(完整版)2019-2020年高考数学大题专题练习——立体几何(三)

合集下载

【高考数学大题精做】专题05 立体几何中最值问题(第三篇)(解析版)

【高考数学大题精做】专题05 立体几何中最值问题(第三篇)(解析版)

【高考数学大题精做】第三篇 立体几何专题05 立体几何中最值问题【典例1】【河南省非凡吉创联盟2020届调研】如图,AB 是圆柱的直径,PA 是圆柱的母线,3AB =,PA =,点C 是圆柱底面圆周上的点.(1)求三棱锥P ABC -体积的最大值;(2)若1AC =,D 是线段PB 上靠近点P 的三等分点,点E 是线段PA 上的动点,求CE ED +的最小值. 【思路引导】(1)三棱锥的高为定值,要根据三棱锥体积公式13V Sh =可知,要使得体积最大,就要底面积最大,又因为边AB 为定值,故当C 到AB 的距离取得最大值时,底面积最大,故此时棱锥的体积最大;(2)反向延长AB 至C ',使得,,C D E '三点共线,三点共线时,距离最短,则C D '为CE ED +最小值. 【详解】(1)三棱锥P ABC -高h =,3AB =,点C 到AB 的最大值为底面圆的半径32,则三棱锥P ABC -体积的最大值等于1133322⨯⨯⨯=. (2)将PAC ∆绕着PA 旋转到PAC '使其共面,且C '在AB 的反向延长线上,连接C D ',C D '与PA 的交点为E ,此时CE ED +最小,为C D ';由3AB =,PA =且易知PA AB ⊥,由勾股定理知6PB =,因为12AB PB =,所以30APB ∠=o ,则60DBC ∠='o ,243BD PB ==; 134C B C A AB '+=+'==,则BDC '∆是边长为4的等边三角形,故4C D '=,所以CE ED +的最小值等于4.【典例2】【江西省新余市第四中学2020届月考】 已知梯形ABCD 中,AD ∥BC ,∠ABC =∠BAD =2π,AB=BC=2AD=4,E 、F 分别是AB 、CD 上的点,EF ∥BC ,AE =x ,G 是BC 的中点.沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF .(1)若以F 、B 、C 、D 为顶点的三棱锥的体积记为()f x ,求()f x 的最大值; (2)当 ()f x 取得最大值时,求二面角D -BF -C 的余弦值. 【思路引导】(1)由AEFD ⊥平面EBCF ,////EF BC AD ,可得AE EF ⊥,进而由面面垂直的性质定理得到AE ⊥平面EBCF ,进而建立空间坐标系E xyz -,可得()D BCF A BFC f x V V --==的解析式,根据二次函数的性质,易求出()f x 有最大值;(2)根据(1)的结论平面BCF 的一个法向量为()20,0,1n =u u v ,利用向量垂直数量积为零列方程组求出平面BDF 的法向量,代入向量夹角公式即可得到二面角D BF C --的余弦值.解:(1)∵平面AEFD ⊥平面EBCF ,AE ⊥EF,∴AE ⊥面平面EBCF ,AE ⊥EF,AE ⊥BE,又BE ⊥EF,故可如图建立空间坐标系E -xy z .则A (0,0,2),B (2,0,0),G (2,2,0),D (0,2,2), E (0,0,0)∵AD ∥面BFC ,所以()f x =V A -BFC =13BFC S AE ∆⋅ ()114432x x ⋅⋅⋅-⋅ ()22882333x =--+≤,即2x =时()f x 有最大值为83.(2)设平面DBF 的法向量为()1,,n x y z =u v,∵AE=2, B (2,0,0),D (0,2,2),F (0,3,0),∴()2,3,0,BF =-u u u v BD =u u u v (-2,2,2),则1100n BD n BF ⎧⋅=⎪⎨⋅=⎪⎩u v u u u vu v u u u v ,即()()()(),,2,2,20,,2,3,00x y z x y z ⎧⋅-=⎪⎨⋅-=⎪⎩,2220230x y z x y -++=⎧⎨-+=⎩ 取x =3,则y =2,z =1,∴()13,2,1n u v=面BCF 的一个法向量为()20,0,1n =u u v则cos<12,n n u v u u v>=121214n n n n u v u u v u v u u v ⋅=⋅. 由于所求二面角D -BF -C的平面角为钝角,所以此二面角的余弦值为:-14【典例3】【北京市昌平区2020届模拟】如图,在长方体ABCD -A 1B 1C 1D 1中,E ,H 分别是棱A 1B 1,D 1C 1上的点(点E 与B 1不重合),且EH ∥A 1D 1. 过EH 的平面与棱BB 1,CC 1相交,交点分别为F ,G .(I )证明:AD ∥平面EFGH ;(II ) 设AB=2AA 1="2" a .在长方体ABCD -A 1B 1C 1D 1内随机选取一点.记该点取自几何体A 1ABFE -D 1DCGH 内的概率为p ,当点E ,F 分别在棱A 1B 1上运动且满足EF=a 时,求p 的最小值.【思路引导】 解法一:(I ) 证明:在长方体ABCD -A 1B 1C 1D 1中,AD ∥A 1D 1 又∵EH ∥A 1D 1,∴AD ∥EH. ∵AD ¢平面EFGH EH 平面EFGH ∴AD//平面EFGH.(II ) 设BC=b ,则长方体ABCD -A 1B 1C 1D 1的体积V=AB·AD·AA 1=2a 2b , 几何体EB 1F -HC 1G 的体积V 1=(1/2EB 1 ·B 1F )·B 1C 1=b/2·EB­1·B 1 F ∵EB 12+ B 1 F 2=a 2∴EB 12+ B 1 F 2≤ (EB 12+ B 1 F 2)/2 = a 2 / 2,当且仅当EB­1=B 1F=2a 时等号成立 从而V 1≤ a 2b /4 .故 p=1-V 1/V ≥22412a ba b-=78 解法二:(I ) 同解法一(II ) 设BC=b ,则长方体ABCD -A 1B 1C 1D 1的体积V=AB·AD·AA 1=2a 2b , 几何体EB 1F -HC 1G 的体积V 1=(1/2 EB­1·B 1 F )·B 1C 1=b/2 EB­1·B 1 F设∠B 1EF=θ(0°≤θ≤90°),则EB­1=" a" cosθ,B 1 F ="a" sinθ 故EB­1·B 1 F = a 2sinθcosθ=,当且仅当sin 2θ=1即θ=45°时等号成立.从而214a bV ≤ ∴p=1- V 1/V≥22412a ba b-=78,当且仅当sin 2θ=1即θ=45°时等号成立.所以,p 的最小值等于7/81. 【广东省佛山市第一中学2020届月考】如图,正方体1111ABCD A B C D -的棱长为a ,E F 、分别为AB BC 、上的点,且AE BF x ==.(1)当x 为何值时,三棱锥1B BEF -的体积最大? (2)求异面直线1A E 与1B F 所成的角的取值范围. 【思路引导】(1)首先得到体积函数,然后利用均值不等式确定取得最值时x 的值即可;(2)首先作出异面直线1A E 与1B F 所成的角,然后结合余弦定理求得角的余弦值取值范围,最后利用余弦值的范围确定异面直线1A E 与1B F 所成的角的取值范围. 【详解】 (1),当2ax =时,三棱锥1B BEF -的体积最大. (2)在AD 上取点H 使AH =BF =AE ,则,,,所以1HA E∠(或补角)是异面直线1A E 与1B F 所成的角;在Rt △1A AH 中,1A H =在Rt △1A AE 中,1A E =在Rt △HAE 中,HE ==,在△1HA E 中,222111112A H A E EH cosHA E A H A E +-=⋅ 222a a x=+, 因为0x a <≤,所以22222a x a a <+≤,222112a x a≤<+,1112cosHA E ≤<,1π03HA E <∠≤ 2.【安徽省安庆市2020届模拟】如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,2,AB EB ==(1)求证:DE ⊥平面ADC ;(2)设AC x =,(x)V 表示三棱锥B ACE -的体积,求函数(x)V 的解析式及最大值. 【思路引导】(1)要证(1)要证DE ⊥平面ADC ,需证BC ⊥平面ADC ,需证DC BC BC AC ⊥⊥,,用综合法书写即可.(2)由(1)可知BE ⊥平面ABC ,所以体积为13ABC BE S ⨯, AC x BC EB ===,均值不等式求解最大值.详解:(1)证明:∵四边形DCBE 为平行四边形,∴CD ∥BE ,BC ∥DE . ∵DC ⊥平面ABC ,BC ⊂平面ABC ,∴DC ⊥BC . ∵AB 是圆O 的直径,∴BC ⊥AC ,且DC ∩AC =C . ∴BC ⊥平面ADC .∵DE ∥BC ,∴DE ⊥平面ADC ; (2)∵DC ⊥平面ABC ,∴BE ⊥平面ABC . 在Rt △ABE 中,AB =2,EB =3√.在Rt △ABC 中,∵AC =x ,BC =4−x 2−−−−−√(0<x <2). ∴S △ABC =12AC ⋅BC =12x ⋅4−x 2−−−−−√, ∴V (x )=VE −ABC =3√6x ⋅4−x 2−−−−−√,(0<x <2).∵x 2(4−x 2)⩽(x 2+4−x 22)2=4,当且仅当x 2=4−x 2,即x =2√时,取等号, ∴x =2√时,体积有最大值为3√3.3.【浙江省金华市十校2020届模拟】如图,在三棱锥P ABC -中,AB BC =,AP PC =,60ABC ∠=︒,AP PC ⊥,直线BP 与平面ABC 成30°角,D 为AC 的中点,PQ PC λ=u u u v u u u v,(0,1)λ∈.(Ⅰ)若PB PC >,求证:平面ABC ⊥平面PAC ;(Ⅰ)若PC PB <,求直线BQ 与平面PAB 所成角的正弦值的取值范围. 【思路引导】由题意可得直线BP 与平面ABC 所成角是PBD ∠,即30PBD ∠=︒.设2AC a =,则BD =,PD a =,由余弦定理得PB a =或2a .(Ⅰ)若PB PC >,则2PB a =,由勾股定理可得PD DB ⊥,又PD AC ⊥,据此可得PD ⊥平面ABC ,平面PAC ⊥平面ABC .(Ⅰ)若PB PC <,则PB a =,故PQ a =,BQ =,设Q h 是Q 到面PAB 的距离,C h 是C 到面PAB 的距离,则Q C h h λ=,由等体积法可得7C h a =,7Q h a λ=.设直线BQ 与平面PAB 所成角为α,则sin α=,据此可得直线BQ 与平面PAB 所成角的正弦值的取值范围为0,7⎛ ⎝⎭.试题解析:∵AB BC =,AP PC =,D 为AC 的中点,∴BD AC ⊥,PD AC ⊥,∴AC ⊥平面PBD , ∴直线BP 与平面ABC 所成角是PBD ∠,30PBD ∠=︒. 设2AC a =,则BD =,PD a =,由余弦定理得PB a =或2a .(Ⅰ)若PB PC >,则2PB a =,∴在PBD ∆中222PD DB PB +=.∴PD DB ⊥, 又PD AC ⊥,AC DB D ⋂=,∴PD ⊥平面ABC ,∴平面PAC ⊥平面ABC . (Ⅰ)若PB PC <,∴PB a =,∵PQ PC λ=u u u v u u u v,∴PQ a =,BQ =,设Q h 是Q 到面PAB 的距离,C h 是C 到面PAB 的距离,则Q C h h λ=,由等体积法:)2112323C aa a h ⋅=⋅,∴7C h a =,∴7Q h a λ=. 设直线BQ 与平面PAB 所成角为α,则HQsin BQα==a=7=.∵()0,1λ∈10,2⎛⎫ ⎪⎝⎭.∴0sin α<<故直线BQ 与平面PAB所成角的正弦值的取值范围为0,7⎛ ⎝⎭. 4.【北京市城六区2019届高三模拟】已知三棱锥P ABC -(如图1)的平面展开图(如图2)中,四边形ABCD的正方形,△ABE 和△BCF 均为正三角形,在三棱锥P ABC -中: (I)证明:平面PAC ⊥平面ABC ; (Ⅰ)求二面角A PC B --的余弦值; (Ⅰ)若点M 在棱PC 上,满足CMCP λ=,12[,]33λ∈,点N 在棱BP 上,且BM AN ⊥,求BN BP的取值范围.【思路引导】第一问取AC 中点O ,根据等腰三角形的性质求得PO AC ⊥,根据题中所给的边长,利用勾股定理求得PO OB ⊥,利用线面垂直的判定定理以及面面垂直的判定定理得到结果;第二问根据题中所给的条件建立空间直角坐标系,写出相应的点的坐标,求得面的法向量,利用法向量所成角的余弦值得出结果;第三问利用向量间的关系,利用向量垂直的条件,利用向量的数量积等于0,得出所求的比值μ与λ的关系式,利用函数的有关知识求得结果. (Ⅰ)方法1:设AC 的中点为O ,连接BO ,PO . 由题意PA PB PC ===,1PO =,1AO BO CO ===因为在PAC ∆中,PA PC =,O 为AC 的中点 所以PO AC ⊥,因为在POB ∆中,1PO =,1OB =,PB =所以PO OB ⊥因为AC OB O ⋂=,,AC OB ⊂平面ABC 所以PO ⊥平面ABC 因为PO ⊂平面PAC 所以平面PAC ⊥平面ABC 方法2:设AC 的中点为O ,连接BO ,PO .因为在PAC ∆中,PA PC =,O 为AC 的中点 所以PO AC ⊥,因为PA PB PC ==,PO PO PO ==,AO BO CO == 所以POA ∆≌POB ∆≌POC ∆ 所以90POA POB POC ∠=∠=∠=︒ 所以PO OB ⊥因为AC OB O ⋂=,,AC OB ⊂平面ABC 所以PO ⊥平面ABC 因为PO ⊂平面PAC 所以平面PAC ⊥平面ABC 方法3:设AC 的中点为O ,连接PO ,因为在PAC ∆中,PA PC =, 所以PO AC ⊥设AB 的中点Q ,连接PQ ,OQ 及OB . 因为在OAB ∆中,OA OB =,Q 为AB 的中点 所以OQ AB ⊥.因为在PAB ∆中,PA PB =,Q 为AB 的中点 所以PQ AB ⊥.因为PQ OQ Q ⋂=,,PQ OQ ⊂平面OPQ所以AB ⊥平面OPQ因为OP ⊂平面OPQ所以OP AB ⊥因为AB AC A ⋂=,,AB AC ⊂平面ABC所以PO ⊥平面ABC因为PO ⊂平面PAC所以平面PAC ⊥平面ABC(Ⅰ)由PO ⊥平面ABC ,OB AC ⊥,如图建立空间直角坐标系,则()0,0,0O ,()1,0,0C ,()0,1,0B ,()1,0,0A -,()0,0,1P 由OB ⊥平面APC ,故平面APC 的法向量为()0,1,0OB =u u u v 由()1,1,0BC =-u u u v ,()1,0,1PC =-u u u v设平面PBC 的法向量为(),,n x y z =v ,则由00n BC n PC ⎧⋅=⎨⋅=⎩u u u vu u u v 得:00x y x z -=⎧⎨-=⎩令1x =,得1y =,1z =,即()1,1,1n =vcos ,nOBn OB n OB ⋅===⋅u u u vv u u u v v u u u v v由二面角A PC B --是锐二面角,所以二面角A PC B --的余弦值为3(Ⅰ)设BN BP μ=u u u v u u u v ,01μ≤≤,则()()()1,1,01,0,11,1,BM BC CM BC CP λλλλ=+=+=-+-=--u u u u v u u u v u u u u v u u u v u u u v ()()()1,1,00,1,11,1,AN AB BN AB BP μμμμ=+=+=+-=-u u u v u u u v u u u v u u u v u u u v 令0BM AN ⋅=u u u u v u u u v得()()()11110λμλμ-⋅+-⋅-+⋅= 即1111λμλλ==-++,μ是关于λ的单调递增函数, 当12,33λ⎡⎤∈⎢⎥⎣⎦时,12,45μ⎡⎤∈⎢⎥⎣⎦, 所以12,45BN BP ⎡⎤∈⎢⎥⎣⎦。

2019年高考专题:立体几何试题及答案

2019年高考专题:立体几何试题及答案

2019年高考专题:立体几何试题1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .2.【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是 .【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高, 所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=.3.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求点C 到平面C 1DE 的距离.【解析】(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =. 又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=A B DC ∥,可得11=BC A D ∥,故=ME ND ∥, 因此四边形MNDE 为平行四边形,MN ED ∥. 又MN ⊄平面1C DE ,所以MN ∥平面1C DE .(2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH.从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离,由已知可得CE =1,C 1C =4,所以117C E =,故417CH =. 从而点C 到平面1C DE 的距离为1717. 4.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积.【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1,故11B C BE ⊥.又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知∠BEB 1=90°. 由题设知Rt △ABE ≌Rt △A 1B 1E ,所以1145AEB A EB ︒∠=∠=,故AE =AB =3,126AA AE ==. 作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==.所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=. 5.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的四边形ACGD 的面积.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE .又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)取CG 的中点M ,连结EM ,DM.因为AB ∥DE ,AB ⊥平面BCGE ,所以DE ⊥平面BCGE ,故DE ⊥CG .由已知,四边形BCGE 是菱形,且∠EBC =60°得EM ⊥CG ,故CG ⊥平面DEM .因此DM ⊥CG .在Rt △DEM 中,DE =1,EM =3,故DM =2.所以四边形ACGD 的面积为4.6.【2019年高考北京卷文数】如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点.(1)求证:BD ⊥平面PAC ;(2)若∠ABC =60°,求证:平面PAB ⊥平面PAE ;(3)棱PB 上是否存在点F ,使得CF ∥平面PAE ?说明理由.【解析】(1)因为PA ⊥平面ABCD ,所以PA BD ⊥.又因为底面ABCD 为菱形,所以BD AC ⊥.所以BD ⊥平面PAC .(2)因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以PA ⊥AE .因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点,所以AE ⊥CD .所以AB ⊥AE .所以AE ⊥平面PAB .所以平面PAB ⊥平面PAE .(3)棱PB 上存在点F ,使得CF ∥平面PAE .取F 为PB 的中点,取G 为PA 的中点,连结CF ,FG ,EG .则FG ∥AB ,且FG =12AB .因为底面ABCD 为菱形,且E 为CD 的中点, 所以CE ∥AB ,且CE =12AB .所以FG ∥CE ,且FG =CE . 所以四边形CEGF 为平行四边形.所以CF ∥EG .因为CF ⊄平面PAE ,EG ⊂平面PAE ,所以CF ∥平面PAE .7.【2019年高考天津卷文数】如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ;(2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值.【解析】(1)连接BD ,易知ACBD H =,BH DH =.又由BG=PG ,故GH PD ∥.又因为GH ⊄平面P AD ,PD ⊂平面P AD ,所以GH ∥平面P AD .(2)取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC ,又因为平面PAC ⊥平面PCD ,平面PAC 平面PCD PC =, 所以DN ⊥平面P AC ,又PA ⊂平面P AC ,故DN PA ⊥.又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD .(3)连接AN ,由(2)中DN ⊥平面P AC ,可知DAN ∠为直线AD 与平面P AC 所成的角, 因为PCD △为等边三角形,CD =2且N 为PC 的中点, 所以3DN =.又DN AN ⊥,在Rt AND △中,3sin 3DN DAN AD ∠==. 所以,直线AD 与平面P AC 所成角的正弦值为33. 8.【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .【解析】(1)因为D ,E 分别为BC ,AC 的中点,所以ED ∥AB .在直三棱柱ABC−A 1B 1C 1中,AB ∥A 1B 1,所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1,所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC .因为三棱柱ABC−A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC .又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C ,所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .9.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F .所以BC ⊥平面A 1EF .因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG =3.由于O 为A 1G 的中点,故11522A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35。

【精品】2019届高三数学年复习专题--立体几何专题训练附参考答案

【精品】2019届高三数学年复习专题--立体几何专题训练附参考答案

1 【精品】2019届高三数学年复习专题--立体几何专题训练附参考答案一、解答题 1.如图所示,在四棱锥P-ABCD 中,底面ABCD 是棱长为2的正方形,侧面PAD 为正三角形,且面PAD ⊥面ABCD ,E 、F 分别为棱AB 、PC 的中点. (1)求证:EF ∥平面PAD ; (2)求三棱锥B-EFC 的体积; (3)求二面角P-EC-D 的正切值.2.如图,三棱柱ABF-DCE 中,∠ABC=120°,BC=2CD ,AD=AF ,AF ⊥平面ABCD .(Ⅰ)求证:BD ⊥EC ;(Ⅱ)若AB=1,求四棱锥B-ADEF 的体积.3.正方体ABCD-A 1B 1C 1D 1,AA 1=2,E 为棱CC 1的中点. (1)求证:B 1D 1⊥AE ;(2)求三棱锥A-BDE 的体积.4.如图,四棱锥P-ABCD 中,底面ABCD 是矩形,平面PAD ⊥底面ABCD ,且△PAD 是边长为2的等边三角形,PC= ,M 在PC 上,且PA ∥面MBD . (1)求证:M 是PC 的中点; (2)求多面体PABMD 的体积.25.已知四棱锥P-ABCD ,底面ABCD 为菱形,∠ABC=60°,△PAB 是等边三角形,AB=2,PC= ,AB 的中点为E.(1)证明:PE ⊥平面ABCD ; (2)求三棱锥D-PBC 的体积.6.一块边长为10cm 的正方形铁块按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器.(1)试把容器的容积V 表示为x 的函数.(2)若x =6,求图2的主视图的面积.7.如图,矩形ABCD 中,BC=2,AB=1,PA ⊥平面ABCD ,BE ∥PA ,BE=PA ,F 为PA 的中点.(1)求证:PC ∥平面BDF .(2)记四棱锥C-PABE 的体积为V 1,三棱锥P-ACD 的体积为V 2,求的值.8.如图,直三棱柱ABC-A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC=CB=2,AB=2 .(Ⅰ)证明:BC 1∥平面A 1CD ;(Ⅱ)求锐二面角D-A 1C-E 的余弦值.9.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,点E、F分别为AB和PC的中点,连接EF、BF.(1)求证:直线EF∥平面PAD;(2)求三棱锥F-PBE的体积.10.如图,梯形FDCG,DC∥FG,过点D,C作DA⊥FG,CB⊥FG,垂足分别为A,B,且DA=AB=2.现将△DAF沿DA,△CBG沿CB翻折,使得点F,G重合,记为E,且点B在面AEC的射影在线段EC上.(Ⅰ)求证:AE⊥EB;(Ⅱ)设=λ,是否存在λ,使二面角B-AC-E的余弦值为?若存在,求λ的值;若不存在,说明理由.11.在四边形ABCD中,对角线AC,BD垂直相交于点O,且OA=OB=OD=4,OC=3.将△BCD沿BD折到△BED的位置,使得二面角E-BD-A的大小为90°(如图).已知Q为EO的中点,点P在线段AB 上,且.(Ⅰ)证明:直线PQ∥平面ADE;(Ⅱ)求直线BD与平面ADE所成角θ的正弦值.12.如图,四棱锥P-ABCD是底面边长为1的正方形,PD⊥BC,PD=1,PC=.(Ⅰ)求证:PD⊥面ABCD;(Ⅱ)求二面角A-PB-D的大小.3413.如图在三棱锥A-BCD 中,侧面ABD 、ACD 是全等的直角三角形,AD 是公共的斜边,且AD= ,BD=CD=1,另一个侧面是正三角形. (1)求证:AD ⊥BC ;(2)求二面角B-AC-D 的余弦值; (3)点E 在直线AC 上,当直线ED 与平面BCD 成30°角若时,求点C 到平面BDE 的距离.14.如图所示,在边长为 的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.15.如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M 为PC 的中点,点N 在线段AD 上.(I )点N 为线段AD 的中点时,求证:直线PA ∥BMN ; (II )若直线MN 与平面PBC 所成角的正弦值为,求平面PBC 与平面BMN 所成角θ的余弦值.16.如图,在正方体ABCD-A 1B 1C 1D 1中,E 是CC 1的中点,求证: (1)AC 1⊥BD ;(2)AC 1∥平面BDE .17.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中, (1)求证:AC ⊥平面B 1D 1DB ; (2)求三棱锥B-CD 1B 1的体积.18.在四棱锥P-ABCD中,平面PAD⊥平面ABCD,∠APD=90°,PA=PD=AB=a,ABCD是矩形,E是PD的中点.(1)求证:PB∥平面AEC(2)求证:PB⊥AC.19.如图,已知平面ADC∥平面A1B1C1,B为线段AD的中点,△ABC≈△A1B1C1,四边形ABB1A1为正方形,平面AA1C1C丄平面ADB1A1,A1C1=A1A,∠C1A1A=,M为棱A1C1的中点.(I)若N为线段DC1上的点,且直线MN∥平面ADB1A1,试确定点N的位置;(Ⅱ)求平面MAD与平面CC1D所成的锐二面角的余弦值.20.如图,三棱柱ABC-A1B1C1中,D为AA1的中点,E为BC的中点.(1)求证:直线AE∥平面BDC1;(2)若三棱柱 ABC-A1B1C1是正三棱柱,AB=2,AA1=4,求平面BDC1与平面ABC所成二面角的正弦值.21.如图所示,已知长方体ABCD中,AB=4,AD=2,M为DC的中点.将△ADM沿AM折起,使得AD⊥BM.(1)求证:平面ADM⊥平面ABCM;(2)若点E为线段DB的中点,求点E到平面DMC的距离.5622.如图所示,在正方体ABCD-A 1B 1C 1D 1中,E 是棱DD 1的中点. (1)若正方体的棱长为1,求三棱锥B 1-A 1BE 的体积;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥面A 1BE ?若存在,试确定点F 的位置,并证明你的结论.23.如图,三棱柱ABC-A 1B 1C 1中,BC ⊥平面AA 1C 1C ,BC=CA=AA 1=2,∠CAA 1=60°.(1)求证:AC 1⊥A 1B ;(2)求直线A 1B 与平面BAC 1所成角的正弦值.24.在图所示的几何体中,底面ABCD 为正方形,PD ⊥平面ABCD ,EC ∥PD ,且PD=AD=2EC=2,N 为线段PB 的中点. (1)证明:NE ⊥平面PBD ; (2)求四棱锥B-CEPD 的体积.25.已知梯形ABCD 中AD ∥BC ,∠ABC=∠BAD=,AB=BC=2AD=4,E 、F 分别是AB 、CD 上的点,EF ∥BC ,AE=x .沿EF 将梯形AEFD 翻折,使平面AEFD ⊥平面EBCF (如图).G 是BC 的中点.(1)当x =2时,求证:BD ⊥EG ;(2)当x 变化时,求三棱锥D-BCF 体积的最大值.26.如图,长方体ABCD-A 1B 1C 1D 1中,AB=16,BC=10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E=D 1F=4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值.727.在如图所示的多面体ABCDEF 中,四边形ABCD 为正方形,底面ABFE 为直角梯形,∠ABF 为直角, ,,平面ABCD ⊥平面ABFE . (1)求证:DB ⊥EC ;(2)若AE=AB ,求二面角C-EF-B 的余弦值.28.如图,四棱锥P-ABCD 中,AD ⊥平面PAB ,AP ⊥AB . (1)求证:CD ⊥AP ; (2)若CD ⊥PD ,求证:CD ∥平面PAB .29.如图所示,四棱锥P-ABCD 的侧面PAD 是边长为2的正三角形,底面ABCD 是∠ABC=60°的菱形,M 为PC 的中点,PC= .(Ⅰ)求证:PC ⊥AD ;(Ⅱ)求三棱锥M-PAB 的体积.30.如图,在四棱锥P-ABCD 中,底面ABCD 是平行四边形,∠ADC=45°,AD=AC=2,O 为AC 的中点,PO ⊥平面ABCD 且PO=6,M 为BD的中点.(1)证明:AD ⊥平面PAC ; (2)求直线AM 与平面ABCD 所成角的正切值.31.如图,多面体EF-ABCD 中,ABCD 是正方形,AC 、BD 相交于O ,EF ∥AC ,点E 在AC 上的射影恰好是线段AO 的中点. (Ⅰ)求证:BD ⊥平面ACF ;(Ⅱ)若直线AE 与平面ABCD 所成的角为60°,求平面DEF 与平面ABCD 所成角的正弦值.32.如图,三棱锥P-ABC 中,平面PAC ⊥平面ABC ,∠BCA=90°,且BC=CA=2,PC=PA .(1)求证:PA ⊥BC ;8 (2)当PC 的值为多少时,满足PA ⊥平面PBC ?并求出此时该三棱锥P-ABC 的体积.33.如图,直三棱柱ABC-A 1B 1C 1中,AA 1=AB ,AB ⊥BC ,且N 是A 1B 的中点.(1)求证:直线AN ⊥平面A 1BC ;(2)若M 在线段BC 1上,且MN ∥平面A 1B 1C 1,求证:M 是BC 1的中点.34..如图所示,在长方体ABCD-A 1B 1C 1D 1中,AB=AD=1,AA 1=2,点P 为DD 1的中点. (1)求证:直线BD 1∥平面PAC (2)求证:平面PAC ⊥平面BDD 1B 1.35.如图,在四棱锥P-ABCD 中,底面ABCD 为直角梯形,AD ∥BC ,∠ADC=90°,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,PA=PD=2,BC=AD=1,CD= . (1)求证:平面MQB ⊥平面PAD ; (2)若二面角M-BQ-C 大小的为60°,求QM 的长.36.如 图,正方体ABCD-A 1B 1C 1D 1的棱长为2,E 、F 、G 分别为 AB 、BB 1、B 1C 1 的中点. (1)求证:A 1D ⊥FG ;(2)求二面角 A 1-DE-A 的正切值.37.四棱锥P-ABCD 的直观图与三视图如图,PC ⊥面ABCD(1)画出四棱锥P-ABCD 的侧视图(标注长度) (2)求三棱锥A-PBD的9 体积.38.如图,长方体ABCD-A 1B 1C 1D 1中,AB=AD=1,AA 1=2,点P 为棱DD 1上一点.(1)求证:平面PAC ⊥平面BDD 1B 1;(2)若P 是棱DD 1的中点,求CP 与平面BDD 1B 1所成的角大小.39.如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,AB ∥CD ,AD=CD=1,∠BAD=120°,PA= ,∠ACB=90°,M 是线段PD 上的一点(不包括端点).(Ⅰ)求证:BC ⊥平面PAC ; (Ⅱ)求二面角D-PC-A 的正切值; (Ⅲ)试确定点M 的位置,使直线MA 与平面PCD 所成角θ的正弦值为.40.已知四棱锥P-ABCD 中,AD=2BC ,且AD ∥BC ,点M ,N 分别是PB ,PD 中点,平面MNC 交PA 于Q . (1)证明:NC ∥平面PAB(2)试确定Q 点的位置,并证明你的结论.41.一个正三棱柱的三视图如图所示,求这个三棱柱的表面积和体10 积.42.如图,四棱锥P-ABCD 的底面是正方形,侧棱PA ⊥底面ABCD ,E 是PA 的中点. (Ⅰ)求证:PC ∥平面BDE ; (Ⅱ)证明:BD ⊥CE .43.如图所示,在正方体ABCD-A 1B 1C 1D 1中,E 、G 、H 分别是BC 、C 1D 1、AA 1、的中点.(Ⅰ)求异面直线D 1H 与A 1B 所成角的余弦值(Ⅱ)求证:EG ∥平面BB 1D 1D .44.如图所示,在四棱锥P-ABCD 中,AB ∥CD ,AB ⊥AD ,AB=AD=AP=2CD=2,M 是棱PB 上一点. (Ⅰ)若BM=2MP ,求证:PD ∥平面MAC ; (Ⅱ)若平面PAB ⊥平面ABCD ,平面PAD ⊥平面ABCD ,求证:PA ⊥平面ABCD ;(Ⅲ)在(Ⅱ)的条件下,若二面角B-AC-M 的余弦值为,求 的值.45.如图,已知在侧棱垂直于底面的三棱柱ABC-A 1B 1C 1中,AC=3,AB=5,BC=4,AA 1=4点D 是AB 的中点. (1)求证:AC 1∥平面B 1DC ;11 (2)求三棱锥A 1-B 1CD 的体积.46.如图,以正四棱锥V-ABCD 的底面中心O 为坐标原点建立空间直角坐标系O-xyz ,其中O x ∥BC ,O y ∥AB ,E 为VC 中点,正四棱锥的底面边长为2a ,高为h ,且有cos <, >=-. (1)求的值;(2)求二面角B-VC-D 的余弦值.47.如图1,四边形ABCD 为直角梯形,AD ∥BC ,AD ⊥AB ,AD=1,BC=2,E 为CD 上一点,F 为BE 的中点,且DE=1,EC=2,现将梯形沿BE 折叠(如图2),使平面BCE ⊥ABED .(1)求证:平面ACE ⊥平面BCE ;(2)能否在边AB 上找到一点P (端点除外)使平面ACE 与平面PCF 所成角的余弦值为?若存在,试确定点P 的位置,若不存在,请说明理由.48.如图,三棱柱ABC-A 1B 1C 1中,侧面ACC 1A 1⊥侧面ABB 1A 1,∠B 1A 1A=∠C 1A 1A=60°,AA 1=AC=4,AB=1. (Ⅰ)求证:A 1B 1⊥B 1C 1;(Ⅱ)求三棱锥ABC-A 1B 1C 1的侧面积.49.在四棱锥中P-ABCD ,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,且PA=PD=AD 、E 、F ,分别为PC 、BD 的中点. (1)求证:EF ∥平面PAD ;(2)若AB=2,求三棱锥E-DFC 的体积.1250.如图,四棱锥P-ABCD 中,△PAD 为正三角形,AB ∥CD ,AB=2CD ,∠BAD=90°,PA ⊥CD ,E 为棱PB 的中点 (Ⅰ)求证:平面PAB ⊥平面CDE ;(Ⅱ)若直线PC 与平面PAD 所成角为45°,求二面角A-DE-C 的余弦值.51.如图,在边长为2的正方形ABCD 中,点E ,F 分别是AB ,BC 的中点,将△AED ,△DCF 分别沿DE ,DF 折起,使A ,C 两点重合于P .(Ⅰ)求证:平面PBD ⊥平面BFDE ; (Ⅱ)求四棱锥P-BFDE 的体积.【答案】1.(1)证明:取PD 中点G ,连结GF 、AG ,∵GF 为△PDC 的中位线,∴GF ∥CD 且, 又AE ∥CD 且,∴GF ∥AE 且GF=AE ,13 ∴EFGA 是平行四边形,则EF ∥AG , 又EF ⊄面PAD ,AG ⊂面PAD , ∴EF ∥面PAD ;(2)解:取AD 中点O ,连结PO ,∵面PAD ⊥面ABCD ,△PAD 为正三角形,∴PO ⊥面ABCD ,且 , 又PC 为面ABCD 斜线,F 为PC 中点,∴F 到面ABCD 距离,故;(3)解:连OB 交CE 于M ,可得R t △EBC ≌R t △OAB , ∴∠MEB=∠AOB ,则∠MEB+∠MBE=90°,即OM ⊥EC .连PM ,又由(2)知PO ⊥EC ,可得EC ⊥平面POM ,则PM ⊥EC , 即∠PMO 是二面角P-EC-D 的平面角,在R t △EBC 中,,∴, ∴,即二面角P-EC-D的正切值为.2.(Ⅰ)证明:三棱柱ABF-DCE 中,AF ⊥平面ABCD .∴DE ∥AF ,ED ⊥平面ABCD ,∵BD ⊂平面ABCD ,∴ED ⊥BD , 又ABCD 是平行四边形,∠ABC=120°,故∠BCD=60°. ∵BC=2CD ,故∠BDC=90°.故BD ⊥CD . ∵ED∩CD=D ,∴BD ⊥平面ECD . ∵EC ⊂平面ECD , ∴BD ⊥EC ;(Ⅱ)解:由BC=2CD ,可得AD=2AB ,∵AB=1,∴AD=2,作BH ⊥AD于H ,∵AF ⊥平面ABCD ,∴BH ⊥平面ADEF ,又∠ABC=120°, ∴BH=,∴.3.解:(1)证明:连接BD ,则BD ∥B 1D 1, ∵ABCD 是正方形,∴AC ⊥BD . ∵CE ⊥面ABCD , ∴CE ⊥BD . 又AC∩CE=C , ∴BD ⊥面ACE . ∵AE ⊂面ACE , ∴BD ⊥AE ,∴B 1D 1⊥AE .-----------(6分)(2)S △ABD =2 △.-----------(12分) 4.证明:(1)连AC 交BD 于E ,连ME .14∵ABCD 是矩形,∴E 是AC 中点.又PA ∥面MBD ,且ME 是面PAC 与面MDB 的交线, ∴PA ∥ME ,∴M 是PC 的中点. 解:(2)取AD 中点O ,连OC .则PO ⊥AD , 由平面PAD ⊥底面ABCD ,得PO ⊥面ABCD ,∴ , ,∴ , ∴ , ,∴.5.证明:(1)由题可知PE ⊥AB ,CE ⊥AB . ∵AB=2,∴PE=CE= .又∵PC= ,∴PE 2+EC 2=PC 2, ∴∠PEC=90°,即PE ⊥CE . 又∵AB ,CE ⊂平面ABCD , ∴PE ⊥平面ABCD ;解:(2)S △BCD =×22×sin 120°= ,PE= . 由(1)知:PE ⊥平面ABCD ,V P-BCD =•S △BCD •PE=1.∵V D-PBC =V P-BCD ,∴三棱锥D-PBC 的体积为1. 6.解:(1)设所截等腰三角形的底边边长为x cm . 在R t △EOF 中,EF=5cm ,OF=x cm ,所以EO=. 于是V=x 2(cm 3).依题意函数的定义域为{x |0<x <10}.(2)主视图为等腰三角形,腰长为斜高,底边长=AB=6,底边上的高为四棱锥的高=EO==4,S==12(cm 2)7.(1)证明:连结BF ,连接BD 交AC 与点O ,连OF , 依题得O 为AC 中点,又F 为PA 的中点, 所以OF 为△PAC 中位线,所以OF ∥PC因为OF ⊂平面BDF ,PC ⊄平面BDF 所以PC ∥平面BDF . ∴V 1=梯形 =(2)解:设BE=a ,则PA=2BE=2a , V 2=△ =(a +2a )×1×2=a . =. ∴.8.解:(Ⅰ)连结AC 1,交A 1C 于点O ,连结DO ,则O 为AC 1的中点,因为D 为AB 的中点,所以OD ∥BC 1,又因为OD ⊂平面A 1CD ,BC 1⊄平面A 1CD ,∴BC 1∥平面A 1CD…(4分) (Ⅱ)由 , ,可知AC ⊥BC ,以C 为坐标原点,方向为x 轴正方向, 方向为y轴正。

2019高考数学试题汇编之立体几何(原卷版)

2019高考数学试题汇编之立体几何(原卷版)

专题04 立体几何1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面2.【2019年高考全国Ⅲ卷文数】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线3.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是A.158 B.162C.182 D.3244.【2019年高考浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则 A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β5.【2019年高考全国Ⅰ卷文数】已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC P 到平面ABC 的距离为___________.6.【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)7.【2019年高考全国Ⅲ卷文数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D 挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.8.【2019年高考北京卷文数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.9.【2019年高考北京卷文数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.10.【2019若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.11.【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD的体积是 ▲ .12.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离.13.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C 的体积.14.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.-中,PA⊥平面ABCD,底部ABCD为菱形,E 15.【2019年高考北京卷文数】如图,在四棱锥P ABCD为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.16.【2019年高考天津卷文数】如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值.17.【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .18.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.19.【云南省昆明市2019届高三高考5月模拟数学试题】已知直线l ⊥平面α,直线m ∥平面β,若αβ⊥,则下列结论正确的是 A .l β∥或l β⊄ B .//l m C .m α⊥D .l m ⊥20.【陕西省2019届高三年级第三次联考数学试题】已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为A B .34C .4D .5421.【四川省宜宾市2019届高三第三次诊断性考试数学试题】如图,边长为2的正方形ABCD 中,,E F 分别是,BC CD 的中点,现在沿,AE AF 及EF 把这个正方形折成一个四面体,使,,B C D 三点重合,重合后的点记为P ,则四面体P AEF -的高为A .13 B .23C .34D .122.【广东省深圳市高级中学2019届高三适应性考试(6月)数学试题】在三棱锥P ABC -中,平面PAB ⊥平面ABC ,ABC △是边长为6的等边三角形,PAB △是以AB 为斜边的等腰直角三角形,则该三棱锥外接球的表面积为_______.23.【河南省洛阳市2019年高三第三次统一考试(5月)数学试题】在四棱柱1111ABCD A B C D -中,四边形ABCD 是平行四边形,1A A ⊥平面ABCD , 60BAD ∠=︒,12,1,AB BC AA ===,E 为11A B 中点.(1)求证:平面1A BD ⊥平面1A AD ; (2)求多面体1A E ABCD -的体积.。

2020年高考数学(理)重难点专练03 空间向量与立体几何(解析版)

2020年高考数学(理)重难点专练03  空间向量与立体几何(解析版)

2020年高考数学(理)重难点03 空间向量与立体几何【高考考试趋势】立体几何在高考数学是一个必考知识点,一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,理科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及二面角问题.前面的重点专题已经对立体几何进行了一系列详细的说明,本专题继续加强对高考中立体几何出现的习题以及对应的题目类型进行必要的加强.本专题包含了高考中几乎所有题型,学完本专题以后,对以后所有的立体几何你将有一个更加清晰的认识.【知识点分析以及满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求.内切圆问题:转化成正方体的内切圆去求.求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.对于二面角问题应采用建立立体坐标系去求.但是坐标系要注意采用左手系务必要标记准确对应点以及法向量对应的坐标.【常见题型限时检测】(建议用时:35分钟)一、单选题1.(2019·遵义航天高级中学高考模拟(理))一个几何体的三视图如图所示,则该几何体的体积为()A.83B.163C.203D.8【答案】B 【解析】由图可知该几何体底面积为8,高为2的四棱锥,如图所示:∴该几何体的体积1168233V =⨯⨯= 故选B【点睛】:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽. 2.(2019·天津高考模拟(理))已知四面体ABCD 的四个面都为直角三角形,且AB ⊥平面BCD ,2AB BD CD ===,若该四面体的四个顶点都在球O 的表面上,则球O 的表面积为( )A .3πB .C .D .12π【答案】D 【解析】 【分析】由已知中的垂直关系可将四面体放入正方体中,求解正方体的外接球表面积即为所求的四面体外接球的表面积;利用正方体外接球半径为其体对角线的一半,求得半径,代入面积公式求得结果. 【详解】2BD CD ==Q 且BCD ∆为直角三角形 BD CD ∴⊥又AB ⊥平面BCD ,CD ⊂平面BCD CD AB ∴⊥CD \^平面ABD由此可将四面体ABCD 放入边长为2的正方体中,如下图所示:∴正方体的外接球即为该四面体的外接球O正方体外接球半径为体对角线的一半,即12R == ∴球O 的表面积:2412S R ππ==本题正确选项:D 【点睛】本题考查多面体的外接球表面积的求解问题,关键是能够通过线面之间的位置关系,将所求四面体放入正方体中,通过求解正方体外接球来求得结果.3.(2019·河南高考模拟(理))如图,点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列四个结论:①三棱锥1A D PC -的体积不变;1//A P ②平面1ACD ; 1DP BC ⊥③;④平面1PDB ⊥平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个【答案】C 【解析】【分析】利用空间中线线、线面、面面间的位置关系求解. 【详解】对于①,由题意知11//AD BC ,从而1//BC 平面1AD C ,故BC 1上任意一点到平面1AD C 的距离均相等,所以以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,故①正确; 对于②,连接1A B ,11A C ,111//AC AD 且相等,由于①知:11//AD BC , 所以11//BA C 面1ACD ,从而由线面平行的定义可得,故②正确; 对于③,由于DC ⊥平面11BCB C ,所以1DC BC ⊥, 若1DP BC ⊥,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 为动点矛盾,故③错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,从而由面面垂直的判定知,故④正确. 故选:C . 【点睛】本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.4.(2019·贵州高考模拟(理))设,m n 是两条不同的直线,,αβ是两个不同的平面,有下列四个命题:∴若m α⊂,αβ⊥,则m β⊥; ∴若//a β,m β⊂,则//m α; ∴若m α⊥,//m n ,//αβ,则n β⊥; ∴若//m α,//n β,//m n ,则//αβ其中正确命题的序号是( ) A .∴∴ B .∴∴C .∴∴D .∴∴【答案】C 【解析】∴两个面垂直,推不出面中任意直线和另一个面垂直,错误;故排除A 、B 选项,对于∴,两个平行平面,其中一个平面内的任意直线都和另一个平面平行,故正确,所以选C.5.(2019·福建高考模拟(理))在三棱锥P ABC -中,3PA PB ==,BC =8AC =,AB BC ⊥,平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为( ).A B C D .2【答案】A 【解析】 【分析】取AB 中点D ,AC 中点E ,连PD ,ED ,得E 为∴ABC 外接圆的圆心,且OE∴平面PAB ,然后求出∴PAB 的外接圆半径r 和球心O 到平面PAB 的距离等于d ,由勾股定理得R .【详解】解:取AB 中点D ,AC 中点E ,连PD ,ED 因为AB BC ⊥,所以E 为∴ABC 外接圆的圆心因为OE∴PD ,OE 不包含于平面PAB ,所以OE∴平面PAB 因为平面PAB ⊥平面ABC ,3PA PB ==,得PD ⊥AB ,ED ⊥AB 所以PD ⊥平面ABC ,ED ⊥平面PAB且AB =PD 1=所以球心O 到平面PAB 的距离等于ED d ==在∴PAB 中,3PA PB ==,AB =1sin 3PAB ∠=, 所以∴PAB 得外接圆半径2r 9sin PB PAB ∠==,即9r 2=由勾股定理可得球O 的半径R ==故选:A. 【点睛】本题考查了三棱锥的外接球问题,经常用球中勾股定理R =解题,其中R 是外接球半径,d 是球心到截面距离,r 是截面外接圆半径.二、解答题6.(2019·山东高考模拟(理))如图,在四棱锥P ABCD -中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,//AB AD AB CD ⊥,224AB AD CD ===,4PC =.(1)证明:当点E 在PB 上运动时,始终有平面EAC ⊥平面PBC ; (2)求锐二而角A PB C --的余弦值.【答案】(1)证明见解析;(2)5. 【解析】 【分析】(1)由PC ⊥底面ABCD ,证得AC PC ⊥,又由勾股定理,得AC CB ⊥,利用线面垂直的判定定理,得到AC ⊥平面PBC ,再由面面垂直的判定定理,可得平面EAC ⊥平面PBC ,即可得到结论;(2)分别以CD ,CF ,CP 所在直线为x ,y ,z 轴建立空间直角坐标系,求得平面PBC 和平面PAB 的法向量,利用向量的夹角公式,即可求解. 【详解】(1)由题意,因为PC ⊥底面ABCD ,AC ⊂平面ABCD ,所以AC PC ⊥,又因为224AB AD CD ===,所以4AB =,2AD CD ==,所以AC BC ==,所以222AC BC AB +=,从而得到AC CB ⊥.又BC ⊂Q 平面PBC ,PC ⊂平面PBC ,BC PC C ⋂=,所以AC ⊥平面PBC , 又AC ⊂Q 平面ACE ,所以平面EAC ⊥平面PBC , 所以当点E 在PB 上运动时,始终有平面EAC ⊥平面PBC. (2)由条件知PC ⊥底面ABCD ,且AB AD ⊥, AB C D ∥所以过点C 作CF CD ⊥交AB 于点F ,分别以CD ,CF ,CP 所在直线为x ,y ,z 轴建立空间直角坐标系(如图所示),所以(0,0,0)C ,(2,2,0)A ,(2,2,0)B -,(0,0,4)P .由(1)知CA u u u r为平面PBC 的一个法向量,因为(2,2,0)CA =u u u r,(2,2,4)PA =-u u u r (2,2,4)PB =--u u u r ,设平面P AB 的一个法向量为(,,)n=x y z r,则(,,)(2,2,4)00(,,)(2,2,4)00x y z n PA x y z n PB ⎧⋅-=⎧⋅=⇒⎨⎨⋅--=⋅=⎩⎩u uu v r u u u v r ,即02x y z=⎧⎨=⎩,令1z =,则2y =,所以(0,2,1)n =r,所以|||cos ,|5||||CA n CA n CA n ⋅〈〉===uu r ruu r r uu r r ,故锐二面角A PB C --的余弦值5.【点睛】本题考查了线面垂直与面面垂直的判定与证明,以及空间角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.7(2017·广东高考模拟(理))如图,在四棱锥P ABCD -中,90,60ABC ACD BAC CAD ∠=∠=︒∠=∠=︒, PA ⊥平面ABCD ,2,1PA AB ==.(1)设点E 为PD 的中点,求证: //CE 平面PAB ;(2)线段PD 上是否存在一点N ,使得直线CN 与平面PAC 所成的角θ的正弦值为5?若存在,试确定点N 的位置;若不存在,请说明理由. 8.(2019·天津市新华中学高考模拟(理))如图所示的几何体中,PD 垂直于梯形ABCD所在的平面,,2ADC BAD F π∠=∠=为PA 的中点,112PD AB AD CD ====,四边形PDCE 为矩形,线段PC 交DE 于点N .(1)求证:AC P 平面DEF ; (2)求二面角A PB C --的正弦值;(3)在线段EF 上是否存在一点Q ,使得BQ 与平面BCP 所成角的大小为π6?若存在,求出FQ 的长;若不存在,请说明理由.【答案】(1)见解析(23)在线段EF 上存在一点Q 满足题意,且FQ =【解析】 【分析】(1)由题意结合线面平行的判定定理即可证得题中的结论;(2)建立空间直角坐标系,利用两个半平面的法向量可得二面角的余弦值,然后利用同角三角函数基本关系可得二面角的正弦值;(3)假设点Q 存在,利用直线的方向向量和平面的法向量计算可得点Q 的存在性和位置. 【详解】(1)因为四边形PDCE 为矩形,所以N 为PC 的中点.连接FN ,在PAC V 中,,F N 分别为,PA PC 的中点,所以FN AC ∥, 因为FN ⊂平面DEF ,AC ⊄平面DEF , 所以AC P 平面DEF .(2)易知,,DA DC DP 两两垂直,如图以D 为原点,分别以,,DA DC DP 所在直线为,,x y z 轴,建立空间直角坐标系.则(1,0,0),(1,1,0),(0,2,0)P A B C ,所以(1,1,,(1,1,0)PB BC ==-u u u r u u u r.设平面PBC 的法向量为(,,)m x y z =r,则(,,)(1,1,0(,,)(1,1,0)0m PB x y z m BC x y z ⎧⋅=⋅=⎪⎨⋅=⋅-=⎪⎩u u u v r u u u v r即0,0,x y x y ⎧+=⎪⎨-+=⎪⎩解得,,y x z =⎧⎪⎨=⎪⎩ 令1x =,得1,y z =⎧⎪⎨=⎪⎩ 所以平面PBC的一个法向量为m =r. 设平面ABP 的法向量为(,,)n x y z =r,(,,)(0,1,0)0(,,)(1,1,0n AB x y z n PB x y z ⎧⋅=⋅=⎪⎨⋅=⋅-=⎪⎩u u uv r u u uv r ,据此可得01x y z ⎧=⎪=⎨⎪=⎩, 则平面ABP的一个法向量为)n =r,cos ,3m n <>==u r r,于是sin ,3m n 〈〉=r r. 故二面角A PB C --(3)设存在点Q 满足条件.由1,0,,(0,22F E ⎛ ⎝⎭,设(01)FQ FE λλ=u u u r u u u r &剟,整理得1,22Q λλ⎛- ⎝⎭,则1),21,22BQ λλλ⎛⎫++=-- ⎪ ⎪⎝⎭u u u r . 因为直线BQ 与平面BCP 所成角的大小为6π,所以1sin |cos ,|||62||||BQ m BQ m BQ m π⋅====⋅u u u r u ru u u r u r u u u r u r 解得21λ=,由知1λ=,即点Q 与E 重合.故在线段EF 上存在一点Q,且FQ EF ==.【点睛】本题的核心在考查空间向量的应用,需要注意以下问题:(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设,m n u r r 分别为平面α,β的法向量,则二面角θ与,m n <>u r r互补或相等.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.9.(2019·山东高考模拟(理))如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,ABC ∆为等边三角形,22PA AB ==,AC CD ⊥,PD 与平面PAC 所成角的正切值 为5.(∴)证明://BC 平面PAD ;(∴)若M 是BP 的中点,求二面角P CD M --的余弦值.【答案】(∴)见解析.(∴ 【解析】 【分析】(∴)先证明DPC ∠为PD 与平面PAC 所成的角,于是可得CD =60CAD ∠=︒.又由题意得到60BCA ∠=︒,故得//BC AD ,再根据线面平行的性质可得所证结论. (∴) 取BC 的中点N ,连接AN ,可证得AN AD ⊥.建立空间直角坐标系,分别求出平面PCD 和平面CDM 的法向量,根据两个法向量夹角的余弦值得到二面角的余弦值. 【详解】(∴)证明:因为PA ⊥平面ABCD ,CD ⊂平面ABCD , 所以PA CD ⊥又AC CD ⊥,CA PA A =I , 所以CD ⊥平面PAC ,所以DPC ∠为PD 与平面PAC 所成的角. 在Rt PCD V中,PC ==所以CD =所以在Rt PCD V 中,2AD =,60CAD ∠=︒. 又60BCA ∠=︒,所以在底面ABCD 中,//BC AD , 又AD ⊂平面PAD ,BC ⊄平面PAD , 所以//BC 平面PAD .(∴)解:取BC 的中点N ,连接AN ,则AN BC ⊥,由(∴)知//BC AD , 所以AN AD ⊥,分别以AN ,AD ,AP 为x ,y ,z 轴建立空间直角坐标系Axyz .则(0,0,2)P,1,022C ⎛⎫ ⎪ ⎪⎝⎭,(0,2,0)D,1,144M ⎛⎫- ⎪ ⎪⎝⎭所以3,022CD ⎛⎫=- ⎪ ⎪⎝⎭uu u r ,(0,2,2)PD =-u u ur,9,144DM ⎛⎫=- ⎪ ⎪⎝⎭uuu u r设平面PCD 的一个法向量为()1111,,n x y z =u r,由1100n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩u u u vu u u v,即111130220y y z ⎧+=⎪⎨-=⎪⎩,得1111x z y ⎧=⎪⎨=⎪⎩, 令11y =,则1,1)n =ur.设平面CDM 的一个法向量为()2222,,n x y z =u u r,由2200n CD n MD ⎧⋅=⎪⎨⋅=⎪⎩u u v u u u v u u v u u u u v,即2222230940y y z ⎧+=⎪-+=,得222232x y z ⎧=⎪⎨=⎪⎩, 令21y =,则232n ⎫=⎪⎭u u r .所以121212331cos ,||||n n n n n n ++⋅<>===⋅u r u u ru r u u r u r u u r , 由图形可得二面角P CD M --为锐角, 所以二面角P CD M --. 【点睛】空间向量是求解空间角的有利工具,根据平面的法向量、直线的方向向量的夹角可求得线面角、二面角等,解题时把几何问题转化为向量的运算的问题来求解,体现了转化思想方法的利用,不过解题中要注意向量的夹角和空间角之间的关系,特别是求二面角时,在求得法向量的夹角后,还要通过图形判断出二面角是锐角还是钝角,然后才能得到结论. 10.(2018·吉林高考模拟(理))如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F , M , N 分别是棱AB , AD , 11A B , 11A D 的中点,点P , Q 分别在棱1DD , 1BB 上移动,且(02)DP BQ λλ==<<.(1)当1λ=时,证明:直线1//BC 平面EFPQ ;(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.【答案】(1)见解析;(2)1λ=±. 【解析】以D 为原点,射线DA , DC , 1DD 分别为x , y , z 轴的正半轴建立如图所示的空间直角坐标系D xyz -.由已知得()2,2,0B , ()10,2,2C ,()2,1,0E ,()1,0,0F , ()0,0,P λ, ()1,0,2N , ()2,1,2M ,则()12,0,2BC =-u u u u r, ()1,0,FP λ=-u u u r , ()1,1,0FE =u u u r , ()1,1,0NM =u u u u r , ()1,0,2NP λ=--u u u r.(1)当1λ=时, ()1,0,1FP =-u u u r ,因为()12,0,2BC =-u u u u r,所以12BC FP =u u u u r u u u r ,即1//BC FP ,又FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1//BC 平面EFPQ . (2)设平面EFPQ 的一个法向量为(),,n x y z =r,则由0{0FE n FP n ⋅=⋅=u u u r ru u u r r,得0{0.x y x z λ+=-+=,于是可取(),,1n λλ=-r. 设平面MNPQ 的一个法向量为()',','m x y z =r,由0{0NM m NP m ⋅=⋅=u u u u r ru u u r r,得()''0{'2'0x y x z λ+=-+-=,于是可取()2,2,1m λλ=--r. 若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则()()2,2,1,,10m n λλλλ⋅=--⋅-=r r,即()()2210λλλλ---+=,解得1λ=±,显然满足02λ<<.故存在12λ=±,使面EFPQ 与面PQMN 所成的二面角为直二面角.点睛:立体几何的有关证明题,首先要熟悉各种证明的判定定理,然后在进行证明,要多总结题型,对于二面角问题一般直接建立空间直角坐标系,求出法向量然后根据向量夹角公式求解二面角,要注意每一个坐标的准确性。

高考数学《立体几何》练习题及答案

高考数学《立体几何》练习题及答案

立体几何1.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]若某空间几何体的三视图如图所示,则该几何体的体积是A .2B .1C .D .【答案】B2.[湖南省衡阳县2020届高三12月联考数学(理)试题]【答案】D 【解析】3.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 在正方体1111ABCD A B C D -中,动点E 在棱1BB 上,动点F 在线段11A C 上,O 为底面ABCD 的中心,若1,BE x A F y ==,则四面体O AEF -的体积 A .与,x y 都有关 B .与,x y 都无关 C .与x 有关,与y 无关D .与y 有关,与x 无关【答案】B4.[黑龙江省哈尔滨师范大学附属中学2020届高三上学期期中考试数学(理)试题]5.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学] 一个圆锥SC的高和底面直径相等,且这个圆锥SC和圆柱OM的底面半径及体积也都相等,则圆锥SC和圆柱OM的侧面积的比值为A.322B.23C.35D.45【答案】C6.[辽宁葫芦岛锦化高中协作校高三上学期第二次考试数学理科试题]【答案】D【解析】7.[广东省三校(广州真光中学、深圳市第二中学、珠海市第二中学)2020届高三上学期第一次联考数学(理)试题] 在如图直二面角A­BD­C中,△ABD、△CBD均是以BD为斜边的等腰直角三角形,取AD的中点E,将△ABE 沿BE 翻折到△A1BE,在△ABE的翻折过程中,下列不可能成立的是A.BC与平面A1BE内某直线平行B.CD∥平面A1BEC.BC与平面A1BE内某直线垂直D.BC⊥A1B【答案】D8.[湖南省衡阳县2020届高三12月联考数学(理)试题]【答案】D【解析】9.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题] 圆锥的侧面展开图是半径为R 的半圆,则该圆锥的体积为________. 【答案】33πR 10.[辽宁省本溪高级中学2020届高三一模考试数学(理)试卷]【答案】4π11.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 如图,在棱长为 1 的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1B P ∥平面1A BM ,则1C P 的最小值是________.【答案】305【解析】 【分析】由面面平行找到点P 在底面ABCD 内的轨迹为线段DN ,再找出点P 的位置,使1C P 取得最小值,即1C P 垂直DN 于点O ,最后利用勾股定理求出最小值. 【详解】取BC 中点N ,连接11,,B D B N DN ,作CO DN ⊥,连接1C O ,因为平面1B DN ∥平面1A BM ,所以动点P 在底面ABCD 内的轨迹为线段DN ,当点P 与点O 重合时,1C P 取得最小值,因为11152225DN CO DC NC CO ⋅=⋅⇒==,所以221min 11130()155C P C O CO CC ==+=+=. 故1C P 的最小值是305. 【点睛】本题考查面面平行及最值问题,求解的关键在于确定点P 的位置,再通过解三角形的知识求最值.12.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知某几何体的三视图如图所示,则该几何体的外接球的半径为________.21【答案】【解析】【分析】根据三视图还原几何体,设球心为O,根据外接球的性质可知,O与PAB△和正方形ABCD中心的连线分别与两个平面垂直,从而可得到四边形OGEQ 为矩形,求得OQ和PQ后,利用勾股定理可求得外接球半径.【详解】由三视图还原几何体如下图所示:设PAB△的中心为Q,正方形ABCD的中心为G,外接球球心为O,则OQ⊥平面PAB,OG⊥平面ABCD,E为AB中点,∴四边形OGEQ为矩形,112OQ GE BC ∴===,2233PQ PE ==, ∴外接球的半径:22213R GE PQ =+=. 故答案为21. 【点睛】本题考查多面体外接球半径的求解,关键是能够根据球的性质确定球心的位置,从而根据长度关系利用勾股定理求得结果. 13.[湖南省衡阳县2020届高三12月联考数学(理)试题]【答案】【解析】14.[黑龙江省哈尔滨师范大学附属中学2020届高三上学期期中考试数学(理)试题]【答案】1 315.[江苏省南通市2020届高三第一学期期末考试第一次南通名师模拟试卷数学试题]如图,在四棱锥P ABCD-中,底面ABCD是平行四边形,平面ABP⊥平面BCP,90APB=,M为CP的中点.求证:∠=︒,BP BC(1)AP//平面BDM;(2)BM ACP⊥平面.【解析】(1)设AC 与BD 交于点O ,连接OM , 因为ABCD 是平行四边形,所以O 为AC 中点, 因为M 为CP 的中点,所以AP ∥OM , 又AP ⊄平面BDM ,OM ⊂平面BDM , 所以AP ∥平面BDM .(2)平面ABP ⊥平面BCP ,交线为BP , 因为90APB ∠=︒,故AP BP ⊥,因为AP ⊂平面ABP ,所以AP ⊥平面BCP , 因为BM ⊂平面BCP ,所以AP ⊥BM . 因为BP BC =,M 为CP 的中点,所以BM CP ⊥. 因为AP CP P =I ,AP CP ⊂,平面ACP , 所以BM ⊥平面ACP .16.[河南省新乡市高三第一次模拟考试(理科数学)] 如图,在四棱锥ABCDV -中,二面角D BC V --为︒60,E 为BC 的中点. (1)证明:VE BC =;(2)已知F 为直线VA 上一点,且F 与A 不重合,若异面直线BF 与VE 所成角为︒60,求.VA VFABCDPMABCDPMO【解析】17.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]如图,在底面是菱形的四棱锥P-ABCD中,PA⊥平面ABCD,∠ABC=60°,PA=AB=2,点E,F分别为BC,PD的中点,设直线PC与平面AEF交于点Q.(1)已知平面PAB∩平面PCD=l,求证:AB∥l.(2)求直线AQ 与平面PCD 所成角的正弦值. 【解析】 【分析】(1)证明AB ∥平面PCD ,然后利用直线与平面平行的性质定理证明AB ∥l ; (2)以点A 为原点,直线AE 、AD 、AP 分别为轴建立空间直角坐标系,求出平面PCD 的法向量和直线AQ 的方向向量,然后利用空间向量的数量积求解直线AQ 与平面PCD 所成角的正弦值即可.【详解】(1)证明:∵AB ∥CD ,AB ⊄平面PCD ,CD ⊂平面PCD . ∴AB ∥平面PCD ,∵AB ⊂平面PAB ,平面PAB ∩平面PCD =l , ∴AB ∥l ;(2)∵底面是菱形,E 为BC 的中点,且AB =2, ∴13BE AE AE BC ==⊥,,, ∴AE ⊥AD ,又PA ⊥平面ABCD ,则以点A 为原点,直线AE 、AD 、AP 分别为x 、y 、z 轴建立如图所示空间直角坐标系,则()()()()020,002,30,300D P C E,,,,,,,,,∴()0,1,1F ,()()()()3000,11310022AE AF DC DP ===-=-u u u r u u u r u u u r u u u r,,,,,,,,,,,设平面PCD 的法向量为(),,x y z =n ,有0PD ⋅=u u u r n ,0CD ⋅=u u u rn ,得()133=,,n ,设()1AQ AC AP λλ=+-u u u r u u u r u u u r,则()()321AQ λλλ=-u u u r ,,,再设(3,,)AQ mAE n m n n AF =+=u u u r u u u r u u u r,则()3321m n nλλλ⎧=⎪=⎨⎪-=⎩,解之得23m n λ===,∴2223333AQ ⎛⎫=⎪⎝⎭u u u r ,,, 设直线AQ 与平面PCD 所成角为α,则3105sin cos ,AQ AQ AQα⋅>=<==u u u r u u u r u u u r n n n ,∴直线AQ 与平面PCD 所成角的正弦值为3105. 【点睛】本题考查直线与平面平行的判定定理以及性质定理的应用,直线与平面所成角的向量求法,合理构建空间直角坐标系是解决本题的关键,属中档题.18.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 已知三棱柱111ABC A B C -中,1AB AC AA ==,侧面11ABB A ⊥底面ABC ,D 是BC 的中点,160B BA ∠=︒,1B D AB ⊥.(1)求证:ABC △为直角三角形;(2)求二面角1C AD B --的余弦值. 【解析】(1)取AB 中点O ,连接OD ,1B O ,易知1ABB △为等边三角形,从而得到1B O AB ⊥,结合1B D AB ⊥,可根据线面垂直判定定理得到AB ⊥平面1B OD ,由线面垂直的性质知AB OD ⊥,由平行关系可知AB AC ⊥,从而证得结论;(2)以O 为坐标原点可建立空间直角坐标系,根据空间向量法可求得平面1ADC 和平面ADB 的法向量的夹角的余弦值,根据所求二面角为钝二面角可得到最终结果. 【详解】(1)取AB 中点O ,连接OD ,1B O ,在1ABB △中,1AB B B =,160B BA ∠=︒,1ABB ∴△是等边三角形, 又O 为AB 中点,1B O AB ∴⊥,又1B D AB ⊥,111B O B D B =I ,11,B O B D ⊂平面1B OD ,AB ∴⊥平面1B OD ,OD ⊂Q 平面1B OD ,AB OD ∴⊥, 又OD AC ∥,AB AC ∴⊥, ∴ABC △为直角三角形.(2)以O 为坐标原点,建立如下图所示的空间直角坐标系:令12AB AC AA ===,则()1,2,0C -,()1,0,0A -,()0,1,0D ,()1,0,0B ,()10,0,3B ,()11,0,3BB ∴=-u u u v ,()0,2,0AC =u u u v ,()1,1,0AD =u u u v,()1111,2,3AC AC CC AC BB =+=+=-u u u u v u u u v u u u u v u u u v u u u v,设平面1ADC 的法向量为(),,x y z =m ,10230AD x y AC x y z ⎧⋅=+=⎪∴⎨⋅=++=⎪⎩u u u v u u u u v m m ,令1x =,则1y =-,3z =,()1,1,3∴=-m , 又平面ADB 的一个法向量为()0,0,1=n ,315cos ,5113∴<>==++m n , Q 二面角1C AD B --为钝二面角,∴二面角1C AD B --的余弦值为15-.【点睛】本题考查立体几何中垂直关系的证明、空间向量法求解二面角的问题,涉及到线面垂直判定定理和性质定理的应用;证明立体几何中线线垂直关系的常用方法是通过证明线面垂直得到线线垂直的关系.19.[江西省宜春市上高二中2020届高三上学期第三次月考数学(理)试题]20.[黑龙江省哈尔滨师范大学附属中学2020届高三上学期期中考试数学(理)试题]21.[辽宁葫芦岛锦化高中协作校高三上学期第二次考试数学理科试题]【解析】22.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 如图,在四棱锥P ABCD-中,底面ABCD为矩形,平面PCD⊥平面ABCD,2AB=,1BC=,2PC PD==,E为PB中点.(1)求证:PD∥平面ACE;(2)求二面角E AC D--的余弦值;(3)在棱PD上是否存在点M,使得AM⊥BD?若存在,求PMPD的值;若不存在,说明理由.【解析】(1)设BD交AC于点F,连接EF. 因为底面ABCD是矩形,所以F为BD中点 . 又因为E为PB中点,所以EF∥PD.因为PD ⊄平面,ACE EF ⊂平面ACE ,所以PD ∥平面ACE.(2)取CD 的中点O ,连接PO ,FO .因为底面ABCD 为矩形,所以BC CD ⊥.因为PC PD =,O CD 为中点,所以,PO CD OF ⊥∥BC ,所以OF CD ⊥. 又因为平面PCD ⊥平面ABCD ,PO ⊂平面,PCD 平面PCD ∩平面ABCD =CD . 所以PO ⊥平面ABCD ,如图,建立空间直角坐标系O xyz -, 则111(1,1,0)(0,1,0)(1,1,0),(0,0,1),(,,)222A C B P E -,,, 设平面ACE 的法向量为(,,)x y z =m ,131(1,2,0),(,,)222AC AE =-=-u u u r u u u r , 所以20,2,0,131.00222x y x y AC z y x y z AE -+=⎧⎧=⎧⋅=⎪⇒⇒⎨⎨⎨=--++=⋅=⎩⎩⎪⎩u u u v u u u v m m 令1y =,则2,1x z ==-,所以2,11=-(,)m .平面ACD 的法向量为(0,0,1)OP =u u u r ,则6cos ,OP OP OP⋅<>==-⋅u u u r u u u r u u u r m m |m |. 如图可知二面角E AC D --为钝角,所以二面角E AC D --的余弦值为66-. (3)在棱PD 上存在点M ,使AM BD ⊥.设([0,1]),(,,)PM M x y z PD=∈λλ,则,01,0PM PD D =-u u u u r u u u r λ(,).因为(,,1)(0,1,1)x y z -=--λ,所以(0,,1)M --λλ. (1,1,1),(1,2,0)AM BD =---=--u u u u r u u u r λλ.因为AM BD ⊥,所以0AM BD ⋅=u u u u r u u u r .所以12(1)0λ--=,解得1=[0,1]2∈λ. 所以在棱PD 上存在点M ,使AM BD ⊥,且12PM PD =。

高考数学(理)之立体几何与空间向量 专题03 空间点、线、面的位置关系(解析版)

高考数学(理)之立体几何与空间向量 专题03 空间点、线、面的位置关系(解析版)

立体几何与空间向量03 空间点、线、面的位置关系一、具体目标:1.理解空间直线、平面位置关系的定义,并了解可以作为推理依据的公理和定理;2.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.二、知识概述:1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).(2)公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面).(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2. 空间两直线的位置关系直线与直线的位置关系的分类⎩⎨⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内直线与平面的位置关系有平行、相交、在平面内三种情况.平面与平面的位置关系有平行、相交两种情况.平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫作异面直线a ,b 所成的角(或夹角).②范围:.4.异面直线的判定方法: ]2,0(π【考点讲解】判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线;反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.5.求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常放在三角形中进行.平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围.【温馨提示】平面的基本性质,点、直线、平面之间的位置关系是高考试题主要考查知识点,题型除了选择题或填空题外,往往在大题中结合平行关系、垂直关系或角的计算间接考查.1.【2019年高考全国Ⅲ卷】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【解析】本题主要考查的空间两条直线的位置关系问题,要求会构造三角形,讨论两直线是否共面,并通过相应的计算确定两条直线的大小关系.如图所示,作EO CD⊥于O,连接ON,BD,易得直线BM,EN是三角形EBD的中线,是相交直线.过M作MF OD⊥于F,连接BF,Q平面CDE⊥平面ABCD,,EO CD EO⊥⊂平面CDE,EO∴⊥平面ABCD,MF⊥平面ABCD,MFB∴△与EON△均为直角三角形.设正方形边长为2,易知12EO ON EN===,,5,2MF BF BM==∴=,BM EN∴≠,故选B.] 2 ,0(π【真题分析】【答案】B2.【2018年高考全国Ⅱ卷理数】在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为( )A .15 BCD【解析】方法一:用一个与原长方体相同的长方体拼到原长方体的前面,如图,则11B P AD ∥,连接DP ,易求得1DB DP =,12B P =,则1DB P ∠是异面直线1AD 与1DB 所成的角,由余弦定理可得22211111cos 2DB B P DP DB P DB PB +-∠===⋅.故选C.方法二:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,则()()((110,0,0,1,0,0,,D A B D ,所以((11,AD DB =-=u u u u r u u u u r ,因为111111cos ,5AD DB AD DB AD DB ⋅===u u u u r u u u u r u u u u r u u u u r u u u u r u u u u r , 所以异面直线1AD 与1DB所成角的余弦值为5,故选C. 【答案】C3. 【2018年高考全国Ⅱ卷文数】在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( )A.2 BCD【解析】如图,在正方体1111ABCD A B C D -中,CD AB ∥,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以BE =,则tan BE EAB AB ∠===.故选C .【答案】C4.【2017年高考全国Ⅱ卷理数】已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )A.2 B.5 C.5D.3 【解析】如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为1111,BC D BC BD C D AB ∠=====Q易得22211C D BD BC =+,因此111cos 5BC BC D C D ∠===,故选C . 【答案】C5.【2017年高考全国Ⅲ卷文数】在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( )A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【解析】根据三垂线定理的逆定理,可知平面内的线垂直于平面的斜线,则也垂直于斜线在平面内的射影.A.若11A E DC ⊥,那么11D E DC ⊥,很显然不成立;B.若1A E BD ⊥,那么BD AE ⊥,显然不成立;C.若11A E BC ⊥,那么11BC B C ⊥,成立,反过来11BC B C ⊥时,也能推出11BC A E ⊥,所以C 成立;D.若1A E AC ⊥,则AE AC ⊥,显然不成立,故选C.【答案】C6.【2019年高考北京卷理数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ; ②m ∥α; ③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.【答案】如果l ⊥α,m ∥α,则l ⊥m .7.【2017年高考全国Ⅲ卷理数】a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最大值为60°. 其中正确的是________.(填写所有正确结论的编号)【解析】设1AC BC ==.由题意,AB 是以AC 为轴,BC 为底面半径的圆锥的母线,由,AC a AC b ⊥⊥,又AC ⊥圆锥底面,所以在底面内可以过点B ,作BD a ∥,交底面圆C 于点D ,如图所示,连接DE ,则DE ⊥BD ,DE b ∴∥,连接AD ,等腰ABD △中,AB AD ==当直线AB 与a 成60°角时,60ABD ∠=o ,故BD =Rt BDE △中,2,BE DE =∴=B 作BF ∥DE ,交圆C 于点F ,连接AF ,由圆的对称性可知BF DE ==ABF ∴△为等边三角形,60ABF ∴∠=o ,即AB 与b 成60°角,②正确,①错误.由图可知③正确;很明显,可以满足平面ABC ⊥直线a ,则直线AB 与a 所成角的最大值为90°,④错误.故正确的是②③.【答案】②③8.【2016高考浙江文数】如图,已知平面四边形ABCD ,AB =BC =3,CD =1,ADADC =90°.沿直线AC 将△ACD 翻折成△ACD ',直线AC 与BD '所成角的余弦的最大值是______.【解析】设直线AC 与'BD 所成角为θ.设O 是AC 中点,由已知得AC =如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z轴,建立空间直角坐标系,由(0,2A,(2B,(0,2C -,作DH AC ⊥于H ,翻折过程中,'D H 始终与AC 垂直,26CD CH CA ===,则3OH =,DH =='(,sin )636D αα-,则'sin )6236BD αα=--uuu r ,与CA uu r 平行的单位向量为(0,1,0)n =r , 所以cos cos ',BD n θ=<>uuu r r ''BD n BD n⋅=uuu r r uuu r rcos 1α=时,cos θ取最大值9.9.【2017天津,文17】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(I )求异面直线AP 与BC 所成角的余弦值;(II )求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.【分析】(Ⅰ)异面直线所成的角一般都转化为相交线所成的角,//AD BC ,所以PAD ∠即为所求,根据余弦定理求得,但本题可证明AD PD ⊥,所以cosAD PAD AP ∠=;(Ⅱ)要证明线面垂直,根据判断定理,证明线与平面内的两条相交直线垂直,则线与面垂直,即证明,PD BC PD PB ⊥⊥;(Ⅲ)根据(Ⅱ)的结论,做//DF AB ,连结PF ,DFP ∠即为所求【解析】(Ⅰ)解:如图,由已知AD //BC ,故DAP ∠或其补角即为异面直线AP 与BC 所成的角.因为AD ⊥平面PDC ,所以AD ⊥PD .在Rt △PDA 中,由已知,得225AP AD PD =+=,故5cos AD DAP AP ∠==. 所以,异面直线AP 与BC C(Ⅱ)证明:因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD .又因为BC //AD ,所以PD ⊥BC ,又PD ⊥PB ,所以PD ⊥平面PB C.10.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F .所以BC ⊥平面A 1EF .因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E ,EG O 为A 1G 的中点,故12A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B 1,0),1B ,3,2F ,C (0,2,0).因此,3,2EF =u u u r ,(BC =u u u r .由0EF BC ⋅=u u u r u u u r 得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(0223)BC A C --u u u r u u u u r ,,,,,.设平面A 1BC 的法向量为n ()x y z =,,,由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩u u u r n n,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅u u u r u u u r u u u r ,n n n |, 因此,直线EF 与平面A 1BC 所成的角的余弦值为35.2.【2017课标1,文6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( ) A . B .C .D .【解析】本题考点是线面平行的判断问题,由题意可知:第二个选项中AB ∥MQ ,在直线AB ∥平面MNQ ,第三个选项同样可得AB ∥MQ ,直线AB ∥平面MNQ ,第四个选项有AB ∥NQ ,直线AB ∥平面MNQ ,只有选项A 不符合要求【答案】A2.空间中,可以确定一个平面的条件是( )A .两条直线B .一点和一条直线C .一个三角形D .三个点【解析】不共线的三点确定一个平面,C 正确;A 选项,只有这两条直线相交或平行才能确定一个平面;B 选项,一条直线和直线外一点才能确定一个平面;D 选项,不共线的三点确定一个平面.【答案】C3.在三棱锥A -BCD 的棱AB 、BC 、CD 、DA 上分别取E 、F 、G 、H 四点,如果EF ∩HG =P ,则点P ( )A .一定在直线BD 上B .一定在直线AC 上 【模拟考场】C .在直线AC 或BD 上 D .不在直线AC 上,也不在直线BD 上【解析】如图所示,∵EF ⊂平面ABC ,HG ⊂平面ACD ,EF ∩HG =P ,∴P ∈平面ABC ,P ∈平面ACD .又∵平面ABC ∩平面ACD =AC ,∴P ∈AC ,故选B .【答案】B4.已知平面α和直线l ,则在平面α内至少有一条直线与直线l ( )A.平行B.垂直C.相交D.以上都有可能【解析】本题的考点是直线与平面的位置关系,直线与直线的位置关系,若直线l 与平面α相交,则在平面α内不存在直线与直线l 平行,故A 错误;若直线l ∥平面α,则在平面α内不存在直线与l 相交,故C 错误;对于直线l 与平面α相交,直线l 与平面α平行,直线l 在平面α内三种位置关系,在平面α内至少有一条直线与直线l 垂直,故选B.【答案】B5.如图,四棱锥P ABCD -中,90ABC BAD ∠=∠=︒,2BC AD =,PAB ∆和PAD ∆都是等边三角形,则异面直线CD 和PB 所成角的大小为( )A .90︒B .75︒C .60︒D .45︒【解析】设1AD =,则2BC =,过A 作//AE CD 交BC 于E ,则AD CE =,过E 作//EF PB 交PC于F ,则AEF ∠即为为所求,如图所示,过F 作//FG CD 交PD 于G ,连接AG ,则四边形AEFG 是梯形,其中//FG AE ,12EF =G 作//GH EF 交AE 于H ,则GHA AEF ∠=∠,在GHA ∆中,1,,222GH EF AH AE FG AG ===-===则 222AG GH AH =+,所以90AEF ∠=︒,故选A.【答案】A6.不在同一条直线上的三点A 、B 、C 到平面α的距离相等,且A ∉α,给出以下三个命题:①△ABC 中至少 有一条边平行于α;②△ABC 中至多有两边平行于α;③△ABC 中只可能有一条边与α相交.其中真命题是_____________.【解析】直线与平面的位置关系,平面与平面的位置关系,如图,三点A 、B 、C 可能在α的同侧,也可能在α两侧,其中真命题是①.【答案】①7.已知A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.【解析】本题考点反证法证明异面直线,异面直线所成的角.(1)证明:假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)取CD 的中点G ,连接EG 、FG ,则EG ∥BD ,所以直线EF 与EG 所成的角即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,可得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.8.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为3,M ,N 分别是棱AA 1,AB 上的点,且AM =AN =1.(1)证明:M ,N ,C ,D 1四点共面;(2)平面MNCD 1将此正方体分为两部分,求这两部分的体积之比.【解析】本题考点是多点共面的证明,平面分几何体的体积之比.(1)证明:连接A 1B ,在四边形A 1BCD 1中,A 1D 1∥BC 且A 1D 1=BC ,所以四边形A 1BCD 1是平行四边形.所以A 1B ∥D 1C. 在△ABA 1中,AM =AN =1,AA 1=AB =3,所以1AM AN AA AB, 所以MN ∥A 1B ,所以MN ∥D 1C.所以M ,N ,C ,D 1四点共面.(2)记平面MNCD 1将正方体分成两部分的下部分体积为V 1,上部分体积为V 2,连接D 1A ,D 1N ,DN ,则几何体D 1-AMN ,D 1-ADN ,D 1-CDN 均为三棱锥,所以V 1=111D AMN D ADN D CDN V V V ---++=13S △AMN ·D 1A 1+13S △ADN ·D 1D +13S △CDN ·D 1D =13×12×3+13×32×3+13×92×3=132. 从而V 2=1111ABCD A B C D V --V 1=27-132=412,所以121341V V =, 所以平面MNCD 1分此正方体的两部分体积的比为1341.。

2019--2020年高考数学试题分类汇编立体几何及答案详解

2019--2020年高考数学试题分类汇编立体几何及答案详解

2019--2020年高考数学试题分类汇编立体几何一、选择题.1、(2019年高考全国I 卷理科12)已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为A .68πB .64πC .62πD .6π 答案:D解析:如图,三棱锥ABC P -为正三棱锥,不妨设a PC PB PA 2||||||===,底面外接圆半径为r ,由题意可得3||,||==CF a EF .在PAC ∆中,由余弦定理可得aa a a PAC 21222444cos 22=⨯⨯-+=∠, 所以在EAC ∆中22124||222+=⨯⨯⨯-+=a aa a a EC 又︒=∠90CEF ,根据勾股定理可得222||||||CF EF EC =+,即2||=PC 在直角POC ∆中,332||=OC ,36||||22=-=r PC OP 由正三棱锥外接球半径公式可得26||2||222=+=OP OP r R ,故体积为π6 2、(2019年高考全国II 卷文理科7)设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面答案:B解析:由“判定定理:如果一个平面内有两条相交直线分别与另一个平面内两条相交直线平行,那么这两个平面平行”可知答案选B3、(2019年高考全国II 卷文理科16).中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.) 答案:A解析:(1)上层8个,中层8个,下层8个上下底各1个(2)设棱长为a ,如图作出该几何体的截面,1,21=-=CE a CD 又△CDE 为等腰直角三角形,则a a =-⨯212,解得12-=a .则棱长为12- 4、(2019年高考全国III 卷文理科8)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线答案:B解析:建系如图)23,0,23(),0,11,1(),3,0,1(),0,2,0(M N E B 所以7)023()20()023(||222=-+-+-=BM , 2)300()01()11(||222=-+-+-=EN又因为BN BE BM +=21 所以B 、M 、E 、N 四点共面。

2019-2020年高考数学大题专题练习——立体几何(一)

2019-2020年高考数学大题专题练习——立体几何(一)

2019-2020年高考数学大题专题练习——立体几何(一)1.如图所示,四棱锥P ABCD 中,底面ABCD 为正方形,⊥PD 平面ABCD ,2PD AB ,点,,E F G 分别为,,PC PD BC 的中点.(1)求证:EF PA ⊥;(2)求二面角D FG E 的余弦值.2.如图所示,该几何体是由一个直角三棱柱ADE BCF 和一个正四棱锥P ABCD 组合而成,AF AD ⊥,2AEAD .(1)证明:平面⊥PAD 平面ABFE ;(2)求正四棱锥P ABCD 的高h ,使得二面角C AF P 的余弦值是223.3.四棱锥P ABCD-中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是面积为ADC∠为锐角,M为PB的中点.(Ⅰ)求证:PD∥面ACM.(Ⅱ)求证:PA⊥CD.(Ⅲ)求三棱锥P ABCD-的体积.4.如图,四棱锥S ABCD-满足SA⊥面ABCD,90DAB ABC∠=∠=︒.SA AB BC a===,2AD a=.(Ⅰ)求证:面SAB⊥面SAD.(Ⅱ)求证:CD⊥面SAC.SB A DMC BAPD5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD .6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A .E DABC C 1B 1A 1DAB CEF P7.在四棱锥P ABCD -中,PA ⊥平面ABCD ,//AB CD ,AB AD ⊥,PA PB =,::2:2:1AB AD CD =.(1)证明BD PC ⊥;(2)求二面角A PC D --的余弦值;(3)设点Q 为线段PD 上一点,且直线AQ 平面PAC 所成角的正弦值为23,求PQ PD的值.8.在正方体1111ABCD A B C D -中,O 是AC 的中点,E 是线段D 1O 上一点,且D 1E =λEO . (1)若λ=1,求异面直线DE 与CD 1所成角的余弦值; (2)若λ=2,求证:平面CDE ⊥平面CD 1O .9.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,135BCD =︒∠,侧面PAB ⊥底面ABCD ,90BAP =︒∠,2AB AC PA ===,E ,F 分别为BC ,AD 的中点,点M 在线段PD 上.(Ⅰ)求证:EF ⊥平面PAC .(Ⅱ)若M 为PD 的中点,求证:ME ∥平面PAB . (Ⅲ)如果直线ME 与平面PBC 所成的角和直线ME 与平面ABCD 所在的角相等,求PMPD的值.10.如图,在三棱柱111ABC A B C -,1AA ⊥底面ABC ,AB AC ⊥,1AC AB AA ==,E ,F 分别是棱BC ,1A A 的中点,G 为棱1CC 上的一点,且1C F ∥平面AEG . (1)求1CGCC 的值. (2)求证:1EG AC ⊥. (3)求二面角1A AG E --的余弦值.A 1B 1C 1G F AB CEM F E CBAPD11.如图,在四棱锥P ABCD -中,PB ⊥底面ABCD ,底面ABCD 为梯形,AD BC ∥,AD AB ⊥,且3PB AB AD ===,1BC =.(Ⅰ)若点F 为PD 上一点且13PF PD =,证明:CF ∥平面PAB .(Ⅱ)求二面角B PD A --的大小. (Ⅲ)在线段PD 上是否存在一点M ,使得CM PA ⊥?若存在,求出PM 的长;若不存在,说明理由.12.如图,在四棱锥E ABCD -中,平面EAD ⊥平面ABCD ,CD AB ∥,BC CD ⊥,EA ED ⊥,4AB =,2BC CD EA ED ====.Ⅰ证明:BD AE ⊥.Ⅱ求平面ADE 和平面CDE 所成角(锐角)的余弦值.DABCEPF DBCA13.己知四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,且2PA AB ==.60ABC ∠=︒,BC 、PD 的中点分别为E ,F .(Ⅰ)求证BC PE ⊥.(Ⅱ)求二面角F AC D --的余弦值.(Ⅲ)在线段AB 上是否存在一点G ,使得AF 平行于平面PCG ?若存在,指出G 在AB 上的位置并给予证明,若不存在,请说明理由.14.如图,ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF DE ∥,3DE AF =,BE 与平面ABCD 所成角为60︒.(Ⅰ)求证:AC ⊥平面BDE . (Ⅱ)求二面角F BE D --的余弦值.(Ⅲ)设点M 线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.DDABCEF15.如图,PA ⊥面ABC ,AB BC ⊥,22AB PA BC ===,M 为PB 的中点. (Ⅰ)求证:AM ⊥平面PBC . (Ⅱ)求二面角A PC B --的余弦值. (Ⅲ)在线段PC 上是否存在点D ,使得BD AC ⊥,若存在,求出PDPC的值,若不存在,说明理由.16.如图所示,在四棱锥P -ABCD 中,AB ⊥平面,//,PAD AB CD E 是PB 的中点,2,5,3,2AHPD PA AB AD HD===== . (1)证明:PH ⊥平面ABCD ;(2)若F 是CD 上的点,且23FC FD ==,求二面角B EF C --的正弦值.MDABCP17.如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=︒,Q为AB 的中点.(Ⅰ)证明:CQ ⊥平面ABE ; (Ⅱ)求多面体ACED 的体积; (Ⅲ)求二面角A -DE -B 的正切值.18.如图1 ,在△ABC 中,AB =BC =2, ∠B =90°,D 为BC 边上一点,以边AC 为对角线做平行四边形ADCE ,沿AC 将△ACE 折起,使得平面ACE ⊥平面ABC ,如图2.(1)在图 2中,设M 为AC 的中点,求证:BM 丄AE ; (2)在图2中,当DE 最小时,求二面角A -DE -C 的平面角.19.如图所示,在已知三棱柱ABF -DCE 中,90ADE ∠=︒,60ABC ∠=︒,2AB AD AF ==,平面ABCD ⊥平面ADEF ,点M在线段BE 上,点G 是线段AD 的中点.(1)试确定点M 的位置,使得AF ∥平面GMC ; (2)求直线BG 与平面GCE 所成角的正弦值.20.已知在四棱锥P -ABCD 中,底面ABCD 是菱形,AC =AB ,P A ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点.(Ⅰ)求证:AF ∥平面PCE ;(Ⅱ)若22AB AP ==,求平面P AD 与平面PCE 所成锐二面角的余弦值.21.如图,五面体P ABCD 中,CD ⊥平面P AD ,ABCD 为直角梯形,,2BCD PD BC CD π∠===1,2AD AP PD =⊥. (1)若E 为AP 的中点,求证:BE ∥平面PCD ; (2)求二面角P -AB-C 的余弦值.22.如图(1)所示,已知四边形SBCD 是由Rt △SAB 和直角梯形ABCD 拼接而成的,其中90SAB SDC ∠=∠=︒.且点A 为线段SD 的中点,21AD DC ==,2AB =.现将△SAB沿AB 进行翻折,使得二面角S -AB -C 的大小为90°,得到图形如图(2)所示,连接SC ,点E ,F 分别在线段SB ,SC 上. (Ⅰ)证明:BD AF ⊥;(Ⅱ)若三棱锥B -AEC 的体积为四棱锥S -ABCD 体积的25,求点E 到平面ABCD 的距离.23.四棱锥S-ABCD中,AD∥BC,,BC CD⊥060SDA SDC∠=∠=,AD DC=1122BC SD==,E为SD的中点.(1)求证:平面AEC⊥平面ABCD;(2)求BC与平面CDE所成角的余弦值.24.已知三棱锥P-ABC,底面ABC是以B为直角顶点的等腰直角三角形,P A⊥AC,BA=BC=P A=2,二面角P-AC-B的大小为120°.(1)求直线PC与平面ABC所成角的大小;(2)求二面角P-BC-A的正切值.25.如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,090=∠=∠BCD ABC ,AB CB DC PD PA 21====,E 是PB 的中点, (Ⅰ)求证:EC ∥平面APD ;(Ⅱ)求BP 与平面ABCD 所成的角的正切值; (Ⅲ)求二面角P -AB -D 的余弦值.26.四棱锥P ﹣ABCD 的底面ABCD 为边长为2的正方形,P A =2,PB =PD =22,E ,F ,G ,H 分别为棱P A ,PB ,AD ,CD 的中点.(1)求CD 与平面CFG 所成角的正弦值;(2)探究棱PD 上是否存在点M ,使得平面CFG ⊥平面MEH ,若存在,求出PDPM的值;若不存在,请说明理由.试卷答案1以点D 为坐标原点,建立如图所示的空间直角坐标系D xyz ,则 0,0,0D ,0,2,0A ,2,0,0C,0,0,2P ,1,0,1E ,0,0,1F ,2,1,0G .(1)∵0,2,2PA ,1,0,0EF,则0PA EF ,∴PA EF .(2)易知0,0,1DF,2,11FG, 设平面DFG 的法向量111,,m x y z ,则m DF m FG ,即1111020z x yz ,令11x ,则1,2,0m 是平面DFG 的一个法向量,同理可得0,1,1n 是平面EFG 的一个法向量,∴210cos ,552m n m nm n, 由图可知二面角D FG E 为钝角, ∴二面角D FG E 的余弦值为105.2.(1)证明:直三棱柱ADE BCF 中,AB 平面ADE ,所以:AB AD ,又AD AF ,所以:AD平面ABFE ,AD 平面PAD ,所以:平面PAD 平面ABFE .(2)由(1)AD平面ABFE ,以A 为原点,,,AB AE AD 方向为,,x y z 轴建立空间直角坐标系A xyz ,设正四棱锥P ABCD 的高h ,2AE AD ,则0,0,0A ,2,2,0F ,2,0,2C ,1,,1P h . 2,2,0AF,2,0,2AC,1,,1APh .设平面ACF 的一个法向量111,,m x y z ,则:1111220220m AF x y n ACx z ,取11x ,则111y z ,所以:1,1,1m .设平面AFP 的一个法向量222,,n x y z ,则222222200n AF x y n APx hy z ,取21x ,则21y ,21z h ,所以:1,1,1n h ,二面角C AF P 的余弦值是223,所以:211122cos ,3321m n h m n m nh , 解得:1h .3.E ODPABC M(Ⅰ)证明:连结AC 交BD 于O ,则O 是BD 中点, ∵在PBD △中,O 是BD 的中点,M 是PB 的中点, ∴PD MO ∥,又PD ⊄平面ACM ,MO ⊂平面ACM ,∴PD ∥平面ACM .(Ⅱ)证明:作PE CD ⊥,则E 为CD 中点,连结AE , ∵底面ABCD 是菱形,边长为2,面积为,∴11sin 222sin 222S AD DC ADC ADC =⨯⨯⨯∠⨯=⨯⨯∠⨯=∴sin ADC ∠,60ADC ∠=︒, ∴ACD △是等边三角形, ∴CD AE ⊥, 又∵CD PE ⊥, ∴CD ⊥平面PAE , ∴CD PA ⊥.(Ⅲ)11233P ABCD ABCD V S PE -=⨯=⨯.4.DABCSE(1)证明:∵SA ⊥平面ABCD ,AB ⊂平面ABCD , ∴AB SA ⊥, 又∵90BAD ∠=︒, ∴AB AD ⊥, ∵SA AD A =, ∴AB ⊥平面SAD , 又AB ⊂平面SAB , ∴平面SAB ⊥平面SAD . (Ⅱ)证明:取AD 中点为E ,∵90DAB ABC ∠=∠=︒,2AD a =,BC a =,E 是AD 中点, ∴ABCE ∠是矩形,CE AB a ==,DE a =,∴CD =,在ACD △中,AC,CD =,2AD a =, ∴222AC CD AD +=, 即CD AC ⊥,又∵SA ⊥平面ABCD ,CD ⊂平面ABCD , ∴CD SA ⊥, ∴CD ⊥平面PAC . 5.P F ECB AD(Ⅰ)证明:∵PD ⊥底面ABCD ,BC ⊂平面ABCD , ∴PD BC ⊥,又∵底面ABCD 为矩形, ∴BC CD ⊥, ∴BC ⊥平面PCD , ∵BC ⊂平面PBC , ∴平面PCD ⊥平面PBC .(Ⅱ)证明:∵PD DC =,E 是PC 中点, ∴DE PC ⊥,又平面PCD ⊥平面PBC ,平面PCD 平面PBC PC =, ∴DE ⊥平面PBC , ∴DE PB ⊥, 又∵EF PB ⊥,EF DE E =,∴PB ⊥平面EFD .6.E A 1B 1C 1CBAD(Ⅰ)证明:连结1A B , ∵D 是1AB 的中点, ∴D 是1A B 的中点,∵在1A BC △中,D 是1A B 的中点,E 是1A C 的中点, ∴DE BC ∥,又DE ⊄平面11BCC B ,BC ⊂平面11BCC B , ∴DE ∥平面11BCC B .(Ⅱ)证明:∵111ABC A B C -是直棱柱, ∴1AA ⊥平面ABC , ∴1AA AB ⊥, 又AB AC ⊥, ∴AB ⊥平面11ACC A , ∵AB ⊂平面11ABB A , ∴平面11ABB A ⊥平面11ACC A .7.以A 为坐标原点,建立空间直角坐标系(2,0,0)B,D ,(0,0,2)P,C(1)(BD =-,(1,2)PC =-, ∵0BD PC •=∴BD PC ⊥(2)(1,AC =,(0,0,2)AP =,平面PAC 的法向量为(2,1,0)m =-(0,2)DP =,(1,0,0)AP =,平面DPC 的法向量为(0,2,1)n =--.2cos ,3m n m n m n•==•,二面角B PC D --的余弦值为3.(3)∵AQ AP PQ AP tPD =+=+,[]0,1t ∈ ∴(0,0,2)(0,2,2)(0,2,22)AQ t t t =+-=- 设θ为直线AQ 与平面PAC 所成的角2sin cos ,3AQ m AQ m AQ mθ•===• 2222223684332(22)tt t t t t =⇒=-++-,解得2t =(舍)或23. 所以,23PQ PD =即为所求.8.解:(1)不妨设正方体的棱长为1,以DA ,DC ,1DD 为单位正交基底建立如图所示的空间直角坐标系D xyz -. 则A (1,0,0),()11022O ,,,()010C ,,,D 1(0,0,1), E ()111442,,, 于是,.由cos==.所以异面直线AE 与CD 1所成角的余弦值为36. (2)设平面CD 1O 的向量为m =(x 1,y 1,z 1),由m ·CO =0,m ·1CD =0 得 取x 1=1,得y 1=z 1=1,即m =(1,1,1) .由D 1E =λEO ,则E ,.又设平面CDE 的法向量为n =(x 2,y 2,z 2),由n ·CD =0,n ·DE =0. 得取x 2=2,得z 2=-λ,即n =(-2,0,λ) .因为平面CDE ⊥平面CD 1F ,所以m ·n =0,得λ=2.9.(Ⅰ)证明:在平行四边形ABCD 中, ∵AB AC =,135BCD =︒∠,45ABC =︒∠, ∴AB AC ⊥,∵E ,F 分别为BC ,AD 的中点, ∴EF AB ∥,∴EF AC ⊥,∵侧面PAB ⊥底面ABCD ,且90BAP =︒∠, ∴PA ⊥底面ABCD ,∴PA EF ⊥, 又∵PAAC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,∴EF ⊥平面PAC .(Ⅱ)证明:∵M 为PD 的中点,F 为AD 的中点, ∴MF PA ∥,又∵MF ⊄平面PAB ,PA ⊂平面PAB , ∴MF ∥平面PAB ,同理,得EF ∥平面PAB , 又∵MFEF F =,MF ⊂平面M EF ,EF ⊂平面M EF ,∴平面MEF ∥平面PAB ,又∵ME ⊂平面M EF , ∴ME ∥平面PAB .(Ⅲ)解:∵PA ⊥底面ABCD ,AB AC ⊥,∴AP ,AB ,AC 两两垂直,故以AB ,AC ,AP 分别为x 轴,y 轴和z 轴建立如图空间直角坐标系,则(0,0,0)A ,(2,0,0)B ,(0,2,0)C ,(0,0,2)P ,(2,2,0)D -,(1,1,0)E , 所以(2,0,2)PB =-,(2,2,2)PD =--,(2,2,0)BC =-, 设([0,1])PMPDλλ=∈,则(2,2,2)PM λλλ=--, ∴(2,2,22)M λλλ--,(12,12,22)ME λλλ=+--, 易得平面ABCD 的法向量(0,0,1)m =, 设平面PBC 的法向量为(,,z)n x y =,则:n BC n PB ⎧⋅=⎪⎨⋅=⎪⎩,即220220x y x z -+=⎧⎨-=⎩,令1x =,得(1,1,1)n =, ∴直线ME 与平面PBC 所成的角和此直线与平面ABCD 所成的角相等, ∴|cos ,||cos ,|ME m ME n <>=<>,即||||||||||||ME m ME n ME m ME n ⋅⋅=⋅⋅,∴|21|λ-=,解得λ=或λ=(舍去),故PM PD .D10.(1)∵1C F ∥平面AEG ,又1C F ⊂平面11ACC A ,平面11ACC A 平面AEG AG =,∴1C F AG ∥,∵F 为1AA 的点,且侧面11ACC A 为平行四边形, ∴G 为1CC 中点, ∴112CG CC =. (2)证明:∵1AA ⊥底面ABC ,1AA AB ⊥,1AA AC ⊥, 又AB AC ⊥,如图,以A 为原点建立空间直角坐标系A xyz -,设2AB =,则由1AB AC AA ==可得(2,0,0)C ,(0,2,0)B ,1(2,0,2)C ,1(0,0,2)A , ∵E ,G 分别是BC ,1CC 的中点,∴(1,1,0)E ,(2,0,1)G , ∴1(1,1,1)(2,0,2)0EG CA ⋅=-⋅-=, ∴1EG CA ⊥, ∴1EG AC ⊥. (3)设平面AEG 的法向量为(,,)n x y z =,则:0n AE n AG ⎧⋅=⎪⎨⋅=⎪⎩,即020x y x z +=⎧⎨+=⎩,令1x =,则1y =-,2z =-, ∴(1,1,2)n =--,由已知可得平面1A AG 的法向量(0,1,0)m =, ∴6cos ,6||||n m n m n m ⋅<>==-⋅由题意知二面角1A AG E --为钝角, ∴二面角1A AG E --的余弦值为.111.(Ⅰ)证明:过点F 作FH AD ∥, 交PA 于H ,连结BH ,如图所示,∵13PF PD =,∴13HF AD BC ==,又FH AD ∥,AD BC ∥,HF BC ∥, ∴四边形BCFH 为平行四边形, ∴CF BH ∥,又BH ⊄平面PAB ,CF ⊄平面PAB , ∴CF ∥平面PAB .z D(Ⅱ)解:∵梯形ABCD 中,AD BC ∥,AD AB ⊥, ∴BC AB ⊥, ∵PB ⊥平面ABCD , ∴PB AB ⊥,PB BC ⊥,∴如图,以B 为原点,BC ,BA ,BP 所在直线为x ,y ,z 轴建立空间直角坐标系, 则(1,0,0)C ,(3,0,0)D ,(0,3,0)A ,(0,0,3)P ,设平面BPD 的一个法向量为(,,)n x y z =, 平面APD 的一个法向量为(,,)m a b c =, ∵(3,3,3)PD =-,(0,0,3)BP =,∴00PD n BP n ⎧⋅=⎪⎨⋅=⎪⎩,即333030x y z z +-=⎧⎨=⎩,令1x =得(1,1,0)n =-,同理可得(0,1,1)m =, ∴1cos ,2||||n m n m n m ⋅<>==-⋅,∵二面角B PD A --为锐角, ∴二面角B PD A --为π3. (Ⅲ)假设存在点M 满足题意,设(3,3,3)PM PD λλλλ=-, ∴(13,3,33)CM CP PD λλλλ=+=-+-,∵(0,3,3)PA =-,∴93(33)0PA CM λλ⋅=+-=,解得12λ=,∴PD 上存在点M 使得CM PA ⊥,且12PM PD =.12.Ⅰ∵BC CD ⊥,2BC CD ==,∴BD =,同理EA ED ⊥,2EA ED ==,∴AD =,又∵4AB =,∴由勾股定理可知222BD AD AB +=,BD AD ⊥, 又∵平面EAD ⊥平面ABCD ,平面EAD 平面ABCD AD =,BD ⊂平面ABCD ,∴BD ⊥平面AED , 又∵AE ⊂平面AED , ∴BD AE ⊥.Ⅱ解:取AD 的中点O ,连结OE ,则OE AD ⊥, ∵平面EAD ⊥平面ABCD ,平面EAD 平面ABCD AD =,∴OE ⊥平面ABCD ,取AB 的中点F ,连结DF BD ∥,以O 为原点,建立如图所示的空间直角坐标系O xyz -,则(D ,(C -,E ,(DC =-,(2,0,DE =, 设平面CDE 的法向量为(,,)n x y z =,则00DC n DE n ⎧⋅=⎪⎨⋅=⎪⎩即00x z x y +=⎧⎨-+=⎩,令1x =,则1z =-,1y =,∴平面CDE 的法向量(1,1,1)n =-, 又平面ADE 的一个法向量为1(0,1,0)n =, 设平面ADE 和平面CDE 所成角(锐角)为θ, 则1113cos |cos ,|3||||nn n n n n θ⋅=<>==⋅,∴平面ADE 和平面CDE. C13.(1)证明:连结AE ,PE .∵PA ⊥平面ABCD ,BC ⊂平面ABCD , ∴PA BC ⊥.又∵底面ABCD 是菱形,AB BC =,60ABC ∠=︒, ∴ABC △是正三角形. ∵E 是BC 的中点, ∴AE BC ⊥.又∵PA AE A =,PA ⊂平面PAE ,PE ⊂平面PAE ,∴BC ⊥平面PAE , ∴BC PE ⊥.(2)由(1)得AE BC ⊥,由BC AD ∥可得AE AD ⊥. 又∵PA ⊥底面ABCD ,∴PA AE ⊥,PA AD ⊥.∴以A 为原点,分别以AE ,AD ,AP 为x 轴,y 轴,z 轴建立空间直角坐标系A xyz -,如图所示,则(0,0,0)A,E ,(0,2,0)D ,(0,0,2)P,1,0)B -,C ,(0,1,1)F .∵PA ⊥平面ABCD ,∴平面ABCD 的法向量为(0,0,2)AP =. 又∵(3,1,0)AC =,(0,1,1)AF =. 设平面ACF 的一个法向量(,,)n x y z =,则:AC n AF n ⎧⋅=⎪⎨⋅=⎪⎩,即00y y z +==⎪⎩+,令1x =,则y =z ,∴(1,3,n =-. ∴21cos ,7||||AP n AP n AP n ⋅==. ∵二面角F AC D --是锐角, ∴二面角F AC D -- (3)G 是线段AB 上的一点,设(01)AG t AB t =≤≤. ∵(3,1,0)AB =-,∴,,0)G t -. 又∵(3,1,2)PC =-,(3,,2)PG t t =--. 设平面PCG 的一个法向量为(,,)n x y z =,则:1100PC n PGn ⎧⋅=⎪⎨⋅=⎪⎩,即1111112020yz ty z-=--=+,∴1()n t t =-+, ∵AF ∥平面PCG ,∴AF n ⊥,0AF n ⋅=1)0t -=, 解得12t =. 故线段AB 上存在一点G ,使得AF 平行于平面PCG ,G 是AB 中点.14.(1)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD , ∴DE AC ⊥. ∵ABCD 是正方形, ∴AC BD ⊥. 又DEBD D =,∴AC ⊥平面BDE .(2)∵DA ,DC ,DE 两两重叠,∴建立空间直角坐标系D xyz -如图所示.∵BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒,∴EDDB. 由3AD =,可知DZ =AF ,则(3,0,0)A,F,E ,(3,3,0)B ,(0,3,0)C .∴(0,BF =-,(3,0,EF =-, 设平面BEF 的法向量为(,,)n x y z =,则00n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩,即3030y x ⎧-=⎪⎨-=⎪⎩,令z (4,2,6)n =. ∵AC ⊥平面BDE ,∴CA 为平面BDE 的一个法向量,(3,3,0)CA =-,∴cos ,||||32n CA n CA n CA ⋅==.∵二面角F BE D --为锐角, ∴二面角F BE D -- (3)点M 线段BD 上一个动点,设(,,0)M t t ,则(3,,0)AM t t =-.∵AM ∥平面BEF ,∴0AM n ⋅=,即4(3)20t t -+=,解得2t =,此时,点M 坐标为(2,2,0),13BM BD =,符合题意.15.(1)证明:∵PA ⊥平面ABC ,BC ⊂平面ABC , ∴PA BC ⊥.∵BC AB ⊥,PA AB A =, ∴BC ⊥平面PAB . 又AM ⊂平面PAB , ∴AM BC ⊥.∵PA AB =,M 为PB 的中点, ∴AM PB ⊥. 又∵PBBC B =,∴AM ⊥平面PBC .(2)如图,在平面ABC 内作AZ BC ∥,则AP ,AB ,AZ 两两垂直,建立空间直角坐标系A xyz -.则(0,0,0)A ,(2,0,0)P ,(0,2,0)B ,(0,2,1)C ,(1,1,0)M . (2,0,0)AP =,(0,2,1)AC =,(1,1,0)AM =.设平面APC 的法向量为(,,)n x y z =,则:0n AP n AC ⎧⋅=⎪⎨⋅=⎪⎩,即020x y z =⎧⎨+=⎩,令1y =,则2z =-. ∴(0,1,2)n =-.由(1)可知(1,1,0)AM =为平面PBC 的一个法向量,∴cos||||5AM nn AMAM n⋅⋅==∵二面角A PC B--为锐角,∴二面角A PC B--.(3)证明:设(,,)D v wμ是线段PC上一点,且PD PCλ=,(01)λ≤≤,即(2,,)(2,2,1)v wμλ-=-,∴22μλ=-,2vλ=,wλ=.∴(22,22,)BDλλλ=--.由0BD AC⋅=,得4[0,1]5λ=∈,∴线段PC上存在点D,使得BD AC⊥,此时45PDPCλ==.16.解:(1)证明:因为AB⊥平面PAD,所以PH AB⊥,因为3,2AHADHD==,所以2,1AH HD==,设PH x=,由余弦定可得,22221cos22x HD PH xPHDx HD x+--∠==⋅22221cos24x HA PH xPHAx HA x+--∠==⋅因为cos cosPHD PHA∠=-∠,故1PH x==,所以PH AD⊥,因为AD AB A=,故PH⊥平面ABCD.(2)以H为原点,以,,HA HP HP所在的直线分别为,,x y z轴,建立空间直角坐标系,则3139(2,3,0),(0,0,1),(1,,),(1,,0),(1,,0)2222B P E F C--,所以可得,3311(3,,0),(1,,),(2,0,),(0,3,0)2222BF BE EF FC=--=--=-=,设平面BEF的法向量(,,)n x y z=,则有:33002(1,2,4)30022x yBF nnzBE n x y⎧--=⎪⎧⋅=⎪⎪⇒⇒=-⎨⎨⋅=⎪⎪⎩--+=⎪⎩,设平面EFC的法向量(,,)m x y z=,则有:020(1,0,4)2030z EF m x m FC m y ⎧⎧⋅=--=⎪⎪⇒⇒=-⎨⎨⋅=⎪⎪⎩=⎩,故17cos ,21n m n m n m⋅===⋅设二面角B EF C --的平面角为θ ,则sin 21θ=.17.解(Ⅰ)证明:∵DC ⊥平面ABC ,//BE DC ∴BE ⊥平面ABC ∴CQ BE ⊥ ①又∵2AC BC ==,点Q 为AB 边中点 ∴CQ AB ⊥ ②AB BE B =故由①②得CQ ⊥平面ABE(Ⅱ)过点A 作AM BC ⊥交BC 延长线于点M ∵,AM BC AM BE ⊥⊥ ∴AM ⊥平面BEDC ∴13A CED CDE V S AM -∆=sin33AM AC π==11212CDE S ∆=⨯⨯= ∴113A CED V -=⨯= (Ⅲ)延长ED 交BC 延长线于S ,过点M 作MQ ES ⊥于Q ,连结AQ 由(Ⅱ)可得:AQM ∠为A DE B --的平面角∵1//2CD BC ∴2SC CB == ∴SE ==1MC MS ==∵SQM ∆∽SBE ∆∴QM SM BE SE=∴1225QM=即55QM=∴3tan1555AMAQMQM∠===18.(1)证明:∵在中,,∴当为的中点时,∵平面平面,平面,平面平面∴平面∵平面∴(2)如图,分别以射线,的方向为,轴的正方向,建立空间直角坐标系设,则,,,∵,,平面平面∴∴当且仅当时,最小,此时,设,平面,则,即∴令,可得,,则有∴∴观察可得二面角的平面角19.(1)取FE 的中点P ,连接CP 交BE 于点M ,M 点即为所求的点. 连接PG ,∵G 是AD 的中点,P 是FE 的中点,∴//PG AF , 又PG ⊂平面MGC ,AF ⊄平面MGC ,所以直线//AF 平面MGC , ∵//PE AD ,//AD BC ,∴//PE BC ,∴2BM BCME PE==, 故点M 为线段BE 上靠近点E 的三等分点. (2)不妨设2AD =,由(1)知PG AD ⊥, 又平面ADEF ⊥平面ABCD ,平面ADEF平面ABCD AD =,PG ⊂平面ADEF ,∴PG ⊥平面ABCD .故PG GD ⊥,PG GC ⊥,以G 为坐标原点,GC ,GD ,GP 分别为x ,y ,z 轴建立空间直角坐标系G xyz -,∵60ABC ∠=︒,2AB AD AF ==,∴ADC ∆为正三角形,3GC =,∴(0,0,0)G ,3,0,0)C ,(0,1,0)D ,(0,1,1)E ,∴(0,1,1)GE =,(3,0,0)GC =,设平面CEG 的一个法向量1(,,)n x y z =,则由10n GE ⋅=,10n GC ⋅=可得0,30,y z x +=⎧⎪⎨=⎪⎩令1y =,则1(0,1,1)n =-,∵(3,1,0)CD =-BA =,且(0,1,0)A -,故3,2,0)B -,故(3,2,0)BG =-, 故直线BG 与平面GCE 所成角的正弦值为11||14sin 7||||n BG n BG θ⋅==⋅.20.(Ⅰ)取PC 中点H ,连接、EH FH .∵E 为AB 的中点,ABCD 是菱形,∴//AE CD ,且12AE CD =,又F 为PD 的中点,H 为PC 的中点,∴//FH CD ,且12FH CD =,∴//AE FH ,且AE FH =,则四边形AEHF 是平行四边形,∴//AF EH .又AF ⊄平面PCE ,EH ⊂面PCE ,∴//AF 平面PCE .(Ⅱ)取BC 的中点为O ,∵ABCD 是菱形,AC AB =,∴AO BC ⊥,以A 为原点,,,AO AD AP 所在直线分别为,,z x y 轴,建立空间直角坐标系A xyz -,则)()()3,1,0,3,1,0,0,2,0BCD -,)()313,0,0,0,0,1,,02OP E ⎫-⎪⎪⎝⎭,∴()333,1,1,,,022PC EC ⎛⎫=-= ⎪ ⎪⎝⎭,()3,0,0AO =,设平面的法向量为()1,,n x y z =,则1100n PC n EC ⎧⋅=⎪⎨⋅=⎪⎩,即3033022x y z x y ⎧+-=⎪+=⎪⎩,令1y =-,则3,2x z ==,∴平面PCE 的一个法向量为)13,1,2n =-,又平面PAD 的一个法向量为()21,0,0n =.∴12121236cos ,|n ||n |4314n n n n ⋅<>===⋅++.即平面PAD 与平面PCE 621.解:(1)证明:取PD 的中点F ,连接,EF CF , 因为,E F 分别是,PA PD 的中点,所以//EF AD 且12EF AD =, 因为1,//2BC AB BC AD =,所以//EF BC 且EF BC =,所以//BE CF , 又BE ⊄平面,PCD CF ⊂平面PCD ,所以//BE 平面PCD .(2)以P 为坐标原点,,PD PA 所在直线分别为x 轴和y 轴,建立如图所示的空间直角坐标系,不妨设1BC =,则13(0,0,0),3,0),(1,0,0),(1,0,1),(2P A D C B , 13(0,3,0),(,1),(1,3,0)2PA AB AD ==-=-,设平面PAB 的一个法向量为(,,)n x y z =,则30013002n PA yn AB x z ⎧=⎧⋅=⎪⎪⇒⎨⎨⋅=+=⎪⎪⎩⎩, 令2x =,得(2,0,1)n =-, 同理可求平面ABD 的一个法向量为6(3,3,0)cos ,55n m m n m n m⋅=⇒===⨯,平面ABD 和平面ABC 为同一个平面, 所以二面角P AB C --.22.解:(Ⅰ)证明:因为二面角S AB C --的大小为90°,则SA AD ⊥, 又SA AB ⊥,故SA ⊥平面ABCD ,又BD ⊂平面ABCD ,所以SA BD ⊥; 在直角梯形ABCD 中,90BAD ADC ∠=∠=︒,21AD CD ==,2AB =, 所以1tan tan 2ABD CAD ∠=∠=,又90DAC BAC ∠+∠=︒, 所以90ABD BAC ∠+∠=︒,即AC BD ⊥; 又ACSA A =,故BD ⊥平面SAC ,因为AF ⊂平面SAC ,故BD AF ⊥.(Ⅱ)设点E 到平面ABCD 的距离为h ,因为B ABC E ABC V V --=,且25E ABC S ABCD V V --=,故511215*********ABCD S ABCD E ABCABC S SAV V S h h --∆⨯⋅⨯===⋅⨯⨯⨯梯形,故12h =,做点E 到平面ABCD 的距离为12.23.(1)E 为SD 的中点,01,602AD DC SD SDA SDC ==∠=∠=.ED EC AD DC ∴===设O 为AC 的中点,连接,EO DO 则EO AC ⊥//,AD BC BC CD ⊥ .AD BC ∴⊥又OD OA OC ==EOC EOD ∴∆≅∆ 从而EO OD ⊥AC ABCD = DO ⊂面ABCD 0AC DO =EO ∴⊥面ABCD EO ⊂面AEC∴面EAC ⊥面ABCD ………………6分(2)设F 为CD 的中点,连接OF EF 、,则OF 平行且等于12AD AD ∥BC EF ∴∥BC不难得出CD ⊥面OEF (EO CD ⊥ FO CD ⊥)∴面ECD ⊥面OEFOF 在面ECD 射影为EF ,EFO ∠的大小为BC 与面ECD 改成角的大小设AD a =,则2aOF =32EF a = 3os OF c EFO EF <== 即BC 与ECD 3(亦可以建系完成) ………………12分24.解(Ⅰ)过点P 作PO ⊥底面ABC ,垂足为O , 连接AO 、CO ,则∠PCO 为所求线面角,,AC PA ⊥,AC PO PA PO P ⊥⋂=且,AC ∴⊥平面PAO .则∠P AO 为二面角P -AC -B 平面角的补角∴∠ 60=PAO ,又23PA =∴,,1sin 2PO PCO CO ∠== 030PCO ∴∠=,直线PC 与面ABC 所成角的大小为30°.(Ⅱ)过O 作OE BC ⊥于点E ,连接PE ,则PEO ∠为二面角P -BC -A 的平面角,AC ⊥平面PAO ,AC OA ⊥045AOE ∠=,设OE 与CA 相交于F 22OE EF FO ∴=+=+在PEO ∆中,3436tan 7222POPEO EO-∠===+则二面角P -BC -A 的正切值为4367-.25.解:(Ⅰ)如图,取PA 中点F ,连接FD EF ,,E 是BP 的中点,AB EF // 且AB EF 21=,又AB DC AB DC 21,//= ∴∴DC EF //四边形EFDC 是平行四边形,故得//EC FD又⊄EC 平面⊂FD PAD ,平面PAD//EC ∴平面ADE(Ⅱ)取AD 中点H ,连接PH ,因为PD PA =,所以AD PH ⊥平面⊥PAD 平面ABCD 于AD ,⊥∴PH 面ABCD ,HB ∴是PB 在平面ABCD 内的射影 PBH ∠∴是PB 与平面ABCD 所成角四边形ABCD 中,090=∠=∠BCD ABC ∴四边形ABCD 是直角梯形AB CB DC 21== 设a AB 2=,则a BD 2=在ABD ∆中,易得a AD DBA 2,450=∴=∠.22212222a a a DH PD PH =-=-=又22224AB a AD BD ==+ABD ∆∴是等腰直角三角形,090=∠ADBa a a DB DH HB 2102212222=+=+=∴ ∴ 在PHB Rt ∆中,5521022tan ===∠a aHB PH PBH(Ⅲ)在平面ABCD 内过点H 作AB 的垂线交AB 于G 点,连接PG ,则HG 是PG 在平面ABCD 上的射影,故AB PG ⊥,所以PGH ∠是二面角D AB P --的平面角, 由a HA a AB 22,2==,又a HG HAB 21450=∴=∠ 在PHG Rt ∆中,22122tan ===∠a aHG PH PGH ∴ 二面角D AB P --的余弦值大小为.3326.(1)∵四棱锥P ﹣ABCD 的底面ABCD 为边长为2的正方形,PA=2,PB=PD=2,∴PA 2+AB 2=PB 2,PA 2+AD 2=PD 2, ∴PA ⊥AB ,PA ⊥AD ,∴以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴, 建立空间直角坐标系,∵E ,F ,G ,H 分别为棱PA ,PB ,AD ,CD 的中点. ∴C (2,2,0),D (0,2,0),B (2,0,0), P (0,0,2),F (1,0,1),G (0,1,0), =(﹣2,0,0),=(﹣1,﹣2,1),=(﹣2,﹣1,0),设平面CFG 的法向量=(x ,y ,z ), 则,取x=1,得=(1,﹣2,﹣3),设CD与平面CFG所成角为θ,则sinθ=|cos<>|===.∴CD与平面CFG所成角的正弦值为.(2)假设棱PD上是否存在点M(a,b,c),且,(0≤λ≤1),使得平面CFG⊥平面MEH,则(a,b,c﹣2)=(0,2λ,﹣2λ),∴a=0,b=2λ,c=2﹣2λ,即M(0,2λ,2﹣2λ),E(0,0,1),H(1,2,0),=(1,2,﹣1),=(0,2λ,1﹣2λ),设平面MEH的法向量=(x,y,z),则,取y=1,得=(,1,),平面CFG的法向量=(1,﹣2,﹣3),∵平面CFG⊥平面MEH,∴=﹣2﹣=0,解得∈[0,1].∴棱PD上存在点M,使得平面CFG⊥平面MEH,此时=.。

2019-2020年高考数学大题专题练习——立体几何(三)

2019-2020年高考数学大题专题练习——立体几何(三)

2019-2020年高考数学大题专题练习——立体几何(三)53.如图,在四棱锥E ﹣ABCD 中,平面CDE ⊥平面ABCD ,∠DAB =∠ABC =90°,AB =BC =1,AD =ED =3,EC =2.(1)证明:AB ⊥平面BCE ;(2)求直线AE 与平面CDE 所成角的正弦值.54.如图1,2,已知ABCD 是矩形,M ,N 分别为边AD ,BC 的中点,MN 与AC 交于点O ,沿MN 将矩形MNCD 折起,设AB =2,BC =4,二面角B ﹣MN ﹣C 的大小为θ.(1)当θ=90°时,求cos ∠AOC 的值;(2)点θ=60°时,点P 是线段MD 上一点,直线AP 与平面AOC 所成角为α.若sin α=,求714线段MP 的长.55.在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 为直角梯形,∠CDA =∠BAD =90°,AD =DC =,AB =PA =2,且E 为线段PB 上的一动点.22(1)若E 为线段PB 的中点,求证:CE ∥平面PAD ;(2)当直线CE 与平面PAC 所成角小于,求PE 长度的3π取值范围.56.如图,在几何体中,平面底面,四边形是正方111ABC A B C -11A ACC ⊥ABC 11A ACC 形,,是的中点,且11B C BC ∥Q 1A B 112AC BC B C ==,. 2π3ACB ∠=(Ⅰ) 证明:平面;1B Q ∥11A ACC (Ⅱ) 求直线与平面所成角的正弦值.AB 11A BB57.如图,已知和所在平面互相垂直,且,ABC V BCD V 090BAC BCD ∠=∠=,点分别在线段,AB AC =CB CD =,E F ,BD CD上,沿直线将向上翻折使得与重EF EFD V D A 合(Ⅰ)求证:;AB CF ⊥(Ⅱ)求直线与平面所成角。

AE ABC 58.如图,四边形是圆台的轴截面,,点在底面圆周上,且ABCD 1OO 24AB CD ==M ,.2π=∠AOM DM AC ⊥(Ⅰ)求圆台的体积;1OO (Ⅱ)求二面角的平面角的余弦值.A DMO--59.如图,已知菱形与等腰所在平面相互垂直..ABCD PAB ∆120PAB BAD ∠=∠=为PB 中点 .E (Ⅰ)求证:平面ACE ;//PD (Ⅱ)求二面角的余弦值B CE D --60.如图,在四面体中,平面⊥平面,, ,ABCD ACD BCD 90BCA ∠=︒1AC =,为等边三角形.2AB =BCD ∆(Ⅰ)求证:⊥平面AC BCD(Ⅱ)求直线与平面所成角的正弦值.CDABD61.已知:平行四边形ABCD 中,∠DAB =45°,AB =AD =2,平面AED ⊥平面ABCD ,△22AED 为等边三角形,EF ∥AB ,EF =,M 为线段BC 的中点。

2020高考数学复习--专题三立体几何第1讲空间几何体的三视图、表面积与体积练典型习题提数学素养(含解析)

2020高考数学复习--专题三立体几何第1讲空间几何体的三视图、表面积与体积练典型习题提数学素养(含解析)

第1讲 空间几何体的三视图、表面积与体积一、选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( ) A .等边三角形 B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形 解析:选A.AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2, 在Rt △AOB 中,AB =12+(3)2=2,同理AC =2,所以△ABC 是等边三角形. 2.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( ) A .0 B .1 C .2D .3解析:选B.①错误,只有这两点的连线平行于轴时才是母线;②正确;③错误,棱台是上、下底面相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.3.(2019·武汉市调研测试)如图,在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,M 为CD 的中点,则三棱锥A ­BC 1M 的体积VA ­BC 1M =( )A .12B .14C .16D .112解析:选C.VA ­BC 1M =VC 1­ABM =13S △ABM ·C 1C =13×12AB ×AD ×C 1C =16.故选C.4.把一个半径为20的半圆卷成圆锥的侧面,则这个圆锥的高为( ) A .10 B .10 3 C .10 2D .5 3解析:选B.设圆锥的底面半径为r ,高为h .因为半圆的弧长等于圆锥的底面周长,半圆的半径等于圆锥的母线,所以2πr =20π,所以r =10,所以h =202-102=10 3.5.(2019·湖北武汉5月模拟)已知长方体全部棱长的和为36,表面积为52,则其体对角线的长为( )A .4B .29C .223D .417解析:选B.设长方体的长、宽、高分别为x ,y ,z ,由已知得⎩⎪⎨⎪⎧4(x +y +z )=36,①2(xy +xz +yz )=52,②①的两边同时平方得x 2+y 2+z 2+2xy +2xz +2yz =81,把②代入得x 2+y 2+z 2=29,所以长方体的体对角线的长为29.故选B.6.已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4πB .163πC .323πD .16π解析:选D.如图,由题意知圆柱的中心O 为这个球的球心,于是,球的半径r =OB =OA 2+AB 2=12+(3)2=2.故这个球的表面积S =4πr 2=16π.故选D.7.在长方体ABCD ­A 1B 1C 1D 1中,AB =AD =2,AA 1=1,则点B 到平面D 1AC 的距离等于( )A .33B .63C .1D .2解析:选B.如图,连接BD 1,易知D 1D 就是三棱锥D 1­ABC 的高,AD 1=CD 1=5,取AC 的中点O ,连接D 1O ,则D 1O ⊥AC ,所以D 1O =AD 21-AO2= 3.设点B 到平面D 1AC 的距离为h ,则由VB ­D 1AC =VD 1­ABC ,即13S △D 1AC ·h =13S △ABC ·D 1D ,又S △D 1AC =12D 1O ·AC =12×3×22=6,S △ABC =12AB ·BC =12×2×2=2,所以h =63.故选B. 8.在三棱锥S ­ABC 中,SB ⊥BC ,SA ⊥AC ,SB =BC ,SA =AC ,AB =12SC ,且三棱锥S ­ABC的体积为932,则该三棱锥的外接球半径是( )A .1B .2C .3D .4解析:选C.取SC 的中点O ,连接OA ,OB ,则OA =OB =OC =OS ,即O 为三棱锥的外接球球心,设半径为r ,则13×2r ×34r 2=932,所以r =3.9.(2019·安徽省江南十校3月检测)我国南北朝时期的科学家祖暅提出了计算体积的祖暅原理:“幂势既同,则积不容异.”意思是:如果两个等高的几何体在等高处的水平截面的面积恒等,那么这两个几何体的体积相等.利用此原理求以下几何体的体积:如图,曲线y =x 2(0≤y ≤L )和直线y =L 围成的封闭图形绕y 轴旋转一周得几何体Z ,将Z 放在与y 轴垂直的水平面α上,用平行于平面α,且与Z 的顶点O 距离为l 的平面截几何体Z ,得截面圆的面积为π(l )2=πl .由此构造右边的几何体Z 1(三棱柱ABC ­A 1B 1C 1),其中AC ⊥平面α,BB 1C 1C ∥α,EFPQ ∥α,AC =L ,AA 1⊂α,AA 1=π,Z 1与Z 在等高处的截面面积都相等,图中EFPQ 和BB 1C 1C 为矩形,且PQ =π,FP =l ,则几何体Z 1的体积为( )A .πL 2B .πL 3C .12πL 2D .12πL 3 解析:选C.由题意可知,在高为L 处,几何体Z 和Z 1的水平截面面积相等,为πL , 所以S 矩形BB 1C 1C =πL ,所以BC =L ,所以V 三棱柱ABC ­A 1B 1C 1=S △ABC ·π=12πL 2,故选C.10.(2019·重庆市七校联合考试)已知正三棱锥的高为6,内切球(与四个面都相切)的表面积为16π,则其底面边长为( )A .18B .12C .6 3D .4 3解析:选B.由题意知,球心在三棱锥的高PE 上,设内切球的半径为R ,则S 球=4πR 2=16π,所以R =2,所以OE =OF =2,OP =4.在Rt △OPF 中,PF =OP 2-OF 2=2 3.因为△OPF ∽△DPE ,所以OF DE =PF PE ,得DE =23,AD =3DE =63,AB =23AD =12.故选B. 11.(多选)在正方体上任意选择4个顶点,它们可能是如下几种几何图形的4个顶点,这些几何图形可以是( )A .矩形B .有三个面为等腰直角三角形,有一个面为等边三角形的四面体C .每个面都是直角三角形的四面体D .每个面都是等边三角形的四面体解析:选ABCD.4个顶点连成矩形的情形显然成立;图(1)中四面体A 1­D 1B 1A 是B 中描述的情形;图(2)中四面体D ­A 1C 1B 是D 中描述的情形;图(3)中四面体A 1­D 1B 1D 是C 中描述的情形.12.(多选)如图,已知正方体ABCD ­A 1B 1C 1D 1的棱长为2,则下列四个结论正确的是( )A .直线A 1C 1与AD 1为异面直线B .A 1C 1∥平面ACD 1 C .BD 1⊥ACD .三棱锥D 1­ADC 的体积为83解析:选ABC.对于A ,直线A 1C 1⊂平面A 1B 1C 1D 1,AD 1⊂平面ADD 1A 1,D 1∉直线A 1C 1,则易得直线A 1C 1与AD 1为异面直线,故A 正确;对于B ,因为A 1C 1∥AC ,A 1C 1⊄平面ACD 1,AC ⊂平面ACD 1, 所以A 1C 1∥平面ACD 1,故B 正确;对于C ,连接BD ,因为正方体ABCD ­A 1B 1C 1D 1中,AC ⊥BD ,AC ⊥DD 1,BD ∩DD 1=D ,所以AC ⊥平面BDD 1,所以BD 1⊥AC ,故C 正确;对于D ,三棱锥D 1­ADC 的体积V 三棱锥D 1­ADC =13×12×2×2×2=43,故D 错误.13.(多选)如图,AB 为圆O 的直径,点E ,F 在圆O 上,AB ∥EF ,矩形ABCD 所在平面和圆O 所在平面垂直,且AB =2,AD =EF =1.则( )A .平面BCF ⊥平面ADFB .EF ⊥平面DAFC .△EFC 为直角三角形D .V C ­BEF ∶V F ­ABCD =1∶4解析:选AD.因BF ⊥AF ,BF ⊥DA ,所以BF ⊥平面DAF , 所以平面BCF ⊥平面ADF ,由题意可知,平面CBF 将几何体EFABCD 分成的两个锥体的体积分别为V 四棱锥F ­ABCD ,V 三棱锥F ­CBE .过点F 作FG ⊥AB 于点G ,因为平面ABCD ⊥平面ABEF ,平面ABCD ∩平面ABEF =AB ,FG ⊂平面ABEF ,所以FG ⊥平面ABCD .所以V 四棱锥F ­ABCD =13×1×2×FG =23FG ,V 三棱锥F ­BCE =V 三棱锥C ­BEF =13×S △BEF×CB =13×12×FG ×1×1=16FG ,由此可得V 三棱锥C ­BEF ∶V 四棱锥F ­ABCD =1∶4.二、填空题14.(一题多解)(2019·淄博市第一次模拟测试)底面边长为6,侧面为等腰直角三角形的正三棱锥的高为________.解析:法一:由题意得,三棱锥的侧棱长为32,设正三棱锥的高为h ,则13×12×32×32×32=13×34×36h ,解得h = 6.法二:由题意得,三棱锥的侧棱长为32,底面正三角形的外接圆的半径为23,所以正三棱锥的高为18-12= 6.答案: 615.(2019·高考天津卷)已知四棱锥的底面是边长为2的正方形,侧棱长均为 5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.解析:由题可得,四棱锥底面对角线的长为2,则圆柱底面的半径为12,易知四棱锥的高为5-1=2,故圆柱的高为1,所以圆柱的体积为π×⎝ ⎛⎭⎪⎫122×1=π4. 答案:π416.(2019·高考全国卷Ⅰ)已知∠ACB =90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为____________.解析:如图,过点P 分别作PE ⊥BC 交BC 于点E ,作PF ⊥AC 交AC 于点F .由题意知PE =PF = 3.过P 作PH ⊥平面ABC 于点H ,连接HE ,HF ,HC ,易知HE =HF ,则点H 在∠ACB 的平分线上,又∠ACB =90°,故△CEH为等腰直角三角形.在Rt △PCE 中,PC =2,PE =3,则CE =1,故CH =2,在Rt △PCH 中,可得PH =2,即点P 到平面ABC 的距离为 2.答案: 217.(2019·河南八市重点高中联盟测评改编)已知一个高为1的三棱锥,各侧棱长都相等,底面是边长为2的等边三角形,则三棱锥的表面积为________,若三棱锥内有一个体积为V 的球,则V 的最大值为________.解析:该三棱锥侧面的斜高为⎝ ⎛⎭⎪⎫13×32+12=233,则S 侧=3×12×2×233=23,S底=12×3×2=3,所以三棱锥的表面积S 表=23+3=3 3.由题意知,当球与三棱锥的四个面都相切时,其体积最大.设三棱锥的内切球的半径为r ,则三棱锥的体积V 锥=13S 表·r=13S 底·1,所以33r =3,所以r =13,所以三棱锥的内切球的体积最大为V max =43πr 3=4π81. 答案:3 3 4π81。

2020年高考数学试题分项版—立体几何(解析版)

2020年高考数学试题分项版—立体几何(解析版)

2020年高考数学试题分项版——立体几何(解析版)一、选择题1.(2020·全国Ⅰ理,3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).2.(2020·全国Ⅰ理,10)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆,若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a .由πr 2=4π,得r =2, 则33a =2,a =23,OO 1=a =2 3. 在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.3.(2020·全国Ⅱ理,7)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H 答案 A解析 由三视图还原几何体,如图所示,由图可知,所求端点在侧视图中对应的点为E .4.(2020·全国Ⅱ理,10)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C .1 D.32答案 C 解析如图所示,过球心O 作OO 1⊥平面ABC ,则O 1为等边三角形ABC 的外心.设△ABC 的边长为a , 则34a 2=934,解得a =3, ∴O 1A =23×32×3= 3.设球O 的半径为r ,则由4πr 2=16π,得r =2,即OA =2. 在Rt △OO 1A 中,OO 1=OA 2-O 1A 2=1, 即O 到平面ABC 的距离为1.5.(2020·全国Ⅲ理,8)下图为某几何体的三视图,则该几何体的表面积是( )A .6+4 2B .4+4 2C .6+2 3D .4+2 3答案 C解析 如图,该几何体为三棱锥,且其中有三个面是腰长为2的等腰直角三角形,第四个面是边长为22的等边三角形,所以该几何体的表面积为3×12×2×2+12×22×22×32=6+2 3.6.(2020·新高考全国Ⅰ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90° 答案 B解析 如图所示,⊙O 为赤道平面,⊙O 1为A 点处的日晷面所在的平面,由点A处的纬度为北纬40°可知∠OAO1=40°,又点A处的水平面与OA垂直,晷针AC与⊙O1所在的面垂直,则晷针AC与水平面所成角为40°.7.(2020·新高考全国Ⅱ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°答案 B解析如图所示,⊙O为赤道平面,⊙O1为A点处的日晷面所在的平面,由点A处的纬度为北纬40°可知∠OAO1=40°,又点A处的水平面与OA垂直,晷针AC与⊙O1所在的面垂直,则晷针AC与水平面所成角为40°.8.(2020·北京,4)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+ 3 B.6+2 3 C.12+ 3 D.12+2 3答案 D解析 由三视图还原几何体,该几何体为底面是边长为2的正三角形,高为2的直三棱柱, S 底=2×34×22=2 3. S 侧=3×2×2=12,则三棱柱的表面积为23+12.9.(2020·北京,10)2020年3月14日是全球首个国际圆周率日(π Day).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是( ) A .3n ⎝⎛⎭⎫sin 30°n +tan 30°n B .6n ⎝⎛⎭⎫sin 30°n +tan 30°n C .3n ⎝⎛⎭⎫sin 60°n +tan 60°n D .6n ⎝⎛⎭⎫sin 60°n+tan 60°n 答案 A解析 设内接正6n 边形的周长为C 1,外切正6n 边形的周长为C 2,如图(1)所示,sin 360°12n =BC 1, ∴BC =sin 30°n,∴AB =2sin 30°n ,C 1=12n sin 30°n.如图(2)所示,tan 360°12n =B ′C ′1,∴B ′C ′=tan 30°n,∴A ′B ′=2tan 30°n ,C 2=12n tan 30°n .∴2π=C 1+C 22=6n ⎝⎛⎭⎫sin 30°n +tan 30°n , ∴π=3n ⎝⎛⎭⎫sin 30°n+tan 30°n . 10.(2020·天津,5)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( )A .12πB .24πC .36πD .144π 答案 C解析 由题意知,正方体的体对角线就是球的直径 ∴2R =(23)2+(23)2+(23)2=6, ∴R =3,∴S 球=4πR 2=36π.11.(2020·浙江,5)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm 3)是( )A.73B.143 C .3 D .6 答案 A解析 如图,三棱柱的体积V 1=12×2×1×2=2,三棱锥的体积V 2=13×12×2×1×1=13,因此,该几何体的体积V =V 1+V 2=2+13=73.12.(2020·浙江,6)已知空间中不过同一点的三条直线l ,m ,n ,“l ,m ,n 共面”是“l ,m ,n 两两相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 如图,直线l ,m ,n 不过同一点,且l ,m ,n 共面有三种情况:①同一平面内三线平行;②两平行线与另一线相交;③三线两两相交.因此,“l ,m ,n 两两相交”是“l ,m ,n 共面”的一种情况,即“l ,m ,n 共面”是“l ,m ,n 两两相交”的必要不充分条件.13.(2020·全国Ⅰ文,3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).14.(2020·全国Ⅰ文,12)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a . 由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.15.(2020·全国Ⅱ文,11)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C .1 D.32答案 C解析 如图所示,过球心O 作OO 1⊥平面ABC ,则O 1为等边三角形ABC 的外心. 设△ABC 的边长为a , 则34a 2=934,解得a =3, ∴O 1A =23×32×3= 3.设球O 的半径为r ,则由4πr 2=16π,得r =2,即OA =2. 在Rt △OO 1A 中,OO 1=OA 2-O 1A 2=1, 即O 到平面ABC 的距离为1.16.(2020·全国Ⅲ文,9)下图为某几何体的三视图,则该几何体的表面积是( )A .6+4 2B .4+4 2C .6+2 3D .4+2 3答案 C解析 如图,该几何体为三棱锥,且其中有三个面是腰长为2的等腰直角三角形,第四个面是边长为22的等边三角形,所以该几何体的表面积为3×12×2×2+12×22×22×32=6+2 3.二、填空题1.(2020·全国Ⅱ理,16)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内; p 2:过空间中任意三点有且仅有一个平面; p 3:若空间两条直线不相交,则这两条直线平行; p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是________. ①p 1∧p 4;②p 1∧p 2;③23p p ⌝∨;④34p p ⌝∨⌝. 答案 ①③④解析 p 1是真命题,两两相交且不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p 1为真命题;p 2是假命题,因为当空间中三点在一条直线上时,有无数个平面过这三个点;p 3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p 4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知綈p 2,綈p 3,綈p 4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.2.(2020·全国Ⅲ理,15)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.3.(2020·新高考全国Ⅰ,16)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________. 答案2π2解析 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q , 连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r ,则r =R 2球-D 1E 2=5-3= 2. 又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.4.(2020·新高考全国Ⅱ,13)棱长为2的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱BB 1,AB 的中点,则三棱锥A 1-D 1MN 的体积为________. 答案 1解析 如图,由正方体棱长为2,得S △A 1MN =2×2-2×12×2×1-12×1×1=32,又易知D 1A 1为三棱锥D 1-A 1MN 的高,且D 1A 1=2, ∴1111A D MN D A MN V V --==13·1A MN S △·D 1A 1=13×32×2=1. 5.(2020·江苏,9)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半径为0.5 cm ,则此六角螺帽毛坯的体积是________cm 3.答案 ⎝⎛⎭⎫123-π2 解析 螺帽的底面正六边形的面积 S =6×12×22×sin 60°=63(cm 2),正六棱柱的体积V 1=63×2=123(cm 3), 圆柱的体积V 2=π×0.52×2=π2(cm 3),所以此六角螺帽毛坯的体积 V =V 1-V 2=⎝⎛⎭⎫123-π2cm 3. 6.(2020·浙江,14)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π, ∴r =12l .又圆锥侧面展开图为半圆, ∴12πl 2=2π, ∴l =2,∴r =1.7.(2020·全国Ⅱ文,16)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内; p 2:过空间中任意三点有且仅有一个平面; p 3:若空间两条直线不相交,则这两条直线平行; p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是________. ①p 1∧p 4;②p 1∧p 2;③23p p ⌝∨;④34p p ⌝∨⌝. 答案 ①③④解析 p 1是真命题,两两相交且不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p 1为真命题;p 2是假命题,因为当空间中三点在一条直线上时,有无数个平面过这三个点;p 3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p 4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知綈p 2,綈p 3,綈p 4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.8.(2020·全国Ⅲ文,16)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.三、解答题1.(2020·全国Ⅰ理,18)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE =AD .△ABC 是底面的内接正三角形,P 为DO 上一点,PO =66DO .(1)证明:P A ⊥平面PBC ; (2)求二面角B -PC -E 的余弦值.(1)证明 由题设,知△DAE 为等边三角形,设AE =1, 则DO =32,CO =BO =12AE =12, 所以PO =66DO =24, PC =PO 2+OC 2=64,PB =PO 2+OB 2=64, 又△ABC 为等边三角形,则BAsin 60°=2OA , 所以BA =32, P A =PO 2+OA 2=64, P A 2+PB 2=34=AB 2,则∠APB =90°,所以P A ⊥PB ,同理P A ⊥PC , 又PC ∩PB =P ,所以P A ⊥平面PBC . (2)解 过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 所在直线为x 轴,ON 所在直线为y 轴,OD 所在直线为z 轴,建立如图所示的空间直角坐标系,则E ⎝⎛⎭⎫-12,0,0,P ⎝⎛⎭⎫0,0,24, B ⎝⎛⎭⎫-14,34,0,C ⎝⎛⎭⎫-14,-34,0,PC →=⎝⎛⎭⎫-14,-34,-24,PB →=⎝⎛⎭⎫-14,34,-24,PE →=⎝⎛⎭⎫-12,0,-24,设平面PCB 的一个法向量为n =(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PB →=0,得⎩⎨⎧-x 1-3y 1-2z 1=0,-x 1+3y 1-2z 1=0,令x 1=2,得z 1=-1,y 1=0, 所以n =(2,0,-1),设平面PCE 的一个法向量为m =(x 2,y 2,z 2), 由⎩⎪⎨⎪⎧m ·PC →=0,m ·PE →=0,得⎩⎨⎧-x 2-3y 2-2z 2=0,-2x 2-2z 2=0,令x 2=1,得z 2=-2,y 2=33, 所以m =⎝⎛⎭⎫1,33,-2,故cos 〈m ,n 〉=m ·n|m |·|n |=223×103=255, 所以二面角B -PC -E 的余弦值为255.2.(2020·全国Ⅱ理,20)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.(1)证明 因为侧面BB 1C 1C 是矩形,且M ,N 分别为BC ,B 1C 1的中点, 所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 由已知得AM ⊥BC .以M 为坐标原点,MA →的方向为x 轴正方向,|MB →|为单位长度,建立如图所示的空间直角坐标系,则AB =2,AM = 3.连接NP ,则四边形AONP 为平行四边形, 故PM =233,E ⎝⎛⎭⎫233,13,0.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设Q (a,0,0), 则NQ =4-⎝⎛⎭⎫233-a 2,B 1⎝⎛⎭⎪⎫a ,1,4-⎝⎛⎭⎫233-a 2, 故B 1E →=⎝ ⎛⎭⎪⎫233-a ,-23,-4-⎝⎛⎭⎫233-a 2,|B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量,故sin ⎝⎛⎭⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉 =n ·B 1E →|n ||B 1E →|=1010.所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010. 3.(2020·全国Ⅲ理,19)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.(1)证明:点C 1在平面AEF 内;(2)若AB =2,AD =1,AA 1=3,求二面角A -EF -A 1的正弦值.(1)证明 设AB =a ,AD =b ,AA 1=c ,如图,以C 1为坐标原点,C 1D 1—→,C 1B 1—→,C 1C —→的方向分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系C 1-xyz .连接C 1F ,则C 1(0,0,0),A (a ,b ,c ), E ⎝⎛⎭⎫a ,0,23c ,F ⎝⎛⎭⎫0,b ,13c , EA →=⎝⎛⎭⎫0,b ,13c ,C 1F →=⎝⎛⎭⎫0,b ,13c , 所以EA →=C 1F →,所以EA ∥C 1F , 即A ,E ,F ,C 1四点共面, 所以点C 1在平面AEF 内.(2)解 由已知得A (2,1,3),E (2,0,2),F (0,1,1),A 1(2,1,0), 则AE →=(0,-1,-1),AF →=(-2,0,-2), A 1E →=(0,-1,2),A 1F →=(-2,0,1). 设n 1=(x 1,y 1,z 1)为平面AEF 的法向量, 则⎩⎪⎨⎪⎧n 1·AE →=0,n 1·AF →=0,即⎩⎪⎨⎪⎧-y 1-z 1=0,-2x 1-2z 1=0,可取n 1=(-1,-1,1).设n 2=(x 2,y 2,z 2)为平面A 1EF 的法向量, 则⎩⎪⎨⎪⎧n 2·A 1E →=0,n 2·A 1F →=0,即⎩⎪⎨⎪⎧-y 2+2z 2=0,-2x 2+z 2=0,同理可取n 2=⎝⎛⎭⎫12,2,1. 因为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-77,所以二面角A -EF -A 1的正弦值为427. 4.(2020·新高考全国Ⅰ,20)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. (1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l ,因为在四棱锥P -ABCD 中,底面ABCD 是正方形, 所以AD ⊥DC ,所以l ⊥DC ,且PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD , 因为DC ∩PD =D , 所以l ⊥平面PDC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,如图建立空间直角坐标系D -xyz ,因为PD =AD =1,则有D (0,0,0),C (0,1,0),A (1,0,0),P (0,0,1),B (1,1,0), 设Q (m,0,1),则有DC →=(0,1,0),DQ →=(m,0,1),PB →=(1,1,-1), 设平面QCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DC →·n =0,DQ →·n =0,即⎩⎪⎨⎪⎧y =0,mx +z =0,令x =1,则z =-m ,所以平面QCD 的一个法向量为n =(1,0,-m ), 则cos 〈n ,PB →〉=n ·PB →|n ||PB →|=1+0+m 3·m 2+1. 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB 与平面QCD 所成角的正弦值等于 |cos 〈n ,PB →〉|=|1+m |3·m 2+1=33·1+2m +m 2m 2+1=33·1+2m m 2+1≤33·1+2|m |m 2+1≤33·1+1=63,当且仅当m =1时取等号,所以直线PB 与平面QCD 所成角的正弦值的最大值为63. 5.(2020·新高考全国Ⅱ,20)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB =2,求PB 与平面QCD 所成角的正弦值. (1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l ,因为在四棱锥P -ABCD 中,底面ABCD 是正方形,所以AD ⊥DC ,所以l ⊥DC ,且PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD , 因为DC ∩PD =D , 所以l ⊥平面PDC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则D (0,0,0),C (0,1,0), B (1,1,0),P (0,0,1),DC →=(0,1,0),PB →=(1,1,-1).由(1)设Q (a,0,1),则BQ →=(a -1,-1,1). 由题意知(a -1)2+2=2, ∴a =1,∴DQ →=(1,0,1).设n =(x ,y ,z )是平面QCD 的一个法向量, 则⎩⎪⎨⎪⎧n ·DQ →=0,n ·DC →=0,即⎩⎪⎨⎪⎧x +z =0,y =0,可取n =(1,0,-1),∴cos 〈n ,PB →〉=n ·PB →|n |·|PB →|=63,故PB 与平面QCD 所成角的正弦值为63. 6.(2020·北京,16)如图,在正方体ABCD -A 1B 1C 1D 1中,E 为BB 1的中点.(1)求证:BC 1∥平面AD 1E ;(2)求直线AA 1与平面AD 1E 所成角的正弦值. (1)证明 在正方体ABCD -A 1B 1C 1D 1中, AB ∥A 1B 1且AB =A 1B 1,A 1B 1∥C 1D 1且A 1B 1=C 1D 1, ∴AB ∥C 1D 1且AB =C 1D 1,∴四边形ABC 1D 1为平行四边形,则BC 1∥AD 1, ∵BC 1⊄平面AD 1E ,AD 1⊂平面AD 1E , ∴BC 1∥平面AD 1E .(2)解 以点A 为坐标原点,AD ,AB ,AA 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系A -xyz ,设正方体ABCD -A 1B 1C 1D 1的棱长为2, 则A (0,0,0),A 1(0,0,2),D 1(2,0,2),E (0,2,1), AD 1→=(2,0,2),AE →=(0,2,1),AA 1→=(0,0,2), 设平面AD 1E 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AD 1→=0,n ·AE →=0,得⎩⎪⎨⎪⎧2x +2z =0,2y +z =0,令z =-2,得x =2,y =1,则n =(2,1,-2). cos 〈n ,AA 1→〉=n ·AA 1→|n |·|AA 1→|=-43×2=-23.因此,直线AA 1与平面AD 1E 所成角的正弦值为23.7.(2020·天津,17)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,AC ⊥BC ,AC =BC =2,CC 1=3,点D ,E 分别在棱AA 1和棱CC 1上,且AD =1,CE =2,M 为棱A 1B 1的中点.(1)求证:C 1M ⊥B 1D ;(2)求二面角B -B 1E -D 的正弦值;(3)求直线AB 与平面DB 1E 所成角的正弦值.(1)证明 依题意,以C 为坐标原点,分别以CA →,CB →,CC 1→的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得C (0,0,0),A (2,0,0),B (0,2,0),C 1(0,0,3),A 1(2,0,3),B 1(0,2,3),D (2,0,1),E (0,0,2),M (1,1,3).则C 1M →=(1,1,0),B 1D →=(2,-2,-2), ∵C 1M →·B 1D →=2-2+0=0,∴C 1M ⊥B 1D .(2)解 依题意,CA →=(2,0,0)是平面BB 1E 的一个法向量,EB 1→=(0,2,1),ED →=(2,0,-1). 设n =(x ,y ,z )为平面DB 1E 的法向量, 则⎩⎪⎨⎪⎧n ·EB 1→=0,n ·ED →=0,即⎩⎪⎨⎪⎧2y +z =0,2x -z =0.不妨设x =1,可得n =(1,-1,2).∴cos 〈CA →,n 〉=CA →·n |CA →||n |=66,∴sin 〈CA →,n 〉=1-16=306. ∴二面角B -B 1E -D 的正弦值为306. (3)解 依题意,AB →=(-2,2,0),由(2)知,n =(1,-1,2)为平面DB 1E 的一个法向量, ∴cos 〈AB →,n 〉=AB →·n |AB →||n |=-33,∴直线AB 与平面DB 1E 所成角的正弦值为33. 8.(2020·江苏,15)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.证明 (1)因为E ,F 分别是AC ,B 1C 的中点, 所以EF ∥AB 1.又EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1, 所以EF ∥平面AB 1C 1.(2)因为B 1C ⊥平面ABC ,AB ⊂平面ABC , 所以B 1C ⊥AB .又AB ⊥AC ,B 1C ⊂平面AB 1C ,AC ⊂平面AB 1C , B 1C ∩AC =C , 所以AB ⊥平面AB 1C . 又因为AB ⊂平面ABB 1, 所以平面AB 1C ⊥平面ABB 1.9.(2020·江苏,22)在三棱锥A -BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F -DE -C 的大小为θ,求sin θ的值.解 (1)如图,连接OC ,因为CB =CD ,O 为BD 的中点,所以CO ⊥BD .又AO ⊥平面BCD ,所以AO ⊥OB ,AO ⊥OC .以{OB →,OC →,OA →}为基底,建立空间直角坐标系O -xyz . 因为BD =2,CB =CD =5,AO =2, 所以B (1,0,0),D (-1,0,0),C (0,2,0),A (0,0,2). 因为E 为AC 的中点,所以E (0,1,1). 所以AB →=(1,0,-2),DE →=(1,1,1),所以|cos 〈AB →,DE →〉|=|AB →·DE →||AB →|·|DE →|=|1+0-2|5×3=1515.因此,直线AB 与DE 所成角的余弦值为1515. (2)因为点F 在BC 上,BF =14BC ,BC →=(-1,2,0).所以BF →=14BC →=⎝⎛⎭⎫-14,12,0. 又DB →=(2,0,0),故DF →=DB →+BF →=⎝⎛⎭⎫74,12,0.设n 1=(x 1,y 1,z 1)为平面DEF 的一个法向量, 则⎩⎪⎨⎪⎧ DE →·n 1=0,DF →·n 1=0,即⎩⎪⎨⎪⎧x 1+y 1+z 1=0,74x 1+12y 1=0,令x 1=2,得y 1=-7,z 1=5,所以n 1=(2,-7,5). 设n 2=(x 2,y 2,z 2)为平面DEC 的一个法向量, 又DC →=(1,2,0),则⎩⎪⎨⎪⎧DE →·n 2=0,DC →·n 2=0,即⎩⎪⎨⎪⎧x 2+y 2+z 2=0,x 2+2y 2=0,令x 2=2,得y 2=-1,z 2=-1, 所以n 2=(2,-1,-1). 故|cos θ|=|n 1·n 2||n 1|·|n 2|=|4+7-5|78×6=1313. 所以sin θ=1-cos 2θ=23913. 10.(2020·浙江,19)如图,在三棱台ABC -DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(1)证明:EF ⊥DB ;(2)求直线DF 与平面DBC 所成角的正弦值.(1)证明 如图(1),过点D 作DO ⊥AC ,交直线AC 于点O ,连接OB .由∠ACD =45°,DO ⊥AC ,得CD =2CO . 由平面ACFD ⊥平面ABC ,得DO ⊥平面ABC , 所以DO ⊥BC .由∠ACB =45°,BC =12CD =22CO ,得BO ⊥BC .所以BC ⊥平面BDO ,故BC ⊥DB . 由ABC -DEF 为三棱台, 得BC ∥EF ,所以EF ⊥DB .(2)解 方法一 如图(2),过点O 作OH ⊥BD ,交直线BD 于点H ,连接CH .由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角. 由BC ⊥平面BDO ,得OH ⊥BC , 故OH ⊥平面DBC ,所以∠OCH 为直线CO 与平面DBC 所成角. 设CD =22,则DO =OC =2,BO =BC =2, 得BD =6,OH =233,所以sin ∠OCH =OH OC =33.因此,直线DF 与平面DBC 所成角的正弦值为33. 方法二 由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图(3),以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O-xyz .设CD =22,由题意知各点坐标如下:O (0,0,0),B (1,1,0),C (0,2,0),D (0,0,2).因此OC →=(0,2,0),BC →=(-1,1,0),CD →=(0,-2,2). 设平面DBC 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·BC →=0,n ·CD →=0,即⎩⎪⎨⎪⎧-x +y =0,-2y +2z =0,可取n =(1,1,1),所以sin θ=|cos 〈OC →,n 〉|=|OC →·n ||OC →|·|n |=33.因此,直线DF 与平面DBC 所成角的正弦值为33. 11.(2020·全国Ⅰ文,19)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面P AB ⊥平面P AC ;(2)设DO =2,圆锥的侧面积为3π,求三棱锥P -ABC 的体积. (1)证明 ∵D 为圆锥顶点,O 为底面圆心, ∴OD ⊥平面ABC ,∵P 在DO 上,OA =OB =OC , ∴P A =PB =PC ,∵△ABC 是圆内接正三角形, ∴AC =BC ,△P AC ≌△PBC ,∴∠APC =∠BPC =90°,即PB ⊥PC ,P A ⊥PC , P A ∩PB =P ,∴PC ⊥平面P AB ,PC ⊂平面P AC ,∴平面P AB ⊥平面P AC .(2)解 设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为πrl =3π,rl =3,OD 2=l 2-r 2=2,解得r =1,l =3,AC =2r sin 60°=3, 在等腰直角三角形APC 中, AP =22AC =62, 在Rt △P AO 中,PO =AP 2-OA 2=64-1=22, ∴三棱锥P -ABC 的体积为V P -ABC =13PO ·S △ABC =13×22×34×3=68.12.(2020·全国Ⅱ文,20)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO =AB =6,AO ∥平面EB 1C 1F ,且∠MPN =π3,求四棱锥B-EB 1C 1F 的体积.(1)证明 因为侧面BB 1C 1C 是矩形,且M ,N 分别为BC ,B 1C 1的中点, 所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 因为AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN , 平面A 1AMN ∩平面EB 1C 1F =PN , 所以AO ∥PN ,又AP ∥ON ,故四边形APNO 是平行四边形,所以PN =AO =6,AP =ON =13AM =3,PM =23AM =23,EF =13BC =2.因为BC ∥平面EB 1C 1F ,所以四棱锥B -EB 1C 1F 的顶点B 到底面EB 1C 1F 的距离等于点M 到底面EB 1C 1F 的距离. 如图,作MT ⊥PN ,垂足为T ,则由(1)知,MT ⊥平面EB 1C 1F , 故MT =PM sin ∠MPN =3. 底面EB 1C 1F 的面积为12(B 1C 1+EF )·PN =12×(6+2)×6=24. 所以四棱锥B -EB 1C 1F 的体积为13×24×3=24.13.(2020·全国Ⅲ文,19)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.证明:(1)当AB =BC 时,EF ⊥AC ; (2)点C 1在平面AEF 内. 证明 (1)如图,连接BD ,B 1D 1. 因为AB =BC ,所以四边形ABCD 为正方形,故AC ⊥BD .又因为BB 1⊥平面ABCD ,AC ⊂平面ABCD , 于是AC ⊥BB 1.又BD ∩BB 1=B ,BD ,BB 1⊂平面BB 1D 1D , 所以AC ⊥平面BB 1D 1D .又因为EF ⊂平面BB 1D 1D ,所以EF ⊥AC .(2)如图,在棱AA 1上取点G ,使得AG =2GA 1,连接GD 1,FC 1,FG , 因为ED 1=23DD 1,AG =23AA 1,DD 1∥AA 1且DD 1=AA 1,所以ED 1∥AG 且ED 1=AG , 所以四边形ED 1GA 为平行四边形, 故AE ∥GD 1.因为B 1F =13BB 1,GA 1=13AA 1,BB 1∥AA 1且BB 1=AA 1,所以B 1F ∥GA 1,且B 1F =GA 1, 所以四边形B 1FGA 1是平行四边形, 所以FG ∥A 1B 1且FG =A 1B 1, 所以FG ∥C 1D 1且FG =C 1D 1, 所以四边形FGD 1C 1为平行四边形, 故GD 1∥FC 1. 所以AE ∥FC 1.所以A ,E ,F ,C 1四点共面,即点C 1在平面AEF 内.。

2020高考数学《立体几何初步》专题完整考题(含标准答案)

2020高考数学《立体几何初步》专题完整考题(含标准答案)
(1)求证: ;
(2)求异面直线AC与 的距离;
(3)求三棱锥 的体积.
(1)证明:取AC中点D,连ED,
∵E是AB′的中点,∴ED//
又 是底角等于 的等腰三角形,
(2)
2.
1.正方体 中, 分别是 的中点,那么正方体的过 的截面图形是-----------------------------------------------------( )
(A)三角形 (B)四边形 (C)五边形 (D)六边
ቤተ መጻሕፍቲ ባይዱ二、填空题
3.如图所示,四棱锥P—ABCD的底面ABCD是边长为a的正方形,侧棱PA=a, PB=PD= 则它的5个面中互相垂直的面有__________对.
24.如图,在正三棱柱 中,已知 , , 分别是棱 , 上的点,且 , .
⑴求异面直线 与 所成角的余弦值;
⑵求二面角 的正弦值.
25.如图,把长、宽分别为4、3的长方形ABCD沿对角线AC折成直二面角.
(Ⅰ)求顶点B和D之间的距离;
(Ⅱ)现发现BC边上距点C的 处有一缺口E,请过点E作一截面,将原三棱锥分割成一个三棱锥和一个棱台两部分,为使截去部分体积最小,如何作法请证明你的结论.
2019年高中数学单元测试卷
立体几何初步
学校:__________姓名:__________班级:__________考号:__________
一、选择题
1.下列命题中,正确结论有---------------------------------------------------------------------------( )
11.已知 是平面, 是直线,则下列命题中不正确的是________
①若 ∥ ,则 ②若 ∥ ,则 ∥

2019高考数学大题专题练习立体几何一.doc

2019高考数学大题专题练习立体几何一.doc

2019-2020 年高考数学大题专题练习——立体几何(一)1.如图所示,四棱锥P - ABCD 中,底面 ABCD 为正方形,PD平面ABCD,PD = AB = 2 ,点E, F , G分别为PC, PD , BC的中点.(1) 求证:PA EF ;(2) 求二面角D - FG - E的余弦值 .2.如图所示,该几何体是由一个直角三棱柱ADE - BCF 和一个正四棱锥P - ABCD 组合而成, AD AF ,AE = AD = 2.(1) 证明:平面 PAD 平面ABFE;(2) 求正四棱锥 P - ABCD 的高 h ,使得二面角 C - AF - P 的余弦值是22 .33.四棱锥P ABCD 中,侧面 PDC 是边长为 2 的正三角形,且与底面垂直,底面ABCD 是面积为 2 3 的菱形,ADC 为锐角, M 为 PB 的中点.P(Ⅰ)求证: PD ∥面ACM.M(Ⅱ)求证: PA CD .(Ⅲ)求三棱锥 P ABCD 的体积. C BD A4.如图,四棱锥S ABCD 满足 SA面ABCD,DAB ABC 90 . SA AB BC a ,AD2a .(Ⅰ)求证:面SAB面SAD.(Ⅱ)求证:CD面SAC.SA DBC5.在四棱锥P ABCD中,底面ABCD为矩形,测棱 PD 底面 ABCD , PDDC,点 E 是BC 的中点,作EF PB 交 PB 于 F .P(Ⅰ )求证:平面 PCD 平面 PBC .F E(Ⅱ)求证:PB 平面 EFD .D CA B6.在直棱柱ABC A1B1C1 中,已知AB AC ,设AB1中点为 D ,A1C中点为 E .(Ⅰ)求证: DE ∥平面 BCC1 B1.(Ⅱ )求证:平面ABB1 A1平面 ACC1 A1.AB CD EA1B1C 17.在四棱锥P ABCD 中, PA平面ABCD,AB // CD,AB AD , PA PB ,AB : AD : CD 2 : 2 :1 .(1)证明BD PC ;(2)求二面角 A PC D 的余弦值;(3)设点Q为线段PD上一点,且直线AQ 平面PAC所成角的正弦值为2,求PQ的值 . 3PD8.在正方体ABCD A1 B1C1D1中, O 是 AC 的中点, E 是线段 D1O 上一点,且D1E=λEO. (1)若λ=1,求异面直线 DE 与 CD1所成角的余弦值;(2)若λ=2,求证:平面 CDE⊥平面 CD 1O.9.如图,在四棱锥 P ABCD 中,底面 ABCD 是平行四边形, ∠BCD 135 ,侧面 PAB ⊥底面 ABCD , ∠ BAP 90 , AB AC PA 2 , E , F 分别为 BC , AD 的中点,点 M 在线段 PD 上.(Ⅰ)求证: EF ⊥ 平面 PAC .P(Ⅱ)若 M 为 PD 的中点,求证:ME ∥ 平面 PAB .M(Ⅲ)如果直线 ME 与平面 PBC 所成的角和直线 ME 与ADF平面 ABCD 所在的角相等,求PM的值.BECPD10.如图,在三棱柱ABC A 1B 1C1,AA1⊥底面 ABC , AB ⊥ AC ,AC AB AA1, E , F 分别是棱BC,A 1 A的中点,G为棱CC 1上的一点,且C 1F∥平面 AEG .C 1A 1( 1 )求 CG的值.CC 1GB1F2 )求证: EG ⊥ AC 1( .( 3)求二面角 A 1 AG E 的余弦值.CAEB11.如图,在四棱锥P ABCD 中,PB⊥底面 ABCD ,底面 ABCD 为梯形, AD ∥ BC ,AD⊥ AB ,且PB AB AD 3 , BC 1 .(Ⅰ )若点 F 为 PD 上一点且PF 1PD ,证明: CF ∥平面PAB.3(Ⅱ)求二面角 B PD A 的大小.(Ⅲ )在线段 PD 上是否存在一点M ,使得CM ⊥ PA ?若存在,求出PM 的长;若不存在,说明PF理由.A DB C12.如图,在四棱锥 E ABCD 中,平面EAD⊥平面 ABCD , CD ∥ AB , BC ⊥ CD ,EA⊥ ED , AB 4 ,BC CD EA ED 2.Ⅰ证明: BD ⊥ AE .Ⅱ求平面 ADE 和平面CDE所成角(锐角)的余弦值.EDCAB13.己知四棱锥P ABCD 中, PA 平面 ABCD ,底面ABCD 是菱形,且 PA AB 2 .ABC 60 , BC 、PPD 的中点分别为 E , F . F(Ⅰ)求证 BC PE .A(Ⅱ)求二面角 F AC D 的余弦值. D (Ⅲ)在线段 AB 上是否存在一点G ,使得 AF 平行于B E C平面 PCG ?若存在,指出 G 在 AB 上的位置并给予证明,若不存在,请说明理由.E14.如图,ABCD是边长为3的正方形,DE 平面 ABCD ,AF∥DE , DE 3AF , BE 与平面 ABCD 所成角为 60 .(Ⅰ)求证: AC 平面 BDE .(Ⅱ)求二面角 F BE D 的余弦值.FD C (Ⅲ )设点M线段BD上一个动点,试确定点M 的位置,使得 AM ∥平面 BEF ,并证明你的结论. A B15.如图,PA面 ABC , AB BC ,CAB PA 2BC 2 ,M为PB的中点. D(Ⅰ )求证: AM 平面 PBC .AB(Ⅱ)求二面角 A PC B 的余弦值.MP(Ⅲ)在线段 PC 上是否存在点D,使得BD AC ,若存在,求出PD 的值,若不存在,说明理由.PC16.如图所示,在四棱锥P-ABCD 中, AB⊥平面PAD , AB / /CD , E是 PB 的中点 ,PD 2, PA5, AB AD 3, AH2 . HD(1)证明: PH⊥平面 ABCD ;(2)若 F 是 CD 上的点,且FC 2FD 3,求二面角B EF C的正弦值 .17.如图, DC ⊥平面 ABC,EB / / DC,AC BC EB 2DC 2 ,ACB 120 ,Q为 AB 的中点.(Ⅰ)证明: CQ⊥平面 ABE ;(Ⅱ)求多面体ACED 的体积;(Ⅲ)求二面角A-DE-B 的正切值.18.如图 1 , 在△ ABC 中, AB=BC=2, ∠ B=90 °,D 为 BC 边上一点,以边 AC 为对角线做平行四边形 ADCE ,沿 AC 将△ACE 折起,使得平面 ACE ⊥平面 ABC,如图 2.(1)在图 2 中,设 M 为 AC 的中点,求证 :BM 丄 AE;(2) 在图 2 中,当 DE 最小时,求二面角 A -DE -C 的平面角 .19.如图所示,在已知三棱柱ABF -DCE 中,ADE 90 ,ABC 60 ,AB AD 2 AF ,平面ABCD⊥平面ADEF,点M在线段 BE 上,点 G 是线段 AD 的中点.(1)试确定点 M 的位置,使得 AF ∥平面 GMC ;(2)求直线 BG 与平面 GCE 所成角的正弦值.20.已知在四棱锥P-ABCD 中,底面ABCD 是菱形, AC=AB, PA⊥平面 ABCD ,E, F 分别是AB,PD 的中点 .(Ⅰ)求证: AF ∥平面 PCE;(Ⅱ)若 AB 2 AP 2 ,求平面PAD与平面PCE所成锐二面角的余弦值.21.如图,五面体PABCD 中, CD ⊥平面 PAD , ABCD 为直角梯形,BCD, PD BC CD 1 AD, AP PD .2 2(1)若 E 为 AP 的中点,求证: BE∥平面 PCD ;(2)求二面角 P-AB-C 的余弦值 .22.如图( 1)所示,已知四边形SBCD 是由 Rt △ SAB 和直角梯形ABCD 拼接而成的,其中SAB SDC 90 .且点A为线段SD 的中点,AD 2DC 1 , AB 2 .现将△SAB 沿AB 进行翻折,使得二面角 S-AB-C 的大小为 90°,得到图形如图( 2)所示,连接 SC,点 E,F 分别在线段 SB,SC 上 .(Ⅰ)证明:BD AF ;(Ⅱ)若三棱锥B-AEC 的体积为四棱锥S-ABCD 体积的2,求点 E 到平面 ABCD 的距离 . 523. 四棱锥S-ABCD 中,AD∥ BC ,BC CD, SDA SDC 600 ,AD DC 1 1BC SD ,E为SD的中点.2 2(1)求证:平面 AEC⊥平面 ABCD ;(2)求 BC 与平面 CDE 所成角的余弦值 .24.已知三棱锥P-ABC,底面 ABC 是以 B 为直角顶点的等腰直角三角形,PA⊥ AC, BA =BC =PA=2,二面角P-AC-B 的大小为 120°.(1)求直线 PC 与平面 ABC 所成角的大小;(2)求二面角 P-BC-A 的正切值 .25.如图,在四棱锥P-ABCD 中,平面PAD ⊥平面ABCD ,ABC BCD 900, PA PD DC CB 1 AB ,E是PB的中点,2(Ⅰ)求证: EC∥平面 APD ;(Ⅱ)求 BP 与平面 ABCD 所成的角的正切值;(Ⅲ)求二面角P-AB-D 的余弦值 .26.四棱锥 P﹣ ABCD 的底面 ABCD 为边长为 2 的正方形, PA=2, PB=PD =2 2 ,E,F,G,H分别为棱PA, PB, AD ,CD 的中点.(1)求 CD 与平面 CFG 所成角的正弦值;(2)探究棱 PD 上是否存在点 M,使得平面 CFG⊥平面 MEH ,若存在,求出PM的值;PD若不存在,请说明理由.试卷答案1以点 D 为坐标原点,建立如图所示的空间直角坐标系 D - xyz ,则D (0,0,0 ) , A (0,2,0 ), C (- 2,0,0 ) , P (0,0,2 ) , E (- 1,0,1) , F (0,0,1) , G (- 2,1,0).uuuruuur(1) ∵ PA = (0,2, - 2) , EF = (1,0,0 ) ,uuur uuur 0 , ∴ PA ^ EF .则 PA?EF uuur uuur (2) 易知 DF = (0,0,1 ), FG = (- 2,1- 1) ,ur设平面 DFG 的法向量 m = (x 1 , y 1, z 1) ,ur uuurìì = 0m?DF?则,即 ,íur uuurí0 - 2x?m?FG令 x 1 = 1 ,则 m = (1,2,0 ) 是平面 DFG 的一个法向量, r同理可得 n = (0,1,1) 是平面 EFG 的一个法向量,ur r2 10 ur r m ×n∴ cos < m, n >= urr ==,m × 5′ 25n由图可知二面角 D - FG - E 为钝角,∴二面角 D - FG - E 的余弦值为10 -.52.(1) 证明:直三棱柱 ADE - BCF 中, AB ^ 平面 ADE ,所以: AB ^ AD ,又 AD ^ AF ,所以: AD ^ 平面 ABFE , AD ì平面 PAD ,所以:平面 PAD ^ 平面 ABFE .(2) 由 (1) AD ^ 平面 ABFE ,以 A 为原点, AB, AE , AD 方向为 x, y, z 轴建立空间直角坐标系A - xyz ,设正四棱锥 P - ABCD 的高 h , AE = AD = 2 , 则 A (0,0,0 ) , F (2,2,0 ) , C (2,0,2 ) , P (1,- h,1). uuur uuur uuurAF = (2,2,0) , AC = (2,0, 2) , AP = (1,- h,1) .ur设平面 ACF 的一个法向量 m = (x 1 , y 1 , z 1 ),ur uuurì= 0urm? AF 2x 1 + 2 y 1uuurr()n ? AC 2 x 1 + 2 z 1 = 0r uuurrì( x 2 , y 2 , z 2)?n ? AF 2 x 2 + 2 y 2 = 0,设平面 AFP 的一个法向量 n =,则 íruuur?n ? AP x 2 - hy 2 + z 2 = 0r取 x 2 = 1 ,则 y 2 = - 1 , z 2 = - 1 - h ,所以: n = (1,- 1,- 1- h ) ,ur rur r二面角 C - AF - P 的余弦值是2 2m?n=,所以: cos < m, n >= urr 3m n解得: h = 1.1 1 +1 + h23 2 + (h +1)= 2 2,33.PMC BEODA(Ⅰ )证明:连结 AC 交 BD 于 O ,则 O 是 BD 中点,∵在 △PBD 中, O 是 BD 的中点, M 是 PB 的中点,∴ PD ∥MO ,又 PD平面 ACM , MO 平面 ACM ,∴PD∥平面 ACM .(Ⅱ )证明:作PE ⊥ CD ,则E为CD中点,连结AE ,∵底面 ABCD 是菱形,边长为 2 ,面积为 2 3,∴ S 1 AD DC sin ADC 2 1 2 2sin ADC 2 2 3 ,2 2∴sin ADC 3 ,ADC 60 ,2∴ △ ACD 是等边三角形,∴CD⊥ AE ,又∵ CD ⊥ PE ,∴CD⊥平面 PAE ,∴CD ⊥ PA .(Ⅲ ) V P ABCD 1S ABCD PE 1 2 3 3 2 .3 34.SA EDB C( 1 )证明:∵ SA⊥平面 ABCD , AB平面ABCD,∴AB ⊥ SA,又∵ BAD 90 ,∴AB⊥ AD ,∵SAI AD A ,∴AB⊥平面 SAD,又 AB 平面 SAB,∴平面 SAB⊥平面SAD.(Ⅱ )证明:取 AD 中点为 E ,∵DAB ABC 90 , AD 2a , BC a , E 是 AD 中点,∴ABCE 是矩形, CE AB a , DE a ,∴ CD 2a ,在△ACD 中,AC 2a , CD 2a ,AD 2a ,∴ AC 2 CD 2 AD 2 ,即CD⊥ AC ,又∵ SA⊥平面 ABCD , CD平面ABCD,∴CD⊥ SA,∴CD ⊥平面PAC.5.PEFCDA B(Ⅰ)证明:∵ PD底面ABCD,BC平面ABCD,∴PD BC ,又∵底面 ABCD 为矩形,∴BC CD ,∴BC 平面 PCD ,∵ BC平面PBC,∴平面 PCD平面PBC.(Ⅱ )证明:∵ PD DC , E 是 PC 中点,∴ DE PC ,又平面 PCD平面PBC,平面PCD I平面PBC PC ,∴DE 平面PBC,∴DE PB ,又∵ EF PB , EF I DE E ,∴PB 平面 EFD .6.ABCDEA 1B 1C1(Ⅰ )证明:连结 A 1 B ,∵ D 是 AB 1 的中点,∴ D 是 A 1B 的中点,∵在 △ A 1 BC 中, D 是 A 1 B 的中点, E 是 A 1 C 的中点, ∴ DE ∥ BC ,又 DE平面 BCC 1 B 1 , BC 平面 BCC 1B 1 ,∴ DE ∥平面 BCC 1B 1 .(Ⅱ )证明: ∵ ABC A 1 B 1C 1 是直棱柱,∴ AA 1 平面 ABC , ∴ AA 1 AB , 又 ABAC ,∴ AB 平面 ACC 1 A 1 , ∵ AB 平面 ABB 1 A 1 ,∴平面 ABB 1 A 1 平面 ACC 1 A 1 .以 为坐标原点,建立空间直角坐标系 B(2,0,0) , D (0, 2,0) ,P(0,0,2) ,7. AC (1, 2,0)uuur uuur (1, 2, 2) ,(1) BD ( 2, 2,0) , PCuuur uuur∵ BD ? PC 0 ∴ BD PCuuur(1,uuur ur( 2, 1,0) (2) AC 2,0) , AP (0,0, 2) ,平面 PAC 的法向量为 muuuruuurr 2, 1) .DP (0,2, 2) , AP (1,0,0) ,平面 DPC 的法向量为 n (0,ur rur r2 2 m ?ncos m,nurr,二面角 BPC D 的余弦值为.m ? n 33uuur uuur uuur uuur uuur0,1(3) ∵ AQ AP PQ AP tPD , tuuur (0,0, 2) t(0, 2, 2) (0, 2t, 22t )∴ AQ 设 为直线 AQ 与平面 PAC 所成的角uuur uruuur urAQ ? m2sincos AQ, muuurur3AQ ? m3 2t 22t2t)22 3t2 6t28t4 ,解得 t 2 (舍)或2.(2 33所以,PQ2 即为所求 .PD38.解 :(1) 不妨设正方体的棱长为1,以 DA , DC , DD 1为单位正交基底建立如图所示的空间直角坐标系D xyz .则 A(1, 0,0) , O12 ,12,0 , C 0,1,0 , D 1(0, 0, 1),E1,1 ,1,4 4 2 于是,.由 cos= = .所以异面直线 AE 与 CD 1 所成角的余弦值为3 .6(2)设平面 CDuuur uuuur =0 1111CO = 0, m · O 的向量为m=(x , y , z ),由 m ·得取 x 1 = 1,得 y 1= z 1= 1,即 由 D 1E =λEO ,则 E又设平面 CDE 的法向量为n = (x 2,y 2, z 2),由 m=(1 ,1, 1) .,.n ·= 0, n · = 0.CD DE得取 x 2=2 ,得 z 2=- λ,即 n = (- 2,0, λ ) .因为平面 CDE ⊥ 平面 CD 1F ,所以 m ·n =0,得 λ=2.9.( Ⅰ )证明:在平行四边形 ABCD 中,∵ AB AC , ∠ BCD 135 , ∠ ABC 45 ,∴ AB ⊥ AC , ∵ E , F 分别为 BC , AD 的中点,∴ EF ∥ AB , ∴ EF ⊥ AC ,∵侧面 PAB ⊥ 底面 ABCD ,且 ∠ BAP90 ,∴ PA ⊥ 底面 ABCD , ∴ PA ⊥ EF ,又∵ PA I ACA , PA 平面 PAC , AC 平面 PAC ,∴ EF ⊥ 平面 PAC .(Ⅱ )证明: ∵ M 为 PD 的中点, F 为 AD 的中点,∴ MF ∥ PA ,又 ∵ MF平面 PAB , PA 平面 PAB ,∴ MF ∥ 平面 PAB ,同理,得 EF ∥ 平面 PAB ,又∵ MF I EFF , MF 平面 MEF , EF 平面 MEF ,∴平面MEF ∥ 平面PAB ,又 ∵ME平面MEF,∴ ME ∥ 平面 PAB .(Ⅲ )解: ∵ PA ⊥ 底面 ABCD , AB ⊥ AC ,∴ AP , AB , AC 两两垂直,故以AB , AC , AP 分别为 x 轴, y 轴和 z 轴建立如图空间直角坐标系,则 A(0,0,0) , B(2,0,0) , C(0,2,0) , P(0,0,2) , D( 2,2,0) , E(1,1,0) ,uuur (2,0,uuur ( 2,2,uuur ( 2,2,0) ,所以 PB 2) , PD 2) , BC 设 PM(uuuur( 2 ,2 ,2 ) , [0,1]) ,则 PM PDuuur∴ M ( 2 ,2 ,2 (1 2 ,1 2 ,2 2) ,2 ) , MEur(0,0,1) ,易得平面 ABCD 的法向量 mr ( x, y,z)设平面 PBC 的法向量为 n ,则:r uuur 0 2x 2 y 0rn BC(1,1,1),r uuur ,即 2x 2 z 0 ,令 x 1,得 nn PB 0∴直线 ME 与平面 PBC 所成的角和此直线与平面 ABCD 所成的角相等,uuur ur uuur ruuuur ur uuuur r ∴ | cos| ME m | | ME n | ME , m | | cos ME , n |,即 uuur ur uuur r , | ME | | m | | ME | | n | ∴ | 21| 2 ,解得33 或 33(舍去),322故PM 3 3 .PD 2z PMAF Dx BC yE10.( 1) ∵ C 1F ∥ 平面 AEG ,又 C 1F 平面 ACC 1 A 1 ,平面 ACC 1 A 1 I 平面 AEG AG ,∴ C 1 F ∥ AG ,∵ F 为 AA 1 的点,且侧面 ACC 1 A 1 为平行四边形,∴ G 为 CC 1 中点,∴CG 1 . CC 1 2( 2 )证明: ∵ AA 1 ⊥ 底面 ABC , AA 1 ⊥ AB , AA 1 ⊥ AC ,又 AB ⊥ AC ,如图,以 A 为原点建立空间直角坐标系A xyz ,设 AB 2 ,则由 ABACAA 1 可得 C(2,0,0) , B(0,2,0) , C 1 (2,0,2) , A 1 (0,0,2) ,∵ E , G 分别是 BC , CC 1 的中点, ∴ E(1,1,0) , G(2,0,1) ,uuur uuur (1, 1,1) ( 2,0,2) 0 , ∴ EG CA 1uuur uuur ∴EG ⊥ CA 1 , ∴ EG ⊥ AC .1r ( x, y, z) ,则:( 3)设平面 AEG 的法向量为 n r uuur 0 x y 0n AE1 ,则 y 1 , z2 , r uuur ,即 2 x z ,令 x n AG 0 0 r (1, 1, 2) , ∴ nur由已知可得平面 A 1 AG 的法向量 m (0,1,0) ,r ur r ur 6∴ cos n mn, m r ur ,| n | | m | 6 由题意知二面角 A 1 AG E 为钝角,∴二面角 A 1 AG E 的余弦值为6 .z C1A1G B 1Fx C AEBy11.(Ⅰ )证明:过点 F 作 FH ∥ AD ,交 PA 于 H ,连结 BH ,如图所示,∵ PF 1 PD ,3∴ HF 1 AD BC ,3又FH ∥ AD ,AD∥BC,HF∥BC,∴四边形 BCFH 为平行四边形,∴ CF ∥ BH ,又 BH平面PAB,CF平面PAB,∴ CF ∥平面PAB.zPHFyA DxB C(Ⅱ)解:∵梯形 ABCD 中, AD ∥ BC ,AD⊥AB,∴BC ⊥ AB ,∵PB⊥平面ABCD,∴ PB⊥ AB ,PB⊥BC,∴如图,以 B 为原点,BC, BA , BP所在直线为x ,y, z 轴建立空间直角坐标系,则 C(1,0,0) , D (3,0,0) , A(0,3,0) , P(0,0,3) ,设平面 BPD 的一个法向量为 r ( x, y, z) ,n平面 APD 的一个法向量为 ur(a, b,c) ,muuur (3,3, uuur ∵ PD 3) , BP (0,0,3) ,uuur r 0 3x 3 y 3z 0PD n∴ uuur r 0 ,即 3z 0 ,BP nr ur (0,1,1) ,令 x 1 得 n (1, 1,0) ,同理可得 mr ur r ur 1∴ cos n m ,n, m r ur 2| n | | m | ∵二面角 B PD A 为锐角,∴二面角 B PD A 为 π.3uuuur uuur3 ) ,(Ⅲ )假设存在点 M 满足题意,设 PM PD (3 ,3 , uuuur uuur uuur ( 1 3 ,3 ,3 3 ) , ∴ CM CP PDuuur (0,3,uuur uuuur 93(33) 0 ,解得1 ∵ PA 3) , ∴ PA CM,2∴ PD 上存在点 M 使得 CM ⊥ PA ,且 PM1 3 3 2PD.212.Ⅰ∵ BC ⊥ CD , BCCD 2 ,∴ BD 2 2 ,同理 EA ⊥ ED , EA ED2 , ∴AD 2 2,又∵ AB 4 , ∴ 由勾股定理可知 BD 2AD 2AB 2, BD ⊥ AD ,又∵ 平面 EAD ⊥ 平面 ABCD ,平面 EAD I 平面 ABCD AD , BD 平面 ABCD ,∴ BD ⊥ 平面 AED , 又∵ AE 平面 AED , ∴ BD ⊥ AE .Ⅱ解:取 AD 的中点 O ,连结 OE ,则 OE ⊥ AD ,∵平面 EAD ⊥ 平面 ABCD ,平面 EAD I 平面 ABCDAD ,∴ OE ⊥ 平面 ABCD ,取 AB 的中点 F ,连结 DF ∥ BD ,以 O 为原点,建立如图所示的空间直角坐标系 O xyz ,则 D( 2,0,0) , C ( 2 2, 2,0) , E(0,0,uuur uuur( 2,0, 2) ,2) , DC (2, 2,0) , DE r ( x, y, z) ,设平面 CDE 的法向量为 nuuur r 0x z 0DC n ,令 x 1 ,则 z 1, y 1 ,则 uuurr 0 即x y 0 DEnr (1,1, 1) ,∴平面 CDE 的法向量 n 又平面ADE 的一个法向量为 r1(0,1,0) ,n设平面 ADE 和平面 CDE 所成角(锐角)为,r rr r则 cos| cos|rnn r3 ,1| n | | n 1 | 3∴平面 ADE 和平面 CDE 所成角(锐角)的余弦值为3 .3zDCAOxFBy13.zPFAD yB E Cx( 1 )证明:连结 AE , PE .∵ PA 平面 ABCD , BC 平面 ABCD ,∴ PA BC .又∵ 底面 ABCD 是菱形, AB BC , ABC 60 ,∴ △ABC 是正三角形.∵ E 是 BC 的中点,∴ AEBC .又∵ PA I AEA , PA 平面 PAE , PE 平面 PAE ,∴ BC 平面 PAE ,∴ BC PE .( 2 )由( 1)得 AEBC ,由 BC ∥ AD 可得 AEAD .又∵ PA 底面 ABCD ,∴ PA AE , PA AD .∴以 A 为原点,分别以 AE , AD , AP 为 x 轴, y 轴, z 轴建立空间直角坐标系 A xyz ,如图所示,则 A(0,0,0) , E( 3,0,0) , D (0,2,0) , P(0,0,2) , B( 3, 1,0) , C ( 3,1,0) , F (0,1,1) .∵ PA 平面 ABCD ,uuur (0,0,2) .∴平面 ABCD 的法向量为 AP uuur ( uuur(0,1,1) .又∵ AC 3,1,0) , AF 设平面 ACF 的一个法向量 r( x, y, z) ,则: n uuur r 03x y 0AC n ,令 x 1 ,则 y 3 , z3 ,uuur r 0 ,即 0AF n y + zr∴ n (1, 3,uuur r ∴ cos AP, n3) .uuur r AP n uuur r| AP || n |21 .7∵二面角 F AC D 是锐角,∴二面角 FAC D 的余弦值为 21 .7uuur uuur( 3) G 是线段 AB 上的一点,设 AG t AB (0 ≤ t ≤ 1) . uuur 3, 1,0) , ∴ G( 3t , t,0) . ∵ AB (uuur ( 3,1, uuur( 3t, t , 2) .又∵ PC 2) , PGr设平面 PCG 的一个法向量为 n ( x, y, z) ,则:uuur ur 0 3 x 1 + y 1 2z 1 0 urPC n 13(t 1), 3t ) , uuur ur,即 3tx ty 2 z 0 , ∴ n 1 (t +1, PG 10 n 1 1 1PCGuuur r uuur r 1) + 3t 0 , ∵平面 , ∴ AF n , AF n 0 ,即 3( tAF ∥解得 t1 .2故线段 AB 上存在一点 G ,使得 AF 平行于平面 PCG , G 是 AB 中点.14.( 1 )证明: ∵ DE平面 ABCD , AC 平面 ABCD ,∴ DE AC .∵ ABCD 是正方形,∴ AC BD .又 DE I BDD ,∴ AC 平面 BDE .( 2 ) ∵ DA , DC , DE 两两重叠, ∴ 建立空间直角坐标系 Dxyz 如图所示.zEFDCyA Bx∵ BE 与平面 ABCD 所成角为 60 ,即 DBE 60 ,∴ ED3 .DB由 AD 3 ,可知 DZ 3 16 , AF6 ,则 A(3,0,0) , F (3,0, 6) , E(0,0,3 6) ,B(3,3,0) , C (0,3,0) . uuur (0, 3, uuur (3,0, 2 6) ,∴ BF 6) , EF r ( x, y, z) ,则设平面 BEF 的法向量为 nr uuur 0 3 y 6 z 0rn BFr uuur ,即 3x 2 6 z ,令 z 6 ,则 n (4,2, 6) .n EF 0 0∵ AC 平面 BDE ,uuur uuur(3, 3,0) , ∴ CA 为平面 BDE 的一个法向量,CAr uuur r uuur613 n CA∴ cos n, CA r uuuur26.|n ||CA | 3 2 13∵二面角 F BE D 为锐角,∴二面角 FBE D 的余弦值为13 . 13uuuuruuuur r0 ,解得t 2 ,∵ AM ∥平面BEF,∴ AM n 0 ,即 4(t 3) 2t此时,点 M 坐标为(2,2,0) , BM 1BD ,符合题意.315.zCDAByMPx( 1 )证明:∵ PA平面ABC,BC平面ABC,∴PA BC .∵ BC AB ,PAI AB A ,∴ BC平面PAB.又 AM平面PAB,∴AM BC .∵ PA AB , M 为 PB 的中点,∴AM PB .又∵ PB I BC B ,∴ AM平面PBC.( 2 )如图,在平面ABC 内作AZ∥BC,则AP,AB,AZ两两垂直,建立空间直角坐标系A xyz .则 A(0,0,0) , P(2,0,0) , B(0,2,0) , C (0,2,1) , M (1,1,0).uuur uuur uuuur(1,1,0) .AP (2,0,0) , AC (0,2,1) , AMr( x, y, z) ,则:设平面 APC 的法向量为 nr uuur0 x 0n AP,令 y 1,则z 2.r uuur ,即2 y z 0n AC 0r(0,1, 2) .∴ nuuuur(1,1,0) 为平面 PBC 的一个法向量,由( 1)可知AMr uuuuruuuurr 1 10AM n.∴ cos nAMuuuurr5 2 10| AM || n | ∵二面角 A PC B 为锐角,∴二面角 A PC B 的余弦值为 10 .10 uuur uuur( 3)证明:设 D (≤ 1) ,, v, w) 是线段 PC 上一点,且 PDPC , (0 ≤ 即 ( 2,v, w) ( 2,2,1) , ∴ 2 2 , v2 , w.uuur (2 2 ,2 2,) .∴ BDuuur uuur 0,得4由BD AC[0,1] ,5∴线段 PC 上存在点 D ,使得 BDAC ,此时PD4 .PC516.解:( 1)证明:因为 AB 平面 PAD ,所以 PHAB ,因为 AD3,AH2 ,所以 AH 2, HD1,HD设 PHx ,由余弦定可得,cos PHDx 2HD 2 PH 2x 21 cos PHA x2 HA 2 PH 2 x 2 12x HD 2x2x HA 4x因为 cos PHD cos PHA ,故 PH x1 ,所以 PHAD ,因为 AD I AB A ,故 PH 平面 ABCD .(2)以 H 为原点,以 HA, HP , HP 所在的直线分别为 x, y, z 轴,建立空间直角坐标系,则 B(2,3,0), P(0,0,1), E(1,3 , 1), F ( 1, 3 ,0), C ( 1, 9,0) ,2 222uuur ( 3, 3uuur ( 3 1 uuur (1 uuur,所以可得, BF,0), BE 1, , ), EF 2,0, ), FC (0,3,0)r 2 2 2 2( x, y, z) ,设平面 BEF 的法向量 nuuur r3x 3BF n 0 yr则有:2( 1,2, 4) ,uuur r3 z nBE nx 0y22ur(x, y, z) ,设平面 EFC 的法向量 muuur ur z 0 urEF m 0 2x21,0, 4) ,则有: uuur urm (FC m 3y 0r urr ur 1717n m故 cos n,mrur21 17 ,n m 21设二面角 BEF C 的平面角为,则 sin 2 21.2117.解( Ⅰ)证明: ∵ DC平面 ABC , BE / /DC∴ BE 平面 ABC∴ CQ BE ①又∵ ACBC 2,点 Q 为 AB 边中点∴ CQ AB ②AB I BE B故由 ①② 得 CQ平面 ABE(Ⅱ )过点 A 作 AMBC 交 BC 延长线于点 M∵ AMBC , AM BE∴ AM 平面 BEDC∴V A CED1S CDE gAM3AM AC gsin33 , S CDE11 2 12∴VA CED1 1 333 3(Ⅲ )延长 ED 交 BC 延长线于 S ,过点 M 作 MQ ES 于 Q ,连结 AQ由( Ⅱ )可得:AQM 为 A DE B 的平面角∵ CD // 1BC2∴ SC CB 2∴ SE BE 2 SB 2 2 5MC MS 1∵ SQM ∽SBE∴ QM SM BE SE∴ QM 15 即 QM 52 2 5∴ tan AQM AM 315 QM 5518.( 1)证明:∵在中,,∴当为的中点时,∵平面平面,平面,平面平面∴平面∵平面∴(2)如图,分别以射线,的方向为,轴的正方向,建立空间直角坐标系设,则,,,∵,,平面平面∴∴当且仅当时,最小,此时,设, 平面 ,则 ,即∴令,可得 , ,则有∴∴观察可得二面角的平面角19.( 1)取 FE 的中点 P ,连接 CP 交 BE 于点 M , M 点即为所求的点. 连接 PG ,∵ G 是 AD 的中点, P 是 FE 的中点, ∴ PG / / AF ,又 PG平面 MGC , AF平面 MGC ,所以直线 AF / / 平面 MGC ,∵ PE / / AD , AD / / BC , ∴ PE / / BC , ∴BMBC 2 ,MEPE故点 M 为线段 BE 上靠近点 E 的三等分点. (2)不妨设 AD 2 ,由( 1)知 PG AD ,又平面 ADEF平面 ABCD ,平面 ADEF I 平面 ABCDAD ,PG平面 ADEF , ∴ PG 平面 ABCD .故 PGGD , PG GC ,以 G 为坐标原点, GC , GD , GP 分别为 x , y , z 轴建立空间直角坐标系 G xyz ,∵ ABC60 , AB AD 2 AF ,∴ ADC 为正三角形, GC3 ,∴ G(0,0,0) , C ( 3,0,0) , D (0,1,0) uuuruuur 3,0,0) ,, E(0,1,1) , ∴ GE (0,1,1) , GC ( urur uuur ur uuur y z 0, 设平面 CEG 的一个法向量 n 1 ( x, y, z) ,则由 n 1 GE 0 , n 1 GC 0 可得3x0,ur令 y 1,则 n 1 (0,1, 1),uuuruuur 1,0) ,故 B( 3, uuur 3, 2,0) ,∵ CD ( 3,1,0)BA ,且 A(0, 2,0) ,故 BG (ur uuur故直线 BG 与平面 GCE 所成角的正弦值为| n 1 BG |sinuruuur| n 1 | | BG |14 .720.(Ⅰ)取PC中点H,连接EH、FH .∵E为AB的中点,ABCD 是菱形,∴ AE / /CD ,且AE 1CD ,又F为PD的中点,H为PC的中点,∴FH / /CD,2且FH 1FH ,则四边形 AEHF 是平行四边形,CD ,∴AE / / FH,且AE2∴ AF / / EH .又 AF 平面 PCE , EH 面 PCE ,∴ AF / / 平面 PCE .(Ⅱ )取 BC 的中点为 O ,∵ ABCD 是菱形, AC AB ,∴AO BC ,以 A 为原点,AO, AD , AP 所在直线分别为x, y,z 轴,建立空间直角坐标系 A xyz,则B 3, 1,0 ,C 3,1,0 ,D 0,2,0 , O 3,0,0 , P 0,0,1 ,E 3 1,, ,02 2uuur3,1, uuur 3 3 uuur3,0,0 ,设平面的法向量为∴ PC 1 , EC , ,0 , AO2 2uuur3x y z 0n1 PC 0n1 ,令 y 1 ,则 x 3, z 2 ,x, y, z ,则uuur ,即3 x 3 yn1 EC 0 02 2∴平面 PCE 的一个法向量为n1 3, 1,2 ,又平面 PAD 的一个法向量为n2 1,0,0 .∴cos n1 , n2n1 n2 3 6| n1 | | n2 | 3 1 4 .即平面PAD与平面46PCE 所成锐二面角的余弦值为.421.解:( 1)证明:取PD 的中点 F ,连接 EF ,CF ,因为 E, F 分别是 PA, PD 的中点,所以EF / / AD 且 EF1AD ,2因为 BC 1AB, BC / / AD ,所以 EF / / BC 且 EF BC ,所以 BE / /CF ,2又 BE平面 PCD ,CF平面 PCD ,所以 BE / / 平面 PCD .( 2)以 P 为坐标原点, PD , PA 所在直线分别为 x 轴和 y 轴,建立如图所示的空间直角坐标系,不妨设 BC 1,则 P(0,0,0), A(0, 3,0), D (1,0,0), C (1,0,1), B( 1,3 ,1) ,2 2uuuruuur 13uuur3,0) ,PA(0, 3,0), AB(2 ,1), AD (1,2rr uuur3y 0( x, y, z) ,则 n PA设平面 PAB 的一个法向量为 nr uuur1 x 3 y ,n AB z 0r22令 x 1) , 2,得 n (2,0,同理可求平面 ABD 的一个法向量为urr ur r urn m 6 15 m (3, 3,0)cos n, mr ur5 12,n m5平面 ABD 和平面 ABC 为同一个平面,所以二面角 PAB C 的余弦值为15 .522.解:( Ⅰ )证明:因为二面角S AB C 的大小为 90°,则 SA AD , 又 SA AB ,故 SA 平面 ABCD ,又 BD 平面 ABCD ,所以 SABD ;在直角梯形 ABCD 中, BADADC90 , AD 2CD 1 , AB 2 ,所以 tan ABDtan CAD1DACBAC 90 ,,又2所以 ABDBAC 90 ,即 ACBD ;又 AC I SA A ,故 BD 平面 SAC ,因为AF 平面 SAC ,故 BD AF .(Ⅱ )设点 E 到平面 ABCD 的距离为 h ,因为 V B ABCVE ABC2 VE ABC,且,VS ABCD515 12VS ABCDS 梯形 ABCD SA1 523故11,V E ABCh1 h2S ABC232故 h1,做点 E 到平面 ABCD 的距离为1.2223. ( )Q E 为 SD 的中点, AD DC1SD, SDASDC 60012ED EC AD DC.设 O 为 AC 的中点,连接 EO, DO 则 EOACQ AD // BC, BC CDADBC.又 OD OA OCEOCEOD 从而 EO OD Q AC ABCD DO 面 ABCDAC I DOEO 面 ABCD Q EO 面 AEC面 EAC面ABCD 6 分(2)设F为CD的中点 ,连接OF、EF ,则OF平行且等于1AD 2Q AD ∥ BC EF ∥ BC不难得出 CD 面 OEF ( Q EO CD FO CD )面ECD 面 OEFOF 在面 ECD 射影为 EF ,EFO 的大小为 BC 与面 ECD 改成角的大小设 AD a ,则OF aEF 3 a 2 2c osOF 3 EFO3EF即 BC 与 ECD 改成角的余弦值为3 12分.(亦可以建系完成)324.解(Ⅰ)过点 P 作 PO⊥底面 ABC ,垂足为O,连接 AO、 CO,则∠PCO为所求线面角,Q AC PA, AC PO ,且 PA PO P ,AC 平面 PAO .则∠PAO为二面角P-AC-B平面角的补角∴∠ PAO 60 ,又Q PA 2,PO= 3 , sinPO 1 PCO2COPCO 300,直线PC与面ABC所成角的大小为30°.(Ⅱ )过 O 作 OE BC 于点 E ,连接 PE ,则PEO 为二面角P-BC-A的平面角,Q AC 平面 PAO , AC OA AOE 450 ,设 OE 与 CA 相交于 F OE EF FO 22, 2在 PO3 4 36 PEO 中, tan PEO2 7EO22则二面角 P-BC -A 的正切值为4 36 .725.解:( Ⅰ )如图,取PA 中点 F ,连接 EF , FD ,E 是 BP 的中点,EF // AB 且 EF1AB ,又 DC // AB , DC 1 AB22EF //DC四边形 EFDC 是平行四边形,故得 EC / / FD又EC 平面 PAD , FD 平面 PADEC // 平面 ADE(Ⅱ )取 AD 中点 H ,连接 PH ,因为 PAPD ,所以 PH AD平面 PAD平面 ABCD 于 AD ,PH面 ABCD ,HB 是 PB 在平面 ABCD 内的射影PBH 是 PB 与平面 ABCD 所成角四边形 ABCD 中,ABCBCD 900四边形 ABCD 是直角梯形DC CB1AB2设 AB2a ,则 BD2a在 ABD 中,易得 DBA 450 ,AD 2aPH PD 2 DH 2 a2 1 a2 2 a.2 2又BD 2 AD 2 4a2 AB 2ABD 是等腰直角三角形,ADB 90 0 HB DH 2 DB 2 1 a2 2a2 10 a2 2PH 2 a5在 Rt PHB 中,tan PBH 2HB 510 a2(Ⅲ )在平面 ABCD 内过点 H 作 AB 的垂线交 AB 于 G 点,连接 PG ,则 HG 是 PG 在平面 ABCD 上的射影,故PG AB ,所以PGH 是二面角 P AB D 的平面角,由 AB a HA 2 a ,又HAB 45 0 12 2PH 2 a在 Rt PHG 中, tan PGH 2 2HG 1 a2二面角 P AB D 的余弦值大小为 3 .326.( 1)∵四棱锥 P﹣ ABCD 的底面 ABCD 为边长为 2 的正方形, PA=2, PB=PD=2,∴PA2+AB 2=PB 2,PA2+AD 2=PD2,∴PA⊥ AB ,PA⊥ AD ,∴以 A 为原点, AB 为 x 轴, AD 为 y 轴, AP 为 z 轴,建立空间直角坐标系,∵E, F, G,H 分别为棱PA,PB ,AD , CD 的中点.∴C( 2,2, 0), D (0, 2, 0), B (2, 0, 0),P( 0, 0,2), F( 1, 0, 1), G( 0, 1,0),=(﹣ 2, 0, 0),=(﹣ 1,﹣ 2,1),=(﹣ 2,﹣ 1, 0),设平面 CFG 的法向量=( x, y, z),则,取 x=1,得=( 1,﹣ 2,﹣ 3),设CD与平面CFG所成角为θ,则 sin θ=|cos<> |= = = .∴CD 与平面 CFG 所成角的正弦值为.(2)假设棱 PD 上是否存在点 M ( a, b, c),且,( 0≤λ≤1),使得平面CFG⊥平面 MEH ,则( a, b,c﹣ 2) =( 0, 2λ,﹣ 2λ),∴ a=0,b=2λ, c=2﹣ 2λ,即 M ( 0,2λ, 2﹣2λ),E( 0, 0, 1), H ( 1,2, 0),=( 1, 2,﹣ 1),=( 0, 2λ,1﹣ 2λ),设平面 MEH 的法向量=( x,y, z),则,取 y=1,得=(, 1,),平面 CFG 的法向量 =( 1,﹣ 2,﹣ 3),∵平面 CFG⊥平面 MEH ,∴= ﹣ 2﹣=0,解得∈ [0, 1].∴棱 PD 上存在点 M ,使得平面CFG ⊥平面 MEH ,此时=.。

2019-2020年高中数学高考复习《立体几何大题》习题附详细解析

2019-2020年高中数学高考复习《立体几何大题》习题附详细解析

2019-2020年高中数学高考复习《立体几何大题》习题附详细解析1.长方体1111D C B A ABCD -中,1==BC AB ,21=AA ,E 是侧棱1BB 中点(Ⅰ)求直线1AA 与平面E AC 1所成角的大小(Ⅱ)求二面角B AC E --1的大小(Ⅲ)求三棱锥11C AD E -的体积2. 如图,在正三棱柱ABC-A 1B 1C 1中,底面边长是2,D 是棱BC 的中点,点M 在棱BB 1上,且BM=31B 1M ,又CM ⊥AC 1. (Ⅰ)求证:A 1B//平面AC 1D (Ⅱ)求三棱锥B 1-ADC 1体积.3.如图,四面体ABCD 中,O 、E 分别是BD 、BC的中点,2,CA CB CD BD AB AD ===== (I )求证:AO ⊥平面BCD(II )求异面直线AB 与CD 所成角余弦值的大小(III )求点E 到平面ACD 的距离ABMDEOC4.已知四棱锥P—ABCD的底面是正方形,PA⊥底面ABCD.异面直线PB与CD所成的角为45°.求:(1)二面角B—PC—D的大小(2)直线PB与平面PCD所成角大小5.四棱锥P—ABCD中,PA⊥ABCD,四边形ABCD是矩形. E、F分别是AB、PD的中点.若PA=AD=3,CD=6. (I)求证:AF//平面PCE(II)求点F到平面PCE的距离;(III)求直线FC与平面PCE所成角的大小6.已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD ⊥平面ABCD,E、F、G分别是PA、PB、BC的中点(I)求证:EF 平面PAD(II)求平面EFG与平面ABCD所成锐二面角的大小立体几何大题答案1.长方体1111D C B A ABCD -中,1==BC AB ,21=AA ,E 是侧棱1BB 中点(Ⅰ)求直线1AA 与平面E AC 1所成角的大小(Ⅱ)求二面角B AC E --1的大小(Ⅲ)求三棱锥11C AD E -的体积答案:(I )arcsin,距离与面33AEC )(1515arccos)(3311D III II 61V 11AEC -D = 2.如图,在正三棱柱ABC-A 1B 1C 1中,底面边长是2,D 是棱BC 的中点,点M 在棱BB 1上,且BM=31B 1M ,又CM ⊥AC 1. (Ⅰ)求证:A 1B//平面AC 1D (Ⅱ)求三棱锥B 1-ADC 1体积.答案:提示:)1(连接C A 1,交1AC 于点,E 连接DE ,则DE 是BC A 1∆的中位线,B A DE 1//,又111ADC B A ,ADC 面面⊄⊂DE ,D AC //11面B A ∴.)2(在正三棱锥111C B A ABC -中,BC 是D 的中点,则11B BCC 面⊥AD ,从而MC AD ⊥,又1AC CM⊥,则1ADC CM 和面内的两条相交直线1AC AD,都垂直,1ADC MC 面⊥∴,于是1DC CM⊥,则1CDC ∠与MCB ∠互余,则1tan CDC ∠与MCB ∠tan 互为倒数,易得221=AA , 连结D B 1,∴2211=∆D C B S ,D C B 11面⊥AD , ∴三棱锥11ADC -B 的体积为362.方法2:以D 为坐标原点,DA DC ,为x y,轴,建立空间直角坐标系,设hBB =1,则)0,0,0(D ,)0,0,1(-B ,)0,0,1(C ,)0,3,0(A ,),0,1(1h B -,),0,1(1h C , ),3,0(1h A ,)4,0,1(hM -,→B A 1),3,1(h ---=,),3,1(),0,3,0(1h A C AD --=-=→→,设平面D AC 1的法向量),,(z y x n=→,则⎪⎩⎪⎨⎧=⋅=⋅→→→→010n A C n AD )1,0,(-=⇒→h n ,→→⊥n B A 1 ∴D AC //11面B A)2(),3,1(),4,0,2(1h AC h CM -=-=→→,1AC CM ⊥,=⋅→→1AC CM 0422=+-h,22=∴h .平面D AC 1的法向量为)1,0,22(-=→n ,)22,3,1(1-=→A B 点)22,0,1(1-B 到平面D AC 1的距离3241=⋅=→→→nd nA B,233=∴∆ADC S . 3623242333111=⨯⨯=∴-ADC B V .3.如图,四面体ABCD 中,O 、E 分别是BD 、BC的中点,2,CA CB CD BD AB AD ===== (I )求证:AO ⊥平面BCD(II )求异面直线AB 与CD 所成角余弦值的大小(III )求点E 到平面ACD 的距离.答案:方法一: (I )证明:连结OC ,,.BO DO AB AD AO BD ==∴⊥,,.BO DO BC CD CO BD ==∴⊥ 在AOC ∆中,由已知可得1,AO CO == 而2,AC =222,AO CO AC ∴+=90,oAOC ∴∠=即.AO OC⊥,BD OC O = AO ∴⊥平面BCD(II )解:取AC 的中点M ,连结OM 、ME 、OE ,由E 为BC 的中点知ME ∥AB,OE ∥DC∴直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角在OME ∆中,111,22EM AB OE DC ====OM 是直角AOC ∆斜边AC 上的中线,11,2OM AC ∴== cos OEM ∴∠= ∴异面直线AB 与CD 所成角的大小为(III )解:设点E 到平面ACD 的距离为.h,11....33E ACD A CDE ACD CDE V V h S AO S --∆∆=∴= 在ACD ∆中,2,CA CD AD ===12ACD S ∆∴=而211,22CDE AO S ∆===1.CDEACDAO S h S ∆∆∴=∴点E 到平面ACD方法二: (I )同方法一.(II )解:以O 为原点,如图建立空间直角坐标系,则(1,0,0),(1,0,0),B D -1(0,0,1),((1,0,1),(1,2C A E BA CD =-=- .2cos ,BA CD BA CD BA CD ∴<>==∴异面直线AB 与CD 所成角的大小为(III )解:设平面ACD的法向量为(,,),n x y z =则.(,,).(1,0,1)0,.(,,1)0,n AD x y z n AC x y z ⎧=--=⎪⎨=-=⎪⎩0,0.x z z +=⎧∴-= ABMDEOCy令1,y =得(3,1,n =-是平面ACD 的一个法向量。

2019-2020年高考数学大题专题练习——立体几何(三)

2019-2020年高考数学大题专题练习——立体几何(三)

2019-2020年高考数学大题专题练习——立体几何(三)53.如图,在四棱锥E ﹣ABCD 中,平面CDE ⊥平面ABCD ,∠DAB =∠ABC =90°,AB =BC =1,AD =ED =3,EC =2.(1)证明:AB ⊥平面BCE ;(2)求直线AE 与平面CDE 所成角的正弦值.54.如图1,2,已知ABCD 是矩形,M ,N 分别为边AD ,BC 的中点,MN 与AC 交于点O ,沿MN 将矩形MNCD 折起,设AB =2,BC =4,二面角B ﹣MN ﹣C 的大小为θ. (1)当θ=90°时,求cos ∠AOC 的值;(2)点θ=60°时,点P 是线段MD 上一点,直线AP 与平面AOC 所成角为α.若sin α=714,求线段MP 的长.55.在四棱锥P ﹣ABCD 中,P A ⊥平面ABCD ,底面ABCD 为直角梯形,∠CDA =∠BAD =90°,AD =DC =2,AB =P A =22,且E 为线段PB 上的一动点. (1)若E 为线段PB 的中点,求证:CE ∥平面P AD ;(2)当直线CE 与平面P AC 所成角小于3π,求PE 长度的取值范围.56.如图,在几何体111ABC A B C -中,平面11A ACC ⊥底面ABC ,四边形11A ACC 是正方形,11B C BC ∥,Q 是1A B 的中点,且112AC BC B C ==,2π3ACB ∠=. (Ⅰ) 证明:1B Q ∥平面11A ACC ;(Ⅱ) 求直线AB 与平面11A BB 所成角的正弦值.57.如图,已知ABC V 和BCD V 所在平面互相垂直,且090BAC BCD ∠=∠=,,AB AC =CB CD =,点,E F 分别在线段,BD CD 上,沿直线EF 将EFD V 向上翻折使得D 与A 重合(Ⅰ)求证:AB CF ⊥;(Ⅱ)求直线AE 与平面ABC 所成角。

最新全国卷2019-2020年高三最新考试数学理试题分类汇编:立体几何 Word版含答案

最新全国卷2019-2020年高三最新考试数学理试题分类汇编:立体几何 Word版含答案

高三最新考试数学理试题分类汇编立体几何一、选择、填空题 1、(福建省2017年普通高中毕业班单科质量检查模拟)某几何体的正视图和俯视图如右图所示,则该几何体的侧视图可以是(A ) (B ) (C ) (D )2、(莆田市2017届高三3月教学质量检查)已知某几何体的三视图如图所示,则该几何体的体积为 A .23 B .43 C .2 D .833、(漳州市八校2017届高三上学期期末联考)如图是一个几何体的三视图,尺寸如图所示,(单位:cm ),则这个几何体的体积是( )A .)3610(+πcm 3B .)3511(+πcm 3C .)3612(+πcm 3D .)3413(+πcm 34、(漳州市八校2017届高三下学期2月联考)某几何体的三视图如图,其正视图中的曲线部分为半圆,则该几何体的体积是( )A .342π+B .63π+C .362π+ D .3122π+5、(漳州市第二片区2017届高三上学期第一次联考)若一个正六棱柱(底面是正六边形,侧棱垂直于底面)的正视图如图所示,则其体积等于 ( )A .233B .332C .2 3D .6 36、(漳州市第二片区2017届高三上学期第一次联考)四面体A -BCD 中,AB =AC =DB =DC =26,AD =BC =4,则它的外接球表面积等于 .7、(漳州市八校2017届高三下学期2月联考)已知三棱锥S ABC -,满足,,SA SB SC 两两垂直,且2SA SB SC ===,Q 是三棱锥S ABC -外接球上一动点,则点Q 到平面ABC 的距离的最大值为 .8、(福州市第八中学2017届高三第六次质量检查)某三棱锥的三视图如图所示,则该三棱锥的表面积是A. 2+B .2C .4+D .59、(福州外国语学校2017届高三适应性考试(九))已知一个三棱锥的三视图如图所示,则该几何体的外接球的体积为( )A .3πB D 10、(晋江市季延中学等四校2017届高三第二次联考)如图,某几何体的三视图中,正视图和侧视图都是半径为3的半圆和相同的正三角形,其中三角形的上顶点是半圆的中点,底边在直径上,则它的表面积是( )(A )π6 (B )π8 (C )π10 (D )π1111、(福建省2017年普通高中毕业班单科质量检查模拟)已知某球体表面积与体积相等,则该球最小外接立方体体积为 .12、(莆田市2017届高三3月教学质量检查)如图,在菱形ABCD 中,M 为AC 与BD 的交点,3BAD π∠=,3AB =,将CBD ∆沿BD 折起到1C BD ∆的位置,若点都在球O 的球面上,且球O 的表面积为,则直线1C M 与平面ABD 所成角的正弦值为二、解答题 1、(福建省2017年普通高中毕业班单科质量检查模拟)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1千多年.例如堑堵指底面为直角三角形,且侧棱垂直于底面的三棱柱,阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖臑指四个面均为直角三角形的四面体,如图(1),在堑堵111-C B A ABC 中,BC AC ⊥.(Ⅰ)求证:四棱锥11-ACC A B 为阳马,并判断四面体11-ACC A B 是否为鳖臑,若是写出各个面的直角(只写出结论);(Ⅱ)若21==AB A A ,当阳马11-ACC A B 体积最大时,求二面角11--C B A C 的余弦值.图(1)2、(莆田市2017届高三3月教学质量检查) 如图,在圆柱1OO 中,矩形11ABB A 是过1OO 的截面1CC 是圆柱1OO 的母线,12,3,3AB AA CAB π==∠=.(1)证明:1//AC 平面1COB ;(2)在圆O 所在的平面上,点C 关于直线AB 的对称点为D ,求二面角1D B C B --的余弦值.3、(漳州市八校2017届高三上学期期末联考)如图,四棱锥ABCD P -中,PA ⊥底面ABCD ,AB ∥CD ,1==CD AD ,∠BAD =120°,PA ACB =90°,M 是线段PD 上的一点(不包括端点).(Ⅰ)求二面角A PC D --的正切值(Ⅱ)试确定点M 的位置,使直线MA 与平面PCD 所成角θ的正弦值为515.4、(漳州市八校2017届高三下学期2月联考)如图1,在ABC ∆中,002,90,30,P AC ACB ABC =∠=∠=是AB 边的中点,现把ACP ∆沿CP 折成如图2所示的三棱锥A BCP -,使得AB =(1)求证:平面ACP ⊥平面BCP ;(2)求二面角B AC P --的余弦值.5、(漳州市第二片区2017届高三上学期第一次联考)如图,已知长方形ABCD 中,AB =22,AD =2,M 为DC 的中点.将△ADM 沿AM 折起,使得平面ADM ⊥平面ABCM . (I )求证:AD ⊥BM ;(II )若点E 是线段DB 上的一动点,问点E 在何位置时,二面角E -AM -D 的余弦值为55.6、(福州市第八中学2017届高三第六次质量检查)如图,斜三棱柱111ABC A B C -的底面是直角三角形,90ACB ∠=,点1B 在底面内的射影恰好是BC 的中点,且2BC CA ==, (1)求证:平面11ACC A ⊥平面11B C CB ;(2)若二面角11B AB C --的余弦值为57-,求斜三棱柱111ABC A B C -的高.7、(福州外国语学校2017届高三适应性考试(九))在四棱锥P ABCD -中,设底面ABCD 是边长为1的正方形,PA ABCD ⊥面. (Ⅰ)求证:PC BD ⊥;(Ⅱ)过BD 且与直线PC 垂直的平面与PC 交于点E ,当三棱锥E BCD -的体积最大时,求二面角E BD C --的大小.8、(晋江市季延中学等四校2017届高三第二次联考)如图,在四棱锥S ABCD -中,底面梯形ABCD 中,//AD BC ,平面SAB ⊥平面,ABCD SAB ∆是等边三角形,已知24,22AC AB BC AD DC =====.(I )求证:平面SAB ⊥平面SAC ; (II )求二面角B SC A --的余弦值.9、(厦门第一中学2017届高三上学期期中考试)如图,在梯形ABCD 中,0//,1,60AB CD AD DC CB ABC ===∠=,四边形ACFE 为矩形,平面ACFE ⊥平面,1ABCD CF =.(1)求证:BC ⊥平面ACFE ;(2)点M 在线段EF 上运动,设平面MAB 与平面FCB 所成二面角为()090θθ≤,试求cos θ的取值范围.参考答案一、选择、填空题1、C2、B3、C4、C5、C6、32π7、 8、A 9、C 10、C 11、21612二、解答题 1、证明:(Ⅰ)证明:由堑堵ABC -A 1B 1C 1的性质知:四边形A 1ACC 1为矩形.∵A 1A ⊥底面ABC ,BC ⊂平面ABC ,∴BC ⊥A 1A ,又BC ⊥AC ,A 1A ∩AC =A . A 1A ,AC ⊂平面A 1ACC 1. ∴BC ⊥平面A 1ACC 1, ∴四棱锥B -A 1ACC 1为阳马, ……………2分且四面体A 1CBC 1为鳖臑,四个面的直角分别是∠A 1CB ,∠A 1C 1C ,∠BCC 1,∠A 1C 1B . ……………4分 (Ⅱ)∵A 1A =AB =2. 由(Ⅰ)知阳马B -A 1ACC 1的体积V =13S 矩形A 1ACC 1·BC =13×A 1A ×AC ×BC =23AC ×BC ≤13(AC 2+BC 2)=13×AB 2=43.当且仅当AC =BC =2时, V max =43, ……………6分以C 为原点,建立如图所示的空间直角坐标系 C- xyz . 则 A 1(0, 2, 2), B ( 2, 0, 0), C 1(0, 0, 2)∴1=(0, 2, 2), =( 2, 0, 0),11A C =(0, 2, 0),B C 1=( 2, 0, -2),设平面B CA 1的法向量为 ()1111,,z y x n =.平面B A C 11的法向量为()1111,,z y x n =则⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧==,0,0,0,012112111C n A C n n CA n 即⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧==+.022,02.02,022222111z x y x z y 取1,0,2;1,2,0222111===-===z y x z y x则n 1=(0, 2, -1), n 2=( 2, 0, 1). ……………8分 ∴31331,cos 212121-=⨯-=⋅⋅=n n n n n n ……………10分结合图形知二面角 C- A 1B ­C 1的余弦值为31. ……………12分 2、3、解:(Ⅰ)取CD 的中点E ,则AE ⊥CD ,∴AE ⊥AB ,又PA ⊥底面ABCD ,∴PA ⊥AE 建立如图所示空间直角坐标系,则A (0,,0,0),P (0,0,C 12,0),D 12-,0)AP =,31(,0)2AC =,31(,2PD =-易求1(3,3,0)n =-为平面PAC 的一个法向量.2(2,0,1)n =为平面PDC 的一个法向量(7分)∴cos 1212125,||||⋅<>==⋅n n n n n n 故二面角D-PC-A 的正切值为2. (6分) (Ⅱ)设m ,z y x M =),,(,则)32123()3,,(--=-,,m z y x ,解得点)332123(m m ,m ,M --,即)332123(m m ,m ,AM --= (11分) 由515)1(353sin 22=-+=m m θ得1=m (不合题意舍去)或21=m所以当M 为PD 的中点时,直线AM 与平面PCD 所成角的正弦值为.515(12分) 4、(1)在图1中,取CP 的中点O ,连接AO 交CB 于E ,则AE CP ⊥,在图2中,取CP 的中点O ,连接AO ,OB ,因为2AC AP CP ===,所以AO CP⊥,且AO =在OCB ∆中,由余弦定理有(22201217OB =+-⨯⨯=, 所以22210AO OB AB +==,所以AO OB ⊥. 又,AO CP CPOB O ⊥=,所以AO ⊥平面PCB ,又AO ⊂平面ACP ,所以平面ACP ⊥平面CPB(2)因为AO ⊥平面CPB ,且OCOE ⊥,故可如图建立空间直角坐标系,则()()(()()0,0,0,1,0,0,,1,0,0,O C A PB --, ()(2,3,3,1,0,AB AC =--=,显然平面ABC 的法向量为()0,1,0n =设平面ABC 的法向量为(),,m x y z =,则由0m AB m AC ⎧=⎨=⎩得)m =;故所求角的余弦值cos |cos ,|m n θ=<>==. 5、(I )【证明】在图1的长方形ABCD 中,AB =22,AD =2,M 为DC 的中点,∴AM =BM =2,所以AM 2+BM 2=AB 2∴BM ⊥AM . ········································································································ (2分) 在图2中,∵平面ADM ⊥平面ABCM ,平面ADM ∩平面ABCM =AM ,BM ⊂平面ABCM∴BM ⊥平面ADM ······························································································ (4分) ∵AD ⊂平面ADM∴AD ⊥BM ············································································································ (5分)(II )【解】取AM 中点O ,AB 中点F ,建立空间直角坐标系O -xyz ,如图则A (1,0,0),B (-1,2,0),D (0,0,1),M (-1,0,0)=(1, 0,1),=(-1,2,-1),设=λ ························· (7分)则平面AMD 的一个法向量=(0,1,0) ················ (8分)=+λ=(1-λ,2λ,1-λ),=(-2,0,0),设平面AME 的一个法向量为=(x ,y ,z )则即 ⎩⎨⎧-2x =0(1-λ)x +2λy +(1-λ)z =0······················· (9分) 取y =1,得x =0,y =1,z =2λλ-1 所以=(0,1,2λλ-1), ∵二面角E -AM -D 的余弦值为55 ··························································· (10分) ∴| cos 〈,〉 |==55 即11+(2λλ-1)2=55 解得λ=12, ······················································································ (11分) 综上,当E 为BD 的中点时,二面角E -AM -D 的余弦值为55. ···················· (12分)6、(1)取BC 中点M ,连接1B M ,则1B M ⊥平面ACB ∴1B M AC ⊥…………1分 又AC BC ⊥,且1B M BC M AC =∴⊥平面11B C CB因为AC ⊂平面11ACC A ,所以平面11ACC A ⊥平面11B C CB ;…………4分(2)以CA 为ox 轴,CB 为oy 轴,过点C 与面ABC 垂直方向为oz 轴,建立空间直角坐标系…………5分2CA BC ==,设1B M t =,则11(200),(020),(010),(01,),C (0,1,t)A B M B t -,,,,,,,………6分 即111(21,),(2,2,0),(0,2,0)AB t AB B C =-=-=-,设面1AB B 法向量111(,,)(1,1,)n x y z n t =∴=…………8分面11AB C 法向量21(,,)(,0,1)2tn x y z n =∴=…………10分125cos ,7n n t <>=-∴.…………12分 7、(Ⅰ)因为四边形ABCD 是正方形,所以BD AC ⊥,PA ABCD ⊥面,由此推出PA BD ⊥,又AC PA A =,所以BD PAC ⊥面,而PC PAC ⊂面,所以推出PC BD ⊥.(Ⅱ)设PA x =,三棱锥E BCD -的底面积为定值,求得它的高22x h x =+,当2x x=,即x h ,三棱锥E BCD -的体积达到最大值为111132⨯⨯⨯=. 以点A 为坐标原点,AB 为x 轴,AD 为y 轴,PA 为z 轴建立空间直角坐标系,则 ()()()(1 0 0 1 1 0 0 1 0 0 0 B C D P ,,,,,,,,,,,令() E x y z ,,,PE PC λ=,∴2cos n AP <>=,, ∴二面角E BD C --为4π. 8、解:(Ⅰ)在BCA ∆中,由于∴222AB AC BC +=,故AB AC ⊥.……………2分 又SAB ABCD ⊥平面平面,SAB ABCD AB =平面平面,AC ABCD ⊂平面SAB AC ∴⊥平面,……………4分 又AC SAC ⊂平面,故平面SAC ⊥平面SAB ……………6分(II )如图建立A xyz -空间直角坐标系,)0,0,0(A ,)0,0,2(B ,)3,0,1(S ,)0,4,0(C ,)3,4,1(-=CS ,)0,4,2(-=BC ,)0,4,0(=………………………………………7分设平面SBC 的法向量()111,,n x y z =,00nBC n CS ⎧⋅=⎪⇒⎨⋅=⎪⎩令1111,2,y x z ===则, n ⎛∴= ⎝.………………………………………8分 设平面SCA 的法向量()222,,m x y z =,0m AC m CS ⎧⋅=⎪⇒⎨⋅=⎪⎩2x = ,(3,0,1∴=-m 9分 2cos ,n m n m n m ⋅==-⋅………………………………………………………11分 ∴二面角--B SC A 的余弦值为………………………………………12分 9、解:(1)证明:在梯形ABCD 中,因为0//,1,60AB CD AD DC CB ABC ===∠=,所以2AB =,所以22202cos 603AC AB BC AB BC =+-=,所以222AB AC BC =+,所以BC AC ⊥......................3分因为平面ACFE ⊥平面ABCD ,平面ACFE 平面ABCD AC =,BC ⊂平面ABCD ,所以BC ⊥平面ACFE ............5分(2)由(1)可建立分别以直线,,CA CB CF 为x 轴,y 轴,z 轴的如图所示的空间直角坐标系,令(0FM λλ=≤≤,则())()()0,0,0,,0,1,0,M ,0,1C A B λ, ∴()()3,1,0,,1,1AB BM λ=-=-,设()1,,n x y z =为平面MAB 的一个法向量,由1100n AB n BM ⎧=⎪⎨=⎪⎩得00y x y z λ⎧+=⎪⎨-+=⎪⎩,取1x =,则()11,3,n λ=-,...........7分 ∵()21,0,0n =是平面FCB 的一个法向量.......................8分∴1212cos 1n n n n θ===+.................10分∵0λ≤≤0λ=时,cos θ,当λ=cos θ有最大值12.∴1cos 2θ⎤∈⎥⎦..................12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高考数学大题专题练习——立体几何(三)53.如图,在四棱锥E ﹣ABCD 中,平面CDE ⊥平面ABCD ,∠DAB =∠ABC =90°,AB =BC =1,AD =ED =3,EC =2.(1)证明:AB ⊥平面BCE ;(2)求直线AE 与平面CDE 所成角的正弦值.54.如图1,2,已知ABCD 是矩形,M ,N 分别为边AD ,BC 的中点,MN 与AC 交于点O ,沿MN 将矩形MNCD 折起,设AB =2,BC =4,二面角B ﹣MN ﹣C 的大小为θ. (1)当θ=90°时,求cos ∠AOC 的值;(2)点θ=60°时,点P 是线段MD 上一点,直线AP 与平面AOC 所成角为α.若sin α=714,求线段MP 的长.55.在四棱锥P ﹣ABCD 中,P A ⊥平面ABCD ,底面ABCD 为直角梯形,∠CDA =∠BAD =90°,AD =DC =2,AB =P A =22,且E 为线段PB 上的一动点. (1)若E 为线段PB 的中点,求证:CE ∥平面P AD ;(2)当直线CE 与平面P AC 所成角小于3π,求PE 长度的取值范围.56.如图,在几何体111ABC A B C -中,平面11A ACC ⊥底面ABC ,四边形11A ACC 是正方形,11B C BC ∥,Q 是1A B 的中点,且112AC BC B C ==,2π3ACB ∠=. (Ⅰ) 证明:1B Q ∥平面11A ACC ;(Ⅱ) 求直线AB 与平面11A BB 所成角的正弦值.57.如图,已知ABC V 和BCD V 所在平面互相垂直,且090BAC BCD ∠=∠=,,AB AC =CB CD =,点,E F 分别在线段,BD CD 上,沿直线EF 将EFD V 向上翻折使得D 与A 重合(Ⅰ)求证:AB CF ⊥;(Ⅱ)求直线AE 与平面ABC 所成角。

58.如图,四边形ABCD 是圆台1OO 的轴截面,24AB CD ==,点M 在底面圆周上,且2π=∠AOM ,DM AC ⊥. (Ⅰ)求圆台1OO 的体积;(Ⅱ)求二面角A DM O --的平面角的余弦值.59.如图,已知菱形ABCD 与等腰PAB ∆所在平面相互垂直.120PAB BAD ∠=∠=o . E 为PB 中点 .(Ⅰ)求证://PD 平面ACE ;(Ⅱ)求二面角B CE D --的余弦值60.如图,在四面体ABCD 中,平面ACD ⊥平面BCD ,90BCA ∠=︒,1AC =,2AB =,BCD ∆为等边三角形.(Ⅰ)求证:AC ⊥平面BCD(Ⅱ)求直线CD 与平面ABD 所成角的正弦值.61.已知:平行四边形ABCD 中,∠DAB =45°,AB =2AD =22,平面AED ⊥平面ABCD ,△AED 为等边三角形,EF ∥AB ,EF =2,M 为线段BC 的中点。

(I )求证:直线MF ∥平面BED ;(II )求平面BED 与平面FBC 所成角的正弦值;(III )求直线BF 与平面BED 所成角的正弦值。

62.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,2AB =,60BAD =︒∠.(1)若PA AB =,求PB 与AC 所成角的余弦值;(2)当平面PBC 与平面PDC 垂直时,求PA 的长.63.在如图所示的几何体中,四边形ABCD 为正方形,PA ⊥平面ABCD ,PA BE P , 4AB PA ==,2BE =.(Ⅰ)求证://CE 平面PAD ;(Ⅱ)求PD 与平面PCE 所成角的正弦值;(Ⅲ)在棱AB 上是否存在一点F ,使得平面DEF ⊥平面PCE ?如果存在,求AF AB 的值;如果不存在,说明理由.64.如图,在四棱锥P ABCD -中,AB AP ⊥,AB ∥CD ,且PB BC ==6BD =,222CD AB ==,120PAD ∠=o .(Ⅰ)求证:平面PAD ⊥平面PCD ;(Ⅱ)求直线PD 与平面PBC 所成角的正弦值.65.如图,四面体ABCD 中,31132AB BC CD BD AD =====,平面ABD ⊥平面CBD .(1)求AC 的长;(2)点E 是线段AD 的中点,求直线BE 与平面ACD 所成角的正弦值.66.在四棱锥ABCD P -中, BC AD //,90ABC APB ∠=∠=︒,点M 是线段AB 上的一点,且CD PM ⊥,BM AD PB BC AB 422====.(1)证明:面⊥PAB 面ABCD ;(2)求直线CM 与平面PCD 所成角的正弦值.67.如图,四棱锥P ABCD -,底面ABCD 为菱形,PA ⊥平面ABCD ,2PA PB ==,E 为CD 的中点,60ABC ∠=︒.(I )求证:直线AE ⊥平面PAB ;(II )求直线AE 与平面PCD 所成角的正弦值.68.如图,四棱锥E ABCD -中,平面EAD ⊥平面ABCD ,DC AB ∥,BC CD ⊥,EA ED ⊥,且4AB =,2BC CD EA ED ====.(1)求证:BD ⊥平面ADE ;(2)求BE 和平面CDE 所成角的正弦值;(3)在线段CE 上是否存在一点F 使得平面BDF ⊥平面CDE ,请说明理由.69.如图,在空间几何体ABCDFE 中,底面ABCD 是边长为2的正方形,AF AB ⊥,//AF BE ,22BE AF ==.(1)求证:AC//平面DEF ;(2)已知5DF =,若在平面DEF 上存在点P ,使得BP ⊥平面DEF ,试确定点P 的位置.70.如图,在四棱锥P ABCD -中,PBD ∆是等边三角形,AD BC ∥,22AP AB AD BD ===. (1)求证:平面PAB ⊥平面PAD ;(2)若直线PB 与CD 所成角的大小为60°,求二面角B PC D --的大小.71.如图,在四棱锥P ABCD -中,四边形ABCD 为梯形,//AB CD ,12AD CD BC AB ===,PAD ∆为等边三角形,PA BD ⊥. (1)求证:平面PAD ⊥平面ABCD ;(2)求二面角A PB C --大小的余弦值.72.在正三棱柱111ABC A B C -中,已知1AB =,12AA =,E ,F ,G 分别是1AA ,AC 和11A C 的中点.以{,,}FA FB FG u u u r u u u r u u u r 为正交基底,建立如图所示的空间直角坐标系F xyz -.⑴求异面直线AC 与BE 所成角的余弦值; ⑵求二面角1F BC C --的余弦值.73.如图,在四棱锥P-ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA=PD ,AB ⊥AD ,AB=1,AD=2,AC=CD=5.(1)求证:PD ⊥平面PAB .(2)求直线PB 与平面PCD 所成角的正弦值.(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求APAM的值;若不存在,说明理由.74.如图,已知梯形ABCD 中,AD ∥BC ,AD ⊥AB ,AB=BC=2AD=2,四边形EDCF 为矩形, CD=3,平面EDCF ⊥平面ABCD . (1)求证:DF ∥平面ABE .(2)求平面ABE 与平面EFB 所成锐二面角的余弦值.(3)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 所成角的正弦值为43,若存在,求出线段BP 的长.DBPD ABCE F75.在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 平面ABCD ,PAD ∆是等腰三角形,AD AB 2=,E 是AB 的一个三等分点(靠近点A ),CE 与DA 的延长线交于点F ,连接PF .(Ⅰ)求证:平面⊥PCD 平面PAD ; (Ⅱ)求二面角F PE A --的正切值76.在等腰梯形ABCD 中,//,2,60AD BC BC AD ABC =∠=o,将梯形ABCD 沿着AB 翻折至11ABC D (如图),使得平面ABCD 与平面11ABC D 垂直.(Ⅰ)求证:1BC AC ⊥;(Ⅱ)求直线1DD 与平面1BCD 所成角的正弦值.77.已知在四棱锥C ABDE -中,DB ⊥平面ABC ,//AE DB ,ABC △是边长为2的等边三角形,1AE =,M 为AB 的中点.(1)求证:CM EM ⊥;(2)若直线DM 与平面ABC 所成角的正切值为2,求二面角B CD E --的大小.78.如图,四棱锥P ABCD -的底面ABCD 为菱形,60ABC ∠=︒,侧面PAB 是边长为2的正三角形,侧面PAB ⊥底面ABCD .(1)设AB 的中点为Q ,求证:PQ ⊥平面ABCD . (2)求斜线PD 与平面ABCD 所成角的正弦值.(3)在侧棱PC 上存在一点M ,使得二面角M BD C --的大小为60︒,求CMCP的值. 51015A DEMB M DA BCPQ试卷答案53.证明:(1)∵∠DAB=∠ABC=90°,∴四边形ABCD是直角梯形,∵AB=BC=1,AD=ED=3,EC=2.∴CD==,∴CE2+DC2=DE2,∴EC⊥CD,∵面EDC⊥面ABCD,面EDC∩面ABCD=DC,∴CE⊥面ABCD,∴CE⊥AB,又AB⊥BC,BC∩CE=C,∴AB⊥面BCE.解:(2)过A作AH⊥DC,交DC于H,则AH⊥平面DCE,连结EH,则∠AEH是直线AE与平面DCE所成的平面角,∵=,∴AH==,AE==,∴sin∠AEH=,∴直线AE与平面CDE所成角的正弦值为.54.解:如图,设E为AB的中点,建立如图所示的空间直角坐标系.(1)当θ=90°时,A(2,﹣1,0),C(0,1,2),∴,,∴.(2)由θ=60°得,,M(0,﹣1,0),∴,设,则,∴,设平面AOC的法向量为,∵,,∴,取,由题意,得,即3λ2﹣10λ+3=0,∴或λ=3(舍去),∴在线段MD上存在点P,且.55.证明:(1)取PA的中点F,连结EF,DF,则EF∥AB,EF=AB,又DC∥AB,DC=AB,∴EF∥CD,EF=DC,∴四边形EFDC是平行四边形,∴CE∥DF,又CE⊄平面PAD,DF⊂平面PAD,∴CE∥平面PAD.解:(2)∵AD=CD=,AD⊥CD,∴AC=2,又AB=2,∠BAC=45°,∴BC=2,∴AC⊥BC,又PA⊥平面ABCD,BC⊂平面ABCD,∴PA ⊥BC ,又PA∩AC=A , ∴BC ⊥平面PAC ,过E 作EM ∥BC ,则EM ⊥平面PAC ,∴∠PCE 为CE 与平面PAC 所成的角,即∠PCE <.∵PA=2,AC=2,∴PC=2,BC=2,PB=4,∴∠BPC=,∴当∠PCE=时,CE ⊥PB ,此时PE=3, ∴当∠PCE时,PE <3.56.(Ⅰ) 证明:如图1所示,连接11,AC A C 交于M 点,连接MQ . 因为 四边形11A ACC 是正方形, 所以 M 是1AC 的中点 又已知Q 是1A B 的中点 所以 1 2MQ BC ∥又因为 11B C BC ∥且11=2BC B C所以 11 MQ B C ∥, 即四边形11B C MQ 是平行四边形 所以 11B Q C M ∥,因此 1B Q ∥平面11A ACC .…………………………………………………7分(Ⅱ) 如图2所示,过点B 作面11A B B 与 面ABC 的交线BD ,交直线CA 于D .过A 作线BD 的垂线AH ,垂足为H .再过A 作线1A H 的垂线AG ,垂足为G . 因为1,AH BD AA BD ⊥⊥, 所以BD ⊥面1A AH ,所以BD ⊥AG ,又因为1A H AG ⊥,所以AG ⊥面11A B B ,所以ABG ∠即AB 与面11A B B 所成的角.………………10分 因为11A B ∥面ABC ,所以11A B ∥BD , 且A 为CD 的中点,如图3所示,CP 为BD 边上的高,22=2+2+22=23AB ⨯, 22=2+4+24=27BD ⨯,因为011sin12022CB CD BD CP ⋅=⋅ 所以237CP =,所以3=27CP AH = 因为12AA =,所以21331277A H =+=, 113223731317AH AA AG A H⨯⋅=== 所以233131sin 312331ABG ∠===………………………………………15分57.(1)090FC ABC AB CF BCD CF BC ⊥⎫⎪⋂⇒⊥⇒⊥⎬⎪∠=⇒⊥⎭面ABC 面BCD面ABC 面BCD=BC 面.............5分(2)设12,2,2AB AC CD BD ====,则,t BE =设,则ED=EA=2-t,取,BC H HE AH 的中点,连接, 又0221452EBH HE t t ∠==-+,则 (3)AH BCD AH BC ⊥⎫⎪⋂⇒⊥⎬⎪⊥⎭面ABC 面BCD 面ABC 面BCD=BC 面.............7分()22222,112-,122AH BCD AE AH EH t t t t ⊥=+∴=+-+∴=又面,E BD ∴点是的中点,...........10分 ,HE BC HE ABC ∴⊥面P BEA ∠为所求角的线面角...........12分 221AE AH EH ===,...........14分 2sin 2BEA ∴∠=所以直线AE 与平面ABC 所成角为4π..............................15分法2:A BCE E BCA V V --=,22E ABC ∴到面的距离为2sin 2θ∴=所以直线AE 与平面ABC 所成角为4π(酌情给分)58.解法一:(Ⅰ)由已知可得: OM ⊥平面AOD.又AC ⊥DM.从而有AC ⊥DO 由平面几何性质可得AC ⊥CB -----4 设OO 1=h ,在直角△ABC 中,有AC 2+BC 2=AB 2 即 (9+h 2)+(1+h 2)=16h ∴=∴圆台1OO 的体积337)(31222121ππ=++=r r r r h V . -----7 (Ⅱ)过点O 在△DOM 内作OE ⊥DM ,作OH ⊥平面DAM ,垂足分别为E ,H ,连EH. 易得EH ⊥DM,故∠OEH 就是二面角A DM O --的平面角. ----10 在△DOM 中由V D-AOM =V O-ADM 得OH=7-----13 在直角△OEH 中,sin OEH ∠=则二面角A DM O --的余弦值为77---15 解法二:(Ⅰ)由题意可得1OO 、OM 、OB 两两互相垂直,以O 为原点,分别以直线OM 、OB 、1OO 为x 、y 、z 轴建立空间直角坐标系 -----2 设1(0)OO h h =>,则(0,1,)D h -,(2,0,0),M (0,2,0)A -,(0,1,)C h (2,1,)DM h ∴=-u u u u r ,(0,3,)AC h =u u u rDM AC ⊥Q 230DM AC h ∴⋅=-=u u u u r u u u r解得h =∴圆台1OO 的体积337)(31222121ππ=++=r r r r h V . -----7 (Ⅱ)(2,2,0)AM =u u u u r,(2,1,DM =u u u u r ,(2,0,0)OM =u u u u r-----9设平面ADM 、平面ODM 的法向量分别为 111(,,)u x y z =r ,222(,,)v x y z =r则00u AM u DM ⎧⋅=⎪⎨⎪⋅=⎩r u u u u r r u u u u r 且 00v DM v OM ⎧⋅=⎪⎨⎪⋅=⎩r u u u u rr u u u u r即1111122020x y x y ⎧+=⎪⎨⎪+-=⎩ 且22222020x y x ⎧+=⎪⎨=⎪⎩取u =rv =r-----13∴7 cos,||||uvu vu v⋅<>==-⋅r rr rr r.则二面角A DM O--的余弦值为77---1559.证:(I). 连结BD,设BD交AC于M点,连结ME………………………….2分在平行四边形ABCD中,AC,BD相互平分,即DM=BM,又PE=BE∴在BDP∆中,//EM PDAEC ME AECPD⊄⊂Q面,面∴//EM PD………………………….6分解:(II).过D作DO垂直BA延长线与O点,连结PO,易得DO,PO,BO两两垂直建立如图坐标系,设AB=2,则(0,3,0),(0,3),3,0,0),3)B C P D33,0)2E∴3333(0,3),(,0),DC(0,2,0),(,3)22BC BE DE∴=-=-==-u u u r u u u r u u u r u u u r………………………….10分(注:每对一个给1分)∴设面BCE 的一个法向量为11(,,1)m x y =u r ,面DCE 的一个法向量22(,,1)n x y =r,则21221100,3300222n DC y m BC y n DE x y m BE y ⎧⎧⋅==⋅=-+=⎪⎪⎨⎨⋅=+=⋅=-=⎪⎪⎩⎩r u u u r u r u u u rr u u u r u r u u u r(2,0,1)m n ∴==u r r……………………………….12分(注:每对一个给1分)cos ,m n m n m n⋅∴<>===⋅u r ru r r u r r …………………………14分 ∴二面角B CE D --的余弦值为65-………………………….15分 60.证:(1)取CD 中点M ,连结BM ,BCD ∆Q 为等边三角形.BM ∴⊥CD , ……(2分)又Q 平面ACD ⊥平面BCD ,平面ACD I 平面BCD =CD ,BM ⊂平面BCD ,BM ∴⊥平面ACD ,BM ∴⊥AC ,……(5分)又BC ⊥AC , AC ∴⊥平面BCD ……(7分)(2)法一:设点C 到平面ABD 的距离为d , 由--C ABD A BCD V V =, ……(10分)即1113132234d ⨯=⨯⨯,得d =……(13分) 设直线CD 与平面ABD 所成角为α,则s in d CD α===……(15分) 法二:取BD 中点N ,连NC ,则AN ⊥BD ,CN ⊥BD ,BD ∴⊥平面ANC ,∴平面ANC ⊥平面ABD ,又平面ANC I 平面ABD =AN ,过点C 作CG ⊥AN ,垂足为G ,则CG ⊥平面ABD ,所以CDG ∠就是所求角. ……(10分) 在Rt ANC ∆中,算得CG =……(13分)所以13sin CG CD CDG ===∠……(15分)法三:如图建立空间直角坐标系C xyz -,则33(1,0,0),3,0),)2A B D 所以33)2CD =u u u r ……(10分)33(3,0),()2AB AD =-=-u u u r u u u r设(,,)n x y z ABD =r是平面的一个法向量所以303302x x y z ⎧-=⎪⎨-+=⎪⎩取3,3,1)y n ==r 则 ……(13分) 设直线CD 与平面ABD 所成角为α,则sin 33+||3922||||133CD n CD n ⋅α==⋅u u u r r u u u r u r ……(15分) 61.(I )证明:在△ADB 中,∵∠DAB=45° AB=2AD=22,∴AD ⊥BD 取AD 中点O ,AB 中点N ,连接ON ,则ON ∥BD ,∴AD ⊥ON 又∵平面AED ⊥平面ABCD ,平面AED∩平面ABCD=AD ,AD ⊥OE , ∴EO ⊥平面ABCD ,∴以O 为原点,OA ,ON ,OE 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图取BD 的中点H ,连接FH ,OH ,则OH ∥AB ∥EF ,且OH=EF , ∴FH ∥EO , ∴FH ⊥平面ABCD ,∴D (-1,0,0) B (-1,2,0) H (-1,1,3) F (-1,1,3) C (-3,2,0) M (-2,2,0), ∴DB =(0,2,0) DE =(1,0,3) MF =(1,-1,3),设平面AED 的一个法向量为n (x ,y ,z ),则⎩⎨⎧==0n DE 0n DB ∴⎩⎨⎧=+=0z 3x 0y不妨设n =(3,0,-1) ∴MF ⊥n , 又∵MF ⊄平面AED ∴直线MF ∥平面AED(II )解:∵BC =(-2,0,0),BF =(0,-1,3) 设平面FBC 的一个法向量为m (x ,y ,z ),则⎩⎨⎧==0m BF 0m BC ∴⎩⎨⎧=+-=0z 3y 0x不妨设n =(0,3,1)设平面BED 与平面FBC 所成的角为θ 则丨cos θ丨=丨丨丨丨丨m n m n 丨=41,∴sin 415=θ∴平面BED 与平面FBC 所成角的正弦值为415(III )解:直线BF 与平面BED 所成角为a , 则sina=丨cos<n BF >丨=丨丨丨丨丨n BF n BF 丨=43。

相关文档
最新文档