第2-1章 集合及其运算
高一数学必修一必修二各章知识点总结
数学必修1各章知识点总结第一章集合与函数概念一、集合(一)集合有关概念1.集合的含义2.集合的中元素的三个特性:确定性、互异性、无序性3.集合的表示:(1)常用数集及其记法(2)列举法(3)描述法4、集合的分类:有限集、无限集、空集5.1.子集、真子集、空集;2.有n个元素的集合,含有2n个子集,2n-1个真子集;3.空集是任何集合的子集,是任何非空集合的真子集.(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.定义域:能使函数式有意义的实数x的集合称为函数的定义域.2.常用的函数表示法及各自的优点:○1解析法:必须注明函数的定义域;○2图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;○3列表法:选取的自变量要有代表性,应能反映定义域的特征.优点:解析法:便于算出函数值.列表法:便于查出函数值.图象法:便于量出函数值. 求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1;(5)如果函数是由一些基本函数通过四则运算结合而成的,那么它的定义域是使各部分都有意义的x的值组成的集合;(6)指数为零底不可以等于零;(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:(以下两点必须同时具备)(1)表达式相同(与表示自变量和函数值的字母无关);(2)定义域一致.求函数值域方法 :(先考虑其定义域)(1)函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2)应熟练掌握一次函数、二次函数、指数函数、对数函数的值域,它是求解复杂函数值域的基础.(3)求函数值域的常用方法有:直接法、换元法、配方法、分离常数法、判别式法、单调性法等.2. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据.(2) 画法:描点法;图象变换法常用变换方法有三种:平移变换;对称变换;*伸缩变换.3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.记作“f(对应关系):A(原象集)→B(象集)”对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象.5.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数;(2)各部分的自变量的取值情况;(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.(二)函数的性质1.函数的单调性(局部性质)(1)定义设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.定义的变形应用:如果对任意的12,x x D ∈,且21x x ≠有0)()(1212>--x x x f x f 或者2121(()())()0f x f xxx -->,则函数)(x f 在区间D 上是增函数;如果对任意的12,x x D ∈,且21x x ≠有2121()()0f x f x x x -<-或者2121(()())()0f x f xxx --<,则函数)(x f 在区间D 上是减函数. 注意:函数的单调性是函数的局部性质. (2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. (3)函数单调区间与单调性的判定方法 (A) 定义法: ○1 任取x 1,x 2∈D ,且x 1<x 2; ○2作差f(x 1)-f(x 2);○3 变形(通常是因式分解和配方); ○4 定号(即判断差f(x 1)-f(x 2)的正负); ○5 下结论(指出函数f(x)在给定的区间D 上的单调性). (B)图象法(从图象上看升降) (C)复合函数的单调性复合函数f [g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减” 注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2.函数的奇偶性(整体性质) (1)偶函数一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2)奇函数一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=—f(x),那么f(x)就叫做奇函数. (3)具有奇偶性的函数的图象的特征偶函数的图象关于y 轴对称;奇函数的图象关于原点对称. 利用定义判断函数奇偶性的步骤:○1首先确定函数的定义域,并判断其是否关于原点对称; ○2确定f(-x)与f(x)的关系; ○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .3.函数的解析表达式(1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2)求函数的解析式的主要方法有:凑配法; 待定系数法;换元法;消参法.如果已知函数解析式的构造时,可用待定系数法;已知复合函数f [g (x )]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x) 4.函数最大(小)值(1)利用二次函数的性质(配方法)求函数的最大(小)值;(2)利用图象求函数的最大(小)值;(3)利用函数单调性的判断函数的最大(小)值:函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b); 函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b).第二章 基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果a x n=,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n .当n 是奇数时,a a nn=,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a n n2.分数指数幂正数的分数指数幂的意义,规定:)1,,,0(*>∈>=n N n m a a a n m n m,)1,,,0(11*>∈>==-n N n m a a aa n m nm nm ◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质(1)r s r s a a a +⋅=(0,,)a r s R >∈;(2)()r s r s a a =),,0(R s r a ∈>;(3)()r r ra b ab =(0,)a r R >∈. (二)指数函数及其性质1.指数函数的概念: 一般地,函数)1,0(≠>=a a a y x且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2.指数函数的图象和性质(1)在[a ,b]上,)1a 0a (a )x (f x≠>=且值域是)]b (f ),a (f [(a>1)或 )]a (f ),b (f [(0<a<1); (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈;(3)对于指数函数)1a 0a (a )x (f x≠>=且,总有a )1(f =.二、对数函数(一)对数的概念:一般地,如果N a x=)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:Nx a log =(a — 底数,N — 真数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ;○2 x N N a a x=⇔=log . 两个重要对数:○1 常用对数:以10为底的对数N lg ; ○2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数N ⇔log N(二)对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么: ○1 M a (log ·=)N M a log +N a log ;○2 =N Malog M a log -N a log ; ○3 na M log n =M a log)(R n ∈. 注意:换底公式abb c c a log log log =(0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式可得下面的结论:(1)b m n b a nam log log =; (2)ab b a log 1log =.(三)对数函数1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:xy 2log 2=,5log 5x y = 都不是对数函数,而只能称其为对数型函数. ○2 对数函数对底数的限制:0a >,且1a ≠.21.幂函数定义:一般地,形如αx y =)(R a ∈的函数称为幂函数,其中α为常数.2.幂函数性质归纳:(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1); (2)当0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸; (3)当0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.第三章 函数的应用一、方程的根与函数的零点1.函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点. 2.函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标. 即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点. 3.函数零点的求法: ○1 (代数法)求方程0)(=x f 的实数根; ○2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点. 4.二次函数的零点:二次函数)0(2≠++=a c bx ax y .(1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.(2)△=0,方程02=++c bx ax 有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点.二、函数的应用解答数学应用题的关键有两点:一是认真读题,缜密审题,确切理解题意,明确问题的实际背景,然后进行科学的抽象、概括,将实际问题归纳为相应的数学问题;二是要合理选取参变数,设定变元后,就要寻找它们之间的内在联系,选用恰当的代数式表示问题中的关系,建立相应的函数、方程、不等式等数学模型;最终求解数学模型使实际问题获解.数学必修2各章知识点总结第一章 空间几何体1、柱、锥、台、球的结构特征(要补充直棱柱、正棱柱、正棱锥、正棱台、平行六面体的定义)结 构 特 征 性质 图例 棱柱 (1)两底面相互平行,其余各面都是平行四边形; (2)侧棱平行且相等. 圆柱(1)两底面相互平行;(2)侧面的母线平行于圆柱的轴; (3)是以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体.棱锥 (1)底面是多边形,各侧面均是三角形; (2)各侧面有一个公共顶点. 圆锥 (1)底面是圆;(2)是以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体.棱台 (1)两底面相互平行;(2)是用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分.圆台 (1)两底面相互平行;(2)是用一个平行于圆锥底面的平面去截圆锥,底面和截面之间的部分. 球(1)球心到球面上各点的距离相等;(2)是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体.2、空间几何体的三视图三视图定义:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下) 注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度. 3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x 轴平行的线段仍然与x 轴平行且长度不变;②原来与y 轴平行的线段仍然与y 轴平行,长度为原来的一半.4、柱体、锥体、台体的表面积与体积(1)柱体、锥体、台体的表面积(几何体的表面积为几何体各个面的面积的和)表面积相关公式 表面积相关公式棱柱 2S S S =+侧全底 圆柱 222S r r h ππ=+全(r :底面半径,h :高) 棱锥 S S S =+侧全底圆锥 2S r r l ππ=+全(r :底面半径,l :母线长) 棱台S S S S =++侧全上底下底圆台22('')S r r r l r l π=+++全(r :下底半径,r ’:上底半径,l :母线长)(2)柱体、锥体、台体的体积公式体积公式体积公式 棱柱 V S h =底高圆柱 2V r h π=棱锥 13V S h =底高圆锥 213V r h π=棱台1('')3V S SS Sh =++圆台221('')3V r rr r h π=++(3)球体的表面积和体积公式:V 球=343R π ; S 球面=24Rπ第二章 空间点、直线、平面之间的位置关系1、空间点、直线、平面之间的位置关系 (1)平面① 平面的概念: 平面是无限伸展的.② 平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC.③ 点与平面的关系:点A 在平面α内,记作A α∈;点A 不在平面α内,记作A α∉. 点与直线的关系:点A 在直线l 上,记作:A ∈l ; 点A 在直线l 外,记作A ∉l.直线与平面的关系:直线l 在平面α内,记作l ⊂α;直线l 不在平面α内,记作l ⊄α.(2)平面基本性质即三条公理的“文字语言”、“符号语言”、“图形语言”列表如下:公理1 公理2 公理3图形语言文字语言如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 过不在一条直线上的三点,有且只有一个平面.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号语言 ,,A l B l l A B ααα∈∈⎫⇒⊂⎬∈∈⎭,,,,ABC ABC α⇒不共线确定平面,l P P P l αβαβ=⎧∈∈⇒⎨∈⎩推论1: 经过一条直线和这条直线外的一点,有且只有一个平面; 推论2: 经过两条相交直线,有且只有一个平面; 推论3: 经过两条平行直线,有且只有一个平面.(3)空间直线与直线之间的位置关系公理4:平行于同一条直线的两条直线互相平行①空间两条直线的位置关系:⎧⎧⎪⎨⎨⎩⎪⎩相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点. ②异面直线判定:过平面外一点与平面内一点的直线与平面内不过该点的直线是异面直线③异面直线所成角:已知两条异面直线,a b ,经过空间任一点O 作直线//,//a a b b'',把,a b ''所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角). ,a b ''所成的角的大小与点O 的选择无关,为了简便,点O 通常取在异面直线的一条上;异面直线所成的角的范围为(0,90]︒,如果两条异面直线所成的角是直角,则叫两条异面直线垂直,记作a b ⊥. 求两条异面直线所成角的步骤可以归纳为四步:选点→平移→定角→计算.④等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补. (4)空间直线与平面之间的位置关系直线在平面内——有无数个公共点.三种位置关系的符号表示:a α⊂; a ∩α=A ;a ∥α . (5)平面与平面之间的位置关系:平行——没有公共点,记作α∥β.相交——有一条公共直线,记作α∩β=b.2、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.(线线平行⇒线面平行) 符号表示为:,,////a b a b a ααα⊄⊂⇒.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.线面平行⇒线线平行符号表示为:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行.(线面平行→面面平行),用符号表示为:,,////,//a b a b P a b βββααα⊂⊂=⎫⇒⎬⎭. *(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.(线线平行→面面平行), *(3)垂直于同一条直线的两个平面平行, 两个平面平行的性质定理(1)如果两个平面平行,那么一个平面内的直线与另一个平面平行.(面面平行→线面平行)用符号表示为:α∥β,a ⊂β//a α⇒(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)用符号表示为:α∥β,α∩γ=a ,β∩γ=b //a b ⇒3、空间中的垂直问题(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直. ②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直. (2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.(线线垂直→线面垂直)用符号表示为:l ⊥m ,l ⊥n ,m ∩n =B ,m ⊂α,n ⊂α⇒l ⊥α性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行. 用符号表示为:a ⊥α,b ⊥α⇒ //a b②面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(线面垂直→面面垂直)用符号表示为:a ⊂α,α⊥β⇒α⊥β.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.(面面垂直→线面垂直)用符号表示为:αβ⊥,l αβ=,a α⊂,a l ⊥⇒a β⊥.4、空间角问题(1)直线与直线所成的角①两平行直线所成的角:规定为 0.②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角. ③两条异面直线所成的角:过空间任意一点O ,分别作与两条异面直线a ,b 平行的直线b a '',,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角. (2)直线和平面所成的角①平面的平行线与平面所成的角:规定为0.②平面的垂线与平面所成的角:规定为90.③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”. (3)二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内..分别作垂直于...棱的两条射线,这两条射线所成的角叫二面角的平面角.③直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到二面角平面角.*垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角第三章 直线与方程1、直线的倾斜角与斜率 (1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k 表示.即ta n k α=.斜率反映直线与轴的倾斜程度. 当[)90,0∈α时,0≥k ;当()180,90∈α时,0<k ; 当90=α时,k 不存在. ②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=③设1122(,),A x y B xy ,(),则线段AB 中点坐标公式为1212(,)22x x y y ++ β aαb2、直线的方程(1)直线方程的几种形式名称 方程 适用范围 点斜式 y -y 0=k (x -x 0) 不含垂直于x 轴的直线 斜截式 y =kx +b 不含垂直于x 轴的直线 两点式 y -y1y2-y1=x -x1x2-x1 不含直线x =x 1(x 1≠x 2) 和直线y =y 1(y 1≠y 2) 截距式 xa +yb =1 不含垂直于坐标轴和过原点的直线 一般式 Ax +By +C =0(A 2+B 2≠0) 平面直角坐标系内的直线都适用 注意:○1各式的适用范围; ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数).(2)直线系方程(即具有某一共同性质的直线)①平行直线系:平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系方程为:000=++C y B x A (C 为参数) ②垂直直线系:垂直于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系方程为:000=+-C y A x B (C 为参数) ③过定点的直线系:(ⅰ)斜率为k 的直线系方程为()00x x k y y -=-,直线过定点()00,y x ;*(ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为 ()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中.3、两直线平行与垂直已知111:b x k y l +=,222:b x k y l +=,则212121,//b b k k l l ≠=⇔;12121-=⇔⊥k k l l 注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否. 4、两条直线的交点0:1111=++C y B x A l ,0:2222=++C y B x A l 相交,交点坐标即方程组⎩⎨⎧=++=++00222111C y B x A C y B x A 的一组解. 方程组无解21//l l ⇔; 方程组有无数解⇔1l 与2l 重合5、距离公式:(1)平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离为|P 1P 2|=222121()()x x y y -+-. 特别地,当12,P P 所在直线与x 轴平行时,1212||||P P x x =-;当12,P P 所在直线与y 轴平行时,1212||||P P y y =-; (2)平面上任意一点P 0(x 0,y 0)到直线l :Ax +By +C =0(A ,B 不同时为0)的距离为d =|Ax0+By0+C|\r(A2+B2).(3)两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0(其中A ,B 不同时为0,且C 1≠C 2)间的距离为d =|C1-C2|\r(A2+B2).第三章 圆与方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程()()222rb y a x =-+-,圆心()b a ,,半径为r ;(2)一般方程022=++++F Ey Dx y x 当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42122-+= 当0422=-+F E D 时,表示一个点; 当0422<-+F E D 时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需要求出a ,b ,r ;若利用一般方程, 需要求出D ,E ,F.另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置. 3、直线与圆的位置关系:位置关系 几何特征 方程特征 几何法 代数法 相交 有两个公共点 方程组有两个不同实根 d<r △>0 相切 有且只有一公共点 方程组有且只有一实根 d=r △=0 相离 没有公共点 方程组无实根 d>r △<0(利用圆被截得弦的性质(垂径定理):弦长222||d r AB -=(2)过圆外一点的切线:①k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,求解k ,得到方程【一定两解】;(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为(x 0-a)(x-a)+(y 0-b)(y-b)= r 24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定.设圆()()221211:r b y a x C =-+-,()()222222:R b y a x C =-+- 当r R d +>时两圆外离,此时有公切线四条; 当r R d +=时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 当r R d r R +<<-时两圆相交,连心线垂直平分公共弦,有两条外公切线; 当r R d -=时,两圆内切,连心线经过切点,只有一条公切线;当r R d -<时,两圆内含; 当0=d时,为同心圆.注意:已知两圆相切,两圆心与切点共线,圆的辅助线一般为连圆心与切线或者连圆心与弦中点. 5.空间直角坐标系(1)定义:从空间某一个定点O 引三条互相垂直且有相同单位长度的数轴Ox 、Oy 、Oz ,这样的坐标系叫做空间直角坐标系O -xyz ,点O 叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴. 通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面、yOz 平面、zOx 平面.(2)任意点坐标表示:空间一点M 的坐标可以用有序实数组(,,)x y z 来表示,有序实数组(,,)x y z 叫做点M 在此空间直角坐标系中的坐标,记作(,,)Mxyz(x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标)(3)空间两点距离坐标公式:212212212)()()(z z y y x x d -+-+-=。
集合的基本运算(课件
集合的元素
01
02
03
确定性
集合中的元素是确定的, 不存在模糊不清的情况。
互异性
集合中的元素是互不相同 的,即集合中没有重复的 元素。
无序性
集合中的元素没有顺序, 即集合中元素的排列顺序 不影响集合本身。
空集
定义
不含任何元素的集合称为空集。常用 希腊字母∅表示空集。
性质
空集是任何集合的子集,即对于任意集 合A,都有{}⊆A。
补集
补集是指属于全集但不属于某个特定 集合的元素组成的集合。
补集运算不满足交换律和结合律,即 AB≠BA,且(AB)C≠A (BC)。
补集运算可以用符号“”表示,例如 :AB 表示集合A和集合B的补集。
03 集合运算的性质
交换律
定义
对于任意两个集合A和B,若A∪B=B∪A和A∩B=B∩A,则称交 换律成立。
04 集合运算的应用
在数学中的应用
集合的交、并、差运算
01
这些基本运算在数学中用于描述集合之间的关系,如两个集合
的共有元素、所有元素等。
集合的对称差运算
02
在数学中,对称差运算用于描述两个集合之间的相对差异,即
属于一个集合但不属于另一个集合的元素。
集合的补运算
03
补运算用于描述全集中不属于某个集合的元素组成的集合,即
感谢您的观看
THANKS
分配律
定义
对于任意三个集合A、B和C,若A∪(B∩C)=(A∪B)∩(A∪C)和 A∩(B∪C)=(A∩B)∪(A∩C),则称分配律成立。
举例
设集合A={1,2,3},B={2,3,4},C={3,4,5},则A∪(B∩C)={1,2,3,4}, (A∪B)∩(A∪C)={1,2,3,4},满足分配律。
《集合的基本运算》课件
分配律
集合的分配律指对于三个集 合A、B、C,(A∪B)∩C = (A∩C)∪(B∩C),(A∩B)∪C = (A∪C)∩(B∪C)。
实例演练
针对不同场景的集合问题进行解答,帮助大家更好地应用集合运算法则。
小结
1 集合的基本运算
包括并集、交集、差集和互补集。
2 集合的运算律
包括交换律、结合律和分配律。
用符号表示为C。
并集
集合的并集是指将两个集合中的所有 元素合并在一起的运算,用符号表示 为∪。
差集
集合的差集是指从一个集合中减去另 一个集合中共有的元素所得到的集合, 用符号表示为\-。
集合的运算律
交换律
集合的交换律指交换并集和 交集的顺序不会集合进 行并集或交集运算时,可以 按照任意顺序进行,结果不 变。
《集合的基本运算》PPT 课件
本节课将介绍集合的基本运算,帮助大家更好地理解集合的概念和运算法则。
什么是集合?
集合的定义
集合是由一组元素组成的整体,元素与集合的关 系由包含和不包含来决定。
元素与集合的关系
元素可以属于一个集合,也可以不属于一个集合。 这种关系通过包含和不包含来描述。
集合的表示形式
3 实例演练回顾
通过实例演练加深对集合的基本运算和运算律的理解。
Q&A
回答听众提出的问题,帮助大家进一步理解集合的基本运算和运算律。
列举法
通过列举集合中的元素来 表示。适用于元素个数较 少的情况。
描述法
通过描述元素的特征或性 质来表示。适用于元素个 数较多的情况。
Venn图
通过画图的方式来表示集 合和元素之间的关系。直 观且易于理解。
集合的基本运算
1
集合论第1章集合及其运算
集合论与图论以前学习的高等数学(数学分析)都是连续函数,而计算机是离散型结构,所以它所研究的对象应是离散型的。
因此,做为计算机理论的核心课程《离散数学》就显然非常重要,计算机专业学生必须开设此课程。
目的:培养学生抽象思维和逻辑思维的能力要求:概念第一,正确使用概念进行正确的推理。
特点:抽象,概念多;与其它课程不同,不是以计算为主,而是以推理论证为主;比较难。
内容:⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎩集合映射集合论关系无穷集合图的基本概念树和割集离散数学图 论 连通度和匹配平面图的欧拉公式和图的着色有向图近世代数数理逻辑形式语言与自动机可计算理论等等离散:不考虑实数的性质,只考虑有限或可数的整数。
因此可用归纳法。
第一篇集合论集合论是德国数学家康托(Cantor)在1874年建立的,它是现代数学的基础,在当今数学中每个对象本质上都是集合。
有时我们说:“数学能嵌套在集合论中”其含义就是指数学的一些对象如:数、函数、线、面等都可以用集合来定义。
换句话说,数学的各个分支在本质上都是研究这种或那种对象的集合。
例如:几何学——研究点、线、面的集合;数学分析——连续函数的集合;代数——研究数的集合以及在此集合上定义有关运算的集合等等。
因此,把集合论作为现代各种数学的基础是有道理的,也是合适的。
集合论的特点:(1)研究的对象十分广泛:数、图形或其它任何客体都可以作为研究的对象。
(2)因为它研究的对象是如此广泛,为了便于研究必须寻找对象的共性,而要做到这一点,就必须进行抽象。
(3)在抽象化的基础上,可用统一的方法来研究和处理集合论的各类问题。
第一章 集合及其运算§1集合的基本概念在日常生活中,经常会遇到“集合”的概念,例如:所有中国人的组成的集合;坐标面上的有点的集合,自然数集,实数集,全世界无产者等等。
集合是集合论中最基本的概念,所以很难给出精确的定义。
因此,我们把“集合”作为原始的概念给出非形式定义,只给予一种描述说明这个概念的含义。
集合的基本运算课件
列举法、描述法、图像法。
集合间的关系与性质
集合间的关系
包含关系、相等关系。
集合的性质
确定性、互异性、无序性。
集合的运算性质
01
并集及其运算性质
由所有属于A或属于B的元素组 成的集合,叫做A与B的并集, 记作A∪B。性质包括交换律、 结合律、分配律等。
02
Байду номын сангаас
03
差集及其运算性质
由所有属于A但不属于B的元素 组成的集合,叫做A与B的差集 ,记作A-B或AB。性质包括差集 不具有交换性、差集具有结合性 等。
对于任意集合A和B,P(A)和P(B) 的交集等于A和B的交集的幂集, 即P(A) ∩ P(B) = P(A ∩ B)。
幂集的应用举例
应用场景
在组合数学、图论、概率论等领域中,幂集运算具有广泛的应用。例如,在图论中,一个图的顶点集的所有子 集构成的集合即为该图的幂集,可以用于描述图的性质和结构。
举例
例3
在解不等式时,经常需要用到补集的概念。例如,解不等 式|x−2|>1,可以先求出不等式|x−2|≤1的解集,然后取其 补集即可得到原不等式的解集。
05
集合的对称差运算
对称差的定义与性质
定义:对于任意两个集合A和B,由所有属于A或属于B 但不同时属于A和B的元素所组成的集合称为A和B的对 称差集,记作AΔB。 交换律:AΔB = BΔA。
举例三
在解决实际问题时,经常需要用到并集的概 念。例如,在统计某地区的学生人数时,可 以将该地区所有学校的学生人数分别求出, 然后取并集得到总人数。
04
集合的差运算
补集的定义与性质
补集的定义:设S是一个集合,A是S的 一个子集,由S中所有不属于A的元素组 成的集合称为A在S中的补集,记作∁SA 。
离散数学题型梳理-第1章
离散数学常考题型梳理第1章 集合及其运算一、题型分析本章主要介绍集合论的基本概念和结论,集合的运算及其性质,以及利用运算性质进行集合表达式的化简和集合恒等式的证明等内容.经常涉及到的题型有:1-1集合与集合之间的包含、元素与集合之间的属于关系1-2幂集的计算1-3集合之间的运算1-4利用集合运算性质证明集合恒等式因此,在本章学习过程中希望大家要清楚地知道:1.集合与集合之间存在一种包含关系,当两个集合A 和B 存在关系A 包含B ,用A ⊇B 表示,或存在关系B 被A 包含,用B ⊆A 表示,这时称B 为A 的子集.注意空集∅是任意一个集合的子集,集合A 也是自己的子集.当B ⊆A 且B ≠A ,也就是说,只有B ⊂A 或A ⊃B 成立,则称B 为A 的真子集.若B 不是A 的子集,即B ⊆A 不成立时,则称A 不包含B ,记作B ⊆A .然而,元素与集合之间存在一种从属关系,当a 是集合A 中的元素,则称a 属于A ,记作a∈A ;若a 不是集合A 中的元素,则称a 不属于A ,记作a ∉A .因此,这两种关系一定不要混淆.2.由集合A 的所有子集组成的集合,称为A 的幂集,记作P (A )或2A .若集合A 是由n 个元素所组成的集合,则A 的幂集由2n 元素组成.当n =3时,A 的幂集由23=8个元素组成.例如,设集合A = {0, 1, 2 },则A 的全部子集由以下子集组成:0元子集(即空集):∅;1元子集:{0},{1},{2};2元子集:{0, 1},{0, 2},{1, 2};3元子集(即集合A ):{0, 1, 2}.因此,计算集合A 的幂集时,首先要按照上述方法写出集合A 的全部子集,然后检验写出的子集个数是否等于2n 个,其中n 是集合A 的元素个数.3.集合之间的运算有并(⋃)、交(⋂)、差(-)、补(~)和对称差(⊕)等五种运算,在做集合运算的题目时,一定要按照它们的定义进行计算.(1) 集合A 和B 的并集A B x x A ⋃=∈{或 x B ∈} 特点:由集合A 和B 的所有元素组成的集合.见图1 图1 图2(2) 集合A 和B 的交集A B x x A ⋂=∈{ 且 x B ∈}特点:由集合A 和B 的公共元素组成的集合.见图2(3) 集合A 与B 的差集A B -=∈∉{}x x A x B 且 特点:由属于A ,而不属于B 的所有元素组成的集合.见图3(4) 集合A 的补集~A ={}x x E x A ∈∉且特点:由属于全集E 但不属于集合A 的元素组成的集合.见图4补集总相对于一个全集而言,可以看作是全集E 与集合A 的差集.(5) 集合A 与B 的对称差A ⊕B =(A -B )⋃(B -A )或 A ⊕B =(A ⋃B )-(A ⋂B )特点:由分别属于集合A 与B 的元素但不属于它们公共元素组成的集合.见图5(6) 把集合A ,B 合成集合A ×B 叫做笛卡儿积,规定A ×B ={<x , y >∣x ∈A 且y ∈B }注意:由于有序对<x , y >中x ,y 的位置是确定的,因此A ×B 的记法也是确定的,不能写成B ×A..笛卡儿积的运算一般不能交换..虽然,笛卡儿积的内容是第2章2.1.1目的内容,是二元关系的预备知识,但我们认为把它作为集合的一种运算考虑更好些。
集合论
第一篇集合论第一章集合及其运算1.1 集合的概念1.2 子集、集合的相等1.3 集合的基本运算1.4 余集、De Morgan公式1.5 笛卡尔乘积1.6 有穷集合的基数第二章映射2.1 函数的一般概念——映射定义::映射(法则),映射(笛卡尔乘积),限制和扩张,部分映射,映射相等,单射,满射,双射,恒等映射2.2 抽屉原理2.3 映射的一般性质定义::象f(A),原象f-1(A)[定理2.3.1](1)f-1(C∪D)=f-1(C)∪f-1(D);(2)f-1(C∩D)=f-1(C)∪f-1(D);(3)f-1(CΔD)=f-1(C)Δf-1(D);(4)f-1(C C)=(f-1(C))C⊆⊇⊇[定理2.3.2]∪∪(5)f(A B)=f(A)f(B);(6)f(A∩B)f(A)∩f(B);(7) f(AΔB)f(A)Δf(B);(8) f(A\B)f(A)\f(B)2.4 映射的合成定义::映射的合成[定理2.4.1]合成符合结合律,但不符合交换律[定理2.4.2]设f:X→Y,则f∘I X=I Y∘f =f[定理2.4.3]设f:X→Y,g:Y→Z, 则(1)若f与g都是单射,则g∘f也是单射:f是单射,∀x1x2且x1≠x2 y1=f(x1),y2=f(x2)且y1≠y2有g(f(x1))≠g(f(x2))(2)若f与g都是满射,则g∘f也是满射:f满射,∀y必有x∈X使f(x)=y.∀z∈Z必有y∈Y使g(y)=z.则∀z∈Z必有x∈X使g(f(x))=z.(3)若f与g都是双射,则g∘f也是双射[定理2.4.4]设f:X→Y,g:Y→Z, 则(1)若g∘f是单射,则f是单射;∀x1,x2∈X且x1≠x2有g(f(x1)) ≠g(f(x2))(2)若g∘f是满射,则g是满射;反证:∃z∈Z使∀y∈Y,g(y)≠z则有∀x∈X有g(f(x)) ≠z推出矛盾(3)若g∘f是双射,则f是单射且g是满射[定理2.4.5]设f与g都是X到X的映射,则I m (f)⊆I m(g)的充分必要条件是存在一个映射h:X→X使得f=g∘h2.5 逆映射定义::逆映射,左逆映射,右逆映射[定理2.5.1]逆映射存在的充要条件是f是双射::⇒ Ix,Iy+定理2.4.4⇐构造g(y)=x当且仅当f(x)=y[定理2.5.2]逆映射唯一::假设不唯一,推出g=I x°g=(h°f)°g=h°(f°g)=h°I x=h[定理2.5.3] (gf)-1=f-1g-1,(f-1)-1=f:(gf)(f-1g-1)=g(ff-1) g-1= gg-1=I z, (f-1g-1) (gf)=f(gg-1)f-1= ff-1=I x[定理2.5.4](1)f是左可逆的充分必要条件是f为单射:⇒定义+定理⇐f:X→I m(f)的双射,建立g:I m(f)→X双射,在扩充到Y上,y∉I m(x)随便映射一个(2)f是右可逆的充分必要条件是f为满射:⇒定义+定理⇐构造2.6 置换定义::n次置换,k-循环置换,对换,奇置换,偶置换[定理2.6.1][定理2.6.2][定理2.6.3]置换α,β没有共同数字时可以交换[定理2.6.4]置换可进行唯一循环分解[定理2.6.5]置换分解成若干对换的乘积,分解个数的奇偶性不变[定理2.6.6]奇偶置换个数相等,都等于n!/22.7 二元和n元运算定义::有限序列,无限序列,子序列,二元运算,一元运算,n元运算,交换律,结合律,代数系的同构2.8 集合的特征函数定义::集合的特征函数第三章关系3.1 关系的概念定义::关系(映射),关系(笛卡尔乘积),定义域,值域,多部映射,关系(多部映射),多值二元关系3.2 关系的性质定义::自反,反自反,对称(R对称⟺R=R-1),反对称,传递,相容,逆3.3 关系的合成运算定义::关系的合成,[定理3.3.1]关系的合成不符合交换律,但符合结合律[定理3.3.2](1)R1°(R2∪ R3 )=(R1°R2)∪(R1°R3);(2)R1° (R2∩ R3 )⊆(R1°R2)∩(R1°R3);(3)(R2∪R3 )°R4 = (R2°R4) ∪(R3°R4);(4)(R2∩R3 ) °R4⊆(R2°R4) ∩(R3°R4) [定理3.3.3](1)(R∘S)-1 = S-1∘R-1:(2)R∘R-1 是对称的[定理3.3.4]R是传递关系⟺R°R⊆R[定理3.3.5]R0=I x;R1=R;R n+1=R n°R;R m°R n=R m+n;(R m)n=R mn[定理3.3.6]设X是一个有限集合且|X|=n,R为X上的任一二元关系,则存在非负整数s,t,使得0≤s<t≤2n^2且R s= R t[定理3.3.7]设R是X上的二元关系,若存在非负整数s,t,s<t,使得且R s= R t ,则(1)R s+k= R t+k ,k为非负整数(2)R s+kp+i= R s+i ,其中p=t-s,而k,i为非负整数(3)令S={R0,R,R2 ,…,R t-1},则对任意的非负的整数q,有R q ∈S[定理3.3.8]R对称且传递⟺R=R°R-13.4 关系的闭包定义::传递闭包(所有包含R的传递关系的交,可以类似定义自反传递闭包等),自反传递闭包,自反闭包,对称闭包[定理3.4.1]关系R的传递闭包是传递关系(如果R是传递关系,R+=R):[定理3.4.2]R+=∪R i=R∪R2∪R3∪…:: R+⊆∪R i只要证明∪R i是包含R的传递关系, ∪R⊆R+只要证明(a,b)∈R m,(b,c)∈R n.(a,c)∈R m+n,(a,c) ∈R+[定理3.4.3]R+=∪R n=R∪R2∪R3∪…R n::证明R k⊆∪R i,如果k>n,x仅有n个元素,由抽屉原理得存在b i=b j重复以上过程证明.[定理3.4.5]R*=R0∪R+3.5 关系矩阵和关系图定义:: (1)R是自反的,当且仅当B的对角线上的全部元素都为1;(2) R是反自反的当且仅当B的对角线上的全部元素都为0;(3) R是对称的当且仅当B是对称矩阵;(4) R是反对称的当且仅当b i j与b j i不同时为1,i≠j;(5) R是传递的当且仅当若b i j=1且b j k=1,则b i k=1; (6) R-1的矩阵是B T3.6 等价关系和集合划分定义::等价关系(1.自反2.对称3.传递),等价类,商集[定理3.6.3]3.7 映射按等价关系划分3.8 偏序关系和偏序集定义::偏序关系(自反,反对称,传递),偏序集,全序集,Hasse图,上下界,最大最小元素,链与反链第四章无穷集合及其基数4.1可数集定义::可数集(从自然数集N到集合A有一一映射),无限集(能与自身的真子集对等的集合),代数数,超越数[定理4.1.1]集合A为可数集⟺A的全部元素可以排成无重复项的序列[定理4.1.2]无限集中包含可数子集[定理4.1.3]两个可数集的并是可数集[定理4.1.4]有限个可数集的并是可数集[定理4.1.7]可数个可数集的并是可数集:写成无穷阶方阵,按对角线游历[定理4.1.8]有理数集Q是可数集[定理4.1.10]一列有限个集合的笛卡尔乘积为可数集4.2连续统集定义::连续统(与[0,1]实数集对等)[定理4.2.1]区间[0,1]内的全体实数构成不可数无穷集::康托对角线第二篇图论第六章图的基本概念6.1图论的产生与发展概述6.2基本定义定义::无向图,G(p,q),平凡图,零图,有向图,定向图,子图,生成子图,导出子图,图的同构,度(degv),δ(G),Δ(G),正则图(推论三次图的顶点个数为偶数)[定理6.2.1]欧拉定理:Σ(degv)=2q推论度为奇数的点的个数必为偶数6.3路、圈、连通图定义::通道,闭通道,迹,闭迹,路,圈(回路),连通图,支[定理6.3.1]uv有路⟺u≅v[定理6.3.2]degu+degv≥p–1⟹G连通::拆成两个支用结论反证,degu≤n1-1,degv≤p-n1-1推出与结论的矛盾[定理6.3.3]∀v∈V,degv为偶数⟹G中有圈::设最长路证明[定理6.3.4]∃u,v中有两条不同路⟹G有圈::6.4补图、偶图定义::补图,自补图,三角形,偶图,完全偶图(Km,n), 图上两点间的距离d(u,v)[定理6.4.1]R(3,3)≤6::抽屉原理+[定理6.4.2]偶图判断的充要条件:图上所有的圈的长度都为偶::⇒将圈上的奇偶序的点放入两个顶点划分中⇐取定一点按距离奇偶构造[定理6.4.3](Turan定理)p个顶点没有三角形的图至多有[p^2/4]::6.5欧拉图定义::欧拉闭迹,欧拉图,欧拉迹[定理6.5.1]欧拉图存在定理:G的每个顶点的度都为偶::⇒显然⇐结合定理6.3.3造N个圈Zi然后数归证明这些圈相接.推论::欧拉图的等价命题: 1)G是欧拉图2)∀v∈V,degv为偶数3)G的边能划分成若干不相交的圈.[定理6.5.2]欧拉迹存在定理:: ⇒从定理6.5.1获得⇐uv奇数度,加edge(u,v)得欧拉迹C,在C上去掉edge(u,v).6.6哈密顿图定义::哈密顿圈、哈密顿图[定理6.6.1]G是Hamilton⟹∀S∈V有ω(G-S)<|S|[定理6.6.2](Dirac定理)p个顶点的图G,δ(p)≥p/2,⟹G是一个哈密顿图.[定理6.6.3](Ore定理)p个顶点的图,∀u,v(u,v不邻接),均有degu+degv≥p⟹G是哈密顿图.[定理6.6.4]p个顶点的图,∀u,v(u,v不邻接),均有degu+degv≥p-1⟹G是哈密顿图.6.7图的邻接矩阵[定理6.7.1]图同构的邻接矩阵判定[定理6.7.2]ij顶点间长l的通道条数=A l(i,j)::数归l,[定理6.7.3]G(p,q),连通⟺(A+I)^(p-1)>0::⇒定理6.7.2⇐定理6.7.2第七章树和割集7.1树及其性质定义::树,极小连通图(推论树是极小连通图), 偏心率,树的半径,树的中心[定理7.1.1]树的六个等价命题:1)树;2)G中任两点有且只有一条路;3)G连通且p=q+1; 4)G无圈且p=q+1;5)G无圈且其中任意不相邻两点加边得唯一的圈;6)连通(p≥3且G非Kp)且其中任意不相邻两点加边得唯一的圈.推论非平凡树至少有两个度为1的顶点且非平凡树是偶图::偶图判断的构造证明法[定理7.1.2]树的中心的位置7.2生成树定义::生成树, 生成森林, 生成树的距离,生成树的基本变换[定理7.2.1]生成树存在⟺G连通::⟹显然⟸破圈法.推论G连通⟹q≥p-1[定理7.2.2](Cayley定理)Kp的生成树的个数=p(p-2)[定理7.2.3]生成树中去掉边集E1后必能找到另一不在原生成树中的边集E2使T-E1+E2为生成树[定理7.2.4]距离为k的两个生成树可以经过k次基本变换互相得到::数归,由定理7.2.3知,d(T0,T)=k去掉e1后必然有e2∉T0使(T0-e1)+e2=T1,而d(T1,T)=k-1得到归纳.7.3割点、桥和割集定义::割点,桥,割集(有极小性)[定理7.3.1]割点的等价命题:1)v是割点;2)∃u,w≠v使uw间所有路经过v;3)∃划分{U,W} UW间所有路经过v;[定理7.3.2]桥的等价命题:1)x是桥;2)x不在G的任何圈上3)∃u,v使x在连接uw所有路上;4)∃划分{U,W},使x在连接UW所有路上; [定理7.3.4]割集将图分成两个支(推论有k个支的图G去掉割集后有k+1个支)[定理7.3.5]割集必然包含生成树的某条边::反证[定理7.3.6]割集与G中的圈必有偶数条公共边::G1G2取定一点周游,e(u,v)(u∈G1,v∈G2)是圈与割集相交的边第八章连通度和匹配8.1顶点连通度和边连通度定义::κ(G), λ(G), n-连通,n-边连通[定理8.1.1]κ(G)≤λ(G)≤δ(G)[定理8.1.2]κ(G)=a,λ(G)=b,δ(G)=c的构造方法:构造两个Kc+1,用b条边连接这两个支[定理8.1.3]G(V,E)有p个顶点且δ(G)≥ [p/2]⟹λ(G)=δ(G)::[定理8.1.4][定理8.1.5]∀u,v∈V且u,v∈C⟺G是2-连通[定理8.1.6]8.2门格尔定理8.3匹配、霍尔定理定义::匹配,最大匹配,偶图G的完备匹配,相异代表系, 完美匹配[定理8.3.1](Hall定理)::[推论8.3.1]第九章平面图和图的着色9.1平面图及其欧拉公式定义::平面图,面,内部面,外部面[定理9.1.1]欧拉定理:平面图有p-q+f=2::通过f数归[推论9.1.1]每个面都由长为n的圈围成⟹q=n(p-2)/(n-2)::每条边都与两个面邻接⟹2q=nf拓展最大可平面图[推论9.1.2]G(p,q)的最大可平面图每个面都是三角形且q=3p-6[推论9.1.3]每个面都由长为4的圈围成⟹q=2p-4::拓展没有三角形的边极大图[推论9.1.4]G(p,q),q≤3p-6,G没有三角形q≤2p-4[推论9.1.5]K5和K3,3都是不可平面图::K5,f=7,由于每个面至少三条边, K3,3中每个圈至少为4[推论9.1.6]G可平面⟹ (G)≤5::反证+推论9.1.49.2非哈密顿平面图[定理9.2.1]Grinberg定理:G(V,E)是(p,q)平面哈密顿图,C是哈密顿圈.令fi为C的内部由i条边围成的面的个数,gi为C的外部由i条边围成的面的个数则(1)Σ(i-2)fi=p-2;(2) Σ(i-2)gi=p-2;(3) Σ(i-2)(fi-gi)=0;9.3库拉托斯基定理、对偶图定义::细分,同胚,初等收缩,对偶图[定理9.3.1](Kuratowski定理)G可平面⟺G没有同胚于K5或K3,3的子图[定理9.3.2](Wagner定理) G可平面⟺G没有收缩到K5或K3,3的子图9.4顶点的着色定义::n-可着色,色数(有极小性),χ(G)[定理9.4.2]Δ=Δ(G),G是(Δ+1)- 可着色的.[定理9.4.3-定理9.4.5]平面图可以4着色9.5边的着色定义::n-边着色,边色数(有极小性), χ’(G)第十章有向图10.1有向图的概念定义::有向图,弧,对称弧,定向图,带环图,多重有向图,有向图的反图,入度(id(v)),出度(od(v)),完全有向图,有向图的补图,有向图的同构[定理10.1.1]Σid(v)= Σod(v)=q且Σ(id(v)+od(v))=2q10.2有向路和有向圈定义::有向通道,有向闭通道,生成通道,有向迹,有向闭迹,生成(闭)轨迹,有向路,有向圈,有向回路,可达,半(弱)通道,强连通,强支,单连通,弱连通,有向图的连通[定理10.2.1]有向图D是强连通的⟺D有一条闭生成通道[定理10.2.2]uRv当且仅当uv可互达⟹R是V上的等价关系[定理10.2.3]有向图D的每个顶点都在D的一个强支中[定理10.2.4]一个没有有向圈的有向图至少有一个出度为0的顶点[定理10.2.5]有向图D没有圈⟺D中每条有向通道都是有向路[定理10.2.6]有向图D有有向圈⟺D的子图D1(V1,E1),∀v∈V1,id(v)>0,od(v)>0[定理10.2.7]连通有向图D,∀v∈V,od(v)=1,D中恰有一个有向圈10.3强连通图的应用10.4有向图的邻接矩阵定义::有向图的邻接矩阵,可达矩阵,关联矩阵10.5有向树与有序树定义::有向树,有根树,入树,父,子,祖先,真祖先,深度,高度,子树,有序树,m元有序树,正则m元有序树,正则二元树,二元树,满二元树,完全二元树(高为h的二元树,去掉深度为h一层,得到满树,而且h层从左向右排布)[定理10.5.1]有向图D是有根树⟺D没有弱圈且D中存在一个可以到达其他顶点的顶点(root)::⇒化为无向图证明没有弱圈,用除根以外的点入度为1证可达.⇐[定理10.5.3]高为h的二元树至多有2 (h+1)-1个顶点[定理10.5.4]高为h的完全二元树的顶点数满足2h≤p≤2(h+1)-110.6判定树10.7比赛图定义::比赛图[定理10.7.1]每个比赛图必有生成有向路(有哈密顿路)::。
高中数学第一章集合1.2集合之间的关系与运算1.2.2集合的运算教案新人教B版必修1
高中数学第一章集合1.2集合之间的关系与运算1.2.2集合的运算教案新人教B版必修1整体设计教学分析课本从学生熟悉的集合出发,结合实例,引入集合间的运算,同时,结合相关内容介绍补集和全集等概念.在安排这部分内容时,课本继续注重体现逻辑思考的方法,如归纳等.值得注意的问题:在全集和补集的教学中,应注意利用Venn图的直观作用,帮助学生理解补集的概念,并能够用Venn图进行求补集的运算.三维目标1.理解两个集合的并集与交集、全集的含义,掌握求两个简单集合的交集与并集的方法,会求给定子集的补集,感受集合作为一种语言,在表示数学内容时的简洁和准确,进一步提高归纳的能力.2.通过观察和类比,借助Venn图理解集合的基本运算.体会直观图示对理解抽象概念的作用,培养数形结合的思想.重点难点教学重点:交集与并集,全集与补集的概念.教学难点:理解交集与并集的概念,以及符号之间的区别与联系.课时安排2课时教学过程第1课时导入新课思路1.我们知道,实数有加法运算,两个实数可以相加,例如5+3=8.类比实数的加法运算,集合是否也可以“相加”呢?教师直接点出课题.思路2.请同学们考察下列各个集合,你能说出集合C与集合A、B之间的关系吗?(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.引导学生通过观察、归纳、思考和交流,得出结论.教师强调集合也有运算,这就是我们本节课所要学习的内容.思路3.(1)①如下图甲和乙所示,观察两个图的阴影部分,它们分别同集合A、集合B 有什么关系?②观察集合A与B与集合C={1,2,3,4}之间的关系.(2)①已知集合A={1,2,3},B={2,3,4},写出由集合A,B中的所有元素组成的集合C.②已知集合A={x|x>1},B={x|x<0},在数轴上表示出集合A与B,并写出由集合A 与B中的所有元素组成的集合C.学生思考交流并回答,教师直接指出这就是本节课学习的课题:集合的运算.推进新课新知探究提出问题①通过上述问题中集合A与B与集合C之间的关系,类比实数的加法运算,你发现了什么?②用文字语言来叙述上述问题中,集合A与B与集合C之间的关系.③用数学符号来叙述上述问题中,集合A与B与集合C之间的关系.④试用Venn图表示A∪B=C.⑤请给出集合的并集定义.⑥求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?请同学们考察下面的问题,集合A与B与集合C之间有什么关系?(ⅰ)A={2,4,6,8,10},B={3,5,8,12},C={8};(ⅱ)A={x|x是国兴中学2007年9月入学的高一年级女同学},B={x|x是国兴中学2007年9月入学的高一年级男同学},C={x|x是国兴中学2007年9月入学的高一年级同学}.⑦类比集合的并集,请给出集合的交集定义,并分别用三种不同的语言形式来表达.活动:先让学生思考或讨论问题,然后再回答,经教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路,主要引导学生发现集合的并集和交集运算并能用数学符号来刻画,用Venn图来显示.讨论结果:①集合之间也可以相加,也可以进行运算,但是为了不和实数的运算相混淆,规定这种运算不叫集合的加法,而是叫做求集合的并集.集合C叫集合A与B的并集,记为A∪B=C,读作A并B.②所有属于集合A或属于集合B的元素组成了集合C.③C={x|x∈A,或x∈B}.④如下图所示.⑤一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集.其含义用符号表示为A∪B={x|x∈A,或x∈B}.⑥集合之间还可以求它们的公共元素组成集合的运算,这种运算叫求集合的交集,记作A∩B,读作A交B.(ⅰ)A∩B=C,(ⅱ)A∪B=C.⑦一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.其含义用符号表示为:A∩B={x|x∈A,且x∈B}.用Venn图表示,如下图所示.应用示例思路1例1设A={4,5,6,8},B={3,5,7,8},求A∪B,A∩B.活动:让学生回顾集合的表示法和交集、并集的含义,由于本例题难度较小,让学生自己解决,重点是总结集合运算的方法.根据集合并集、交集的含义,借助于Venn图写出.观察这两个集合中的元素,或用Venn图来表示,如下图所示.解:A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.A∩B={4,5,6,8}∩{3,5,7,8}={5,8}.点评:本题主要考查集合的并集和交集.用列举法表示的集合,运算时常利用Venn图或直接观察得到结果.本题易错解为A∪B={3,4,5,5,6,7,8,8}.其原因是忽视了集合元素的互异性.解决集合问题要遵守集合元素的三条性质.例2 设A ={x|-1<x <2},B ={x|1<x <3},求A∪B,A∩B.活动:学生回顾集合的表示法和并集、交集的含义.利用数轴,将A 、B 分别表示出来,则阴影部分即为所求.用数轴表示描述法表示的数集.解:将A ={x|-1<x <2}及B ={x|1<x <3}在数轴上表示出来,如下图所示的阴影部分即为所求.由图得A∪B={x|-1<x <2}∪{x|1<x <3}={x|-1<x <3},A∩B={x|-1<x <2}∩{x|1<x <3}={x|1<x <2}.点评:本类题主要考查集合的并集和交集.用描述法表示的数集,运算时常利用数轴来变式训练1.设A ={x|2x -4<2},B ={x|2x -4>0},求A∪B,A∩B.答案:A∪B=R ,A∩B={x|2<x <3}.2.设A ={x|2x -4=2},B ={x|2x -4=0},求A∪B,A∩B.答案:A∪B={3,2},A∩B=∅.3.设A ={x|x 是奇数},B ={x|x 是偶数},求A∩Z ,B∩Z ,A∩B.解:A∩Z ={x|x 是奇数}∩{x|x 是整数}={x|x 是奇数}=A ,B∩Z ={x|x 是偶数}∩{x|x 是整数}={x|x 是偶数}=B ,A∩B={x|x 是奇数}∩{x|x 是偶数}=∅.4.已知A ={(x ,y)|4x +y =6},B ={(x ,y)|3x +2y =7},求A∩B.分析:集合A 和B 的元素是有序实数对(x ,y),A ,B 的交集即为方程组⎩⎪⎨⎪⎧ 4x +y =6,3x +2y =7的解集.解:A∩B={(x ,y)|4x +y =6}∩{(x,y)|3x +2y =7}={(x ,y)|{ 4x +y =63x +2y +7}={(1,2)}.5.已知A ={x|x 是等腰三角形},B ={x|x 是直角三角形},求A∩B.解:A∩B={x|x 是等腰三角形}∩{x|x 是直角三角形}={x|x 是等腰直角三角形}.思路2例1 A ={x|x <5},B ={x|x >0},C ={x|x≥10},则A∩B,B∪C,A∩B∩C 分别是什么?活动:学生先思考集合中元素特征,明确集合中的元素.将集合中元素利用数形结合在数轴上找到,那么运算结果的寻求就容易进行.这三个集合都是用描述法表示的数集,求集合的并集和交集的关键是找出它们的公共元素和所有元素.解:因A ={x|x <5},B ={x|x >0},C ={x|x≥10},在数轴上表示,如下图所示,所以A∩B={x|0<x <5},B∪C={x|x >0},A∩B∩C=∅.点评:本题主要考查集合的交集和并集.求集合的并集和交集时,①明确集合中的元素;②依据并集和交集的含义,借助于直观(数轴或Venn 图)写出结果. 变式训练1.设A ={x|x =2n ,n∈N +},B ={x|x =2n ,n∈N },求A∩B,A∪B.解:对任意m∈A,则有m =2n =2·2n -1,n∈N +,因n∈N +,故n -1∈N ,有2n -1∈N ,那么m∈B,即对任意m∈A 有m∈B,所以A ⊆B.而10∈B 但10A ,即A B ,那么A∩B=A ,A∪B=B.2.求满足{1,2}∪B={1,2,3}的集合B 的个数.解:满足{1,2}∪B={1,2,3}的集合B 一定含有元素3,B ={3};还可含1或2其中一个,有{1,3},{2,3};还可含1和2,即{1,2,3},那么共有4个满足条件的集合B.3.设A ={-4,2,a -1,a 2},B ={9,a -5,1-a},已知A∩B={9},求a.解:因A∩B={9},则9∈A,a -1=9或a 2=9,a =10或a =±3,当a =10时,a -5=5,1-a =-9;当a =3时,a -1=2不合题意;当a =-3时,a -1=-4不合题意.故a =10,此时A ={-4,2,9,100},B ={9,5,-9},满足A∩B={9}.4.设集合A ={x|2x +1<3},B ={x|-3<x <2},则A∩B 等于… ( )A .{x|-3<x <1}B .{x|1<x <2}C .{x|x >-3}D .{x|x <1}解析:集合A ={x|2x +1<3}={x|x <1},观察或由数轴得A∩B={x|-3<x <1}. 答案:A例2 设集合A ={x|x 2+4x =0},B ={x|x 2+2(a +1)x +a 2-1=0,a∈R },若A∩B=B ,求a 的值.活动:明确集合A 、B 中的元素,教师和学生共同探讨满足A∩B=B 的集合A 、B 的关系.集合A 是方程x 2+4x =0的解集,可以发现,B ⊆A ,通过分类讨论集合B 是否为空集来求a 的值.利用集合的表示法来认识集合A 、B 均是方程的解集,通过画Venn 图发现集合A 、B 的关系,从数轴上分析求得a 的值.解:由题意得A ={-4,0}.∵A∩B=B ,∴B ⊆A.∴B=∅或B≠∅.当B =∅时,即关于x 的方程x 2+2(a +1)x +a 2-1=0无实数解,则Δ=4(a +1)2-4(a 2-1)<0,解得a <-1. 当B≠∅时,若集合B 仅含有一个元素,则Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时,B ={x|x 2=0}={0}⊆A ,即a =-1符合题意. 若集合B 含有两个元素,则这两个元素是-4、0,即关于x 的方程x 2+2(a +1)x +a 2-1=0的解是-4、0.则有⎩⎪⎨⎪⎧ -4+0=-2(a +1),-4×0=a 2-1.解得a =1,则a =1符合题意.综上所得,a =1或a≤-1.点评:本题主要考查集合的运算、分类讨论的思想,以及集合间关系的应用.已知两个集合的运算结果,求集合中参数的值时,由集合的运算结果确定它们的关系,通过深刻理解集合表示法的转换,把相关问题化归为其他常见的方程、不等式等数学问题.这称为数学的化归思想,是数学中的常用方法,学会应用化归和分类讨论的数学思想方法解决有关问题. 变式训练1.已知非空集合A ={x|2a +1≤x≤3a-5},B ={x|3≤x≤22},求能使A (A∩B)成立的所有a 值的集合.解:由题意知A ⊆(A∩B),即A ⊆B ,A 非空,得⎩⎪⎨⎪⎧ 2a +1≤3a-5,2a +1≥3,3a -5≤22.解得6≤a≤9,即所有a 值的集合是{a|6≤a≤9}.2.已知集合A ={x|-2≤x≤5},集合B ={x|m +1≤x≤2m-1},且A∪B=A ,试求实数m 的取值范围.分析:由A∪B=A 得B ⊆A ,则有B =∅或B≠∅,因此对集合B 分类讨论.解:∵A∪B=A ,∴B ⊆A.又∵A={x|-2≤x≤5}≠∅,∴B=∅,或B≠∅.当B =∅时,有m +1>2m -1,∴m<2.当B≠∅时,观察下图:由数轴可得⎩⎪⎨⎪⎧ m +1≤2m-1,-2≤m+1,2m -1≤5.解得-2≤m≤3. 综上所述,实数m 的取值范围是m <2或-2≤m≤3,即m≤3.知能训练1.设a ={3,5,6,8},B ={4,5,7,8},(1)求A∩B,A∪B.(2)用适当的符号(⊇、⊆)填空:(A∩B)________A ,B________(A∩B),(A∪B)________A ,(A∪B)________B ,(A∩B)________(A∪B).解:(1)因A 、B 的公共元素为5、8,则A∩B={3,5,6,8}∩{4,5,7,8}={5,8}.又A 、B 两集合的元素为3、4、5、6、7、8,故A∪B={3,4,5,6,7,8}.(2)(A∩B) ⊆A ,B ⊇ (A∩B),(A∪B) ⊇A ,(A∪B) ⊇B ,(A∩B) ⊆ (A∪B).2.设A ={x|x <5},B ={x|x≥0},求A∩B.解:因x <5及x≥0的公共部分为0≤x<5,故A∩B={x|x <5}∩{x|x≥0}={x|0≤x<5}.3.设A ={x|x 是锐角三角形},B ={x|x 是钝角三角形},求A∩B.解:因三角形按角分类时,锐角三角形和钝角三角形彼此孤立,故A 、B 两集合没有公共部分.所以A∩B={x|x 是锐角三角形}∩{x|x 是钝角三角形}=∅.4.设A={x|x>-2},B={x|x≥3},求A∪B.解:在数轴上将A、B分别表示出来,得A∪B={x|x>-2}.5.设A={x|x是平行四边形},B={x|x是矩形},求A∪B.解:因矩形是平行四边形,故由A及B的元素组成的集合为A∪B,A∪B={x|x是平行四边形}.6.已知M={1},N={1,2},设A={(x,y)|x∈M,y∈N},B={(x,y)|x∈N,y∈M},求A∩B,A∪B.分析:M、N中元素是数,A、B中元素是平面内点集,关键是找其元素.解:∵M={1},N={1,2},则A={(1,1),(1,2)},B={(1,1),(2,1)},故A∩B={(1,1)},A∪B={(1,1),(1,2),(2,1)}.7.若A、B、C为三个集合,A∪B=B∩C,则一定有( )A.A⊆C B.C⊆A C.A≠C D.A=∅解析:思路一:∵(B∩C)⊆B,(B∩C)⊆C,A∪B=B∩C,∴(A∪B)⊆B,(A∪B) ⊆C.∴A⊆B⊆C.∴A⊆C.思路二:取满足条件的A={1},B={1,2},C={1,2,3},排除B、D,令A={1,2},B={1,2},C={1,2},则此时也满足条件A∪B=B∩C,而此时A=C,排除C.答案:A拓展提升观察:(1)集合A={1,2},B={1,2,3,4}时,A∩B、A∪B这两个运算结果与集合A、B 的关系;(2)当A=∅时,A∩B、A∪B这两个运算结果与集合A、B的关系;(3)当A=B={1,2}时,A∩B、A∪B这两个运算结果与集合A、B的关系.由(1)(2)(3)你发现了什么结论?活动:依据集合的交集和并集的含义写出运算结果,并观察与集合A、B的关系.用Venn 图来发现运算结果与集合A、B的关系.(1)(2)(3)中的集合A、B均满足A⊆B,用Venn图表示,如下图所示,就可以发现A∩B、A∪B与集合A、B的关系.解:A∩B=A⇔A⊆B⇔A∪B=B.可用类似方法,可以得到集合的运算性质,归纳如下:A∪B=B∪A,A⊆(A∪B),B⊆(A∪B);A∪A=A,A∪∅=A,A⊆B⇔A∪B=B;A∩B=B∩A;(A∩B)⊆A,(A∩B)⊆B;A∩A=A;A∩∅=∅;A⊆B⇔A∩B=A.课堂小结本节主要学习了:1.集合的交集和并集.2.通常借助于数轴或Venn图来求交集和并集.作业1.课外思考:对于集合的基本运算,你能得出哪些运算规律?2.请你举出现实生活中的一个实例,并说明其并集、交集和补集的现实含义.3.书面作业:课本习题1—2A 3、4、5.设计感想由于本节课内容比较容易接受,也是历年高考的必考内容之一,所以在教学设计上注重加强练习和拓展课本内容.设计中通过借助于数轴或Venn 图写出集合运算的结果,这是突破本节教学难点的有效方法.(设计者:尚大志)第2课时导入新课问题:①分别在整数范围和实数范围内解方程(x -3)(x -3)=0,其结果会相同吗? ②若集合A ={x|0<x <2,x∈Z },B ={x|0<x <2,x∈R },则集合A 、B 相等吗? 学生回答后,教师指明:在不同的范围内集合中的元素会有所不同,这个“范围”问题就是本节学习的内容,引出课题.推进新课新知探究提出问题①用列举法表示下列集合:A ={x∈Z |(x -2)(x +13)(x -2)=0}; B ={x∈Q |(x -2)(x +13)(x -2)=0}; C ={x∈R |(x -2)(x +13)(x -2)=0}. ②问题①中三个集合相等吗?为什么?③由此看,解方程时要注意什么?④问题①,集合Z 、Q 、R 分别含有所解方程时所涉及的全部元素,这样的集合称为全集,请给出全集的定义.⑤已知全集U ={1,2,3},A ={1},写出全集中不属于集合A 的所有元素组成的集合B. ⑥请给出补集的定义.⑦用Venn 图表示U A.活动:组织学生充分讨论、交流,使学生明确集合中的元素,提示学生注意集合中元素的范围.讨论结果:①A={2},B ={2,-13},C ={2,-13,2}. ②不相等,因为三个集合中的元素不相同.③解方程时,要注意方程的根在什么范围内,同一个方程,在不同的范围其解会有所不同.④在研究集合与集合之间的关系时,如果所要研究的集合都是某一给定集合的子集,那么称这个给定的集合为全集,通常用U 表示.⑤B={2,3}.⑥对于一个集合A ,全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集.集合A 相对于全集U 的补集记为U A ,即U A ={x|x∈U,且x A}.⑦如下图所示,阴影表示补集.应用示例思路1例1设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求U A,U B.活动:让学生明确全集U中的元素,回顾补集的定义,用列举法表示全集U,依据补集的定义写出U A,U B.解:根据题意,可知U={1,2,3,4,5,6,7,8},所以U A={4,5,6,7,8};U B={1,2,7,8}.点评:本题主要考查补集的概念和求法.用列举法表示的集合,依据补集的含义,直接观察写出集合运算的结果.常见结论:U(A∩B)=(U A)∪(U B);U(A∪B)=(U A)∩(U B).变式训练1.已知U={1,2,3,4,5,6},A={1,3,5}.求U A,A∩U A,A∪U A.解:U A={2,4,6},A∩U A=∅,A∪U A=U.2.已知U={x|x是实数},Q={x|x是有理数},求U Q.解:U Q={x|x是无理数}.3.已知U=R,A={x|x>5},求U A.解:U A={x|x≤5}.例2设全集U={x|x是三角形},A={x|x是锐角三角形},B={x|x是钝角三角形}.求A∩B,U(A∪B).活动:学生思考三角形的分类和集合的交集、并集和补集的含义.结合交集、并集和补集的含义写出结果.A∩B是由集合A、B中公共元素组成的集合,U(A∪B)是全集中除去集合A∪B中剩下的元素组成的集合.解:根据三角形的分类可知A∩B=∅,A∪B={x|x是锐角三角形或钝角三角形},U(A∪B)={x|x是直角三角形}.变式训练1.已知集合A ={x|3≤x<8},求R A. 解:R A ={x|x <3或x≥8}.2.设S ={x|x 是至少有一组对边平行的四边形},A ={x|x 是平行四边形},B ={x|x 是菱形},C ={x|x 是矩形},求B∩C,A B ,S A.解:B∩C={x|正方形},A B ={x|x 是邻边不相等的平行四边形},S A ={x|x 是梯形}.3.已知全集I =R ,集合A ={x|x 2+ax +12b =0},B ={x|x 2-ax +b =0},满足(I A)∩B={2},(I B)∩A={4},求实数a 、b 的值.答案:a =87,b =-127. 4.设全集U =R ,A ={x|x≤2+3},B ={3,4,5,6},则(U A)∩B 等于…( )A .{4}B .{4,5,6}C .{2,3,4}D .{1,2,3,4}解析:∵U=R ,A ={x|x≤2+3},∴U A ={x|x >2+3}.而4、5、6都大于2+3,∴(U A)∩B ={4,5,6}.答案:B思路2例1已知全集U =R ,A ={x|-2≤x≤4},B ={x|-3≤x≤3},求:(1)U A ,U B ;(2)(U A)∪(U B),U (A∩B),由此你发现了什么结论?(3)(U A)∩(U B),U (A∪B),由此你发现了什么结论?活动:学生回想补集的含义,教师指导学生利用数轴来解决.依据补集的含义,借助于数轴求得.在数轴上表示集合A ,B.解:如下图所示,(1)由图得U A={x|x<-2或x>4},U B={x|x<-3或x>3}.(2)由图得(U A)∪(U B)={x|x<-2或x>4}∪{x|x<-3或x>3}={x|x<-2或x>3}.∵A∩B={x|-2≤x≤4}∩{x|-3≤x≤3}={x|-2≤x≤3},∴U(A∩B)=U{x|-2≤x≤3}={x|x<-2或x>3}.∴得出结论U(A∩B)=(U A)∪(U B).(3)由图得(U A)∩(U B)={x|x<-2或x>4}∩{x|x<-3或x>3}={x|x<-3或x>4}.∵A∪B={x|-2≤x≤4}∪{x|-3≤x≤3}={x|-3≤x≤4},∴U(A∪B)=U{x|-3≤x≤4}={x|x<-3或x>4}.∴得出结论U(A∪B)=(U A)∩(U B).变式训练1.已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(U A)∪(U B)等于( )A.{1,6} B.{4,5}C.{1,2,3,4,5,7} D.{1,2,3,6,7}答案:D2.设集合I={x||x|<3,x∈Z},A={1,2},B={-2,-1,2},则A∪(I B)等于( )A.{1} B.{1,2} C.{2} D.{0,1,2}答案:D例2设全集U={x|x≤20,x∈N,x是质数},A∩(U B)={3,5},(U A)∩B={7,19},(U A)∩(U B)={2,17},求集合A、B.活动:学生回顾集合的运算的含义,明确全集中的元素.利用列举法表示全集U,根据题中所给的条件,把集合中的元素填入相应的Venn图中即可.求集合A、B的关键是确定它们的元素,由于全集是U,则集合A、B中的元素均属于全集U,由于本题中的集合均是有限集并且元素的个数不多,可借助于Venn图来解决.解:U={2,3,5,7,11,13,17,19},由题意借助于Venn图,如下图所示,∴A={3,5,11,13},B={7,11,13,19}.点评:本题主要考查集合的运算、Venn图以及推理能力.借助于Venn图分析集合的运算问题,使问题简捷地获得解决,将本来抽象的集合问题直观形象地表现出来,这正体现了数形结合思想的优越性.变式训练1. 设I为全集,M、N、P都是它的子集,则下图中阴影部分表示的集合是( )A.M∩[(I N)∩P] B.M∩(N∪P)C.[(I M)∩(I N)]∩P D.M∩N∪(N∩P)解析:思路一:阴影部分在集合M内部,排除C;阴影部分不在集合N内,排除B、D.思路二:阴影部分在集合M内部,即是M的子集,又阴影部分在P内不在集合N内即在(I N)∩P 内,所以阴影部分表示的集合是M∩[(I N)∩P].答案:A2.设U={1,2,3,4,5,6,7,8,9},(U A)∩B={3,7},(U B)∩A={2,8},(U A)∩(U B)={1,5,6},则集合A=________,B=________.解析:借助Venn图,如下图,把相关运算的结果表示出来,自然地就得出集合A、B了.答案:{2,4,8,9} {3,4,7,9}知能训练1.设全集U=R,A={x|2x+1>0},试用文字语言表述U A的意义.解:A={x|2x+1>0}即不等式2x+1>0的解集,U A中元素均不能使2x+1>0成立,即U A中元素应当满足2x+1≤0.∴U A即不等式2x+1≤0的解集.2.如下图所示,U是全集,M,P,S是U的三个子集,则阴影部分表示的集合是________.解析:观察图可以看出,阴影部分满足两个条件:一是不在集合S内;二是在集合M、P的公共部分内.因此阴影部分表示的集合是集合S的补集与集合M、P的交集的交集,即(U S)∩(M∩P).答案:(U S)∩(M∩P)3.设集合A、B都是U={1,2,3,4}的子集,已知(U A)∩(U B)={2},(U A)∩B={1},则A等于( )A.{1,2} B.{2,3} C.{3,4} D.{1,4}解析:如下图所示.由于(U A)∩(U B)={2},(U A)∩B={1},则有U A={1,2}.∴A={3,4}.答案:C4.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则U(S∪T)等于…()A. B.{2,4,7,8}C.{1,3,5,6} D.{2,4,6,8}解析:直接观察(或画出Venn图),得S∪T={1,3,5,6},则U(S∪T)={2,4,7,8}.答案:B5.已知集合I={1,2,3,4},A={1},B={2,4},则A∪(I B)等于( )A.{1} B.{1,3} C.{3} D.{1,2,3}解析:∵I B={1,3},∴A∪(I B)={1}∪{1,3}={1,3}.答案:B拓展提升问题:某班有学生50人,解甲、乙两道数学题,已知解对甲题者有34人,解对乙题者有28人,两题均解对者有20人,问:(1)至少解对其中一题者有多少人?(2)两题均未解对者有多少人?分析:先利用集合表示解对甲、乙两道数学题各种类型,然后根据题意写出它们的运算,问题便得到解决.解:设全集为U,A={只解对甲题的学生},B={只解对乙题的学生},C={甲、乙两题都解对的学生},则A∪C={解对甲题的学生},B∪C={解对乙题的学生},A∪B∪C={至少解对一题的学生},U(A∪B∪C)={两题均未解对的学生}.由已知,A∪C有34个人,C有20个人,从而知A有14个人;B∪C有28个人,C有20个人,所以B有8个人.因此A∪B∪C有N1=14+8+20=42(人),U(A∪B∪C)有N2=50-42=8(人).所以至少解对其中一题者有42个人,两题均未解对者有8个人.课堂小结本节课学习了:①全集和补集的概念和求法.②常借助于数轴或Venn图进行集合的补集运算.作业课本习题1—2A 9.设计感想本节教学设计注重渗透数形结合的思想方法,因此在教学过程中要重点指导学生借助于数轴或Venn图进行集合的补集运算.由于高考中集合常与以后学习的不等式等知识紧密结合,本节也对此也予以体现,可以利用课余时间学习有关解不等式的知识.备课资料[备选例题]例1已知A={y|y=x2-4x+6,x∈R,y∈N},B={y|y=-x2-2x+7,x∈R,y∈N},求A∩B,并分别用描述法、列举法表示它.解:y=x2-4x+6=(x-2)2+2≥2,A={y|y≥2,y∈N},又∵y=-x2-2x+7=-(x+1)2+8≤8,∴B={y|y≤8,y∈N}.故A∩B={y|2≤y≤8}={2,3,4,5,6,7,8}.例2设S={(x,y)|xy>0},T={(x,y)|x>0且y>0},则( )A.S∪T=S B.S∪T=TC.S∩T=S D.S∩T=解析:S={(x,y)|xy>0}={(x,y)|x>0且y>0或x<0且y<0},则T S,所以S∪T =S.答案:A例3 某城镇有1 000户居民,其中有819户有彩电,有682户有空调,有535户彩电和空调都有,则彩电和空调至少有一种的有________户.解析:设这1 000户居民组成集合U,其中有彩电的组成集合A,有空调的组成集合B,如下图所示.有彩电无空调的有819-535=284户;有空调无彩电的有682-535=147户,因此二者至少有一种的有284+147+535=966户.答案:966差集与补集有两个集合A、B,如果集合C是由所有属于A但不属于B的元素组成的集合,那么C 就叫做A与B的差集,记作A-B(或A\B).例如,A={a,b,c,d},B={c,d,e,f},C=A-B={a,b}.也可以用维恩图表示,如下图甲所示(阴影部分表示差集).特殊情况,如果集合B是集合I的子集,我们把I看作全集,那么I与B的差集I-B,叫做B在I中的补集,记作B.例如,I={1,2,3,4,5},B={1,2,3},B=I-B={4,5}.也可以用维恩图表示,如上图乙所示(阴影部分表示补集).从集合的观点来看,非负整数的减法运算,就是已知两个不相交集合的并集的基数,以及其中一个集合的基数,求另一个集合的基数,也可以看作是求集合I与它的子集B的差集的基数.。
高一上数学第一章知识点
高一上数学第一章知识点高一上数学第一章知识点详解数学是一门极其重要的学科,是其他学科的基础,也是培养逻辑思维和分析能力的重要工具。
高中数学作为一门高级数学课程,以其深度和广度给人带来了挑战,也是学习生涯中的重要一战。
在高一上学期,数学第一章是学习的重点,我们将对该章内容进行详解。
第一章主要内容有:集合及其运算、逻辑关系与函数等几个重要知识点。
下面我们就来逐个解析这些知识点。
一、集合及其运算集合是数学中一个基本的概念,它由一些特定的对象组成。
我们可以用大括号{}表示一个集合,里面的对象用逗号分隔。
集合运算主要有并集、交集和差集。
并集是指将两个或多个集合中的所有元素合并在一起,用符号∪表示。
例如,集合A={1,2,3},集合B={3,4,5},则A∪B={1,2,3,4,5}。
交集是指两个集合中共有的元素构成的集合,用符号∩表示。
例如,集合A={1,2,3},集合B={3,4,5},则A∩B={3}。
差集是指一个集合减去另一个集合中共有的元素所得到的集合,用符号-表示。
例如,集合A={1,2,3},集合B={3,4,5},则A-B={1,2}。
二、逻辑关系逻辑关系是研究命题之间互相联系的规则。
在数学中,常用到的逻辑关系有充分必要条件、充分条件和必要条件等。
充分必要条件是指两个命题之间的关系是同时满足充分条件和必要条件。
例如,一个整数被2整除是偶数的充分必要条件。
充分条件是指当一个命题成立时,另一个命题也一定成立。
例如,一个整数被2整除是偶数的充分条件。
必要条件是指当一个命题成立时,另一个命题也可能成立。
但是,另一个命题成立不一定能推出第一个命题,只是存在某种可能性。
例如,两个数相等是两个数相差为0的必要条件。
三、函数函数是数学中一个重要的概念,它描述了一个变量与另一个变量之间的依赖关系。
函数由定义域、值域和对应关系构成。
定义域是指函数中自变量可能取值的集合。
值域是指函数中因变量可能取值的集合。
对应关系是指自变量和因变量之间的依赖关系。
高一必修1数学培优学案2-集合及其运算
高一数学培优学案2-----集合及其运算拓展一、集合与集合的关系(一)基础知识1、子集:对于两个集合A 与B ,如果集合A 的 元素都是集合B 的元素,我们就说两个集合有包含关系。
称集合A 是集合B 的子集。
记作:B A ⊆或A B ⊇。
读作:“A 含于B ”或“B 包含A ”;2、在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn 图(示两个集合间的“包含”关系为: ()A B B A ⊆⊇或.子集性质:(1)任何一个集合是 的子集;即:A ⊆A ; (2)若B A ⊆,C B ⊆,则 。
3、集合相等:对于两个集合A 与B ,如果集合A 是集合B 的子集(B A ⊆),且集合B 是集合A 的子集(B A ⊆),此时集合A 与集合B 的元素是一样的,因此,称集合A 与集合B 。
记作:B A =。
4、 真子集:对于两个集合A 与B ,如果A B ,但存在元素x B ∈且x A ∉,我们称集合A 是集合B 的真子集。
记作:A B (或B A ),读作:A 真包含于B (或B 真包含A ).5、空集:把 的集合叫做空集,记作 . 规定:空集是 集合的子集。
二、基础题1.下列各式中正确的是( )A .φ∈0B .{}φ⊆0C .φ=0D .{}φ⊇02.下列四个命题:①Φ={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的有( )A .0个B .1个C .2个D .3个3.集合{1,2,3}的子集共有( )A .7个B .8个C .6个D .5个4.用适当的符号填空.(1)0 φ;(2)φ {0};(3)φ {φ};(4){(2,4)} {(x ,y )|y =2x};(5){}b a , {}a b ,5. 写出集合{0,1,2}的所有真子集组成的集合:6.设集合{1,3,}A a =,2{1,1}B a a =-+,且A B ⊇,求实数a 的值.7. 已知集合{}2230M x x x =--= {}10P x ax =-=,若PM ,求实数a 的取值集合(三)拓展题型1. 满足{}{}1,2,31,2,3,4,5,6M ≠≠⊂⊂的集合M 的个数是: ( ) A. 8 B. 7 C. 6 D. 52.若集合{}{}|11,|10A x x B x ax =-==+=,若B A ≠⊂,则a 的值为 ( ) A.12- B. 0或12- C. 1或12- D. 0或2 3.设集合{}|12A x x =≤≤,{}|B x x a =≥,若A B ⊆,则a 的值为 ( )A. 1a <B. 1a ≤C. 2a <D. 2a ≤4.已知方程2430ax x ++=的解集为单元素集,则实数a=5. 已知集合{}1,3,5A =,则集合A 的所有子集的元素之和为 。
高一数学第二章知识点归纳
高一数学第二章知识点归纳本文将对高一数学第二章的知识点进行归纳总结,以帮助同学们更好地复习和掌握这一章的内容。
一、集合及其运算1. 集合的定义:集合是由一些确定的对象组成的整体,其中每个对象称为集合的元素。
2. 集合的表示方法:列举法、描述法和图示法。
3. 集合的关系运算:并集、交集、差集和补集。
4. 集合的性质:幂集、空集以及集合的相等和不相等。
二、函数的概念和性质1. 函数的定义:函数是一种特殊的关系,它将集合A中的每个元素都对应唯一的集合B中的元素。
2. 函数的表示方法:映射法、列表法、公式法和图示法。
3. 函数的性质:定义域、值域、对应关系、单射、满射、双射等。
4. 函数的运算:函数的加减乘除、函数的复合运算等。
三、二次函数与一次函数1. 二次函数的定义:y=ax^2+bx+c(a≠0)。
2. 二次函数的图像特征:顶点、对称轴、开口方向、零点等。
3. 一次函数的定义:y=kx+b(k≠0)。
4. 一次函数的图像特征:斜率、截距、直线方程的推导等。
四、指数与对数1. 指数的定义和性质:指数的运算法则、指数函数的图像、指数方程与指数不等式等。
2. 对数的定义和性质:对数的运算法则、对数函数的图像、对数方程与对数不等式等。
3. 指数与对数的换底公式和性质:e的性质、10的性质、常用对数与自然对数的换算等。
五、三角函数1. 三角函数的定义和性质:正弦函数、余弦函数、正切函数等。
2. 三角函数的图像和周期性:三角函数图像的基本性质、周期性及其应用。
3. 三角函数的基本关系:同角三角函数的互相表示、和差化积等三角函数间的基本关系。
六、平面向量1. 平面向量的定义和表示:向量的表示方法、向量的加减及数乘等运算。
2. 平面向量的性质和定理:平行向量、垂直向量、向量的模、方向角及平面向量共线、共面的判定定理等。
3. 平面向量的应用:向量的几何应用、平面向量解几何问题等。
本文对高一数学第二章的知识点进行了简要归纳,帮助同学们复习和掌握了这一章的内容。
哈工大《离散数学》教科书习题答案
教材习题解答第一章 集合及其运算8P 习题3. 写出方程2210x x ++=的根所构成的集合。
解:2210x x ++=的根为1x =-,故所求集合为{1}-4.下列命题中哪些是真的,哪些为假a)对每个集A ,A φ∈;b)对每个集A ,A φ⊆;c)对每个集A ,{}A A ∈;d)对每个集A ,A A ∈;e)对每个集A ,A A ⊆;f)对每个集A ,{}A A ⊆;g)对每个集A ,2A A ∈;h)对每个集A ,2A A ⊆;i)对每个集A ,{}2A A ⊆;j)对每个集A ,{}2A A ∈;k)对每个集A ,2A φ∈;l)对每个集A ,2A φ⊆;m)对每个集A ,{}A A =;n){}φφ=;o){}φ中没有任何元素;p)若A B ⊆,则22A B ⊆q)对任何集A ,{|}A x x A =∈;r)对任何集A ,{|}{|}x x A y y A ∈=∈; s)对任何集A ,{|}y A y x x A ∈⇔∈∈;t)对任何集A ,{|}{|}x x A A A A ∈≠∈; 答案:假真真假真假真假真假真真假假假真真真真真5.设有n 个集合12,,,n A A A L 且121n A A A A ⊆⊆⊆⊆L ,试证:12n A A A ===L证明:由1241n A A A A A ⊆⊆⊆⊆⊆L ,可得12A A ⊆且21A A ⊆,故12A A =。
同理可得:134n A A A A ====L因此123n A A A A ====L6.设{,{}}S φφ=,试求2S ?解:2{,{},{{}},{,{}}}S φφφφφ=7.设S 恰有n 个元素,证明2S 有2n 个元素。
证明:(1)当n =0时,0,2{},212S S S φφ====,命题成立。
(2)假设当(0,)n k k k N =≥∈时命题成立,即22S k =(S k =时)。
那么对于1S ∀(11S k =+),12S 中的元素可分为两类,一类为不包含1S 中某一元素x 的集合,另一类为包含x 的集合。
高中数学复习提纲总完整版
高中数学复习提纲总 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-第一章集合与简易逻辑集合及其运算一.集合的概念、分类:二.集合的特征:⑴确定性⑵无序性⑶互异性三.表示方法:⑴列举法⑵描述法⑶图示法⑷区间法四.两种关系:从属关系:对象∈、∉集合;包含关系:集合⊆、集合五.三种运算:交集:{|}A B x x A x B =∈∈且并集:{|}A B x x A x B =∈∈或补集:U A {|U }x x x A =∈∉且六.运算性质:⑴A ∅=A ,A ∅=∅.⑵空集是任意集合的子集,是任意非空集合的真子集.⑶若B A ⊆,则A B =A ,A B =B .⑷U A A =()∅,U A A =()U ,U U A =()A . ⑸U U AB =()()U A B (),U U A B =()()U A B ().⑹集合123{,,,,}n a a a a ⋅⋅⋅的所有子集的个数为2n ,所有真子集的个数为21n -,所有非空真子集的个数为22n -,所有二元子集(含有两个元素的子集)的个数为2n C .简易逻辑一.逻辑联结词:1.命题是可以判断真假的语句的语句,其中判断为正确的称为真命题,判断为错误的为假命题.2.逻辑联结词有“或”、“且”、“非”.3.不含有逻辑联结词的命题,叫做简单命题,由简单命题再加上一些逻辑联结词构成的命题叫复合命题.4.真值表:二.四种命题:1.原命题:若p则q逆命题:若P则q,即交换原命题的条件和结论;否命题:若q则p,即同时否定原命题的条件和结论;逆否命题:若┑P则┑q,即交换原命题的条件和结论,并且同时否定.2.四个命题的关系:⑴原命题为真,它的逆命题不一定为真;⑵原命题为真,它的否命题不一定为真;⑶原命题为真,它的逆否命题一定为真.三.充分条件与必要条件1.“若p则q”是真命题,记做p q⇒,“若p则q”为假命题,记做p q,2.若p q⇒,则称p是q的充分条件,q是p的必要条件3.若p q⇒,且p q,则称p是q的充分非必要条件;若p q,且p q⇐,则称p是q的必要非充分条件;若p q⇐,则称p是q的充要条件;⇒,且p q若p q,且p q,则称p是q的既不充分也不必要条件.4.若p的充分条件是q,则q p⇒;若p的必要条件是q,则p q⇒.第二章函数指数与对数运算一.分数指数幂与根式:如果n x a=,则称x是a的n次方根,0的n次方根为0,若0a≠,则当n为奇数时,a的n次方根有1n为偶数时,负数没有n次方根,正数a的n次方根有2个,其中正的n.负的n次方根记做1.负数没有偶次方根;2.两个关系式:n a=||a na n⎧=⎨⎩为奇数为偶数3、正数的正分数指数幂的意义:mna=正数的负分数指数幂的意义:mna-=.4、分数指数幂的运算性质:⑴m n m n a a a +⋅=;⑵m n m n a a a -÷=;⑶()m n mn a a =;⑷()m m m a b a b ⋅=⋅;⑸01a =,其中m 、n 均为有理数,a ,b 均为正整数二.对数及其运算1.定义:若b a N =(0a >,且1a ≠,0)N >,则log a b N =.2.两个对数:⑴常用对数:10a =,10log lg b N N ==;⑵自然对数: 2.71828a e =≈,log ln e b N N ==.3.三条性质:⑴1的对数是0,即log 10a =;⑵底数的对数是1,即log 1a a =;⑶负数和零没有对数.4.四条运算法则:⑴log ()log log a a a MN M N =+;⑵log log log a a a M M N N=-; ⑶log log n a a M n M =;⑷1log log a a M n=. 5.其他运算性质:⑴对数恒等式:log a b a b =; ⑵换底公式:log log log c a c a b b=; ⑶log log log a b a b c c ⋅=;log log 1a b b a ⋅=; ⑷log log m n a a n b b m=. 函数的概念一.映射:设A 、B 两个集合,如果按照某中对应法则f ,对于集合A 中的任意一个元素,在集合B 中都有唯一的一个元素与之对应,这样的对应就称为从集合A 到集合B 的映射.二.函数:在某种变化过程中的两个变量x 、y ,对于x 在某个范围内的每一个确定的值,按照某个对应法则,y 都有唯一确定的值和它对应,则称y 是x 的函数,记做()y f x =,其中x 称为自变量,x 变化的范围叫做函数的定义域,和x 对应的y 的值叫做函数值,函数值y 的变化范围叫做函数的值域.三.函数()y f x =是由非空数集A 到非空数集B 的映射.四.函数的三要素:解析式;定义域;值域.函数的解析式一.根据对应法则的意义求函数的解析式; 例如:已知x x x f 2)1(+=+,求函数)(x f 的解析式.二.已知函数的解析式一般形式,求函数的解析式;例如:已知()f x 是一次函数,且[()]43f f x x =+,函数)(x f 的解析式.三.由函数)(x f 的图像受制约的条件,进而求)(x f 的解析式.函数的定义域一.根据给出函数的解析式求定义域:⑴整式:x R ∈⑵分式:分母不等于0⑶偶次根式:被开方数大于或等于0⑷含0次幂、负指数幂:底数不等于0⑸对数:底数大于0,且不等于1,真数大于0二.根据对应法则的意义求函数的定义域:例如:已知()y f x =定义域为]5,2[,求(32)y f x =+定义域; 已知(32)y f x =+定义域为]5,2[,求()y f x =定义域;三.实际问题中,根据自变量的实际意义决定的定义域.函数的值域一.基本函数的值域问题:二.求函数值域(最值)的常用方法:函数的值域决定于函数的解析式和定义域,因此求函数值域的方法往往取决于函数解析式的结构特征,常用解法有:观察法、配方法、换元法(代数换元与三角换元)、常数分离法、单调性法、不等式法、*反函数法、*判别式法、*几何构造法和*导数法等.反函数一.反函数:设函数()y f x =()x A ∈的值域是C ,根据这个函数中x ,y 的关系,用y 把x 表示出,得到()x y ϕ=.若对于C 中的每一y 值,通过()x y ϕ=,都有唯一的一个x 与之对应,那么,()x y ϕ=就表示y 是自变量,x 是自变量y 的函数,这样的函数()x y ϕ=()y C ∈叫做函数()y f x =()x A ∈的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.二.函数()f x 存在反函数的条件是:x 、y 一一对应.三.求函数()f x 的反函数的方法:⑴求原函数的值域,即反函数的定义域⑵反解,用y 表示x ,得1()x f y -=⑶交换x 、y ,得1()y f x -=⑷结论,表明定义域四.函数()y f x =与其反函数1()y f x -=的关系:⑴函数()y f x =与1()y f x -=的定义域与值域互换.⑵若()y f x =图像上存在点(,)a b ,则1()y f x -=的图像上必有点(,)b a ,即若()f a b =,则1()f b a -=.⑶函数()y f x =与1()y f x -=的图像关于直线y x =对称.函数的奇偶性:一.定义:对于函数()f x 定义域中的任意一个x ,如果满足()()f x f x -=-,则称函数()f x 为奇函数;如果满足()()f x f x -=,则称函数()f x 为偶函数.二.判断函数()f x 奇偶性的步骤:1.判断函数()f x 的定义域是否关于原点对称,如果对称可进一步验证,如果不对称;2.验证()f x 与()f x -的关系,若满足()()f x f x -=-,则为奇函数,若满足()()f x f x -=,则为偶函数,否则既不是奇函数,也不是偶函数. 二.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称.三.已知()f x 、()g x 分别是定义在区间M 、N ()MN ≠∅上的奇(偶)函数,分别根据条件判断下列函数的奇偶性.五.若奇函数()f x 的定义域包含0,则(0)0f =.六.一次函数y kx b =+(0)k ≠是奇函数的充要条件是0b =;二次函数2y ax bx c =++(0)a ≠函数的周期性:一.定义:对于函数)(x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()()f x T f x +=,则)(x f 为周期函数,T 为这个函数的一个周期.2.如果函数)(x f 所有的周期中存在一个最小的正数,那么这个最小正数就叫做)(x f 的最小正周期.如果函数()f x 的最小正周期为T ,则函数()f ax 的最小正周期为||T a . 函数的单调性一.定义:一般的,对于给定区间上的函数()f x ,如果对于属于此区间上的任意两个自变量的值1x ,2x ,当x x <时满足:⑴()()f x f x <,则称函数()f x 在该区间上是增函数;⑵()()f x f x >,则称函数()f x 在该区间上是减函数.二.判断函数单调性的常用方法:1.定义法:⑴取值;⑵作差、变形;⑶判断:⑷定论:*2.导数法:⑴求函数f(x)的导数'()f x;⑵解不等式'()0f x>,所得x的范围就是递增区间;⑶解不等式'()0f x<,所得x的范围就是递减区间.3.复合函数的单调性:对于复合函数[()]y f u=,则()=,可根据它们的单调性=,设()u g xy f g x确定复合函数[()]=,具体判断如下表:y f g x4.奇函数在对称区间上的单调性相反;偶函数在对称区间上的单调性相同.函数的图像一.基本函数的图像.二.图像变换:三.函数图像自身的对称四.两个函数图像的对称第三章数列数列的基本概念一.数列是按照一定的顺序排列的一列数,数列中的每一个数都叫做这个数列的项.二.如果数列{}n a 中的第n 项n a 与项数n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公事,它实质是定义在正整数集或其有限子集的函数解析式.三.数列的分类:按项的特点可分为递增数列、递减数列、常数列、摇摆数列按项数可分为有穷数列和无穷数列四.数列的前n 项和:1231n n n S a a a a a -=+++⋅⋅⋅++n S 与n a 的关系:1112n n n S n a S S n -=⎧=⎨-≥⎩五.如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.递推公式也是给出数列的一种方法.如:在数列{}n a 中,11a =,1112n n a a -=+,其中1112n n a a -=+即为数列{}n a 的递推公式,根据数列的递推公式可以求出数列中的每一项,同时可根据数列的前几项推断出数列{}n a 的通项公式,至于猜测的合理性,可利用数学归纳法进行证明.如上述数列{}n a ,根据递推公式可以得到:232a =,374a =,4158a =,53116a =,进一步可猜测1212n n n a --=. 等差数列一.定义:如果一个数列从第2项起,每一项与前一项的差是同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.二.通项公式:若已知1a 、d ,则1(1)n a a n d =+-;若已知m a 、d ,则()n m a a n m d =+-三.前n 项和公式:若已知1a ,n a ,则12n n a a S n +=⨯;若已知1a 、d ,则1(1)2n n n S na d -=+ 注:⑴前n 项和公式n S 的推导使用的是倒序相加法的方法.⑵在数列{}n a 中,通项公式n a ,前n 项和公式n S 均是关于项数n 的函数,在等差数列{}n a 通项公式n a 是关于n 的一次函数关系,前n 项和公式n S 是关于n 的没有常数项的二次函数关系.⑶在等差数列中包含1a 、d 、n 、n a 、n S 这五个基本量,上述的公式中均含有4基本量,因此在数列运算中,只需知道其中任意3个,可以求出其余基本量.四.如果a 、b 、c 成等差数列,则称b 为a 与c 的等差中项,且2a cb +=. 五.证明数列{}n a 是等差数列的方法:1.利用定义证明:1n n a a d --=(2)n ≥2.利用等差中项证明:2a cb += 3.利用通项公式证明:n a an b =+4.利用前n 项和公式证明:2n S an bn =+六.性质:在等差数列}{n a 中,1.若某几项的项数成等差数列,则对应的项也成等差数列,即:若2m n k +=,则2m n k a a a +=.2.若两项的项数之和与另两项的项数之和相等,则对应项的和也相等,即:若m n k l +=+,则m n k l a a a a +=+.3.依次相邻每k 项的和仍成等差数列,即:k S ,2k k S S -,32k k S S -成等差数列.4.n a ,1-n a ,2-n a ,…,2a ,1a 仍成等差数列,其公差为d -.三.等比数列一.定义:如果一个数列从第2项起,每一项与前一项的比都是同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用宇母q (0)q ≠表示.二.通项公式:若已知1a 、q ,则n a =11n a q -;若已知m a 、q ,则n a =n m m a q -三.前n 项和公式:当公比1q =时,1n S na =当公比1q ≠时,若已知1a 、n a 、q ,则n S =11n a a q q--若已知1a 、q 、n ,则1(1)1n n a q S q-=- 注:⑴等比数列前n 项和公式n S 的推导使用的是错位相减的方法.⑵在等比数列中包含1a 、q 、n 、n a 、n S 这五个基本量,上述的公式中均含有4基本量,因此在数列运算中,只需知道其中任意3个,可以求出其余基本量.四.若a 、b 、c 成等比数列,则称b 为a 与c 的等比中项,且a 、b 、c 满足关系式b =五.证明数列{}n a 是等比数列的方法:1.利用定义证明:1n n a q a -=(2)n ≥ 2.利用等比中项证明:2b ac =3.利用通项公式证明:n n a aq =六.性质:在等比数列}{n a 中,1.若某几项的项数成等差数列,则对应的项成等比数列,即:若2m n k +=,则2m n k a a a ⋅=2.若两项的项数之和与另两项的项数之和相等,则对应项的积相等,即:若m n k l +=+,则m n k l a a a a ⋅=⋅3.若数列公比1q ≠-,则依次相邻每k 项的和仍成等比数列,即k S ,2k k S S -,32k k S S -成等比数列。
中等职业教育规划教材数学(山东省基础类)目录
中等职业教育规划教材数学目录数学—101第一章集合1.1集合及其表示1.1.1集合1.1.2集合地表示方法1.2集合之间的关系1.3集合的基本运算1.3.1交集1.3.2并集1.3.3补集1.4充要条件阅读与实践02第二章2.1一元二次方程2.2不等式2.2.1不等式的基本性质2.2.2不等式的解集与区间2.2.3含绝对值的不等式2.2.4一元二次不等式阅读与实践03第三章函数3.1函数的概念3.2函数的表示方法3.3函数的单调性3.4函数的奇偶性3.5二次函数的图像和性质3.6函数的应用阅读与实践04第四章指数函数与对数函数4.1实数指数4.2指数函数4.3对数及其运算4.3.1对数4.3.2对数的运算4.4对数函数4.5幂函数4.6指数函数与对数函数的应用阅读与实践05第五章数列5.1数列5.2等差数列5.2.1等差数列的概念5.2.2等差数列的前n项和5.3等比数列5.3.1等比数列的概念5.3.2等比数列的前n项和5.4等差数列与等比数列的应用阅读与实践06第六章空间几何体6.1认识空间几何体6.1.1认识多面体与旋转体6.1.2棱柱、棱锥6.1.3圆柱、圆锥、球6.2空间几何体的表面积与体积6.2.1空间几何体的表面积6.2空间几何体的体积阅读与实践数学—207三角函数7.1任意角的概念与弧度制7.1.1任意角的概念7.1.2弧度制7.2任意角的三角函数7.2.1任意角的三角函数的定义7.2.2单位圆与正弦、余弦线7.2.3利用计算器求三角函数值7.2.4三角函数值在各象限的符号7.3同角三角函数的基本关系式7.4三角函数的诱导公式7.5正弦、余弦函数的图像、性质7.5.1正弦函数的图像和性质7.5.2余弦函数的图像和性质7.6已知三角函数值求角阅读与实践08第八章平面向量8.1向量的概念8.2向量的线性运算8.2.1向量的加法2.2向量的减法8.2.3数乘向量8.3平面向量的直角坐标运算8.3.1平面向量的直角坐标及其运算8.3.2平面向量平行的坐标表示8.3.3向量的长度公式和中点公式8.4向量的内积8.4.1向量的内积8.4.2向量的内积的直角坐标运算阅读与实践09第九章直线与圆的方程9.1直线的方程9.1.1直线的方向向量和向式方程9.1.2直线的斜率和点斜式方程9.1.3直线的法向量与点法式方程9.1.4直线的一般式方程9.2两条直线的位置关系9.2.1两条直线的平行99.2.2两条直线的交点与垂直9.3点到直线的距离9.4圆的方程9.4.1圆的标准方程9.4.2圆的一般方程阅读与实践10第十章立体几何初步10.1平面的基本性质10.2空间两条直线的位置关系10.3直线与平面的位置关系10.4平面与平面的位置关系阅读与实践11第十一章概率与统计初步11.1技术的基本原理11.2概率初步11.2.1随机事件与样本空间11.2.2古典概率11.3随机抽样11.3简单的随机抽样11.3系统抽样11.3分层抽样11.4用样本估计总体11.4.1用样本的概率分布估计总体发布11.4.2用样本的数字特征估计数字特征11.5一元线性回归分析。
集合及其运算
集合及其运算在数学中,集合是由一些特定元素组成的对象的集合。
集合的概念在数学理论的发展中起着重要的作用,它不仅被广泛应用于各个领域的数学研究中,也在计算机科学、逻辑学等其他学科中得到了应用。
本文将介绍集合的基本概念、性质以及常见的集合运算。
1. 集合的定义和表示方式集合可以用一对大括号 { } 表示,括号内列举出集合的元素。
例如,集合 A = {1, 2, 3, 4} 就包含了元素 1、2、3 和 4。
另一种表示方式是描述性的,例如集合 B 可以表示为“B = {x | x 是偶数}”,表示 B 中的元素是满足条件“是偶数”的数。
集合元素的顺序和重复性对于集合的定义没有影响。
2. 基本运算(1) 并集:若 A 和 B 是两个集合,它们的并集(denoted by A ∪ B)是由 A 和 B 中所有元素组成的集合。
例如,若 A = {1, 2, 3},B = {3, 4, 5},则 A ∪ B = {1, 2, 3, 4, 5}。
(2) 交集:若 A 和 B 是两个集合,它们的交集(denoted by A ∩ B)是由同时属于 A 和 B 的元素组成的集合。
例如,若 A = {1, 2, 3},B = {3, 4, 5},则A ∩ B = {3}。
(3) 差集:若 A 和 B 是两个集合,它们的差集(denoted by A - B)是由属于 A 但不属于 B 的元素组成的集合。
例如,若 A = {1, 2, 3},B = {3, 4, 5},则 A - B = {1, 2}。
(4) 互斥:若 A 和 B 是两个集合,它们互斥表示 A 和 B 没有公共的元素,即A ∩ B = ∅,其中∅表示空集。
3. 运算的基本性质(1) 交换律:对于任意的两个集合 A 和 B,A ∪ B = B ∪ A,A ∩B = B ∩ A。
(2) 结合律:对于任意的三个集合 A、B 和 C,(A ∪ B) ∪ C = A ∪ (B ∪ C),(A ∩ B) ∩ C = A ∩ (B ∩ C)。
【人教版】中职数学(基础模块)上册:1.1《集合及其运算》(1)
第一节 集合及其运算
集合论产生于十九世纪七十年代,它是德国 数学家康托尔(Cantor)创立的,不仅是分析学 的基础,同时,它的一般思想已渗入到数学的所 有部门。“集合论观点”与现代数学的发展不可 分割地联系在一起。
集合的定义
集合,指的是具有某种特定性质的对象的全体, 通常用大写英文字母A,B,X,Y…等表示;集 合中的每个对象称为该集合的元素。一般说来, 我们总用小写字母a,b,x,y…表示集合中的元素。
1) 2) 3) 则称F是S的一些子集构成的一个域或代数.
注 2. 一串指的是可排序.
定理7
若 A 是由S的子集构成的集合,则唯一存 在一个由S的子集构成的最小 域
使
集合序列的极限
1.序列的增减性
2.序列的并和交
3.上极限和下极限
例1
证:对一切自然数 ,显然有
,所以
因为对任一有理数 对任何 有 所以
称为B 相对于A
特别地,若考虑的一切集合都是某一给 定集合S的子集,集合A相对于S的余集 称为A的余集,简记为
(其中S为全集),简记为Ac
定理5 (1) (2) (3) (4)
定理6 De Morgan 公式
证明 (1) 若
设
反之, 当
域或代数
对于一个给定的集合S,若F 是S的一族子集, 它 足下列条件
(3)分配律 (4)幂等律
定理4 (1) (2) 若
(3) 若
(4) (5)
证明 (2)由并集的定义,若
则存在
而
从而
故
(5)若
由交的定义,
再由并的定义可知存在
于是 从而 所以
再证
略
(6)
中专数学第一册完整知识点
中专数学第一册完整知识点集,记作A∪B。
对于集合A和B,它们的交集是由所有既属于集合A又属于集合B的元素组成的集合,记作A∩B。
集合A的补集是由所有不属于集合A的元素组成的集合,记作A的补集,即A的补集=U-A。
全集U是一个包含我们所研究的所有元素的集合。
小改写:数学第一册(第一、第二章)知识点总结第一章:集合一、集合及其表示1.集合是由一些元素组成的总体。
2.集合的三个特性是确定性、互异性和无序性。
3.集合可以用大写字母表示,如A={我校的篮球队员},B={1,2,3,4,5}。
集合可以用列举法或描述法表示,例如{a,b,c}或{x∈R|x-3>2}。
4.集合可以分为有限集和无限集,还有一个不含任何元素的集合,即空集。
5.元素与集合的关系有属于和不属于两种情况。
6.常用数集有非负整数集N,正整数集N*或N+,整数集Z,有理数集Q和实数集R。
二、集合之间的关系1.“包含”关系,即子集关系,表示集合A的所有元素都是集合B的元素,记作A⊆B(或B⊇A)。
2.“相等”关系,即两个集合的元素相同,记作A=B。
3.空集是不含任何元素的集合,是任何集合的子集,也是任何非空集合的真子集。
4.有n个元素的集合,含有2n个子集,其中有2n-1个真子集。
三、集合的基本运算集合的基本运算包括交集、并集、补集和全集。
1.交集表示集合A和B共有的元素组成的集合,记作A∩B。
2.并集表示集合A和B所有元素组成的集合,记作A∪B。
3.补集表示集合A中不属于集合U的元素组成的集合,记作A的补集,即A的补集=U-A。
4.全集U是包含我们所研究的所有元素的集合。
二:不等式1.不等式的基本性质:1) a>b ⇔ ba2) a>b,b>c ⇒ a>c,a<b,b<c ⇒ a<c3) a>b ⇒ a+c>b+c,hence a+b>c ⇒ a>c-b Corollary: a>b,c>d ⇒ a+c>b+d.4) a>b,c>0 ⇒ ac>bc,a>b,c<0 ⇒ ac<bc Corollary 1: a>b>0,c>d>0 ⇒ ac>bd. Corollary 2: a>b>0 ⇒ an>bn.Corollary 3: a>b>0 ⇒ na>nb.2.不等式的证明方法Principle: a>b ⇔ a-b>0 ⇔ a-b=0 ⇔ a=b.1) Difference comparison method: A-B≤0 ⇔ A≤BSteps of difference comparison:① Calculate the difference: calculate the difference een the two numbers (or ns) to be compared.② n: XXX the difference into the sum of several numbers (or ns).③ Determine the sign of the difference: determine the sign of the difference based on the result of the XXX.3.含有绝对值的不等式In general。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谓词法(叙述法) —描述集合中元素的属性 {x|P(x)}
使P(x)成立的所有元素的集合
例如:方程x2-1=0的实数解。 {x|x∈R∧x2-1=0}
集合的元素是无序的。 {1,2,3}={3,1,2}
集合的元素是彼此不同的(无重复性) {1,1,2,2,3}={1,2,3} |A|表示A中元素个数
化简
((A∪B∪C) ∩(A∪B))-((A∪(B-C)) ∩A) 解: ((A∪B∪C) ∩(A∪B))-((A∪(B-C)) ∩A) = (A∪B)-A = B-A
2-1-3 集合中元素的计数
一、两个基本原理 加法原理:若一个事件以m种方式出现(这些方式 构成集合A),另一个事件以n种事件出现(这些方 式构成集合B),这两个事件完成一件即能达到目 的,则达到目的的方式数为m+n。 例3.1 假设从城市A到城市B有铁路两条,公路三 条,航线一条,则从城市A到城市B有 条。
三、交运算和并运算之间的联系 定理2.3 分配律
(1) 交运算对并运算的分配律 A∩(B ∪C)=(A∩B) ∪(A∩C)
(2) 并运算对交运算的分配律
A∪(B∩C)=(A∪B)∩(A∪C) 定理2.4 吸收律 (1) A∩(A∪B)=A (2) A∪(A∩B)=A
四、集合的补运算 定义2.3 设A、B是任意两个集合,由属于A而不 属于B的一切元素构成的集合,称为A与B的差运算 (又称B对A补运算)。 记做 A-B A - B ={ x| (x∈A) ∧ (x ∉ B) } 若A=E,对任意集合B关于E的补集E – B,称为 B的绝对补集, 记 做 B
二、交运算∪ 定义2.2 设A、B是任意两个集合,由A和B的公共 元素组成的集合,称为A与B的交集 。 A∩B ={ x| (x∈A) ∧ (x∈B) } 记做 A∩B
例2.5 设A是能被5整除的整数集合,B是能被8整 除的整数集合。 A∩B是能被40整除的整数集合。
定理2.1 设A、B、C为任意三个集合,则
(4) 排中律
(7)
A B AB
A B A AB
(8)
A (B C) A B A C
B A ; ( B A) A B
(9) 若A⊆B,当且仅当
五、集合的对称差运算 定义2.4 设A、B是任意两个集合,由“属于A而不 属于B”或“属于B而不属于A”的一切元素构成的 集合,称为A与B的对称差。 记做 A⊕B A⊕B=(A-B) ∪(B-A)
例如: 方程x2-1=0的实数解集合; 26个英文字母的集合; 坐标平面上所有点的集合;……
集合通常用大写英文字母来表示, 元素用小写字母表示
自然数集合N,整数集合Z,有理数集合Q, 实数集合R,复数集合C等。
集合的表示方法有两种:列举法和谓词法。 例如: A={a,b,c,…,z} Z={0,±1,±2,…} 列举法 (穷举法)
第2篇 集合与关系
第2-1章 集合及其运算 第2-2章 二元关系 第2-3章 函数
第2-1章
集合及其运算
2-1-1 集合的概念 及其表示 2-1-2 集合的基本运算
2-1-3 集合中元素的计数
2-1-1 集合的概念及其表示
一.集合的概念 一些事物汇集到一起组成一个整体就叫集合, 而这些事物就是这个集合的元素或成员。
(4) (5)
(6)
交关于对称差的分配律
∩ ∩ ∩ A (B C ) ( A B) ( A C ) (7) 若A B A C,则B C
证明( 6 ) A (B C) ( A B) ( A C)
证 明 : ( A B) ( A C ) ((A B) (A C )) ((A C ) (A B))
P33 3! 6 种排法 解:先排矩阵的第一行共有 P33 3! 6 种排法 如果不管题目要求,第二行也有
可知,由这3个数字排成同行没有相同数字的矩阵 共有36种(乘法原理)。 题目要求同列也没有相同数字 设同列中有相同数字的矩阵分为几种情况:
2 C1 C1 P2 18 有一列数字相同其他两列数字不同; 3 3
元素和集合之间的关系——隶属关系 属于或不属于,属于记作∈,不属于记作∉ 例如: A={a,{b,c},d,{{d}}} 规定集合的元素都是集合。 a∈A, {b,c}∈A, d∈A, {{d}}∈A, b ∉ A,{d} ∉ A
树形图来表示隶属关系, 该图分层构成,每个层 上的结点都表示一个集 合,它的儿子就是它的 元素。
((A B) A C ) ((A C ) A B ) ( ) ( ) (( A B A ( A B C ) ) )
(( A C A ( A C B ) ) ) ( ( A B C ) ( ( A C B ) ) )
规定:对任何集合A都有A ∉ A。
二.集合之间的关系 定义1.2 包含关系 设A,B为集合,如果A中的每个元素都是B中 的元素,则称A是B的子集合,或A包含于B, 或B包含A,记作A⊆B,或B⊇A。 A⊆B ⇔ ∀x(x∈A→x∈B) 如果A不被B包含,则记作A B。
例如N
Z
Q
R
C,但Z
N。
集合间的包含关系“⊆”的性质
——计算机中表示集合 及其幂集(数码表示法)
将J中二进制转成十进制数J={ 0 ,1 , 2 ,3 }
P(A2)={ Si | i ∈J } , J={ i | i 是两位二进制数且i= 0 ,1 , 2 ,3 }
扩展到n个元素情况 P(An)={ Si | i ∈J } , J={ i | i是n位二进制数 且 0 ≤i ≤2n-1 } 例: A6={x1,x2 ,x3,x4 ,x5 ,x6} 写出S7和S12代表的两个子集 7=000111 S7={x4 ,x5 ,x6}
B
例6 设A={1,2,3,4,5},B={1,2,4,7} A-B= {3,5} 例7 设A是素数集合,B是奇数集合, A-B= {2} 定理2.5 设A、B、C为任意三个集合,则
(1) 对合律
AA
() 3
( 2)
E
E
AA E (5) 矛盾律 AA ( 6) 德 摩 根 律 AB实根的集合。
{ P( x ) P( x )} P( x )是任一谓词 , 。 定理1.2 对任一集合A, A,且空集是唯一的
注意: { } 定义1.5 全集 在一定范围内,如果所有集合均为某一集合的 子集,则称该集合为全集,记做E 。 E { P( x ) P( x )} P( x )是任一谓词 ,
12=001100
S12={x3 ,x4}
2-1-2 集合的基本运算 (5种)
并∪、交∩、相对补-、绝对补-、对称差⊕ 一、并运算∪ 定义2.1 设A、B是任意两个集合,所有属于A或者 属于B的元素组成的集合,称为A与B的并集 。 记做 A∪B A∪B ={ x| (x∈A) ∨ (x∈B) }
例2.2 设A⊆B, C⊆D,则 A∪C ⊆ B∪D
P 有两列数字相同(三列数字相同); 33 3! 6 同行同列上都没有相同数字的矩阵有 36-18-6=12种
m m Pn 与 C n 是 从n个 元 素 中 任 意 取 个 元 素 不 重 复 m (
(A B C (A C B ) ) A ( B C (C B ) ( ) )
A (B C)
文氏图表示集合关系及运算
例
证明 证:
(A-B)∪B=A∪B (A-B)∪B =(A∩~B)∪B =(A∪B)∩(~B∪B) =(A∪B)∩E =A∪B
二、排列、组合
从n个元素的集合中每次取m个的排列和组合的 计算公式分别为
m Pn
n! n (n 1) (n m 1) (n m) !
n! Pnm m Cn m ! m !(n m ) !
对 排 列Pnm: 若m n时 称 为 全 排 列 , n时 m 称为选排列。
={x|(x∈A) (x∈B)}
A⊕B=(A∪B) -(A∩B) 例6 设A={1,2,3,4,5},B={1,2,4,5,7} A⊕B= {3,7}
定理2.6 设A、B、C为任意三个集合,则 (1) (2) (3) A ⊕ B= B⊕A A ⊕ Φ= A A ⊕ A= Φ
∩ ∪ ∩ A B ( A B) (B A ) ( A B) C A (B C)
排列和组合的最基本恒等式有:
m m n Pn m! C n Cm C n m n
m Cn
m C n 1
m 1 C n 1
例3.3 将英文单词“Computer”的字母全部取出进 行全排列,其中C不在第一位,r不在末位,问共有 多少种不同的排法? 8 解:“Computer”的字母的全排列数有P8 8! 设为集合E 其中C排在第一位的排法有7!种; 设为集合A r排在末位的排法有7!种。 设为集合B
(1) 幂等律
(2) 交换律
A∪A=A
A∪B=B∪A
A∩A=A
A∩B=B∩A
(3) 结合律
(A∪B) ∪C=A∪(B ∪C)
(A∩B)∩C=A∩(B∩C)
(4) 同一律 (5) 零律
A∪Φ=A A∪E=E
A∩E=A A∩Φ=Φ (6) A∩B⊆A , A∩B⊆B (7) A∩B=A A⊆B
(6) A⊆A∪B, B⊆A∪B (7) A∪B=B A⊆B
定理1.3 设A={a1,a2,…,an},则|P(A)|=2n
四.集合的数码表示
设集合A2={x1,x2} 对集合中元素标定次序, x1是第一个元素, x2是第二个元素 P(A2)={ , { x1 } , { x2 } , { x1,x2 } } S00 S10 S01 S11 P(A2)={ Si | i ∈J } , J={ 00 ,01 , 10 ,11 }