高考数学复习平面向量的基本定理及向量坐标运算理含解析
新人教版高考数学大一轮复习《平面向量的基本定理及向量坐标运算》
2.在平行四边形ABCD中,E和F分别是CD和BC的中点.若 AC AE AF,其中λ ,μ ∈R,则λ +μ =________.
【解析】 选择 AB,AD 作为平面向量的一组基底,
则 AC AB AD,AE 1 AB AD,AF AB 1 AD,
2
2
又 AC AE AF (1 )AB ( 1 )AD, 于是得
C.- 1 a- 5 b
3 12
B. 1 a- 13 b
3 12
D.- 1 a+ 13 b
3 12
【解析】选C. DE DC CE
1 BC 3 CA 34
1 (AC AB) 3 AC
3
4
1 AB 5 AC 1 a 5 b.
3 12
3 12
【一题多解微课】 解决本题还可以采用以下方法: 选C.不妨设∠BAC=90°,取直角坐 标系xOy,设A(0,0),B(1,0),C(0,1), 则a=(1,0),b=(0,1),
【题组练透】 1.已知平面向量a=(1,1),b=(1,-1),则向量 1 a- 3 b
22
=()
A.(-2,-1) C.(-1,0)
B.(-2,1) D.(-1,2)
【解析】选D.因为a=(1,1),b=(1,-1),所以 1 a- 3 b
22
=
1 2
(1,1)-
3 (1,-1)=
2
(1 , 1) (3 , 3) =(-1,2).
3
3
【解析】选B.因为a∥b,所以-2x-3(y-1)=0,化简得
2x+3y=3,又因为x,y均为正数,
所以 3 2 = ( 3 2) 1(2x+3y)
2020年高考数学(理)总复习:平面向量(解析版)
2020年高考数学(理)总复习:平面向量题型一 平面向量的概念及线性运算 【题型要点】对于利用向量的线性运算、共线向量定理和平面向量基本定理解决“用已知向量(基向量)来表示一些未知向量”的问题.解决的关键是:①结合图形,合理运用平行四边形法则或三角形法则进行运算;②善于用待定系数法【例1】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .2 2 C. 5D .2【解析】 如图所示,建立平面直角坐标系:设A (0,1),B (0,0),C (2,0),D (2,1),P (x ,y ),根据等面积公式可得圆的半径r =25,即圆C 的方程是(x -2)2+y 2=45,AP →=(x ,y -1),AB →=(0,-1),AD →=(2,0),若满足AP →=λAB →+μAD →,即⎩⎪⎨⎪⎧x =2μy -1=-λ,μ=x 2,λ=1-y ,所以λ+μ=x 2-y +1,设z =x 2-y +1,即x 2-y +1-z =0,点P (x ,y )在圆(x -2)2+y 2=45上,所以圆心到直线的距离d ≤r ,即|2-z |14+1≤25,解得1≤z ≤3,所以z 的最大值是3,即λ+μ的最大值是3.【答案】 A【例2】.点O 为△ABC 内一点,且满足OA →+OB →+4OC →=0,设△OBC 与△ABC 的面积分别为S 1、S 2,则S 1S 2=( )A.18B.16C.14D.12【解析】 延长OC 到D ,使OD =4OC ,延长CO 交AB 于E .∵O 为△ABC 内一点,且满足OA →+OB →+4OC →=0,∴OD →+OA →+OB →=0,∴O 为△DAB 重心,E 为AB 中点,∴OD ∶OE =2∶1,∴OC ∶OE=1∶2,∴CE ∶OE =3∶2,∴S △AEC =S △BEC ,S △BOE =2S △BOC .∵△OBC 与△ABC 的面积分别为S 1、S 2,∴S 1S 2=16.故选B.【答案】 B .题组训练一 平面向量的概念及线性运算1.在梯形ABCD 中,AB →=3DC →,则BC →等于( ) A .-13AB →+23AD →B .-23AB →+43AD →C.23AB →-AD → D .-23AB →+AD →【解析】 在线段AB 上取点E ,使BE =DC ,连接DE ,则四边形BCDE 为平行四边形,则BC →=ED →=AD →-AE →=AD →-23AB →;故选D.【答案】 D2.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足:OP →=13⎪⎭⎫ ⎝⎛++C O B O A O22121,则P 一定为△ABC 的( )A .重心B .AB 边中线的三等分点(非重心)C .AB 边中线的中点D .AB 边的中点【解析】 如图所示:设AB 的中点是E ,∵O 是三角形ABC 的重心,OP →=13⎪⎭⎫ ⎝⎛++C O B O A O 22121=13()OE →+2OC →,∵2EO →=OC →, ∴OP →=13()4EO →+OE →=EO →,∴P 在AB 边的中线上,是中线的三等分点,不是重心,故选B.【答案】 B3.设P 是△ABC 所在平面内的一点,且CP →=2P A →,则△P AB 与△PBC 的面积的比值是( )A.13B.12C.23D.34【解析】 因为CP →=2P A →,所以|CP →||P A →|=21,又△P AB 在边P A 上的高与△PBC 在边PC 上的高相等,所以S △P AB S △PBC =|P A →||CP →|=12.【答案】 B题型二 平面向量的平行与垂直 【题型要点】(1)设a =(x 1,y 1),b =(x 2,y 2): ①a ∥b ⇒a =λb (b ≠0);②a ∥b ⇔x 1y 2-x 2y 1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.(2)设非零向量a =(x 1,y 1),b =(x 2,y 2):a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0. (3)利用向量平行或垂直的充要条件可建立方程或函数是求参数的取值.【例3】已知向量a =(2,-4),b =(-3,x ),c =(1,-1),若(2a +b )⊥c ,则|b |=( )A.9 B.3C.109 D.310【解析】向量a=(2,-4),b=(-3,x),c=(1,-1),∴2a+b=(1,x-8),由(2a+b)⊥c,可得1+8-x=0,解得x=9.则|b|=(-3)2+92=310.故选D.【答案】 B【例4】.已知a=(3,2),b=(2,-1),若λa+b与a+λb平行,则λ=________.【解析】∵a=(3,2),b=(2,-1),∴λa+b=(3λ+2,2λ-1),a+λb=(3+2λ,2-λ),∵λa+b∥a+λb,∴(3λ+2)(2-λ)=(2λ-1)(3+2λ),解得λ=±1【答案】±1题组训练二平面向量的平行与垂直1.设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=________.【解析】由|a+b|2=|a|2+|b|2,得a⊥b,所以m×1+1×2=0,解得m=-2.【答案】-22.已知向量a=(3,1),b=(1,3),c=(k,-2),若(a-c)∥b,则向量a与向量c的夹角的余弦值是()A.55 B.15C.-55D.-15【解析】∵a=(3,1),b=(1,3),c=(k,-2),∴a-c=(3-k,3),∵(a-c)∥b,∴(3-k)·3=3×1,∴k=2,∴a·c=3×2+1×(-2)=4,∴|a|=10,|c|=22,∴cos 〈a ,b 〉=a ·c |a |·|c |=410·22=55,故选A. 【答案】 A题型三 平面向量的数量积 【题型要点】(1)涉及数量积和模的计算问题,通常有两种求解思路: ①直接利用数量积的定义; ②建立坐标系,通过坐标运算求解.(2)在利用数量积的定义计算时,要善于将相关向量分解为图形中模和夹角已知的向量进行计算.求平面向量的模时,常把模的平方转化为向量的平方.【例5】在平行四边形ABCD 中,|AD →|=3,|AB →|=5,AE →=23AD →,BF →=13BC →,cos A =35,则|EF →|=( )A.14 B .2 5 C .4 2D .211【解析】如图,取AE 的中点G ,连接BG ∵AE →=23AD →,BF →=13BC →,∴AG →=12AE →=13AD →=13BC →=BF →,∴EF →=GB →,∴|GB →|2=|AB →-AG |2=AB →2-2AB →·AG →+AG →2=52-2×5×1×35+1=20,∴|EF →|=|GB →|=25,故选B. 【答案】 B【例6】.已知A ,B 是圆O :x 2+y 2=4上的两个动点,|AB →|=2,OC →=53OA →-23OB →.若M是线段AB 的中点,则OC →·OM →的值为( )A .3B .2 3C .2D .-3【解析】 因为点M 是线段AB 的中点,所以OM →=12()OA →+OB →,|OA =|OB |=|AB |=2,所以△ABC 是等边三角形,即〈OA →,OB →〉=60°,OA →·OB →=2×2×cos60°=2,OC →·OM →=⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛-B O A O B O A O21213235=56OA →2-13OB 2+12OA →·OB → =56×22-13×22+12×2=3,故选A. 【答案】 A题组训练三 平面向量的数量积1.已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小是( )A .-2B .-32C .-43D .-1【解析】 以BC 为x 轴,BC 的垂直平分线AD 为y 轴,D 为坐标原点建立坐标,则A (0,3),B (-1,0),C (1,0),设P (x ,y ),所以P A →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ) 所以PB →+PC →=(-2x ,-2y ),P A →·(PB →+PC →)=2x 2-2y (3-y )=2x 2+2223⎪⎪⎭⎫ ⎝⎛-y -32≥-32 当P ⎪⎪⎭⎫ ⎝⎛23,0时,所求的最小值为-32,故选B.【答案】 B2.已知向量|OA →|=3,|OB →|=2,OC →=mOA →+nOB →,若OA →与OB 的夹角为60°,且OC →⊥AB →,则实数mn的值为( )A.16B.14 C .6D .4【解析】 OA →·OB →=3×2×cos60°=3, ∵OC →=mOA →+nOB →,OC →⊥AB →,∴(mOA →+nOB →)·AB →=(mOA →+nOB →)·(OB →-OA →)=(m -n )OA →·OB →-mOA →2+nOB →2=0,∴3(m -n )-9m +4n =0,∴m n =16,故选A.【答案】 A题型四 数与形相辅相成求解向量问题【例7】 在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的取值范围是( )A .[4,6]B .[19-1,19+1]C .[23,27]D .[7-1,7+1] 【解析】 法一:设出点D 的坐标,利用向量的坐标运算公式及向量模的运算公式求解.设D (x ,y ),则由|CD →|=1,C (3,0),得(x -3)2+y 2=1. 又∵OA →+OB →+OD →=(x -1,y +3),∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.∴|OA →+OB →+OD →|的几何意义为点P (1,-3)与圆(x -3)2+y 2=1上点之间的距离,由|PC |=7知,|OA →+OB →+OD →|的最大值是1+7,最小值是7-1.故选D.法二:根据向量OA →+OB →的平行四边形法则及减法法则的几何意义,模的几何意义求解. 如图,设M (-1,3),则OA →+OB →=OM →,取N (1,-3),∴OM →=-ON →.由|CD →|=1,可知点D 在以C 为圆心,半径r =1的圆上, ∴OA →+OB →+OD →=OD →-ON →=ND →,∴|OA →+OB →+OD →|=|ND →|,∴|ND →|max =|NC →|+1=7+1,|ND →|min =7-1. 【答案】 D题组训练四 数与形相辅相成求解向量问题已知|b |=1,非零向量a 满足〈a ,b -a 〉=120°,则|a |的取值范围是________. 【解析】如图,设CA →=b ,CB →=a ,则b -a =BA →,在△ABC 中,AC =1,∠ABC =60°. 根据圆的性质:同弧所对的圆周角相等.作△ABC 的外接圆,当BC 为圆的直径时,|a |最大,此时|a |=BC =1sin 60°=233; 当B ,C 无限接近时,|a |=BC →0.故|a |的取值范围是⎥⎦⎤⎝⎛332,0 【答案】 ⎥⎦⎤⎝⎛332,0 【专题训练】 一、选择题1.已知向量a =(2,-4),b =(-3,x ),c =(1,-1),若(2a +b )⊥c ,则|b |=( ) A .9 B .3 C.109D .310【解析】 向量a =(2,-4),b =(-3,x ),c =(1,-1),∴2a +b =(1,x -8), 由(2a +b )⊥c ,可得1+8-x =0,解得x =9.则|b |=(-3)2+92=310.故选D. 【答案】 D2.已知向量a =(1,k ),b =(2,2),且a +b 与a 共线,那么a ·b 的值为( ) A .1 B .2 C .3D .4【解析】 ∵向量a =(1,k ),b =(2,2), ∴a +b =(3,k +2),又a +b 与a 共线. ∴(k +2)-3k =0,解得k =1,∴a ·b =(1,1)·(2,2)=1×2+1×2=4,故选D. 【答案】 D3.设向量a ,b 满足|a |=1,|b |=2,且a ⊥(a +b ),则向量a 在向量a +2b 方向上的投影为( )A .-1313B.1313C .-113D.113【解析】∵a ⊥(a +b ),∴a ·(a +b )=1+a ·b =0,∴a ·b =-1,∴|a +2b |2=1+4a ·b +16=13,则|a +2b |=13,又a ·(a +2b )=a ·(a +b )+a ·b =-1,故向量a 在向量a +2b 方向上的投影为-113=-1313.选A.【答案】 A4.已知A ,B ,C 是圆O 上的不同的三点,线段CO 与线段AB 交于点D ,若OC →=λOA →+μOB →(λ∈R ,μ∈R ),则λ+μ的取值范围是( )A .(0,1)B .(1,+∞)C .(1,2]D .(-1,0)【解析】 由题意可得OD →=kOC →=kλOA →+kμOB →(0<k <1),又A ,D ,B 三点共线可得kλ+kμ=1,则λ+μ=1k>1,即λ+μ的取值范围是(1,+∞),故选B.【答案】 B5.在梯形ABCD 中,AD ∥BC ,已知AD =4,BC =6,若CD →=mBA →+nBC →(m ,n ∈R ),则mn=( ) A .-3 B .-13C.13D .3【解析】 过点A 作AE ∥CD ,交BC 于点E ,则BE =2,CE =4,所以mBA →+nBC →=CD →=EA →=EB →+BA →=-26BC →+BA →=-13BC →+BA →,所以m n =1-13=-3.【答案】 A6.如图,正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC →=λAM →+μBN →,则λ+μ=( )A .2 B.83 C.65D.85【解析】 法一 如图以AB ,AD 为坐标轴建立平面直角坐标系,设正方形边长为1,AM →=⎪⎭⎫ ⎝⎛21,1,BN →=⎪⎭⎫ ⎝⎛-1,21,AC →=(1,1).∵AC →=λAM →+μBN →=λ⎪⎭⎫ ⎝⎛21,1+μ⎪⎭⎫ ⎝⎛-1,21=⎪⎭⎫⎝⎛+-μλμλ2,2,∴⎩⎨⎧λ-12μ=1,λ2+μ=1,解之得⎩⎨⎧λ=65,μ=25,故λ+μ=85.法二 以AB →,AD →作为基底,∵M ,N 分别为BC ,CD 的中点,∴AM →=AB →+BM →=AB →+12AD →,BN →=BC →+CN →=AD →-12AB →,因此AC →=λAM →+μBN →=⎪⎭⎫ ⎝⎛-2μλAB →+⎪⎭⎫ ⎝⎛+μλ2AD →,又AC →=AB →+AD →,因此⎩⎨⎧λ-μ2=1,λ2+μ=1,解得λ=65且μ=25.所以λ+μ=85【答案】 D7.如图所示,直线x =2与双曲线C :x 24-y 2=1的渐近线交于E 1,E 2两点.记OE 1→=e 1,OE 2→=e 2,任取双曲线C 上的点P ,若OP →=a e 1+b e 2(a ,b ∈R ),则ab 的值为( )A.14 B .1 C.12D.18【解析】由题意易知E 1(2,1),E 2(2,-1),∴e 1=(2,1),e 2=(2,-1),故OP →=a e 1+b e 2=(2a +2b ,a -b ),又点P 在双曲线上,∴(2a +2b )24-(a -b )2=1,整理可得4ab =1,∴ab=14. 【答案】 A8.在平面直角坐标系中,向量n =(2,0),将向量n 绕点O 按逆时针方向旋转π3后得向量m ,若向量a 满足|a -m -n |=1,则|a |的最大值是( )A .23-1B .23+1C .3D.6+2+1【解析】 由题意得m =(1,3).设a =(x ,y ),则a -m -n =(x -3,y -3),∴|a -m -n |2=(x -3)2+(y -3)2=1,而(x ,y )表示圆心为(3,3)的圆上的点,求|a |的最大值,即求该圆上点到原点的距离的最大值,最大值为23+1.【答案】 B9.已知锐角△ABC 的外接圆的半径为1,∠B =π6,则BA →·BC →的取值范围为__________.【解析】 如图,设|BA →|=c ,|BC →|=a ,△ABC 的外接圆的半径为1,∠B =π6.由正弦定理得a sin A =c sin C =2,∴a =2sin A ,c =2sin C ,C =5π6-A ,由⎩⎨⎧0<A <π20<5π6-A <π2,得π3<A <π2,∴BA →·BC →=ca cos π6=4×32sin A sin C =23sin A sin ⎪⎭⎫ ⎝⎛-A 65π =23sin A ⎪⎪⎭⎫ ⎝⎛+A A sin 23cos 21=3sin A cos A +3sin 2A =32sin2A +3(1-cos2A )2=32sin2A +32cos2A +32=3sin ⎪⎭⎫ ⎝⎛-32πA +32. ∵π3<A <π2,∴π3<2A -π3<2π3,∴32<sin ⎪⎭⎫ ⎝⎛-32πA ≤1,∴3<3sin ⎪⎭⎫ ⎝⎛-32πA +32≤3+32.∴BA →·BC →的取值范围为⎥⎦⎤⎝⎛+233,3. 【答案】 ⎥⎦⎤ ⎝⎛+233,310.已知点O ,N ,P 在△ABC 所在的平面内,且|OA →|=|OB →|=|OC →|,NA →+NB →+NC →=0,P A →·PB →=PB →·PC →=PC →·P A →,则点O ,N ,P 依次是△ABC 的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心【解析】 因为|OA →|=|OB →|=|OC →|,所以点O 到三角形的三个顶点的距离相等,所以O 为△ABC 的外心;由NA →+NB →+NC →=0,得NA →+NB →=-NC →=CN →,由中线的性质可知点N 在三角形AB 边的中线上,同理可得点N 在其他边的中线上,所以点N 为△ABC 的重心;由P A →·PB →=PB →·PC →=PC →·P A →,得P A →·PB →-PB →·PC →=PB →·CA →=0,则点P 在AC 边的垂线上,同理可得点P 在其他边的垂线上,所以点P 为△ABC 的垂心.【答案】 C11.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积:a ⊗b =(a 1,a 2)⊗(b 1,b 2)=(a 1b 1,a 2b 2).已知向量m =⎪⎭⎫ ⎝⎛4,21,n =⎪⎭⎫⎝⎛0,6π,点P 在y =cos x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则y =f (x )在区间⎥⎦⎤⎢⎣⎡3,6ππ上的最大值是( )A .4B .2C .2 2D .2 3【解析】 因为点P 在y =cos x 的图象上运动,所以设点P 的坐标为(x 0,cos x 0),设Q 点的坐标为(x ,y ),则OQ →=m ⊗OP →+n ⇒(x ,y )=⎪⎭⎫ ⎝⎛4,21⊗(x 0,cos x 0)+⎪⎭⎫ ⎝⎛0,6π⇒(x ,y )=⎪⎭⎫ ⎝⎛+00cos 4,621x x π⇒⎩⎪⎨⎪⎧x =12x 0+π6,y =4cos x 0,即⎪⎩⎪⎨⎧=⎪⎭⎫ ⎝⎛-=00cos 462xy x x π⇒y =4cos ⎪⎭⎫ ⎝⎛-32πx , 即f (x )=4cos ⎪⎭⎫⎝⎛-32πx ,当x ∈⎥⎦⎤⎢⎣⎡3,6ππ时, 由π6≤x ≤π3⇒π3≤2x ≤2π3⇒0≤2x -π3≤π3, 所以12≤cos ⎪⎭⎫ ⎝⎛-32πx ≤1⇒2≤4cos ⎪⎭⎫ ⎝⎛-32πx ≤4,所以函数y =f (x )在区间⎥⎦⎤⎢⎣⎡3,6ππ的最大值是4,故选A. 【答案】 A 二、填空题12.如图,在平行四边形ABCD 中,E 和F 分别在边CD 和BC 上,且DC →=3 DE →,BC →=3 BF →,若AC →=mAE →+nAF →,其中m ,n ∈R ,则m +n =________.【解析】 由题设可得AE →=AD →+DE →=AD →+13DC →=AD →+13AB →,AF →=AB →+BF →=AB →+13AD →=AB→+13AD →,又AC →=mAE →+nAF →,故AC →=mAD →+13mAB →+nAB →+13nAD →=(13m +n )AB →+(m +13n )AD →,而AC →=12(AB →+AD →),故⎩⎨⎧13m +n =12m +13n =12⇒m +n =32.故应填答案32.【答案】 3213.若函数f (x )=2sin ⎪⎭⎫⎝⎛+48ππx (-2<x <14)的图象与x 轴交于点A ,过点A 的直线l与函数f (x )的图象交于B 、C 两点,O 为坐标原点,则(OB →+OC →)·OA →=________.【解析】 ∵-2<x <14,∴f (x )=0的解为x =6,即A (6,0),而A (6,0)恰为函数f (x )图象的一个对称中心,∴B 、C 关于A 对称,∴(OB →+OC →)·OA →=2OA →·OA →=2|OA |2=2×36=72. 【答案】 7214.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点, 则|P A →|2+|PB →|2|PC →|2=________.【解析】 建立如图所示的平面直角坐标系, 设|CA →|=a ,|CB →|=b ,则A (a,0),B (0,b ) ∵点D 是斜边AB 的中点,∴D ⎪⎭⎫⎝⎛2,2b a , ∵点P 为线段CD 的中点,∴P ⎪⎭⎫⎝⎛4,4b a ∴|PC →|2=24⎪⎭⎫ ⎝⎛a +24⎪⎭⎫ ⎝⎛b =a 216+b 216|PB →|2=24⎪⎭⎫ ⎝⎛a +24⎪⎭⎫ ⎝⎛-b b =a 216+9b 216|P A →|2=24⎪⎭⎫ ⎝⎛-a a +24⎪⎭⎫ ⎝⎛b =9a 216+b 216∴|P A →|2+|PB →|2=9a 216+b 216+a 216+9b 216=10⎪⎪⎭⎫ ⎝⎛+161622b a =10|PC →|2,∴|P A →|2+|PB →|2|PC →|2=10.【答案】 1015.在△ABC 中,AB ⊥AC ,AB =1t ,AC =t ,P 是△ABC 所在平面内一点,若AP →=4AB →|AB →|+AC →|AC →|,则△PBC 面积的最小值为________.【解析】 由题意建立如图所示的坐标系,可得A (0,0),B ⎪⎭⎫ ⎝⎛0,1t ,C (0,t ),∵AP →=4AB →|AB →|+AC →|AC →|=(4,0)+(0,1)=(4,1),∴P (4,1);又|BC |=221⎪⎭⎫⎝⎛+t t ,BC 的方程为tx +y t =1,∴点P 到直线BC 的距离为d =221114⎪⎭⎫ ⎝⎛+-+t t t t ,∴△PBC 的面积为S =12·|BC |·d=12·221⎪⎭⎫ ⎝⎛+t t ·221114⎪⎭⎫ ⎝⎛+-+t t t t=12|4t +1t -1|≥12·|24t ·1t -1|=32, 当且仅当4t =1t ,即t =12时取等号,∴△PBC 面积的最小值为32.【答案】 32。
平面向量基本定理及坐标表示知识点讲解+例题讲解(含解析)
平面向量的基本定理及坐标表示一、知识梳理1.平面向量的基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. 3.平面向量的坐标运算(1)向量加法、减法、数乘运算及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0.小结:1.若a =(x 1,y 1),b =(x 2,y 2)且a =b ,则x 1=x 2且y 1=y2. 2.若a 与b 不共线,λa +μb =0,则λ=μ=0.3.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( ) (2)同一向量在不同基底下的表示是相同的.( )(3)设a ,b 是平面内的一组基底,若实数λ1,μ1,λ2,μ2满足λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可以表示成x 1x 2=y 1y 2.( )解析 (1)共线向量不可以作为基底. (2)同一向量在不同基底下的表示不相同. (4)若b =(0,0),则x 1x 2=y 1y 2无意义.答案 (1)× (2)× (3)√ (4)×2.下列各组向量中,可以作为基底的是( ) A.e 1=(0,0),e 2=(1,-2) B.e 1=(-1,2),e 2=(5,7) C.e 1=(3,5),e 2=(6,10) D.e 1=(2,-3),e 2=⎝ ⎛⎭⎪⎫12,-34解析 两个不共线的非零向量构成一组基底,故选B. 答案 B3.设P 是线段P 1P 2上的一点,若P 1(1,3),P 2(4,0)且P 是线段P 1P 2的一个三等分点(靠近点P 1),则点P 的坐标为( ) A.(2,2)B.(3,-1)C.(2,2)或(3,-1)D.(2,2)或(3,1)解析 由题意得P 1P →=13P 1P 2→且P 1P 2→=(3,-3). 设P (x ,y ),则(x -1,y -3)=(1,-1), ∴x =2,y =2,则点P (2,2). 答案 A4.(2015·全国Ⅰ卷)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( ) A.(-7,-4) B.(7,4) C.(-1,4)D.(1,4)解析 根据题意得AB→=(3,1),∴BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4),故选A. 答案 A5.(2017·山东卷)已知向量a =(2,6),b =(-1,λ),若a ∥b ,则λ=________. 解析 ∵a ∥b ,∴2λ+6=0,解得λ=-3. 答案 -36.(2019·苏州月考)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________.解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x ,6-y ),即⎩⎨⎧4=5-x ,1=6-y ,解得⎩⎨⎧x =1,y =5. 答案 (1,5)考点一 平面向量基本定理及其应用【例1】 (1)(2019·衡水中学调研)一直线l 与平行四边形ABCD 中的两边AB ,AD 分别交于点E ,F ,且交其对角线AC 于点M ,若AB →=2AE →,AD →=3AF →,AM →=λAB →-μAC→(λ,μ∈R ),则52μ-λ=( ) A.-12B.1C.32D.-3解析 (1)AM→=λAB →-μAC →=λAB →-μ(AB →+AD →) =(λ-μ)AB→-μAD →=2(λ-μ)AE →-3μAF →.因为E ,M ,F 三点共线,所以2(λ-μ)+(-3μ)=1, 即2λ-5μ=1,∴52μ-λ=-12.(2)(2019·北京海淀区调研)在△ABC 中,D 为三角形所在平面内一点,且AD→=13AB→+12AC →.延长AD 交BC 于E ,若AE →=λAB →+μAC →,则λ-μ的值是________.解析:(2)设AE →=xAD →,∵AD →=13AB →+12AC →, ∴AE→=x 3AB →+x 2AC →. 由于E ,B ,C 三点共线,∴x 3+x 2=1,x =65.根据平面向量基本定理,得λ=x 3,μ=x2.因此λ-μ=x 3-x 2=-x 6=-15.答案 (1)A (2)-15【训练1】 (1)(2019·济南质检)在△ABC 中,AN→=14NC →,若P 是直线BN 上的一点,且满足AP→=mAB →+25AC →,则实数m 的值为( ) A.-4B.-1C.1D.4解析 (1)根据题意设BP →=nBN →(n ∈R ),则AP →=AB →+BP →=AB →+nBN →=AB →+n (AN →-AB→)=AB →+n ⎝ ⎛⎭⎪⎫15AC →-AB →=(1-n )AB →+n 5AC →. 又AP →=mAB →+25AC →,∴⎩⎪⎨⎪⎧1-n =m ,n 5=25,解得⎩⎨⎧n =2,m =-1.(2)在平面直角坐标系中,O 为坐标原点,A ,B ,C 三点满足OC→=23OA →+13OB →,则|AC→||AB →|=________. 解析:(2)因为OC→=23OA →+13OB →,所以OC →-OA →=-13OA →+13OB →=13(OB →-OA →),所以AC →=13AB →,所以|AC →||AB →|=13.考点二 平面向量的坐标运算【例2】 (1)设A (0,1),B (1,3),C (-1,5),D (0,-1),则AB→+AC →等于( )A.-2AD →B.2AD →C.-3AD →D.3AD →(2)向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=( )A.1B.2C.3D.4解析 (1)由题意得AB →=(1,2),AC →=(-1,4),AD →=(0,-2),所以AB →+AC →=(0,6)=-3(0,-2)=-3AD→.(2)以向量a 和b 的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A (1,-1),B (6,2),C (5,-1),∴a =AO→=(-1,1),b =OB →=(6,2),c =BC →=(-1,-3), ∵c =λa +μb ,∴(-1,-3)=λ(-1,1)+μ(6,2),则⎩⎨⎧-λ+6μ=-1,λ+2μ=-3,解得λ=-2,μ=-12,∴λμ=-2-12=4. 答案 (1)C (2)D【训练2】 (1)已知O 为坐标原点,点C 是线段AB 上一点,且A (1,1),C (2,3),|BC →|=2|AC →|,则向量OB →的坐标是________.解析 (1)由点C 是线段AB 上一点,|BC →|=2|AC →|,得BC →=-2AC →.设点B 为(x ,y ),则(2-x ,3-y )=-2(1,2). 则⎩⎨⎧2-x =-2,3-y =-4,解得⎩⎨⎧x =4,y =7. 所以向量OB→的坐标是(4,7).(2)(2019·天津和平区一模)如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若CA →=λCE →+μDB →(λ,μ∈R ),则λ+μ的值为( )A.65B.85C.2D.83解析:(2)建立如图所示的平面直角坐标系,则D (0,0).不妨设AB =1,则CD =AD =2,所以C (2,0),A (0,2),B (1,2),E (0,1), ∴CA→=(-2,2),CE →=(-2,1),DB →=(1,2), ∵CA→=λCE →+μDB →,∴(-2,2)=λ(-2,1)+μ(1,2), ∴⎩⎨⎧-2λ+μ=-2,λ+2μ=2,解得⎩⎪⎨⎪⎧λ=65,μ=25,则λ+μ=85.答案 (1)(4,7) (2)B考点三 平面向量共线的坐标表示 角度1 利用向量共线求向量或点的坐标【例3-1】 已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________.解析 法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ).又AC→=OC →-OA →=(-2,6), 由AP→与AC →共线,得(4λ-4)×6-4λ×(-2)=0,解得λ=34,所以OP →=34OB →=(3,3), 所以点P 的坐标为(3,3).法二 设点P (x ,y ),则OP→=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x4=y4,即x =y .又AP→=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3,所以点P 的坐标为(3,3). 答案 (3,3)角度2 利用向量共线求参数【例3-2】 (1)(2018·全国Ⅲ卷)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________.(2)已知向量a =(2,3),b =(-1,2),若m a +n b 与a -3b 共线,则mn =________. 解析 (1)由题意得2a +b =(4,2),因为c =(1,λ),且c ∥(2a +b ),所以4λ-2=0,即λ=12. (2)由2-1≠32,所以a 与b 不共线, 又a -3b =(2,3)-3(-1,2)=(5,-3)≠0. 那么当m a +n b 与a -3b 共线时, 有m 1=n -3,即得m n =-13.答案 (1)12 (2)-13【训练3】 (1)(2019·北师大附中检测)已知向量a =(1,1),点A (3,0),点B 为直线y =2x 上的一个动点,若AB→∥a ,则点B 的坐标为________.(2)设向量OA →=(1,-2),OB →=(2m ,-1),OC →=(-2n ,0),m ,n ∈R ,O 为坐标原点,若A ,B ,C 三点共线,则m +n 的最大值为( ) A.-3B.-2C.2D.3解析 (1)由题意设B (x ,2x ),则AB→=(x -3,2x ),∵AB →∥a ,∴x -3-2x =0,解得x =-3,∴B (-3,-6).(2)由题意易知,AB →∥AC →,其中AB →=OB →-OA →=(2m -1,1),AC →=OC →-OA →=(-2n -1,2),所以(2m -1)×2=1×(-2n -1),得:2m +1+2n =1. 2m +1+2n ≥22m +n +1,所以2m +n +1≤2-2,即m +n ≤-3. 答案 (1)(-3,-6) (2)A三、课后练习1.如图,在△ABC 中,AD→=23AC →,BP →=13BD →,若AP →=λAB →+μAC →,则λ+μ的值为( )A.89B.49C.83D.43解析 AP→=AB →+BP →=AB →+13BD →=AB →+13(AD →-AB →)=23AB →+13×23AC →=23AB →+29AC →.因为AP →=λAB →+μAC →,所以λ=23,μ=29,则λ+μ=23+29=89. 答案 A2.给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,如图所示,点C 在以O 为圆心的圆弧AB ︵上运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是( )A.1B. 2C. 3D.2解析 因为点C 在以O 为圆心的圆弧AB ︵上,所以|OC→|2=|xOA →+yOB →|2=x 2+y 2+2xyOA →·OB →=x 2+y 2,∴x 2+y 2=1,则2xy ≤x 2+y 2=1. 又(x +y )2=x 2+y 2+2xy ≤2, 故x +y 的最大值为 2. 答案 B3.已知|OA→|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC→=mOA →+nOB →(m ,n ∈R ),则m n 的值为________.解析 ∵OA→·OB →=0,∴OA →⊥OB →,以OA 为x 轴,OB 为y 轴建立直角坐标系,OA→=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ). ∵tan 30°=3n m =33,∴m =3n ,即mn =3. 答案 34.在△ABC 中,点D 满足BD→=DC →,当点E 在线段AD 上移动时,若AE →=λAB →+μAC→,则t =(λ-1)2+μ2的最小值是________. 解析 因为BD→=DC →,所以AD →=12AB →+12AC →.又AE→=λAB →+μAC →,点E 在线段AD 上移动,所以AE→∥AD →,则12λ=12μ,即λ=μ⎝ ⎛⎭⎪⎫0≤λ≤12. 所以t =(λ-1)2+λ2=2λ2-2λ+1=2⎝ ⎛⎭⎪⎫λ-122+12.当λ=12时,t 的最小值是12. 答案 125.直角△ABC 中,AB =AC =2,D 为AB 边上的点,且AD DB =2,则CD →·CA →=________;若CD→=xCA →+yCB →,则xy =________. 解析 以A 为原点,分别以AB→,AC →的方向为x 轴、y 轴的正方向建立平面直角坐标系,则A (0,0),B (2,0),C (0,2),D ⎝ ⎛⎭⎪⎫43,0,则CD →=⎝ ⎛⎭⎪⎫43,-2,CA →=(0,-2),CB→=(2,-2),则CD →·CA →=⎝ ⎛⎭⎪⎫43,-2·(0,-2)=43×0+(-2)×(-2)=4.由CD→=x CA →+y CB →=x (0,-2)+y (2,-2)=(2y ,-2x -2y )=⎝ ⎛⎭⎪⎫43,-2得⎩⎪⎨⎪⎧2y =43,-2x -2y =-2,解得⎩⎪⎨⎪⎧x =13,y =23,则xy =29.答案 4 29。
高三数学平面向量基本定理及坐标表示试题答案及解析
高三数学平面向量基本定理及坐标表示试题答案及解析1.已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆上的点到焦点距离的最大值为.(1)求椭圆的标准方程;(2)若过点的直线与椭圆交于不同的两点,且,求实数的取值范围.【答案】(1)(2)【解析】(1)设所求的椭圆方程为:由题意:所求椭圆方程为:.(2)若过点的斜率不存在,则.若过点的直线斜率为,即:时,直线的方程为由因为和椭圆交于不同两点所以,所以①设由已知,则②③将③代入②得:整理得:所以代入①式得,解得.所以或.综上可得,实数的取值范围为:.2.(2013•湖北)已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为()A.B.C.D.【答案】A【解析】,,则向量方向上的投影为:•cos<>=•===,故选A.3.如图,在正方形ABCD中,E为AB的中点,P为以A为圆心,AB为半径的圆弧上的任意一点,设向量.【答案】【解析】以为原点,以所在直线为轴,建立平面直角坐标系.设正方形的边长为,则设 .又向量所以,∴,∴,∴.由题意得∴当时,同时,时,取最小值为.【考点】平面向量的坐标运算,三角函数的性质.4.如图,在直角梯形ABCD中,AB//CD,AB=2,AD=DC=1,P是线段BC上一动点,Q是线段DC上一动点,,则的取值范围是.【答案】【解析】解:建立平面直角坐标系如图所示,则因为,所以所以,, 所以, 故答案应填.【考点】1、平面向量基本定理;2、向量的坐标表示;3、向量的数量积;4、一元二次函数的最值.5. 如图,△ABC 中,D 为BC 的中点,G 为AD 的中点,过点G 任作一直线MN 分别交AB 、AC 于M 、N 两点.若=x ,=y ,求的值.【答案】4 【解析】设=a ,=b ,则=x a ,=y b ,== (+)= (a +b ).∴=-= (a +b )-x a =a +b ,=-=y b -x a =-x a +y b . ∵与共线,∴存在实数λ,使=λ.∴a +b =λ(-x a +y b )=-λx a +λy b .∵a 与b 不共线,∴消去λ,得=4.6. 已知点O (0,0),A 0(0,1),A n (6,7),点A 1,A 2,…,A n -1(n ∈N ,n ≥2)是线段A 0A n 的n 等分点,则| ++…+OA n -1+|等于( ) A .5n B .10n C .5(n +1) D .10(n +1)【答案】C【解析】取n =2,,则++=(0,1)+(3,4)+(6,7)=(9,12),所以| ++|==15,把n =2代入选项中,只有5(n +1)=15,故排除A 、B 、D ,选C.7. 已知向量a=(cosθ,sinθ),b=(,-1),则|2a-b|的最大值为( ) A .4 B .4 C .16D .8【答案】B【解析】∵2a-b=(2cosθ-,2sinθ+1), ∴|2a-b|===故最大值为4.8. 已知向量a=(1,-2),b=(m,4),且a ∥b,那么2a-b=( )A.(4,0)B.(0,4)C.(4,-8)D.(-4,8)【答案】C【解析】由a∥b,得4=-2m,∴m=-2,∴b=(-2,4),∴2a-b=2(1,-2)-(-2,4)=(4,-8).9.已知向量a=(cosα,-2),b=(sinα,1)且a∥b,则tan(α-)等于()A.3B.-3C.D.-【答案】B【解析】选B.∵a=(cosα,-2), b=(sinα,1)且a∥b,∴=(经分析知cosα≠0),∴tanα=-.∴tan(α-)===-3,故选B.【方法技巧】解决向量与三角函数的综合题的方法向量与三角函数的结合是近几年高考中出现较多的题目,解答此类题目的关键是根据条件将所给的向量问题转化为三角问题,然后借助三角恒等变换再根据三角求值、三角函数的性质、解三角形的问题来解决.10.已知向量a=(3,1),b=,若a+λb与a垂直,则λ等于________.【答案】4【解析】根据向量线性运算、数量积运算建立方程求解.由条件可得a+λb=,所以(a+λb)⊥a⇒3(3-λ)+1+λ=0⇒λ=4.11.设向量,,若满足,则( )A.B.C.D.【答案】D【解析】因为,所以, ,解得:,故选D.【考点】向量共线的条件.12.在所在的平面内,点满足,,且对于任意实数,恒有,则()A.B.C.D.【答案】C【解析】过点作,交于,是边上任意一点,设在的左侧,如图,则是在上的投影,即,即在上的投影,,令,,,,故需要,,即,为的中点,又是边上的高,是等腰三角形,故有,选C.【考点】共线向量,向量的数量积.13.已知向量,若,则的最小值为.【答案】4【解析】,所以.【考点】1、向量的平行关系;2、向量的模;3、重要不等式14.已知向量,向量,且,则的值是()A.B.C.D.【答案】C.【解析】,,即得.【考点】向量的坐标运算.15.已知点,,则与共线的单位向量为()A.或B.C.或D.【答案】C【解析】因为点,,所以,,与共线的单位向量为.【考点】向量共线.16.已知向量,,若,则实数等于.【答案】.【解析】,两边平方得,则有,化简得,即,解得.【考点】平面向量的模、平面向量的坐标运算17.在中,已知,且,则( )A.B.C.D.【答案】A【解析】因为,,所以,,,故选A。
高考数学 平面向量的概念及线性运算、平面向量基本定理及坐标表示 高考真题
专题六 平面向量6.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示考点一 平面向量的概念及线性运算1.(2022全国乙文,3,5分)已知向量a =(2,1),b =(-2,4),则|a -b |= ( )A.2B.3C.4D.5答案D 由题意知a -b =(4,-3),所以|a -b |=√42+(−3)2=5,故选D .2.(2022新高考Ⅰ,3,5分)在△ABC 中,点D 在边AB 上,BD =2DA.记CA ⃗⃗⃗⃗⃗ =m ,CD ⃗⃗⃗⃗⃗ =n ,则CB ⃗⃗⃗⃗⃗ = ( )A.3m -2nB.-2m +3nC.3m +2nD.2m +3n答案B 由题意可知,DA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ −CD ⃗⃗⃗⃗⃗ =m -n ,又BD =2DA ,所以BD ⃗⃗⃗⃗⃗⃗ =2DA ⃗⃗⃗⃗⃗ =2(m -n ),所以CB ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ +DB⃗⃗⃗⃗⃗⃗ =n -2(m -n )=3n -2m ,故选B .3.(2015课标Ⅰ理,7,5分)设D 为△ABC 所在平面内一点,BC ⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗ ,则( ) A.AD ⃗⃗⃗⃗ =-13AB ⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗ B.AD ⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗ -43AC ⃗⃗⃗⃗ C.AD⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗ D.AD ⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗ -13AC ⃗⃗⃗⃗ 答案 A AD⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +BD ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +BC ⃗⃗⃗⃗ +CD ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +43BC ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +43(AC ⃗⃗⃗⃗ -AB ⃗⃗⃗⃗ )=-13AB ⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗ .故选A. 4.(2014课标Ⅰ文,6,5分)设D,E,F 分别为△ABC 的三边BC,CA,AB 的中点,则EB ⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =( ) A.AD ⃗⃗⃗⃗ B.12AD ⃗⃗⃗⃗ C.BC ⃗⃗⃗⃗ D.12BC⃗⃗⃗⃗ 答案 A 设AB⃗⃗⃗⃗ =a,AC ⃗⃗⃗⃗ =b,则EB ⃗⃗⃗⃗ =-12b+a,FC ⃗⃗⃗⃗ =-12a+b,从而EB ⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =(−12b +a )+(−12a +b )=12(a+b)=AD ⃗⃗⃗⃗ ,故选A.5.(2015课标Ⅱ理,13,5分)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ= . 答案12解析 由于a ,b 不平行,所以可以以a ,b 作为一组基底,于是λa +b 与a +2b 平行等价于λ1=12,即λ=12.6.(2015北京理,13,5分)在△ABC 中,点M,N 满足AM⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗ =NC ⃗⃗⃗⃗ .若MN ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗ ,则x = ,y = .答案12;-16解析 由AM⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗ 知M 为AC 上靠近C 的三等分点,由BN ⃗⃗⃗⃗ =NC ⃗⃗⃗⃗ 知N 为BC 的中点,作出草图如下:则有AN⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ ),所以MN ⃗⃗⃗⃗⃗ =AN ⃗⃗⃗⃗ -AM ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ )-23·AC ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ -16AC ⃗⃗⃗⃗ , 又因为MN ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗ +y AC⃗⃗⃗⃗ ,所以x=12,y=-16. 7.(2013江苏,10,5分)设D,E 分别是△ABC 的边AB,BC 上的点,AD=12AB,BE=23BC.若DE⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2的值为 . 答案12解析 DE ⃗⃗⃗⃗ =DB ⃗⃗⃗⃗ +BE ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗ -AB ⃗⃗⃗⃗ )=-16AB ⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗ , ∵DE⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗ ,∴λ1=-16,λ2=23,故λ1+λ2=12. 考点二 平面向量的基本定理及坐标运算1.(2015课标Ⅰ文,2,5分)已知点A(0,1),B(3,2),向量AC⃗⃗⃗⃗ =(-4,-3),则向量BC ⃗⃗⃗⃗ =( ) A.(-7,-4) B.(7,4) C.(-1,4) D.(1,4)答案 A 根据题意得AB ⃗⃗⃗⃗ =(3,1),∴BC ⃗⃗⃗⃗ =AC ⃗⃗⃗⃗ -AB⃗⃗⃗⃗ =(-4,-3)-(3,1)=(-7,-4).故选A. 2.(2014北京文,3,5分)已知向量a =(2,4),b =(-1,1),则2a -b =( ) A.(5,7) B.(5,9) C.(3,7) D.(3,9)答案 A 由a =(2,4)知2a =(4,8),所以2a -b =(4,8)-(-1,1)=(5,7).故选A. 3.(2014广东文,3,5分)已知向量a =(1,2),b =(3,1),则b -a =( ) A.(-2,1) B.(2,-1) C.(2,0) D.(4,3) 答案 B b -a =(3,1)-(1,2)=(2,-1).故答案为B.4.(2014福建理,8,5分)在下列向量组中,可以把向量a =(3,2)表示出来的是( )A.e 1=(0,0),e 2=(1,2)B.e 1=(-1,2),e 2=(5,-2)C.e 1=(3,5),e 2=(6,10)D.e 1=(2,-3),e 2=(-2,3) 答案 B 设a=k 1e 1+k 2e 2,A 选项,∵(3,2)=(k 2,2k 2),∴{k 2=3,2k 2=2,无解.B 选项,∵(3,2)=(-k 1+5k 2,2k 1-2k 2), ∴{−k 1+5k 2=3,2k 1−2k 2=2,解之得{k 1=2,k 2=1. 故B 中的e 1,e 2可把a 表示出来. 同理,C 、D 选项同A 选项,无解.5.(2021全国乙文,13,5分)已知向量a =(2,5),b =(λ,4),若a ∥b ,则λ= .答案85解题指导:利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2=x 2y 1”解题.解析由已知a ∥b 得2×4=5λ,∴λ=85.解题关键:记准两平面向量共线的充要条件是解这类问题的关键.6.(2017山东文,11,5分)已知向量a =(2,6),b =(-1,λ).若a ∥b ,则λ= . 答案 -3解析 本题考查向量平行的条件. ∵a=(2,6),b =(-1,λ),a ∥b , ∴2λ-6×(-1)=0,∴λ=-3.7.(2016课标Ⅱ文,13,5分)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m= . 答案 -6解析 因为a ∥b ,所以m 3=4−2,解得m=-6. 易错警示 容易把两个向量平行与垂直的条件混淆. 评析 本题考查了两个向量平行的充要条件.8.(2014陕西,13,5分)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ= . 答案12解析∵a∥b,∴sin 2θ×1-cos2θ=0,∴2sin θcos θ-cos2θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=1 2 .。
第1节 平面向量的概念及线性运算--2025年高考数学复习讲义及练习解析
第一节平面向量的概念及线性运算课标解读考向预测1.理解平面向量的意义、几何表示及向量相等的含义.2.掌握向量的加法、减法运算,并理解其几何意义及向量共线的含义.3.了解向量线性运算的性质及其几何意义.预计2025年高考对本节内容的考查会以线性运算、共线向量定理为主,主要以选择题、填空题的形式出现,难度属中、低档.必备知识——强基础1.向量的有关概念名称定义表示向量在平面中,既有大小又有方向的量用a ,b ,c ,…或AB →,BC →,…表示向量的模向量a 的大小,也就是表示向量a 的有向线段AB →的长度(或称模)|a |或|AB →|零向量长度为0的向量用0表示单位向量长度等于1个单位的向量用e 表示,|e |=1平行向量方向相同或相反的非零向量(或称共线向量)a ∥b 相等向量长度相等且方向相同的向量a =b相反向量长度相等,方向相反的向量向量a 的相反向量是-a说明:零向量的方向是不确定的、任意的.规定:零向量与任一向量平行.2.向量的线性运算向量运算法则(或几何意义)运算律加法交换律:a +b =01b +a ;结合律:(a +b)+c =02a+(b +c )减法a -b =03a +(-b )数乘|λa |=|λ||a |,当λ>0时,λa 的方向与a 的方向04相同;当λ<0时,λa 的方向与a 的方向05相反;当λ=0时,λa =060λ(μa )=07(λμ)a ;(λ+μ)a =08λa +μa ;λ(a +b )=09λa +λb3.向量共线定理向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使得b =λa .提醒:当a ≠0时,定理中的实数λ才唯一.1.一般地,首尾顺次相接的多个向量的和等于从第一个向量的起点指向最后一个向量的终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A 1A n →.特别地,一个封闭图形,首尾连接而成的向量和为零向量.2.若F 为线段AB 的中点,O 为平面内任意一点,则OF →=12OA →+OB →).3.若A ,B ,C 是平面内不共线的三点,则PA →+PB →+PC →=0⇔P 为△ABC 的重心,AP →=13(AB→+AC →).4.若OA →=λOB →+μOC →(λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1.5.对于任意两个向量a ,b ,都有||a |-|b ||≤|a ±b |≤|a |+|b |.1.概念辨析(正确的打“√”,错误的打“×”)(1)|a |与|b |是否相等,与a ,b 的方向无关.()(2)若向量a 与b 同向,且|a |>|b |,则a >b .()(3)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.()(4)起点不同,但方向相同且模相等的向量是相等向量.()答案(1)√(2)×(3)×(4)√2.小题热身(1)如图,D ,E ,F 分别是△ABC 各边的中点,则下列结论错误的是()A .EF →=CD →B .AB →与DE →共线C .BD →与CD →是相反向量D .AE →=12|AC →|答案D解析AE →=12AC →,故D 错误.故选D.(2)(人教B 必修第二册6.2.1例3改编)设向量a ,b 不共线,向量λa +b 与a +2b 共线,则实数λ=________.答案12解析∵λa +b 与a +2b 共线,∴存在实数μ使得λa +b =μ(a +2b )=μ,=2μ,=12,=12.(3)(人教A 必修第二册6.2例6改编)已知▱ABCD 的对角线AC 和BD 交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示)答案b -a -a -b解析如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .(4)(人教A 必修第二册习题6.2T10改编)若a ,b 满足|a |=3,|b |=5,则|a +b |的最大值为________,最小值为________.答案82解析|a +b |≤|a |+|b |=3+5=8,当且仅当a ,b 同向时取等号,所以|a +b |max =8.又|a +b |≥||a |-|b ||=|3-5|=2,当且仅当a ,b 反向时取等号,所以|a +b |min =2.考点探究——提素养考点一平面向量的有关概念例1(多选)下列命题中的真命题是()A .若|a |=|b |,则a =bB .若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件C .若a =b ,b =c ,则a =cD .a =b 的充要条件是|a |=|b |且a ∥b 答案BC解析A 是假命题,两个向量的长度相等,但它们的方向不一定相同;B 是真命题,∵AB →=DC →,∴|AB →|=|DC →|且AB →∥DC →,又A ,B ,C ,D 是不共线的四点,∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则|AB →|=|DC →|,AB →∥DC →且AB →,DC →方向相同,因此AB →=DC →;C 是真命题,∵a =b ,∴a ,b 的长度相等且方向相同,又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c ;D 是假命题,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.故选BC.【通性通法】平面向量有关概念的四个关注点关注点一非零向量的平行具有传递性关注点二共线向量即为平行向量,它们均与起点无关关注点三向量可以平移,平移后的向量与原向量是相等向量关注点四a|a |是与a 同方向的单位向量【巩固迁移】1.(多选)下列命题正确的是()A .零向量是唯一没有方向的向量B .零向量的长度等于0C .若a ,b 都为非零向量,则使a |a |+b|b |=0成立的条件是a 与b 反向共线D .若a ∥b ,b ∥c ,则a ∥c 答案BC解析零向量是有方向的,其方向是任意的,故A 错误;由零向量的定义知,零向量的长度为0,故B 正确;因为a |a |与b |b |都是单位向量,所以只有当a |a |与b|b |是相反向量,即a 与b 反向共线时才成立,故C 正确;若b =0,则不共线的a ,c 也有a ∥0,c ∥0,故D 错误.考点二平面向量的线性运算(多考向探究)考向1平面向量加、减运算的几何意义例2设P 为▱ABCD 对角线的交点,O 为平面ABCD 内的任意一点,则OA →+OB →+OC →+OD →=()A .OP →B .2OP →C .3OP →D .4OP→答案D解析由题意知,P 为AC ,BD 的中点,所以在△OAC 中,OP →=12(OA →+OC →),即OA →+OC →=2OP →,在△OBD 中,OP →=12(OB →+OD →),即OB →+OD →=2OP →,所以OA →+OB →+OC →+OD →=4OP →.故选D.【通性通法】1.平面向量的线性运算技巧(1)不含图形的情况:可直接运用相应运算法则求解.(2)含图形的情况:将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示出来.2.三种运算法则的要点(1)加法的三角形法则要求“首尾连”,平行四边形法则要求“共起点”.(2)减法的三角形法则要求“共起点,连终点,指被减”.(3)数乘运算的结果仍是一个向量,运算过程可类比实数运算.【巩固迁移】2.(2024·山东青岛二中月考)若|AB →|=|AC →|=|AB →-AC →|=2,则|AB →+AC →|=________.答案23解析因为|AB →|=|AC →|=|AB →-AC →|=2,所以△ABC 是边长为2的正三角形,所以|AB →+AC →|为△ABC 的边BC 上的高的2倍,所以|AB →+AC →|=23.考向2平面向量的线性运算例3(2022·新高考Ⅰ卷)在△ABC 中,点D 在边AB 上,BD =2DA ,记CA →=m ,CD →=n ,则CB →=()A .3m -2nB .-2m +3nC .3m +2nD .2m +3n答案B解析CD →=23CA →+13CB →,即CB →=-2CA →+3CD →=-2m +3n .故选B.【通性通法】平面向量的线性运算的求解策略【巩固迁移】3.(2023·江苏南通二模)在平行四边形ABCD 中,BE →=12BC →,AF →=13AE →.若AB →=mDF →+nAE →,则m +n =()A .12B .34C .56D .43答案D解析由题意可得AB →=AE →+EB →=AE →+12DA →=AE →+12(DF →+FA →)=AE→+12(DF →-13AE →)=12DF →+56AE →,所以m =12,n =56,所以m +n =43.故选D.考点三向量共线定理的应用(多考向探究)考向1判定向量共线、三点共线例4设两个非零向量a 与b 不共线.若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线.证明∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),∴BD →=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →,∴AB →,BD →共线,又它们有公共点B ,∴A ,B ,D 三点共线.【通性通法】共线向量定理的三个应用【巩固迁移】4.已知P 是△ABC 所在平面内的一点,若CB →=λPA →+PB →,其中λ∈R ,则点P 一定在()A .△ABC 的内部B .AC 边所在直线上C .AB 边所在直线上D .BC 边所在直线上答案B解析由CB →=λPA →+PB →,得CB →-PB →=λPA →,CP →=λPA →,则CP →,PA →为共线向量,又CP →,PA →有一个公共点P ,所以C ,P ,A 三点共线,即点P 在AC 边所在直线上.故选B.考向2利用向量共线定理求参数例5若a ,b 是两个不共线的向量,已知MN →=a -2b ,PN →=2a +k b ,PQ →=3a -b ,若M ,N ,Q 三点共线,则k =()A .-1B .1C .32D .2答案B解析由题意知,NQ →=PQ →-PN →=a -(k +1)b ,因为M ,N ,Q 三点共线,所以存在实数λ,使得MN →=λNQ →,即a -2b =λ[a -(k +1)b ],解得λ=1,k =1.【通性通法】一般通过构造三角形,利用向量运算的三角形法则进行加法或减法运算,然后通过建立方程(组)即可求得相关参数的值.【巩固迁移】5.如图,在△ABC 中,AD →=λDC →,E 是BD 上一点,若AE →=1116→+14AC →,则实数λ的值为()A .3B .4C .5D .6答案B解析由AD →=λDC →,得AC →=λ+1λAD →,因为AE →=1116AB →+14AC →,所以AE →=1116AB →+14·λ+1λAD →,因为E ,B ,D 三点共线,所以1116+λ+14λ=1,解得λ=4.故选B.课时作业一、单项选择题1.若a ,b 为非零向量,则“a |a |=b|b |”是“a ,b 共线”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件答案B解析a |a |,b |b |分别表示与a ,b 同方向的单位向量,a |a |=b|b |,则有a ,b 共线,而a ,b 共线,则a |a |,b |b |是相等向量或相反向量,所以“a |a |=b|b |”是“a ,b 共线”的充分不必要条件.故选B.2.设a =(AB →+CD →)+(BC →+DA →),b 是一个非零向量,则下列结论不正确的是()A .a ∥bB .a +b =aC .a +b =bD .|a +b |=|a |+|b |答案B解析由题意得,a =(AB →+CD →)+(BC →+DA →)=AC →+CA →=0,且b 是一个非零向量,所以a ∥b成立,所以A 正确;因为a +b =b ,所以B 不正确,C 正确;因为|a +b |=|b |,|a |+|b |=|b |,所以|a +b |=|a |+|b |,所以D 正确.故选B.3.已知AB →=a +5b ,BC →=-3a +6b ,CD →=4a -b ,则()A .A ,B ,D 三点共线B .A ,B ,C 三点共线C .B ,C ,D 三点共线D .A ,C ,D 三点共线答案A解析由题意得BD →=BC →+CD →=a +5b =AB →,又BD →,AB →有公共点B ,所以A ,B ,D 三点共线.故选A.4.(2024·安徽铜陵三模)在平行四边形ABCD 中,M 是CD 边上的中点,则2AM →=()A .AC →-2AB →B .AC →+2AB →C .2AC →-AB →D .2AC →+AB→答案C解析因为M 是平行四边形ABCD 的CD 边上的中点,所以CM →=-12AB →,所以AM →=AC →+CM→=AC →-12AB →,所以2AM →=2AC →-AB →.故选C.5.已知向量a 和b 不共线,向量AB →=a +m b ,BC →=5a +3b ,CD →=-3a +3b ,若A ,B ,D 三点共线,则m =()A .3B .2C .1D .-2答案A解析因为A ,B ,D 三点共线,所以存在实数λ,使得BD →=λAB →,BD →=BC →+CD →=2a +6b ,所以2a +6b =λa +mλb ,=λ,=mλ,解得m =3.故选A.6.矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2=()A .58B .14C .1D .516答案A解析DE →=AE →-AD →=14AC →-AD →=14(AB →+AD →)-AD →=14AB →-34AD →,∴λ=14,μ=-34.∴λ2+μ2=116+916=58.故选A.7.正方形ABCD 中,E 在CD 上且有CE →=2ED →,AE 与对角线BD 交于F ,则AF →=()A .13AB →+23AD→B .34AB →+14AD→C .14AB →+34AD→D .13AD →+AB→答案C解析如图,∵在正方形ABCD 中,E 在CD 上且有CE →=2ED →,AE 与对角线BD 交于F ,∴DE =13AB ,且DE ∥AB ,∴△DEF ∽△BAF ,可得EF AF =13,可得AF =34AE ,∴AF →=34AE →=34(AD→+DE →)+13AB =14AB →+34AD →.故选C.8.(2023·滁州模拟)已知P 为△ABC 所在平面内一点,AB →+PB →+PC →=0,|AB →|=|PB →|=|PC →|=2,则△ABC 的面积为()A .3B .23C .33D .43答案B解析设BC 的中点为D ,AC 的中点为M ,连接PD ,MD ,BM ,如图所示,则有PB →+PC →=2PD →.由AB →+PB →+PC →=0,得AB →=-2PD →,又D 为BC 的中点,M 为AC 的中点,所以AB →=-2DM →,则PD →=DM →,则P ,D ,M 三点共线且D 为PM 的中点,又D 为BC 的中点,所以四边形CPBM 为平行四边形.又|AB →|=|PB →|=|PC →|=2,所以|MC →|=|BP →|=2,则|AC →|=4,且|BM →|=|PC →|=2,所以△AMB 为等边三角形,∠BAC =60°,则S △ABC =12×2×4×32=2 3.故选B.二、多项选择题9.下列式子中,结果为零向量的是()A .AB →+BC →+CA →B .AB →+MB →+BO →+OM →C .OA →+OB →+BO →+CO →D .AB →-AC →+BD →-CD →答案AD解析利用向量运算,易知A ,D 中的式子结果为零向量.故选AD.10.点P 是△ABC 所在平面内一点,且满足|PB →-PC →|-|PB →+PC →-2PA →|=0,则△ABC 不可能是()A .钝角三角形B .直角三角形C .等腰三角形D .等边三角形答案AD解析因为点P 是△ABC 所在平面内一点,且|PB →-PC →|-|PB →+PC →-2PA →|=0,所以|CB →|-|(PB→-PA →)+(PC →-PA →)|=0,即|CB →|=|AB →+AC →|,所以|AB →-AC →|=|AC →+AB →|,等式两边平方并化简得AC →·AB →=0,所以AC →⊥AB →,∠BAC =90°,则△ABC 一定是直角三角形,也有可能是等腰直角三角形,不可能是钝角三角形和等边三角形.故选AD.11.(2023·安徽合肥期末)在△ABC 中,D ,E ,F 分别是边BC ,CA ,AB 的中点,点G 为△ABC 的重心,则下列结论中正确的是()A .AB →-BC →=CA →B .AG →=13(AB →+AC →)C .AF →+BD →+CE →=0D .GA →+GB →+GC →=0答案BCD解析如图,对于A ,AB →-BC →=AB →+CB →=2EB →≠CA →,故A 错误;对于B ,点G 为△ABC 的重心,则AG →=23→=23×12(AB →+AC →)=13(AB →+AC →),故B 正确;对于C ,AF →+BD →+CE →=12(AB →+BC →+CA →)=0,故C 正确;对于D ,GA →=-2GD →=-2×12(GB →+GC →),故GA →+GB →+GC →=0,故D 正确.故选BCD.三、填空题12.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.答案12解析∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,=μ,=2μ,解得λ=μ=12.13.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC →=a ,CA →=b ,给出下列命题:①AD →=12a -b ;②BE →=a +12b ;③CF →=-12a +12b ;④AD →+BE →+CF →=0.其中正确的命题是________.答案②③④解析BC →=a ,CA →=b ,AD →=12AB →+12AC →=12(AC →+CB →)+12AC →=12CB →+AC →=-12a -b ,故①错误;BE →=BC →+12CA →=a +12b ,故②正确;CF →=12(CB →+CA →)=12(-a +b )=-12a +12b ,故③正确;AD→+BE →+CF →=-b -12a +a +12b +12b -12a =0,故④正确.14.(2024·丽江模拟)在△ABC 中,点D 在线段AC 上,且满足|AD →|=13|AC →|,点Q 为线段BD上任意一点,若实数x ,y 满足AQ →=xAB →+yAC →,则1x +1y 的最小值为________.答案4+23解析由题意知,点D 满足AD →=13AC →,故AQ →=xAB →+yAC →=xAB →+3yAD →,由Q ,B ,D 三点共线,可得x +3y =1,x >0,y >0,则1x +1y=x +3y )=4+3y x +x y ≥4+23,当且仅当3yx =x y ,即x =3-12,y =3-36时等号成立.所以1x +1y 的最小值为4+2 3.15.如图,在平行四边形ABCD 中,AB →=2AE →,AF →=FD →,点G 为CE 与BF 的交点,则AG →=()A .25AB →+15AC→B .15AB →+25AC→C .15AB →+415AC→D .310AB →+25AC→答案A解析由AB →=2AE →,AF →=FD →,知E ,F 分别为AB ,AD 的中点.如图,设AC 与BF 的交点为P ,易得△APF ∽△CPB ,所以AP CP =AF CB =AF AD =12,所以AP →=13AC →.因为E 是AB 的中点,所以AE →=12AB →.由P ,G ,B 三点共线知,存在m ∈R ,满足AG →=mAP →+(1-m )AB →=13mAC →+(1-m )AB →.由C ,G ,E 三点共线知,存在n ∈R ,满足AG →=nAE →+(1-n )AC →=12nAB →+(1-n )AC →,所以13mAC →+(1-m )AB →=12nAB →+(1-n )AC →.又因为AC →,AB →为不共线的非零向量,所以m =12n ,=1-n ,=35,=45,所以AG →=25AB →+15AC →.16.(多选)(2024·武汉模拟)瑞士数学家欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:三角形的外心、垂心和重心都在同一直线上,而且外心和重心间的距离是垂心和重心间的距离之半.这个定理就是著名的欧拉线定理.设△ABC 中,点O ,H ,G 分别是其外心、垂心、重心,BC 边的中点为D ,则下列结论中正确的是()A .GH →=2OG →B .OD ∥AHC .AH →=3OD →D .OA →=OB →=OC→答案AB解析由题意作图,如图所示,易知BC 的中点D 与A ,G 共线.对于A ,由题意,得AG →=2GD →,OD ⊥BC ,AH ⊥BC ,所以OD ∥AH ,所以GH →=2OG →,所以A ,B 正确;对于C ,由题意,知AG =2GD ,又GH =2OG ,∠AGH =∠DGO ,所以△AGH ∽△DGO ,所以AH →=2OD →,所以C 错误;对于D ,向量OA →,OB →,OC →的模相等,方向不同,所以D 错误.故选AB.17.如图,已知正六边形ABCDEF ,M ,N 分别是对角线AC ,CE 上的点,使得AM AC =CNCE=r ,则B ,M ,N 三点共线时,r 的值为________.答案33解析连接AD ,交EC 于点G ,设正六边形的边长为a ,由正六边形的性质知,AD ⊥CE ,AD ∥CB ,G 为EC 的中点,且AG =32a ,则CA →=CG →+GA →=12CE →+32CB →,又AM AC =CNCE =r (r >0),则CA →=CM →1-r ,CE →=CN →r ,故CM →1-r =CN →2r +32CB →,即CM →=1-r 2r CN →+3(1-r )2CB →,若B ,M ,N三点共线,则1-r 2r +3(1-r )2=1,解得r =33或r =-33(舍去).18.经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m >0,n >0,则m +n 的最小值为________.答案43解析设OA →=a ,OB →=b .由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a ,PG→=OG →-OP →+13b ,由P ,G ,Q 三点共线,得存在实数λ,使得PQ →=λPG →,即n b -m a =+13λb ,m ==13λ,消去λ,得1n +1m =3.于是m +nm +n )+n m +≥13×(2+2)=43,当且仅当m =n =23时,m +n 取得最小值,为43.。
2022届高考一轮复习第5章平面向量第2节平面向量基本定理及坐标表示课时跟踪检测理含解
第五章 平面向量第二节 平面向量基本定理及坐标表示A 级·基础过关 |固根基|1.如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是( ) ①a =λe 1+μe 2(λ,μ∈R)可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则λ1λ2=μ1μ2;④若实数λ,μ使得λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④D .②④解析:选B 由平面向量基本定理可知,①④是正确的.对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的;对于③,当λ1λ2=0或μ1μ2=0时不一定成立,应为λ1μ2-λ2μ1=0.故选B .2.设向量a =(1,-3),b =(-2,4),若表示向量4a ,3b -2a ,c 的有向线段首尾相接能构成三角形,则向量c 为( )A .(1,-1)B .(-1,1)C .(-4,6)D .(4,-6)解析:选D 4a =(4,-12),3b -2a =(-6,12)-(2,-6)=(-8,18),由题意得,4a +(3b -2a)+c =0,所以c =(4,-6),故选D .3.设a =(x ,-4),b =(1,-x).若a 与b 同向,则x 等于( ) A .-2 B .2 C .±2D .0解析:选B 由题意得-x 2=-4, 所以x =±2.又因为a 与b 同向,若x =-2,则a =(-2,-4),b =(1,2),a 与b 反向,故舍去,所以x =2.故选B .4.在平面直角坐标系中,已知向量a =(1,2),a -12b =(3,1),c =(x ,3),若(2a +b)∥c,则x等于( )A .-2B .-4C .-3D .-1解析:选D 因为a -12b =(3,1),a =(1,2),所以b =(-4,2).所以2a +b =2(1,2)+(-4,2)=(-2,6). 又(2a +b)∥c,所以-6=6x ,解得x =-1.故选D .5.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC →=2AE →,则EM →等于( ) A .12AC →+13AB → B .12AC →+16AB →C .16AC →+12AB → D .16AC →+32AB → 解析:选C 如图,因为EC →=2AE →,点M 是BC 的中点, 所以EC →=23AC →,CM →=12CB →,所以EM →=EC →+CM →=23AC →+12CB → =23AC →+12(AB →-AC →) =12AB →+16AC →.故选C . 6.(2019届河南洛阳模拟)在正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC →=λAM →+μBN →(λ,μ∈R),则λ+μ的值为( )A .85B .58C .1D .-1解析:选A 设正方形的边长为2,以点A 为坐标原点,AB ,AD 分别为x 轴,y 轴建立平面直角坐标系(图略),则A(0,0),B(2,0),C(2,2),M(2,1),N(1,2),所以AC →=(2,2),AM →=(2,1),BN →=(-1,2).因为AC →=λAM →+μBN →,即(2,2)=λ(2,1)+μ(-1,2),所以⎩⎪⎨⎪⎧2λ-μ=2,λ+2μ=2,解得λ=65,μ=25,所以λ+μ=85,故选A .7.已知向量AB →与向量a =(1,-2)反向共线,|AB →|=25,点A 的坐标为(3,-4),则点B 的坐标为( )A .(1,0)B .(0,1)C .(5,-8)D .(-8,5)解析:选A 依题意,设AB →=λa,其中λ<0,则有|AB →|=|λa|=-λ|a|,即25=-5λ,∴λ=-2,∴AB →=-2a =(-2,4).又点A 的坐标为(3,-4),∴点B 的坐标是(-2,4)+(3,-4)=(1,0).故选A .8.(2019届南昌二模)已知在平面直角坐标系xOy 中,P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3→与向量a =(1,-1)共线,若OP 3→=λOP 1→+(1-λ)OP 2→(λ∈R),则λ等于( )A .-3B .3C .1D .-1解析:选D 设OP 3→=(x ,y),则由OP 3→∥a ,得x +y =0,于是OP 3→=(x ,-x).若OP 3→=λOP 1→+(1-λ)OP 2→,则有(x ,-x)=λ(3,1)+(1-λ)(-1,3)=(4λ-1,3-2λ),即⎩⎪⎨⎪⎧4λ-1=x ,3-2λ=-x ,所以4λ-1+3-2λ=0, 解得λ=-1,故选D .9.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.解析:若点A ,B ,C 能构成三角形,则向量AB →,AC →不共线. 因为AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2), AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1), 所以1×(k+1)-2k≠0,解得k≠1. 答案:k≠110.(2019届河北联盟二模)已知点A(1,0),B(1,3),点C 在第二象限,且∠AOC=150°,OC →=-4OA →+λOB →,则λ=________.解析:因为点A(1,0),B(1,3),OC →=-4OA →+λOB →,所以C(λ-4,3λ). 因为点C 在第二象限,∠AOC=150°, 所以tan 150°=3λλ-4=-33,解得λ=1.答案:111.已知A(-2,4),B(3,-1),C(-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b.(1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ; (3)求M ,N 的坐标及向量MN →的坐标.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)因为mb +nc =(-6m +n ,-3m +8n)=a =(5,-5),所以⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,因为CM →=OM →-OC →=3c , 所以OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). 所以M(0,20). 又CN →=ON →-OC →=-2b ,所以ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), 所以N(9,2).所以MN →=(9,-18).B 级·素养提升 |练能力|12.在平面直角坐标系xOy 中,已知点A(1,0),B(0,1),C 为坐标平面内第一象限内一点且∠AOC =π4,且|OC|=2,若OC →=λOA →+μOB →,则λ+μ=( ) A .2 2 B . 2 C .2D .4 2解析:选A 因为|OC|=2,∠AOC=π4,所以C(2,2).又OC →=λOA →+μOB →,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=2,μ=2,所以λ+μ=2 2.13.(2019届枣庄模拟)在平面直角坐标系中,O 为坐标原点,且满足OC →=23OA →+13OB →,则|AC →||AB →|的值为( )A .12B .13C .14D .25解析:选B 由已知得,3OC →=2OA →+OB →,即OC →-OB →=2(OA →-OC →),即BC →=2CA →,如图所示,故C 为BA 的靠近A 点的三等分点, 因而|AC →||AB →|=13.故选B .14.(2019届石家庄模拟)A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D(点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R),则λ+μ的取值范围是( )A .(0,1)B .(1,+∞)C .(1, 2 ]D .(-1,0)解析:选B 由题意可设OC →=mOD →,则m>1.因为OC →=λOA →+μOB →,所以mOD →=λOA →+μOB →,即OD →=λm OA→+μm OB →.又知A ,B ,D 三点共线,所以λm +μm=1,即λ+μ=m ,所以λ+μ>1,故选B . 15.(2019届长沙一模)在矩形ABCD 中,AB =3,AD =2,P 为矩形内部一点,且AP =1,若AP →=xAB →+yAD →,则3x +2y 的取值范围是________.解析:设点P 在AB 上的射影为Q ,∠PAQ=θ, 则AP →=AQ →+QP →,且|AQ →|=cos θ,|QP →|=sin θ. 又AQ →与AB →共线,QP →与AD →共线, 故AQ →=cos θ3AB →,QP →=sin θ2AD →,从而AP →=cos θ3AB →+sin θ2AD →.又AP →=xAB →+yAD →,故x =cos θ3,y =sin θ2,因此3x +2y =cos θ+sin θ=2sin ⎝⎛⎭⎪⎫θ+π4.又θ∈⎝ ⎛⎭⎪⎫0,π2,θ+π4∈⎝ ⎛⎭⎪⎫π4,3π4,故3x +2y 的取值范围是(1,2].答案:(1,2]16.在△OAB 中,OA →=3OC →,OB →=2OD →,AD 与BC 的交点为M ,过M 作动直线l 交线段AC ,BD 于E ,F 两点,若OE →=λOA →,OF →=μOB →(λ,μ>0),则λ+μ的最小值为________.解析:由A ,M ,D 三点共线,可得存在实数t ,使得OM →=tOA →+(1-t)OD →=tOA →+12(1-t)OB →.同理,由C ,M ,B 三点共线,可得存在实数m ,使得OM →=mOB →+(1-m)OC →=mOB →+13(1-m)OA →.∴⎩⎪⎨⎪⎧t =13(1-m ),12(1-t )=m ,解得⎩⎪⎨⎪⎧m =25,t =15,∴OM →=25OB →+15OA →.由E ,M ,F 三点共线,可设OM →=xOE →+(1-x)OF →.又OE →=λOA →,OF =μOB →,∴OM →=xλOA →+(1-x)μOB →,∴⎩⎪⎨⎪⎧x λ=15,(1-x )μ=25,可得1λ+2μ=5.∴λ+μ=15(λ+μ)⎝ ⎛⎭⎪⎫1λ+2μ=15⎝ ⎛⎭⎪⎫1+2+μλ+2λμ≥3+225,当且仅当μλ=2λμ时取等号,∴λ+μ的最小值为3+225.答案:3+225。
2020版高考数学一轮复习平面向量基本定理及坐标表示学案文含解析
第二节 平面向量基本定理及坐标表示2019考纲考题考情1.平面向量基本定理(1)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底。
(2)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2。
2.平面向量的坐标表示在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,该平面内的任一向量a 可表示成a =x i +y j ,a 与数对(x ,y )是一一对应的,把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ),其中a 在x 轴上的坐标是x ,a 在y 轴上的坐标是y 。
3.平面向量的坐标运算若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0。
1.平面内不共线向量都可以作为基底,反之亦然。
2.若a 与b 不共线,λa +μb =0,则λ=μ=0。
3.已知a =(x 1,y 1),b =(x 2,y 2),如果x 2≠0,y 2≠0,则a ∥b ⇔x 1x 2=y 1y 2。
一、走进教材1.(必修4P 99例8改编)若P 1(1,3),P 2(4,0)且P 是线段P 1P 2的一个三等分点,则点P 的坐标为( )A .(2,2)B .(3,-1)C .(2,2)或(3,-1)D .(2,2)或(3,1)解析 由题意得P 1P →=13P 1P 2→或P 1P →=23P 1P 2→,P 1P 2→=(3,-3)。
设P (x ,y ),则P 1P →=(x -1,y -3),当P 1P →=13P 1P 2→时,(x -1,y -3)=13(3,-3),所以x =2,y =2,即P (2,2);当P 1P →=23P 1P 2→时,(x -1,y -3)=23(3,-3),所以x =3,y =1,即P (3,1)。
8.2 平面向量的分解及向量的坐标表示
58
因为k a − b 与 a + 3b 平行,所以3(k − 2) + 7 = 0 ,即得 k = − 7 3 a − b = (k − 2, −1) = (− , −1) , a + 3b = (7,3) , 此时k 3
1
则 a + 3b
= −3(k a − b)
,即此时向量 a + 3b 与 ka − b 方向相反。
运算类型 几何方法
坐标方法
运算性质
a +b =b +a
(a +b) +c = a +(b +c)
向量的加 1.平行四 边形法则2. a+b=(x +x2, y +y2) 法 1 1 三角形法 则 向量的 减法
a−b =(x1 −x2, y1 −y2)
AB + BC = AC
a − b = a + (−b )
向量与函数的综合
高考总复习·数学 高考总复习 数学
已知向量 u = ( x, y) v = ( y,2 y − x) 的对应关系用 v = f (u) 表示。 与 (1)证明:对于任意向量 a, b 及常数m,n恒有 成立;
f (ma + nb) = mf (a) + nf (b)
(2)设 a = (1,1), b = (1,0) ,求向量 f (a) 及 f (b) 的坐标; (3)求使 f (c) = ( p, q) ,(p,q为常数)的向量 故 f (ma + nb) = (ma2 + nb2 ,2ma2 + 2nb2 − ma1 − nb1 )
e1
2
二.平面向量的坐标表示 在直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量 i , j → 作为基底。由平面向量的基本定理知,该平面内的任一向量 a 可 → a a 表示成 → = xi + yj ,由于→与数对(x,y)是一一对应的,因此把(x,y)叫 做向量 a 的坐标,记作 a =(x,y),其中x叫作在x轴上的坐标,y叫 做在y轴上的坐标。
高考数学一轮复习第2讲 平面向量的基本定理及坐标表示
第2讲 平面向量的基本定理及坐标表示1.平面向量的基本定理如果e 1,e 201不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a 02λ1e 1+λ2e 2.2.平面向量的坐标表示03x 轴、y 轴正方向相同的两个单位向量i ,j 作为基底,对任一向量a ,有唯一一对实数x ,y ,使得a =x i +y j 04(x ,y )叫做向量a 的直角坐标,记作a =(x ,y ),显然i 05(1,0),j 06(0,1),0=07(0,0).3.平面向量的坐标运算 (1)设a =(x 1,y 1),b =(x 2,y 2), 则a +b 08(x 1+x 2,y 1+y 2), a -b 09(x 1-x 2,y 1-y 2), λa 10(λx 1,λy 1). (2)设A (x 1,y 1),B (x 2,y 2), 则AB →11(x 2-x 1,y 2-y 1), |AB→|12 错误!. 4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔a =λb (λ∈R )⇔13x 1y 2-x 2y 1=0.1.平面向量一组基底是两个不共线向量,平面向量基底可以有无穷多组. 2.当且仅当x 2y 2≠0时,a ∥b 与x1x2=y1y2等价,即两个不平行于坐标轴的共线向量的对应坐标成比例.3.若a 与b 不共线,且λa +μb =0,则λ=μ=0.4.已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝ ⎛⎭⎪⎪⎫x1+x22,y1+y22. 5.已知△ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心G 的坐标为⎝ ⎛⎭⎪⎪⎫x1+x2+x33,y1+y2+y33. 6.A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点共线的充要条件为(x 2-x 1)(y 3-y 1)-(x 3-x 1)(y 2-y 1)=0,或(x 2-x 1)(y 3-y 2)=(x 3-x 2)(y 2-y 1),或(x 3-x 1)(y 3-y 2)=(x 3-x 2)(y 3-y 1).1.已知向量a =(2,4),b =(-1,1),则2a +b 等于( ) A .(5,7) B .(5,9) C .(3,7) D .(3,9)答案 D解析 2a +b =2(2,4)+(-1,1)=(3,9),故选D.2.设向量a =(x,1),b =(4,x ),若a ,b 方向相反,则实数x 的值是( ) A .0 B .±2 C .2D .-2答案 D解析 由题意可得a ∥b ,所以x 2=4,解得x =-2或2,又因为a ,b 方向相反,所以x =-2.故选D.3.下列各组向量中,可以作为基底的是( ) A .e 1=(0,0),e 2=(1,-2) B .e 1=(-1,2),e 2=(5,7) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=⎝ ⎛⎭⎪⎪⎫12,-34答案 B解析 两个不共线的非零向量构成一个基底,A 中向量e 1为零向量,C ,D 中两向量共线,B 中e 1≠0,e 2≠0,且e 1与e 2不共线.故选B.4.设向量a =(-1,2),向量b 是与a 方向相同的单位向量,则b =( ) A .(1,-2) B .⎝ ⎛⎭⎪⎪⎫-55,255 C.⎝ ⎛⎭⎪⎪⎫-15,25 D .⎝ ⎛⎭⎪⎪⎫55,-255 答案 B解析 因为向量b 是与a 方向相同的单位向量,所以b =a|a|=错误!(-1,2)=错误!(-1,2)=⎝⎛⎭⎪⎪⎫-55,255.故选B. 5.已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________.答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.6.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn =________.答案 -12解析 由向量a =(2,3),b =(-1,2),得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1).由m a +n b 与a -2b 共线,得2m -n 4=3m +2n -1,所以m n =-12.考向一 平面向量基本定理的应用例1 (1)如图,点A ,B ,C ,P 均在正方形网格的格点上.若AP →=λAB →+μAC →(λ,μ∈R ),则λ+2μ=( )A .1B .32C .43D .2答案 B解析 设在正方形网格上方向为水平向右,长度为一格的向量为i ,方向为竖直向上,长度为一格的向量为j ,∴AB→=-2i +2j ,AC →=4i ,AP →=i +j ,∵AP →=λAB →+μAC →(λ,μ∈R ),即i +j =λ(-2i +2j )+μ×4i ,i +j =(4μ-2λ)i +2λj ,∴⎩⎪⎨⎪⎧4μ-2λ=1,2λ=1,解得⎩⎪⎨⎪⎧λ=12,μ=12,∴λ+2μ=32.故选B.(2) 如图,以向量OA →=a ,OB →=b 为邻边作平行四边形OADB ,BM →=13BC →,CN →=13CD →,用a ,b 表示OM →,ON →,MN →.解 ∵BA →=OA →-OB →=a -b ,BM →=16BA →=16a -16b ,∴OM →=OB →+BM →=b +⎝ ⎛⎭⎪⎪⎫16a -16b =16a +56b .∵OD →=a +b ,∴ON →=OC →+13CD →=12OD →+16OD →=23OD →=23a +23b ,∴MN →=ON →-OM →=23a +23b -16a -56b =12a -16b .综上,OM →=16a +56b ,ON →=23a +23b ,MN →=12a -16b .应用平面向量基本定理表示向量的方法应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加法、减法或数乘运算,基本方法有两种:(1)运用向量的线性运算法则对待求向量不断进行化简,直至用基底表示为止. (2)将向量用含参数的基底表示,然后列方程或方程组,利用基底表示向量的唯一性求解.1.(2020·北京市朝阳区一模)如图,在△ABC 中,点D ,E 满足BC→=2BD→,CA →=3CE →.若DE →=x AB →+y AC →(x ,y ∈R ),则x +y =( )A .-12B .-13C.12 D .13答案 B解析 △ABC 中,点D ,E 满足BC →=2BD →,CA →=3CE →.DE →=DC →+CE →=12BC →+13CA→=12(AC →-AB →)-13AC →=-12AB →+16AC →,又DE →=x AB →+y AC →(x ,y ∈R ),∴⎩⎪⎨⎪⎧x =-12,y =16,∴x +y =-12+16=-13.故选B.2.(2020·青岛市高三上学期期末)在△ABC 中,AB →+AC →=2AD →,AE →+2DE →=0,若EB→=x AB →+y AC →,则( ) A .y =2x B .y =-2x C .x =2y D .x =-2y答案 D解析 如图所示,∵AB→+AC →=2AD →,∴点D 为边BC 的中点.∵AE →+2DE →=0,∴AE →=-2DE →,∴DE →=-13AD →=-16(AB →+AC →).又DB →=12CB →=12(AB →-AC →),∴EB →=DB →-DE →=12(AB →-AC →)+16(AB →+AC →)=23AB →-13AC →.又EB →=x AB →+y AC →,∴x =23,y =-13,即x =-2y .故选D.考向二 平面向量的坐标运算例2 (1)若向量AB →=DC →=(2,0),AD →=(1,1),则AC →+BC →等于( ) A .(3,1) B .(4,2) C .(5,3)D .(4,3)答案 B解析 AC→=AD →+DC →=(3,1),又BD →=AD →-AB →=(-1,1),则BC →=BD →+DC →=(1,1),所以AC→+BC →=(4,2).(2)(2020·辽宁省辽南协作校二模)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c =( )A.⎝ ⎛⎭⎪⎪⎫133,83 B .⎝ ⎛⎭⎪⎪⎫-133,-83C.⎝ ⎛⎭⎪⎪⎫133,43 D .⎝ ⎛⎭⎪⎪⎫-133,-43答案 D解析 ∵a -2b +3c =0,∴c =-13(a -2b )=-13(5+4×2,-2+2×3)=⎝⎛⎭⎪⎪⎫-133,-43.故选D. (3)(2020·天津和平区模拟) 如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若CA→=λCE →+μDB →(λ,μ∈R ),则λ+μ的值为( )A.65B .85C .2D .83答案 B解析 建立如图所示的平面直角坐标系,则D (0,0).不妨设AB =1,则CD =AD=2,∴C (2,0),A (0,2),B (1,2),E (0,1),∴CA→=(-2,2),CE →=(-2,1),DB →=(1,2),∵CA →=λCE →+μDB →,∴(-2,2)=λ(-2,1)+μ(1,2),∴⎩⎪⎨⎪⎧-2λ+μ=-2,λ+2μ=2,解得λ=65,μ=25,则λ+μ=85.故选B.平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解,并注意方程思想的应用.3.若向量a =(2,1),b =(-1,2),c =⎝⎛⎭⎪⎪⎫0,52,则c 可用向量a ,b 表示为( )A .c =12a +bB .c =-12a -bC .c =32a +12bD .c =32a -12b答案 A解析设c =x a +y b ,易知⎩⎪⎨⎪⎧ 0=2x -y ,52=x +2y ,∴⎩⎪⎨⎪⎧x =12,y =1.∴c =12a +b .故选A.4.已知OB 是平行四边形OABC 的一条对角线,O 为坐标原点,OA →=(2,4),OB →=(1,3),若点E 满足OC→=3EC →,则点E 的坐标为( )A.⎝ ⎛⎭⎪⎪⎫-23,-23B .⎝ ⎛⎭⎪⎪⎫-13,-13C.⎝ ⎛⎭⎪⎪⎫13,13 D .⎝ ⎛⎭⎪⎪⎫23,23答案 A解析 解法一:易知OC→=OB →-OA →=(-1,-1),则C (-1,-1),设E (x ,y ),则3EC→=3(-1-x ,-1-y )=(-3-3x ,-3-3y ), 由OC →=3EC →,知⎩⎪⎨⎪⎧-3-3x =-1,-3-3y =-1,所以⎩⎪⎨⎪⎧x =-23,y =-23,所以点E 的坐标为⎝ ⎛⎭⎪⎪⎫-23,-23.解法二:易知OC→=OB →-OA →=(-1,-1),由OC →=3EC →得OC →=3(OC →-OE →),所以OE→=23OC→=⎝⎛⎭⎪⎪⎫-23,-23,所以点E的坐标为⎝⎛⎭⎪⎪⎫-23,-23.考向三平面向量共线的坐标表示例3(1)(2020·山东省菏泽市一模)已知向量a,b满足a=(1,2),a+b=(1+m,1),若a∥b,则m=()A.2 B.-2C.12D.-12答案 D解析b=(a+b)-a=(1+m,1)-(1,2)=(m,-1).因为a∥b,所以2m+1=0,解得m=-12.故选D.(2)(2021·海口市海南中学高三月考)已知向量a=(1,1),点A(3,0),点B为直线y=2x上的一个动点,若AB→∥a,则点B的坐标为________.答案(-3,-6)解析由题意,设B(x,2x),则AB→=(x-3,2x),∵AB→∥a,∴x-3-2x=0,解得x =-3,∴B(-3,-6).利用两向量共线解题的技巧(1)一般地,在求与一个已知向量a共线的向量时,可设所求向量为λa(λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa即可得到所求的向量.(2)如果已知两向量共线,求某些参数的取值时,那么利用“若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是x1y2=x2y1”解题比较方便.5.已知点A(4,0),B(4,4),C(2,6),则AC与OB的交点P的坐标为________.答案(3,3)解析 解法一:由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA→=(4λ-4,4λ). 又AC→=OC →-OA →=(-2,6), 由AP→与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34,所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3).解法二:设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线,所以(x -4)×6-y ×(-2)=0,解得x =y =3,所以点P 的坐标为(3,3).6.(2020·长郡中学高三适应性考试)已知向量AC →=(1,sin α-1),BA →=(3,1),BD →=(2,cos α),若B ,C ,D 三点共线,则tan(2021π-α)=________.答案 -2解析 ∵B ,C ,D 三点共线, ∴BD→=x BC →=x (BA →+AC →), 即(2,cos α)=x (4,sin α),则⎩⎪⎨⎪⎧2=4x ,cosα=xsinα,得x =12,即cos α=12sin α,得tan α=2,则tan(2021π-α)=tan(-α)=-tan α=-2.一、单项选择题1.向量a ,b 满足a +b =(-1,5),a -b =(5,-3),则b =( ) A .(-3,4) B .(3,4) C .(3,-4) D .(-3,-4)答案 A解析 由a +b =(-1,5),a -b =(5,-3),得2b =(-1,5)-(5,-3)=(-6,8),所以b =12(-6,8)=(-3,4).2.(2021·山东聊城月考)已知平行四边形ABCD 中,AD →=(3,7),AB →=(-2,3),对角线AC 与BD 交于点O ,则CO→的坐标为( ) A.⎝ ⎛⎭⎪⎪⎫-12,5 B .⎝ ⎛⎭⎪⎪⎫12,5C.⎝ ⎛⎭⎪⎪⎫12,-5 D .⎝ ⎛⎭⎪⎪⎫-12,-5答案 D解析 因为AC →=AB →+AD →=(-2,3)+(3,7)=(1,10),所以OC →=12AC →=⎝ ⎛⎭⎪⎪⎫12,5,所以CO →=⎝ ⎛⎭⎪⎪⎫-12,-5.3. 如图,在梯形ABCD 中,DC →=14AB →,BE →=2EC→,且AE →=r AB →+s AD →,则2r +3s =( )A.1 B.2 C.3 D.4 答案 C解析根据题图,由题意可得AE→=AB→+BE→=AB→+23BC→=AB→+23(BA→+AD→+DC→)=13AB→+23(AD→+DC→)=13AB→+23⎝⎛⎭⎪⎪⎫AD→+14AB→=12AB→+23AD→.因为AE→=r AB→+s AD→,所以r=12,s=23,则2r+3s=1+2=3.4.已知向量a=(-1,2),b=(3,m),m∈R,则“m=-6”是“a∥(a+b)”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案 A解析由题意得a+b=(2,2+m),由a∥(a+b),得-1×(2+m)=2×2,所以m=-6,则“m=-6”是“a∥(a+b)”的充要条件.5.已知向量a=(2,1),b=(3,4),c=(1,m),若实数λ满足a+b=λc,则λ+m等于()A.5 B.6C.7 D.8答案 B解析由平面向量的坐标运算法则可得a+b=(5,5),λc=(λ,λm),据此有⎩⎪⎨⎪⎧λ=5,λm=5,解得λ=5,m =1,所以λ+m =6.6.(2020·青岛模拟)已知向量a =(1+cos x,2),b =(sin x,1),x ∈⎝ ⎛⎭⎪⎪⎫0,π2,若a ∥b ,则sin x =( )A.45B .35C .25D .255答案 A解析 根据题意,向量a =(1+cos x,2),b =(sin x,1),若a ∥b ,则2sin x =1+cos x ,变形可得cos x =2sin x -1,又sin 2x +cos 2x =1,则有sin 2x +(2sin x -1)2=1,变形可得,5sin 2x -4sin x =0,解得sin x =0或sin x =45,又x ∈⎝⎛⎭⎪⎪⎫0,π2,则sin x =45.故选A.7. (2020·黑龙江省大庆一中三模)“勾3股4弦5”是勾股定理的一个特例.根据记载,西周时期的数学家商高曾经和周公讨论过“勾3股4弦5”的问题,比毕达哥拉斯发现勾股定理早了500多年,如图,在矩形ABCD 中,△ABC 满足“勾3股4弦5”,且AB =3,E 为AD 上一点,BE ⊥AC .若BA→=λBE →+μAC →,则λ+μ的值为( )A .-925 B .725C .1625D .1答案 B解析 由题意建立如图所示平面直角坐标系,因为AB =3,BC =4,则B (0,0),A (0,3),C (4,0),BA→=(0,3),AC →=(4,-3),设BE →=(a,3),因为BE ⊥AC ,所以AC →·BE →=4a -9=0,解得a =94.由BA →=λBE →+μAC →,得(0,3)=λ⎝ ⎛⎭⎪⎪⎫94,3+μ(4,-3),所以⎩⎪⎨⎪⎧94λ+4μ=0,3λ-3μ=3,解得⎩⎪⎨⎪⎧λ=1625,μ=-925,所以λ+μ=725,故选B.8. 如图,扇形的半径为1,圆心角∠BAC =150°,点P 在弧BC 上运动,AP →=λAB →+μAC→,则3λ-μ的最小值是( )A .0B .3C .2D .-1答案 D解析 以A 为原点,AB 所在直线为x 轴,建立如图所示平面直角坐标系,则A (0,0),B (1,0),C (cos150°,sin150°)=⎝ ⎛⎭⎪⎪⎫-32,12,设P (cos θ,sin θ)(0°≤θ≤150°),因为AP →=λAB →+μAC →,所以(cos θ,sin θ)=λ(1,0)+μ⎝⎛⎭⎪⎪⎫-32,12,于是⎩⎪⎨⎪⎧λ-32μ=cosθ,12μ=sinθ,解得λ=cos θ+3sin θ,μ=2sin θ,那么3λ-μ=sin θ+3cos θ=2sin(θ+60°),因为0°≤θ≤150°,所以60°≤θ+60°≤210°,故sin(θ+60°)≥-12,因此3λ-μ的最小值为-1.故选D.二、多项选择题9.设O 是平行四边形ABCD 的两条对角线AC ,BD 的交点,则可作为这个平行四边形所在平面的一组基底的向量组是( )A.AD →与AB →B .DA →与BC → C.CA →与DC →D .OD→与OB → 答案 AC解析 平面内任意两个不共线的向量都可以作为基底,如图,对于A ,AD →与AB →不共线,可作为基底;对于B ,DA→与BC →为共线向量,不可作为基底;对于C ,CA →与DC→是两个不共线的向量,可作为基底;对于D ,OD →与OB →在同一直线上,是共线向量,不可作为基底.10.已知向量OA→=(1,-3),OB →=(2,-1),OC →=(m +1,m -2),若点A ,B ,C 能构成三角形,则实数m 可以是( )A .-2B .12C .1D .-1答案 ABD解析 各选项代入验证,若A ,B ,C 三点不共线即可构成三角形.因为AB →=OB →-OA→=(2,-1)-(1,-3)=(1,2),AC →=OC →-OA →=(m +1,m -2)-(1,-3)=(m ,m +1).假设A ,B ,C 三点共线,则1×(m +1)-2m =0,即m =1.所以只要m ≠1,则A ,B ,C 三点可构成三角形,故选ABD.11.(2021·广东湛江高三模拟)若点D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC→=a ,CA →=b ,则下列结论正确的是( ) A.AD →=-12a -bB .BE →=a +12bC.CF →=-12a +12bD .EF →=12a答案 ABC解析如图,在△ABC中,AD→=AC→+CD→=-CA→+12CB→=-b-12a,故A正确;BE→=BC→+CE→=a+12b,故B正确;AB→=AC→+CB→=-b-a,CF→=CA→+12AB→=b+12×(-b-a)=-12a+12b,故C正确;EF→=12CB→=-12a,故D不正确.故选ABC.12. (2020·山东潍坊高三模拟)如图所示,点A,B,C是圆O上的三点,线段OC 与线段AB交于圆内一点P,若AP→=λAB→,OC→=μOA→+3μOB→,则()A.P为线段OC的中点时,μ=1 2B.P为线段OC的中点时,μ=1 3C.无论μ取何值,恒有λ=3 4D.存在μ∈R,λ=1 2答案AC解析OP→=OA→+AP→=OA→+λAB→=OA→+λ(OB→-OA→)=(1-λ)OA→+λOB→,因为OP→与OC →共线,所以1-λμ=λ3μ,解得λ=34,故C 正确,D 错误;当P 为OC 的中点时,则OP →=12OC →,则1-λ=12μ,λ=12×3μ,解得μ=12,故A 正确,B 错误.故选AC.三、填空题13.(2020·哈尔滨六中二模)已知向量a =(log 2x,1),b =(log 23,-1),若a ∥b ,则x =________.答案13解析 因为a ∥b ,所以-log 2x =log 23,所以log 2x +log 23=0,所以log 2(3x )=0,所以3x =1,所以x =13.14.已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.答案 (2,4)解析 因为在梯形ABCD 中,DC =2AB ,AB ∥CD ,所以DC →=2AB →.设点D 的坐标为(x ,y ),则DC→=(4,2)-(x ,y )=(4-x,2-y ), AB→=(2,1)-(1,2)=(1,-1), 所以(4-x,2-y )=2(1,-1), 即(4-x,2-y )=(2,-2), 所以⎩⎪⎨⎪⎧4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).15. 向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.答案 4解析 以向量a 和b 的交点为坐标原点建立如图所示的平面直角坐标系,设每个小正方形的边长为1个单位,则A (1,-1),B (6,2),C (5,-1),所以a =AO→=(-1,1),b =OB→=(6,2),c =BC →=(-1,-3). 由c =λa +μb 可得⎩⎪⎨⎪⎧ -1=-λ+6μ,-3=λ+2μ,解得⎩⎪⎨⎪⎧ λ=-2,μ=-12,所以λμ=4.16.(2020·济南市高三上学期期末)平行四边形ABCD 中,M 为CD 的中点,点N 满足BN→=2NC →,若AB →=λAM →+μAN →,则λ+μ的值为________. 答案 12解析 因为M 为CD 的中点,点N 满足BN→=2NC →, 所以DM →=12DC →,BN →=23BC →. 又因为AB→=λAM →+μAN →, 所以AB→=λ(AD →+DM →)+μ(AB →+BN →) =λ⎝ ⎛⎭⎪⎪⎫AD →+12DC →+μ⎝⎛⎭⎪⎪⎫AB →+23BC → =λAD →+λ2DC →+μAB →+2μ3BC →.① 又因为在平行四边形ABCD 中,AB→=DC →,AD →=BC →, 所以①整理得,AB →=λAD →+λ2AB →+μAB →+2μ3AD →, 即⎝ ⎛⎭⎪⎪⎫1-λ2-μAB →=⎝ ⎛⎭⎪⎪⎫λ+2μ3AD →. 又因为AB→,AD →不共线,由平面向量基本定理得 ⎩⎪⎨⎪⎧ 1-λ2-μ=0,λ+2μ3=0,解得⎩⎪⎨⎪⎧ λ=-1,μ=32,所以λ+μ=12.。
2023年新高考数学一轮复习6-2 平面向量的基本定理及坐标表示(知识点讲解)解析版
专题6.2 平面向量的基本定理及坐标表示(知识点讲解)【知识框架】【核心素养】1.与向量线性运算相结合,考查平面向量基本定理、数量积、向量的夹角、模的计算,凸显数学运算、直观想象的核心素养.2.与向量的坐标表示相结合,考查向量的数量积、向量的夹角、模的计算,凸显数学运算的核心素养. 3.以平面图形为载体,考查向量数量积的应用,凸显数学运算、数学建模、直观想象的核心素养.【知识点展示】(一)平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. (二)平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a | (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12.(三)平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中a ≠0,b ≠0,a ,b 共线⇔x 1y 2-x 2y 1=0. (四)平面向量数量积的坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉. 结论 几何表示 坐标表示模 |a |=a ·a |a |=x 21+y 21数量积 a ·b =|a ||b |cos θ a ·b =x 1x 2+y 1y 2 夹角 cos θ=a ·b|a ||b |cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22a ⊥ba ·b =0 x 1x 2+y 1y 2=0 |a ·b |与|a ||b |的关系|a ·b |≤|a ||b ||x 1x 2+y 1y 2|≤x 21+y 21·x 22+y 22设非零向量a =(x 1,y 1),b =(x 2,y 2).数量积 两个向量的数量积等于__它们对应坐标的乘积的和__,即a·b =__x 1x 2+y 1y 2__两个向量垂直a ⊥b ⇔__x 1x 2+y 1y 2=0__12211212(六)常用结论1.若a 与b 不共线,且λa +μb =0,则λ=μ=0.2.已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22.3.已知△ABC 的重心为G ,若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则G ⎝⎛⎭⎫x 1+x 2+x 33,y 1+y 2+y 33【常考题型剖析】题型一:平面向量基本定理的应用例1.(2015·四川·高考真题(理))设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3,2BM MC DN NC ==,则AM NM ⋅=( )A .20B .15C .9D .6【答案】C 【解析】 【分析】根据图形得出3344AM AB BC AB AD =+=+,2233AN AD DC AD AB =+=+,AM NM ⋅ 2()AM AM AN AM AM AN =⋅-=-⋅,结合向量的数量积求解即可.【详解】因为四边形ABCD 为平行四边形,点M 、N 满足3,2BM MC DN NC ==,∴根据图形可得:3344AM AB BC AB AD =+=+, 2233AN AD DC AD AB =+=+,NM AM AN ∴=-,2()AM NM AM AM AN AM AM AN ⋅=⋅-=-⋅,22239216AM AB AB AD AD =+⋅+, 22233342AM AN AB AD AD AB ⋅=++⋅, 6,4AB AD ==, 22131239316AM NM AB AD ∴⋅=-=-=, 故选C.例2.(2017·天津·高考真题(文))在ABC 中,60A ∠=︒,3AB =,2AC =. 若2BD DC =,()AE AC AB R λλ=-∈,且4AD AE ⋅=-,则λ的值为______________.【答案】311【解析】 【详解】01232cos603,33AB AC AD AB AC ⋅=⨯⨯==+ ,则 122123()()3493433333311AD AE AB AC AC AB λλλλ⋅=+-=⨯+⨯-⨯-⨯=-⇒=.【总结提升】平面向量基本定理的实质及解题思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决. 题型二:平面向量的坐标运算例3.(2022·全国·高考真题(文))已知向量(2,1)(2,4)a b ==-,,则a b -( ) A .2 B .3 C .4 D .5【答案】D 【解析】 【分析】先求得a b -,然后求得a b -. 【详解】因为()()()2,12,44,3a b -=--=-,所以245-=+=a b .故选:D例4.(2022·全国·高考真题)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( ) A .6- B .5- C .5 D .6【答案】C 【解析】 【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得 【详解】解:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =, 故选:C例5.(2018·全国·专题练习)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为( )A .3B .CD .2【答案】A【解析】 【详解】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y ,易得圆的半径5r =C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+, 设12x z y =-+,即102x y z -+-=,点(),Px y 在圆()22425x y -+=上, 所以圆心(2,0)到直线102xy z -+-=的距离d r ≤13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A.例6.(2018·江苏·高考真题)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为________. 【答案】3 【解析】 【详解】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果. 详解:设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭,由0AB CD ⋅=得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-,因为0a >,所以 3.a = 【总结提升】平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量的加、减、数乘运算的法则来进行求解,若已知有向线段两端点的坐标,则应先求向量的坐标.要注意点的坐标和向量的坐标之间的关系,一个向量的坐标等于向量终点的坐标减去始点的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解. 题型三:平面向量共线的坐标表示例7.(2021·全国·高考真题(文))已知向量()()2,5,,4a b λ==,若//a b ,则λ=_________.【答案】85【解析】 【分析】利用向量平行的充分必要条件得到关于λ的方程,解方程即可求得实数λ的值. 【详解】由题意结合向量平行的充分必要条件可得:2450λ⨯-⨯=, 解方程可得:85λ=.故答案为:85.例8.(2021·江苏·沛县教师发展中心高三阶段练习)已知()1,3A ,()2,2B -,()4,1C . (1)若AB CD =,求D 点的坐标;(2)设向量a AB =,b BC =,若ka b -与3a b +平行,求实数k 的值. 【答案】(1)4(5,)D - (2)13k =-【解析】 【分析】(1)根据题意设(,)D x y ,写出,C AB D 的坐标,根据向量相等的坐标关系求解;(2)直接根据向量共线的坐标公式求解即可. (1)设(,)D x y ,又因为()()()1,3,2,2,4,1A B C -, 所以=(1,5),(4,1)AB CD x y -=--, 因为=AB CD ,所以4115x y -=⎧⎨-=-⎩,得54x y =⎧⎨=-⎩,所以4(5,)D -. (2)由题意得,(1,5)a =-,(2,3)b =, 所以=(2,53)ka b k k ----,3(7,4)a b +=, 因为ka b -与3a b +平行,所以4(2)7(53)0k k ----=,解得13k =-.所以实数k 的值为13-.【总结提升】平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(2)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若1122()()a x y b x y =,,=,,则//a b 的充要条件是1221x y x y =”解题比较方便. 题型四:平面向量数量积的运算例9.【多选题】(2021·全国·高考真题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( ) A .12OP OP = B .12AP AP = C .312OA OP OP OP ⋅=⋅ D .123OA OP OP OP ⋅=⋅ 【答案】AC 【解析】 【分析】A 、B 写出1OP ,2OP 、1AP ,2AP 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误. 【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以1||cos 1OP ==,2||(cos 1OP==,故12||||OP OP =,正确;B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以1||(cos 2|sin|2AP α===,同理2||(cos 2|sin|2AP β=,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC例10.(2019·天津·高考真题(文)) 在四边形ABCD 中,AD BC ∥,AB =,5AD = ,30A∠=︒ ,点E 在线段CB 的延长线上,且AEBE =,则BD AE ⋅=__________.【答案】1-. 【解析】 【分析】建立坐标系利用向量的坐标运算分别写出向量而求解. 【详解】建立如图所示的直角坐标系,则B ,5)2D . 因为AD∥BC ,30BAD ∠=︒,所以150CBA ∠=︒,因为AE BE =,所以30BAE ABE ∠=∠=︒,所以直线BEy x=-,直线AE的斜率为y =.由y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x =1y =-, 所以1)E -. 所以35(,)(3,1)122BD AE =-=-.例11.(2020·北京·高考真题)已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD =_________;PB PD ⋅=_________.【答案】 1-【解析】 【分析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立平面直角坐标系,求得点P 的坐标,利用平面向量数量积的坐标运算可求得PD 以及PB PD ⋅的值. 【详解】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+=, 则点()2,1P ,()2,1PD ∴=-,()0,1PB =-,因此,(PD =-()021(1)1PB PD ⋅=⨯-+⨯-=-.1-. 【总结提升】1.计算向量数量积的三种常用方法(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解. 2.总结提升:公式a·b =|a||b|cos<a ,b >与a·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.若题目中给出的是两向量的模与夹角,则可直接利用公式a·b =|a||b|cos<a ,b >求解;若已知两向量的坐标,则可选用公式a·b =x 1x 2+y 1y 2求解. 题型五:平面向量的模、夹角例12.(2022·四川省内江市第六中学模拟预测(理))已知向量()1,2a =,5a b ⋅=,8a b +=,则b =( ) A .6 B .5 C .8 D .7【答案】D 【解析】 【分析】先求出||a ,再将8a b +=两边平方,结合数量积的运算,即可求得答案. 【详解】由()1,2a =得:2||12a =+,由8a b +=得2222251064a b a a b b b +=+⋅+=++=, 即得249,||7b b ==,故选:D例13.(2018·浙江高考真题)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e·b+3=0,则|a −b|的最小值是( ) A .√3−1 B .√3+1 C .2 D .2−√3 【答案】A 【解析】设a =(x,y),e =(1,0),b =(m,n),则由⟨a,e ⟩=π3得a ⋅e =|a|⋅|e|cos π3,x =12√x 2+y 2,∴y =±√3x , 由b 2−4e ⋅b +3=0得m 2+n 2−4m +3=0,(m −2)2+n 2=1, 因此|a −b|的最小值为圆心(2,0)到直线y =±√3x 的距离2√32=√3减去半径1,为√3−1.选A.【思路点拨】先确定向量a,b 所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.例14.(2021·湖南·高考真题)已知向量(1,2)a =-,(3,1)b =-,则|2|a b +=___________【分析】利用向量模的坐标表示,即可求解.【详解】()21,3a b +=,所以2213a b +=+=例15.(2019·全国·高考真题(文))已知向量(2,2),(8,6)a b ==-,则cos ,a b =___________.【答案】【解析】【分析】根据向量夹角公式可求出结果.【详解】22826cos ,102a ba b a b ⨯-+⨯<>===-+.例16.(2017·山东·高考真题(理))已知1e ,2e 是互相12e - 与1e +λ2e 的夹角为60°,则实数λ的值是_ _.【解析】【分析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【详解】解:由题意,设1e =(1,0),2e =(0,1),12e -=1), 1e +λ2e =(1,λ);又夹角为60°,12e -)•(1e +λ2e )=λ=2cos60°,λ=解得λ=【总结提升】 1.求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系;(2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 提醒:〈a ,b 〉∈[0,π].2.平面向量模问题的类型及求解方法(1)求向量模的常用方法①若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2.②若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.(2)求向量模的最值(范围)的方法①代数法:把所求的模表示成某个变量的函数,再用求最值的方法求解.②几何法(数形结合法):弄清所求的模表示的几何意义,结合动点表示的图形求解.题型六:两个向量垂直问题例17.(2016·全国·高考真题(理))已知向量()()1,3,2a m b ==-,,且()a b b +⊥,则m =( ) A .−8B .−6C .6D .8【答案】D【解析】【分析】由已知向量的坐标求出a b +的坐标,再由向量垂直的坐标运算得答案.【详解】∵(1,),(3,2),(4,2)a m b a b m ==-∴+=-,又()a b b +⊥,∴3×4+(﹣2)×(m ﹣2)=0,解得m =8.故选D .例18.(2022·全国·高考真题(文))已知向量(,3),(1,1)a m b m ==+.若a b ⊥,则m =______________.【答案】34-##0.75- 【解析】【分析】直接由向量垂直的坐标表示求解即可.【详解】由题意知:3(1)0a b m m ⋅=++=,解得34m =-. 故答案为:34-. 例19.(2022·全国·高三专题练习)已知,a b 是平面内两个互相垂直的单位向量,若向量c 满足()()20a c b c -⋅-=,则c 的最大值是_________.【解析】【分析】由题意可设,a b 的坐标,设(,)c x y =,利用()()20a c b c -⋅-=求得(,)c x y =的终点的轨迹方程,即可求得答案.【详解】因为,a b 是平面内两个互相垂直的单位向量,故不妨设(1,0),(0,1)a b ==,设(,)c x y =,由()()20a c b c -⋅-=得:(1,)(2,12)0x y x y --⋅--=,即2(1)(12)0x x y y ----=,即22115()()2416x y -+-=,则c 的终点在以11(,)24故c 的最大值为=例20.(2020·全国高考真题(理))已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【解析】 由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:2k =.. 【规律方法】1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值(涉及向量垂直问题为高频考点)根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.3.已知非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 与a ⊥b 的坐标表示如下:a ∥b ⇔x 1y 2=x 2y 1,即x 1y 2-x 2y 1=0;a ⊥b ⇔x 1x 2=-y 1y 2,即x 1x 2+y 1y 2=0.两个结论不能混淆,可以对比学习,分别简记为:纵横交错积相等,横横纵纵积相反.。
高考数学(人教a版,理科)题库:平面向量的基本定理及向量坐标运算(含答案)
第2讲 平面向量的基本定理及向量坐标运算一、选择题1.已知平面向量a =(x,1),b =(-x ,x 2),则向量a +b ( ). A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线解析 由题意得a +b =(x -x,1+x 2)=(0,1+x 2),易知a +b 平行于y 轴. 答案 C2.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ). A .(-2,-4) B .(-3,-6) C .(-4,-8)D .(-5,-10)解析 由a =(1,2),b =(-2,m ),且a ∥b ,得1×m =2×(-2)⇒m =-4,从而b =(-2,-4),那么2a +3b =2×(1,2)+3×(-2,-4)=(-4,-8). 答案 C3.设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相连能构成四边形,则向量d 为( ).A .(2,6)B .(-2,6)C .(2,-6)D .(-2,-6)解析 设d =(x ,y ),由题意知4a =(4,-12),4b -2c =(-6,20),2(a -c )=(4,-2),又4a +4b -2c +2(a -c )+d =0,解得x =-2,y =-6,所以d =(-2,-6).故选D. 答案 D4. 已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ= ( ). A.14B.12C .1D .2解析 依题意得a +λb =(1+λ,2),由(a +λb )∥c ,得(1+λ)×4-3×2=0,∴λ=12. 答案 B5. 若向量AB =(1,2),BC =(3,4),则AC =( )A (4,6)B (-4,-6)C (-2,-2)D (2,2) 解析 因为AC =AB +BC =(4,6),所以选A. 答案 A6.若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为( ).A .(2,0)B .(0,-2)C .(-2,0)D .(0,2)解析 ∵a 在基底p ,q 下的坐标为(-2,2), 即a =-2p +2q =(2,4),令a =x m +y n =(-x +y ,x +2y ), ∴⎩⎨⎧ -x +y =2,x +2y =4,即⎩⎨⎧x =0,y =2. ∴a 在基底m ,n 下的坐标为(0,2). 答案 D 二、填空题7.若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b 的值为________. 解析 AB →=(a -2,-2),AC →=(-2,b -2),依题意,有(a -2)(b -2)-4=0,即ab -2a -2b =0,所以1a +1b =12. 答案 128.设向量a ,b 满足|a |=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为________.解析 设a =λb (λ<0),则|a |=|λ||b |,∴|λ|=|a ||b |, 又|b |=5,|a |=2 5. ∴|λ|=2,∴λ=-2.∴a =λb =-2(2,1)=(-4,-2). 答案 (-4,-2)9.设OA→=(1,-2),OB →=(a ,-1),OC →=(-b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +2b 的最小值为________. 解析 AB→=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2).∵A ,B ,C 三点共线,∴AB→∥AC →.∴2(a -1)-(-b -1)=0,∴2a +b =1. ∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (2a +b )=4+b a +4ab ≥4+2b a ·4a b =8.当且仅当b a =4a b ,即a =14,b =12时取等号. ∴1a +2b 的最小值是8. 答案 810.在平面直角坐标系xOy 中,四边形ABCD 的边AB ∥DC ,AD ∥BC .已知点A (-2,0),B (6,8),C (8,6),则D 点的坐标为________.解析 由条件中的四边形ABCD 的对边分别平行,可以判断该四边形ABCD 是平行四边形.设D (x ,y ),则有AB →=DC →,即(6,8)-(-2,0)=(8,6)-(x ,y ),解得(x ,y )=(0,-2). 答案 (0,-2) 三、解答题11.已知点A (-1,2),B (2,8)以及AC →=13AB →,DA →=-13BA →,求点C ,D 的坐标和CD →的坐标.解析 设点C ,D 的坐标分别为(x 1,y 1)、(x 2,y 2),由题意得AC →=(x 1+1,y 1-2),AB →=(3,6),DA →=(-1-x 2,2-y 2),BA →=(-3,-6). 因为AC →=13AB →,DA →=-13BA →,所以有⎩⎨⎧ x 1+1=1,y 1-2=2,和⎩⎨⎧ -1-x 2=1,2-y 2=2.解得⎩⎨⎧x 1=0,y 1=4,和⎩⎨⎧x 2=-2,y 2=0.所以点C ,D 的坐标分别是(0,4)、(-2,0),从而CD →=(-2,-4). 12.已知a =(1,2),b =(-3,2),当k 为何值时,k a +b 与a -3b 平行?平行时它们是同向还是反向?解 法一 k a +b =k (1,2)+(-3,2)=(k -3,2k +2), a -3b =(1,2)-3(-3,2)=(10,-4),当k a +b 与a -3b 平行时,存在唯一实数λ使k a +b =λ(a -3b ),由(k -3,2k +2)=λ(10,-4)得,⎩⎨⎧k -3=10λ,2k +2=-4λ.解得k =λ=-13, ∴当k =-13时,k a +b 与a -3b 平行, 这时k a +b =-13a +b =-13(a -3b ). ∵λ=-13<0,∴k a +b 与a -3b 反向. 法二 由法一知k a +b =(k -3,2k +2), a -3b =(10,-4),∵k a +b 与a -3b 平行 ∴(k -3)×(-4)-10×(2k +2)=0,解得k =-13, 此时k a +b =⎝⎛⎭⎪⎫-13-3,-23+2=-13(a -3b ).∴当k =-13时,k a +b 与a -3b 平行,并且反向.13.在平面直角坐标系中,O 为坐标原点,已知向量a =(2,1),A (1,0),B (cos θ,t ),(1)若a ∥AB→,且|AB →|=5|OA →|,求向量OB →的坐标;(2)若a ∥AB→,求y =cos 2θ-cos θ+t 2的最小值.解 (1)∵AB→=(cos θ-1,t ),又a ∥AB →,∴2t -cos θ+1=0. ∴cos θ-1=2t .①又∵|AB→|=5|OA →|,∴(cos θ-1)2+t 2=5.② 由①②得,5t 2=5,∴t 2=1.∴t =±1. 当t =1时,cos θ=3(舍去), 当t =-1时,cos θ=-1,∴B (-1,-1),∴OB →=(-1,-1). (2)由(1)可知t =cos θ-12, ∴y =cos 2θ-cos θ+(cos θ-1)24=54cos 2θ-32cos θ+14=54⎝ ⎛⎭⎪⎫cos 2θ-65cos θ+14=54⎝ ⎛⎭⎪⎫cos θ-352-15, ∴当cos θ=35时,y min =-15.14.已知O (0,0),A (1,2),B (4,5)及OP →=OA →+tAB →,求 (1)t 为何值时,P 在x 轴上?P 在y 轴上?P 在第二象限?(2)四边形OABP 能否成为平行四边形?若能,求出相应的t 值;若不能,请说明理由.解 (1)OP →=OA →+tAB →=(1+3t,2+3t ).若P 在x 轴上,则2+3t =0,∴t =-23;若P 在y 轴上,只需1+3t =0,∴t =-13;若P 在第二象限,则⎩⎨⎧1+3t <0,2+3t >0.∴-23<t <-13.(2)因为OA →=(1,2),PB →=(3-3t,3-3t ).若OABP 为平行四边形,则OA →=PB →,∵⎩⎨⎧3-3t =1,3-3t =2无解.所以四边形OABP 不能成为平行四边形.。
2023年高考数学一轮复习讲义(新高考)第5章§5-2平面向量基本定理及坐标表示
§5.2 平面向量基本定理及坐标表示考试要求 1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.知识梳理1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.若e 1,e 2不共线,我们把{e 1,e 2}叫做表示这一平面内所有向量的一个基底.2.平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量作正交分解.3.平面向量的坐标运算(1)向量加法、减法、数乘运算及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB → =(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2.4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.常用结论已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则点P 的坐标为(x 1+x 22,y 1+y 22);已知△ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心G 的坐标为(x 1+x 2+x 33,y 1+y 2+y 33).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内的任意两个向量都可以作为一个基底.( × )(2)设{a ,b }是平面内的一个基底,若实数λ1,μ1,λ2,μ2满足λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( √ )(3)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可以表示成x 1x 2=y 1y 2.( × )(4)平面向量不论经过怎样的平移变换之后其坐标不变.( √ )教材改编题1.(多选)下列各组向量中,可以作为基底的是( )A .e 1=(0,0),e 2=(1,-2)B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,3),e 2=(12,-34)答案 BD2.若P 1(1,3),P 2(4,0),且P 是线段P 1P 2的一个三等分点(靠近点P 1),则点P 的坐标为( )A .(2,2)B .(3,-1)C .(2,2)或(3,-1)D .(2,2)或(3,1)答案 A解析 设P (x ,y ),由题意知P 1P —→ =13P 1P 2—→,∴(x -1,y -3)=13(4-1,0-3)=(1,-1),即Error!∴Error!3.已知向量a =(x ,1),b =(2,x -1),若(2a -b )∥a ,则x 为________.答案 2或-1解析 2a -b =(2x -2,3-x ),∵(2a -b )∥a ,∴2x -2=x (3-x ),即x 2-x -2=0,解得x =2或x =-1.题型一 平面向量基本定理的应用例1 (1)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →等于( )A.34AB → -14AC →B.14AB → -34AC →C.34AB → +14AC →D.14AB → +34AC →答案 A(2)如图,已知平面内有三个向量OA → ,OB → ,OC → ,其中OA → 与OB → 的夹角为120°,OA → 与OC →的夹角为30°,且|OA → |=|OB → |=1,|OC → |=23.若OC → =λOA → +μOB →(λ,μ∈R ),则λ+μ=______.答案 6解析 方法一 如图,作平行四边形OB 1CA 1,则OC → =OB 1—→ +OA 1—→,因为OA → 与OB → 的夹角为120°,OA → 与OC →的夹角为30°,所以∠B 1OC =90°.在Rt △OB 1C 中,∠OCB 1=30°,|OC →|=23,所以|OB 1—→ |=2,|B 1C —→|=4,所以|OA 1—→ |=|B 1C —→|=4,所以OC → =4OA → +2OB → ,所以λ=4,μ=2,所以λ+μ=6.方法二 以O 为原点,建立如图所示的平面直角坐标系,则A (1,0),B (-12,32),C (3,3).由OC → =λOA → +μOB → ,得Error!解得Error!所以λ+μ=6.教师备选1.(2022·山东省实验中学等四校联考)如图,在Rt △ABC 中,∠ABC =π2,AC =2AB ,∠BAC的平分线交△ABC 的外接圆于点D ,设AB → =a ,AC → =b ,则向量AD →等于( )A .a +b B.12a +b C .a +12bD .a +23b答案 C解析 设圆的半径为r ,在Rt △ABC 中,∠ABC =π2,AC =2AB ,所以∠BAC =π3,∠ACB =π6,又∠BAC 的平分线交△ABC 的外接圆于点D ,所以∠ACB =∠BAD =∠CAD =π6,则根据圆的性质得BD =AB ,又因为在Rt △ABC 中,AB =12AC =r =OD ,所以四边形ABDO 为菱形,所以AD → =AB → +AO →=a +12b .2.(2022·苏州质检)如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG → =λCD → +μCB →(λ,μ∈R ),则λμ=________.答案 12解析 由题图可设CG → =xCE →(0<x <1),则CG → =x (CB → +BE → )=x (CB → +12CD →)=x 2CD →+xCB → .因为CG → =λCD → +μCB → ,CD → 与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.思维升华 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用平面向量基本定理解决问题的一般思路是:先选择一个基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.跟踪训练1 (1)如图,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE → =λAB →+μAD →(λ,μ为实数),则λ2+μ2等于( )A.58B.14C .1 D.516答案 A解析 DE → =12DA → +12DO→=12DA → +14DB →=12DA → +14(DA → +AB → )=14AB → -34AD →,所以λ=14,μ=-34,故λ2+μ2=58.(2)如图,以向量OA → =a ,OB → =b 为邻边作平行四边形OADB ,BM → =13BC → ,CN → =13CD → ,则MN →=________.(用a ,b 表示)答案 12a -16b解析 ∵BA → =OA → -OB →=a -b ,BM → =16BA → =16a -16b ,∴OM → =OB → +BM →=b +(16a -16b )=16a +56b .∵OD →=a +b ,∴ON → =OC → +13CD → =12OD → +16OD → =23OD → =23a +23b .∴MN → =ON → -OM → =23a +23b -16a -56b =12a -16b .题型二 平面向量的坐标运算例2 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( )A.(133,83) B.(-133,-83)C.(133,43)D.(-133,-43)答案 D解析 ∵a -2b +3c =0,∴c =-13(a -2b ).∵a -2b =(5,-2)-(-8,-6)=(13,4),∴c =-13(a -2b )=(-133,-43).(2)如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若CA→=λCE → +μDB →(λ,μ∈R ),则λ+μ的值为( )A.65B.85 C .2 D.83答案 B解析 建立如图所示的平面直角坐标系,则D (0,0).不妨设AB =1,则CD =AD =2,∴C (2,0),A (0,2),B (1,2),E (0,1),∴CA → =(-2,2),CE → =(-2,1),DB →=(1,2),∵CA → =λCE → +μDB → ,∴(-2,2)=λ(-2,1)+μ(1,2),∴Error!解得Error!故λ+μ=85.教师备选已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC → =2AD →,则顶点D 的坐标为( )A.(2,72)B.(2,-12)C .(3,2)D .(1,3)答案 A解析 设D (x ,y ),则AD → =(x ,y -2),BC →=(4,3),又BC → =2AD →,所以Error!解得Error!所以顶点D 的坐标为(2,72).思维升华 向量的坐标表示把点与数联系起来,引入平面向量的坐标可以使向量运算代数化,成为数与形结合的载体.跟踪训练2 (1)向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ等于( )A .1B .2C .3D .4答案 D解析 以向量a 和b 的交点O 为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A (1,-1),B (6,2),C (5,-1),∴a =AO → =(-1,1),b =OB →=(6,2),c =BC →=(-1,-3),∵c =λa +μb ,∴(-1,-3)=λ(-1,1)+μ(6,2),则Error!解得Error!∴λμ=-2-12=4.(2)在△ABC 中,点P 在BC 上,且BP → =2PC → ,点Q 是AC 的中点,若PA → =(4,3),PQ →=(1,5),则AQ → =________,BC →=________.答案 (-3,2) (-6,21)解析 AQ → =PQ → -PA →=(1,5)-(4,3)=(-3,2),PC → =PA → +AC → =PA → +2AQ →=(4,3)+2(-3,2)=(-2,7),BC → =3PC →=3(-2,7)=(-6,21).题型三 向量共线的坐标表示例3 (1)已知a =(1,2+sin x ),b =(2,cos x ),c =(-1,2),若(a -b )∥c ,则锐角x 等于( )A .15° B .30°C .45° D .60°答案 C(2)已知在平面直角坐标系Oxy 中,P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3—→与向量a =(1,-1)共线,若OP 3—→ =λOP 1—→ +(1-λ)OP 2—→,则λ等于( )A .-3B .3C .1D .-1答案 D解析 设OP 3—→=(x ,y ),则由OP 3—→∥a 知x +y =0,所以OP 3—→=(x ,-x ).若OP 3—→ =λOP 1—→ +(1-λ)OP 2—→,则(x ,-x )=λ(3,1)+(1-λ)·(-1,3)=(4λ-1,3-2λ),即Error!所以4λ-1+3-2λ=0,解得λ=-1.教师备选1.已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________.答案 12解析 由题意得2a +b =(4,2),因为c =(1,λ),c ∥(2a +b ),所以4λ-2=0,解得λ=12.2.已知O 为坐标原点,点A (6,3),若点P 在直线OA 上,且|OP → |=12|PA →|,P 是OB 的中点,则点B 的坐标为________________________.答案 (4,2)或(-12,-6)解析 ∵点P 在直线OA 上,∴OP → ∥PA →,又∵|OP → |=12|PA → |,∴OP →=±12PA → ,设点P (m ,n ),则OP → =(m ,n ),PA →=(6-m ,3-n ).①若OP → =12PA →,则(m ,n )=12(6-m ,3-n ),∴Error!解得Error!∴P (2,1),∵P 是OB 的中点,∴B (4,2).②若OP →=-12PA →,则(m ,n )=-12(6-m ,3-n ),∴Error!解得Error!∴P (-6,-3),∵P 是OB 的中点,∴B (-12,-6).综上所述,点B 的坐标为(4,2)或(-12,-6).思维升华 平面向量共线的坐标表示问题的解题策略(1)若a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b 的充要条件是x 1y 2=x 2y 1.(2)在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ).跟踪训练3 平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).(1)若(a +k c )∥(2b -a ),求实数k ;(2)若d 满足(d -c )∥(a +b ),且|d -c |=5,求d 的坐标.解 (1)a +k c =(3+4k ,2+k ),2b -a =(-5,2),由题意得2×(3+4k )-(-5)×(2+k )=0,解得k =-1613.(2)设d =(x ,y ),则d -c =(x -4,y -1),又a +b =(2,4),|d -c|=5,∴Error!解得Error!或Error!∴d 的坐标为(3,-1)或(5,3).课时精练1.(2022·泉州模拟)若向量AB → =(2,3),AC → =(4,7),则BC →等于( )A .(-2,-4)B .(2,4)C .(6,10)D .(-6,-10)答案 B2.(2022·TOP300尖子生联考)已知A (-1,2),B (2,-1),若点C 满足AC → +AB →=0,则点C 的坐标为( )A.(12,12) B .(-3,3)C .(3,-3)D .(-4,5)答案 D3.下列向量组中,能表示它们所在平面内所有向量的一个基底是( )A .a =(1,2),b =(0,0)B .a =(1,-2),b =(3,5)C .a =(3,2),b =(9,6)D .a =(-34,12),b =(3,-2)答案 B4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,m =(a ,b ),n =(cos B ,cos A ),则“m ∥n ”是“△ABC 是等腰三角形”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 D解析 由m ∥n ,得b cos B -a cos A =0,即sin B cos B =sin A cos A ,所以sin 2B =sin 2A ,所以2A =2B 或2A +2B =π,即A =B 或A +B =π2,所以△ABC 为等腰三角形或直角三角形;反之,△ABC 是等腰三角形,若a =c ≠b ,则不能得到m ∥n ,所以“m ∥n ”是“△ABC 是等腰三角形”的既不充分也不必要条件.5.(多选)(2022·聊城一中模拟)在梯形ABCD 中,AB ∥CD ,AB =2CD ,E ,F 分别是AB ,CD的中点,AC 与BD 交于点M ,设AB → =a ,AD →=b ,则下列结论正确的是( )A.AC → =12a +b B.BC → =-12a +b C.BM → =-13a +23b D.EF → =-14a +b 答案 ABD解析 AC → =AD → +DC → =AD → +12AB → =12a +b ,故A 正确;BC → =BA → +AD → +DC → =-AB → +AD → +12AB →=-12a +b ,故B 正确;BM → =BA → +AM → =-AB → +23AC → =-23a +23b ,故C 错误;EF → =EA → +AD → +DF → =-12AB → +AD → +14AB → =-14a +b ,故D 正确.6.(多选)已知向量OA → =(1,-3),OB → =(2,-1),OC →=(m +1,m -2),若点A ,B ,C 能构成三角形,则实数m 可以是( )A .-2 B.12C .1D .-1答案 ABD解析 各选项代入验证,若A ,B ,C 三点不共线即可构成三角形.因为AB → =OB → -OA →=(2,-1)-(1,-3)=(1,2),AC → =OC → -OA →=(m +1,m -2)-(1,-3)=(m ,m +1).假设A ,B ,C 三点共线,则1×(m +1)-2m =0,即m =1.所以只要m ≠1,A ,B ,C 三点就可构成三角形.7.在梯形ABCD 中,AB ∥CD ,且DC =2AB ,若点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.答案 (2,4)解析 ∵在梯形ABCD 中,DC =2AB ,AB ∥CD ,∴DC → =2AB →,设点D 的坐标为(x ,y ),则DC → =(4-x ,2-y ),又AB →=(1,-1),∴(4-x ,2-y )=2(1,-1),即Error!∴Error!∴点D 的坐标为(2,4).8.(2022·开封模拟)已知向量m =(λ+1,1),n =(λ+2,2).若(2m +n )∥(m -2n ),则λ=________.答案 0解析 由题意得,2m +n =(3λ+4,4),m -2n =(-λ-3,-3),∵(2m +n )∥(m -2n ),∴-3(3λ+4)-4(-λ-3)=0,解得λ=0.9.已知A (-2,4),B (3,-1),C (-3,-4).设AB → =a ,BC → =b ,CA → =c ,且CM → =3c ,CN →=-2b .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ;(3)求M ,N 的坐标及向量MN →的坐标.解 由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)方法一 ∵m b +n c =(-6m +n ,-3m +8n ),∴Error!解得Error!方法二 ∵a +b +c =0,∴a =-b -c ,又a =m b +n c ,∴m b +n c =-b -c ,∴Error!(3)设O 为坐标原点,∵CM → =OM → -OC →=3c ,∴OM → =3c +OC →=(3,24)+(-3,-4)=(0,20).∴M (0,20).又∵CN → =ON → -OC →=-2b ,∴ON → =-2b +OC →=(12,6)+(-3,-4)=(9,2),∴N (9,2),∴MN →=(9,-18).10.已知a =(1,0),b =(2,1).(1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB → =2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求m 的值.解 (1)k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2).∵k a -b 与a +2b 共线,∴2(k -2)-(-1)×5=0,即2k -4+5=0,解得k =-12.(2)方法一 ∵A ,B ,C 三点共线,∴AB → =λBC →,即2a +3b =λ(a +m b ),∴Error!解得m =32.方法二 AB →=2a +3b =2(1,0)+3(2,1)=(8,3),BC →=a +m b =(1,0)+m (2,1)=(2m +1,m ),∵A ,B ,C 三点共线,∴AB → ∥BC →,∴8m -3(2m +1)=0,即2m -3=0,∴m =32.11.(2022·金华模拟)已知△ABC 的三边分别是a ,b ,c ,设向量m =(sin B -sin A ,3a +c ),n =(sin C ,a +b ),且m ∥n ,则B 的大小是( )A.π6B.5π6C.π3D.2π3答案 B解析 因为m ∥n ,所以(a +b )(sin B -sin A )=sin C (3a +c ).由正弦定理得(a +b )(b -a )=c (3a +c ),整理得a 2+c 2-b 2=-3ac ,由余弦定理得cos B =a 2+c 2-b 22ac =-3ac 2ac =-32.又0<B <π,所以B =5π6.12.(多选)如图,B 是AC 的中点,BE → =2OB → ,P 是平行四边形BCDE 内(含边界)的一点,且OP →=xOA → +yOB → (x ,y ∈R ),则下列结论中正确的是( )A .当x =0时,y ∈[2,3]B .当P 是线段CE 的中点时,x =-12,y =52C .若x +y 为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段D .当P 在C 点时,x =1,y =2答案 BC解析 当OP → =y OB →时,点P 在线段BE 上,故1≤y ≤3,故A 中结论错误;当P 是线段CE 的中点时,OP → =OE → +EP → =3OB → +12(EB →+BC → )=3OB → +12(-2OB → +AB → )=3OB → +12(-2OB → +OB → -OA → )=-12OA → +52OB →,故B 中结论正确;当x +y 为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是一条线段,故C 中结论正确;因为OB → =12(OC →+OA → ),所以OC → =2OB → -OA →,则OP → =-OA → +2OB →,所以x =-1,y =2,D 错误.13.已知|OA → |=1,|OB → |=3,OA → ·OB → =0,点C 在∠AOB 内,且OC → 与OA → 的夹角为30°,设OC →=mOA → +nOB → (m ,n ∈R ),则m n的值为______.答案 3解析 ∵OA → ·OB →=0,∴OA → ⊥OB →,以O 为原点,OA 所在直线为x 轴,OB 所在直线为y 轴建立平面直角坐标系(图略),则OA → =(1,0),OB →=(0,3),OC →=mOA → +nOB → =(m ,3n ).∵tan 30°=3nm =33,∴m =3n ,即m n=3.14.若点M 是△ABC 所在平面内一点,且满足AM → =34AB → +14AC →.则△ABM 与△ABC 的面积之比为________;若N 为AB 的中点,AM 与CN 交于点O ,设BO → =xBM → +yBN →,则x +y =________.答案 1∶4 107解析 由AM → =34AB → +14AC →,可知点M ,B ,C 三点共线,令BM → =λBC →(λ∈R ),则AM → =AB → +BM → =AB → +λBC → =AB → +λ(AC → -AB → )=(1-λ)AB → +λAC →,所以λ=14,即点M 在边BC 上,如图所示,所以S△ABM S △ABC =BM BC =14.由BO → =xBM → +yBN →,得BO → =xBM → +y 2BA →,BO → =x 4BC →+yBN → ,由O ,M ,A 三点共线及O ,N ,C 三点共线得Error!解得Error!所以x +y =107.15.若{α,β}是一个基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底{α,β}下的坐标,现已知向量a 在基底{p =(1,-1),q =(2,1)}下的坐标为(-2,2),则a 在基底{m =(-1,1),n =(1,2)}下的坐标为______.答案 (0,2)解析 因为a 在基底{p ,q }下的坐标为(-2,2),所以a =-2p +2q =(2,4),令a =x m +y n =(-x +y ,x +2y ),所以Error!即Error!所以a 在基底{m ,n }下的坐标为(0,2).16.如图,G 是△OAB 的重心,P ,Q 分别是边OA ,OB 上的动点,且P ,G ,Q 三点共线.(1)设PG → =λPQ → ,将OG → 用λ,OP → ,OQ →表示;(2)设OP → =xOA → ,OQ → =yOB → ,求证:1x +1y是定值.(1)解 OG → =OP → +PG →=OP → +λPQ →=OP → +λ(OQ → -OP →)=(1-λ)OP → +λOQ →.(2)证明 由(1)得OG → =(1-λ)OP → +λOQ →=(1-λ)xOA → +λy OB →,因为G 是△OAB 的重心,所以OG → =23OM → =23×12(OA →+OB → )=13OA → +13OB → .又OA → ,OB →不共线,所以Error!解得Error!所以1x +1y =3,即1x +1y 为定值.。
2023年新高考数学大一轮复习专题21 平面向量的概念、线性运算及坐标表示(解析版)
专题21平面向量的概念、线性运算及坐标表示【考点预测】 一.向量的有关概念(1)定义:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)向量的模:向量AB 的大小,也就是向量AB 的长度,记作||AB . (3)特殊向量:①零向量:长度为0的向量,其方向是任意的. ②单位向量:长度等于1个单位的向量.③平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行. ④相等向量:长度相等且方向相同的向量. ⑤相反向量:长度相等且方向相反的向量. 二.向量的线性运算和向量共线定理 (1)向量的线性运算①交换律b b a =+②结合律 )a b c ++=(a b c ++a 与b 的相反向量b -的和的运算叫做a b 的差 ()a b a b -=+-求实数λ与a 的积的运算(|||||a a λ=(0λ>时,a λ与a 的方向相同;当λ<a λ与a 的方向相同;时,0a λ=()()a a λμλμ=)a a a λμλμ+=+(1)向量表达式中的零向量写成0,而不能写成0.(2)两个向量共线要区别与两条直线共线,两个向量共线满足的条件是:两个向量所在直线平行或重合,而在直线中,两条直线重合与平行是两种不同的关系.(3)要注意三角形法则和平行四边形法则适用的条件,运用平行四边形法则时两个向量的起点必须重合,和向量与差向量分别是平行四边形的两条对角线所对应的向量;运用三角形法则时两个向量必须首尾相接,否则就要把向量进行平移,使之符合条件.(4)向量加法和减法几何运算应该更广泛、灵活如:OA OB BA -=,AM AN NM -=,+OA OB CA OA OB CA BA CA BA AC BC =⇔-=⇔-=+=.三.平面向量基本定理和性质 1.共线向量基本定理如果()a b R λλ=∈,则//a b ;反之,如果//a b 且0b ≠,则一定存在唯一的实数λ,使a b λ=.(口诀:数乘即得平行,平行必有数乘).2.平面向量基本定理如果1e 和2e 是同一个平面内的两个不共线向量,那么对于该平面内的任一向量a ,都存在唯一的一对实数12,λλ,使得1122a e e λλ=+,我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记为{}12,e e ,1122e eλλ+叫做向量a 关于基底{}12,e e 的分解式.注意:由平面向量基本定理可知:只要向量1e 与2e 不共线,平面内的任一向量a 都可以分解成形如1122a e e λλ=+的形式,并且这样的分解是唯一的.1122e e λλ+叫做1e ,2e 的一个线性组合.平面向量基本定理又叫平面向量分解定理,是平面向量正交分解的理论依据,也是向量的坐标表示的基础.推论1:若11223142a e e e e λλλλ=+=+,则1324,λλλλ==. 推论2:若11220a e e λλ=+=,则120λλ==. 3.线段定比分点的向量表达式如图所示,在ABC △中,若点D 是边BC 上的点,且BD DC λ=(1λ≠-),则向量1AB ACAD λλ+=+.在向量线性表示(运算)有关的问题中,若能熟练利用此结论,往往能有“化腐朽为神奇”之功效,建议熟练掌握.4.三点共线定理平面内三点A ,B ,C 共线的充要条件是:存在实数,λμ,使OC OA OB λμ=+,其中1λμ+=,O 为平面内一点.此定理在向量问题中经常用到,应熟练掌握.A 、B 、C 三点共线⇔存在唯一的实数λ,使得AC AB λ=; ⇔存在唯一的实数λ,使得OC OA AB λ=+;⇔存在唯一的实数λ,使得(1)OC OA OB λλ=-+; ⇔存在1λμ+=,使得OC OA OB λμ=+.5.中线向量定理如图所示,在ABC △中,若点D 是边BC 的中点,则中线向量1(2AD AB =+)AC ,反之亦正确.四.平面向量的坐标表示及坐标运算 (1)平面向量的坐标表示.在平面直角坐标中,分别取与x 轴,y 轴正半轴方向相同的两个单位向量,i j 作为基底,那么由平面向量基本定理可知,对于平面内的一个向量a ,有且只有一对实数,x y 使a xi yj =+,我们把有序实数对(,)x y 叫做向量a 的坐标,记作(,)a x y =.(2)向量的坐标表示和以坐标原点为起点的向量是一一对应的,即有 向量(,)x y 一一对应向量OA一一对应点(,)A x y .(3)设11(,)a x y =,22(,)b x y =,则1212(,)a b x x y y +=++,1212(,)a b x x y y -=--,即两个向量的和与差的坐标分别等于这两个向量相应坐标的和与差.若(,)a x y =,λ为实数,则(,)a x y λλλ=,即实数与向量的积的坐标,等于用该实数乘原来向量的相应坐标.(4)设11(,)A x y ,22(,)B x y ,则AB OB OA =-=12(,x x -12)y y -,即一个向量的坐标等于该向量的有向线段的终点的坐标减去始点坐标.五.平面向量的直角坐标运算①已知点11()A x y ,,22()B x y ,,则2121()AB x x y y =--,,||(AB x = ②已知11(,)a x y =,22(,)b x y =,则a b ±1212()x x y y =±±,,11(,)a x y λλλ=, =a b ⋅1212x x y y +,21||a x y =+.a b ∥⇔12210x y x y -=,a b ⊥⇔12120x x y y +=【方法技巧与总结】(1)向量的三角形法则适用于任意两个向量的加法,并且可以推广到两个以上的非零向量相加,称为多边形法则.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量.即122311n n n A A A A A A A A -+++=.(2)||||||||||||a b b a a b -≤±≤+,当且仅当,b a 至少有一个为0时,向量不等式的等号成立.(3)特别地:||||||||b b a a -≤±或||||||a a b b ±≤+当且仅当,b a 至少有一个为0时或者两向量共线时,向量不等式的等号成立.(4)减法公式:AB AC CB -=,常用于向量式的化简.(5)A 、P 、B 三点共线⇔(1)OP t OA tOB =-+()t R ∈,这是直线的向量式方程.【题型归纳目录】题型一:平面向量的基本概念 题型二:平面向量的线性表示 题型三:向量共线的运用 题型四:平面向量基本定理及应用 题型五:平面向量的直角坐标运算【典例例题】题型一:平面向量的基本概念例1.(2022·全国·高三专题练习)已知平面四边形ABCD 满足AB DC =,则四边形ABCD 是( ) A .正方形 B .平行四边形C .菱形D .梯形【答案】B 【解析】 【分析】根据平面向量相等的概念,即可证明AB DC =,且//AB DC ,由此即可得结论. 【详解】在四边形ABCD 中, AB DC =,所以AB DC =,且//AB DC , 所以四边形ABCD 为平行四边形. 故选:B例2.(2022·全国·高三专题练习)给出如下命题: ①向量AB 的长度与向量BA 的长度相等; ②向量a 与b 平行,则a 与b 的方向相同或相反; ③两个有共同起点而且相等的向量,其终点必相同; ④两个公共终点的向量,一定是共线向量;⑤向量AB 与向量CD 是共线向量,则点A ,B ,C ,D 必在同一条直线上. 其中正确的命题个数是( ) A .1 B .2C .3D .4【答案】B【解析】 【分析】根据向量的基本概念,对每一个命题进行分析与判断,找出正确的命题即可. 【详解】对于①,向量AB 与向量BA ,长度相等,方向相反,故①正确;对于②,向量a 与b 平行时,a 或b 为零向量时,不满足条件,故②错误; 对于③,两个有共同起点且相等的向量,其终点也相同,故③正确; 对于④,两个有公共终点的向量,不一定是共线向量,故④错误;对于⑤,向量AB 与CD 是共线向量,点A ,B ,C ,D 不一定在同一条直线上,故⑤错误. 综上,正确的命题是①③. 故选:B .例3.(2022·全国·高三专题练习)下列说法:①若两个空间向量相等,则表示它们有向线段的起点相同,终点也相同;②若向量AB →,CD →满足AB CD →→>,且AB →与CD →同向,则AB CD →→>;③若两个非零向量AB →与CD →满足0AB CD →→→+=,则AB →,CD →为相反向量; ④AB CD →→=的充要条件是A 与C 重合,B 与D 重合. 其中错误的个数为( ) A .1 B .2 C .3 D .4【答案】C 【解析】 【分析】①错误. 两个空间向量相等,但与起点和终点的位置无关;②错误. 向量不能比较大小;③正确. AB →,CD →为相反向量;④错误. A 与C ,B 与D 不一定重合.【详解】①错误.两个空间向量相等,其模相等且方向相同,但与起点和终点的位置无关. ②错误.向量的模可以比较大小,但向量不能比较大小.③正确. 0AB CD →→→+=,得AB CD →→=-,且AB →,CD →为非零向量,所以AB →,CD →为相反向量.④错误. 由AB CD →→=,知AB CD →→=,且AB →与CD →同向,但A 与C ,B 与D 不一定重合.故选:C 【点睛】易错点睛:向量是一个既有大小,又有方向的矢量,考虑向量的问题时,一定要注意这一点.例4.(2022·江苏江苏·一模)平面内三个单位向量a ,b ,c 满足230a b c ++=,则( ) A .a ,b 方向相同 B .a ,c 方向相同 C .b ,c 方向相同 D .a ,b ,c 两两互不共线【答案】A 【解析】 【分析】根据230a b c ++=,得32c a b =--,两边利用单位向量的平方等于1,即可求出a,b 0<>=,解得a ,b 方向相同.【详解】因为230a b c ++=, 所以32c a b =--, 所以22(3)(2)c a b =--, 所以222944?c a b a b =++, 所以9144cos ,a b a b =++<>, 所以4411cos ,a b =⨯⨯<>, 所以cos ,1a b <>= 所以a,b 0<>=, 所以a ,b 方向相同, 故选:A.例5.(2022·吉林吉林·模拟预测(文))已知向量()4,3a =,则与向量a 垂直的单位向量的坐标为( ) A .43,55⎛⎫ ⎪⎝⎭B .34,55⎛⎫- ⎪⎝⎭C .43,55⎛⎫-- ⎪⎝⎭或43,55⎛⎫ ⎪⎝⎭D .34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭【答案】D 【解析】 【分析】先写出与之垂直的一个向量,然后再求得与此垂直向量平行的单位向量即得. 【详解】易知(3,4)b =-是与a 垂直的向量,5b =,所以与b 平行的单位向量为134(,)555b =-或134(,)555b -=-,故选:D .例6.(多选题)(2022·全国·高三专题练习)下列命题中正确的是( ) A .若a b =,则32a b > B .0BC BA DC AD ---=C .若向量,a b 是非零向量,则a b a b a +=+⇔与b 方向相同D .向量a 与()0b b ≠共线的充要条件是:存在唯一的实数λ,使λa b 【答案】CD 【解析】 【分析】利用向量的知识对选项逐一分析,由此确定正确选项. 【详解】向量不等比较大小,故A 选项错误.向量加法、减法的结果仍为向量,故B 选项错误. a b a b a +=+⇔与b 方向相同,C 选项正确.根据向量共线的知识可知D 选项正确. 故选:CD例7.(多选题)(2022·全国·高三专题练习)下列有关四边形ABCD 的形状,判断正确的有( ) A .若AD BC =,则四边形ABCD 为平行四边形 B .若13AD BC =,则四边形ABCD 为梯形C .若AB AD AB AD +=-,则四边形ABCD 为菱形 D .若AB DC =,且AC BD ⊥,则四边形ABCD 为正方形 【答案】AB 【解析】 【分析】依据平行四边形判定定理判断选项A ;依据梯形判定定理判断选项B ;依据菱形判定定理判断选项C ;依据正方形判定定理判断选项D.【详解】选项A :若AD BC =,则//AD BC ,=AD BC ,则四边形ABCD 为平行四边形.判断正确; 选项B :若13AD BC =,则//AD BC ,AD BC ≠,则四边形ABCD 为梯形. 判断正确;选项C :若AB AD AB AD +=-,则2240AB AD AB AD AB AD -=+⋅=-,则AB AD ⊥,即90BAD ∠=.仅由90BAD ∠=不能判定四边形ABCD 为菱形.判断错误;选项D :若AB DC =,则//AB DC ,=AB DC ,则四边形ABCD 为平行四边形, 又由AC BD ⊥,可得对角线AC BD ⊥,则平行四边形ABCD 为菱形. 判断错误. 故选:AB例8.(多选题)(2022·全国·高三专题练习)下列说法错误的是( ) A .若a b =,则a b =或a b =- B .若ma mb =,m R ∈,则a b = C .若//a b , //c b ,则//a cD .若0ma =,m R ∈,则0m =或0a = 【答案】ABCD 【解析】 【分析】对于A ,模长相等的两个向量方向任意,不一定平行;对于B ,两个向量相等要求向量方向相同且模长相等,当0m =时,无法推出这两点,故B 不正确;对于C ,当0b =时,选项不正确;对于D ,00ma m =⇒=或0a =,即可得到D 错误.【详解】对于A ,若a b =,则两个向量的方向可以是任意的,不一定是平行的,故A 不正确; 对于B ,两个向量相等要求向量方向相同且模长相等,当0m =时,满足0ma mb ==, a 和b 的方向可以是任意的,且两者的模长也不一定相同,故B 不正确;对于C ,若//a b , //c b ,当0b =时,满足//a b , //c b ,但是不满足//a c ,故C 错误; 对于D ,00ma m =⇒=或者||0a =,即0m =或0a =,故D 错误; 故选:ABCD.【方法技巧与总结】准确理解平面向量的基本概念是解决向量题目的关键.共线向量即为平行向量,非零向量平行具有传递性,两个向量方向相同或相反就是共线向量,与向量长度无关,两个向量方向相同且长度相等,就是相等向量.共线向量或相等向量均与向量起点无关.题型二:平面向量的线性表示例9.(2022·山东潍坊·模拟预测)在平行四边形ABCD 中,,M N 分别是,AD CD 的中点,BM a =,BN b =,则BD =( )A .3243a b +B .2233ab C .2334a b +D .3344a b +【答案】B【解析】 【分析】设,AB m AD n ==,根据向量的线性运算,得到11()()22BD x y n x y m =+--,结合BD n m =-,列出方程组,求得,x y 的值,即可求解.【详解】如图所示,设,AB m AD n ==,且BD xa yb =+,则1111()()()()2222BD xa yb x n m y n m x y n x y m =+=⋅-+⋅-=+--,又因为BD n m =-,所以112112x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得22,33x y ==,所以2233BD a b =+.故选:B.例10.(2022·河南·平顶山市第一高级中学模拟预测(文))如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2EO AE =,则EB ( )A .1566AB AD - B.1566AB AD +C .5166AB AD -D .5166AB AD +【答案】C 【解析】 【分析】根据平面向量线性运算法则计算可得; 【详解】解:因为2EO AE =,所以()111366AE AO AC AB AD ===+, 所以()151666EB AB AE AB AB AD AB AD =-=-+=-. 故选:C.例11.(2022·吉林吉林·模拟预测(文))如图,ABCD 中,AB a =,AD b =,点E 是AC 的三等分点13⎛⎫=⎪⎝⎭EC AC ,则DE =( )A .1233a b -B .2133a b -C .1233a b +D .2133ab 【答案】B 【解析】 【分析】根据向量的加法法则和减法法则进行运算即可. 【详解】 2221()3333DE AE AD AC AD AB AD AD a b =-=-=⋅+-=- 故选:B.例12.(2022·安徽·合肥市第八中学模拟预测(文))在平行四边形ABCD 中,2233AE AB CF CD ==,,G 为EF 的中点,则DG =( )A .1122AD AB -B .1122AB AD -C .3142AD AB -D .3142AB AD -【答案】B 【解析】 【分析】根据题意和平面向量的线性运算即可得出结果. 【详解】 ()1111112111·2222323622DG DE DF DA AE DC AD AB AB AB AD ⎛⎫=+=++=-++=- ⎪⎝⎭.故选:B.例13.(2022·湖南师大附中三模)艺术家们常用正多边形来设计漂亮的图案,我国国旗上五颗耀眼的正五角星就是源于正五边形,正五角星是将正五边形的任意两个不相邻的顶点用线段连接,并去掉正五边形的边后得到的图形,它的中心就是这个正五边形的中心.如图,设O 是正五边形ABCDE 的中心,则下列关系错误的是( )A .AD DB OB OA +=-B .0AO BE ⋅=C .3AC AD AO +=D .AO AD BO BD ⋅=⋅【答案】C【解析】【分析】由平面向量的运算对选项逐一判断【详解】对于A ,,AD DB AB OB OA AB +=-=,故A 正确,对于B :因为AB AE =,OB OE =,所以AO BE ⊥,故B 正确,对于C :由题意O 是ACD △的外心,不是ACD △的重心设CD 中点为M ,则2||=||||||||cos36||2cos 18AM AO OM AO AO AO +=+︒=⋅︒,24cos 18AC AD AO +=︒,故C 错误, 对于D :2211||||22AO AD AD BD BO BD ⋅===⋅,故D 正确. 故选:C 例14.(2022·河北·石家庄二中模拟预测)数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,该直线被称为三角形的欧拉线,设点,,O G H 分别为任意ABC 的外心、重心、垂心,则下列各式一定正确的是( )A .12OG OH =B .23OH GH =C .23AO AH AG +=D .23BO BH BG += 【答案】D【解析】【分析】根据三点共线和长度关系可知AB 正误;利用向量的线性运算可表示出,AG BG ,知CD 正误.【详解】,,O G H 依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,12OG GH ∴=,13OG OH ∴=,32OH GH =,A 错误,B 错误; ()112333AO AH AG AO OG AO OH AO AH AO +=+=+=+-=,C 错误; ()112333BO BH BG BO OG BO OH BO BH BO +=+=+=+-=,D 正确. 故选:D.例15.(2022·全国·模拟预测)在平行四边形ABCD 中,设CB a =,CD b =,E 为AD 的中点,CE 与BD 交于F ,则AF =( )A .23a b +-B .23a b +-C .23a b --D .23a b -- 【答案】B【解析】【分析】 根据题意得()13AF AC AD =+,再分析求解即可. 【详解】如下图所示,连接AC 与BD 交于O ,则O 为AC 的中点,因为E 为AD 的中点,所以F 为三角形ACD 的重心,所以()()112333a b AF AC AD a b a +=+=---=-. 故选:B.例16.(2022·黑龙江·哈尔滨三中模拟预测(文))ABC 中,E 是边BC 上靠近B 的三等分点,则向量AE =( )A .1133AB AC + B .1233AB AC + C .2133AB AC + D .2233AB AC + 【答案】C【解析】【分析】利用向量的三角形法则以及线性运算法则进行运算,即可得出结论.【详解】解:因为点E 是BC 边上靠近B 的三等分点,所以13BE BC =, 所以1121()3333AE AB BE AB BC AB BA AC AB AC =+=+=++=+; 故选:C.例17.(多选题)(2022·山东·烟台二中模拟预测)中华人民共和国的国旗图案是由五颗五角星组成,这些五角星的位置关系象征着中国共产党领导下的革命与人民大团结.如图,五角星是由五个全等且顶角为36°的等腰三角形和一个正五边形组成.已知当2AB =时,1BD =,则下列结论正确的为( )A .DE DH =B .0AF BJ ⋅=C .51AH AB +=D .CB CD JC JH +=- 【答案】AB【分析】连接DH ,AF ,CH ,BH ,利用五角星的结构特征逐项分析判断作答.【详解】对于A ,连接DH ,如图,由DF =FH ,108DFH ∠=得:36DHF E ∠==∠,DE DH =,A 正确;对于B ,连接AF ,由,AD AH FD FH ==得:AF 垂直平分DH ,而//BJ DH ,即AF BJ ⊥,则0AF BJ ⋅=,B 正确; 对于C ,AH 与AB 不共线,C 不正确;对于D ,连接CH ,BH ,由选项A 知,DH DE BC ==,而//BC DH ,则四边形BCDH 是平行四边形, CB CD CH JH JC +==-,D 不正确.故选:AB【方法技巧与总结】(1)两向量共线问题用向量的加法和减法运算转化为需要选择的目标向量即可,而此类问题又以“爪子型”为几何背景命题居多,故熟练掌握“爪子型”公式更有利于快速解题.(2)进行向量运算时,要尽可能转化到平行四边形或三角形中,选用从同一顶点出发的基本向量或首尾相接的向量,运用向量加、减法运算及数乘运算来求解.(3)除了充分利用相等向量、相反向量和线段的比例关系外,有时还需要利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.题型三:向量共线的运用例18.(2022·陕西·西北工业大学附属中学模拟预测(文))设a 、b 都是非零向量,下列四个条件中,使a a b b=成立的充分条件是( )A .a b =且a b ∥B .a b =-C .a b ∥D .2a b = 【答案】D【解析】根据充分条件的定义以及平面向量的有关概念即可解出.【详解】对于A ,当a b =且a b ∥时,a a b b =或a b a b =-,A 错误; 对于B ,当a b =-时,a b a b =-,B 错误; 对于C ,当a b ∥时,a ab b =或a b a b =-,C 错误; 对于D ,当2a b =时,a a b b =,D 正确.故选:D . 例19.(2022·四川绵阳·二模(理))已知平面向量a ,b 不共线,46AB a b =+,3BC a b =-+,3CD a b =+,则( )A .A ,B ,D 三点共线B .A ,B ,C 三点共线 C .B ,C ,D 三点共线D .A ,C ,D 三点共线【答案】D【解析】 【分析】根据给定条件逐项计算对应三点确定的某两个向量,再判断是否共线作答.【详解】平面向量a ,b 不共线,46AB a b =+,3BC a b =-+,3CD a b =+,对于A ,3(3)6BD BC CD a b a b b =+=-+++=,与AB 不共线,A 不正确;对于B ,因46AB a b =+,3BC a b =-+,则AB 与BC 不共线,B 不正确;对于C ,因3BC a b =-+,3CD a b =+,则BC 与CD 不共线,C 不正确;对于D ,46(3)393AC AB BC a b a b a b CD =+=++-+=+=,即//AC CD ,又线段AC 与CD 有公共点C ,则A ,C ,D 三点共线,D 正确.故选:D 例20.(2022·全国·高三专题练习)已知1e ,2e 是不共线向量,则下列各组向量中,是共线向量的有( )①15a e =,17b e =;②121123a e e =-,1232b e e =-; ③12a e e =+,1233b e e =-.A .①②B .①③C .②③D .①②③【解析】【分析】 根据平面向量共线定理得到,对于①57a b =,故两向量共线;对于②16a b =,故两向量共线;对于③不存在实数λ满足λa b ,故不共线.【详解】对于①15a e =,17b e =,57a b =,故两向量共线; 对于②121123a e e =-,1232b e e =-,16a b =,故两向量共线; 对于③12a e e =+,1233b e e =-,假设存在,a b λλ=⇒()121233e e e e λ=-+()()123131e e λλ⇒-=+,因为1e ,2e 是不共线向量,故得到3131λλ-=+无解.故选:A.例21.(2022·内蒙古·包钢一中一模(文))已知向量1e ,2e 是两个不共线的向量,122a e e =-与12b e e λ=+共线,则λ=( )A .2B .2-C .12-D .12 【答案】C【解析】【分析】根据向量共线的充要条件建立方程直接求解. 【详解】因为122a e e =-与12b e e λ=+共线,所以ka b =,0k ≠,所以12121212()22=k k e e e e e e e e k λλ-+⇒-=+, 因为向量1e ,2e 是两个不共线的向量,所以21k k λ=⎧⎨-=⎩,解得12λ=-, 故选:C .例22.(2022·安徽·合肥市第六中学模拟预测(理))如图,在ABC 中,M ,N 分别是线段AB ,AC 上的点,且23AM AB =,13AN AC =,D ,E 是线段BC 上的两个动点,且(,)AD AE x AM y AN x y +=+∈R ,则12x y+的的最小值是( )A .4B .43C .94D .2【答案】B【解析】【分析】 根据平面向量共线定理可设AD mAB nAC =+,1m n +=,AE AB AC λμ=+,1λμ+=,再结合AD AE x AM y AN +=+得26x y +=,最后运用基本不等式可求解.【详解】设AD mAB nAC =+,1m n +=,AE AB AC λμ=+,1λμ+=,则AD AE mAB nAC AB AC λμ+=+++=3()()()3()2m AB n AC m AM n AN λμλμ+++=+++x AM y AN =+,3()2m x λ+=,3()n y m μλ+=⇒+=23x ,13n y μ+=,21222633m n x y x y λμ+++=⇒+=⇒+=.所以12112(2)6x y x y x y ⎛⎫+=++= ⎪⎝⎭14142222663y x x y ⎛⎛⎫+++≥++= ⎪ ⎝⎭⎝, 当且仅当32x =,3y =时等号成立. 所以12x y +的的最小值是43. 故选:B例23.(2022·全国·模拟预测)在ABC 中,点F 为线段BC 上任一点(不含端点),若()20,0AF xAB yAC x y =+>>,则12x y +的最小值为( ) A .9B .8C .4D .2【答案】A【解析】【分析】 根据向量共线定理得推论得到21x y +=,再利用基本不等式“1”的妙用求解最小值.【详解】因为点F 为线段BC 上任一点(不含端点),所以21x y +=,故()12122221459y x x y x y x y x y ⎛⎫+=++=+++≥+ ⎪⎝⎭, 当且仅当22y x x y =,即13x y ==时等号成立, 故选:A例24.(2022·山东泰安·模拟预测)已知向量m ,n 不共线,向量53OA m n =-,OB xm n =+,若O ,A ,B 三点共线,则x =( )A .53-B .53C .35D .35【答案】A【解析】【分析】根据O ,A ,B 三点共线,则OA OB ∥,R λ∃∈,OB OA λ=,代入整理.【详解】因为O ,A ,B 三点共线,则OA OB ∥所以R λ∃∈,OB OA λ=,即()53xm n m n λ+=-整理得:()()531x m n λλ-=+ 又∵向量m ,n 不共线,则5310x λλ-=+=,则53x =- 故选:A .例25.(2022·云南·昆明一中高三阶段练习(文))已知向量a ,b ,且2AB a b =+,BC 56a b =-+,72CD a b =-,则一定共线的三点是( )A .A ,B ,DB .A ,B ,C C .B ,C ,D D .A ,C ,D【答案】A【解析】【分析】 由已知,分别表示出选项对应的向量,然后利用平面向量共线定理进行判断即可完成求解.【详解】因为2AB a b =+,BC 56a b =-+,72CD a b =-,选项A ,2AB a b =+,(56)(72)24B a b D B D b C a C b a ++-+==-+=,若A ,B ,D 三点共线,则AB BD λ=,即2(24)a b a b λ+=+,解得12λ=,故该选项正确;选项B ,2AB a b =+,BC 56a b =-+,若A ,B ,C 三点共线,则AB BC λ=,即2(56)a b a b λ+=-+,解得λ不存在,故该选项错误;选项C ,BC 56a b =-+,72CD a b =-,若B ,C ,D 三点共线,则BC BD λ=,即56(72)a b a b λ-+=-,解得λ不存在,故该选项错误;选项D ,(2)(56)48a b a A b AB BC a b C ++=+=+-=-+,72CD a b =-,若A ,C ,D 三点共线,则AC CD λ=,即48(72)a b a b λ-+=-,解得λ不存在,故该选项错误;故选:A.例26.(2022·全国·高三专题练习)给出下列命题:①若||||a b =,则a b =;②若A B C D 、、、是不共线的四点,则AB DC =是四边形ABCD 为平行四边形的充要条件;③若a b =,b c =,则a c =;④a b =的充要条件是||a ||b =且//a b ;⑤若//a b ,//b c ,则//a c .其中正确命题的序号是________ .【答案】②③##③②【解析】【分析】根据向量相等的概念及向量共线的概念即可判断.【详解】对于①,两个向量的长度相等,不能推出两个向量的方向的关系,故①错误;对于②,因为A ,B ,C ,D 是不共线的四点,且AB DC = 等价于//AB DC 且AB DC =,即等价于四边形ABCD 为平行四边形,故②正确;对于③,若a b =,b c =,则a c =,显然正确,故③正确;对于④,由a b =可以推出||||a b =且//a b ,但是由||||a b =且//a b 可能推出a b =-,故“||||a b =且//a b ”是“a b =”的必要不充分条件,故④不正确,对于⑤,当0b =时,//a b ,//b c ,但推不出//a c ,故⑤不正确.故答案为:②③例27.(2022·全国·高三专题练习)如图,在ABC 中,点P 满足2BP PC =,过点P 的直线与AB AC ,所在的直线分别交于点M N ,若AM AB λ=,,(0,0)AN AC μλμ=>>,则λμ+的最小值为__________.【答案】1+【解析】【分析】 先利用条件找到12133λμ+=,则12()33λμλμλμ⎛⎫+=+⋅+ ⎪⎝⎭,利用基本不等式求最小值即可. 【详解】 BP BA AP =+,PC PA AC =+,又2BP PC =, ∴()2AB AP AC AP -+=-, ∴12123333AP AB AC AM AN λμ=+=+, 又P 、M 、N 三点共线, ∴12133λμ+=,∴12122()113333333μλλμλμλμλμ⎛⎫⎛⎫⎛⎫+=+⋅+=+++≥+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当233μλλμ=,即λμ=∴λμ+的最小值为1故答案为:1例28.(2022·全国·高三专题练习)已知点G 为△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且AM =x AB ,AN =y AC ,求11x y+的值为________. 【答案】3【解析】【分析】以,AN AM 为基底,由G 是ABC ∆的重心和M ,G ,N 三点共线,可得11=133x y+,即求. 【详解】 根据条件:11,==AC AN AB AM y x,如图设D 为BC 的中点,则1122AD AB AC =+ 因为G 是ABC ∆的重心,211333AG AD AB AC ==+, 1133AG AM AN x y∴=+, 又M ,G ,N 三点共线,11=133x y ∴+,即113x y+=. 故答案为:3.例29.(2022·全国·高三专题练习)如图,ABC 中点,D E 是线段BC 上两个动点,且AD AE xAB y AC +=+,则9x yxy+的最小值为______.【答案】8 【解析】 【分析】设AD mAB nAC =+,AE AB AC λμ=+,由B ,D ,E ,C 共线可得2x y +=, 再利用乘“1”法求解最值. 【详解】设AD mAB nAC =+,AE AB AC λμ=+,B ,D ,E ,C 共线,1m n ∴+=,1λμ+=.AD AE xAB y AC +=+,则2x y +=,点D ,E 是线段BC 上两个动点,0x ∴>,0y >. ∴991191191()()(10)(10)8222x y y x y xx y xy x y x y x y x y+=+=++=+++= 则9x yxy+的最小值为8. 故答案为:8. 【点睛】由向量共线定理的推论得到2x y +=是解题关键,乘“1”法求解最值是基本不等式求最值的常用方法.. 例30.(2022·全国·高三专题练习)已知向量1223a e e =-,1223b e e =+,其中1e ,2e 不共线,向量1229c e e =-,问是否存在这样的实数λ,μ,使向量d a b λμ=+与c 共线?【答案】存在 【解析】 【分析】由已知得12(22)(33)d e e λμλμ=++-+,所以要使d 与c 共线,则应有实数k ,使d kc =,即()1212(22)(33)29e e k e e λμλμ++-+=-,从而得222339k k λμλμ+=⎧⎨-+=-⎩,进而可求得结果【详解】因为向量1223a e e =-,1223b e e =+, 所以1212(23)(23)d a b e e e e λμλμ=+=-++12(22)(33)e e λμλμ=++-+要使d 与c 共线,则应有实数k ,使d kc =, 即()1212(22)(33)29e e k e e λμλμ++-+=-,即222339kkλμλμ+=⎧⎨-+=-⎩得2λμ=-. 故存在这样的实数λ,μ,只要2λμ=-,就能使d 与c 共线.【方法技巧与总结】要证明A ,B ,C 三点共线,只需证明AB 与BC 共线,即证AB =λBC (R λ∈).若已知A ,B ,C 三点共线,则必有AB 与BC 共线,从而存在实数λ,使得AB =λBC .题型四:平面向量基本定理及应用例31.(2022·重庆八中模拟预测)如图,在平行四边形ABCD 中,E 是BC 的中点,2CF FD =,DE 与BF 相交于O .若2AD =,(32)7AO AD AB ⋅-=-,则AB 的长为( )A .2B .3C .4D .5【答案】C 【解析】 【分析】先以AB AD 、为基底表示AO ,再利用向量的数量积把(32)7AO AD AB ⋅-=-转化为关于AB 的方程,即可求得AB 的长【详解】在平行四边形ABCD 中,E 是BC 的中点,2CF FD =,DE 与BF 相交于O . 设(01)DO DE λλ=<<, (01)BO BF μμ=<<则11++122AD DO AD DE AD AB AD AD AB λλλλ⎛⎫⎛⎫+==-=-+ ⎪ ⎪⎝⎭⎝⎭22(1)33AB BO AB BF AB AD AB AB AD μμμμ⎛⎫+=+=+-=-+ ⎪⎝⎭由AO AD DO AB BO =+=+,可得2(1)3AB AD μμ-+112AD AB λλ⎛⎫=-+ ⎪⎝⎭则112213λμμλ⎧-=⎪⎪⎨⎪-=⎪⎩,解之得1234λμ⎧=⎪⎪⎨⎪=⎪⎩,则3142AO AD DO AD AB =+=+则22(32)(33194242)7AO AD AB AD AB AD A AD AB B ⎛⎫+⋅-= ⎪⎝⋅-=⎭-=-又2AD =,则279AB -=-,解之得4AB ,即AB 的长为4故选:C例32.(2022·全国·高三专题练习)在等边ABC 中,O 为重心,D 是OB 的中点,则AD =( ) A .AB AC + B.2132AB AC +C .1124AB AC +D .2136AB AC +【答案】D 【解析】 【分析】根据给定条件,利用平面向量的线性运算计算作答. 【详解】O 为ABC 的重心,延长AO 交BC 于E ,如图,E 为BC 中点,则有2211()()3323AO AE AB AC AB AC ==⋅+=+,而D 是OB 的中点, 所以111121()222636AD AB AO AB AB AC AB AC =+=++=+. 故选:D例33.(2022·河南郑州·三模(理))在ABC 中,D 是BC 上一点,2BD DC =,M 是线段AD 上一点,14BM tBA BC =+,则t =( )A .12 B .23C .34 D .58【答案】D 【解析】 【分析】 求得1233AD AB AC =+,设1233AM AD AB AC λλλ==+,其中01λ≤≤,利用平面向量的线性运算可得出3144AM AB BM t AB AC ⎛⎫=+=-+ ⎪⎝⎭,根据平面向量的基本定理可得出关于λ、t 的方程组,即可解得t 的值.【详解】因为2BD DC =,则()2AD AB AC AD -=-,所以,1233AD AB AC =+, ()131444AM AB BM AB t AB AC AB t AB AC ⎛⎫=+=-+-=-+ ⎪⎝⎭, 因为M 是线段AD 上一点,设1233AM AD AB AC λλλ==+,其中01λ≤≤,所以,13342134t λλ⎧=-⎪⎪⎨⎪=⎪⎩,解得3858t λ⎧=⎪⎪⎨⎪=⎪⎩. 故选:D.例34.(2022·河南·模拟预测(理))如图,在ABCD 中,M 为BC 的中点,AC mAM nBD =+,则m +n =( )A .1B .43 C .53D .2【答案】C 【解析】 【分析】利用向量的线性运算可求,m n 的值. 【详解】1122AM AB BC AB AD =+=+,而BD AD AB =-,故()12AC m AB AD n AD AB ⎛⎫=++- ⎪⎝⎭()2m m n AB n AD ⎛⎫=-++ ⎪⎝⎭,而AC AB AD =+且,AB AD 不共线,故4153{13123m n m m n m n n ⎧-==⎪⎪⇒⇒+=⎨+=⎪=⎪⎩, 故选:C.例35.(2022·河南商丘·三模(理))如图,在ABC 中,点D ,E 分别在边AB ,BC 上,且均为靠近B 的四等分点,CD 与AE 交于点F ,若BF xAB yAC =+,则3x y +=( )A .1-B .34-C .12-D .14-【答案】A 【解析】 【分析】由题意推出DE AC ∥,可得14DF DE FC AC ==,推出15DF DC =,根据向量的加减运算,用基底,AB AC 表示出BF ,和BF xAB yAC =+比较,可得,x y ,即得答案.【详解】 连结DE ,由题意可知,14BD BE BA BC ==, 所以DE AC ∥,则14DE BD AC BA ==, 所以14DF DE FC AC ==,所以14BD AB =-,34DC AC AD AC AB =-=-, 则1135520DF DC AC AB ==-, 故11321452055BF BD DF AB AC AB AB AC =+=-+-=-+, 又BF xAB yAC =+,所以25x =-,15y =,则31x y +=-,故选:A例36.(2022·山东济宁·三模)在边长为4的等边ABC 中,已知23AD AB =,点P 在线段CD 上,且12AP mAC AB =+,则AP =________.【解析】 【分析】根据题意得34AP mAC AD =+,求出14m =,所以1142AP AC AB =+,即21142AP AC AB ⎛⎫=+ ⎪,求解即可.【详解】 因为23AD AB =,所以32AB AD =,又12AP mAC AB =+,即1324AP mAC AB mAC AD =+=+,因为点P 在线段CD 上, 所以P ,C ,D 三点共线,由平面向量三点共线定理得,314m +=,即14m =,所以1142AP AC AB =+,又ABC 是边长为4的等边三角形, 所以222211111cos60421644AP AC AB AC AC AB AB ⎛⎫=+=++ ⎪⎝⎭1111164416716424=⨯+⨯⨯⨯+⨯=,故7AP =例37.(2022·湖南·模拟预测)在三角形ABC 中,点D 在边BC 上,若2BD DC =,AD AB ACλμ=+(),λμ∈R ,则λμ-=______.【答案】13-【解析】 【分析】由平面向量基本定理得到13λ=,23μ=,从而求出答案.【详解】由已知2BD DC =,得()2233BD BC AC AB ==-, 所以()212333A A C AB D AB BD AB A A BC -+===++, 因为(),AD AB AC λμλμ=+∈R ,所以13λ=,23μ=,所以121333λμ-=-=-.故答案为:13-【方法技巧与总结】应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加法、减法或数乘运算,基本方法有两种:(1)运用向量的线性运算法则对待求向量不断进行化简,直至用基底表示为止.(2)将向量用含参数的基底表示,然后列方程或方程组,利用基底表示向量的唯一性求解.(3)三点共线定理: A ,B ,P 三点共线的充要条件是:存在实数,λμ,使OP OA OB λμ=+,其中1λμ+=,O 为AB 外一点.题型五:平面向量的直角坐标运算例38.(2022·江苏·高三专题练习)在正方形ABCD 中,M 是BC 的中点.若AC AM BD λμ=+,则λμ+。
2023年高考数学真题分训练 平面向量的概念、线性运算、平面向量基本定理(含答案含解析)
专题 15 平面向量的概念、线性运算、平面向量根本定理年 份 题号考 点考 查 内 容2023卷 1 文6平面向量的概念与线性运算主要考查平面向量的线性运算卷 1 理 7平面向量根本定理及其应用 主要考查平面向量的线性运算及平面向量根本定理卷 2 理 13平面向量的概念与线性运算主要考查平面向量共线的充要条件2023卷1文 2平面向量的坐标运算及向量 共线的充要条件主要考查平面向量的坐标与点坐标的关系、平面向量坐 标运算2023卷 2 文 13 平面向量的坐标运算及向量 共线的充要条件主要考查平面向量坐标的线性运算及向量共线的充要 条件卷1理 6 文 7平面向量根本定理及其应用主要考查平面向量的线性运算及平面向量根本定理2023卷 3理 13 文 13 平面向量的坐标运算及向量 共线的充要条件主要考查平面向量的线性运算及向量共线的充要条件2023 卷 2文 3平面向量的坐标运算及向量 共线的充要条件主要考查平面向量坐标运算及模公式考点 47 平面向量的概念与线性运算1.(2023 新课标 I ,文 6)设 D , E , F 分别为∆ABC 的三边 BC , CA , AB 的中点,则 EB + FC =33A. BCB .(答案)C 1 AD2C . ADD . 1 BC2(解析) EB + FC =1 (CB + AB ) + 1 (BC + AC ) = 1( AB + AC ) = AD ,应选 C . 2 2 22.(2023 福建)在以下向量组中,可以把向量a =(3,2) 表示出来的是A .e 1 =(0,0),e 2 = (1,2) C .e 1 =(3,5),e 2 =(6,10) (答案)BB .e 1 =(-1,2),e 2 =(5,-2) D .e 1 =(2,-3),e 2 =(-2,3) (解析)对于 A ,C ,D ,都有e 1 ∥ e 2 ,所以只有 B 成立.考点 48 平面向量根本定理及其应用1.(2023 江苏 13)在∆ABC 中, AB = 4 , AC = 3 , ∠BAC = 90︒, D 在边 BC 上,延长 AD 到 P ,使得3AP = 9 ,假设 PA = mPB + (2- m )PC ( m 为常数),则CD 的长度是 .18 (答案)53 (解析)由向量系数m + ( - m ) = 为常数,结合等和线性质可知 2 2 PA PD= 2 ,1故 PD =2PA = 6 , AD = PA - PD = 3 = AC ,故∠C = ∠CDA ,故∠CAD =π- 2C .3AC 3 CD AD在∆ABC 中, cos C = = ;在∆ADC 中,由正弦定理得 = ,BC 5 sin ∠CAD sin Csin(π- 2C ) sin 2C 3 18即CD = ⋅ AD = ⋅ AD = 2 cos C ⋅ AD = 2 ⨯ ⨯ 3 = .sin C sin C5 52.(2023•新课标Ⅰ,理 6 文 7)在∆ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,则 EB = ()A . 3 - 1B . 13C . 31D . 13AB AC4 4(答案)AAB - AC4 4AB + AC4 4AB + AC4 42EB AB AE AB AD =11AB AC (解析)在∆ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,∴ = - = - 12AB - ⨯ 2 2( AB + AC ) = 3 - 1,应选 A . 4 43.(2023 新课标Ⅰ,理 7)设 D 为ABC 所在平面内一点 BC = 3CD ,则( )(A) AD = - 1 AB + 4AC (B) AD = 1 AB - 4AC3 3 3 3(C) AD =4 1AB + AC (D) AD =4 1AB - AC 3 33 3(答案)A1114 (解析)由题知 AD = AC + CD = AC + BC = AC + 3 3 ( AC - AB ) = = - AB + 3 3AC ,应选 A . 4.(2023 广东)设a 是已知的平面向量且a ≠ 0 ,关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量 c ,使 a = b + c ; ②给定向量b 和c ,总存在实数λ和μ,使a = λb + μc ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a = λb + μc ;④给定正数λ和μ,总存在单位向量b 和单位向量c ,使a = λb + μc ;上述命题中的向量b , c 和a 在同一平面内且两两不共线,则真命题的个数是 A .1B .2C .3D .4(答案)B(解析)利用向量加法的三角形法则,易的①是对的;利用平面向量的根本定理,易的②是对的;以a 的终点作长度为μ的圆,这个圆必须和向量λb 有交点,这个不肯定能满足,③是错的;利用向量加法的三 角形法则,结合三角形两边的和大于第三边,即必须 λb + μc =λ+μ≥ a ,所以④是假命题.综上,此题选 B .5.(2023 江苏)如图,在同一个平面内,向量OA , OB , OC 的模分别为 1,1, , OA 与OC 的夹角为α , 且 tan α= 7 , OB 与 OC 的夹角为 45. 假设 OC = m OA + n OB ( m , n ∈ R ) , 则m + n =.(答案)3(解析)由tan α= 7 可得sin α=7 2, cos α=2,由OC = m OA + n OB 得1010⎧ 2 ⎧⎪OC ⋅OA = mOA + nOB ⋅OA ⎪ 2 cos α= m + n c os(α+ 45 ) ⎨ 2 ,即⎨ ,两式相加得,2 cos 45 = m cos(α+ 45 ) + n ⎩OC ⋅OB = mOB ⋅OA + nOB⎩ 2(cos α+ cos 45 ) = (m + n )(1+ cos(α+ 45 )) ,所以2 ⨯2+ 2 ⨯2m + n = 2 cos α+ 2 cos 45 = 10 2 = 3 ,所以 m + n = 3 . 1+ cos(α+ 45)2 2 7 2 2 1+ ⨯ - ⨯ 10 2 10 2λ6.(2023 北京)向量 a ,b ,c 在正方形网格中的位置如下图,假设c = λa + μb (λ,μ∈R ),则 μ=.(答案)41 (解析) 如图建立坐标系,则 a = (-1,1) ,b = (6, 2) ,c = (-1, 3) .由c = λa + μb ,可得λ= -2,μ= -,2λ∴ μ= 47.(2023 北京)在△ABC 中,点 M , N 满足 AM = 2MC , BN = NC ,假设 MN = x AB + y AC ,则 x =2AB c / /(2a a | a b | ; y = .1(答案) 2 1 - 61 1 11 1 1 (解析)由 MN = MC + CN = AC + CB = AC + ( AB - AC ) = AB - AC = x AB + y AC .所3 2 3 2 2 61 1 以 x = , y = - .2 6考点 49 平面向量的坐标运算及平面向量共线的充要条件1.(2023•新课标Ⅱ,文 3)已知向量 a = (2, 3) , b = (3, 2) ,则| a - b |= ( )A . (答案)AB.2 C . 5 D .50(解析) a = (2, 3) ,b = (3, 2) ,∴- b = (2 ,3) - (3 ,2) = (-1 ,1) ,∴ -= ,应选 A .2.(2023 辽宁)已知点 A (1, 3) , B (4, -1) ,则与向量 AB 同方向的单位向量为⎛ 34 ⎫⎛ 43 ⎫⎛ - 3 4 ⎫⎛ 4 3 ⎫A . ,- ⎪B . ,- ⎪C . , ⎪D . - , ⎪⎝ 55 ⎭ (答案)A⎝ 55 ⎭ ⎝ 5 5 ⎭⎝ 5 5 ⎭(解析) AB = (3, -4) ,所以| AB |= 5 ,这样同方向的单位向量是 1 = (3 , - 4) . 5 5 53.(2011 广东)已知向量a =(1,2), b =(1,0), c =(3,4).假设λ为实数, (a + λb )∥c ,则λ=A.14(答案)BB.12C .1D .2(解析)a + λb = (1+ λ, 2) ,由(a + λb ) ∥ c ,得6 - 4(1+ λ) = 0 ,解得λ= 124.( 2023•新课标Ⅲ,理 13)已知向量 a = (1, 2) , b = (2, -2) , c = (1,λ) .假设+ b ) ,则λ= .(答案) 12(解析) 向量 a = (1, 2) , b = (2, -2) ,∴+ b = (4, 2) , c = (1,λ) ,+ b ) , 2a∴ 1 = λ,解得λ= 1.c / /(2a4 2 25.(2023 新课标,文 13) 已知向量 a =(m ,4),b =(3,−2),且 a ∥b ,则 m = .(答案) -6225⎨⎩1(解析) 向量 a , b 不平行,向量λa + b 与 a + 2b 平行, a + b = t (a + 2b ) = ta + 2tb ,(解析)因为 a ∥b ,所以-2m - 4 ⨯ 3 = 0 ,解得 m = -6 .6.(2023•新课标Ⅱ,理 13)设向量 a , b 不平行,向量λ + b 与+ 2b 平行,则实数λ= .(答案) 12 a a∴λ∴ ⎧λ= t ⎩1 = 2t,解得实数λ= 1 .27.(2023 江苏)已知向量a = (2,1) , b = (1, -2) ,假设 m a + n b = (9, -8) ( m , n ∈R),则 m - n的值为 .(答案)-3(解析)由题意得: 2m + n = 9, m - 2n = -8 ⇒ m = 2, n = 5, m - n = -3.8.(2023 北京)已知向量a 、b 满足 a = 1 , b = (2,1) ,且λa + b = 0 (λ∈ R ),则 λ = (答案) ⎧cos θ= - 2(解析)∵| a |= 1,∴可令 a = (cos θ, s in θ) ,∵ λa + b = 0 ,∴⎧λcos θ+ 2 = 0,即⎪λ,解⎨λsin θ+1 = 0⎨⎪sin θ= - 1 ⎩ λ得λ2 = 5 得| λ|=.9.(2023 陕西) 设0 <θ< π,向量a = (sin 2θ,cos θ) , b (cos θ,1),假设a ∥b ,则2tan θ= .1(答案)2(解析)∵ a ∥b ,∴ sin 2θ= cos2θ,∴ 2 sin θcos θ= cos 2θ,∵θ∈π(0, ) 2,∴tan θ= . 25。
高三数学平面向量基本定理及坐标表示试题答案及解析
高三数学平面向量基本定理及坐标表示试题答案及解析1.[2013·辽宁朝阳一模]在△ABC中,M为边BC上任意一点,N为AM中点,=λ+μ,则λ+μ的值为()A.B.C.D.1【答案】A【解析】∵M为边BC上任意一点,∴可设=x+y (x+y=1).∵N为AM中点,∴==x+y=λ+μ.∴λ+μ= (x+y)=.2.若向量=(1,2),=(3,4),则=A.(4,6)B.(-4,-6)C.(-2,-2)D.(2,2)【答案】A【解析】因为=+=,所以选A.【考点】本题考查平面向量的坐标运算(加法),属基础题.3.如图,在正方形ABCD中,E为AB的中点,P为以A为圆心,AB为半径的圆弧上的任意一点,设向量.【答案】【解析】以为原点,以所在直线为轴,建立平面直角坐标系.设正方形的边长为,则设 .又向量所以,∴,∴,∴.由题意得∴当时,同时,时,取最小值为.【考点】平面向量的坐标运算,三角函数的性质.4. 平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1),回答下列问题: (1)求3a+b-2c.(2)求满足a=mb+nc 的实数m,n. (3)若(a+kc)∥(2b-a),求实数k. 【答案】(1) (0,6 (2)(3)k=-.【解析】(1)3a+b-2c=3(3,2)+(-1,2)-2(4,1)=(9,6)+(-1,2)-(8,2)=(0,6). (2)∵a=mb+nc,∴(3,2)=m(-1,2)+n(4,1)=(-m+4n,2m+n). ∴解得(3)∵(a+kc)∥(2b-a),又a+kc=(3+4k,2+k),2b-a=(-5,2). ∴2×(3+4k)-(-5)×(2+k)=0, ∴k=-.5. 如图,Ox 、Oy 是平面内相交成120°的两条数轴,e 1,e 2分别是与x 轴、y 轴正方向同向的单位向量,若向量=xe 1+ye 2,则将有序实数对(x ,y )叫做向量在坐标系xOy 中的坐标.(1)若=3e 1+2e 2,则||=________;(2)在坐标系xOy 中,以原点为圆心的单位圆的方程为________. 【答案】(1) (2)x 2-xy +y 2-1=0 【解析】由题意可得e 1·e 2=cos 120°=-. (1)||=;(2)设圆O 上任意一点Q (x ,y ),则=xe 1+ye 2,||=1,即x 2+2xy ×+y 2=1,故所求圆的方程为x 2-xy +y 2-1=0.6. 设向量,,若满足,则( ) A .B .C .D .【答案】D 【解析】因为,所以,,解得:,故选D.【考点】向量共线的条件.7. 已知点,,O 为坐标原点,,,若点在第三象限内,则实数的取值范围是__________. 【答案】 【解析】令,,则,解得.【考点】平面向量的坐标运算.8.“”是“向量与向量共线”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】由“向量与向量共线”得.故选A.【考点】1、向量共线的充要条件;2、常用逻辑用语.9.已知正方形ABCD的边长为1,则=_______.【答案】【解析】.因为正方形ABCD的边长为1,所以,. 与夹角为.所以.代入得.【考点】向量的运算10.已知,,,若,则( )A.B.C.D.【答案】B【解析】,从而解得.【考点】向量垂直的充要条件,向量坐标形式的数量积运算.11.已知正方形ABCD的边长为1,记以A为起点,其余顶点为终点的向量分别为;以C为起点,其余顶点为终点的向量分别为,若i,j,k,l∈{1,2,3},且i≠j,k≠l,则的最小值是.【答案】﹣5【解析】不妨记以A为起点,其余顶点为终点的向量分别为,,,以C为起点,其余顶点为终点的向量分别为,,.如图建立坐标系.(1)当i=1,j=2,k=1,l=2时,则=[(1,0)+(1,1)]•[((﹣1,0)+(﹣1,﹣1)]=﹣5;(2)当i=1,j=2,k=1,l=3时,则=[(1,0)+(1,1)]•[((﹣1,0)+(0,﹣1)]=﹣3;(3)当i=1,j=2,k=2,l=3时,则=[(1,0)+(1,1)]•[((﹣1,﹣1)+(0,﹣1)]=﹣4;(4)当i=1,j=3,k=1,l=2时,则=[(1,0)+(0,1)]•[((﹣1,0)+(﹣1,﹣1)]=﹣3;同样地,当i,j,k,l取其它值时,=﹣5,﹣4,或﹣3.则的最小值是﹣5.故答案为:﹣5.【考点】平面向量数量积的运算点评:本小题主要考查平面向量坐标表示、平面向量数量积的运算等基本知识,考查考查分类讨论、化归以及数形结合等数学思想方法,考查分析问题、解决问题的能力12.已知向量满足,则的夹角为.【答案】【解析】根据题意,由于向量满足,根据向量的平方等于其模长的平方可知有9+48+4=33,=-6,那么可知其的夹角的余弦值为-,因此可知其向量的夹角为。
高三数学一轮复习第五章 平面向量5.2 平面向量的基本定理及向量坐标运算课件
【解析】由题意得
uur P1P
=
1 3
uuur P1P2
或
uur P1P
=
2 uuur 3 P1P2
,
uuur P1P2
=(3,-3).
设P(x,y),则
uur P1P
=(x-1,y-3),
当
uur P1P
=
1 uuur 3 P1P2时,(x-1,ຫໍສະໝຸດ -3)=1 (3,-3),
3
所以x=2,y=2,即P(2,2).
【解析】因为a∥b,所以4×3-2x=0,所以x=6. 答案:6
2.(必修4P79练习T7改编)已知三个力F1=(-2,-1),F2= (-3,2),F3=(4,-3)同时作用于某物体上一点,为使物体 保持平衡,现加上一个力F4,则F4=________.
【解析】根据力的平衡原理有F1+F2+F3+F4=0,所以F4= -(F1+F2+F3)=(1,2). 答案:(1,2)
(2)基底:不共线的向量e1,e2叫做表示这一平面内所有 向量的一组基底. (3)平面向量的正交分解. 向量正交分解是把一个向量分解为两个_互__相__垂__直__的向 量.
2.平面向量的坐标表示 (1)平面向量的坐标表示: 在平面直角坐标系中,分别取与x轴、y轴方向相同的两 个单位向量i,j作为基底,由平面向量基本定理知,该平 面内的任一向量a可表示成a=x i+y j,由于a与有序数 对(x,y)是一一对应的,因此向量a的坐标是(x,y),记作 _a_=_(_x_,_y_)_.
2
2
于是得
1 2
1 2
1, 解得
2024年新高考版数学专题1_6.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示
零向量和共线向量不能作基底.
2.平面向量的坐标运算
已知a=(x1,y1),b=(x2,y2).
则a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),a∥b⇔x1y2-x2y1=0.
3.向量的坐标表示
若A(x1,y1),B(x2,y2),则
AB
=(x2-x1,y2-y1).
1 2
( BD
- BA )= BA +
1 4
BC
-
1 2
BA =
1 2
BA +
1 4
BC
,∴D
错误.故选AC.
答案 AC
考法二 向量共线问题的求解方法
1.两非零向量共线是指存在实数λ,使两向量可以相互表示,在应用时注意
待定系数法和方程思想的应用.
2.证明三点共线问题,可用向量共线来解决,但应注意向量共线和三点共
λ(μa)=(λμ)a; (λ+μ)a=λa+μa; λ(a+b)=λa+λb
2.共线向量定理 向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使b=λa.
考点二 平面向量基本定理及坐标运算
1.平面向量基本定理
如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向 量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.我们把{e1、e2}叫做表示这个平 面内所有向量的一个基底.
答案 6
高考 数学
专题六 平面向量
6.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示
基础篇
考点一 平面向量的概念及线性运算 1.向量的线性运算
平面向量的基本定理和向量的坐标运算
【解析】(1)∵A→B+B→C+C→D+D→A=0, 即(6,1)+(x,y)+(-2,-3)=A→D, ∴A→D=(4+x,y-2), 又B→C∥D→A, ∴x(y-2)-y(4+x)=0⇒x+2y=0.① (2)由A→C=A→D+D→C=(6+x,y+1), B→D=B→A+A→D=(x-2,y-3). 又A→C⊥B→D, ∴(x-2)(x+6)+(y-3)(y+1)=0, ∴x2+y2+4x-2y-15=0,②
(3)若 A(x1,y1),B(x2,y2),则A→B=(x2-x1,y2-y1.)
即一个向量的坐标,等于表示此向量的有向线段的终点
坐标减去始点坐标.
(4)若 a=(x1,y1),λ∈R,则 λa=(λx1,λy1) .
即向量数乘积的坐标,等于数乘以向量的相应坐标.
4.两向量平行和垂直的坐标表示 (1)设 a=(x1,y1),b=(x2,y2),则 a∥b⇔x1y2-y1x2=0. (2)设 a=(x1,y1),b=(x2,y2),则 a⊥b⇔x1x2+y1y2=0.
联立①②可得 m=17,n=37,∴O→M=17a+37b.
(2)证明:E→M=(17-p)a+37b,E→F=-pa+qb, ∵E→F与E→M共线, ∴17--pp=37q,17q-pq=-37p,即71p+73q=1.
【点评】选择一组基底表示平面内的所有向量,这 是化归的思想,可给解题带来很多方便.
(2011 天津)已知直角梯形 ABCD 中,AD∥BC,∠ADC=90°,
AD=2,BC=1,P 是腰 DC 上的动点,则|P→A+3P→B|的最小值为__5__.
【解析】解法一:以 D 为原点,分别以 DA、DC 所在直线为 x、y 轴建立如图所示的平 面直角坐标系,设 DC=a,DP=x.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学复习核心素养提升练二十六平面向量的基本定理及向量坐标运算(25分钟50分)一、选择题(每小题5分,共35分)1.下列各组向量中,可以作为基底的是( )A.e1=(0,0),e2=(1,-2)B.e1=(-1,2),e2=(5,7)C.e1=(3,5),e2=(6,10)D.e1=(2,-3),e2=【解析】选B.两个不共线的非零向量构成一组基底.【变式备选】(2018·珠海一模)如图,设O是平行四边形ABCD两条对角线的交点,给出下列向量组:①与;②与;③与;④与.其中可作为该平面内其他向量的基底的是( )A.①②B.①③C.①④D.③④【解析】选B.①中,不共线;③中,不共线.②④中的两向量共线,因为平面内两个不共线的非零向量构成一组基底,所以选B.2.已知点M(5,-6)和向量a=(1,-2),若=-3a,则点N的坐标为( )A.(2,0)B.(-3,6)C.(6,2)D.(-2,0)【解析】选A.=-3a=-3(1,-2)=(-3,6),设N(x,y),则=(x-5,y+6)=(-3,6),所以即3.已知在▱ABCD中,=(2,8),=(-3,4),则= ( )A.(-1,-12)B.(-1,12)C.(1,-12)D.(1,12)【解析】选B.因为四边形ABCD是平行四边形,所以=+=(-1,12). 【变式备选】若向量a=(1,1),b=(1,-1),c=(-1,2),则c等于( )A.-a+bB.a-bC.a-bD.-a+b【解析】选B.令c=λa+μb,则所以所以c=a-b.4.已知向量a=(cos α,-2),b=(sin α,1),且a∥b,则tan等于( )A.3B.-3C.D.-【解析】选B.因为a∥b,所以cos α+2sinα=0,所以tan α=-,所以tan==-3.5.设O,A,M,B为平面上四点,=λ+(1-λ),且λ∈(1,2),则( )A.点M在线段AB上B.点B在线段AM上C.点A在线段BM上D.O,A,B,M四点共线【解析】选B.因为=λ+(1-λ)=+λ(-),所以=λ,λ∈(1,2), 所以点B在线段AM上.6.已知向量=(k,12),=(4,5),=(-k,10),且A,B,C三点共线,则k的值是( )A.-B.C.D.【解析】选A.=-=(4-k,-7),=-=(-2k,-2),因为A,B,C三点共线,所以,共线,所以-2×(4-k)=-7×(-2k),解得k=-.【变式备选】(2018·贵阳监测考试)已知向量m=(λ+1,1),n=(λ+2,2),若(m+n)∥(m-n),则λ=________.【解析】因为m+n=(2λ+3,3),m-n=(-1,-1),又(m+n)∥(m-n),所以(2λ+3)×(-1)=3×(-1),解得λ=0.答案:07.已知AC⊥BC,AC=BC,点D满足=t+(1-t),若∠ACD=60°,则t的值为( )A. B.-C.-1D.【解析】选A.由题意知D在直线AB上.令CA=CB=1,建立平面直角坐标系,如图,则B点坐标为(1,0),A点坐标为(0,1).令D点的坐标为(x,y),因为∠DCB=30°,则直线CD的方程为y=x,易知直线AB的方程为x+y=1,由得y=,即t=.二、填空题(每小题5分,共15分)8.已知向量a=(1,2),b=(x,1),u=a+2b,v=2a-b,且u∥v,则实数x的值为________.【解析】因为a=(1,2),b=(x,1),u=a+2b,v=2a-b,所以u=(1,2)+2(x,1)=(2x+1,4),v=2(1,2)-(x,1)=(2-x,3).又因为u∥v,所以3(2x+1)-4(2-x)=0,即10x=5,解得x=.答案:9.已知点A(2,3),B(4,5),C(7,10),若=+λ(λ∈R),且点P在直线x-2y=0上,则λ的值为________.【解析】设P(x,y),则由=+λ,得(x-2,y-3)=(2,2)+λ(5,7)=(2+5λ,2+7λ),所以x=5λ+4,y=7λ+5.又点P在直线x-2y=0上,故5λ+4-2(7λ+5)=0,解得λ=-.答案:-【变式备选】已知点A(-1,2),B(2,8),=,=-,则的坐标为________. 【解析】设点C,D的坐标分别为(x1,y1),(x2,y2).由题意得=(x1+1,y1-2),=(3,6),=(-1-x2,2-y2),=(-3,-6).因为=,=-,所以有和解得和所以点C,D的坐标分别为(0,4),(-2,0),从而=(-2,-4).答案:(-2,-4)10.如图,在正方形ABCD中,M是BC的中点,若=λ+μ,则λ+μ=________.【解析】=+,=+=+,=-.所以=λ+μ=λ+μ(-)=(λ-μ)+,所以解得λ=,μ=.所以λ+μ=.答案:(20分钟40分)1.(5分)设向量a=(1,-3),b=(-2,4),若表示向量4a,3b-2a,c的有向线段首尾相接能构成三角形,则向量c为( )A.(1,-1)B.(-1,1)C.(-4,6)D.(4,-6)【解析】选 D.由题知4a=(4,-12),3b-2a=(-6,12)-(2,-6)=(-8,18),由4a+(3b-2a)+c=0,知c=(4,-6).2.(5分)已知向量a=(2,3),b=(-1,2),若(m a+n b)∥(a-2b),则等于( )A.-2B.2C.-D.【解析】选 C.由题意得m a+n b=(2m-n,3m+2n),a-2b=(4,-1),因为(m a+n b)∥(a-2b),所以-(2m-n)-4(3m+2n)=0.所以=-.【变式备选】已知M(3,-2),N(-5,-1),且=,则P点的坐标为( )A.(-8,1)B.C. D.(8,-1)【解析】选B.设P(x,y),则=(x-3,y+2),而=(-8,1)=,所以解得所以P点坐标为.3.(5分)在直角梯形ABCD中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E,F分别为AB,BC的中点,以A为圆心,AD为半径的圆弧DE的中点为P(如图所示),若=λ+μ,则λ+μ的值是________.【解析】建立如图所示直角坐标系,则A(0,0),B(2,0),C(1,1),D(0,1),E(1,0),F,所以=(-1,1),=,则=λ+μ=,又因为以A为圆心,AD为半径的圆弧DE的中点为P,所以点P的坐标为P,=,所以-λ+μ=,λ+μ=,所以λ=,μ=,所以λ+μ=.答案:【变式备选】如图所示,A,B,C是圆O上的三点,线段CO的延长线与BA的延长线交于圆O外的一点D,若=m+n,则m+n的取值范围是________.【解析】由题意得,=k(k<0),又|k|=<1,所以-1<k<0.又因为B,A,D三点共线,所以=λ+(1-λ),所以m+n=kλ+k(1-λ),所以m=kλ,n=k(1-λ),所以m+n=k,从而m+n∈(-1,0).答案:(-1,0)4.(12分)已知A(1,1),B(3,-1),C(a,b).(1)若A,B,C三点共线,求a,b的关系式.(2)若=2,求点C的坐标.【解析】(1)由已知得=(2,-2),=(a-1,b-1),因为A,B,C三点共线,所以∥.所以2(b-1)+2(a-1)=0,即a+b=2.(2)因为=2,所以(a-1,b-1)=2(2,-2).所以解得所以点C的坐标为(5,-3).【变式备选】已知A(-2,4),B(3,-1),C(-3,-4),设=a,=b,=c,有=3c, =-2b,求:(1)3a+b-3c.(2)满足a=m b+n c的实数m,n.(3)M,N的坐标及向量的坐标.【解析】由已知得a=(5,-5),b=(-6,-3),c=(1,8),(1)3a+b-3c=3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)因为m b+n c=(-6m+n,-3m+8n),所以解得(3)设O为坐标原点,因为=-=3c,所以=3c+=(3,24)+(-3,-4)=(0,20),所以M的坐标为(0,20).又=-=-2b,所以=-2b+=(12,6)+(-3,-4)=(9,2),所以N的坐标为(9,2).故=(9-0,2-20)=(9,-18).5.(13分)已知点O为坐标原点,A(0,2),B(4,6),=t1+t2.(1)求点M在第二或第三象限的充要条件.(2)求证:当t1=1时,不论t2为何实数,A,B,M三点共线.【解析】 (1)=t1+t2=t1(0,2)+t2(4,4)=(4t2,2t1+4t2).点M在第二或第三象限⇔解得t2<0且t1+2t2≠0.故所求的充要条件为t2<0且t1+2t2≠0.(2)当t1=1时,由(1)知=(4t2,4t2+2).因为=-=(4,4),=-=(4t2,4t2)=t2(4,4)=t2,所以A,B,M三点共线.。