=⎩,θl 1cos 2sin x t αy t α=+⎧⎨=+⎩,t C l C l (1,2)l xOy O ⊙cos sin x y θθ=⎧⎨=⎩,θ(0,αl O ⊙A B ,αAB P1.解: (1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=.(2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22=,故43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,2=,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为4||23y x =-+. 2.解:(1)曲线C 的直角坐标方程为116422=+y x . 当时,的直角坐标方程为, 当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.cos 0α≠l tan 2tan y x αα=⋅+-cos 0α=l 1x =l C t 22(13cos )4(2cos sin )80t t ααα+++-=C l (1,2)C 1t 2t 120t t +=又由①得ααα221cos 31)sin cos 2(4++-=+t t ,故, 于是直线的斜率.3.解:(1)的直角坐标方程为.当时,与交于两点. 当时,记,则的方程为.与交于两点当且仅当,解得或,即或.综上,的取值范围是. (2)的参数方程为为参数,. 设,,对应的参数分别为,,,则,且,满足.于是,.又点的坐标满足所以点的轨迹的参数方程是为参数,. 4.解:因为曲线C 的极坐标方程为=4cos ρθ,所以曲线C 的圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为πsin()26ρθ-=,2cos sin 0αα+=l tan 2k α==-O 221x y +=2απ=l O 2απ≠tan k α=l y kx =l O |1<1k <-1k >(,)42αππ∈(,)24απ3π∈α(,)44π3πl cos ,(sin x t t y t αα=⎧⎪⎨=⎪⎩44απ3π<<)A B P A t B t P t 2A BP t t t +=A tB t 2sin 10t α-+=A B t t α+=P t αP (,)x y cos ,sin .P Px t y t αα=⎧⎪⎨=⎪⎩P 2,2222x y αα⎧=⎪⎪⎨⎪=-⎪⎩(α44απ3π<<)则直线l 过A (4,0),倾斜角为π6, 所以A 为直线l 与圆C 的一个交点. 设另一个交点为B ,则∠OAB =π6. 连结OB ,因为OA 为直径,从而∠OBA =π2,所以π4cos6AB ==因此,直线l 被曲线C 截得的弦长为.。

2018年高考真题理科数学分类汇编专题4数列与不等式

2018年高考真题理科数学分类汇编专题4数列与不等式

专题4数列与不等式(2018全国1卷)4. 设为等差数列的前项和,若,,则A. B. C. D.【答案】B详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.(2018北京卷)4. “十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解. 详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.(2018全国1卷)13. 若,满足约束条件,则的最大值为_____________.【答案】6【解析】分析:首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式,之后在图中画出直线,在上下移动的过程中,结合的几何意义,可以发现直线过B点时取得最大值,联立方程组,求得点B的坐标代入目标函数解析式,求得最大值.详解:根据题中所给的约束条件,画出其对应的可行域,如图所示:由可得,画出直线,将其上下移动,结合的几何意义,可知当直线过点B时,z取得最大值,由,解得,此时,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.(2018全国2卷)14. 若满足约束条件则的最大值为__________.【答案】9【解析】分析:先作可行域,再平移直线,确定目标函数最大值的取法.详解:作可行域,则直线过点A(5,4)时取最大值9.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.(2018天津卷)2. 设变量x,y满足约束条件则目标函数的最大值为A. 6B. 19C. 21D. 45【答案】C【解析】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.本题选择C选项.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.(2018天津卷)4. 设,则“”是“”的A. 充分而不必要条件B. 必要而不重复条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】分析:首先求解绝对值不等式,然后求解三次不等式即可确定两者之间的关系.详解:绝对值不等式,由.据此可知是的充分而不必要条件.本题选择A选项.点睛:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.(2018北京卷)12. 若x,y满足x+1≤y≤2x,则2y–x的最小值是__________.【答案】3【解析】分析:作可行域,根据目标函数与可行域关系,确定最小值取法.详解:作可行域,如图,则直线过点A(1,2)时,取最小值3.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.(2018天津卷)13. 已知,且,则的最小值为_____________.【答案】【解析】分析:由题意首先求得a-3b的值,然后结合均值不等式的结论整理计算即可求得最终结果,注意等号成立的条件.详解:由可知,且:,因为对于任意x,恒成立,结合均值不等式的结论可得:.当且仅当,即时等号成立.综上可得的最小值为.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误. (2018江苏卷)13. 在中,角所对的边分别为,,的平分线交于点D ,且,则的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值. 详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.(2018浙江卷)12.若x ,y 满足约束条件,则z =x +3y 的最小值是________________________,最大值是_____________________ 12.答案:2- 8解答:不等式组所表示的平面区域如图所示,当42x y ì=ïïíï=-ïî时,3z x y =+取最小值,最小值为2-;当22x y ì=ïïíï=ïî时,3z x y =+取最大值,最大值为8.(2018全国1卷)14. 记为数列的前项和,若,则_____________.【答案】【解析】分析:首先根据题中所给的,类比着写出,两式相减,整理得到,从而确定出数列为等比数列,再令,结合的关系,求得,之后应用等比数列的求和公式求得的值. 详解:根据,可得, 两式相减得,即, 当时,,解得,所以数列是以-1为首项,以2为公布的等比数列,所以,故答案是.点睛:该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果. (2018北京卷)9. 设是等差数列,且a 1=3,a 2+a 5=36,则的通项公式为__________.【答案】【解析】分析:先根据条件列关于公差的方程,求出公差后,代入等差数列通项公式即可. 详解:点睛:在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为首项与公差(公比)问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用. (2018浙江卷)10已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),若a 1>1,则( )A . a 1<a 3,a 2<a 4B . a 1>a 3,a 2<a 4C . a 1<a 3,a 2>a 4D . a 1>a 3,a 2>a 410.答案:B解答:∵ln 1x x ≤-,∴1234123123ln()1a a a a a a a a a a +++=++≤++-,得41a ≤-,即311a q ≤-,∴0q <.若1q ≤-,则212341(1)(1)0a a a a a q q +++=++≤,212311(1)1a a a a q q a ++=++≥>,矛盾.∴10q -<<,则2131(1)0a a a q -=->,2241(1)0a a a q q -=-<. ∴13a a >,24a a <.(2018江苏卷)14. 已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.详解:设,则由得所以只需研究是否有满足条件的解,此时,,为等差数列项数,且.由得满足条件的最小值为.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如).(2018全国2卷)17. 记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.【答案】(1)a n=2n–9,(2)S n=n2–8n,最小值为–16.【解析】分析:(1)根据等差数列前n项和公式,求出公差,再代入等差数列通项公式得结果,(2)根据等差数列前n项和公式得的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{a n}的公差为d,由题意得3a1+3d=–15.由a1=–7得d=2.所以{a n}的通项公式为a n=2n–9.(2)由(1)得S n=n2–8n=(n–4)2–16.所以当n=4时,S n取得最小值,最小值为–16.点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.(2018全国3卷)17. 等比数列中,.(1)求的通项公式;(2)记为的前项和.若,求.【答案】(1)或(2)【解析】分析:(1)列出方程,解出q可得;(2)求出前n项和,解方程可得m。

2018年高考题分类汇编之数列与不等式

2018年高考题分类汇编之数列与不等式

2018年数学高考分类汇编之数列与不等式1.【2018年浙江卷】已知成等比数列,且.若,则A. B. C. D.2.【2018年文北京卷】】“十二平均律” 是通用的音律体系,明代朱载堉最先用数学方式计算出半音比例,为那个理论的进展做出了重要奉献.十二平均律将一个纯八度音程分成十二份,依次取得十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f,则第八个单音频率为A. B. C. D.3.【2018年浙江卷】已知集合,.将的所有元素从小到大依次排列组成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.4.【2018年浙江卷】已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}知足b1=1,数列{(b n+1−b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.5.【2018年天津卷文】设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n 项和为T n(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(Ⅰ)求S n和T n;(Ⅱ)若S n+(T1+T2+…+T n)=a n+4b n,求正整数n的值.6.【2018年文北京卷】设是等差数列,且.(Ⅰ)求的通项公式;(Ⅱ)求.7.【2018年江苏卷】设,对1,2,···,n的一个排列,若是当s<t时,有,则称是排列的一个逆序,排列的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记为1,2,···,n的所有排列中逆序数为k的全数排列的个数.(1)求的值;(2)求的表达式(用n表示).8.【2018年江苏卷】设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.(1)设,若对均成立,求d的取值范围;(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).9.【2018年新课标I卷文】已知数列知足,,设.(1)求;(2)判定数列是不是为等比数列,并说明理由;(3)求的通项公式.10.【2018年全国卷Ⅲ文】等比数列中,.(1)求的通项公式;(2)记为的前项和.若,求.11.【2018年天津卷文】设变量x,y知足约束条件则目标函数的最大值为A. 6B. 19C. 21D. 4512.【2018年文北京卷】设集合则A. 对任意实数a,B. 对任意实数a,(2,1)C. 当且仅当a<0时,(2,1)D. 当且仅当时,(2,1)13.【2018年浙江卷】若知足约束条件则的最小值是___________,最大值是___________.14.【2018年天津卷文】已知,且,则的最小值为_____________.15.【2018年文北京卷】若x,y知足,则2y−x的最小值是_________.16.【2018年江苏卷】在中,角所对的边别离为,,的平分线交于点D,且,则的最小值为________.17.【2018年全国卷Ⅲ文】若变量知足约束条件则的最大值是________.18.【2018年全国卷II文】若知足约束条件则的最大值为__________.。

2018--2020年高考数学试题分类汇编不等式选讲附答案详解

2018--2020年高考数学试题分类汇编不等式选讲附答案详解

2018-2020年高考数学试题分类汇编不等式选讲1、(2018年高考全国卷1文理科第23题)(10分)已知f(x)=|x+1|﹣|ax﹣1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.【解答】解:(1)当a=1时,f(x)=|x+1|﹣|x﹣1|=,由f(x)>1,∴或,解得x>,故不等式f(x)>1的解集为(,+∞),(2)当x∈(0,1)时不等式f(x)>x成立,∴|x+1|﹣|ax﹣1|﹣x>0,即x+1﹣|ax﹣1|﹣x>0,即|ax﹣1|<1,∴﹣1<ax﹣1<1,∴0<ax<2,∵x∈(0,1),∴a>0,∴0<x<,∴a<∵>2,∴0<a≤2,故a的取值范围为(0,2].2、(2018年高考全国卷II文理科第23题)[选修4-5:不等式选讲](10分)设函数f(x)=5﹣|x+a|﹣|x﹣2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.【解答】解:(1)当a=1时,f(x)=5﹣|x+1|﹣|x﹣2|=.当x≤﹣1时,f(x)=2x+4≥0,解得﹣2≤x≤1,当﹣1<x<2时,f(x)=2≥0恒成立,即﹣1<x<2,当x≥2时,f(x)=﹣2x+6≥0,解得2≤x≤3,综上所述不等式f(x)≥0的解集为[﹣2,3],(2)∵f(x)≤1,∴5﹣|x+a|﹣|x﹣2|≤1,∴|x+a|+|x﹣2|≤4,∴|x+a|+|x﹣2|=|x+a|+|2﹣x|≥|x+a+2﹣x|=|a+2|,∴|a+2|≤4,即﹣4≤a+2≤4,解得﹣6≤a≤2,故a的取值范围[﹣6,2].3、(2018年高考全国卷III文理科第23题)[选修4-5:不等式选讲](10分)设函数f(x)=|2x+1|+|x﹣1|.(1)画出y=f(x)的图象;(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.【解答】解:(1)当x≤﹣时,f(x)=﹣(2x+1)﹣(x﹣1)=﹣3x,当﹣<x<1,f(x)=(2x+1)﹣(x﹣1)=x+2,当x≥1时,f(x)=(2x+1)+(x﹣1)=3x,则f(x)=对应的图象为:画出y=f(x)的图象;(2)当x∈[0,+∞)时,f(x)≤ax+b,当x=0时,f(0)=2≤0•a+b,∴b≥2,当x>0时,要使f(x)≤ax+b恒成立,则函数f(x)的图象都在直线y=ax+b的下方或在直线上,∵f(x)的图象与y轴的交点的纵坐标为2,且各部分直线的斜率的最大值为3,故当且仅当a≥3且b≥2时,不等式f(x)≤ax+b在[0,+∞)上成立,即a+b的最小值为5.4、(2018年高考江苏卷第24题)[选修4-5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z=6,求x 2+y 2+z 2的最小值.【解答】解:由柯西不等式得(x 2+y 2+z 2)(12+22+22)≥(x +2y +2z )2, ∵x +2y +2z=6,∴x 2+y 2+z 2≥4 是当且仅当时,不等式取等号,此时x=,y=,z=,∴x 2+y 2+z 2的最小值为45、(2019全国III 卷文理科)[选修4-5:不等式选讲](10分) 设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-. 解:(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥, 当且仅当x =53,y =–13,13z =-时等号成立.所以222(1)(1)(1)x y z -++++的最小值为43. (2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤≤-+-+-⎣⎦,故由已知2222(2)(2)(1)()3a x y z a +-+-+-≥,当且仅当43a x -=,13a y -=,223a z -=时等号成立. 因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +.由题设知2(2)133a +≥,解得3a ≤-或1a ≥-.6、(2019全国II 卷文理科)[选修4-5:不等式选讲](10分)已知()|||2|().f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集; (2)若(,1]x ∈-∞时,()0f x <,求a 的取值范围. 解:(1)当a =1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥. 所以,不等式()0f x <的解集为(,1)-∞. (2)因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x ----- 所以,a 的取值范围是[1,)+∞.7、(2019全国I 卷文理科)[选修4—5:不等式选讲](10分)已知a ,b ,c 为正数,且满足abc =1.证明:(1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++.解:(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c++++≥++==++.所以222111a b c a b c++≤++. (2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c a c3≥⨯⨯⨯=24.所以333()()()24a b b c c a +++++≥. 8、(2019江苏卷21C )C.[选修4-5:不等式选讲](本小题满分10分) 设x ∈R ,解不等式||+|2 1|>2x x -.解:当x <0时,原不等式可化为122x x -+->,解得x <-13; 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或. 9、(2020•全国1卷)已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集. 答案:(1)详解解析;(2)7,6⎛⎫-∞-⎪⎝⎭. 解析:(1)根据分段讨论法,即可写出函数()f x 的解析式,作出图象; (2)作出函数()1f x +的图象,根据图象即可解出.解:(1)因为()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图象,如图所示:(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示: 由()3511x x --=+-,解得76x =-. 所以不等式()(1)f x f x >+的解集为7,6⎛⎫-∞-⎪⎝⎭. 10、(2020•全国2卷)已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围. 答案:(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞.解析:(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果; (2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果. 解:(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤; 当34x <<时,()4314f x x x =-+-=≥,无解; 当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭. (2)()()()()22222121211f x x a x a x ax a aa a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥, a ∴的取值范围为(][),13,-∞-+∞.11、(2020•全国3卷)设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c . 答案:(1)证明见解析(2)证明见解析.解析:(1)由2222()2220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bcbc+++=⋅==,结合基本不等式,即可得出证明. 解:(1)2222()2220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. 1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<; (2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即3max{,,}4a b c .12、(2020•江苏卷)设x ∈R ,解不等式2|1|||4x x ++≤. 答案:22,3⎡⎤-⎢⎥⎣⎦解析:根据绝对值定义化为三个方程组,解得结果解:因为1224x x x <-⎧⎨---≤⎩或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩21x ∴-≤<-或10x -≤≤或203x <≤所以解集为22,3⎡⎤-⎢⎥⎣⎦。

高考最新-2018年全国高考试题分类汇编及解析(数学)数列、解析几何、立体几何解析几何部分参考答案精

高考最新-2018年全国高考试题分类汇编及解析(数学)数列、解析几何、立体几何解析几何部分参考答案精

2018年全国高考试题分类汇编免费教育资源网解析几何部分参考答案、选择题二、填空题1.22x2y2411.用代数的方法研究图形的几何性质2 152 .2x y2 112. 5 23 1 13.44.5 14.[-1,3]15.455(0,-1) 1 2 a 1 216.2x- y+4=06.x 2+(y+1) 2=1 1-2 ≤ a≤1+ 2 17.213 18.11[ ,0) (0, ]7( ,13)10 1048.(5,0) 19.22(x 1)2 (y 1)2 259.22(x- 2)2+(y+3) 2=520.12210. (x- 2)2+(y+3) 2=5三、解答题1.(本小题主要考查直线和双曲线的概念和性质,综合解题能力 .满分 14 分 .解:( I)由 C 与 t 相交于两个不同的点,故知方程组x2y2 1,2y21,a x y 1.平面向量的运算等解析几何的基本思想和有两个不同的实数解 .消去 y 并整理得(1-a2)x2+2a2x-2a2=0. ① ⋯⋯ 2 分双曲线的离心率即离心率 e 的取值范围为 ( 6, 2) ( 2, ). 6分II)设 A(x 1,y 1),B(x 2,y 2), P 1(0,1)2. 本小题主要考查抛物线的性质,直线与抛物线的关系以及解析几何的基本方法、思想和 综合解题能力。

满分 12 分。

解:(Ⅰ) C 的焦点为 F(1, 0),直线 l 的斜率为 1,所以 l 的方程为y x 1.22将 y x 1代入方程 y 2 4x ,并整理得 x 26x 1 0.设A (x 1, y 1),B (x 2,y 2),则有 x 1 x 2 6,x 1x 2 1.OA OB (x 1, y 1) (x 2,y 2) x 1x 2 y 1y 2 2x 1x 2 (x 1 x 2) 1 3. | OA ||OB | x 12y 12x 22y 22x 1x 2[x 1x 2 4(x 1 x 2) 16] 41.OA OB 3 14 cos(OA, OB) . |OA| |OB | 41314 所以 OA 与OB 夹角的大小为 arccos3 14. 41(Ⅱ)由题设 FB AF 得 (x 2 1,y 2)(1 x 1, y 1),即x 2 1 (1 x 1), ①y2y1.②所以 21 a 20. 4 2 24a 4 8a 2(1 a 2) 0.解得 0 a 2且a 1.e1 a 212 1. 0 a 2且 a 1, a 255 PA 5 PB, (x 1,y 1 1) 5(x 2,y 2 1). 12 12由此得 x 1 152x 2. 8分 由于 x 1,x 2 都是方程①的根,且 所以 17 x 2 12 22 1a12 17.13.14分 5 x 222a 2 2a 2 2891 a2 .消去, x 2 ,得 1 a 2 60 由 a 0,所以 a2a 2y12 4x1,y22 4x2, ∴ x22x1. ③联立①、③解得x2 ,依题意有0.∴B( ,2 ),或B( , 2 ),又 F(1,0),得直线 l方程为( 1)y 2 (x 1)或( 1)y 2 (x 1),当[4,9]时,l 在方程 y轴上的截距为2或 1由②得y22 2y12,2 2 2 11 可知2在[4,9]上是递减的,4,4 23,3 134,4直线 l 在 y 轴上截距的变化范围为[ 43 3] [3,4].4] [4,3]. 以及综合. 满分 14 分 .解:( 1)由题设有m 0,c m.设点 P的坐标为(x0,y0),由PF1 PF2,得y0x0 cy0x0 c1,化简得x02y02m. ①2 将①与x0 m1y021联立,解得 2x02m 1 2,y0由m 0,x021 0,得 m 1. 所以 m 的取值范围是1.2)准线 L 的方程为m 1.设点 Q的坐标为(x1,y1),则m x1m 1.mm1m |QF2 | x1 c m|PF| c x m x2 m1 |QF2| 22m m 1.将x0 代入②,化简得.满分 12 分 .2m1代入②,化简得由题设 |QF 2| | PF 2 |2 3 ,得 mm 21 2 3 ,无解 .将 x.满分 12 分 .m|QF 2 | 1m m 2 1.|PF 2 | m m 21由题设 ||QPF F22 || 2 3 ,得 m m 21 2 3.解得 m=2.从而 x 03, y 02,c 2, 得到 PF 2 的方程22y ( 3 2)(x 2).4.本小题主要考查导数的几何意义,两条直线垂直的性质以及分析问题和综合运算能力 满分 12 分 . 解: y ′ =2x+1.直线 l 1 的方程为 y=3 x - 3.设直线 l 2过曲线 y=x 2+x -2 上 的点 B( b, b 2+b -2),则 l 2的方程为y=(2b+1) x -b 2-2 1因为 l 1⊥ l 2,则有 2b+1= ,b 1 231 x所以直线 l 2的方程为 y2 322II )解方程组 y 3x 3,1 22yx391 x, 6 5 y2(1, 5).(6, 2).221,0)、 ( ,0).3所以直线 l 1和 l 2 的交点的坐标为 l 1、l 2与 x 轴交点的坐标分别为(2 32 125.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力 解:直线 l 的方程为 x y1,即 bx ay ab 0.aba 1ly 1 2(y 2 2),∴y 1 y 24d1b(a 1)a 2b 2同理得到点(- 1, 0) b(a 1)2到直线 l 的距离 d 2a2 bs d 1 d 22ab2aba 2b 2由 s4c,得 2ab 4c,5 c 5即 5a c 2 a 2 2c 2.于是得 5 e 2 1 2e 2,即4e 425e 225 0.解不等式,得 54 e 25.由于 e 1 0,所以 e 的取值范围是25 e 5.26.(Ⅰ)由已知条件 ,可设抛物线的方程为 y 2∵点 P(1,2) 在抛物线上 , ∴ 222p 1, 得 p =2.2故所求抛物线的方程是 y 2准线方程是 x=-- 1.(Ⅱ ) 设直线 PA 的斜率为 k PA ,直线 PB 的斜率为 k PB , ∵PA 与 PB 的斜率存在且倾斜角互补 ,∴k PA k PB .由 A(x 1,y 1), B(x 2,y 2)在抛物线上 ,得2 y14x 1, ① 4x 2, ②2 y 2 221221 y2 14 2 y2y 1 1 4 y 1由① --②得直线 AB 的斜率y2 y1 4 4kAB1(x1 x2). (14 分)x2 x1 y1 y2 47.本小题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力、满分 14 分。

2018高考数学三角函数、向量、不等式分类汇编真题(含解析)

2018高考数学三角函数、向量、不等式分类汇编真题(含解析)

2018高考数学三角函数、向量、不等式分类汇编真题一.选择题(共17小题)1.若sinα=,则cos2α=()A.B.C.﹣D.﹣2.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.3.若f(x)=cosx﹣sinx在[0,a]是减函数,则a的最大值是()A.B.C.D.π4.在平面直角坐标系中,,,,是圆x2+y2=1上的四段弧(如图),点P其中一段上,角α以Ox为始边,OP为终边.若tanα<cosα<sinα,则P所在的圆弧是()A.B.C.D.5.若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C.D.π6.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.27.已知函数f(x)=2cos2x﹣sin2x+2,则()A.f(x)的最小正周期为π,最大值为3B.f(x)的最小正周期为π,最大值为4C.f(x)的最小正周期为2π,最大值为3D.f(x)的最小正周期为2π,最大值为48.将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[]上单调递增B.在区间[﹣,0]上单调递减C.在区间[]上单调递增D.在区间[,π]上单调递减9.已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A (1,a),B(2,b),且cos2α=,则|a﹣b|=()A.B. C.D.110.将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增 B.在区间[,π]上单调递减C.在区间[,]上单调递增 D.在区间[,2π]上单调递减11.已知向量,满足||=1,=﹣1,则•(2)=()A.4 B.3 C.2 D.012.在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+13.如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD上的动点,则的最小值为()A.B.C.D.314.在如图的平面图形中,已知OM=1,ON=2,∠MON=120°,=2,=2,则的值为()A.﹣15 B.﹣9 C.﹣6 D.015.已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4•+3=0,则|﹣|的最小值是()A.﹣1 B.+1 C.2 D.2﹣16.设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈A B.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉A D.当且仅当a≤时,(2,1)∉A17.直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3] D.[2,3]二.填空题(共16小题)18.设函数f(x)=cos(ωx﹣)(ω>0),若f(x)≤f()对任意的实数x都成立,则ω的最小值为.19.已知sinα+cosβ=1,cosα+sinβ=0,则sin(α+β)=.20.已知函数y=sin(2x+φ)(﹣φ<)的图象关于直线x=对称,则φ的值为.21.已知tan(α﹣)=,则tanα=.22.若△ABC的面积为(a2+c2﹣b2),且∠C为钝角,则∠B=;的取值范围是.23.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=.24.△ABC的内角A,B,C的对边分别为a,b,c.已知bsinC+csinB=4asinBsinC,b2+c2﹣a2=8,则△ABC的面积为.25.已知向量=(1,2),=(2,﹣2),=(1,λ).若∥(2+),则λ=.26.设向量=(1,0),=(﹣1,m).若⊥(m﹣),则m=.27.在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为.28.在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若=0,则点A的横坐标为.29.若x,y满足x+1≤y≤2x,则2y﹣x的最小值是.30.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.31.已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为.32.已知集合A={x|x=2n﹣1,n∈N*},B={x|x=2n,n∈N*}.将A∪B的所有元素从小到大依次排列构成一个数列{a n},记S n为数列{a n}的前n项和,则使得S n>12a n+1成立的n的最小值为.33.已知数列{a n}和{b n},其中a n=n2,n∈N*,{b n}的项是互不相等的正整数,若对于任意n∈N*,{b n}的第a n项等于{a n}的第b n项,则=.三.解答题(共7小题)34.设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.35.已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.36.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.37.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.38.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.39.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.40.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.参考答案与试题解析一.选择题(共17小题)1.若sinα=,则cos2α=()A.B.C.﹣D.﹣【解答】解:∵sinα=,∴cos2α=1﹣2sin2α=1﹣2×=.故选:B.2.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.△ABC的面积为,∴S==,△ABC∴sinC==cosC,∵0<C<π,∴C=.故选:C.3.若f(x)=cosx﹣sinx在[0,a]是减函数,则a的最大值是()A.B.C.D.π【解答】解:f(x)=cosx﹣sinx=﹣(sinx﹣cosx)=﹣sin(x﹣),由﹣+2kπ≤x﹣≤+2kπ,k∈Z,得﹣+2kπ≤x≤+2kπ,k∈Z,取k=0,得f(x)的一个减区间为[﹣,],由f(x)在[0,a]是减函数,得a≤.则a的最大值是.故选:C.4.在平面直角坐标系中,,,,是圆x2+y2=1上的四段弧(如图),点P其中一段上,角α以Ox为始边,OP为终边.若tanα<cosα<sinα,则P所在的圆弧是()A.B.C.D.【解答】解:A.在AB段,正弦线小于余弦线,即cosα<sinα不成立,故A不满足条件.B.在CD段正切线最大,则cosα<sinα<tanα,故B不满足条件.C.在EF段,正切线,余弦线为负值,正弦线为正,满足tanα<cosα<sinα,D.在GH段,正切线为正值,正弦线和余弦线为负值,满足cosα<sinα<tanα不满足tanα<cosα<sinα.故选:C.5.若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C.D.π【解答】解:f(x)=cosx﹣sinx=﹣(sinx﹣cosx)=,由,k∈Z,得,k∈Z,取k=0,得f(x)的一个减区间为[,],由f(x)在[﹣a,a]是减函数,得,∴.则a的最大值是.故选:A.6.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.2【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.7.已知函数f(x)=2cos2x﹣sin2x+2,则()A.f(x)的最小正周期为π,最大值为3B.f(x)的最小正周期为π,最大值为4C.f(x)的最小正周期为2π,最大值为3D.f(x)的最小正周期为2π,最大值为4【解答】解:函数f(x)=2cos2x﹣sin2x+2,=2cos2x﹣sin2x+2sin2x+2cos2x,=4cos2x+sin2x,=3cos2x+1,=,=,故函数的最小正周期为π,函数的最大值为,故选:B.8.将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[]上单调递增B.在区间[﹣,0]上单调递减C.在区间[]上单调递增D.在区间[,π]上单调递减【解答】解:将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数解析式为y=sin[2(x﹣)+]=sin2x.当x∈[]时,2x∈[,],函数单调递增;当x∈[,]时,2x∈[,π],函数单调递减;当x∈[﹣,0]时,2x∈[﹣,0],函数单调递增;当x∈[,π]时,2x∈[π,2π],函数先减后增.故选:A.9.已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A (1,a),B(2,b),且cos2α=,则|a﹣b|=()A.B. C.D.1【解答】解:∵角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=,∴cos2α=2cos2α﹣1=,解得cos2α=,∴|cosα|=,∴|sinα|==,|tanα|=||=|a﹣b|===.故选:B.10.将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增 B.在区间[,π]上单调递减C.在区间[,]上单调递增 D.在区间[,2π]上单调递减【解答】解:将函数y=sin(2x+)的图象向右平移个单位长度,得到的函数为:y=sin2x,增区间满足:﹣+2kπ≤2x≤,k∈Z,减区间满足:≤2x≤,k∈Z,∴增区间为[﹣+kπ,+kπ],k∈Z,减区间为[+kπ,+kπ],k∈Z,∴将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数在区间[,]上单调递增.故选:A.11.已知向量,满足||=1,=﹣1,则•(2)=()A.4 B.3 C.2 D.0【解答】解:向量,满足||=1,=﹣1,则•(2)=2﹣=2+1=3,故选:B.12.在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+【解答】解:在△ABC中,AD为BC边上的中线,E为AD的中点,=﹣=﹣=﹣×(+)=﹣,故选:A.13.如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD上的动点,则的最小值为()A.B.C.D.3【解答】解:如图所示,以D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,过点B做BN⊥x轴,过点B做BM⊥y轴,∵AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1,∴AN=ABcos60°=,BN=ABsin60°=,∴DN=1+=,∴BM=,∴CM=MBtan30°=,∴DC=DM+MC=,∴A(1,0),B(,),C(0,),设E(0,m),∴=(﹣1,m),=(﹣,m﹣),0≤m≤,∴=+m2﹣m=(m﹣)2+﹣=(m﹣)2+,当m=时,取得最小值为.故选:A.14.在如图的平面图形中,已知OM=1,ON=2,∠MON=120°,=2,=2,则的值为()A.﹣15 B.﹣9 C.﹣6 D.0【解答】解:解法Ⅰ,由题意,=2,=2,∴==2,∴BC∥MN,且BC=3MN,又MN2=OM2+ON2﹣2OM•ON•cos120°=1+4﹣2×1×2×(﹣)=7,∴MN=;∴BC=3,∴cos∠OMN===,∴•=||×||cos(π﹣∠OMN)=3×1×(﹣)=﹣6.解题Ⅱ:不妨设四边形OMAN是平行四边形,由OM=1,ON=2,∠MON=120°,=2,=2,知=﹣=3﹣3=﹣3+3,∴=(﹣3+3)•=﹣3+3•=﹣3×12+3×2×1×cos120°=﹣6.故选:C.15.已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4•+3=0,则|﹣|的最小值是()A.﹣1 B.+1 C.2 D.2﹣【解答】解:由﹣4•+3=0,得,∴()⊥(),如图,不妨设,则的终点在以(2,0)为圆心,以1为半径的圆周上,又非零向量与的夹角为,则的终点在不含端点O的两条射线y=(x >0)上.不妨以y=为例,则|﹣|的最小值是(2,0)到直线的距离减1.即.故选:A.16.设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈A B.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉A D.当且仅当a≤时,(2,1)∉A【解答】解:当a=﹣1时,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,﹣x+y>4,x+y≤2},显然(2,1)不满足,﹣x+y>4,x+y≤2,所以A,C不正确;当a=4,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,4x+y>4,x﹣4y≤2},显然(2,1)在可行域内,满足不等式,所以B不正确;故选:D.17.直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3] D.[2,3]【解答】解:∵直线x+y+2=0分别与x轴,y轴交于A,B两点,∴令x=0,得y=﹣2,令y=0,得x=﹣2,∴A(﹣2,0),B(0,﹣2),|AB|==2,∵点P在圆(x﹣2)2+y2=2上,∴设P(2+,),∴点P到直线x+y+2=0的距离:d==,∵sin()∈[﹣1,1],∴d=∈[],∴△ABP面积的取值范围是:[,]=[2,6].故选:A.二.填空题(共16小题)18.设函数f(x)=cos(ωx﹣)(ω>0),若f(x)≤f()对任意的实数x都成立,则ω的最小值为.【解答】解:函数f(x)=cos(ωx﹣)(ω>0),若f(x)≤f()对任意的实数x都成立,可得:,k∈Z,解得ω=,k∈Z,ω>0则ω的最小值为:.故答案为:.19.已知sinα+cosβ=1,cosα+sinβ=0,则sin(α+β)=.【解答】解:sinα+cosβ=1,两边平方可得:sin2α+2sinαcosβ+cos2β=1,①,cosα+sinβ=0,两边平方可得:cos2α+2cosαsinβ+sin2β=0,②,由①+②得:2+2(sinαcosβ+cosαsinβ)=1,即2+2sin(α+β)=1,∴2sin(α+β)=﹣1.∴sin(α+β)=.故答案为:.20.已知函数y=sin(2x+φ)(﹣φ<)的图象关于直线x=对称,则φ的值为.【解答】解:∵y=sin(2x+φ)(﹣φ<)的图象关于直线x=对称,∴2×+φ=kπ+,k∈Z,即φ=kπ﹣,∵﹣φ<,∴当k=0时,φ=﹣,故答案为:﹣.21.已知tan(α﹣)=,则tanα=.【解答】解:∵tan(α﹣)=,∴tan(α)=,则tanα=tan(α+)=====,故答案为:.22.若△ABC的面积为(a2+c2﹣b2),且∠C为钝角,则∠B=;的取值范围是(2,+∞).【解答】解:△ABC的面积为(a2+c2﹣b2),可得:(a2+c2﹣b2)=acsinB,,可得:tanB=,所以B=,∠C为钝角,A∈(0,),cotA∈(,+∞).===cosB+cotAsinB=cotA∈(2,+∞).故答案为:;(2,+∞).23.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=3.【解答】解:∵在△ABC中,角A,B,C所对的边分别为a,b,c.a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==.由余弦定理得:cos60°=,解得c=3或c=﹣1(舍),∴sinB=,c=3.故答案为:,3.24.△ABC的内角A,B,C的对边分别为a,b,c.已知bsinC+csinB=4asinBsinC,b2+c2﹣a2=8,则△ABC的面积为.【解答】解:△ABC的内角A,B,C的对边分别为a,b,c.bsinC+csinB=4asinBsinC,利用正弦定理可得sinBsinC+sinCsinB=4sinAsinBsinC,由于0<B<π,0<C<π,所以sinBsinC≠0,所以sinA=,则A=由于b2+c2﹣a2=8,则:,①当A=时,,解得bc=,所以.②当A=时,,解得bc=﹣(不合题意),舍去.故:.故答案为:.25.已知向量=(1,2),=(2,﹣2),=(1,λ).若∥(2+),则λ=.【解答】解:∵向量=(1,2),=(2,﹣2),∴=(4,2),∵=(1,λ),∥(2+),∴,解得λ=.故答案为:.26.设向量=(1,0),=(﹣1,m).若⊥(m﹣),则m=﹣1.【解答】解:向量=(1,0),=(﹣1,m).m﹣=(m+1,﹣m).∵⊥(m﹣),∴m+1=0,解得m=﹣1.故答案为:﹣1.27.在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为﹣3.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.28.在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若=0,则点A的横坐标为3.【解答】解:设A(a,2a),a>0,∵B(5,0),∴C(,a),则圆C的方程为(x﹣5)(x﹣a)+y(y﹣2a)=0.联立,解得D(1,2).∴=.解得:a=3或a=﹣1.又a>0,∴a=3.即A的横坐标为3.故答案为:3.29.若x,y满足x+1≤y≤2x,则2y﹣x的最小值是3.【解答】解:作出不等式组对应的平面区域如图:设z=2y﹣x,则y=x+z,平移y=x+z,由图象知当直线y=x+z经过点A时,直线的截距最小,此时z最小,由得,即A(1,2),此时z=2×2﹣1=3,故答案为:330.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为9.【解答】解:由题意得acsin120°=asin60°+csin60°,即ac=a+c,得+=1,得4a+c=(4a+c)(+)=++5≥2+5=4+5=9,当且仅当=,即c=2a时,取等号,故答案为:9.31.已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且•=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.32.已知集合A={x|x=2n﹣1,n∈N*},B={x|x=2n,n∈N*}.将A∪B的所有元素从小到大依次排列构成一个数列{a n},记S n为数列{a n}的前n项和,则使得S n>12a n+1成立的n的最小值为27.【解答】解:利用列举法可得:当n=26时,A∪B中的所有元素从小到大依次排列,构成一个数列{a n},所以数列{a n}的前26项分别1,3,5,7,9,11,13,15,17,19,21,23.25,…41,2,4,8,16,32.S26=,a27=43,⇒12a27=516,不符合题意.当n=27时,A∪B中的所有元素从小到大依次排列,构成一个数列{a n},所以数列{a n}的前26项分别1,3,5,7,9,11,13,15,17,19,21,23.25,…41,43,2,4,8,16,32.S27==546,a28=45⇒12a28=540,符合题意,故答案为:27.33.已知数列{a n}和{b n},其中a n=n2,n∈N*,{b n}的项是互不相等的正整数,若对于任意n∈N*,{b n}的第a n项等于{a n}的第b n项,则=2.【解答】解:∵a n=n2,n∈N*,若对于一切n∈N*,{b n}中的第a n项恒等于{a n}中的第b n项,∴==.∴b1=a1=1,=b4,=b9,=b16.∴b1b4b9b16=.∴=2.故答案为:2.三.解答题(共7小题)34.设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣35.已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.【解答】解:(I)函数f(x)=sin2x+sinxcosx=+sin2x=sin(2x﹣)+,f(x)的最小正周期为T==π;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,可得2x﹣∈[﹣,2m﹣],即有2m﹣≥,解得m≥,则m的最小值为.36.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.37.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【解答】解:(Ⅰ)∵a<b,∴A<B,即A是锐角,∵cosB=﹣,∴sinB===,由正弦定理得=得sinA===,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=csinA=3×=.38.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.【解答】解:(1)由,解得,∴cos2α=;(2)由(1)得,sin2,则tan2α=.∵α,β∈(0,),∴α+β∈(0,π),∴sin(α+β)==.则tan(α+β)=.∴tan(α﹣β)=tan[2α﹣(α+β)]==.39.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.40.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【解答】解:(Ⅰ)∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P(﹣,﹣).∴x=﹣,y=,r=|OP|=,∴sin(α+π)=﹣sinα=;(Ⅱ)由x=﹣,y=,r=|OP|=1,得,,又由sin(α+β)=,得=,则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=,或cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=.∴cosβ的值为或.。

2018年全国各地高考数学分类汇编word版含答案7-不等式

2018年全国各地高考数学分类汇编word版含答案7-不等式

2018年全国各地高考数学分类汇编word版含答案7-不等式一、选择题(共5小题;共25分)1. 设变量x,y满足约束条件x+y≤5,2x−y≤4,−x+y≤1,y≥0,则目标函数z=3x+5y的最大值为 A. 6B. 19C. 21D. 452. 设x∈R,则“x3>8”是“ x >2”的 A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件3. 设x∈R,则“x−12<12”是“x3<1”的 A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件4. 设集合A=x,y x−y≥1,ax+y>4,x−ay≤2,则 A. 对任意实数a,2,1∈AB. 对任意实数a,2,1∉AC. 当且仅当a<0时,2,1∉AD. 当且仅当a≤32时,2,1∉A5. 已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln a1+a2+a3.若a1>1,则A. a1<a3,a2<a4B. a1>a3,a2<a4C. a1<a3,a2>a4D. a1>a3,a2>a4二、填空题(共7小题;共35分)6. 若变量x,y满足约束条件2x+y+3≥0,x−2y+4≥0,x−2≤0,则z=x+13y的最大值是.7. 若x,y满足约束条件x−2y−2≤0,x−y+1≥0,y≤0,则z=3x+2y的最大值为.8. 若x,y满足约束条件x−y≥0,2x+y≤6,x+y≥2,则z=x+3y的最小值是,最大值是.9. 已知a,b∈R,且a−3b+6=0,则2a+18的最小值为.10. 在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120∘,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.11. 若x,y满足x+1≤y≤2x,则2y−x的最小值是.12. 已知a∈R,函数f x=x2+2x+a−2,x≤0−x2+2x−2a,x>0.若对任意x∈−3,+∞,f x≤ x 恒成立,则a的取值范围是.三、解答题(共2小题;共26分)13. 某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族 S中的成员仅以自驾或公交方式通勤.分析显示:当 S 中 x % 0<x <100 的成员自驾时,自驾群体的人均通勤时间为 f x = 30,0<x ≤302x +1800x −90,30<x <100(单位:分钟),而公交群体的人均通勤时间不受 x 影响,恒为 40 分钟.试根据上述分析结果回答下列问题:(1)当 x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族 S 的人均通勤时间 g x 的表达式;讨论 g x 的单调性,并说明其实际意义.14. 设 a n 是首项为 a 1,公差为 d 的等差数列, b n 是首项为 b 1,公比为 q 的等比数列.(1)设 a 1=0,b 1=1,q =2,若 a n −b n ≤b 1 对 n =1,2,3,4 均成立,求 d 的取值范围;(2)若 a 1=b 1>0,m ∈N ∗,q ∈ 1, 2m,证明:存在 d ∈R ,使得 a n −b n ≤b 1 对n =2,3,⋯,m +1 均成立,并求 d 的取值范围(用 b 1,m ,q 表示).答案第一部分1. C2. A3. A4. D5. B第二部分 6. 37. 68. −2,89. 1410. 911. 312. 18,2第三部分13. (1) 由题意 2x +1800x −90>40,因为 30<x <100,解得 45<x <100.(2) 当 0<x ≤30 时,g x =30⋅x %+40 1−x % =40−x 10; 当 30<x <100 时,g x = 2x +1800−90 ⋅x %+40 1−x % =x 2−13x +58, 所以 g x = 40−x 10,0<x ≤30x 250−1310x +58,30<x <100. 当 0<x <32.5 时,g x 单调递减;当 32.5≤x <100 时,g x 单调递增.说明当 S 中有少于 32.5% 的成员自驾时,通勤时间人均递减;当自驾成员大于 32.5% 时,人均通勤时间递增;当自驾成员为 32.5% 时,人均通勤时间最少.14. (1) 由条件知:a n = n −1 d ,b n =2n−1.因为 a n −b n ≤b 1 对 n =1,2,3,4 均成立,即 n −1 d −2n−1 ≤1 对 n =1,2,3,4 均成立,即1≤1,1≤d≤3,3≤2d≤5,7≤3d≤9,得73≤d≤52.因此,d的取值范围为73,52.(2)由条件知:a n=b1+n−1d,b n=b1q n−1.若存在d,使得a n−b n ≤b1n=2,3,⋯,m+1成立,即b1+n−1d−b1q n−1 ≤b1n=2,3,⋯,m+1,即当n=2,3,⋯,m+1时,d满足q n−1−2n−1b1≤d≤q n−1n−1b1.因为q∈1,2m,则1<q n−1≤q m≤2,从而q n−1−2n−1b1≤0,q n−1n−1b1>0,对n=2,3,⋯,m+1均成立.因此,取d=0时,a n−b n ≤b1对n=2,3,⋯,m+1均成立.下面讨论数列q n−1−2n−1的最大值和数列q n−1n−1的最小值(n=2,3,⋯,m+1).①当2≤n≤m时,q n−2n−q n−1−2n−1=nq n−q n−nq n−1+2n n−1=n q n−q n−1−q n+2n n−1,当1<q≤21时,有q n≤q m≤2,从而n q n−q n−1−q n+2>0 .因此,当2≤n≤m+1时,数列q n−1−2n−1单调递增,故数列q n−1−2n−1的最大值为q m−2m.②设f x=2x1−x,当x>0时,fʹx=ln2−1−x ln22x<0,所以f x单调递减,从而f x<f0=1.当2≤n≤m时,q nnq n−1=q n−1n≤21n1−1n=f1n<1,因此,当2≤n≤m+1时,数列q n−1n−1单调递减,故数列q n−1n−1的最小值为q mm.因此,d的取值范围为b1q m−2m ,b1q mm.。

2018年高考数学试题汇编极坐标和参数方程及详细解析

2018年高考数学试题汇编极坐标和参数方程及详细解析

2018年高考数学试题汇编极坐标和参数方程及详细解析1、(2018年高考数学全国卷I理科22)(10分)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.【解答】解:(1)曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.转换为直角坐标方程为:x2+y2+2x﹣3=0,转换为标准式为:(x+1)2+y2=4.(2)由于曲线C1的方程为y=k|x|+2,则:该直线关于y轴对称,且恒过定点(0,2).由于该直线与曲线C2的极坐标有且仅有三个公共点.所以:必有一直线相切,一直线相交.则:圆心到直线y=kx+2的距离等于半径2.故:,解得:k=或0,(0舍去)故C1的方程为:.2、(2018年高考数学全国卷II理科22)(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.【解答】解:(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为:.直线l的参数方程为(t为参数).转换为直角坐标方程为:sinαx﹣cosαy+2cosα﹣sinα=0.(2)把直线的参数方程代入椭圆的方程得到:+=1整理得:(4cos2α+sin2α)t2+(8cosα+4sinα)t﹣8=0,则:,由于(1,2)为中点坐标,所以:,则:8cosα+4sinα=0,解得:tanα=﹣2,即:直线l的斜率为﹣2.3、(2018年高考数学全国卷III理科22)(10分)在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,﹣)且倾斜角为α的直线l与⊙O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.【解答】解:(1)∵⊙O的参数方程为(θ为参数),∴⊙O的普通方程为x2+y2=1,圆心为O(0,0),半径r=1,当α=时,过点(0,﹣)且倾斜角为α的直线l的方程为x=0,成立;当α≠时,过点(0,﹣)且倾斜角为α的直线l的方程为y=ta nα•x+,∵倾斜角为α的直线l与⊙O交于A,B两点,∴圆心O(0,0)到直线l的距离d=<1,∴tan2α>1,∴tanα>1或tanα<﹣1,∴或,综上α的取值范围是(,).(2)由(1)知直线l的斜率不为0,设直线l的方程为x=m(y+),设A(x1,y1),(B(x2,y2),P(x3,y3),联立,得(m2+1)x2+2+2m2﹣1=0,,=﹣+2,=,=﹣,∴AB中点P的轨迹的参数方程为,(m为参数),(﹣1<m<1).4、(2018年高考数学天津卷理科12)(5分)已知圆x2+y2﹣2x=0的圆心为C,直线,(t为参数)与该圆相交于A,B两点,则△ABC的面积为.【解答】解:圆x2+y2﹣2x=0化为标准方程是(x﹣1)2+y2=1,圆心为C(1,0),半径r=1;直线化为普通方程是x+y﹣2=0,则圆心C到该直线的距离为d==,弦长|AB|=2=2=2×=,∴△ABC的面积为S=•|AB|•d=××=.故答案为:.5、(2018年高考数学北京卷理科10)(5分)在极坐标系中,直线ρcosθ+ρsinθ=a(a>0)与圆ρ=2cosθ相切,则a=1+.【解答】解:圆ρ=2cosθ,转化成:ρ2=2ρcosθ,进一步转化成直角坐标方程为:(x﹣1)2+y2=1,把直线ρ(cosθ+sinθ)=a的方程转化成直角坐标方程为:x+y﹣a=0.由于直线和圆相切,所以:利用圆心到直线的距离等于半径.则:=1,解得:a=1±.a>0则负值舍去.故:a=1+.6、(2018年高考数学江苏卷理科23)在极坐标系中,直线l的方程为ρsin(﹣θ)=2,曲线C的方程为ρ=4cosθ,求直线l被曲线C截得的弦长.【解答】解:∵曲线C的方程为ρ=4cosθ,∴ρ2=4ρcosθ,⇒x2+y2=4x,∴曲线C是圆心为C(2,0),半径为r=2得圆.∵直线l的方程为ρsin(﹣θ)=2,∴﹣=2,∴直线l的普通方程为:x﹣y=4.圆心C到直线l的距离为d=,∴直线l被曲线C截得的弦长为2.6、(2018年高考数学全国卷I文科22)(10分)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.【解答】解:(1)曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.转换为直角坐标方程为:x2+y2+2x﹣3=0,转换为标准式为:(x+1)2+y2=4.(2)由于曲线C1的方程为y=k|x|+2,则:该直线关于y轴对称,且恒过定点(0,2).由于该直线与曲线C2的极坐标有且仅有三个公共点.所以:必有一直线相切,一直线相交.则:圆心到直线y=kx+2的距离等于半径2.故:,解得:k=或0,(0舍去)故C1的方程为:.7、(2018年高考数学全国卷II文科22)(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.【解答】解:(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为:.直线l的参数方程为(t为参数).转换为直角坐标方程为:sinαx﹣cosαy+2cosα﹣sinα=0.(2)把直线的参数方程代入椭圆的方程得到:+=1整理得:(4cos2α+sin2α)t2+(8cosα+4sinα)t﹣8=0,则:,由于(1,2)为中点坐标,所以:,则:8cosα+4sinα=0,解得:tanα=﹣2,即:直线l的斜率为﹣2.8、(2018年高考数学全国卷III文科22)(10分)在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,﹣)且倾斜角为α的直线l与⊙O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.【解答】解:(1)∵⊙O的参数方程为(θ为参数),∴⊙O的普通方程为x2+y2=1,圆心为O(0,0),半径r=1,当α=时,过点(0,﹣)且倾斜角为α的直线l的方程为x=0,成立;当α≠时,过点(0,﹣)且倾斜角为α的直线l的方程为y=tanα•x+,∵倾斜角为α的直线l与⊙O交于A,B两点,∴圆心O(0,0)到直线l的距离d=<1,∴tan2α>1,∴tanα>1或tanα<﹣1,∴或,综上α的取值范围是(,).(2)由(1)知直线l的斜率不为0,设直线l的方程为x=m(y+),设A(x1,y1),(B(x2,y2),P(x3,y3),联立,得(m2+1)x2+2+2m2﹣1=0,,=﹣+2,=,=﹣,∴AB中点P的轨迹的参数方程为,(m为参数),(﹣1<m<1)。

2018年高考理科数学各地试题分类汇编18

2018年高考理科数学各地试题分类汇编18

2018年全国高考理科数学试题分类汇编18:坐标系与参数方程一、选择题1 .(2018年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为 ( )A .=0()cos=2R θρρ∈和B .=()cos=22R πθρρ∈和C .=()cos=12R πθρρ∈和D .=0()cos=1R θρρ∈和【答案】B 二、填空题2 .(2018年普通高等学校招生统一考试天津数学(理)试题(含答案))已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫⎪⎝⎭, 则|CP | =______.【答案】3 .(2018年高考上海卷(理))在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为__________【答案】12. 4 .(2018年高考北京卷(理))在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于_________.【答案】15 .(2018年普通高等学校招生统一考试重庆数学(理)试题(含答案))在直角坐标系xOy中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为cos 4ρθ=的直线与曲线23x ty t⎧=⎪⎨=⎪⎩(t 为参数)相交于,A B 两点,则______AB =【答案】166 .(2018年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))(坐标系与参数方程选讲选做题)已知曲线C的参数方程为x ty t ⎧=⎪⎨=⎪⎩(t 为参数),C 在点()1,1处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为_____________.【答案】sin 4πρθ⎛⎫+= ⎪⎝⎭7 .(2018年高考陕西卷(理))C. (坐标系与参数方程选做题) 如图, 以过原点的直线的倾斜角θ为参数, 则圆220y x x +-=的参数方程为______ .x【答案】R y x ∈⎩⎨⎧⋅==θθθθ,sin cos cos 28 .(2018年高考江西卷(理))(坐标系与参数方程选做题)设曲线C 的参数方程为2x ty t =⎧⎨=⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线c 的极坐标方程为__________【答案】2cossin 0ρθθ-=9 .(2018年高考湖南卷(理))在平面直角坐标系xoy 中,若,3cos ,:(t )C :2sin x t x l y t a y ϕϕ==⎧⎧⎨⎨=-=⎩⎩为参数过椭圆()ϕ为参数的右顶点,则常数a 的值为________.【答案】310.(2018年高考湖北卷(理))在直角坐标系xOy 中,椭圆C的参数方程为cos sin x a y b θθ=⎧⎨=⎩()0a b ϕ>>为参数,.在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l与圆O 的极坐标方程分别为sin 4πρθ⎛⎫+= ⎪⎝⎭()m 为非零常数与b ρ=.若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为___________.【答案】 三、解答题11.(2018年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))选修4—4;坐标系与参数方程 已知动点,P Q 都在曲线2cos :2sin x C y ββ=⎧⎨=⎩(β为参数)上,对应参数分别为βα=与)20(2πααβ<<=,M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.【答案】12.(2018年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))选修4-4:坐标系与参数方程在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C的极坐标方程分别为4sin ,cos 4πρθρθ⎛⎫==-= ⎪⎝⎭.(I)求1C 与2C 交点的极坐标;(II)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为()3312x t at R b y t ⎧=+⎪∈⎨=+⎪⎩为参数,求,a b 的值.【答案】13.(2018年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))坐标系与参数方程:在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为)4π,直线的极坐标方程为cos()4a πρθ-=,且点A 在直线上.(1)求a 的值及直线的直角坐标方程; (2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线与圆的位置关系.【答案】解:(Ⅰ)由点)4A π在直线cos()4a πρθ-=上,可得a = 所以直线的方程可化为cos sin 2ρθρθ+= 从而直线的直角坐标方程为20x y +-=(Ⅱ)由已知得圆C 的直角坐标方程为22(1)1x y -+= 所以圆心为(1,0),半径1r =以为圆心到直线的距离1d =<,所以直线与圆相交 14.(2018年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))C.[选修4-4:坐标系与参数方程]本小题满分10分.在平面直角坐标系xoy 中,直线l 的参数方程为⎩⎨⎧=+=ty t x 21(t 为参数),曲线C 的参数方程为⎩⎨⎧==θθtan 2tan 22y x (θ为参数),试求直线l 与曲线C 的普通方程,并求出它们的公共点的坐标.【答案】C解:∵直线l 的参数方程为⎩⎨⎧=+=t y t x 21∴消去参数t 后得直线的普通方程为022=--y x ①同理得曲线C 的普通方程为x y 22= ②①②联立方程组解得它们公共点的坐标为)2,2(,)1,21(-15.(2018年高考新课标1(理))选修4—4:坐标系与参数方程 已知曲线C 1的参数方程为45cos 55sin x ty t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2sin ρθ=. (Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).【答案】将45cos 55sin x ty t =+⎧⎨=+⎩消去参数t ,化为普通方程22(4)(5)25x y -+-=,即1C :22810160x y x y +--+=,将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得,28cos 10sin 160ρρθρθ--+=,∴1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=;(Ⅱ)2C 的普通方程为2220x y y +-=,由222281016020x y x y x y y ⎧+--+=⎪⎨+-=⎪⎩解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩,∴1C 与2C 的交点的极坐标分别为4π),(2,)2π.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极坐标与参数方程
1.(2018年全国一·文科22)[选修4—4:坐标系与参数方程](10分)
在直角坐标系xOy 中,曲线1C 的方程为2y k x =+.以坐标原点为极点,x 轴正半轴
为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=.
(1)求2C 的直角坐标方程;
(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.
2.(2018年全国二·文科22) [选修4-4:坐标系与参数方程](10分)
在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).
(1)求和的直角坐标方程;
(2)若曲线截直线所得线段的中点坐标为,求的斜率.
xOy C 2cos ,4sin x θy θ=⎧⎨=⎩
θl 1cos ,2sin x t αy t α=+⎧⎨=+⎩
t C l C l (1,2)l
3.(2018年全国三·文科22) [选修4—4:坐标系与参数方程](10分)
在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.学.科网 (1)求的取值范围;
(2)求中点的轨迹的参数方程.
xOy O ⊙cos ,sin x y θθ=⎧⎨=⎩
θ(0,αl O ⊙A B ,
αAB P
4.(2018年江苏)[选修4—4:坐标系与参数方程](本小题满分10分)
在极坐标系中,直线l的方程为
π
sin()2
6
ρθ
-=,曲线C的方程为4cos
ρθ
=,求直线
l被曲线C截得的弦长.
绝对值不等式
1.(2018年全国一·文科23)[选修4—5:不等式选讲](10分)
已知()11f x x ax =+--.
(1)当1a =时,求不等式()1f x >的解集;
(2)若()01x ∈,
时不等式()f x x >成立,求a 的取值范围.
2.(2018年全国二·文科23) [选修4-5:不等式选讲](10分)
设函数.
(1)当时,求不等式的解集;
(2)若,求的取值范围.
()5|||2|f x x a x =-+--1a =()0f x ≥()1f x ≤a
3.(2018年全国三·文科23) [选修4—5:不等式选讲](10分)
设函数.
(1)画出的图像;
(2)当,,求的最小值.
4.(2018年江苏)[选修4—5:不等式选讲](本小题满分10分)
若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值. ()|21||1|f x x x =++-()y f x =[0,)x ∈+∞()f x ax b ≤+a b
+。

相关文档
最新文档