过程控制实验指导书新

合集下载

CS4000型DDC实验指导书

CS4000型DDC实验指导书

CS4100高级过程控制实验装置DDC实验指导书目录1.水箱对象系统实验实验一、单容水箱对象特性测试实验 (3)实验二、双容水箱对象特性测试实验 (9)实验三、单容水箱液位PID控制实验 (14)实验四、双容水箱液位PID控制实验 (22)实验五、单回路流量PID控制实验 (26)实验六、流量比值控制实验 (30)实验七、双容水箱液位串级PID控制实验 (37)实验八、前馈反馈控制实验 (42)实验九、双容水箱S MITH预估控制实验 (47)实验十、四水箱解耦控制实验 (52)2.温度对象系统实验实验一、温度特性测试实验 (59)实验二、加热水箱温度二位式控制实验 (65)实验三、短滞后环节温度二位式控制实验 (70)实验四、长滞后环节温度二位式控制实验 (75)实验五、加热水箱温度PID控制实验 (80)实验六、短滞后环节温度PID控制实验 (84)实验七、长滞后环节温度PID控制实验 (88)实验八、温度滞后S MITH预估控制实验 (92)1.水箱对象系统实验实验一、单容水箱对象特性测试实验一、实验目的1、了解单容对象的动态特性及其数学模型2、熟悉单容对象动态特性的实验测定法3、掌握单容水箱特性的测定方法二、实验设备1、四水箱实验系统硬件平台2、四水箱实验系统DDC 实验软件3、PC 机(Window XP Professional 操作系统)4、其它:连接线等三、实验原理全面地分析和测定调节对象的特性,是设计一个自动控制系统的首要前提。

一般研究调节对象特性的方法有两种:分析法和实验测定法。

分析法通过分析过程的机理、物料和能量平衡关系求得数学模型,即对象动态特性的数学描述;实验测定法通过实验测定,对取得的数据进行加工整理而求得对象的数学模型。

下面分别应用这两种方法对单容对象的动态特性进行分析,并给出单容水箱对象特性的一种实验测定法。

1、单容对象的动态特性及其数学模型以单容水槽水位调节对象为例,分析其动态特性和数学模型。

过程控制实验指导书

过程控制实验指导书

过程控制及仪表实验指导书襄樊学院实验装置的基本操作与仪表调试一、实验目的1、了解本实验装置的结构与组成。

2、掌握压力变送器的使用方法。

3、掌握实验装置的基本操作与变送器仪表的调整方法。

二、实验设备1、THKGK-1型过程控制实验装置GK-02 GK-03 GK-04 GK-072、万用表一只三、实验装置的结构框图图1-1、液位、压力、流量控制系统结构框图四、实验内容1、设备组装与检查:1)、将GK-02、GK-03、GK-04、GK-07挂箱由右至左依次挂于实验屏上。

并将挂件的三芯蓝插头插于相应的插座中。

2)、先打开空气开关再打开钥匙开关,此时停止按钮红灯亮。

3)、按下起动按钮,此时交流电压表指示为220V,所有的三芯蓝插座得电。

4)、关闭各个挂件的电源进行连线。

2、系统接线:1)、交流支路1:将GK-04 PID调节器的自动/手动切换开关拨到“手动”位置,并将其“输出”接GK-07变频器的“2”与“5”两端(注意:2正、5负),GK-07的输出“A、B、C”接到GK-01面板上三相异步电机的“U1、V1、W1”输入端;GK-07 的“SD”与“STF”短接,使电机驱动磁力泵打水(若此时电机为反转,则“SD”与“STR”短接)。

2)、交流支路2:将GK-04 PID调节器的给定“输出”端接到GK-07变频器的“2”与“5”两端(注意:2正、5负);将GK-07变频器的输出“A、B、C”接到GK-01面板上三相异步电机的“U2、V2、W2”输入端;GK-07 的“SD”与“STR”短接,使电机正转打水(若此时电机为反转,则“SD”与“STF”短接)。

3、仪表调整:(仪表的零位与增益调节)在GK-02挂件上面有四组传感器检测信号输出:L T1、PT、L T2、FT(输出标准DC0~5V),它们旁边分别设有数字显示器,以显示相应水位高度、压力、流量的值。

对象系统左边支架上有两只外表为蓝色的压力变送器,当拧开其右边的盖子时,它里面有两个3296型电位器,这两个电位器用于调节传感器的零点和增益的大小。

环境监测过程质量控制作业指导书

环境监测过程质量控制作业指导书

.控制编号:TRIYN-302-2022 环境监测过程质量控制作业指导书第1 页共7 页环境监测过程质量控制作业指导书1、目的与合用X围1.1目的制定该作业指导书的目的是对环境监测的过程质量控制进行规X,为中心站实验室监测工作提供质量保障.1.2合用X围合用于本实验室环境监测所有监测项目1.3监测数据质量目标的确定质量保证和质量控制的目标通常确定为:精密度、准确度、代表性、可比性和完整性.准确性表示测量值与实际值的一致程度;精密性表示多次重复测定同一样品的分散程度;代表性表示在空间和时间分布上,所采样品反映总体真实状况的程度.不仅要求各实验室之间对同一样品的监测结果相互可比,也要求同一实验室分析相同样品的监测结果可比,实现时间、空间上的可比性,并实现国际间、行业间数据的一致性;完整性表示取得有效监测资料的总量满足预期要求的程度或者表示相关资料采集的完整性.质量保证和质量控制必须贯通环境监测的全过程 ,即布点与采样、预处理与样品分析、数据处理、监测结果的综合分析与评价等环节.表 1描述了各个环节与监测数据质量目标的影响关系.表1 各环节对监测数据质量目标的影响主要控制因素1.监测目标2.监测点位、点数1.采样次数或者采样频率2.采样仪器技术、方法1.样品的运输2.样品保存1.样品的预处理2.分析方法准确度、精密度、检测X围控制3.分析人员素质与实验室的质量控制1.资料整理、处理与精度检验2.资料分布、分类管理制度的控制1.信息量的控制2.结果的表述与原因分析、对策主要影响的目标代表性、可比性、完整性准确度、代表性、可比性、完整性准确度精密度、准确度、可比性、完整性准确度、可比性、完整性准确度、代表性、可比性、完整性监测环节布点系统采样系统运贮系统分析测试系统数据处理系统综合评价系统控制编号:TRIYN-302-2022 环境监测过程质量控制作业指导书第2 页共7 页1.4质量管理体系的建立、计量认证和实验室认可质量保证〔QA〕和质量控〔QC〕是贯通环境监测全过程的技术手段和管理程序,其目的也是为了出具"五性〞的环境监测数据.为了更好的实现全面质量管理,使质量保证和质量控制的作用得到最大的发挥,刻不容缓的需要建立相应的质量管理体系,并进行计量认证和实验室认可,从而使监测数据具有法律作用.依据《实验室资质认定评审准则》或者/和《检测和校准实验室能力认可准则〔CNAS-CL01:2022〕〔等同采用ISO/IEC 17025:2005〕建立相应的质量管理体系,并以此体系进行计量认证和实验室认可,使整个环境监测工作在质量管理体系的控制下高效、规X的运作.2、样品采集2.1 根据监测方案所确定的采样点位、污染物项目、频次、时间和方法进行采样.必要时制订采样计划, 内容包括:采样时间和路线、采样人员和分工、采样器材、交通工具以与安全保障等.2.2 采样人员应充分了解监测任务的目的和要求, 了解监测点位的周边情况,掌握采样方法、监测项目、采样质量保证措施、样品的保存技术和采样量等,做好采样前的准备.2.3 采集样品时,应满足相应的规X要求,并对采样准备工作和采样过程实行必要的质量监督.需要时,可使用定位仪或者照像机等辅助设备证实采样点位置.2.4 样品管理2.4.1 样品运输与交接样品运输过程中应采取措施保证样品性质稳定,避免沾污、损失和丢失.样品接收、核查和发放各环节应受控;样品交接记录、样品标签与其包装应完整.若发现样品有异常或者处于损坏状态,应如实记录,并尽快采取相关处理措施,必要时重新采样.2.4.2 样品保存样品应分区存放,并有明显标志, 以免混淆.样品保存条件应符合相关标准或者技术规X要求.3、实验室分析质量控制3.1 内部质量控制监测人员应执行相应监测方法中的质量保证与质量控制规定,此外还可以采取以下内部质量控制措施.3.1.1 空白样品空白样品〔包括全程序空白、采样器具空白、运输空白、现场空白和实验室空控制编号:TRIYN-302-2022 环境监测过程质量控制作业指导书第3 页共7 页白等〕测定结果普通应低于方法检出限.普通情况下,不应从样品测定结果中扣除全程序空白样品的测定结果.3.1.2 校准曲线采用校准曲线法进行定量分析时,仅限在其线性X围内使用.必要时,对校准曲线的相关性、精密度和置信区间进行统计分析,检验斜率、截距和相关系数是否满足标准方法的要求.若不满足,需从分析方法、仪器设备、量器、试剂和操作等方面查找原因,改进后重新绘制校准曲线.校准曲线不得长期使用,不得相互借用. 普通情况下,校准曲线应与样品测定同时进行.3.1.3 方法检出限和测定下限开展新的监测项目前,应通过实验确定方法检出限,并满足方法要求.方法检出限和测定下限的计算方法执行HJ 168.3.1.4 平行样测定应按方法要求随机抽取一定比例的样品做平行样品测定.3.1.5 加标回收率测定加标回收实验包括空白加标、基体加标与基体加标平行等.空白加标在与样品相同的前处理和测定条件下进行分析.基体加标和基体加标平行是在样品前处理之前加标,加标样品与样品在相同的前处理和测定条件下进行分析.在实际应用时应注意加标物质的形态、加标量和加标的基体.加标量普通为样品浓度的0.5~3 倍,且加标后的总浓度不应超过分析方法的测定上限.样品中待测物浓度在方法检出限附近时,加标量应控制在校准曲线的低浓度X围.加标后样品体积应无显著变化,否则应在计算回收率时考虑这项因素.每批相同基体类型的样品应随机抽取一定比例样品进行加标回收与其平行样测定.3.1.6 标准样品/有证标准物质测定监测工作中应使用标准样品/有证标准物质或者能够溯源到国家基准的物质.应有标准样品/有证标准物质的管理程序,对其购置、核查、使用、运输、存储和安全处置等进行规定.标准样品/有证标准物质应与样品同步测定.进行质量控制时, 标准样品/有证标准物质不应与绘制校准曲线的标准溶液来源相同.应尽可能选择与样品基体类似的标准样品/有证标准物质进行测定,用于评价分析方法的准确度或者检查实验室〔或者操作人员〕是否存在系统误差.控制编号:TRIYN-302-2022 环境监测过程质量控制作业指导书第4 页共7 页3.1.7 质量控制图常用的质量控制图有均值-标准差控制图和均值-极差控制图等,在应用上分空白值控制图、平行样控制图和加标回收率控制图等,相关内容执行GB/T 4091. 日常分析时,质量控制样品与被测样品同时进行分析,将质量控制样品的测定结果标于质量控制图中,判断分析过程是否处于受控状态.测定值落在中心附近、上下警告线之内,则表示分析正常,此批样品测定结果可靠;如果测定值落在上下控制线之外,表示分析失控,测定结果不可信,应检查原因,纠正后重新测定;如果测定值落在上下警告线和上下控制线之间,虽分析结果可接受,但有失控倾向,应予以注意.3.1.8 方法比对或者仪器比对对同一样品或者一组样品可用不同的方法或者不同的仪器进行比对测定分析, 以检查分析结果的一致性.3.2 外部质量控制外部质量控制指本机构内质量管理人员对监测人员或者行政主管部门和上级环境监测机构对下级机构监测活动的质量控制,可采取以下措施:3.2.1 密码平行样质量管理人员根据实际情况,按一定比例随机抽取样品作为密码平行样,交付监测人员进行测定.若平行样测定偏差超出规定允许偏差X围,应在样品有效保存期内补测;若补测结果仍超出规定的允许偏差,说明该批次样品测定结果失控,应查找原因,纠正后重新测定,必要时重新采样.3.2.2 密码质量控制样与密码加标样由质量管理人员使用有证标准样品/标准物质作为密码质量控制样品,或者在随机抽取的规样品中加入适量标准样品/标准物质制成密码加标样,交付监测人员进行测定.如果质量控制样品的测定结果在给定的不确定度X围内,则说明该批次样品测定结果受控.反之,该批次样品测定结果作废,应查找原因,纠正后重新测定. 3.2.3 人员比对不同分析人员采用同一分析方法、在同样的条件下对同一样品进行测定, 比对结果应达到相应的质量控制要求.控制编号:TRIYN-302-2022 环境监测过程质量控制作业指导书第 5 页共7 页3.2.4 实验室间比对可采用能力验证、比对测试或者质量控制考核等方式进行实验室间比对,证明各实验室间的监测数据的可比性.3..2.5 留样复测对于稳定的、测定过的样品保存一定时间后,若仍在测定有效期内,可进行重新测定.将两次测定结果进行比较, 以评价该样品测定结果的可靠性.3.3数据处理3.3.1 应保证监测数据的完整性,确保全面、客观地反映监测结果.不得利用数据有效性规则,达到不正当的目的;不得选择性地舍弃不利数据,人为干预监测和评价结果.3.3.2 有效数字与数值修约3.2.1 数值修约和计算按照GB/T 8170 和相关环境监测分析方法标准的要求执行.3.3.2 记录测定数值时,应同时考虑计量器具的精密度、准确度和读数误差.对检定合格的计量器具,有效数字位数可以记录到最小分度值,最多保留一位不确定数字.3.3.3 精密度普通只取1~2 位有效数字.3.3.4 校准曲线相关系数只舍不入,保留到小数点后第一个非9 数字.如果小数点后多于4个9,最多保留 4 位.校准曲线斜率的有效位数,应与自变量的有效数字位数相等.校准曲线截距的最后一位数,应与因变量的最后一位数取齐. 3.3.4异常值的判断和处理异常值的判断和处理执行GB/T 4883,当浮现异常高值时,应查找原因,原因不明的异常高值不应随意剔除.3.3.5数据校核与审核3.3.5.1 应对原始数据和拷贝数据进行校核.对可疑数据,应与样品分析的原始记录进行校对.3.3.5.2 监测原始记录应有监测人员和校核人员的签名.监测人员负责填写原始记录;校核人员应检查数据记录是否完整、誊写或者录入计算机时是否有误、数据是否异常等,并考虑以下因素:监测方法、监测条件、数据的有效位数、数据计控制编号:TRIYN-302-2022 环境监测过程质量控制作业指导书第6 页共7 页算和处理过程、法定计量单位和质量控制数据等.3.3.5.3 审核人员应对数据的准确性、逻辑性、可比性和合理性进行审核,重点考虑以下因素:监测点位;监测工况;与历史数据的比较;总量与分量的逻辑关系;同一监测点位的同一监测因子,连续多次监测结果之间的变化趋势;同一监测点位、同一时间〔段〕的样品,有关联的监测因子分析结果的相关性和合理性等.4、监测结果的表示4.1 监测结果应采用法定计量单位.4.2 平行样的测定结果在允许偏差X围内时,用其平均值报告测定结果.4.3 监测结果低于方法检出限时,用"ND〞表示,并注明"ND〞表示未检出, 同时给出方法检出限值.4.4 需要时,应给出监测结果的不确定度X围.5、监测报告<见附录A>5.1 监测报告应包含下列信息:——报告标题与其他标志;——监测性质〔委托、监督等〕;——报告编制单位名称、地址、联系方式、编制时间,采样〔监测〕现场的地点〔必要时〕;——委托单位或者受检单位名称、地址、联系方式;——报告统一编号〔惟一性标志〕,总页数和页码;——监测目的、监测依据〔依据的文件名和编号〕;——样品的标志:样品名称、类别和监测项目等必要的描述,若为委托样,应特殊予以注明;——样品接收和测试日期;——需要时,列出采样与分析人员,监测所使用的主要仪器名称、型号与品牌;——监测结果:按监测方法的要求报出结果,包括监测值和计量单位等信息;——报告编制人员、审核人员、授权签字人的签名和签发日期;控制编号:TRIYN-302-2022 环境监测过程质量控制作业指导书第7 页共7 页——监测委托情况〔委托方、委托内容和项目等〕;——需要时,应注明监测结果仅对样品或者批次有效的声明.5.2 当需对监测结果做出解释时,监测报告中还应包括下列信息:——对监测方法的偏离、增添或者删节, 以与特殊监测条件〔如环境条件的说明〕;——当委托单位〔或者受检单位〕有特殊要求时,应包括测量不确定度的信息;——质量保证与质量控制:监测报告中应包含质量保证措施和质量控制数据的统计结果和结论;——需要时,提出其他意见和解释;——特定方法、委托单位〔或者受检单位〕要求的附加信息.5.3 对含采样结果在内的监测报告,还应包括下列信息:——采样日期;——采集样品的名称、类别、性质和监测项目;——采样地点〔必要时, 附点位布置图或者照片〕;——采样方案或者程序的说明等;——若采样过程中的环境条件〔如生产工况、环保设施运行情况、采样点周围情况、天气状况等〕可能影响监测结果时,应附详细说明;——列出与采样方法或者程序有关的标准或者规X,以与对这些规X 的偏离、增添或者删节时的说明;——需要时,增加项目工程建设、生产工艺、污染物的产生与管理介绍等;——其他信息包括监测全过程质量控制和质量保证情况、有关图表和引用资料、必要的建议等.日期:日期:日期:------------------------正文结束------------------------。

过程控制实验指导书

过程控制实验指导书

过程控制实验指导书THKGK-1过程控制实验装置的组成和各部分使用说明THKGK-1型过程控制实验装置是根据自动化专业及相关专业教学的特点,吸收了国内外同类实验装置的特点和长处,经过精心设计,多次实验和反复论证,向广大师生推出一套全新的实验设备。

该设备可以满足《过程控制》、《自动化仪表》、《工程检测》、《计算机控制系统》等课程的教学实验、课程设计等。

整个系统结构紧凑、功能多样、使用方便,既能进行验证性、研究性实验,又能提供综合性实验。

本实验装置可满足本科、大专及中专等不同层次的教学实验要求,还可为科学研究的开发提供实验手段。

本实验装置的控制信号及被控信号均采用IEC标准,即电压0~5V或1~5V,电流0~10mA或4~20mA。

实验系统供电要求为单相交流220V±10%,10A;外型尺寸为:182×160×70,重量:380Kg。

装置特点本实验装置具有以下特点:1、多种被控参数:液位、压力、流量、温度。

2、多种控制方式:位式控制、PID控制、智能仪表控制、单片机控制、PLC控制、计算机控制等。

3、多种计算机控制软件:西门子PROTOOL-CS组态软件、北京昆仑公司的MCGS组态软件以及本公司开发的上位机监控软件,另外还可以用台湾HITECH公司的ADP6.0软件与PLC 相连进行控制。

4、丰富的计算机控制算法:P、PI、PID、死区PID、积分分离、不完全积分、模糊控制、神精元控制、基于SIMULINK的动态参数自适应补偿控制等。

5、开放的软件平台:在我们提供的软件平台上,学生既可以利用我们所提供的算法程序进行实验,又可以用自己编写的PLC程序、MATLAB`程序等进行实验,还可以利用人机界面(触摸屏)的组态再结合PLC的编程来进行控制实验。

6、灵活多样的实验组合:可以很方便地对控制方式与被控参数进行不同组合,得到自己需要的单回路、多回路等多种控制系统。

系统组成被控对象包括上水箱、下水箱、复合加热水箱以及管道。

基于MicroLogix1400的A1000实验指导书V1

基于MicroLogix1400的A1000实验指导书V1

基于MicroLogix 1400的A1000实验指导书(版本1.0)北京华晟高科教学仪器有限公司编制文件编号:A1000HH11前言《基于MicroLogix1400的A1000实验指导书》是根据A1000过程控制实验系统的相关内容编写的,包括了如下内容:1、MicroLogix1400 PLC控制系统。

2、MicroLogix1400 PLC控制系统编程。

3、MicroLogix1400 PLC控制系统和组态软件的连接。

4、范例A1000实验的编程详细介绍5、组态软件对MicroLogix1400 PLC的监控6、A1000其他实验指导不介绍具体的A1000操作,有关内容将在独立的指导书中介绍。

指导书中一定有许多不完善之处,敬请各位专家、院校师生和广大读者批评指正。

申明:本培训书内容只适合华晟高科A1000教学实验。

范例和文档内容只用于提供信息,对本书不承担任何工业应用的保证。

修订记录:2010.6杨静编写本书,并提供控制程序。

北京华晟高科教学仪器有限公司二零一零年六月目录第一章MicroLogix1400控制器 (1)1.1 MicroLogix 1400 控制器简介 (1)1.1.1通讯选件 (2)1.1.2 存储器模块 (2)1.1.3 1762 扩展I/O (3)1.1.4 LCD的使用 (4)1.2 MicroLogix 1400控制器接线图(L32BW AA) (5)1.2.1 接线端子布置图 (5)1.2.2 控制器I/O接线 (6)1.2.3模拟量数据转换 (8)第二章控制器编程软件和组态软件 (9)2.1 软件安装 (9)2.1.1 RSLogix 500 的安装 (9)2.1.2 RSLinx的安装 (13)2.1.3组态软件RSView32的安装 (16)2.2 控制器编程 (20)2.2.1 通信设置 (20)2.2.2 创建工程 (21)2.2.3 程序编写 (22)2.2.4 程序下载 (26)2.3简洁快速的操作和使用现有程序 (26)第三章控制器编程详细范例 (29)3.1 单容液位调速器PID单回路控制 (29)3.2 范例的控制器编程 (29)3.2.1 通信设置 (30)3.2.2创建工程 (33)3.2.3 程序编写 (34)3.2.4 校验和下载项目 (39)3.3 范例的组态软件RSView32编程 (41)第四章范例控制程序 (48)4.1控制程序变量表 (48)4.2 程序 (48)4.2.1 输入输出程序 (49)4.2.2 单回路PID范例程序 (51)4.2.3 比值控制范例程序 (52)4.2.4 串级控制范例程序 (53)5.2.5 前馈反馈控制范例程序 (54)第五章系统实验 (56)6.1 水箱液位数学模型测定(实验号101) (56)6.1.1 实验题目描述 (56)6.1.2 实验步骤和数据记录 (57)6.1.3 实验结果 (58)6.2 液位PID单回路控制(实验号202) (58)6.2.1实验题目描述 (58)6.2.2操作步骤和调试 (59)6.2.3实验结果 (60)6.3 流量PID单回路控制(实验号205) (61)6.3.1实验题目描述 (61)6.3.2操作步骤和调试 (63)6.3.3实验结果及记录 (64)6.4 压力PID单回路控制(实验号207) (64)6.4.1实验题目描述 (64)6.4.2操作步骤和调试 (66)6.4.3实验结果及记录 (67)6.5 流量比值控制实验(实验号301) (67)6.5.1实验题目描述 (67)6.5.2控制算法和编程 (69)6.6.3操作过程和调试 (70)6.5.4实验结果及记录 (71)6.6 液位和进口流量串级控制实验(实验号302) (71)6.6.1实验题目描述 (71)6.6.2控制算法和编程 (74)6.6.3操作步骤和调试 (74)6.6.4实验结果及记录 (75)6.7 流量-液位前馈反馈控制实验(实验号303) (76)6.7.1实验题目描述 (76)6.7.2控制算法和编程 (78)6.7.3操作步骤和调试 (80)6.7.4实验结果及记录 (81)第一章MicroLogix1400 PLC本书介绍罗克韦尔MicroLogix 1400 PLC,CPU为1766-L32BWAA,几乎所有内容同样适用于1766-L32AWA,1766-L32AWAA,1766-L32BWA,1766-L32BXB,1766-L32BXBA。

CS2000DCS实验指导书

CS2000DCS实验指导书
上式表示h(t)若以在原点时的速度h(∞)/T恒速变化,即只要花T秒时间就可达到稳态值h(∞)。
五.实验内容步骤
1)对象的连接和检查:
(1)将CS2000 实验对象的储水箱灌满水(至最高高度)。
(2)打开以水泵、电动调节阀、孔板流量计组成的动力支路至上水箱的出水阀门.关闭动力支路上通往其他对象的切换阀门。
如图2-1所示:这是由两个一阶非周期惯性环节串联起来,输出量是下水箱的水位h2。当输入量有一个阶跃增加 Q1时,输出量变化的反应曲线如图2-2所示的 h2曲线。它不再是简单的指数曲线,而是就使调节对象的飞升特性在时间上更加落后一步。在图中S形曲线的拐点P上作切线,它在时间轴上截出一段时间OA。这段时间可以近似地衡量由于多了一个容量而使飞升过程向后推迟的程度,因此,称容量滞后,通常以τC代表之。设流量Q1为双容水箱的输入量,下水箱的液位高度h2为输出量,根据物料动态平衡关系,并考虑到液体传输过程中的时延,其传递函数为:
CS2000实验对象的检测及执行装置包括:
检测装置:扩散硅压力变送器。分别用来检测上水箱、下水箱液位的压力;孔板流量计、涡轮流量计分别用来检测单相水泵支路流量和变频器动力支路流量;Pt100热电阻温度传感器分别用来检测锅炉内胆、锅炉夹套和强制对流换热器冷水出口、热水出口。
执行装置:单相可控硅移相调压装置用来调节单相电加热管的工作电压;电动调节阀调节管道出水量;变频器调节副回路水泵的工作电压。
二.实验设备
CS2000型过程控制实验装置, PC机,DCS控制系统与监控软件。
三、系统结构框图
单容水箱如图1-1所示:
图1-1、 单容水箱系统结构图
四、实验原理
阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过调节器或其他操作器,手动改变对象的输入信号(阶跃信号),同时记录对象的输出数据或阶跃响应曲线。然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。

过控实验指导书(USB-4711A)

过控实验指导书(USB-4711A)

实验一过程控制系统简介及过程控制演示一、组合式过程控制系统介绍结合过程计算机控制系统理论的学习,我们研制了一套组合式过程控制系统,这套系统可以通过灵活、方便的管路组合,实现过程控制中的五种典型控制方式—单回路控制,串级控制、前馈控制、均匀控制和比值控制。

二、主要仪器与设备1、计算机2、接口板卡USB-4711AUSB-4711A系列板卡是即插即用数据采集模块,它通过USB端口与计算机相连,为数据测量与系统控制提供了便利。

USB-4711A通过USB端口获得所需电源,在该板卡上包含了所有的数据采集功能,如:16路AI,2路AO,8路DI,8路DO,1路32位计数器,其中A/D数据采集为12位。

USB-4711A 板卡如图1-1所示。

图1-2为USB-4711A 上五个10针I/O 接口的针脚定义。

图1-1 USB-4711A板卡DO0DO1DO2DO3DGNDDO4DO5DO6DO7DGNDDI0DI1DI2DI3DGNDAI0GATE DGND EXTTRG DGND EVTINPOut AGND AO1AGNDDI4DI5DI6DI7 DGNDAI1AI2AI3AGNDAI4AI5AI6AI7AGNDAI8AI9AI10AI11AGNDAI12AI13AI14AI15AGNDAO0USBLED8-TTL DO Port8-TTL DI Port16-SE/8-Diff AIExternal Control2-AO Port图1-2I/O 接口针脚定义3、水箱:水箱如图1-3所示,技术参数见表1-1。

表1-1 水箱参数工作温度最大:+65CO外部尺寸宽度深度高度240 mm 190 mm 385 mm材质塑料图1-3 水箱4、流量传感器流量传感器如图1-4所示,主要技术参数见表1-2。

表1-2 流量传感器技术参数工作电压 5 to 12 V DC工作电流 6 to 33 mA输出信号方波信号,5…12 V频率范围13 to 1200 HZ测量范围0.5 to 15.0 l/min工作压力80°C max。

过程装备与控制工程专业实验指导书

过程装备与控制工程专业实验指导书
过程装备与控制工程专业 实验指导书
ห้องสมุดไป่ตู้
大连大学 过控教研室
2013.9


1 内压容器应力测试 ................................................................................. 1 2 爆破片爆破压力测定 ............................................................................. 6 3 化工设备综合性能测试 ....................................................................... 10 4 精馏塔性能测试与控制 ....................................................................... 23 5 换热器性能综合测试 ........................................................................... 32 6 容积式压缩机性能测试 ....................................................................... 44 7 中空纤维超滤膜分离 ........................................................................... 51 8 超临界流体萃取 ..................................................................................... 3 9 流体机械拆装实验 ................................................................................. 2 附录 1 BZ2205C 静态电阻应变仪及使用方法 .......................................... 5 附录 2 过控专业实验综合装置简介-外压失稳 ...................................... 8

过程控制实验指导书

过程控制实验指导书

实验一单容自衡水箱液位特性测试实验一、实验目的1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线;2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T和传递函数;3.掌握同一控制系统采用不同控制方案的实现过程。

二、实验设备1.实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS需两台计算机)、万用表一个;2.SA-12挂件一个、RS485/232转换器一个、通讯线一根;3.SA-21挂件一个、SA-22挂件一个、SA-23挂件一个;4.SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根;5.SA-41挂件一个、CP5611专用网卡及网线;6.SA-42挂件一个、PC/PPI通讯电缆一根。

三、实验原理所谓单容指只有一个贮蓄容器。

自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。

图2-1所示为单容自衡水箱特性测试结构图及方框图。

阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q1,改变电动调节阀V1的开度可以改变Q1的大小,下水箱的流出量为Q2,改变出水阀F1-11的开度可以改变Q2。

液位h的变化反映了Q1与Q2不等而引起水箱中蓄水或泄水的过程。

若将Q1作为被控过程的输入变量,h为其输出变量,则该被控过程的数学模型就是h与Q1之间的数学表达式。

根据动态物料平衡关系有Q 1-Q2=Adtdh(2-1)将式(2-1)表示为增量形式ΔQ1-ΔQ2=Adthd(2-2)式中:ΔQ1,ΔQ2,Δh——分别为偏离某一平衡状态的增量;A——水箱截面积。

在平衡时,Q1=Q2,dtdh=0;当Q1发生变化时,液位h随之变化,水箱出图2-1 单容自衡水箱特性测试系统口处的静压也随之变化,Q2也发生变化(a)结构图(b)方框图。

由流体力学可知,流体在紊流情况下,液位h与流量之间为非线性关系。

过程控制实验指导书讲解

过程控制实验指导书讲解

过程控制实验指导书授课学时:16课时授课专业:自动化授课教师:姜倩倩目录过程控制实验项目一览表 ............................................................................................ - 1 - 实验一:一阶系统数学模型的建立 ............................................................................ - 2 - 实验二:PID控制器参数自整定............................................................................... - 4 - 实验三水箱液位PID控制........................................................................................ - 8 - 实验四水箱压力的PID调节控制 .......................................................................... - 14 - 实验五串级水位控制系统设计 ............................................................................ - 17 - 实验六前馈-反馈控制系统仿真实验 .................................................................... - 19 - 实验七单片机液位控制系统 .................................................................................. - 22 - 实验八单容液位PLC控制 ...................................................................................... - 25 -过程控制实验项目一览表实验参考书:GK-1型操作说明书.实验指导书实验一:一阶系统数学模型的建立一、实验目的1.熟悉利用计算法建立系统一阶惯性环节加纯迟延的近似数学模型的方法;2.学会利用MATLAB/Simulink对系统建模的方法。

EFPT过程控制实验装置实验指导书

EFPT过程控制实验装置实验指导书

EFPT过程控制实验装置实验指导书EFAT/P过程控制实验装置简介1、实验装置简介2、控制对象:控制对象由⼯艺设备和现场仪表、电⽓负载三部分组成。

2.1 主要⼯艺设备包括:2.1.1 内部4.5KW三相星形连接电热丝,19升的热⽔夹套锅炉。

2.1.2 38升的⾼位溢流⽔箱(产⽣稳定压⼒的⼯艺介质——⽔)。

2.2.3 35升的液位⽔槽和105升的计量⽔槽。

2.1.4 配三相电机的循环⽔泵。

2.1.5 2只电磁阀(⽤于扰动)和28只⼿动球阀。

2.2 现场仪表包括:3、控制对象的图纸和⼿动阀的操作3.1 控制对象⼯艺流程和现场仪表总图总图实线内的图形、⽅框为安装在对象框架内的⼯艺设备及流量、压⼒、液位、温度信号的检测、变送、执⾏单元,虚线⽅框为安装在操作台上的变送、执⾏单元。

本控制对象通过切换22只⼿动阀开关可以组成不同的⼯艺流程。

在流程图表⽰阀半开半关。

删去这些截⽌状态的⼿动阀,就得到了变更后的⼯艺流程。

可⽤简化图的形式表⽰,如过程控制实验装置应⽤资料之⼀所⽰。

4、过程控制操作台4.1 操作台配电操作台⾯板的第⼀层为信号接线板。

接线板的左边是电源配电部分,其右边是从控制对象中传送来的现场仪表信号和电⽓负载。

⾯板的第⼆层和第三层⽤于插⼊实验板。

每层最多插⼊8块实验板。

4.2 信号板上与控制对象连接的现场仪表信号:虚线为可选件。

4.3信号板上与控制对象连接的电⽓负载a)循环⽔泵的三相电机(星形连接)供电端⼦U,V,W。

b)锅炉加热的三相电热丝(星形连接)供电端RL1, RL2, RL3, RN。

c)锅炉夹套加热的单相电热丝供电端⼦RL,RN(可选件)。

d)⾯板上标有“电磁阀”区域中的VD11、VD12端⼦内部已连接到⼀继电器,经继电器控制220V AC供电给电磁阀;同时该区域中标有“OV”(或-24V)端⼦应连接到同⼀⾯板上标有“24VDC”及“OV”端⼦区域的“OV”端⼦。

4.4 实验板简介4.5 使⽤注意事项⽔泵禁⽌空转:必须有⽔流通的情况下,⽔泵才能运转;第⼀次启动前必须将⽔泵注满⽔(在⽔泵上⼝有⼀只螺帽是注⽔⼝)。

过程控制系统实验指导书第二版

过程控制系统实验指导书第二版
式中:K——仪表常数。 由式(3)可知,当仪表常数 K 确定后,感应电动势 E 与流量 Q 成正比。 E 通常为流量信号,将流量信号输入转换计,经过处理,输出与流量成正比的 4~20mADC 信号, 可与单元组合仪表配套,对流量进行显示、记录、计算、调节等。 注意事项: 1、电磁流量计为贵重仪器,接线正式投入运行之前,应严格检查安装、接线是否正确。 2、将传感器前后阀门打开,让传感器测量管内冲满被测介质。 (二)对象特性测试 工业过程动态数学模型的表达方式很多,其复杂程度相差悬殊。对于数学模型,应根据实际应 用情况提出适当的要求。一般说来,用于控制的数学模型并不要求十分准确。闭环控制本身具有一 定的鲁棒性,模型本身的误差可视为干扰,而闭环控制在某种程度上具有自动消除干扰的能力。 实际生产过程的动态特性非常复杂,往往需要作很多近似处理。有些近似处理需要作线性化处 理、降阶处理等,但却能满足控制的要求。建立数学模型有两个基本方法,即机理法和实验法。实 验法一般只用于建立输入输出模型。它的特点是把被研究的工业过程视为一个黑匣子,完全从外部 特性上测试和描述它的动态性质,因此不需要深入掌握其内部机理。 通过简单的测试获得被被控对象的阶跃响应,进一步把它拟合成近似的传递函数,是建立被控 对象数学模型简单有效的方法。用实验法建立被控对象的数学模型,首先要选定模型的结构。典型 的工业过程的传递函数可以取为各种形式,例如: 1、 一阶惯性环节加纯延迟 一阶惯性环节的传递函数:
过程控制系统实验指导书
引言
浙江求是科教设备有限公司生产的 PCT 系列过程控制实验系统装置,可以非常好地满足过程控制 课程实验的要求。在这套设备由被控对象和控制台组成,通过手动或计算机控制,可以将被控对象 转变成不同特性的过控对象,因此,在此基础上可以进行简单的温度、压力、流量、液位的单回路 控制,而且也可以进行一系例复杂控制系统实验如:变比值控制、Simth 预估控制、解耦控制、三容 液位控制、换热器温度控制等。 一、PCT 系列过程控制实验装置特点:

过程控制实验指导书

过程控制实验指导书

第三章 对象特性测试实验第一节 测试对象特性的方法工业过程动态数学模型的表达方式很多,其复杂程度相差悬殊。

对于数学模型,应根据实际应用情况提出适当的要求。

一般说来,用于控制的数学模型并不要求十分准确。

闭环控制本身具有一定的鲁棒性,模型本身的误差可视为干扰,而闭环控制在某种程度上具有自动消除干扰的能力。

实际生产过程的动态特性非常复杂,往往需要作很多近似处理。

有些近似处理需要作线性化处理、降阶处理等,但却能满足控制的要求。

建立数学模型有两个基本方法,即机理法和测试法。

测试法一般只用于建立输入输出模型。

它的特点是把被研究的工业过程视为一个黑匣子,完全从外部特性上测试和描述它的动态性质,因此不需要深入掌握其内部机理。

一、测试法求取传递函数通过简单的测试获得被被控对象的阶跃响应,进一步把它拟合成近似的传递函数,是建立被控对象数学模型简单有效的方法。

用测试法建立被控对象的数学模型,首先要选定模型的结构。

典型的工业过程的传递函数可以取为各种形式,例如:1、 一阶惯性环节加纯延迟 一阶惯性环节的传递函数:1)(+=Ts Ks G 延迟环节的传递函数为:τs )(-=e s G一阶加纯滞后对象的传递函数1)(τs+=-Ts Ke s GtXΔx阶跃信号一阶惯性环节阶跃响应KΔxT图 3.1.1对于有纯滞后的一阶对象,滞后时间可直接由图中测量出纯滞后时间τ。

2、二阶或高阶惯性环节加纯延迟ns1)(Ts )(+=-τKe s G 在确定传递函数的形式后,要对函数中的各个参数与测试的响应曲线进行拟合。

如果阶跃响应是如图3.1.2所示的S 形单调曲线,就可以用一阶惯性加纯延迟对象的传递函数去拟合。

增益K 由输入输出的稳态值直接算出,而τ和T 则可以用作图法确定。

tABpCy y(∞)τT图 3.1.2在曲线的拐点p 作切线,它与时间轴交于A 点,与曲线的稳态渐进线交于B 点。

0A 段的值即为纯滞后时间τ,CB 段的值即为时间常数T ,这样就确定了τ和T 的数值。

过程控制实验指导书

过程控制实验指导书

出流量 G 成正比。 本装置的调节阀采用线性的理想特性, 当水源压力 P 稳定的情况下, 由于管 道压力损失很小, 因此调节阀在系统中 S 接近于 1, 其工作特性基本上是线性的。 所以系统的广义对象是线性的,所构成的控制系统为线性控制系统。 2 控制面板: 1) O 为插座孔。 2) C1、C2、C3 为三个控制器,框中的 PV、SP、OUT 分别为控制器的测量 值、外给定、输出值; 3) 流量变送器 1、流量变送器 2 分别为两套管路的流量检测变送值经 F/I 转 换后的标准电流输出信号; 4) 电气转换器 1、电气转换器 2 分别为两套管路的调节阀输入信号插座孔, 接收来自控制器的标准电流输出信号并经电气转换器转换成标准气信号后 送到气动调节阀; 5) 比值器,即乘除运算器,左插孔、中插孔连结二个输入信号,右插孔将乘 除运算结果信号输出。乘法运算由比值模块控制器设置参数,当 AB=0 时为 乘法,当 AB=1 时为除法。 本装置的气动调节阀采用线性理想特性,s=1,系统的广义对象是线性的, 故本装置是线性控制系统。
符号
名称
说明 .无禁锁 (可修改一、二级参数)。 .禁 锁 (设定参数不可修改)。 .可进入修改仪表日期及时间。 .无禁锁(可进入修改三级参数设定)。 .显示程序比例带的设定值。 .显示程序积分时间的设定值。 .解除比例控制所产生的残留偏差。 .显示程序微分时间的设定值。
00
50 200
D
微分时间 积 分
B. 控制器的操作方式
1. 仪表的上电 打开控制器上端的红色电源开关按钮,指示灯点亮,即控制器进入工作状 态 。 2. 仪表设备号及版本号的显示 仪表在投入电源后,可立即确认仪表设备号及版本号。3秒种后,仪表自动 转入工作状态,PV显示测量值,SV显示控制目标值或输出量的百分比。如要求 再次自检,可按一下面板右下方的复位键,仪表将重新进入自检状态。

过程控制系统实验指导书

过程控制系统实验指导书

过程控制系统实验指导书实验一:基本的过程控制系统概念实验目的:1. 了解过程控制系统的基本概念和结构;2. 掌握过程控制系统中的传感器和执行器的作用和应用方法;3. 学会使用PLC进行基本的控制。

实验原理:过程控制系统的主要功能是对系统中的各种变量进行测量和控制。

通常包括传感器、执行器和控制器三个部分。

传感器负责采集过程变量的数值,执行器负责对控制对象进行控制,控制器负责数据的处理和算法的实现。

传感器主要用于测量过程中的各种参数,如温度、压力、流量等,把这些参数转化为电信号,通过信号传输到控制器进行处理。

传感器的种类繁多,能够根据测量范围、精度、稳定性等不同要求选用不同传感器。

执行器主要用于对控制对象进行控制,例如控制阀门的开闭、启动或停止泵等。

执行器的种类也很多,根据不同的控制需求,需要选择不同的执行器。

控制器是整个系统的中枢部分,主要负责调节和控制传感器和执行器之间的信号和数据。

控制器一般采用计算机和程序控制器,通过不断的接收、处理、输出数据,实现对控制对象的实时监控和控制。

在本实验中,我们将使用PLC进行控制,PLC是工业控制中最为常见的控制器之一,其硬件和软件具有可编程性、可扩展性等优点,可实现较复杂的控制功能。

实验步骤:1. PLC硬件结构的讲解与认识我们首先要理解PLC的硬件结构,如输入模块、输出模块、中央处理器(CPU)和编程接口等部分。

其中输入模块、输出模块用于将模拟量或数字量的信号转化为PLC识别的信号,在输出时将PLC的信号。

通过CPU控制,实现对各种执行器的控制。

编程接口是一个开发平台,具有图形设计和文字描述的功能,对于初学者来说非常简单实用。

2. 了解信号的类型及其转换方法为了实现对过程的监控和控制,我们需要测量过程参数,并将其转化为PLC可以识别的信号。

我们需要了解信号的类型及其转换方法。

通常包括电压、电流、频率、数字信号等类型。

我们可以使用一些基本的传感器,如温度传感器、压力传感器等,将它们的数值转化为电信号,并通过输入模块输入PLC。

过程控制及仪表实验指导书

过程控制及仪表实验指导书

过程控制及仪表实验指导书过程控制系统及仪表实验指导书潘岩左利长沙理工大学电气与信息工程学院20XX年4月1目录第一章系统概述第二章实验装置介绍一、THJ-3型高级过程控制对象系统实验装置二、THSA-1型过控综合自动化控制系统实验平台三、软件介绍四、实验要求及安全操作规程第三章实验内容实验一、单容自衡水箱液位特性测试实验实验二、双容水箱特性的测试实验实验三、单容液位定值控制系统实验2第一章系统概述THSA-1型过程综合自动化控制系统(Experiment Platform of Process Synthetic automation Control system)THJ-3型高级过程控制对象系统实验装置、THSA-1型综合自动化控制系统实验平台及上位监控PC机三部分组成。

如图1-1所示。

图1-1 THSA-1过程综合自动化控制系统实验平台该套实验装置紧密结合工业现场控制的实际情况,能够对流量、温度、液位、压力等变量实现系统参数辨识,并能够进行单回路控制、串级控制、前馈-反馈控制、滞后控制、比值控制、解耦控制等多种控制实验,是一套集成了自动化仪表技术、计算机技术、自动控制技术、通信技术及现场总线技术等的多功能实验设备。

THSA-1型过程综合自动化控制系统能够为在校学生和相关科研人员提供有力帮助。

学生通过学习,应对传感器特性及零点漂移有初步认识,同时能掌握自动化仪表、变频器、电动调节阀等仪器的规范操作,并能够整定控制系统中相关参数。

这套实验设备综合性强,所涉及的工业生产过程多,所有部件均来自工业现场,严格遵循相关国家标准,具有广泛的可扩展性和后续开发功能,有利于培养学生的独立操作、独立分析问题和解决问题的创新能力.整套实验装置的电源、控制屏均装有漏电保护装置,装置内各种仪表均有可靠的自保护功能,强电接线插头采用封闭式结构,强弱电连接采用不同结构接头,安全可靠。

3第二章实验装置介绍“THSA-1型过控综合自动化控制系统实验平台”是实验控制对象、实验控制台及上位监控PC机三部分组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《过程控制》实验指导书实验项目实验一、单容水箱对象特性的了解和测试实验二、单回路控制系统的参数整定实验三、串级控制系统的参数整定实验装置简介《过程控制》课程实验的试验装置是用《THKGK-1型过程控制实验装置》。

本实验装置的控制信号及被控信号均采用IEC标准,即电压0~5V或1~5V,电流0~10mA 或4~20mA。

实验系统供电要求为单相交流220V±10%,10A。

实验装置包括被控对象、调节器、执行器模块和变送器模块。

被控对象包括上水箱、下水箱、复合加热水箱以及管道。

调节器主要有模拟调节器(含比例P调节、比例积分PI调节、比例微分PD调节、比例积分微分PID调节)、计算机控制等。

执行器模块主要有磁力驱动泵。

变送器模块主要有流量变送器(FT)、液位变送器(LT1,LT2)等。

变送器的零位、增益可调,并均以标准信号DC0-5V输出。

实验一、单容水箱对象特性的了解和测试一、实验目的1、了解单容水箱的自衡特性。

2、掌握单容水箱的数学模型及其阶跃响应曲线。

二、实验设备1、THKGK-1型过程控制实验装置:GK-02 GK-03 GK-04 GK-072、万用表一只3、计算机及上位机软件三、实验原理阶跃响应测试法是被控对象在开环运行状况下,待工况稳定后,通过调节器手动改变对象的输入信号(阶跃信号)。

同时,记录对象的输出数据和阶跃响应曲线,然后根据给定对象模型的结构形式,对实验数据进行合理的处理,确定模型中的相关参数。

单容水箱液位开环控制结构图如图所示:四、实验内容与步骤1、了解并熟悉实验装置的结构与组成。

2、按照图实验原理中的控制结结构框图,完成系统的接线,并把PID调节器的“手动/自动”开关置于“手动”位置,此时系统处于开环状态。

3、打开阀3,出水口阀6打在一定的开度。

4、将单片机控制挂箱GK-03的输入信号端“LT1”与GK-02的传感器输出端“LT1”相连;用配套RS232通讯线将GK-03的“串行通信口”与计算机的COM1连接;打开所有电源开关用单片机进行液位实时监测;然后用上位机控制监控软件对液位进行监视并记录过程曲线。

5、利用PID调节器的手动旋钮调节输出,将被控参数液位控制在4cm左右。

6、观察系统的被调量——水箱的水位是否趋于平衡状态。

若已平衡,记录此时调节器手动输出值VO 以及水箱水位的高度h1和显示仪表LT1的读数值并填入下表。

6、迅速增调“手动调节”电位器,使PID的输出突加10%,利用上位机监控软件记下由此引起的阶跃响应的过程曲线,并根据所得曲线填写下表。

7、将“手动调节”电位器回调到步骤5)前的位置,再用秒表和数字表记录由此8、重复上述实验步骤。

五、注意事项1、做本实验过程中,阀3和阀6不得任意改变开度大小;2、阶跃信号不能取得太大,以免影响系统正常运行;但也不能过小,以防止对象特性的不真实性。

一般阶跃信号取正常输入信号的5%~15%。

3、在输入阶跃信号前,过程必须处于平衡状态4、在老师的帮助下,启动计算机系统和单片机控制屏。

六、实验报告要求作出一阶环节的阶跃响应曲线。

实验二、单回路控制系统的参数整定一、实验目的1、通过实验熟悉单回路反馈控制系统的组成和工作原理。

2、研究系统分别用P、PI和PID调节器时的阶跃响应。

3、研究系统分别用P、PI和PID调节器时的抗扰动作用。

4、定性地分析P、PI和PID调节器的参数变化对系统性能的影响。

二、实验设备1、THKGK-1型过程控制实验装置:GK-02、GK-03、GK-04、GK-07(2台)2、万用表一只3、计算机系统三、实验原理图为一个单容水箱单回路反馈液位控制系统,它的控制任务是使水箱液位等于给定值所要求的高度;并减小或消除来自系统内部或外部扰动的影响。

单回路控制系统由于结构简单、投资省、操作方便、且能满足一般生产过程的要求,故它在过程控制中得到广泛地应用。

当一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数的选择有着很大的关系。

合适的控制参数,可以带来满意的控制效果。

反之,控制器参数选择得不合适,则会导致控制质量变坏,甚至会使系统不能正常工作。

因此,当一个单回路系统组成以后,如何整定好控制器的参数是一个很重要的实际问题。

一个控制系统设计好以后,系统的投运和参单容液位控制系统结构图数整定是十分重要的工作。

四、验内容与步骤1、比例(P)调节器控制1)、按控制结构图所示,将系统接成单回路反馈系统。

其中被控对象是上水箱,被控制量是该水箱的液位高度h1。

2)、启动工艺流程并开启相关的仪器,调整传感器输出的零点与增益。

3)、在老师的指导下,接通单片机控制屏,并启动计算机监控系统,为记录过渡过程曲线作好准备。

4)、在开环状态下,利用调节器的手动操作开关把被控制量“手动”调到等于给定值(一般把液位高度控制在水箱高度的50%点处)。

5)、观察计算机显示屏上的曲线,待被调参数基本达到给定值后,即可将调节器切换到纯比例自动工作状态(积分时间常数设置于最大,积分、微分作用的开关都处于“关”的位置,比例度设置于某一中间值,“正-反”开关拔到“反”的位置,调节器的“手动”开关拨到“自动”位置),让系统投入闭环运行。

6)、待系统稳定后,对系统加扰动信号(在纯比例的基础上加扰动,一般可通过改变设定值实现)。

记录曲线在经过几次波动稳定下来后,系统有稳态误差,并记录余差大小。

7)、减小k或增大k,重复步骤6,观察过渡过程曲线。

8)、选择合适的k值就可以得到比较满意的过程控制曲线。

9)、注意:每当做完一次试验后,必须待系统稳定后再做另一次试验。

2、比例积分调节器(PI)控制1)、在比例调节实验的基础上,加入积分作用。

2)、改变PI调节器的积分时间常数值Ti,然后观察加阶跃扰动后被调量的输出波形。

3)选择合适的k和Ti值,使系统对阶跃输入扰动的输出响应为一条较满意的过渡过程曲线。

此曲线可通过改变设定值(如设定值由50%变为60%)来获得。

3、比例积分微分调节(PID)控制1)、在PI调节器控制实验的基础上,再引入适量的微分作用,即把D打开。

然后加上与前面实验幅值完全相等的扰动,记录系统被控制量响应的动态曲线,并与实验步骤(二)所得的曲线相比较,由此可看到微分D对系统性能的影响。

2)、选择合适的k、Ti和Td,使系统的输出响应为一条较满意的过渡过程曲线(阶跃输入可由给定值从50%突变至60%来实现)。

3)、观察计算机记录实验时所有的过渡过程实时曲线。

五、注意事项1、实验线路接好后,必须经指导老师检查认可后才能接通电源。

2、必须在老师的指导下,启动计算机系统和单片机控制屏。

3、若参数设置不当,可能导致系统失控,不能达到设定值。

六、实验报告要求1、绘制单容水箱液位控制系统的方块图。

2、做出阶跃响应曲线3、定性比较P、PI和PID三种调节器对系统余差和动态性能的影响。

实验三、串级控制系统的参数整定———上、下水箱液位串级控制系统一、实验目的1、通过实验进一步了解并熟悉串级控制系统的结构与原理。

2、利用所提供的实验装置构成一个液位与液位串级控制系统。

3、利用所提供的实验装置构成一个液位与流量串级控制系统。

4、了解串级控制系统的投运与参数整定方法。

二、实验设备1、THKGK-1型过程控制实验装置:GK-02、GK-03、GK-04(两台)、GK-072、万用电表一只、计算机系统三、实验原理单回路控制系统解决了工业生产过程中大量的参数定值控制问题。

1、串级控制系统的结构图3-1、串级控制系统结构如图所示,串级控制系统是指不止采用一个调节器,而是将两个或几个调节器相串联,并将一个调节器的输出作为下一个调节器设定值的控制系统。

四、实验步骤1、自行考虑并连接液位与液位的串级控制系统。

2、自行设计液位与流量串级控制系统的方框图,并利用所提供的实验装置连接系统。

3、连接好实验线路,并进行零位与增益的调节。

4、正确设置PID调节器的开关位置:副调节器:纯比例控制,反作用,自动。

主调节器:比例积分控制,反作用,自动。

5、试利用一步整定法整定系统:(1)、先将主、副调节器均置于纯比例P调节,并将副调节器的比例度δ调到30%左右。

(2)、将主调节器置于手动,副调节器置于自动,通过改变主调节器的手动输出值使下水箱液位达到设定值。

(3)、将主调节器置于自动,调节比例度δ,使输出响应曲线呈4:1衰减,记下δs和Ts,据此查表求出主调节器的δ和Ti值。

(注):阀8的开度必须小于阀5的开度实验才能成功。

五、注意事项当第一个串级系统连好后,需经指导老师检查认可,才能拆线进行第二个串级系统的连接实践。

六、实验报告内容1、仔细阅读实验原理后,分析液位与液位串级控制系统的工作过程,并画出控制系统方框图。

2、记录实验过程曲线。

3、观察扰动作用于主、副对象,观察对主变量(被控制量)的影响。

实验四、温度位式控制系统一、实验目的1、了解二位式温度控制系统的结构与组成。

2、掌握位式控制系统的工作原理及其调试方法。

二、实验设备1、THKGK-1型过程控制实验装置:GK-02 GK-03 GK-05 GK-072、万用表一只3、计算机系统三、实验原理1、温度传感器温度测量通常采用热电阻元件(感温元件)。

它是利用金属导体的电阻值随温度变化而变化的特性来进行温度测量的。

其电阻值与温度间的关系式为:Rt=Rt0[1+α(t-t0)]2、二位式温度控制系统二位控制是位式控制规律中最简单的一种。

本实验的被控对象是电加热丝,被控制量是复合水箱内套中的水温T,温度变送器把被控制量T转变为反馈电压Vi,它与二位调节器设定的上限输入Vmax 和下限输入Vmin比较,从而决定二位调节器的输出信号;调节器的输出电压V0(5V)作为执行元件的控制信号。

V0与Vmin和Vmax 的关系如图4-1所示,图4-2为位式控制系统的方块图。

V0与Vi的关系不仅有死区存在,而且还有回环,因而系统实质上是一个典型的非线性控制系统。

执行器只有“开”或“关”两种极限工作状态。

工作原理是:当被控制的水温T减小到小于设定下限值时,即Vi≤Vmin时,调节器的输出为V0(5V),执行元件(固态继电器)接通,使电热丝接通220V电源加热(如图所示)。

随着水温T的升高,Vi也不断增大,当增大到大于设定上限值时,即Vi≥Vmax时,则两位调节器的输出V0由5V降到0V,此时固态继电器释放,切断电热丝的供电。

由于这种控制方式具有冲击性,易损坏元器件,只是在对控制质量要求不高的系统才使用。

温度给定值是由GK-05挂件上的给定信号源给定,其中RP1电位器用于设定Vmin,RP2电位器用于设定Vmax,(要求Vmax-Vmin≥1V)。

被控对象为复合水箱中的电热丝,被控制量为内套的水温,它由铂电阻PT100测定,并经温度变送器AI708送到位式控制挂件GK-05的Vi端。

相关文档
最新文档