鲁教版数学七年级上册期中水平测试题(1)
【鲁教版】初一数学上期中试题附答案(1)
一、选择题1.已知:)(2320b a ++-=,则a b 的值为( ) A .-6B .6C .9D .-92.已知222y y +-的值为3,则2421y y ++的值为( ) A .11B .10C .10或11D .3或113.下列各选项中的两个单项式,是同类项的是( ) A .3和2B .2a -和25-C .215a b -和212ab D .2ab 和2xy4.下列计算正确的是( ) A .325a b ab += B .22550ab a b -= C .277a a a +=D .32ab ba ab -+=5.若0a <,则下列各组数中,与2a 互为相反数的是( )A .2aB .2a -C .2a -D .2a -6.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F 共16个计数符号,这些符号与十进制的数的对应关系如下表: 十六进制 0 1 2 3 4 5 6 7 8 9 A B C D E F 十进制123456789101112131415例如,十进制中261610=+,用十六进制表示为1A :用十六进制表示:1D F C +=,19F A -=,则A E ⨯,用A E ⨯十六进制可表示为( )A .8CB .140C .32D .EO 7.正三棱锥的截面中,边数最多的多边形是( ) A .三角形 B .四边形 C .五边形 D .六边形 8.用平面截一个正方体,所得截面不可能是( )A .等腰三角形B .长方形C .七边形D .五边形9.如图是正方体的表面展开图,则“乐”字相对面上的字为( )A .南B .开C .生D .快10.用一个平面去截下列立体图形,截面可以得到三角形的立体图形有( )A .4个B .3个C .2个D .1个11.对于有理数a ,b ,有以下四个判断:①若a b =,则b a ≥;②若a b >,则a >b ;③若a b =,则a b =;④若a b <,则a b <.其中错误的判定个数是( ) A .4个 B .3个C .2个D .1个12.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是( )A .0a b +>B .0a c +<C .0a b c +->D .0b c a +->二、填空题13.若x ﹣3y =5,则代数式2x ﹣6y+2021的值为_____.14.已知m 、n 互为相反数,p 、q 互为倒数,x 的绝对值为2,则代数式220192020m npq x +++的值是____. 15.对于有理数m ,n 定义运算*2(2)2m n m n =--,则*4(3)-=______. 16.化简:-(-2)=________,(-2)3=_________,|-212|=_________. 17.有一数值转换器,原理如图所示,若开始输入x 的值是7,可以得出第1次输出的结果是12,第2次输出的结果是6,依次继续下去…,第2021次输出的结果是__________.18.一个小立方块的六个面分别标有字母A 、B 、C 、D 、E 、F,从三个不同方向看到的情形如图所示,其中A 、B 、C 、D 、E 、F 分别代表数字-2、-1、0、1、2、3,则三个小立方块的下底面所标字母代表的数字的和为_____19.如图是由一些大小相同的小正方体组成的简单几何体的左视图和俯视图,符合条件的几何体有_______种.20.如图是哪种几何体的表面展开图形_______.(写出几何体的名称)三、解答题21.计算(1)()()664 2.50.1-⨯--÷-(2)()()322524-⨯--÷(3)()()225214382a a a a +---+(4)22135322x x x x ⎡⎤⎛⎫---+⎪⎢⎥⎝⎭⎣⎦22.化简求值:()()22226272m mn n m mn m ----+,其中4m =,1n =-.23.如图所示,是一个长方体纸盒平面展开图,已知纸盒中相对两个面上的数互为相反数.求a ,b ,c 的值?24.计算:(1)()()101723-+--- (2)123(1)6(3)(3)|5|-⨯--÷-+-25.图中所示是一个由小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置的小正方体的个数,请分别画出该几何体的主视图和左视图.26.如图是由5个相同的小正方体搭成的几何体,已知小正方体的棱长为1. (1)画出它的三视图;(2)求出它的表面积(含底面积).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先根据偶次方的非负性、绝对值的非负性可得a 、b 的值,再代入计算有理数的乘方即可得. 【详解】由偶次方的非负性、绝对值的非负性得:30,20b a +=-=, 解得2,3a b ==-,则()239ab =-=,故选:C . 【点睛】本题考查了偶次方的非负性、绝对值的非负性、代数式求值,熟练掌握偶次方与绝对值的非负性是解题关键.2.A解析:A 【分析】观察题中的两个代数式可以发现2(2y 2+y )=4y 2+2y ,因此可整体求出4y 2+2y 的值,然后整体代入即可求出所求的结果. 【详解】解:∵2y 2+y-2的值为3, ∴2y 2+y-2=3, ∴2y 2+y=5,∴2(2y 2+y )=4y 2+2y=10, ∴4y 2+2y+1=11. 故选:A . 【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式4y 2+2y 的值,然后利用“整体代入法”求代数式的值.3.A解析:A 【分析】根据同类项的定义:所含字母相同,相同字母的指数相同即可判断.两个常数也是同类项. 【详解】解:A. 3和2是常数,是同类项,故A 正确;B. 2a -和25-所含字母不同,故不是同类项,故B 错误;C.215a b -和212ab 相同字母的指数不同,故不是同类项,故C 错误; D. 2ab 和2xy 所含字母不同,故不是同类项,故D 错误. 故选:A . 【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.要注意,两个常数是同类项.4.D解析:D 【分析】根据合并同类项法则计算并判断. 【详解】A 、3a 与2b 不是同类项,不能合并,故该项不符合题意;B 、5ab 2与5a 2b 不是同类项,不能合并,故该项不符合题意;C 、7a+a=8a ,故该项不符合题意;D 、32ab ba ab -+=,故该项符合题意; 故选:D . 【点睛】此题考查合并同类项,掌握同类项的判断方法是解题的关键.5.B解析:B 【分析】先将各数进行化简,然后根据相反数的定义即可求出答案. 【详解】解:A.∵0a <,∴22=a a ,故选项A 不符合题意;B. ∵0a <,∴22a a -=-,故与2a 互为相反数,故选项B 符合题意;C. ∵0a <,∴222=||a a a -=,故选项C 不符合题意;D. ∵0a <,∴2222=||()a a a a -=-=,故选项D 不符合题意; 故选:B . 【点睛】本题考查有理数,解题的关键是正确理解相反数的定义,本题属于基础题型.6.A解析:A 【分析】根据表格对应数据,先把16进制转换成十进制求结果,再把结果转换成十六进制,即可求出答案. 【详解】 解:∵A=10,E=14 ∴A×E=10×14=140 ∴140÷16=8⋯⋯12 ∵C=12 ∴A×E=8C 故答案选A . 【点睛】本题主要考察了不同进制之间的转化,把我们陌生十六进制转换成我们熟悉的十进制去计算是解题关键.7.B解析:B 【分析】正三棱锥的截面中,当截面经过三个面时截面为三角形,当截面经过四个面时截面为四边形. 【详解】解:用平面去截一个三棱锥,截面可能为三角形或四边形,边数最多的是四边形. 故选B . 【点睛】本题考查了截一个几何体:用一个平面去截一个几何体,截出的面叫做截面;一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形.8.C解析:C 【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形. 【详解】 正方体的截面有:三角形,等腰三角形,等边三角形; 正方形,长方形,平行四边形,菱形,梯形五边形,六边形 故选:C 【点睛】本题考查正方体的截面.正方体有六个面,截面与其六个面相交最多得六边形,不可能是七边形或多于七边的图形.9.B解析:B 【分析】根据正方体的表面展开图的性质,即可求得答案. 【详解】 由题意得“乐”字相对面上的字为“开” 故答案为:B . 【点睛】本题考查了正方体的表面展开图,掌握正方体表面展开图的性质是解题的关键.10.B解析:B 【分析】对几何体逐个分析判断即可得出答案. 【详解】圆的截面不可能是三角形; 圆柱的截面不可能是三角形; 圆锥的截面可能是三角形; 三棱柱的截面可能是三角形; 长方体的截面可能是三角形; 故截面可能是三角形的几何体共有3个 故选B 【点睛】本题考查用一个面截几何体,熟练掌握各个几何体的截面的形状是解题关键.11.B解析:B 【分析】根据绝对值的性质依次判断即可. 【详解】解:①若a b =,则,b a =±且0b ≥,所以b a ≥,正确; ②若2,5a b ==-时,a b >,但a <b ,原说法错误; ③若a b =,则a b =±,原说法错误;④若2,5a b ==-时,a b <,但a b >,原说法错误; 故选:B . 【点睛】本题考查了绝对值的定义及其相关性质.牢记以下规律:(1)|a|=-a 时,a≤0;(2)|a|=a 时,a≥0;(3)任何一个非0的数的绝对值都是正数.12.D解析:D 【分析】根据数轴上点的位置确定出a ,b ,c 的正负及绝对值大小,利用有理数的加减法则判断即可. 【详解】解:根据数轴上点的位置得:a <0<b <c ,且|b|<|a|<|c|, ∴a+b <0,故选项A 错误,不符合题意;0a c +>,故选项B 错误,不符合题意; 0a b c +-<,故选项C 错误,不符合题意; 0b c a +->,故选项D 正确,符合题意;故选:D . 【点睛】此题考查了有理数的减法,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.二、填空题13.【分析】整体代入求值即可【详解】解:∵x ﹣3y =5∴2x ﹣6y =102x ﹣6y+2021=10+2021=2031;故答案为:2031【点睛】本题考查了求代数式的值解题关键是把式子的值整体代入求代数解析:【分析】 整体代入求值即可. 【详解】 解:∵x ﹣3y =5, ∴2x ﹣6y =10,2x ﹣6y+2021=10+2021=2031; 故答案为:2031. 【点睛】本题考查了求代数式的值,解题关键是把式子的值整体代入求代数式的值.14.2023【分析】根据相反数倒数以及绝对值的代数意义求出各自的值代入原式计算即可求出值【详解】解:根据题意得:m+n=0pq=1x=2或-2则原式=0+2019+4=2023故答案为:2023【点睛】解析:2023 【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值. 【详解】解:根据题意得:m+n=0,pq=1,x=2或-2, 则原式=0+2019+4=2023, 故答案为:2023. 【点睛】本题考查代数式求值,相反数、倒数和绝对值.熟练掌握运算法则是解本题的关键.15.10【分析】按照新定义运算法则把转化为有理数混合运算即可【详解】解:==10故答案为:10【点睛】本题考查了新定义运算根据新定义把原算式转化为有理数混合运算是解题关键解析:10 【分析】按照新定义运算法则,把*4(3)-转化为有理数混合运算即可. 【详解】解:*24(3)(42)2(3)-=--⨯-, =4(6)--, =10. 故答案为:10. 【点睛】本题考查了新定义运算,根据新定义把原算式转化为有理数混合运算是解题关键.16.-82【分析】根据有理数的相反数的定义有理数的乘方法则去绝对值符号法则计算即可求解【详解】解:-(-2)=2(-2)3=-8|-2|=2故答案为:2-82【点睛】考查了有理数的相反数乘方的求法绝对值解析:-8 212【分析】根据有理数的相反数的定义、有理数的乘方法则、去绝对值符号法则计算即可求解. 【详解】解:-(-2)=2,(-2)3=-8,|-212|=212. 故答案为:2,-8,212. 【点睛】考查了有理数的相反数,乘方的求法,绝对值的性质,关键是熟练掌握相关定义、法则.17.4【分析】根据计算程序将每次的结果依次计算出来发现规律:每7次为一个循环组利用得到答案【详解】每次输出的结果为:第1次:12第2次:6第3次:3第4次:8第5次:4第6次:2第7次:7第8次:12每解析:4【分析】根据计算程序将每次的结果依次计算出来,发现规律:每7次为一个循环组,利用202172885÷=得到答案.【详解】每次输出的结果为: 第1次:12, 第2次:6, 第3次:3, 第4次:8, 第5次:4, 第6次:2, 第7次:7, 第8次:12, ,每7次为一个循环组, ∵202172885÷=,∴第2021次输出的结果与第5次输出的结果相同,即为4,故答案为:4. 【点睛】此题考查数字类规律探究,有理数的运算,掌握图形中的计算程序图的计算过程,发现计算结果的规律并运用规律解决问题是解题的关键.18.-2 19.3 20.三棱锥 三、解答题21.(1)-289;(2)22;(3)23a 3413a -+-;(4)29x 32x -- 【分析】(1)先算乘除,再算加减即可;(2)先算乘方,再算乘除,后算加减即可; (3)去括号合并同类项即可;(4)先去小括号,再去中括号,然后合并同类项即可; 【详解】(1)原式=26425-- =-289;(2)原式=()4584⨯--÷ =()202--=22;(3)原式=2252112328a a a a +--+-=233413a a -+-;(4)原式=22135322x x x x ⎛⎫--++ ⎪⎝⎭ =22135322x x x x -+-- =2932x x --. 【点睛】本题考查了有理数的混合运算,整式的加减,熟练掌握运算法则是解答本题的关键. 22.22m n mn -+,11【分析】先去小括号,然后合并同类项进行计算即可,最后将4m =,1n =-代入求值即可;【详解】解:原式22226272m mn n m mn m =---++22m n mn =-+当4m =,1n =-时,原式224(1)4(1)=--+⨯-1614=--11=【点睛】本题考查了整式的加减运算,属于比较热点一类的题目,要注意去括号时前面是符号时要改变符号;23.a 、b 、c 的值分别为1,﹣2,﹣3【分析】根据长方体的表面展开图的特征,得出相对的面,再根据“相对两个面上的数互为相反数”即可求出a 、b 、c 的值.【详解】解:由长方体表面展开图的特征可知,标有数字“2”的对面是标有数字“c+1“的面,标有数字“4”的对面是标有数字“b ﹣2“的面,标有数字“﹣3”的对面是标有数字“a+2“的面,又∵纸盒中相对两个面上的数互为相反数.∴c+1+2=0,b ﹣2+4=0,a+2﹣3=0,∴a =1,b =﹣2,c =﹣3,答:a 、b 、c 的值分别为1,﹣2,﹣3.【点睛】本题考查长方体的表面展开图,相反数的定义,掌握长方体的表面展开图的特征是正确判断的前提.24.(1)4-;(2)2.【分析】(1)先去括号,再加减即可得到答案;(2)先计算乘方和括号里的,再计算乘除,最后算减法.【详解】解:(1)()()101723-+---101723=--+.4=-(2)123(1)6(3)(3)|5|-⨯--÷-+-16(27)(3)5=⨯--÷-+695=-+=2【点睛】此题考查了有理数的混合运算,要灵活掌握运算顺序和运算律,还要注意处理符号. 25.见解析【解析】【分析】根据题意可得,主视图有3列,每列小正方形数目分别为3,2,1;左视图有3列,每列小正方形数目分别为2,3,2,依此画出图形即可.【详解】如图所示:【点睛】本题考查了实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.26.(1)见解析;(2)22S =表【解析】试题分析:(1)利用小正方体堆成的几何体形状得出个数即可;(2)利用三视图求出六个方向的表面积即可.试题(1)如图,(2)表面积为:4+4+3+3+4+4=22.。
【鲁教版】初一数学上期中试卷带答案(1)
一、选择题1.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1 2.已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( ) A .2B .3C .4D .63.下列去括号正确的是( ) A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+4.下列式子中,是整式的是( ) A .1x + B .11x + C .1÷x D .1x x+ 5.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数 C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差6.若23,33M N x M x +=-=-,则N =( ) A .236x x +- B .23x x -+ C .236x x -- D .23x x - 7.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( )A .-13B .+13C .-3或+13D .+3或-18.下列各数中,互为相反数的是( )A .+(-2)与-2B .+(+2)与-(-2)C .-(-2)与2D .-|-2|与+(+2) 9.若21(3)0a b -++=,则b a -=( )A .-412B .-212C .-4D .110.计算4(8)(4)(1)+-÷---的结果是( )A .2B .3C .7D .4311.围绕保障疫情防控、为企业好困解难,财政部门快速行动,持续加大资金投入,截至2月14日,各级财政已安排疫情防控补助资金901.5亿元,把“901.5”用科学记数法表示为( ) A .109.01510⨯B .39.01510⨯C .29.01510⨯D .109.0210⨯12.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B二、填空题13.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.14.已知22 251,34A x ax y B x x by =+-+=+--,且对于任意有理数 ,x y ,代数式 2A B - 的值不变,则12()(2)33a Ab B ---的值是_______.15.在迎新春活动中,三位同学玩抢2018游戏,甲、乙、丙围成一圈依序报数,规定:甲、乙、丙首次报的数依次为1、2、3,接着甲报4、乙报5…按此规律,后一位同学报的数比前一位同学报的数大1,当报的数是2018时,报数结束;按此规则,最后能抢到2018的同学是______. 16.列式表示:(1)三个连续整数的中间一个是n ,用代数式表示它们三个数的和为______; (2)三个连续奇数的中间一个是n ,其他两个数用代数式表示为______; (3)设n 表示任意一个整数,试用含n 的式子表示不能被3整除的数为______. 17.已知|a |=3,|b |=2,且ab <0,则a ﹣b =_____. 18.(1)-23与25的差的相反数是_____. (2)若|a +2|+|b -3|=0,则a -b =_____. (3)-13的绝对值比2的相反数大_____. 19.有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm 的圆,它的周长约31.4 cm ,其中是准确数的有_____,是近似数的有_____. 20.(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到____位; (2)近似数2.428×105精确到___位;(3)用四舍五入法把3.141 592 6精确到百分位是____,近似数3.0×106精确到____位.三、解答题21.某路公交车从起点经过A ,B ,C ,D 站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数)起点 A B C D 终点 上车人数 16 15 12 7 8 0下车人数-3-4-10-11)到终点下车还有多少 人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算. 22.计算: (1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 10 23.计算 (1)442293⎛⎫-÷⨯- ⎪⎝⎭2; (2)313242⎛⎫⨯⨯- ⎪⎝⎭3()32490.5234-⨯-÷+-. 24.历史上的数学巨人欧拉最先把关于x 的多项式用记号f (x )的形式来表示,把x 等于某数a 时的多项式的值用f (a )来表示,例如x=﹣1时,多项式f (x )=x 2+3x ﹣5的值记为f (﹣1),则f (﹣1)=﹣7.已知f (x )=ax 5+bx 3+3x+c ,且f (0)=﹣1 (1)c=_____.(2)若f (1)=2,求a+b 的值; (3)若f (2)=9,求f (﹣2)的值. 25.数学课上,老师出示了这样一道题目:“当1,22a b ==-时,求多项式3233233733631061a a b a a b a b a a b +++----的值”.解完这道题后,张恒同学指出:“1,22a b ==-是多余的条件”师生讨论后,一致认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光. (1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目,“无论x 取任何值,多项式2233x mx nx x -++-+的值都不变,求系数m 、n 的值”.请你解决这个问题.26.图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.(1) 图②有 个三角形;图③有 个三角形;(2) 按上面的方法继续下去,第n 个图形中有多少个三角形(用n 的代数式表示结论).【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n , 右边三角形的数字规律为:2,22,…,2n , 下边三角形的数字规律为:1+2,222+,…,2n n +, ∴最后一个三角形中y 与n 之间的关系式是y=2n +n. 故选B . 【点睛】考点:规律型:数字的变化类.2.C解析:C 【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可. 【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩,故224m n +=+=; 故选:C . 【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细.3.D解析:D 【分析】根据整式混合运算法则和去括号的法则计算各项即可. 【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误;C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确; 故答案为:D . 【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键.4.A解析:A 【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可. 【详解】解:A. 1x +是整式,故正确; B.11x +是分式,故错误; C. 1÷x 是分式,故错误;D.1x x +是分式,故错误. 故选A. 【点睛】本题主要考查了整式,关键是掌握整式的概念.5.D解析:D 【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果. 【详解】 解:代数式21a b-的正确解释是a 的平方与b 的倒数的差. 故选:D. 【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.6.D解析:D 【分析】根据N=M+N-M 列式即可解决此题. 【详解】依题意得,N=M+N-M=222(3)(33)3333x x x x x x ---=--+=-;故选D. 【点睛】此题考查的是整式的加减,列式是关键,注意括号的运用.7.C解析:C 【分析】由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案. 【详解】∵4x =,5y =, ∴x=±4,y=±5, ∵x >y , ∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13, 当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3, ∴2x-y 的值为-3或13, 故选:C . 【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.8.D解析:D 【解析】 【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可. 【详解】A. +(-2)=-2,-2=-2,故A 选项中的两个数不互为相反数;B. +(+2)=2, -(-2)=2,故B 选项中的两个数不互为相反数;C. -(-2)=2,2=2,故C 选项中的两个数不互为相反数;D. -|-2|=-2,+(+2)=2,-2与2互为相反数,故D 选项中的两个数互为相反数, 故选D. 【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键.9.C解析:C 【解析】 【分析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得. 【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.10.C解析:C【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【详解】=++解:原式421=,7故选:C.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.11.C解析:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】901.5=9.015×102.故选:C.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.B解析:B【分析】由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A,2所对应的点是B,3对应的点是C,4对应的点是D,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.二、填空题13.65【分析】根据题目中数字的特点可知每组的个数依次增大每组中的数字都是连续的偶数然后即可求出2020是多少组第多少个数从而可以得到mn 的值然后即可得到m+n 的值【详解】解:∵将正偶数按照如下规律进行解析:65 【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m 、n 的值,然后即可得到m +n 的值. 【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…, ∴第m 组有m 个连续的偶数, ∵2020=2×1010, ∴2020是第1010个偶数,∵1+2+3+ (44)44(441)2⨯+=990,1+2+3+…+45=45(451)2⨯+=1035, ∴2020是第45组第1010-990=20个数, ∴m =45,n =20, ∴m +n =65. 故答案为:65. 【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键.14.-2【分析】先根据代数式为定值求出ab 的值及的值然后对所求代数式进行变形然后代入计算即可【详解】∵对于任意有理数代数式的值不变∴∵∴原式=故答案为:-2【点睛】本题主要考查代数式的求值能够对代数式进解析:-2 【分析】先根据代数式 2A B -为定值求出a,b 的值及 2A B -的值,然后对所求代数式进行变形,然后代入计算即可. 【详解】222(251)2(34)A B x ax y x x by -=+-+-+-- 222512628x ax y x x by =+-+--++ (6)(25)9a x b y =-+-+∵对于任意有理数 ,x y ,代数式 2A B - 的值不变∴60,250a b -=-=,29A B -=56,2a b ∴==∵121()(2)2(2)333a Ab B a b A B ---=--- ∴原式=51629653223-⨯-⨯=--=-故答案为:-2 【点睛】本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.15.乙【分析】由题意可得甲乙丙报的数字顺序规律为从1起三个数字为一个循环即丙报的数字规律为3的倍数将2018除以3余数为2即2018为一个循环的第2个数字即可判断为乙报的数字【详解】解:∵2018÷3=解析:乙 【分析】由题意可得甲、乙、丙报的数字顺序规律为,从1起三个数字为一个循环,即丙报的数字规律为3的倍数,将2018除以3余数为2,即2018为一个循环的第2个数字,即可判断为乙报的数字. 【详解】解:∵2018÷3=672 (2)∴最后能抢到2018的同学是乙. 故答案为:乙 【点睛】本题考查数字规律,读懂题意,找到数字循环规律是解答此题的关键.16.(1)或;(2)和;(3)和【分析】(1)易得最小的整数为n-1最大的整数为n+1把这3个数相加即可;(2)易得最小的奇数为n-2最大的奇数为n+2;(3)余数为1或2的数都不能被3整除从而列出代数解析:(1)()()11n n n -+++或3n ; (2)2n -和2n +; (3)31n +和32n +. 【分析】(1)易得最小的整数为n-1,最大的整数为n+1,把这3个数相加即可; (2)易得最小的奇数为n-2,最大的奇数为n+2; (3)余数为1或2的数都不能被3整除,从而列出代数式. 【详解】解: (1)由题意可知,最小的整数为n-1,最大的整数为n+1, ∴它们的和为()()11n n n -+++=3n ;(2) 三个连续奇数的中间一个是n ,其他两个数用代数式表示为2n -和2n +; (3)3n 能被3整除,余数为1或2的数都不能被3整除,∴不能被3整除的数为31n +和32n +. 【点睛】本题考查了列代数式及代数式化简的知识,;用到的知识点为:连续整数之间间隔1,连续奇数之间相隔2,余数为1或2的数都不能被3整除.17.5或﹣5【分析】先根据绝对值的定义求出ab 的值然后根据ab <0确定ab 的值最后代入a ﹣b 中求值即可【详解】解:∵|a|=3|b|=2∴a =±3b =±2;∵ab <0∴当a =3时b =﹣2;当a =﹣3时b解析:5或﹣5 【分析】先根据绝对值的定义,求出a 、b 的值,然后根据ab <0确定a 、b 的值,最后代入a ﹣b 中求值即可. 【详解】解:∵|a|=3,|b|=2, ∴a =±3,b =±2; ∵ab <0,∴当a =3时b =﹣2;当a =﹣3时b =2,∴a ﹣b =3﹣(﹣2)=5或a ﹣b =﹣3﹣2=﹣5.故填5或﹣5. 【点睛】本题主要考查的是有理数的乘法、绝对值、有理数的减法,熟练掌握相关法则是解题的关键.18.-5【分析】(1)先计算两个数的差再计算相反数即可;(2)由绝对值的非负性求出ab 的值再求出答案即可;(3)由题意列出式子进行计算即可得到答案【详解】解:(1)根据题意则;(2)∵|a +2|+|b -解析:1615 -5 123 【分析】(1)先计算两个数的差,再计算相反数即可;(2)由绝对值的非负性,求出a 、b 的值,再求出答案即可; (3)由题意列出式子进行计算,即可得到答案. 【详解】解:(1)根据题意,则221616()()351515---=--=;(2)∵|a +2|+|b -3|=0,∴20a +=,30b -=, ∴2a =-,3b =, ∴235a b -=--=-; (3)根据题意,则111(2)22 333 ---=+=;故答案为:1615;5-;123.【点睛】本题考查了绝对值的意义,相反数,列代数式求值,解题的关键是熟练掌握题意,正确的列出式子,从而进行解题.19.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中解析:68和10 14亿和31.4【分析】准确数是指对事物进行计数时,能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近,并且用来代替准确值的数值;据此直接进行判断.【详解】我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中准确数的有68和10;近似数的有14亿和31.4故答案为:68和10;14亿和31.4【点睛】理解“准确数”和“近似数”的意义是解决此题的关键.20.(1)千分(2)百(3)314十万【分析】(1)根据精确到哪位就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位就解析:(1)千分 (2)百 (3)3.14 十万【分析】(1)根据精确到哪位,就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位,就是对它后边的一位进行四舍五入以及科学记数法的精确方法解答即可.【详解】解:(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到千分位;(2)近似数2.428×105中,2.428的小数点前面的2表示20万,则这一位是十万位,因而2.428的最后一位8应该是在百位上,因而这个数是精确到百位;(3)用四舍五入法把3.141 592 6精确到百分位是3.14,近似数3.0×106精确到十万位.故答案为: (1)千分; (2)百; (3)3.14、十万.【点睛】本题考查了近似数,掌握确定近似数精确的位数和科学记数法的精确方法是解答本题的关键.三、解答题21.(1)30;(2)B ,C ;(3)71.5元.【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A 、B 、C 、D 站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解.【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人; 故到终点下车还有30人.故答案为:30;(2)根据图表:A 站人数为:16+15-3=28(人)B 站人数为:28+12-4=36(人)C 站人数为:36+7-10=33(人)D 站人数为:33+8-11=30(人)易知B 和C 之间人数最多.故答案为:B ;C ;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元).答:该出车一次能收入71.5元.【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键.22.(1)17;(2)1.【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.(1)16-;(2)34【分析】 (1)按照有理数的四则运算进行运算即可求解;(2)按照有理数的四则运算法则进行运算即可,先算乘方,注意符号.【详解】解:(1)原式944163616499=-⨯⨯=-⨯=-, (2)原式113924()(8)8444=⨯--⨯-⨯+ 39324=-++ 34=, 【点睛】本题考查有理数的加减乘除乘方运算法则,先算乘方,再算乘除,最后算加减,有括号先算括号内的,计算过程中细心即可.24.(1)-1;(2)0;(3)-11.【解析】分析:(1)把x=0,代入f (x )=ax 5+bx 3+3x+c ,即可解决问题;(2)把x=1,代入f (x )=ax 5+bx 3+3x+c ,即可解决问题;(3)把x=2,代入f (x )=ax 5+bx 3+3x+c ,利用整体代入的思想即可解决问题; 详解:(1)∵f (x )=ax 5+bx 3+3x+c ,且f (0)=-1,∴c=-1,故答案为-1.(2)∵f (1)=2,c=-1∴a+b+3-1=2,∴a+b=0(3)∵f (2)=9,c=-1,∴32a+8b+6-1=9,∴32a+8b=4,∴f (-2)=-32a-8b-6-1=-4-6-1=-11.点睛:本题考查的多项式代数式求值,解题的关键是理解题意,灵活运用所学知识解决问题.25.(1)见解析;(2)3n =,1m =.【分析】(1)将原式进行合并同类项,然后进一步证明即可;(2)将原式进行合并同类项,根据“无论x 取任何值,多项式值不变”进一步求解即可.【详解】(1)3233233733631061a a b a a b a b a a b +++----=3332233731033661a a a a b a b a b a b +-+-+--=1-,∴该多项式的值与a 、b 的取值无关, ∴1,22a b ==-是多余的条件. (2)2233x mx nx x -++-+=2233x nx mx x -++-+=2(3n)(1)3x m x -++-+∵无论x 取任何值,多项式值不变,∴30n -+=,10m -=,∴3n =,1m =.【点睛】本题主要考查了多项式运算中的无关类问题,熟练掌握相关方法是解题关键.26.(1)5,9 ;(2)43n -【分析】(1)由图形即可数得答案;(2)发现每个图形都比起前一个图形多4个,所以第n 个图形中有14(1)43n n +⨯-=-个三角形.【详解】解:(1)根据图形可得:5,9;(2)发现每个图形都比起前一个图形多 4 个,∴第n 个图形中有14(1)43n n +⨯-=-个三角形.【点睛】本题考查图形的特征,根据图形的特征找出规律,属于一般题型.。
【鲁教版】初一数学上期中试卷附答案(1)
一、选择题1.下列用代数式表示正确的是( ) A .a 是一个数的8倍,则这个数是8a B .2x 比一个数大5,则这个数是2x +5C .一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为(50-a )元D .小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元2.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( ) A .1 B .2C .3D .43.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 4.已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( ) A .﹣1B .﹣2C .﹣3D .﹣45.下列各式中,去括号正确的是( ) A .2(1)21x y x y +-=+- B .2(1)22x y x y --=++ C .2(1)22x y x y --=-+ D .2(1)22x y x y --=--6.已知多项式()210mx m x +--是二次三项式,m 为常数,则m 的值为( )A .2-B .2C .2±D .3±7.有理数a 、b 在数轴上,则下列结论正确的是( )A .a >0B .ab >0C .a <bD .b <08.2017年12月17日,第二架国产大型客机C919在上海浦东国际机场完成首次飞行.飞行时间两个小时,飞行的高度达到15000英尺.15000用科学记数法表示是( ) A .0.15×105B .15×103C .1.5×104D .1.5×1059.下列运算正确的是( ) A .()22-2-21÷= B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=-10.若|a |=1,|b |=4,且ab <0,则a +b 的值为( )A .3±B .3-C .3D .5±11.2020年5月7日,世卫组织公布中国以外新冠确诊病例约为3504000例,把“3504000”用科学记数法表示正确的是( ) A .3504×103B .3.504×106C .3.5×106D .3.504×10712.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元二、填空题13.已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则99a =________.14.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)15.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.16.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m +n+p =_________;17.绝对值小于2018的所有整数之和为________. 18.绝对值不大于2.1的所有整数是____,其和是____. 19.(1)-23与25的差的相反数是_____. (2)若|a +2|+|b -3|=0,则a -b =_____.(3)-13的绝对值比2的相反数大_____. 20.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克,某地今年计划栽种这种超级杂交稻30万亩,预计今年这种超级杂交稻的产量_____千克(用科学记数法表示)三、解答题21.计算:(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 22.将正整数1,2,3,4,5,……排列成如图所示的数阵:(1)十字框中五个数的和与框正中心的数11有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于180吗?若能,请写出这五个数;若不能,请说明理由; (4)十字框中五个数的和能等于2020吗?若能,请写出这五个数;若不能,请说明理由.23.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示) 24.计算:(1)[]2(2)18(3)24-+--⨯÷(2)()()243513224⎡⎤----⨯÷-⎢⎥⎣⎦25.某农户家准备出售10袋大米,称得质量如下:(单位:千克) 182,180,175,173,182,185,183,181,180,183(1)填空:以180千克作为基准数,可用正、负数表示这10袋大米的质量与180的差为 ;(2)试计算这10袋大米的总质量是多少千克? 26.化简与求值:(1)若1a =-,则式子21a -的值为______; (2)若1a b +=,则式子12a b++的值为______; (3)若534a b +=-,请你仿照以上求式子值的方法求出()()2422a b a b +++-的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题中叙述列出代数式即可判断. 【详解】A 、a 是一个数的8倍,则这个数是8a,错误,不符合题意; B 、2x 比一个数大5,则这个数是25x -,错误,不符合题意;C 、一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为( 50a -)元,错误,不符合题意;D 、小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元,正确,符合题意; 故选:D . 【点睛】本题考查了列代数式,要注意语句中的关键字,解决问题的关键是读懂题意,找到所求的量的等量关系.2.D解析:D 【分析】根据题意求得a ,b ,c ,d 的值,代入求值即可. 【详解】∵a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式-x 3y 的系数和次数, ∴a=0,b=1,c=-1,d=4, ∴a ,b ,c ,d 四个数的和是4, 故选:D . 【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数.3.C解析:C 【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10. 【详解】 解:8×10−6=74, 故选:C . 【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.4.A解析:A 【分析】根据同类项是字母相同且相同字母的指数也相同,可得m ,n 的值,根据代数式求值,可得答案. 【详解】由题意,得3m =6,n =2. 解得m =2,n =2.9m 2﹣5mn ﹣17=9×4﹣5×2×2﹣17=﹣1, 故选:A . 【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.5.C解析:C 【分析】各式去括号得到结果,即可作出判断. 【详解】解:2(1)22x y x y +-=+-,故A 错误;2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C . 【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.6.A解析:A【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可. 【详解】 解:因为多项式()210mxm x +--是二次三项式,∴m-2≠0,|m|=2, 解得m=-2, 故选:A. 【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键.7.C解析:C 【分析】根据数轴的性质,得到b >0>a ,然后根据有理数乘法计算法则判断即可. 【详解】根据数轴上点的位置,得到b >0>a ,所以A 、D 错误,C 正确; 而a 和b 异号,因此乘积的符号为负号,即ab <0所以B 错误; 故选C . 【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a 和b 的位置正确判断a 和b 的大小.8.C解析:C 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】15000用科学记数法表示是1.5×104. 故选C . 【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.D解析:D 【分析】根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D . 【详解】A 、()22-2-2441÷=-÷=-,该选项错误;B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D . 【点睛】本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.10.A解析:A 【分析】通过ab <0可得a 、b 异号,再由|a |=1,|b |=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a +b 的值 【详解】解:∵|a|=1,|b|=4, ∴a=±1,b=±4, ∵ab <0,∴a+b=1-4=-3或a+b=-1+4=3, 故选A. 【点睛】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.11.B解析:B 【分析】科学记数法表示较大的数形式为a×10n 的形式,其中1≤|a|<10,n 为整数,10的指数n 比原来的整数位数少1. 【详解】3504000=3.504×106, 故选:B . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.C解析:C 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011, 故选C . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题13.【解析】试题解析:1009999. 【解析】 试题等号右边第一式子的第一个加数的分母是从1开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是2,结果的分子是2,分母是1×3=3;等号右边第二个式子的第一个加数的分母是从2开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是3,结果的分子是3,分母是2×4=8;等号右边第三个式子的第一个加数的分母是从3开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是4,结果的分子是4,分母是3×5=15. 所以a 99=991100991019999+=⨯.考点:规律型:数字的变化类.14.【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分别数出图 解析:()43n -【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形. 【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3; 图②中三角形的个数为5=4×2-3; 图③中三角形的个数为9=4×3-3; …可以发现,第几个图形中三角形的个数就是4与几的乘积减去3. 按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3. 故答案为4n-3. 【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.15.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找 解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案. 【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=- 故答案为:()()()2212121n n n -+=-. 【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的.16.4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4 【分析】根据约定的方法求出m ,n ,p 即可. 【详解】解:根据约定的方法可得:18n -+= ,81m +=- ; ∴7n = ,9m =- ; ∴()716p =+-= ∴9764m n p ++=-++= 故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.17.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.18.﹣2﹣10120【分析】找出绝对值不大于21的所有整数求出之和即可【详解】绝对值不大于21的所有整数有﹣2﹣1012之和为﹣2﹣1+0+1+2=0故答案为:﹣2﹣1012;0【点评】此题考查了绝对值解析:﹣2,﹣1,0,1,2 0【分析】找出绝对值不大于2.1的所有整数,求出之和即可.【详解】绝对值不大于2.1的所有整数有﹣2、﹣1、0、1、2,之和为﹣2﹣1+0+1+2=0,故答案为:﹣2,﹣1,0,1,2;0【点评】此题考查了绝对值的意义和有理数的加法,熟练掌握运算法则是解本题的关键.19.-5【分析】(1)先计算两个数的差再计算相反数即可;(2)由绝对值的非负性求出ab的值再求出答案即可;(3)由题意列出式子进行计算即可得到答案【详解】解:(1)根据题意则;(2)∵|a+2|+|b-解析:1615-5123【分析】(1)先计算两个数的差,再计算相反数即可;(2)由绝对值的非负性,求出a、b的值,再求出答案即可;(3)由题意列出式子进行计算,即可得到答案.【详解】解:(1)根据题意,则221616()()351515---=--=; (2)∵|a +2|+|b -3|=0,∴20a +=,30b -=,∴2a =-,3b =,∴235a b -=--=-;(3)根据题意,则111(2)22333---=+=; 故答案为:1615;5-;123. 【点睛】 本题考查了绝对值的意义,相反数,列代数式求值,解题的关键是熟练掌握题意,正确的列出式子,从而进行解题.20.46×108【分析】本题已知的是亩产量和亩数要求总产量就要利用三者之间的关系式先计算总产量通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案【详解】解:依题意得:解析:46×108【分析】本题已知的是亩产量和亩数,要求总产量,就要利用三者之间的关系式先计算总产量.通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案.【详解】解:依题意得:820×300000=246000000=2.46×108.故答案为:2.46×108.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.三、解答题21.(1)23-;(2)-11 【分析】(1)先计算乘方及括号,再计算乘法,最后计算加减法;(2)先计算乘方和绝对值,再计算乘除法,最后计算加减法.【详解】 (1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦=111(2)23--⨯⨯- =113-+=23-; (2)6÷(-2)3-|-22×3|+3÷2×12+1 =116(8)123122÷--+⨯⨯+ =3312144--++ =-11.【点睛】 此题考查含乘方的有理数的混合运算,掌握运算顺序及运算法则是解题的关键. 22.(1)十字框中五个数的和是正中心数的5倍;(2)十字框中五个数的和是正中心数的5倍,理由见解析;(3)不能,理由见解析;(4)这五个数是404,403,405,397,411.【分析】(1)把框住的数相加即可求解;(2)设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +,相加即可得到规律;(3)由(2)得五个数的和为5a ,令5a=180,根据解得情况即可求解;(4)由(2)得五个数的和为5a ,令5a=2020,根据解得情况即可求解;【详解】解:(1)十字框中五个数的和是正中心数的5倍.∵十字框中五个数的和41011121855511=++++==⨯,∴十字框中五个数的和是正中心数的5倍.(2)五个数的和与框正中心的数还有这种规律.设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +.11775a a a a a a +-+++-++=,∴十字框中五个数的和是正中心数的5倍.(3)十字框中五个数的和不能等于180.∵当5180a =时,解得36a =,36751÷=,36在数阵中位于第6排的第1个数,其前面无数字,∴十字框中五个数的和不能等于180.(4)十字框中五个数的和能等于2020.∵当52020a =时,解得404a =,4047575÷=,404在数阵中位于第58排的第5个数,∴十字框中五个数的和能等于2020,这五个数是404,403,405,397,411.【点睛】 此题主要考查一元一次方程的应用,解题的关键是设中心的数为a ,求出十字框中五个数的和为5a.23.乙旅行社收费比甲旅行社贵0.2a 元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a )×90%-(a+a+12a ) =2.7a-2.5a=0.2a (元),则乙旅行社收费比甲旅行社贵0.2a 元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.24.(1)10;(2)-15【分析】(1)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】(1)解:原式=4+[18-(-6)]÷4=4+24÷4=4+6=10;(2)解:原式=-1-[9-10÷(-2)]=-1-[9-(-5)]=-1-14=-15.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.25.(1)+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)1804千克【分析】(1)规定超出基准数为正数,则不足部分用负数表示,即可;(2)把第(1)题10个数相加,再加上180×10,即可.【详解】(1)以180千克为基准数,超过180千克的记作正数,低于180千克的记作负数,那么各袋大米的质量分别为:+2,0,−5,-7,+2,+5,+3,+1,0,+3,故答案是:+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)(+2+0−5-7+2+5+3+1+0+3)+ 180×10=1804(千克),答:这10袋大米的总质量是1804千克.【点睛】本题主要考查正负数的意义以及有理数的加减法的实际应用,熟练掌握有理数的加减法运算法则,是解题的关键.26.(1)0;(2)32;(3)-10. 【分析】(1)把a 的值代入计算即可;(2)把a+b 的值代入计算即可;(3)原式去括号转化为含有(5a+3b)的式子,然后代入5a+3b 的值计算即可.【详解】解:(1)()221110a -=--=;(2)1311222a b ++=+=; (3)()()()()24221062253224210a b a b a b a b +++-=+-=+-=⨯--=-.【点睛】本题考查的是整式的化简求值和整体代换的思想.只要原式化简出含有已知的式子,再代入求值即可.。
【鲁教版】初一数学上期中试卷(带答案)(1)
一、选择题1.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .222.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .553.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .20224.式子5x x-是( ). A .一次二项式B .二次二项式C .代数式D .都不是5.多项式33x y xy +-是( ) A .三次三项式B .四次二项式C .三次二项式D .四次三项式6.一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,467.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度8.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有( ) A .4个B .3个C .2个D .1个9.如果|a |=-a ,下列成立的是( ) A .-a 一定是非负数 B .-a 一定是负数 C .|a |一定是正数 D .|a |不能是010.在数3,﹣13,0,﹣3中,与﹣3的差为0的数是( ) A .3B .﹣13C .0D .﹣311.计算(-2)2018+(-2)2019等于( )A .-24037B .-2C .-22018D .2201812.已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( ) A .a b a b a 1a 1+<-<-<+ B .a 1a b a b a 1+>+>->- C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>-二、填空题13.a -b ,b -c ,c -a 三个多项式的和是____________14.如图,是由一些点组成的图形,按此规律,在第n 个图形中,点的个数为_____.15.观察下列图形它们是按一定规律排列的,依照此规律,第 20 个图形共有________________ 个★.16.将下列代数式的序号填入相应的横线上.①223a b ab b ++;②2a b +;③23xy -;④0;⑤3y x -+;⑥2xy a ;⑦223x y +;⑧2x;⑨2x .(1)单项式:_______________; (2)多项式:_______________; (3)整式:_________________; (4)二项式:_______________.17.若有理数a ,b 满足()26150a b -+-=,则ab =__________. 18.在括号中填写题中每步的计算依据,并将空白处补充完整: (-4)×8×(-2.5)×(-125)=-4×8×2.5×125 =-4×2.5×8×125______ =-(4×2.5)×(8×125)______ =____×____ =____.19.校运动会的拔河比赛真是紧张刺激!规定拔河时,任意一方拉过30cm 就算获胜.小胖他们班在每次喊过“拉”声之后都可拉过7cm ,但又会被拉回3cm .如此下去,该班在第________次喊过“拉”声后就可获得胜利.20.A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.三、解答题21.计算 (1)442293⎛⎫-÷⨯- ⎪⎝⎭2; (2)313242⎛⎫⨯⨯- ⎪⎝⎭3()32490.5234-⨯-÷+-. 22.计算: (1)()21112424248⎛⎫-+--+⨯-⎪⎝⎭(2)()()1178245122-÷-⨯--⨯+÷ 23.计算:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦ (2)121123436⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ 24.观察下列单项式:﹣x ,2x 2,﹣3x 3,…,﹣9x 9,10x 10,…从中我们可以发现: (1)系数的规律有两条: 系数的符号规律是 系数的绝对值规律是 (2)次数的规律是(3)根据上面的归纳,可以猜想出第n 个单项式是 . 25.有这样一道题,计算()()4322433222422x x y x yxx y y x y -----+的值,其中0.25x =,1y =-;甲同学把“0.25x =”,错抄成“0.25x =-”,但他的计算结果也是正确的,你说这是为什么? 26.化简并求值:已知2232A a b ab abc =-+,小明错将“2A B -”看成“2A B +”,算得结果22434C a b ab abc =-+.(1)计算B的表达式;(2)小强说正确结果的大小与c的取值无关,对吗?请说明理由.(3)若18a=,15b=,求正确结果的代数式的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.2.C解析:C【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数2019的是从3开始的第1008个数,然后确定出1008所在的范围即可得解.【详解】∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=()()212m m+-,∵2n+1=2019,n=1009,∴奇数2019是从3开始的第1009个奇数,当m=44时,()() 4424419892+-=,当m=45时,()() 4524511342+-=,∴第1009个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选:C.【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.3.A解析:A【分析】设第二个为x,则第一个,第三个,第四个分别为:x-1,x+1,x+2,总和为:4x+2,分别令代数式为:2010,2014,2018,2022,算出x再判断.【详解】解: 设第二个为x,则第一个,第三个,第四个分别为:x-1,x+1,x+2,总和为:4x+2.当4x+2=2010时,x=502,则x-1=501;当4x+2=2014时,x=503,则x-1=502;当4x+2=2018时,x=504,则x-1=503;当4x+2=2022时,x=505,则x-1=504;由图可知每行有9个数,∵504÷9=56,可以除尽故504为某行的最后一位.表格如下:故选A.【点睛】本题考查找规律的能力,关键在于通过图形找出四个相连数的关系列出方程.4.C解析:C【分析】根据代数式以及整式的定义即可作出判断.【详解】式子5xx-分母中含有未知数,因而不是整式,故A、B错误,是代数式,故C正确.故选:C.【点睛】本题考查了代数式的定义,就是利用运算符号把数或字母连接而成的式子,单独的数或字母都是代数式.5.D解析:D【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D.【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关6.C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.7.C解析:C【分析】A点移动后可以在B点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C.【点睛】本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.8.B解析:B【分析】根据有理数的减法运算法则对各小题分析判断即可得解.【详解】①减去一个数等于加上这个数的相反数,故本小题正确;②互为两个相反数的两数相加得零,故本小题正确;③减数是负数时,差大于被减数,故本小题错误;④如果两个数的绝对值相等,这两个数可能相等,也可能互为相反数,故本小题正确;综上所述,正确的有①②④共3个.故选B.【点睛】本题考查了相反数的定义,有理数的减法,是基础题,熟记运算法则是解题的关键.9.A解析:A【分析】根据绝对值的性质确定出a的取值范围,再对四个选项进行逐一分析即可.【详解】∵|a|=-a,∴a≤0,A、正确,∵|a|=-a,∴-a≥0;B、错误,-a是非负数;C、错误,a=0时不成立;D、错误,a=0时|a|是0.故选A.【点睛】本题考查的是绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.10.D解析:D【分析】与-3的差为0的数就是0+(-3),据此即可求解.【详解】解:根据题意得:0+(﹣3)=﹣3,则与﹣3的差为0的数是﹣3,故选:D.【点睛】本题考查了有理数的运算.熟练掌握有理数减法法则是解本题的关键.11.C解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.12.C解析:C【分析】根据有理数大小比较的法则分别进行解答,即可得出答案.【详解】解:∵-1<b<a<0,∴a+b<a+(-b)=a-b.∵b>-1,∴a-1=a+(-1)<a+b.又∵-b<1,∴a-b=a+(-b)<a+1.综上得:a-1<a+b<a-b<a+1,故选:C.【点睛】本题主要考查了实数大小的比较,熟练掌握有理数大小比较的法则和有理数的加法法则是解题的关键.二、填空题13.0【解析】(a-b)+(b-c)+(c-a)=a-b+b-c+c-a=a-a+b-b+c-c=0故答案为0 解析:0【解析】(a-b)+(b-c)+(c-a)=a-b+b-c+c-a=a-a+b-b+c-c=0,故答案为0.14.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5; 第4个图形中点的个数为3+3+5+7; …第n 个图形中小圆的个数为3+3+5+7+…+(2n ﹣1)=n 2+2. 故答案为:n 2+2. 【点睛】本题考查规律型:图形的变化类.15.【分析】由排列组成的图形都是三角形找出规律即可求出答案【详解】解:根据规律可知:第一个图形中有1×3=3个★第二个图形中有2×3=6个★第三个图形中有3×3=9个★…第n 个图形有3n 个★∴第20个图 解析:60【分析】由排列组成的图形都是三角形,找出规律,即可求出答案. 【详解】解:根据规律可知: 第一个图形中有1×3=3个★, 第二个图形中有2×3=6个★, 第三个图形中有3×3=9个★, …第n 个图形有3n 个★,∴第20个图形共有20×3=60个★. 故答案为:60. 【点睛】解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.本题的关键规律为第n 个图形有3n 个★.16.③④⑨①②⑤①②③④⑤⑨②⑤【分析】根据单项式多项式整式二项式的定义即可求解【详解】(1)单项式有:③④0⑨;(2)多项式有:①②⑤;(3)整式有:①②③④0⑤⑨;(4)二项式有:②⑤;故答案为:(解析:③④⑨ ①②⑤ ①②③④⑤⑨ ②⑤ 【分析】根据单项式,多项式,整式,二项式的定义即可求解. 【详解】(1)单项式有:③23xy -,④0,⑨2x ;(2)多项式有:①223a b ab b ++,②2a b +,⑤3yx -+;(3)整式有:①223a b ab b ++,②2a b +,③23xy -,④0,⑤3y x -+,⑨2x ;(4)二项式有:②2a b +,⑤3yx -+; 故答案为:(1)③④⑨;(2)①②⑤;(3)①②③④⑤⑨;(4)②⑤ 【点睛】本题考查了整式,关键是熟练掌握单项式,多项式,整式,二项式的定义.17.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab 的值再把ab 的值代入ab 中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=解析:90 【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a ,b 的值,再把a 、b 的值代入ab 中即可解出本题. 【详解】解:依题意得:|a-6|=0,(b-15)2=0, ∴a-6=0,b-15=0, ∴a=6,b=15, ∴ab=90. 故答案是:90. 【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0.18.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律 乘法结合律 -10 1000 -10000 【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可. 【详解】 (-4)×8×(-2.5)×(-125) =-4×8×2.5×125=-4×2.5×8×125(乘法交换律) =-(4×2.5)×(8×125)(乘法结合律) =-10×1000 =-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000. 【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题19.7【分析】根据题意得到当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取得胜利【详解】解:由题意得喊过一次拉声之后可拉过当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取 解析:7【分析】根据题意得到当喊到第6次时,一共拉过了6(73)24(cm)⨯-=,离胜利还差30246(cm)-=,所以再喊一次后拉过7cm ,超过了30cm ,即可取得胜利.【详解】解:由题意得喊过一次“拉”声之后可拉过4cm .当喊到第6次时,一共拉过了6(73)24(cm)⨯-=.离胜利还差30246(cm)-=,所以再喊一次后拉过7cm ,超过了30cm ,即可取得胜利.故答案为:7.【点睛】此题考查了有理数的混合运算的应用,正确理解题意,掌握有理数的各运算法则是解题的关键.20.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【解析:90【分析】先根据有理数的大小比较法则得出最高点和最低点,再列出运算式子,计算有理数的减法即可得.【详解】因为205070>->-,所以最高点的海拔高度为20米,最低点的海拔高度70-米,则20(70)207090--=+=(米),即最高点比最低点高90米,故答案为:90.【点睛】本题考查了有理数的大小比较法则、有理数减法的实际应用,依据题意,正确列出运算式子是解题关键.三、解答题21.(1)16-;(2)34(1)按照有理数的四则运算进行运算即可求解;(2)按照有理数的四则运算法则进行运算即可,先算乘方,注意符号.【详解】解:(1)原式944163616499=-⨯⨯=-⨯=-, (2)原式113924()(8)8444=⨯--⨯-⨯+ 39324=-++ 34=, 【点睛】本题考查有理数的加减乘除乘方运算法则,先算乘方,再算乘除,最后算加减,有括号先算括号内的,计算过程中细心即可.22.(1)9;(2)34 【分析】(1)根据绝对值的性质、乘法分配律计算各项,即可求解;(2)先算乘除,再算加减,即可求解.【详解】解:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭ ()()()11144242424248=-+-⨯-+⨯--⨯- 01263=+-+9=;(2)()()1178245122-÷-⨯--⨯+÷ ()()1174204+=---- 34=. 【点睛】本题考查有理数的混合运算,掌握有理数的运算法则是解题的关键.23.(1)10;(2)3【分析】(1)先算乘方和小括号,再算中括号,后算加减即可;(2)把除法转化为乘法,再用乘法的分配率计算即可.解:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦ 1[4(1)5]=+--⨯1(45)10=++=;(2)1211121(36)23436234⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121(36)(36)(36)234=-⨯-+⨯--⨯- 182493=-+=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.24.(1)奇数项为负,偶数项为正;与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx -【分析】通过观察题意可得:奇数项的系数为负,偶数项的系数为正,且系数的绝对值与自然数序号相同,次数也与与自然数序号相同.由此可解出本题.【详解】(1)奇数项为负,偶数项为正,与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx -.【点睛】本题考查了单项式的有关概念.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.25.化简后为32y ,与x 无关.【分析】原式去括号合并得到最简结果中不含x ,可得出x 的取值对结果没有影响.【详解】解:()()4322433222422x x y x y x x y y x y -----+=43224332224242x x y x y x x y y x y ---+++=32y ,原式化简后为32y ,跟x 的取值没有关系.因此不会影响计算结果.本题考查了整式的加减——化简求值,正确的将原式去括号合并同类项是解决此题的关键.26.(1)2222a b ab abc -++;(2)小强的说法对,正确结果的取值与c 无关,理由见解析;(3)0.【分析】(1)由2A+B=C 得B=C-2A ,将C 、A 代入根据整式的乘法计算可得B ;(2)将A 、B 代入2A-B ,根据整式的加减运算法则进行化简,由化简后的代数式中无字母c 可知其值与c 无关;(3)将a 、b 的值代入计算即可.【详解】解:(1)∵2A B C +=,∴2B C A =-.B 22224342(32)a b ab abc a b ab abc =-+--+2222434642a b ab abc a b ab abc =-+-+-2222a b ab abc =-++;(2)222222(32)(22)A B a b ab abc a b ab abc -=-+--++222264222a b ab abc a b ab abc =-++--2285a b ab =-.因正确结果中不含c ,所以小强的说法对,正确结果的取值与c 无关;(3)将18a =, 15b =代入(2)中的代数式,得: 22221111858()5()8585a b ab -=⨯⨯-⨯⨯0= . 【点睛】本题主要考查整式的乘法,熟练掌握整式的乘法法则是解题的关键.。
【鲁教版】七年级数学上期中试卷带答案(1)
一、选择题1.某养殖场2018年年底的生猪出栏价格是每千克a 元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )A .(1-15%)(1+20%)a 元B .(1-15%)20%a 元C .(1+15%)(1-20%)a 元D .(1+20%)15%a 元2.下列代数式的书写,正确的是( )A .5nB .n5C .1500÷tD .114x 2y 3.有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( ) A .100x 100 B .﹣100x 100 C .101x 100 D .﹣101x 1004.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( ) A .2n n x B .(1)2n n n x - C .2n n x - D .1(1)2n n n x +- 5.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .55 6.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y =7.下列说法中,正确的是( )A .正数和负数统称有理数B .既没有绝对值最大的数,也没有绝对值最小的数C .绝对值相等的两数之和为零D .既没有最大的数,也没有最小的数8.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是( )A .28B .34C .45D .759.若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12 B .2或-12 C .-2或12D .-2或-12 10.下列说法中正确的是( )A .a -表示的数一定是负数B .a -表示的数一定是正数C .a -表示的数一定是正数或负数D .a -可以表示任何有理数11.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0 12.计算(-2)2018+(-2)2019等于( )A .-24037B .-2C .-22018D .22018 二、填空题13.在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___. 14.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.15.单项式20.8a h π-的系数是______.16.用棋子按下列方式摆图形,依照此规律,第n 个图形比第()1n -个图形多______枚棋子.…第1个 第2个 第3个17.计算(﹣1)÷6×(﹣16)=_____. 18.大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成_____个.19.定义一种正整数的“H 运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H 运算”的结果是22,经过2次“H 运算”的结果为11,经过3次“H 运算”的结果为46,那么数28经过2020次“H 运算”得到的结果是_________.20.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________. 三、解答题21.计算:(1)31113+(0.25)(4)3444---+-- (2)31(2)93--÷ (3)1125100466()46311-⨯-⨯-⨯22.计算:(1)45(30)(13)+---;(2)32128(2)4-÷-⨯-. 23.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.24.定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷等.类比有理数的乘方,我们把222÷÷记作32,读作“2的下3次方”,一般地,把n 个(0)a a ≠相除记作n a ,读作“a 的下n 次方”.理解:(1)直接写出计算结果:32=_______.(2)关于除方,下列说法正确的有_______(把正确的序号都填上); ①21a =(0)a ≠;②对于任何正整数n ,11n =;③433=4;④负数的下奇数次方结果是负数,负数的下偶数次方结果是正数.应用:(3)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? 例如:241111222222()2222=÷÷÷=⨯⨯⨯=(幂的形式) 试一试:将下列除方运算直接写成幂的形式: 65=_______;91()2-=________; (4)计算:3341()(2)2(8)24-÷--+-⨯-.25.先化简,再求值:()22323(2)x xy x y xy y --+-+,其中1,32x y =-=. 26.化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1-15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1-15%)(1+20%)a元.故选:A.【点睛】本题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.2.A解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A、5n,书写正确,符合题意;B、n5,书写错误,不合题意;C、1500÷t,应为1500t,故书写错误,不合题意;D、114x2y=54x2y,故书写错误,不合题意;故选:A.【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.3.C解析:C【分析】由单项式的系数,字母x的指数与序数的关系求出第100个单项式为101x100.【详解】由﹣2x,3x2,﹣4x3,5x4……得,单项式的系数的绝对值为序数加1,系数的正负为(﹣1)n,字母的指数为n,∴第100个单项式为(﹣1)100(100+1)x100=101x100,故选C.【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.4.B解析:B【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n .【详解】因为第一个单项式是1112(1)2x x -=-⨯;第二个单项式是222222(1)2x x =-⨯;第三个单项式是333332(1)2x x -=-⨯,…,所以第n 个单项式是(1)2n n n x -.故选:B .【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键. 5.C解析:C【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数2019的是从3开始的第1008个数,然后确定出1008所在的范围即可得解.【详解】∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m=()()212m m +-, ∵2n+1=2019,n=1009,∴奇数2019是从3开始的第1009个奇数,当m=44时,()()4424419892+-=, 当m=45时,()()4524511342+-=, ∴第1009个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选:C .【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.6.B解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.7.D解析:D【分析】分别根据有理数的定义,绝对值的定义,有理数的大小比较逐一判断即可.【详解】整数和分数统称为有理数,故原说法错误,故选项A 不合题意;没有绝对值最大的数,绝对值最小的数是0,故原说法错误,故选项B 不合题意; 绝对值相等的两数之和等于零或大于0,故原说法错误,故选项C 不合题意; 既没有最大的数,也没有最小的数,正确,故选项D 符合题意.故选:D .【点睛】本题考查有理数的定义、绝对值的定义,熟知有理数和绝对值的定义是解题的关键. 8.C解析:C【分析】日历纵列上圈出相邻的三个数,下边的数总比上边上的数大7,设中间的数是a ,则上边的数是a - 7,下边的数是a + 7,则三个数的和是3a ,因而一定是3的倍数,且3数之和一定大于等于24,一定小于等于72,据此即可判断.【详解】日历纵列上圈出相邻的三个数,下边的数总比上边的数大7,设中间的数是a ,则上边的数是a - 7,下边的数是a + 7,则三个数的和是3a ,因而一定是3的倍数,当第一个数为1,则另两个数为8,15,则它们的和为24,当第一个数为17,则另两个数为24,31,则它们的和为72,所以符合题意的三数之和一定在24到72之间,所以符合题意的只有45,所以C 选项是正确的.【点睛】此题主要考查了一元一次方程的应用和有理数的计算,正确理解图表,得到日历纵列上圈出相邻的三个数的和一定是3的倍数以及它的取值范围是关键.9.A解析:A【分析】由绝对值性质可知x 和y 均有两种可能取值,再根据x+y>0排除不可能取值,代入求值即可.【详解】 由x 7=可得x=±7,由y 5=可得y=±5,由x+y>0可知:当x=7时,y=5;当x=7时,y=-5,则x y 75122-=±=或,故选A【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑.10.D解析:D【分析】直接根据有理数的概念逐项判断即可.【详解】解:A. a -表示的数不一定是负数,当a 为负数时,-a 就是正数,故该选项错误;B. a -表示的数不一定是正数,当a 为正数时,-a 就是负数,故该选项错误;C. a -表示的数不一定是正数或负数,当a 为0时,-a 也为0,故该选项错误;D. a -可以表示任何有理数,故该选项正确.故选:D .【点睛】此题主要考查有理数的概念,熟练掌握有理数的概念是解题关键.11.C解析:C【解析】从数轴可知m 小于0,n 大于0,从而很容易判断四个选项的正误.解:由已知可得n 大于m ,并从数轴知m 小于0,n 大于0,所以mn 小于0,则A ,B ,D 均错误.故选C .12.C解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.二、填空题13.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a1解析:【分析】首先分别求出n=2、3、4…时的情况,观察它是否具有规律,再把2020代入求解即可.【详解】∵a 1=2,∴a 2111a ==--1;a 32111a 2==-;a 4311a ==-2;…, 发现规律:每3个数一个循环,所以2020÷3=673…1,则a 2020=a 1=2.故答案为:2.【点睛】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.14.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+解析:2234m m +-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m 2+m-1)-(m 2-2m+3)=3m 2+m-1-m 2+2m-3=2m 2+3m-4,故答案为2m 2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.15.【分析】根据单项式系数的定义进行求解即可【详解】单项式的系数是故答案为:【点睛】本题考查了单项式的系数问题掌握单项式系数的定义是解题的关键解析:0.8π-【分析】根据单项式系数的定义进行求解即可.【详解】单项式20.8a h π-的系数是0.8π-故答案为:0.8π-.【点睛】本题考查了单项式的系数问题,掌握单项式系数的定义是解题的关键.16.【分析】归纳总结找出第n 个图形与第(n-1)个图形中的棋子数相减即可得到结果【详解】解:第1个图形棋子的个数:1;第2个图形1+4;第3个图形1+4+7;第4个图形1+4+7+10;…第n 个图形1+解析:32n -【分析】归纳总结找出第n 个图形与第(n-1)个图形中的棋子数,相减即可得到结果.【详解】解:第1个图形棋子的个数:1;第2个图形,1+4;第3个图形,1+4+7;第4个图形,1+4+7+10;…第n 个图形,1+4+7+…+(3n -2);则第n 个图形比第(n-1)个图形多(3n-2)枚棋子.故答案为:3n-2【点睛】此题主要考查了图形的变化类问题,同时还考查了学生通过特例分析从而归纳总结出一般结论的能力.17.【分析】根据有理数乘除法法则进行计算【详解】解:(-1)÷6×(-)=-×(−)=故答案为【点睛】此题考查了有理数的乘除法熟练掌握法则是解本题的关键 解析:136. 【分析】 根据有理数乘除法法则进行计算.【详解】解:(-1)÷6×(-16),=-16×(−16),=1 36.故答案为1 36.【点睛】此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.18.512【解析】分析:由于3小时有9个20分而大肠杆菌每过20分便由1个分裂成2个那么经过第一个20分钟变为2个经过第二个20分钟变为22个然后根据有理数的乘方定义可得结果详解:∵3小时有9个20分而解析:512【解析】分析:由于3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,然后根据有理数的乘方定义可得结果.详解:∵3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,⋯经过第九个20分钟变为29个,即:29=512个.所以,经过3小时后这种大肠杆菌由1个分裂成512个.故答案为512.点睛:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.19.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】解:第1次:280.50.57⨯⨯=;第2次:371334⨯+=;第3次:340.517⨯=;第4次:3171364⨯+=;第5次:640.50.50.50.50.50.51⨯⨯⨯⨯⨯⨯=;第6次:311316⨯+=;第7次:160.50.50.50.51⨯⨯⨯⨯=,等于第5次.所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H 运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.20.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b=- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 三、解答题21.(1)21;(2)-35;(3)-392【分析】(1)有理数加减混合运算,从左到右以此计算,有小括号先算小括号里面的,可以使用加减交换律和结合律使得计算简便;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减;(3)有理数的混合运算,可以使用乘法分配律使得计算简便.【详解】解:(1)31113+(0.25)(4)3444---+-- =311113+434444-+ =3111(13+4)(3)4444+- =183+=21(2)31(2)93--÷=893--⨯=827--=35- (3)1125100466()46311-⨯-⨯-⨯ =11101004664633⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=11101004466664633+-⨯-⨯-⨯⨯ =40011120+---=392-【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.22.(1)28;(2)-2【分析】(1)有理数的加减混合运算,从左往右依次计算即可;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)45(30)(13)+---=4530+13-=15+13=28(2)32128(2)4-÷-⨯- =18844-÷-⨯ =11--=-2.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.23.0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案.【详解】解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.24.(1)12;(2)①②④;(3)41()5,7(2)-;(4)26-. 【分析】(1)根据a n 表示“a 的下n 次方”的意义进行计算即可;(2)根据a n 表示“a 的下n 次方”的意义计算判断即可;(3)根据a n 表示“a 的下n 次方”的意义,表示出56,91()2-=7(2)-,进而得出答案; (4)按照有理数的运算法则进行计算即可.【详解】(1)23=2÷2÷2=2×12×12=12, 故答案为:12; (2)当a≠0时,a 2=a÷a =1,因此①正确;对于任何正整数n ,1n =1÷1÷1÷…÷1=1,因此②正确;因为34=3÷3÷3÷3=19,而43=4÷4÷4=14,因此③不正确; 根据有理数除法的法则可得,④正确;故答案为:①②④; (3)56=5÷5÷5÷5÷5÷5=5×15×15×15×15×15=(15)4, 同理可得,91()2-==(−2)7, 故答案为:(15)4,(−2)7; (4)3341()(2)2(8)24-÷--+-⨯- =16×(-18)-8+(-8)×2 =-2-8-16=−26.【点睛】 本题考查有理数的混合运算,理解“a n ,表示a 的下n 次方”的意义是正确计算的前提. 25.8xy -,12【分析】根据题意,对原式利用整式的混合运算法则进行化简,然后将x ,y 的值代入求解即可.【详解】解:原式2236328x xy x y xy y xy =--+--=-, 当1,32x y =-=时,原式183122⎛⎫=-⨯-⨯= ⎪⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.26.(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键.。
【鲁教版】七年级数学上期中模拟试卷附答案(1)
一、选择题1.下列各代数式中,不是单项式的是( ) A .2m -B .23xy -C.0 D .2t2.一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =-,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( ) A .1B .-1C .2020D .2020-3.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++4.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3 B .﹣3 C .1 D .﹣15.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( )A .mB .nC .m n +D .m ,n 中较大者6.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差 B .2倍的x 与1的差除以3的商 C .x 与1的差的2倍除以3的商 D .x 与1的差除以3的2倍7.有理数a 、b 在数轴上,则下列结论正确的是( )A .a >0B .ab >0C .a <bD .b <08.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0 9.若|a |=1,|b |=4,且ab <0,则a +b 的值为( ) A .3±B .3-C .3D .5±10.下列四个式子,正确的是( ) ①33.834⎛⎫->-+ ⎪⎝⎭;②3345⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+ ⎪⎝⎭. A .③④B .①C .①②D .②③11.某市11月4日至7日天气预报的最高气温与最低气温如表: 日期11月4日11月5日 11月6日 11月7日 最高气温(℃) 19 1220 9 最低气温(℃) 43-45其中温差最大的一天是( ) A .11月4日 B .11月5日 C .11月6日 D .11月7日 12.计算(-2)2018+(-2)2019等于( )A .-24037B .-2C .-22018D .22018二、填空题13.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______. 14.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项. 15.已知整数a 1,a 2,a 3,a 4…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,…,依此类推,则a 2016的值为_______.16.某市出租车的收费标准为:3km 以内为起步价10元,3km 后每千米收费1.8元,某人乘坐出租车()km 3x x >,则应付费______元.17.观察下面一列数:—1,2,—3,4,—5,6,—7,…,将这列数排成下列形式.按照上述规律排下去,那么第10行从左边数第9个数是______;数—201是第______行从左边数第______个数18.计算-32+5-8×(-2)时,应该先算_____,再算_____,最后算_____.正确的结果为_____.19.有理数a ,b ,c 在数轴上的位置如图所示:填空:+a b ________0,1b -_______0,a c -_______0,1c -_______0.20.阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)a 3•a 4=(a•a•a )•(a•a•a•a )=__; (2)归纳、概括:a m •a n =__;(3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =__.三、解答题21.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒. -1.2+0.7-1-0.3+0.20.3+0.522.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 23.画一条数轴,把1-12,0,3各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.24.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)25.某学生在写作业时,不慎将一滴墨水滴在了数轴上,如下图所示,而此时他要化简并求代数式()()2222352xy xx xy x xy ⎡⎤-----+⎢⎥⎣⎦的值.结果同学告诉他:x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数.请你帮助这位同学化简并求值.26.已知,,a b c 在数轴上的位置如图所示,解答下列问题.(1)化简:||||||a b c b b a +--+-;(2)若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,求2()a b c a b c -++-+-的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择. 【详解】A 选项,2m -是单项式,不合题意;B 选项,23xy -是单项式,不合题意;C 选项,0是单项式,不合题意;D 选项,2t不是单项式,符合题意. 故选D . 【点睛】本题考查单项式的定义,较为简单,要准确掌握定义.2.A解析:A 【分析】首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案. 【详解】 解:11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---,所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A . 【点睛】本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 3.B解析:B 【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案. 【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形; ()232S S x x +=++正方形小矩形; ()36S S x x +=++小矩形小矩形.故选:B. 【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握.4.D解析:D 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项, 则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩,121m n ∴-=-=-故选:D . 【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.5.D解析:D 【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项. 【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,mnx x 中指数大的,即m ,n 中较大的,故答案选D. 【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项.6.B解析:B 【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断. 【详解】代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B . 【点睛】本题考查了代数式,正确理解代数式表示的意义是关键.7.C解析:C 【分析】根据数轴的性质,得到b >0>a ,然后根据有理数乘法计算法则判断即可. 【详解】根据数轴上点的位置,得到b >0>a ,所以A 、D 错误,C 正确; 而a 和b 异号,因此乘积的符号为负号,即ab <0所以B 错误; 故选C . 【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a 和b 的位置正确判断a 和b 的大小.8.B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.9.A解析:A【分析】通过ab<0可得a、b异号,再由|a|=1,|b|=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a+b的值【详解】解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab<0,∴a+b=1-4=-3或a+b=-1+4=3,故选A.【点睛】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.10.D解析:D【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】①∵33 3.754⎛⎫-+=-⎪⎝⎭,33.83 3.754>=,∴33.834⎛⎫-<-+⎪⎝⎭,故①错误;②∵33154420⎛⎫--==⎪⎝⎭,21335502⎛⎫--==⎪⎝⎭,1512 2020>,∴3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭,故②正确;③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确;④∵111523623⎛⎫--==⎪⎝⎭,217533346+==,3334 66<,∴125523⎛⎫-->+⎪⎝⎭,故④错误.综上,正确的有:②③.故选:D.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.11.C解析:C【分析】运用减法算出每一天的温差,再进行比较即可.【详解】11月4日的温差为19415-=(℃);11月5日的温差为12(3)15--=(℃);11月6日的温差为20416-=(℃);11月7日的温差为19514-=(℃).所以温差最大的一天是11月6日.故选C.【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.12.C解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】 解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2) =-22018 故选:C. 【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.二、填空题13.【分析】根据不含xy 项即xy 项的系数为0求出k 的值【详解】解:原式∵不舍项∴故答案为【点睛】本题考查了多项式要求多项式中不含有那一项应让这一项的系数为0解析:19【分析】根据不含xy 项即xy 项的系数为0求出k 的值. 【详解】解:原式2213383x k xy y ⎛⎫=+--+⎪⎝⎭,∵不舍xy 项,∴1303k -=,19k =,故答案为19. 【点睛】本题考查了多项式,要求多项式中不含有那一项,应让这一项的系数为0.14.3【分析】先合并同类项然后使xy 的项的系数为0即可得出答案【详解】解:=∵多项式不含xy 项∴k-3=0解得:k=3故答案为:3【点睛】本题考查了多项式的知识属于基础题解答本题的关键是掌握合并同类项的解析:3 【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案. 【详解】解:()221325x k xy y xy +----=()22335x k xy y +---,∵多项式不含xy 项, ∴k-3=0, 解得:k=3. 故答案为:3. 【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则.15.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+ 4|=−|−2+4|=−2…所以n是奇数解析:﹣1008【解析】a2=−|a1+1|=−|0+1|=−1,a3=−|a2+2|=−|−1+2|=−1,a4=−|a3+3|=−|−1+3|=−2,a5=−|a4+4|=−|−2+4|=−2,…,所以n是奇数时,a n=−12n-;n是偶数时,a n=−2n;a2016=−20162=−1008.故答案为-1008.点睛:此题考查数字的变化规律,根据所给出的数,观察出n为奇数与偶数时的结果的变化规律是解题的关键. 探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x,再利用它们之间的关系,设出其它未知数,然后列方程.16.【分析】起步价10元加上超过3千米部分的费用即可【详解】解:乘出租x千米的付费是:10+18(x-3)即18x+46故答案是:18x+46【点睛】本题考查了列代数式正确理解收费标准是关键解析:1.8 4.6x+【分析】起步价10元加上,超过3千米部分的费用即可.【详解】解:乘出租x千米的付费是:10+1.8(x-3)即1.8x+4.6.故答案是:1.8x+4.6.【点睛】本题考查了列代数式,正确理解收费标准是关键.17.90155【分析】根据数的排列每一行的最后一个数的绝对值等于行数的平方并且奇数都是负数偶数都是正数求出第9行的最后一个数的绝对值然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为19解析:90, 15, 5.【分析】根据数的排列,每一行的最后一个数的绝对值等于行数的平方,并且奇数都是负数,偶数都是正数,求出第9行的最后一个数的绝对值,然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为196,即可得解.【详解】∵第9行的最后一个数的绝对值为92=81,∴第10行从左边数第9个数的绝对值是81+9=90,∵90是偶数,∴第10行从左边数第9个数是正数,为90,∵142=196,201-196=5,∴数-201是第15行从左边数起第5个数.故答案为90,15,5.【点睛】本题是对数字变化规律的考查,观察出每一行的最后一个数的绝对值等于行数的平方是解题的关键.18.乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可【详解】解:原式=-9+5+16=12故答案为:乘方乘法加法12【点睛】本题主要考查了有理数混合运算的运算顺序先算乘方再算乘除最后解析:乘方 乘法 加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可.【详解】解:原式=-9+5+16=12.故答案为:乘方,乘法,加法,12【点睛】本题主要考查了有理数混合运算的运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.19.<<<>【分析】数轴上右边表示的数总大于左边表示的数左边的数为负数右边的数为正数;根据有理数减法法则进行判断即可【详解】由题图可知所以故答案为:<<<>【点睛】考核知识点:有理数减法掌握有理数减法法解析:< < < >【分析】数轴上右边表示的数总大于左边表示的数.左边的数为负数,右边的数为正数;根据有理数减法法则进行判断即可.【详解】由题图可知01b a c <<<<,所以0,10,0,10a b b a c c +<-<-<->故答案为:<,<,<,>【点睛】考核知识点:有理数减法.掌握有理数减法法则是关键.20.a7am+n36【分析】(1)根据题意乘方的意义7个a 相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n =xm•xn 即解析:a 7 a m+n 36【分析】(1)根据题意,乘方的意义,7个a 相乘可以写成a 7即可解决;(2)根据题意,总结规律,可以知道是几个相同的数相乘,指数相加即可解决; (3)运用以上的结论,可以知道:x m+n =x m •x n ,即可解决问题.【详解】解:(1)根据材料规律可得a 3•a 4=(a•a•a )•(a•a•a•a )=a 7;(2)归纳、概括:a m •a n =m n a a a a ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭=a m+n ; (3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =x m •x n =4×9=36.故答案为:a 7,a m+n ,36.【点睛】 本题主要考查了有理数的乘方的认识,能够读懂乘方的意义并且能够仿照例题写出答案是解决本题的关键.三、解答题21.9秒.【分析】根据平均成绩的计算方法,先列式计算表格中所有数据的平均数,再加上标准成绩即可得出结果.【详解】 解: 1.20.7010.30.20.30.50.18-++--+++=-(秒) 140.113.9-=(秒).答:这个小组8名男生的平均成绩是13.9秒.【点睛】此题考查了有理数的混合运算的实际应用,正确理解题目中正数和负数的含义是列式计算的关键.22.(1)1;(2)-1.【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解.【详解】(1)()()()923126--⨯-+÷-=962--=1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭ =11891632-+-÷ =1893216-+-⨯ =892-+-=-1.【点睛】 此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.23.数轴表示见解析;-3<112-<0<112<3. 【分析】先画出数轴,把各数依次表示出来,从左到右用“<”把各数连接起来即可.【详解】解:112-的相反数是112,0的相反数是0,3的相反数是-3,在数轴上的表示如图所示:从左到右用“<”连接为:-3<112-<0<112<3.故答案为:-3<112-<0<112<3.【点睛】本题考查的是数轴的特点、相反数的定义及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.24.乙旅行社收费比甲旅行社贵0.2a 元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a )×90%-(a+a+12a ) =2.7a-2.5a=0.2a (元),则乙旅行社收费比甲旅行社贵0.2a 元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.25.xy ,1-【分析】先把原式进行化简,得到最简代数式,结合x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数,得到x 、y 的值,然后代入计算,即可得到答案.【详解】解:()()2222352xy xx xy x xy ⎡⎤-----+⎢⎥⎣⎦ =22226552xy x x xy x xy ⎡⎤-+--++⎣⎦=22226552xy x x xy x xy -+-+--=xy ; ∵74-<被盖住的数2<, ∴x 的值是墨迹遮盖住的最大整数,∴1x =,∵y 的值是墨迹遮盖住的最小整数,∴1y =-,∴原式=1(1)1⨯-=-.【点睛】本题考查了整式的化简求值,以及利用数轴比较有理数的大小,解题的关键是正确求出x 、y 的值,以及掌握整式的混合运算.26.(1)2a b c -+;(2)-9【分析】(1)由数轴上的位置,先判断0,0,0+>-<-<a b c b b a ,再根据绝对值的意义进行化简,即可得到答案.(2)由绝对值的意义,倒数的定义,平方根的定义,先求出a 、b 、c 的值,再代入计算,即可得到答案.【详解】解:(1)由数轴可得:0c b a <<<,∴0,0,0+>-<-<a b c b b a ,∴原式2a b c b b a a b c =++--+=-+.(2)由题意,∵若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,∴2,1,2a b c ==-=-,∴2()2a b c a b c a b c a b c -++-+-=-++--+=224149a b c -++=---=-.【点睛】本题考查了数轴的定义,绝对值的意义,倒数的定义,平方根的定义等知识,解题的关键是利用数轴正确判断0c b a <<<,从而进行解题.。
【鲁教版】初一数学上期中试卷(及答案)(1)
一、选择题1.在代数式a 2+1,﹣3,x 2﹣2x ,π,1x中,是整式的有( ) A .2个 B .3个 C .4个 D .5个 2.已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .63.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b cA .1,6,15a b c ===B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c ===4.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .20225.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( ) A .1个B .2个C .3个D .4个6.一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,467.下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--=8.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B9.下列正确的是( )A .5465-<-B .()()2121--<+-C .1210823--> D .227733⎛⎫--=-- ⎪⎝⎭10.下列运算正确的是( ) A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=-11.把实数36.1210-⨯用小数表示为() A .0.0612 B .6120C .0.00612D .61200012.在数3,﹣13,0,﹣3中,与﹣3的差为0的数是( ) A .3B .﹣13C .0D .﹣3二、填空题13.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数 1 2 3 4 … n 正三角形个数471013…a n14.将一个正方形纸片剪成如图中的四个小正方形,用同样的方法,每个小正方形又被剪成四个更小的正方形,这样连续5次后共得到______个小正方形.15.如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b,共有_____种方式(不考虑投中目标的顺序).16.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n个图形中有白色正方形__________个 (用含n 的代数式表示).17.数轴上表示有理数-3.5与4.5两点的距离是___________.18.运用加法运算律填空:212+1(3)3-+612+2(8)3-=1(22+____)+[ ____+2(8)3-].19.如果点A表示+3,将A向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.20.(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到____位;(2)近似数2.428×105精确到___位;(3)用四舍五入法把3.141 592 6精确到百分位是____,近似数3.0×106精确到____位.三、解答题21.计算:(1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 1022.计算:7ab-3a 2b 2+7+8ab 2+3a 2b 2-3-7ab . 23.计算:(1)()110822⎫⎛---÷-⨯- ⎪⎝⎭(2)()2313232154⎫⎛-⨯--⨯-÷-⎪⎝⎭24.计算: (1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭. 25.数学老师给出这样一个题: 2-⨯2 2x x =-+.(1)若“”与“”相等,求“”(用含x 的代数式表示);(2)若“”为2326x x -+,当1x =时,请你求出“”的值.26.若单项式21425m n x y +--与413n mx y +是同类项,求这两个单项式的积【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】单项式和多项式统称为整式,分母中含有字母的不是整式. 【详解】解:a 2+1和 x 2﹣2x 是多项式,-3和π是单项式,1x不是整式,∵单项式和多项式统称为整式,∴整式有4个. 故选择C. 【点睛】本题考查了整式的定义.2.C解析:C 【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可. 【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩,故224m n +=+=; 故选:C . 【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细.3.B解析:B 【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可. 【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=. 故选:B . 【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键.4.A解析:A 【分析】设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2,分别令代数式为:2010,2014,2018,2022,算出x 再判断. 【详解】解: 设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2. 当4x+2=2010时,x=502,则x-1=501; 当4x+2=2014时,x=503,则x-1=502; 当4x+2=2018时,x=504,则x-1=503; 当4x+2=2022时,x=505,则x-1=504; 由图可知每行有9个数, ∵504÷9=56,可以除尽故504为某行的最后一位.表格如下:故选A. 【点睛】本题考查找规律的能力,关键在于通过图形找出四个相连数的关系列出方程.5.A解析:A 【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦. 【详解】字母可以表示任意数,当a <0时,-a >0,故①错误; 0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误; 若a=1,b=-2,a b >,但是22a b <,故④错误;235x y的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.6.C解析:C 【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数. 【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63. 故选:C . 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.7.C解析:C 【分析】根据有理数的运算法则逐一判断即可. 【详解】(2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确;363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C . 【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.8.B解析:B 【分析】由题意可知转一周后,A 、B 、C 、D 分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点. 【详解】当正方形在转动第一周的过程中,1对应的点是A ,2所对应的点是B ,3对应的点是C ,4对应的点是D ,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D ,故答案选B. 【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.9.A解析:A 【分析】根据不等式的性质对各选项进行判断即可. 【详解】 解:(1)∵5465>,∴5465-<-,故选项A 符合题意; (2)∵-(-21)=21,+(-21)=-21,21>-21,∴()()2121--+->,故选项B 错误; (3)∵11210=108223---<,故选项C 错误; (4)∵227=-733--,227=733⎛⎫-- ⎪⎝⎭,∴227733⎛⎫---- ⎪⎝⎭<; 故选:A . 【点睛】此题主要考查了有理数的大小比较,熟练掌握有理数比较大小的方法是解答此题的关键.10.D解析:D 【分析】根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D . 【详解】A 、()22-2-2441÷=-÷=-,该选项错误;B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D . 【点睛】本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.11.C解析:C 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】6.12×10−3=0.00612, 故选C . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.D解析:D 【分析】与-3的差为0的数就是0+(-3),据此即可求解. 【详解】解:根据题意得:0+(﹣3)=﹣3, 则与﹣3的差为0的数是﹣3, 故选:D . 【点睛】本题考查了有理数的运算.熟练掌握有理数减法法则是解本题的关键.二、填空题13.3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n 次时共有4+3(n-1)=3n+1试题解析:3n+1.【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.试题故剪n次时,共有4+3(n-1)=3n+1.考点:规律型:图形的变化类.14.1024【分析】先写出前3次分割得到的正方形的个数找到规律即可得出答案【详解】由图可知分割1次得到正方形的个数为4;分割2次得到正方形的个数为个;分割3次得到正方形的个数为个;…以此类推分割5次得到解析:1024【分析】先写出前3次分割得到的正方形的个数,找到规律即可得出答案.【详解】由图可知分割1次得到正方形的个数为4;16=4个;分割2次得到正方形的个数为264=4个;分割3次得到正方形的个数为3…以此类推,分割5次得到正方形的个数为:54=1024个,故答案为:1024.【点睛】本题考查了图形规律题,仔细观察图形找到规律是解题的关键.15.2【分析】根据整式的加减尝试进行即可求解【详解】解:当投中的目标区域内的单项式为ab﹣b2b时a+b﹣b+2b=a+2b;当投中的目标区域内的单项式为﹣a2a02b时﹣a+2a+0+2b=a+2b故解析:2【分析】根据整式的加减尝试进行即可求解.【详解】解:当投中的目标区域内的单项式为a、b、﹣b、2b时,a+b﹣b+2b=a+2b;当投中的目标区域内的单项式为﹣a、2a、0、2b时,﹣a+2a+0+2b=a+2b.故答案为2.【点睛】本题考查了整式的加减,解题的关键是尝试进行整式的加减.16.【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个 解析:()31-n【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案. 【详解】图①白色正方形:2个; 图②白色正方形:5个; 图③白色正方形:8个,∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个, 故答案为:(3n-1). 【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键.17.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8解析:8 【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值. 解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8. 故答案为8.18.【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可【详解】解:2++6+=)++故答案为:;【点睛】本题考查了有理数的加法掌握加法法则和运算律是解题的关键解析:162 1(3)3-【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可. 【详解】 解:212+1(3)3-+612+2(8)3-=1(22+162)+[1(3)3-+2(8)3-].故答案为:162;1(3)3-.【点睛】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.19.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可解析:-1 【分析】根据向右为正,向左为负,根据正负数的意义列式计算即可.【详解】根据题意得,终点表示的数为:3-7+3=-1.故答案为-1.【点睛】本题考查了数轴,正负数在实际问题中的应用,在本题中向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.20.(1)千分(2)百(3)314十万【分析】(1)根据精确到哪位就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位就解析:(1)千分 (2)百 (3)3.14 十万【分析】(1)根据精确到哪位,就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位解答即可; (3)根据精确到哪位,就是对它后边的一位进行四舍五入以及科学记数法的精确方法解答即可.【详解】解:(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到千分位;(2)近似数2.428×105中,2.428的小数点前面的2表示20万,则这一位是十万位,因而2.428的最后一位8应该是在百位上,因而这个数是精确到百位;(3)用四舍五入法把3.141 592 6精确到百分位是3.14,近似数3.0×106精确到十万位. 故答案为: (1)千分; (2)百; (3)3.14、十万.【点睛】本题考查了近似数,掌握确定近似数精确的位数和科学记数法的精确方法是解答本题的关键.三、解答题21.(1)17;(2)1.【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.8ab 2+4.【分析】原式合并同类项即可得到结果.【详解】原式=(7﹣7)ab +(﹣3+3)a 2b 2+8ab 2+(7﹣3)=8ab 2+4.【点睛】本题考查了合并同类项得法则.即系数相加作为系数,字母和字母的指数不变. 23.(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ =1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.24.(1)0;(2)1-.【分析】(1)原式先把除法转换为乘法,再逆用乘法分配律进行计算即可得到答案; (2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【详解】解:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭ 45355171271234⎛⎫=⨯--⨯+⨯ ⎪⎝⎭4535571271212=-⨯-⨯+ 43517712⎛⎫=--+⨯ ⎪⎝⎭ 5012=⨯ 0=; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭ ()98427427⎛⎫-⨯+-⨯- ⎝=⎪⎭98=-+1=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.25.(1)22x x --;(2)2223x x -+,3【分析】(1)用替换,得到-22x x =-+,进而得到答案; (2)把“”用2326x x -+替换,求出2223x x =-+,再把1x =代入求解即可得到答案;【详解】解:()1由题意得: 2-⨯22x x =-+∴-22x x =-+ ∴22x x =--()2把“”用2326x x -+替换,得到: 2326x x -+2-⨯2 2x x =-+ 即:2()223262x x x x =-+--+22362x x x x =-++-2446x x =-+∴222 3.x x =-+当1x =时,原式221213=⨯-⨯+223=-+3=.【点睛】 本题主要考查了新定义下的二元一次方程的应用,能把作相应的替换是解题的关键. 26.10453x y - 【分析】根据题意,可得到关于m ,n 的二元一次方程组,求出m ,n 的值,即可求得答案.【详解】∵单项式21425m n x y +--与413n m x y +是同类项, ∴21442m n n m+=+⎧⎨-=⎩, 解得21m n =⎧⎨=⎩, ∴21425252441011355533n m m n x y x y x y x y x y ++--⋅-⋅=-= 【点睛】本题主要考查同类项的定义和单项式乘单项式的法则,根据同类项的定义,列出关于m ,n 的二元一次方程组,是解题的关键.。
【鲁教版】七年级数学上期中试题(含答案)(1)
一、选择题1.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .222.一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( ) A .1 B .-1 C .2020 D .2020- 3.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣14.下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n不是整式;(3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个5.在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个 B .8个C .4个D .5个6.如果m ,n 都是正整数,那么多项式的次数是( )A .B .mC .D .m ,n 中的较大数7.如图是北京地铁一号线部分站点的分布示意图,在图中以正东为正方向建立数轴,有如下四个结论:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14;上述结论中,所有正确结论的序号是( )A .①②③B .②③④C .①④D .①②③④ 8.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( ) A .-13B .+13C .-3或+13D .+3或-19.若21(3)0a b -++=,则b a -=( ) A .-412B .-212C .-4D .110.如果|a |=-a ,下列成立的是( ) A .-a 一定是非负数 B .-a 一定是负数 C .|a |一定是正数D .|a |不能是011.下列四个式子,正确的是( ) ①33.834⎛⎫->-+ ⎪⎝⎭;②3345⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+ ⎪⎝⎭. A .③④B .①C .①②D .②③12.下列说法中正确的是( ) A .a -表示的数一定是负数 B .a -表示的数一定是正数 C .a -表示的数一定是正数或负数D .a -可以表示任何有理数二、填空题13.如果多项式32242(176)x x kx x +-+-中不含2x 的项,则k 的值为__. 14.用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____; (2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .15.多项式223324573x x y x y y --+-按x 的降幂排列是______。
【鲁教版】七年级数学上期中试卷(带答案)(1)
一、选择题1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8 2.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3- B .0C .3D .6 3.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( ) A .2x 2﹣5x ﹣1 B .﹣2x 2+5x+1 C .8x 2﹣5x+1D .8x 2+13x ﹣1 4.化简2a -[3b -5a -(2a -7b )]的值为( ) A .9a -10b B .5a +4bC .-a -4bD .-7a +10b5.已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( )A .﹣1B .﹣2C .﹣3D .﹣4 6.若23,33M N x M x +=-=-,则N =( )A .236x x +-B .23x x -+C .236x x --D .23x x - 7.如果|a |=-a ,下列成立的是( ) A .-a 一定是非负数B .-a 一定是负数C .|a |一定是正数D .|a |不能是0 8.-1+2-3+4-5+6+…-2011+2012的值等于A .1B .-1C .2012D .1006 9.下列各组数中,互为相反数的是( ) A .(﹣3)2和﹣32B .(﹣3)2和32C .(﹣2)3和﹣23D .|﹣2|3和|﹣23| 10.绝对值大于1且小于4的所有整数的和是( )A .6B .–6C .0D .4 11.下列四个式子,正确的是( ) ①33.834⎛⎫->-+ ⎪⎝⎭;②3345⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+ ⎪⎝⎭. A .③④ B .① C .①② D .②③ 12.若2020M M +-=+,则M 一定是( )A .任意一个有理数B .任意一个非负数C .任意一个非正数D .任意一个负数二、填空题13.在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)14.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.15.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________. 16.某市出租车的收费标准为:3km 以内为起步价10元,3km 后每千米收费1.8元,某人乘坐出租车()km 3x x >,则应付费______元.17.在整数5-,3-,1-,6中任取三个数相乘,所得的积的最大值为______. 18.若230x y ++-= ,则x y -的值为________.19.运用加法运算律填空:(1)[(-1)+2]+(-4)=___=___;(2)117+(-44)+(-17)+14=____=____.20.在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________.三、解答题21.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值; (2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).22.计算题:(1)()()121876---+-+;(2)()231513221428⎫⎛---⨯-+ ⎪⎝⎭; (3)2111(3)[]()63⨯--÷-. 23.计算:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦(2)121123436⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ 24.数学课上,老师出示了这样一道题目:“当1,22a b ==-时,求多项式3233233733631061a a b a a b a b a a b +++----的值”.解完这道题后,张恒同学指出:“1,22a b ==-是多余的条件”师生讨论后,一致认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目,“无论x 取任何值,多项式2233x mx nx x -++-+的值都不变,求系数m 、n 的值”.请你解决这个问题. 25. 1+2+3++100⋯=?经过研究,这个问题的一般性结论是()1123n n n 12+++⋯+=+,其中n 是正整数.现在我们来研究一个类似的问题:()122334n n 1⨯+⨯+⨯+⋯+=?观察下面三个特殊的等式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ 将这三个等式的两边相加,可以得到1122334345203⨯+⨯+⨯=⨯⨯⨯=.读完这段材料,请你思考后回答:(1)直接写出下列各式的计算结果:1223341011⨯+⨯+⨯+⋯⨯=① ______()122334n n 1⨯+⨯+⨯+⋯+=② ______(2)探究并计算:()()123234345n n 1n 2⨯⨯+⨯⨯+⨯⨯+⋯+++= ______ (3)请利用(2)的探究结果,直接写出下式的计算结果:123234345101112⨯⨯+⨯⨯+⨯⨯+⋯+⨯⨯= ______ .26.上海与南京间的公路长为364km ,一辆汽车以xkm/h 的速度开往南京,请用代数式表示:(1)汽车从上海到南京需多少小时?(2)如果汽车的速度增加2km/h ,从上海到南京需多少小时?(3)如果汽车的速度增加2km/h ,可比原来早到几小时?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据单项式的定义可得8mx y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可.【详解】解:由8m x y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±. 故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.C解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.A解析:A【分析】根据由题意可得被减式为5x 2+4x-1,减式为3x 2+9x ,求出差值即是答案.【详解】由题意得:5x 2+4x−1−(3x 2+9x),=5x 2+4x−1−3x 2−9x ,=2x 2−5x−1.故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.4.A解析:A【解析】2a -[3b -5a -(2a -7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b ,故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.5.A解析:A【分析】根据同类项是字母相同且相同字母的指数也相同,可得m ,n 的值,根据代数式求值,可得答案.【详解】由题意,得3m =6,n =2.解得m =2,n =2.9m 2﹣5mn ﹣17=9×4﹣5×2×2﹣17=﹣1,故选:A .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.6.D解析:D【分析】根据N=M+N-M 列式即可解决此题.【详解】依题意得,N=M+N-M=222(3)(33)3333x x x x x x ---=--+=-;故选D.【点睛】此题考查的是整式的加减,列式是关键,注意括号的运用.7.A解析:A【分析】根据绝对值的性质确定出a的取值范围,再对四个选项进行逐一分析即可.【详解】∵|a|=-a,∴a≤0,A、正确,∵|a|=-a,∴-a≥0;B、错误,-a是非负数;C、错误,a=0时不成立;D、错误,a=0时|a|是0.故选A.【点睛】本题考查的是绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.8.D解析:D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D.点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键.9.A解析:A【分析】各项中两式计算得到结果,即可作出判断.【详解】A、(﹣3)2=9,﹣32=﹣9,互为相反数;B、(﹣3)2=32=9,不互为相反数;C、(﹣2)3=﹣23=﹣8,不互为相反数;D、|﹣2|3=|﹣23|=8,不互为相反数,故选:A.【点睛】此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.10.C解析:C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C.11.D解析:D【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】①∵33 3.754⎛⎫-+=-⎪⎝⎭,33.83 3.754>=,∴33.834⎛⎫-<-+⎪⎝⎭,故①错误;②∵33154420⎛⎫--==⎪⎝⎭,21335502⎛⎫--==⎪⎝⎭,1512 2020>,∴3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭,故②正确;③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确;④∵111523623⎛⎫--==⎪⎝⎭,217533346+==,3334 66<,∴125523⎛⎫-->+⎪⎝⎭,故④错误.综上,正确的有:②③.故选:D.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.12.B解析:B【分析】直接利用绝对值的性质即可解答.【详解】解:∵M+|-20|=|M|+|20|,∴M≥0,为非负数.故答案为B.【点睛】本题考查了绝对值的应用,灵活应用绝对值的性质是正确解答本题的关键.二、填空题13.【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n 条直线相交,最多有1+2+3+…+(n-1)=()12n n -个交点. 【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n 条直线相交,最多有1+2+3+…+(n-1)=()12n n - 个交点.即()12n n m -= 故答案为:()12n n -. 【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.14.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后 解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.15.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值.【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠, ∴2m =-.故答案为:2-.【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键. 16.【分析】起步价10元加上超过3千米部分的费用即可【详解】解:乘出租x 千米的付费是:10+18(x-3)即18x+46故答案是:18x+46【点睛】本题考查了列代数式正确理解收费标准是关键解析:1.8 4.6x +【分析】起步价10元加上,超过3千米部分的费用即可.【详解】解:乘出租x 千米的付费是:10+1.8(x-3)即1.8x+4.6.故答案是:1.8x+4.6.【点睛】本题考查了列代数式,正确理解收费标准是关键.17.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟解析:90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解.详解:所得乘积最大为:(-5)×(-3)×6,=5×3×6,=90.故答案为90.点睛:本题考查了有理数的乘法以及有理数的大小比较,熟记运算法则并准确列出算式是解题的关键.18.【分析】先利用绝对值的非负性求出xy 的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可.【详解】解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =,∴235-=--=-x y ,故答案为: 5.-【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.19.(-1)+(-4)+2-3117+(-17)+(-44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【解析:[(-1)+(-4)]+2 -3 [117+(-17)]+[(-44)+14] 70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(-1)+(-4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(-1)+2]+(-4)=[(-1)+(-4)]+2=-3(2)117和(-17)可通过抵消凑整,(-44)和14也可通过抵消凑整,故:117+(-44)+(-17)+14=[117+(-17)]+[(-44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算. 20.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情解析:2或-6【分析】分在-2的左边和右边两种情况讨论求解即可.【详解】解:如图,在-2的左边时,-2-4=-6,在-2右边时,-2+4=2,所以,点对应的数是-6或2.故答案为-6或2.【点睛】本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.三、解答题21.(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】(1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =,∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=; ①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.22.(1)29;(2)5-;(3)4【分析】(1)根据有理数的加减法即可解答本题;(2)根据有理数的乘方和乘法分配律即可解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【详解】解:(1)|-12|-(-18)+(-7)+6=12+18+(-7)+6=30+(-7)+6=23+6=29;(2)23151(32)(21)428---⨯-+ =3513132()428-+⨯-+ =35131323232428-+⨯-⨯+⨯ =-1+24-80+52=-5;(3)16×[1-(-3)2]÷(−13) =16×(1-9)×(-3) =16×(-8)×(-3) =4.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 23.(1)10;(2)3【分析】(1)先算乘方和小括号,再算中括号,后算加减即可;(2)把除法转化为乘法,再用乘法的分配率计算即可.【详解】解:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦ 1[4(1)5]=+--⨯1(45)10=++=;(2)1211121(36)23436234⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121(36)(36)(36)234=-⨯-+⨯--⨯- 182493=-+=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.24.(1)见解析;(2)3n =,1m =.【分析】(1)将原式进行合并同类项,然后进一步证明即可;(2)将原式进行合并同类项,根据“无论x 取任何值,多项式值不变”进一步求解即可.【详解】(1)3233233733631061a a b a a b a b a a b +++----=3332233731033661a a a a b a b a b a b +-+-+--=1-,∴该多项式的值与a 、b 的取值无关, ∴1,22a b ==-是多余的条件.(2)2233x mx nx x -++-+=2233x nx mx x -++-+=2(3n)(1)3x m x -++-+∵无论x 取任何值,多项式值不变,∴30n -+=,10m -=,∴3n =,1m =.【点睛】本题主要考查了多项式运算中的无关类问题,熟练掌握相关方法是解题关键.25.(1)①440,②()()1n n 1n 23++;(2)()()()1n n 1n 2n 34+++;(3)4290 【分析】(1)①根据阅读材料的结论计算即可;②根据阅读材料的结论进行总结;(2)仿照(1)的计算方法进行归纳即可;(3)代入(2)总结的规律进行计算即可.【详解】解:(1)①1×2+2×3+3×4+…10×11=13×10×11×12=440, ②1×2+2×3+3×4+…+n (n+1)=13n (n+1)(n+2), (2)1×2×3=14(1×2×3×4-0×1×2×3), 2×3×4=14(2×3×4×5-1×2×3×4), 3×4×5=14(3×4×5×6-2×3×4×5), 则1×2×3+2×3×4+3×4×5+…+n (n+1)(n+2)=14n (n+1)(n+2)(n+3); (3)123234345101112⨯⨯+⨯⨯+⨯⨯++⨯⨯ =14×10×11×12×13 =4290.【点睛】 本题考查了有理数的混合运算、规律型-数字的变化类,弄清题意,得出一般性的规律是解本题的关键.26.(1)364x h ;(2)3642x +h ;(3)3643642xx ⎛⎫- ⎪+⎝⎭h 【分析】(1)根据题意,可以用代数式表示出汽车从上海到南京需要的时间;(2)根据题意,可以用代数式表示出汽车的速度增加2千米/时,从上海到南京需要的时间;(3)根据题意,可以用代数式表示出如果汽车的速度增加2千米/时,可比原来早到几小时.【详解】解:(1)汽车从上海到南京需364xh;(2)如果汽车的速度增加2km/h,从上海到南京需3642x+h;(3)如果汽车的速度增加2km/h,可比原来早到3643642x x⎛⎫-⎪+⎝⎭h.【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.。
【鲁教版】七年级数学上期中试题含答案(1)
一、选择题1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ). A .4B .8C .±4D .±82.把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( ) A .﹣7B .﹣1C .5D .113.下列说法正确的是( ) A .单项式34xy -的系数是﹣3 B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6 4.下列同类项合并正确的是( ) A .x 3+x 2=x 5 B .2x ﹣3x =﹣1 C .﹣a 2﹣2a 2=﹣a 2D .﹣y 3x 2+2x 2y 3=x 2y 35.一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64 B .31,32,33 C .31,62,63 D .31,45,46 6.如果m ,n 都是正整数,那么多项式的次数是( )A .B .mC .D .m ,n 中的较大数7.若b<0,刚a ,a+b ,a-b 的大小关系是( ) A .a<a <+b -b a B .<a<a-b a+b C .a<<a-b a+bD .<a<a+b a-b8.一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积( ) A .缩小到原来的12B .扩大到原来的10倍C .缩小到原来的110D .扩大到原来的2倍9.某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( ) A .B 处比A 处高 B .A 处比B 处高 C .A ,B 两处一样高 D .无法确定10.定义一种新运算2x y x y x+*=,如:2212122+⨯*==.则()(42)1**-=( )A .1B .2C .0D .-211.已知n 为正整数,则()()2200111n-+-=( ) A .-2B .-1C .0D .212.若2020M M +-=+,则M 一定是( ) A .任意一个有理数B .任意一个非负数C .任意一个非正数D .任意一个负数二、填空题13.已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则99a =________.14.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.15.关于x 的二次三项式的一次项的系数为5,二次项的系数是-3,常数项是-4.按照x 的次数逐渐减小排列,这个二次三项式为____.16.当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____. 17.在如图所示的运算流程中,若输出的数y=5,则输入的数x=_____.18.计算:3122--=__________;︱-9︱-5=______. 19.已知0a >,0b <,b a >,比较a ,a -,b ,b -四个数的大小关系,用“<”把它们连接起来:_______.20.某班同学用一张长为1.8×103mm ,宽为1.65×103mm 的大彩色纸板制作一些边长为3×102mm 的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.三、解答题21.计算:(1)2×(-3)3-4×(-3) (2)-22÷(12-13)×(-58) 22.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.23.某市质量监督局从某公司生产的婴幼儿奶粉中,随意抽取了20袋进行检查,超过标准质量的部分记为正数,不足的部分记为负数,抽查的结果如下表:(2)若每袋奶粉的标准质量为480克,则抽样检测的这些奶粉的总质量是多少克? 24.计算:(1)9-(-14)+(-7)-15; (2)12×(-5)-(-3)÷374(3)-15+(-2)3÷193⎛⎫--- ⎪⎝⎭(4)(-10)3+[(-8)2-(5-32)×9] 25.先化简,再求值:()22323(2)xxy x y xy y --+-+,其中1,32x y =-=.26.若单项式21425m n x y +--与413n mx y +是同类项,求这两个单项式的积【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据单项式的定义可得8mx y 和36nx y 是同类项,因此可得参数m 、n ,代入计算即可.【详解】解:由8mx y 与36nx y 的和是单项式,得3,1m n ==.()()333164m n +=+=,64的平方根为8±.故选D . 【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.A解析:A 【分析】先确定第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;第7次操作,a7=|-7+4|-10=-7;…第2020次操作,a2020=|-7+4|-10=-7.故选:A.【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.3.C解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A、单项式34xy-的系数是34-,此选项错误;B、单项式2πa3的次数是3,此选项错误;C、多项式x2y2﹣2x2+3是四次三项式,此选项正确;D、多项式x2﹣2x+6的项分别是x2、﹣2x、6,此选项错误;故选:C.【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.4.D解析:D【分析】根据合并同类项系数相加字母及指数不变,可得答案.【详解】解:A、x3与x2不是同类项,不能合并,故A错误;B、合并同类项错误,正确的是2x﹣3x=﹣x,故B错误;C、合并同类项错误,正确的是﹣a2﹣2a2=﹣3a2,故C错误;D、系数相加字母及指数不变,故D正确;故选:D.【点睛】本题考查了合并同类项,熟记合并同类项的法则,并根据合并同类项的法则计算是解题关键.5.C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.6.D解析:D【解析】【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式的次数是m,n中的较大数是该多项式的次数.【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式中次数最高的多项式的次数,即m,n中的较大数是该多项式的次数.故选D.【点睛】此题考查多项式,解题关键在于掌握其定义.7.D解析:D【分析】根据有理数减法法则,两两做差即可求解.【详解】∵b<0∴()0a a b b -+=->,()0a b a b --=-> ∴()a a b >+,()a b a -> ∴()()a b a a b ->>+ 故选D . 【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数.8.A解析:A 【分析】根据题意列出乘法算式,计算即可. 【详解】设一个因数为a ,另一个因数为b ∴两数乘积为ab 根据题意,得1110202a b ab = 故选A . 【点睛】本题考查了有理数乘法运算,根据有理数乘法运算法则计算即可.9.B解析:B 【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高. 【详解】 根据题意,得:()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+ =A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------= ∵1.5>0 ∴A B h h > 故选B . 【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.10.C【分析】先根据新定义计算出4*2=2,然后再根据新定义计算2*(-1)即可.【详解】4*2=4224+⨯=2, 2*(-1)=()2212+⨯-=0.故(4*2)*(-1)=0.故答案为C.【点睛】定义新运算是近几年的热门题型,首先要根据新运算正确列出算式,本题考查了有理数混合运算,根据新运算定义正确列出算式并熟练掌握有理数的运算法则是解答本题的关键. 11.C解析:C【解析】【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案.【详解】∵n为正整数,∴2n为偶数.∴(-1)2n+(-1)2001=1+(-1)=0故选C.【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1. 12.B解析:B【分析】直接利用绝对值的性质即可解答.【详解】解:∵M+|-20|=|M|+|20|,∴M≥0,为非负数.故答案为B.【点睛】本题考查了绝对值的应用,灵活应用绝对值的性质是正确解答本题的关键.二、填空题13.【解析】试题解析:100 9999.试题等号右边第一式子的第一个加数的分母是从1开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是2,结果的分子是2,分母是1×3=3;等号右边第二个式子的第一个加数的分母是从2开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是3,结果的分子是3,分母是2×4=8;等号右边第三个式子的第一个加数的分母是从3开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是4,结果的分子是4,分母是3×5=15.所以a99=991100 991019999+=⨯.考点:规律型:数字的变化类.14.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+解析:2234m m+-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4,故答案为2m2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.15.-3x2+5x-4【分析】由于多项式是由单项式组成的而多项式的次数是多项式中次数最高的项的次数而关于x的二次三项式的二次项系数是-3一次项系数是5常数项是-4根据前面的定义即可确定这个二次三项式【详解析:-3x2+5x-4【分析】由于多项式是由单项式组成的,而多项式的次数是“多项式中次数最高的项的次数”,而关于x的二次三项式的二次项系数是-3,一次项系数是5,常数项是-4,根据前面的定义即可确定这个二次三项式.【详解】∵关于x的二次三项式,二次项系数是-3,∴二次项是-3x2,∵一次项系数是,∴一次项是5x,∵常数项是-4,∴这个二次三项式为:-3x2+5x-4.故答案为:-3x2+5x-4【点睛】本题考查了多项式的知识,多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号也应带着.16.-25【分析】由x=1时代数式ax+b+1的值是﹣3求出a+b的值将所得的值整体代入所求的代数式中进行计算即可得解【详解】解:∵当x=1时ax+b+1的值为﹣3∴a+b+1=﹣3∴a+b=﹣4∴(a解析:-25.【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a+b+1=﹣3,∴a+b=﹣4,∴(a+b﹣1)(1﹣a﹣b)=(a+b﹣1)[1﹣(a+b)]=(﹣4﹣1)×(1+4)=﹣25.故答案为:﹣25.【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.17.910【详解】试题分析:由运算流程可以得出有两种情况当输入的x为偶数时就有y=x当输入的x为奇数就有y=(x+1)把y=5分别代入解析式就可以求出x的值而得出结论解:由题意得当输入的数x是偶数时则y解析:9,10【详解】试题分析:由运算流程可以得出有两种情况,当输入的x为偶数时就有y=12x,当输入的x为奇数就有y=12(x+1),把y=5分别代入解析式就可以求出x的值而得出结论.解:由题意,得当输入的数x是偶数时,则y=12x,当输入的x为奇数时,则y=12(x+1).当y=5时,∴5=12x或5=12(x+1).∴x=10或9故答案为9,10考点:一元一次方程的应用;代数式求值.18.-24【分析】直接根据有理数的减法运算即可;先运算绝对值再进行减法运算【详解】=-=-2;︱-9︱-5==9-5=4故答案为-24【点睛】本题考查了绝对值的化简以及有理数的运算解题的关键是掌握有理数解析:-2 4 【分析】直接根据有理数的减法运算即可;先运算绝对值,再进行减法运算. 【详解】3122--=-42=-2;︱-9︱-5==9-5=4, 故答案为-2,4. 【点睛】本题考查了绝对值的化简以及有理数的运算,解题的关键是掌握有理数的运算法则.19.b <-a <a <-b 【分析】先在数轴上标出ab-a-b 的位置再比较即可【详解】解:∵a >0b <0|b|>|a|∴b <-a <a <-b 故答案为:b <-a <a <-b 【点睛】本题考查了数轴相反数和有理数的大小解析:b <-a <a <-b 【分析】先在数轴上标出a 、b 、-a 、-b 的位置,再比较即可. 【详解】解:∵a >0,b <0,|b|>|a|, ∴b <-a <a <-b , 故答案为:b <-a <a <-b .【点睛】本题考查了数轴,相反数和有理数的大小比较,能知道a 、b 、-a 、-b 在数轴上的位置是解此题的关键.20.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30 【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可. 【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5, ∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5, ∴最多能制作5×6=30(张). 故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.三、解答题21.(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =154()68-÷⨯- =5468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.22.0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案.【详解】解:由数轴得,c b 0a <<<,且c a b >>, a c c b a b +-++-a c cb a b =--+++-0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.23.(1)多1.75克;(2)9635克【分析】(1)先计算出平均质量,若正则比标准质量多,若负则比标准质量少;(2)抽样总质量等于标准总质量加上超出的质量,或等于平均每袋质量乘以抽取的袋数.【详解】解:(1)()()15505551035110203520 1.571-÷=÷=⎡⨯+-⨯+⎤⎣⨯++⨯++⎦⨯⨯(克).所以这批样品每袋的平均质量比标准质量多1.75克.(2)()5428001.56793+⨯=(克)所以抽样检测的这些奶粉的总质量为9635克.【点睛】本题考查了有理数的混合运算和正负数的意义.有理数混合运算的顺序:先算乘除再算加减,有括号的先算括号里面的.24.(1)1;(2)14;(3)1147-;(4)-900. 【分析】(1)先将减法化为加法,再分别把正数和负数相加,将结果相加;(2)先分别计算乘除,再计算加法;(3)先分别计算乘方和括号内的,再计算除法,最后计算加法;(4)先分别计算乘方和括号内的,再将结果相加即可.【详解】解:(1)原式=914(7)(15)++-+-=23(22)+-=1;(2)原式=7460(3)3--- =6074-+=14;(3)原式=115(8)(9)3-+-÷-- =2815(8)()3-+-÷-=315(8)()28-+-- =6157-+ =1147-; (4)原式=[]100064(4)9-+--⨯=1000(6436)-++=1000100-+=-900.【点睛】本题考查有理数的混合运算.熟记有理数混合运算的运算顺序和每一步的运算法则是解题关键.25.8xy -,12【分析】根据题意,对原式利用整式的混合运算法则进行化简,然后将x ,y 的值代入求解即可.【详解】解:原式2236328x xy x y xy y xy =--+--=-, 当1,32x y =-=时,原式183122⎛⎫=-⨯-⨯= ⎪⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.26.10453x y - 【分析】根据题意,可得到关于m ,n 的二元一次方程组,求出m ,n 的值,即可求得答案.【详解】∵单项式21425m n x y +--与413n m x y +是同类项, ∴21442m n n m +=+⎧⎨-=⎩, 解得21m n =⎧⎨=⎩, ∴21425252441011355533n m m n x y x y x y x y x y ++--⋅-⋅=-= 【点睛】本题主要考查同类项的定义和单项式乘单项式的法则,根据同类项的定义,列出关于m ,n 的二元一次方程组,是解题的关键.。
【鲁教版】初一数学上期中试题(及答案)(1)
一、选择题1.有一种密码,将英文26个字母,,,,a b c z (不论大小写)依次对应1,2,3,…,26这26个序号(见表格),当明码对应的序号x 为奇数时,密码对应的序号为|25|2x -,当明码对应的序号x 为偶数时,密码对应的序号为122x+,按照此规定,将明码“love ”译成密码是( )A .loveB .rkwuC .sdriD .rewj2.某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( ) A .(x ﹣8%)(x+10%) B .(x ﹣8%+10%) C .(1﹣8%+10%)x D .(1﹣8%)(1+10%)x 3.有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( ) A .100x 100B .﹣100x 100C .101x 100D .﹣101x 1004.已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( ) A .36B .40C .44D .465.一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( ) A .1B .-1C .2020D .2020-6.一个多项式与²21x x -+的和是32x -,则这个多项式为( ) A .253x x -+ B .21x x -+- C .253x x -+-D .2513x x -- 7.如果|a |=-a ,下列成立的是( ) A .-a 一定是非负数 B .-a 一定是负数 C .|a |一定是正数D .|a |不能是08.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B9.下列正确的是( ) A .5465-<- B .()()2121--<+- C .1210823--> D .227733⎛⎫--=-- ⎪⎝⎭10.绝对值大于1且小于4的所有整数的和是( ) A .6B .–6C .0D .411.下列说法中错误的有( )个①绝对值相等的两数相等.②若a ,b 互为相反数,则ab=﹣1.③如果a 大于b ,那么a 的倒数小于b 的倒数.④任意有理数都可以用数轴上的点来表示.⑤x 2﹣2x ﹣33x 3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数. A .4个B .5个C .6个D .7个12.下面说法中正确的是 ( ) A .两数之和为正,则两数均为正 B .两数之和为负,则两数均为负 C .两数之和为0,则这两数互为相反数D .两数之和一定大于每一个加数二、填空题13.已知等式:222 2233+=⨯,233 3388+=⨯,244441515+=⨯,…,2a a1010b b+=⨯(a ,b 均为正整数),则 a b += ___. 14.单项式20.8a h π-的系数是______.15.将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕.16.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n 个图形中有白色正方形__________个 (用含n 的代数式表示).17.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.18.在如图所示的运算流程中,若输出的数y=5,则输入的数x=_____.19.一个数的25是165-,则这个数是______.20.计算:(-0.25)-134⎛⎫- ⎪⎝⎭+2.75-172⎛⎫+ ⎪⎝⎭=___. 三、解答题21.探索代数式222a ab b -+与代数式2()a b -的关系 (1)当5a =,2b =-时,分别计算两个代数式的值. (2)你发现了什么规律?(3)利用你发现的规律计算:2220182201820192019-⨯⨯+ 22.计算:(1)45(30)(13)+---; (2)32128(2)4-÷-⨯-. 23.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④_____________;⑤_____________;…. (2)通过猜想写出与第n 个点阵图相对应的等式. 24.计算(1)18()5(0.25)4+---- (2)2﹣412()(63)7921-+⨯- (3)1373015-⨯ (4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦. 25.已知,,a b c 在数轴上的位置如图所示,解答下列问题.(1)化简:||||||a b c b b a +--+-;(2)若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,求2()a b c a b c -++-+-的值.26.窗户的形状如图所示(图中长度单位:cm ),其中上部是半圆形,下部是边长相同的四个小正方形. 已知下部小正方形的边长是acm. (1)计算窗户的面积(计算结果保留π). (2)计算窗户的外框的总长(计算结果保留π).(3)安装一种普通合金材料的窗户单价是175元/平方米,当a=50cm 时,请你帮助计算这个窗户安装这种材料的费用(π≈3.14,窗户面积精确到0.1).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】明码“love”中每一个字母所代表的数字分别为12,15,22,5,再根据这四个数字的奇偶性,求得其密码.【详解】l对应的序号12为偶数,则密码对应的序号为1212182+=,对应r;o对应的序号15为奇数,则密码对应的序号为|1525|52-=,对应e;v对应的序号22为偶数,则密码对应的序号为2212232+=,对应w;e对应的序号5为奇数,则密码对应的序号为|525|102-=,对应j.由此可得明码“love”译成密码是rewj.故选:D.【点睛】本题考查了绝对值和求代数式的值.解题的关键是明确字母与数字的相互转化,每一个字母代表一个数字,一一对应关系.2.D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.3.C解析:C【分析】由单项式的系数,字母x的指数与序数的关系求出第100个单项式为101x100.【详解】由﹣2x,3x2,﹣4x3,5x4……得,单项式的系数的绝对值为序数加1,系数的正负为(﹣1)n,字母的指数为n,∴第100个单项式为(﹣1)100(100+1)x 100=101x 100, 故选C . 【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.4.A解析:A 【分析】原式去括号整理后,将已知等式代入计算即可求出值. 【详解】 ∵a+b=5,ab=4,∴原式=3ab+5a+8b+3a−4ab=8(a+b)−ab=40−4=36, 故选A. 【点睛】本题考查的是代数式的求值,熟练掌握先化简再求值是解题的关键.5.A解析:A 【分析】首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案. 【详解】 解:11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=-所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A . 【点睛】本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 6.C解析:C 【分析】根据题意列出关系式,去括号合并即可得到结果. 【详解】∵一个多项式与x 2-2x+1的和是3x-2, ∴这个多项式=(3x-2)-(x 2-2x+1) =3x-2-x 2+2x-1 =253x x -+-. 故选:C . 【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.7.A解析:A 【分析】根据绝对值的性质确定出a 的取值范围,再对四个选项进行逐一分析即可. 【详解】 ∵|a|=-a , ∴a≤0,A 、正确,∵|a|=-a ,∴-a≥0;B 、错误,-a 是非负数;C 、错误,a=0时不成立;D 、错误,a=0时|a|是0. 故选A . 【点睛】本题考查的是绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.8.B解析:B 【分析】由题意可知转一周后,A 、B 、C 、D 分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点. 【详解】当正方形在转动第一周的过程中,1对应的点是A ,2所对应的点是B ,3对应的点是C ,4对应的点是D ,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D ,故答案选B. 【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.9.A解析:A 【分析】根据不等式的性质对各选项进行判断即可. 【详解】 解:(1)∵5465>,∴5465-<-,故选项A 符合题意; (2)∵-(-21)=21,+(-21)=-21,21>-21,∴()()2121--+->,故选项B 错误; (3)∵11210=108223---<,故选项C 错误; (4)∵227=-733--,227=733⎛⎫-- ⎪⎝⎭,∴227733⎛⎫---- ⎪⎝⎭<; 故选:A . 【点睛】此题主要考查了有理数的大小比较,熟练掌握有理数比较大小的方法是解答此题的关键.10.C解析:C 【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C .11.C解析:C 【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断. 【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a ,b 互为相反数,则ab=-1在a 、b 均为0的时候不成立,故本小题错误; ③∵如果a=2,b=0,a >b ,但是b 没有倒数, ∴a 的倒数小于b 的倒数不正确, ∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x 2-2x-33x 3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确; ⑦负数的相反数是正数,大于负数,故本小题错误; ⑧负数的偶次方是正数,故本小题错误, 所以④⑥正确,其余6个均错误. 故选C. 【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.12.C解析:C 【详解】A. 两数之和为正,则两数均为正,错误,如-2+3=1;B. 两数之和为负,则两数均为负,错误,如-3+1=-2;C. 两数之和为0,则这两数互为相反数,正确;D. 两数之和一定大于每一个加数,错误,如-1+0=-1, 故选C. 【点睛】根据有理数加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.可得出结果.二、填空题13.【分析】先根据已知代数式归纳出(n 为正整数)然后令n=10求得ab 最后求和即可【详解】解:由已知代数式可归纳出(n 为正整数)令n=10则b=102-1=99a=10∴a+b=10+99=109故答案 解析:109【分析】先根据已知代数式归纳出22211+=⨯--n n n n n n (n 为正整数),然后令n=10,求得a 、b ,最后求和即可. 【详解】解:由已知代数式可归纳出22211+=⨯--n n n n n n (n 为正整数), 令n=10,则b=102-1=99,a=10 ∴a+b=10+99=109. 故答案为109. 【点睛】本题考查数字类规律探索,根据已有等式总结出22211+=⨯--n n n n n n 是解答本题的关键.14.【分析】根据单项式系数的定义进行求解即可【详解】单项式的系数是故答案为:【点睛】本题考查了单项式的系数问题掌握单项式系数的定义是解题的关键 解析:0.8π-【分析】根据单项式系数的定义进行求解即可. 【详解】单项式20.8a h π-的系数是0.8π- 故答案为:0.8π-. 【点睛】本题考查了单项式的系数问题,掌握单项式系数的定义是解题的关键.15.31【分析】根据题意找出折叠次的折痕条数的函数解析式再将代入求解即可【详解】折叠次的折痕为;折叠次的折痕为;折叠次的折痕为;……故折叠次的折痕应该为;折叠次将代入折痕为故答案为:31【点睛】本题考查解析:31 【分析】根据题意找出折叠n 次的折痕条数的函数解析式,再将5n =代入求解即可. 【详解】折叠1次的折痕为1,1121=-; 折叠2次的折痕为3,2321=-; 折叠3次的折痕为7,3721=-; ……故折叠n 次的折痕应该为21n -;折叠5次,将5n =代入,折痕为52131-= 故答案为:31. 【点睛】本题考查了图形类的规律题,找出折叠n 次的折痕条数的函数解析式是解题的关键.16.【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个 解析:()31-n【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案. 【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个,∴得到规律:第n个图形中白色正方形的个数为:(3n-1)个,故答案为:(3n-1).【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键. 17.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键解析:2-【分析】根据3A B'=可得点A'为12,再根据A与A'以C为折点对折,即C为A,A'中点即可求解.【详解】解:翻折后A'在B右侧,且3A B'=.所以点A'为12,∵A与A'以C为折点对折,则C为A,A'中点,即1216:22C-=-.【点睛】本题考查数轴上两点间的距离,得到C为A,A'中点是解题的关键.18.910【详解】试题分析:由运算流程可以得出有两种情况当输入的x为偶数时就有y=x当输入的x为奇数就有y=(x+1)把y=5分别代入解析式就可以求出x的值而得出结论解:由题意得当输入的数x是偶数时则y解析:9,10【详解】试题分析:由运算流程可以得出有两种情况,当输入的x为偶数时就有y=12x,当输入的x为奇数就有y=12(x+1),把y=5分别代入解析式就可以求出x的值而得出结论.解:由题意,得当输入的数x是偶数时,则y=12x,当输入的x为奇数时,则y=12(x+1).当y=5时,∴5=12x或5=12(x+1).∴x=10或9故答案为9,10考点:一元一次方程的应用;代数式求值.19.−8【分析】把这个数看成单位1它的对应的数量是求这个数用除法【详解】()÷=−8故答案为−8【点睛】此题考查有理数的除法解题关键在于这个数看成单位1解析:−8【分析】把这个数看成单位“1”,它的25对应的数量是165-,求这个数用除法【详解】(165-)÷25=−8.故答案为−8.【点睛】此题考查有理数的除法,解题关键在于这个数看成单位“1”20.-175【分析】根据减法法则将减法全部转化为加法同时把分数化成小数然后利用加法的交换结合律进行计算【详解】解:原式=-025+325+275-75=(-025-75)+(325+275)=-775+解析:-1.75【分析】根据减法法则将减法全部转化为加法,同时把分数化成小数,然后利用加法的交换结合律进行计算.【详解】解:原式=-0.25+3.25+2.75-7.5=(-0.25-7.5)+( 3.25+2.75)=-7.75+6=-1.75.故答案为:-1.75.【点睛】本题考查了有理数加减混合运算,一般思路是先把加减法统一为加法,然后利用加法的运算律进行计算.三、解答题21.(1)49, 49;(2)a2−2ab+b2=(a−b)2;(3)1.【分析】(1)将a、b的值分别代入a2−2ab+b2与(a−b)2计算可得;(2)根据(1)中的两式的计算结果即可归纳总结出关系式;(3)原式变形后,利用完全平方公式计算可得结果.【详解】解:(1)当a=5,b=−2时,a 2−2ab +b 2=52−2×5×(−2)+(−2)2=25+20+4=49,(a−b )2=[5−(−2)]2=72=49;(2)根据(1)的计算,可得规律:a 2−2ab +b 2=(a−b )2;(3)20182−2×2018×2019+20192=(2018−2019)2=(−1)2=1.【点睛】本题考查了代数式的求值及完全平方公式的应用,解题的关键是掌握代数式的求值方法以及利用完全平方公式简便运算.22.(1)28;(2)-2【分析】(1)有理数的加减混合运算,从左往右依次计算即可;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)45(30)(13)+---=4530+13-=15+13=28(2)32128(2)4-÷-⨯- =18844-÷-⨯ =11--=-2.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.23.(1) 1+3+5+7=42; 1+3+5+7+9=52;(2)1+3+5+…+(2n -1)=n 2.【分析】根据图示和数据可知规律是:等式左边是连续的奇数和,等式右边是等式左边的首数与末数的平均数的平方,据此进行解答即可.【详解】(1)由图①知黑点个数为1个,由图②知在图①的基础上增加3个,由图③知在图②基础上增加5个,则可推知图④应为在图③基础上增加7个即有1+3+5+7=42,图⑤应为1+3+5+7+9=52,故答案为④1+3+5+7=42;⑤1+3+5+7+9=52;(2)由(1)中推理可知第n 个图形黑点个数为1+3+5+…+(2n -1)=n 2.【点睛】本题考查了规律型——数字的变化类,解答此类问题的关键是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.24.(1)3;(2)37;(3)﹣236;(4)72 【分析】(1)本式为简单的有理数加减运算,从左到右先将分数进行计算,再从左到右计算即可. (2)按照有理数混合运算的顺序,利用乘法分配律直接去括号,再进行运算. (3)将﹣71315分解为﹣7﹣1315,再利用乘方分配律进行计算即可. (4)分别根据有理数的乘方计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:(1)18()5(0.25)4+---- =118544--+ =3;(2)2﹣412()(63)7921-+⨯- =4122(63)(63)(63)7921⎡⎤-⨯--⨯-+⨯-⎢⎥⎣⎦ =2﹣(﹣36+7﹣6),=2﹣(﹣35)=37;(3)1373015-⨯ =﹣7×30+(﹣1315)×30 =﹣210﹣26=﹣236;(4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦ =341(92)149--⨯-⨯-÷ =912-+=72.此题考查了有理数的混合运算注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.25.(1)2a b c -+;(2)-9【分析】(1)由数轴上的位置,先判断0,0,0+>-<-<a b c b b a ,再根据绝对值的意义进行化简,即可得到答案.(2)由绝对值的意义,倒数的定义,平方根的定义,先求出a 、b 、c 的值,再代入计算,即可得到答案.【详解】解:(1)由数轴可得:0c b a <<<,∴0,0,0+>-<-<a b c b b a ,∴原式2a b c b b a a b c =++--+=-+.(2)由题意,∵若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,∴2,1,2a b c ==-=-,∴2()2a b c a b c a b c a b c -++-+-=-++--+=224149a b c -++=---=-.【点睛】本题考查了数轴的定义,绝对值的意义,倒数的定义,平方根的定义等知识,解题的关键是利用数轴正确判断0c b a <<<,从而进行解题.26.(1)2214a +a 2π;(2)6a a π+;(3)245.【分析】(1)根据图示,窗户的面积等于4个小正方形的面积加上半径是a 的半圆的面积;(2)根据图示,窗户外框的总长就是用3条长度是2acm 的边的长度加上半径是acm 的半圆的长度;(3)根据窗户的总面积,代入求值即可.【详解】 解:(1)窗户的面积为:()()222214a a 422a a a cm ππ⎛⎫⨯+=+ ⎪⎝⎭ (2)窗户的外框的总长为:()()132a 262a a a cm ππ⨯+⨯=+ (3)当a=50cm ,即:a=0.5m 时, 窗户的总面积为:()2220.540.5128m ππ⎛⎫⨯+=+ ⎪⎝⎭ 取π≈3.14,原式=1+0.3925≈1.4(m 2)安装窗户的费用为:1.4×175=245(元).本题考查的知识点是求组合图形的面积与周长,将已知图形分解为所熟悉的简单图形是解此题的关键.。
【鲁教版】七年级数学上期中试题带答案(1)
一、选择题1.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+12.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .53.下面去括号正确的是( ) A .2()2y x y y x y +--=+- B .2(35)610a a a a --=-+ C .()y x y y x y ---=+- D .222()2x x y x x y +-+=-+ 4.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( ) A .2 B .﹣2 C .3 D .﹣35.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( )A .mB .nC .m n +D .m ,n 中较大者6.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差 B .2倍的x 与1的差除以3的商 C .x 与1的差的2倍除以3的商 D .x 与1的差除以3的2倍 7.2--的相反数是( ) A .12-B .2-C .12D .28.用计算器求243,第三个键应按( ) A .4B .3C .y xD .=9.一个数的绝对值是3,则这个数可以是( ) A .3B .3-C .3或者3-D .1310.下列分数不能化成有限小数的是( ) A .625B .324C .412D .11611.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元 12.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a+b <0B .a+b >0C .a ﹣b <0D .ab >0二、填空题13.写出一个系数是-2,次数是4的单项式________.14.已知轮船在静水中的速度为(a +b )千米/时,逆流速度为(2a -b )千米/时,则顺流速度为_____千米/时15.计算7a 2b ﹣5ba 2=_____.16.已知5a b -=,3c d +=,则()()b c a d +--的值等于______.17.对于有理数a 、b ,定义一种新运算,规定a ☆2b a b =-,则3☆(2)-=__.18.计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________. 19.若m ﹣1的相反数是3,那么﹣m =__.20.下列各组式子:①a ﹣b 与﹣a ﹣b ,②a +b 与﹣a ﹣b ,③a +1与1﹣a ,④﹣a +b 与a ﹣b ,互为相反数的有__.三、解答题21.计算:(1)2×(-3)3-4×(-3) (2)-22÷(12-13)×(-58) 22.计算(1)(-1)2019+0.25×(-2)3+4÷23(2)21233()12323-÷+-⨯+23.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.24.用代数式表示:(1)a 的5倍与b 的平方的差; (2)m 的平方与n 的平方的和;(3)x ,y 两数的平方和减去它们积的2倍. 25.列出下列代数式: (1)a 、b 两数差的平方; (2)a 、b 两数平方的差;(3)a 、b 两数的和与a 、b 两数的差的积; (4)a 的相反数与b 的平方的和.26.为鼓励居民节约用电,某市采用价格调控手段达到省电目的,该市电费收费标准如下表(按月结算):(2)设某月的用电量为x 度(0300x <≤),试写出不同电量区间应缴交的电费.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n , 右边三角形的数字规律为:2,22,…,2n , 下边三角形的数字规律为:1+2,222+,…,2n n +, ∴最后一个三角形中y 与n 之间的关系式是y=2n +n. 故选B . 【点睛】考点:规律型:数字的变化类.2.B解析:B 【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.解:∵132n x y +与4313x y 是同类项, ∴n+1=4, 解得,n=3, 故选:B. 【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.3.B解析:B 【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则. 【详解】A. 2()2y x y y x y +--=--,故错误;B. 2(35)610a a a a --=-+,故正确;C. ()y x y y x y ---=++,故错误;D. 222()22x x y x x y +-+=-+,故错误; 故选:B 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘;括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“一”,去括号后,括号里的各项都改变符号.4.D解析:D 【分析】先将多项式合并同类型,由不含x 的二次项可列 【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项, ∴6+2m=0, 解得m =﹣3, 故选:D . 【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.5.D解析:D由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项. 【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,mnx x 中指数大的,即m ,n 中较大的,故答案选D. 【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项.6.B解析:B 【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断. 【详解】代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B . 【点睛】本题考查了代数式,正确理解代数式表示的意义是关键.7.D解析:D 【分析】|-2|去掉绝对值后为2,而-2的相反数为2. 【详解】2--的相反数是2,故选:D . 【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.8.C解析:C 【解析】用计算器求243,按键顺序为2、4、y x 、3、=. 故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能.9.C解析:C 【解析】 试题∵一个数的绝对值是3,可设这个数位a,∴|a|=3,∴a=±3故选C.10.C解析:C【分析】首先,要把分数化成最简分数,再根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数.【详解】A、625的分母中只含有质因数5,所以625能化成有限小数;B、31248=,18的分母中只含有质因数2,所以324能化成有限小数;C、41123=,13的分母中含有质因数3,所以412不能化成有限小数;D、116的分母中只含有质因数2,所以116能化成有限小数.故选:C.【点睛】此题主要考查判断一个分数能否化成有限小数的方法,根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;否则就不能化成有限小数.11.C解析:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.A解析:A【分析】根据数轴判断出a、b的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b<﹣1<0,0<a<1,∴a+b<0,故选项A符合题意,选项B不合题意;a﹣b>0,故选项C不合题意;ab<0,故选项D不合题意.故选:A.【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a、b的符号,熟知有理数的运算法则是解题关键.二、填空题13.答案不唯一例:-2【解析】解:系数为-2次数为4的单项式为:-2x4故答案为-2x4点睛:本题考查了单项式的知识单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数解析:答案不唯一,例:-24x.【解析】解:系数为-2,次数为4的单项式为:-2x4.故答案为-2x4.点睛:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.14.3b【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整解析:3b【分析】顺流速度=静水速度+(静水速度-逆流速度),依此列出代数式+++--计算即可求解.a b a b a b()[()(2)]【详解】解:依题意有a b a b a b+++--()[()(2)]=+++-+a b a b a b[2]=+++-+a b a b a b2=(千米/时).3b故顺流速度为3b千米/时.故答案为:3b.【点睛】本题主要考查了整式加减的应用,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.15.2a2b【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型解析:2a2b【分析】根据合并同类项法则化简即可.【详解】()2222﹣﹣.7a b5ba=75a b=2a b2a b故答案为:2【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.16.-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子然后代入求值即可【详解】故答案为:-2【点睛】本题考查了整式的化简求值把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键解析:-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子,然后代入求值即可.【详解】()()()()532+--=+-+=-++=-+=-.b c a d b c a d b a c d故答案为:-2.【点睛】本题考查了整式的化简求值,把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键.17.【分析】根据新定义把新运算转化为常规运算进行解答便可【详解】解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7故答案为:7【点睛】本题主要考查了有理数的混合运算读懂新定义运算是解题的关键解析:【分析】根据新定义把新运算转化为常规运算进行解答便可.【详解】解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7,故答案为:7.【点睛】本题主要考查了有理数的混合运算,读懂新定义运算是解题的关键.18.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键解析:0【分析】将同分母的分数分别相加,再计算加法即可.【详解】原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:0.【点睛】此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.19.2【分析】根据只有符号不同的两个数互为相反数可得关于m的方程根据解方程可得m的值再根据在一个数的前面加上负号就是这个数的相反数可得答案【详解】解:由m-1的相反数是3得m-1=-3解得m=-2-m=解析:2【分析】根据只有符号不同的两个数互为相反数,可得关于m的方程,根据解方程,可得m的值,再根据在一个数的前面加上负号就是这个数的相反数,可得答案.【详解】解:由m-1的相反数是3,得m-1=-3,解得m=-2.-m=+2.故选:A.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.20.②④【分析】直接利用互为相反数的定义分析得出答案【详解】解:①a-b与-a-b=-(a+b)不是互为相反数②a+b与-a-b是互为相反数③a+1与1-a 不是相反数④-a+b与a-b是互为相反数故答案解析:②④【分析】直接利用互为相反数的定义分析得出答案.【详解】解:①a-b与-a-b=-(a+b),不是互为相反数,②a+b与-a-b,是互为相反数,③a+1与1-a,不是相反数,④-a+b与a-b,是互为相反数.故答案为:②④.【点睛】本题考查了互为相反数,正确把握相反数的定义是解题的关键.三、解答题21.(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =15 4()68 -÷⨯-=5 468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.22.(1)3;(2)-2【分析】(1)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;(2)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;【详解】解:(1)原式=-1+0.25×(-8)+6=-1-2+6=3;(2)原式=12 931212323-÷+⨯-⨯+=-3+6-8+3=-2;【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是熟练掌握运算法则,正确的进行计算.23.(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果;(2)利用点B 表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a 个单位计算即可.【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数,∴点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3,∴直尺此时左端点C 表示的数-3-0.5a .【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.24.(1)5a -b 2(2)m 2+n 2(3)x 2+y 2-2xy【分析】(1)a 的5倍表示为5a ,b 的平方表示为b 2,然后把它们相减即可;(2)m 与n 平方的和表示为m 2+n 2;(3)x 、y 两数的平方和表示为x 2+y 2,它们积的2倍表示为2xy ,然后把两者相减即可;【详解】解:(1)a 的5倍与b 的平方的差可表示为:5a -b 2;(2)m 的平方与n 的平方的和可表示为:m 2+n 2;(3)x ,y 两数的平方和减去它们积的2倍可表示为:x 2+y 2-2xy .【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;分清数量关系;规范地书写.25.(1)2()a b -;(2)22a b -;(3)()()a b a b +-;(4)2a b -+【分析】(1)根据题意先列出a ,b 的差,再表示差的平方,即可得出答案;(2)根据题意先表示出a ,b 平方,再列出差,即可得出答案 ;(3)根据题意先表示出a 与b 两数的和以及这两数的差,再列出它们的积,即可得出答案;(4)利用相反数以及平方的定义得出答案.【详解】(1)根据题意可得:2()a b -;(2)根据题意可得:22a b -;(3)根据题意可得:()()a b a b +-;(4)根据题意可得:2a b -+.【点睛】本题考查了列代数式,关键是能够正确运用数学语言,即代数式来表示题意.26.(1)该居民12月份应缴电费94.5元;(2)0.5,01500.6522.5,1502500.860,250300x x x x x x <≤⎧⎪-<≤⎨⎪-<≤⎩【分析】(1)根据用电量类型分别进行计算即可;(2)分三种情况进行讨论,当x 不超过150度时,x 超过150度,但不超过时250度时和x 超过250度时,再分别代入计算即可.【详解】解:(1)由题意,得150×0.50+(180-150)×0.65=94.5(元)答:该居民12月应缴交电费94.5元;(2)若某户的用电量为x 度,则当x≤150时,应付电费:0.50x 元;当150<x≤250时,应付电费:0.65(x -150)+75=0.65x 22.5-(元);当250<x <300,应付电费:0.80(x -250)+140=0.8x 60-(元).∴不同电量区间应缴交的电费为:0.5,01500.6522.5,1502500.860,250300x x x x x x <≤⎧⎪-<≤⎨⎪-<≤⎩. 【点睛】本题考查了列代数式,读懂题目信息,理解阶梯电价的收费方法和电费的计算方法是解题的关键.。
【鲁教版】初一数学上期中试卷及答案(1)
一、选择题1.如图,将一个边长为m 的正方形纸片剪去两个小长方形,得到一个类似“9”的图案,再将剪下的两个小长方形无缝隙地拼成一个新的长方形,则新长方形的周长可表示为( )A .59m n -B .5.58m n -C .45m n -D .58m n - 2.观察下面有规律的三行数: 2-,4、8-,16,32-,64,①0,6,6-,18,30-,66,② 1,2-,4,8-,16,32-,③ 设x ,y ,z 分别为第①②③行的第2020个数,则22x y z -+的值为( ) A .20202 B .2- C .0 D .23.用手指计数常对较小的数比较方便,但如果有一定的规律,也能表示较大的数.如图为手的示意图,在各个手指间标记字母A 、B 、C 、D ,请你按图中箭头所指方向(即A B →→ C D C B A B C →→→→→→→…的方式)从A 开始数连续的正整数1,2,3,4…,当字母C 第2021次出现时,恰好数到的数是( )A .8087B .6063C .4045D .2021 4.如图是一个运算程序的示意图,若开始输入的x 值为81,我们看到第一次输出的结果为27,第二次输出的结果为9,…,第2021次输出的结果为( )A .1B .3C .9D .275.有理数a ,b 在数轴上的对应点的位置如下图所示,则下列结论正确的是( )A .b a <-B .0ab >C .a b >D .02b a-< 6.2020年是我国在航天方面收获满满的一年,12月19日,中国嫦娥五号任务月球样品正式交接.嫦娥五号任务是“探月工程”的第六次任务,也是中国航天迄今为止最复杂,难度最大的任务之一.其有着非常重要的意义,实现中国开展航天活动以来的四个“首次”:首次在月球表面自动采样;首次从月面起飞;首次在38万公里外的月球轨道上进行无人交会对接;首次带着月壤以接近第二宇宙速度返回地球.38万公里用科学记数法表示为( )A .3.8×103公里B .3.8×104公里C .3.8×105公里D .38×104公里 7.截止2020年12月30日,全球新冠肺炎确诊病例累计超8000万例,其中“8000万”用科学记数法表示为( ) A .3810⨯ B .7810⨯ C .40.810⨯ D .80.810⨯ 8.下列图形中,不可以作为一个正方体的展开图的是( )A .B .C .D . 9.如图图形不能围成正方体的是( )A .B .C .D .10.一个正方体的平面展开图如图所示,将它折成正方体后,“保”字对面的字是( )A .低B .碳C .环D .色 11.棱长为acm 的正方体表面积是( )cm 2.A .42aB .63aC .3aD .62a12.有理数a ,b 在数轴上的对应点的位置如图所示,则下列式子中正确的是( )①0a b <<;②a b <;③0ab >;④a b a b ->+A .①②B .①④C .②③D .③④二、填空题13.现有一列数1a ,2a ,…,100a ,其中39a =,77a =-,981a =-,且满足任意相邻三个数的和为同一常数,则12100a a a +++的值为__________. 14.计算:-2x 2+3x 2=__________;15.5-的相反数是________,5-的倒数是________,5-的绝对值是________. 16.为了求231001222...2+++++的值,可令231001222...+2S =++++,则23410122222...+2S =++++,因此10122S S -=,所以10121S =-,即231001011222...221+++++=-,仿照以上推理计算2100133...3++++的值是___________17.若ab ≠0,则a a+b b =____. 18.如图是一个正方形的展开图,则这个正方体与“诚”字所在面相对的面上的字是_______.19.如图①所示的是一个正方体的表面展开图,将对应的正方体从如图②所示的位置依次翻到第1格、第2格、第3格,这时正方体朝上的一面上的字是________.20.一个立体图形的三视图如图所示,则该立体图形的名称为________.三、解答题21.先化简,再求值:22222(32)43a b a b abc ac ac abc ⎡⎤-----⎣⎦,其中1=1,3,2a b c =-=. 22.阅读下面的材料,解决有关问题:在如图1的“数表”中,数字按一定规律排列,我们分别在“数表”中涂抹出两个“H”,在每个“H”所覆盖的7个数字中,将最上端两数的和与最下端两数的和相减,计算结果称为“H 值”.(计算与发现)分别计算图1中的两个不同位置的“H”所对应的“H 值”:(2+4)−(20+22)= ;(24+26)−(42+44)= ,我们可以初步发现:__________________________;(探究与证明)图2是从图1中截出的一部分,在“H”所覆盖的7个数字中,若设中心数为x ,则A 、B 、C 、D 所对应的数可分别表示为 , , , (用含x 的代数式表示),并请你利用整式的运算,对(计算与发现)中发现的规律进行验证. 23.某公司6天内货品进出仓库的吨数如下,其中正数表示进库的吨数:32+,32-,18-,35+,36-,22-.(1)经过这6天,仓库里的货品增加或减少多少吨?(2)如果进出的装卸费都是每吨12元,那么这6天要付多少元装卸费?24.(1)664( 2.5)(0.1)-⨯--÷-(2)()232(10)[(4)132]-+---⨯ 25.补全如图的三视图.26.如图是由若干个边长为1的立方块搭成的几何体从上面看到的平面图形,小正方形中的数字表示该位置立方块的个数.(1)请画出该几何体从正面和从左面看到的平面图形;(2)求该几何体的表面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据图形给出的已知条件列出算式,进行整式加减即可得结论.【详解】解:由图可得,新长方形的长为()(2)23m n m n m n -+-=-,宽为113(3)222m n m n -=-,则新长方形的周长为13592322592222m n m n m n m n ⎫⎫⎛⎛-+-⨯=-⨯=- ⎪ ⎪⎝⎝⎭⎭. 故选A .【点睛】本题考查了整式的加减,解决本题的关键是观察图形正确列出算式.2.B解析:B【分析】分别找出第①②③行的数字规律,求出每行的第2020个数,代入求解即可.【详解】解:第①行数的规律为()12nn -⋅, ∴第①行的第2020个数()202020202020122x =-⋅=;第②行数是在第一行的基础上加2,其规律为()122n n -⋅+,∴第②行的第2020个数()20202020202012222y =-⋅+=+; 第③行数的规律为()1112n n ---⋅,∴第③行的第2020个数()20201202012019122z --=-⋅=-;∴()20202020202022222222x y z -+=⨯-+-=-,故选:B.【点睛】本题考查数字的规律探索,找出每一行数的规律是解题的关键,注意三行数的内在联系.3.B解析:B【分析】根据题意可以发现六个为一个循环,每个循环中字母C出现两次,从而可以解答本题.【详解】解:按照A→B→C→D→C→B→A→B→C→…的方式进行,每6个字母ABCDCB一循环,每一循环里字母C出现2次,∵2021÷2=1010…1,∴经过了1010个循环,又往后数了3个字母,∴1010×6+3=6063.故选:B.【点睛】本题考查了规律型—图形类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.4.B解析:B【分析】分别求出第一次输出27,第二次输出9,第三次输出3,第四次输出1,第五次输出3,第六次输出1,由此可得,从第三次开始,每两次一个循环.【详解】解:由题可知,第一次输出27,第二次输出9,第三次输出3,第四次输出1,第五次输出3,第六次输出1,由此可得,从第三次开始,每两次一个循环,()-÷=,20212210091第2021次输出结果与第3次输出结果一样,第2021次输出的结果为3,故选:B.【点睛】本题考查数字的变化规律,找到循环规律是解题的关键.5.C解析:C【分析】根据数轴上点对应数的符号、有理数乘法的符号法则及绝对值的意义求解 .【详解】解:由图可知:a>2,所以-a<-2,而b>-2,所以b>-a ,A 错误;由图可知,a>0,b<0,所以ab<0,-b>0,2a>0,02b a->,所以B 、D 错误; 由图可知,|a|>2,|b|<2,所以|a|>|b|,C 正确;故选C .【点睛】本题考查数轴的应用,熟练掌握有理数乘法的符号法则及绝对值的意义是解题关键. 6.C解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:38万公里=380000公里=3.8×105米,故选:C .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.B解析:B【分析】先将8000万化成80000000,再用科学记数法表示即可.【详解】解:8000万=80000000=7810⨯,故选:B .【点睛】本题主要考察了用科学记数法表示一个大于10的数,解题的关键是熟练掌握科学记数法的表示方法.8.C解析:C【解析】【分析】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【详解】A .可以作为一个正方体的展开图,B.可以作为一个正方体的展开图,C.不可以作为一个正方体的展开图,D.可以作为一个正方体的展开图,故选:C.【点睛】本题考查正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.9.B解析:B【分析】依据正方体的展开图的特征,当六个正方形出现“田”字,“凹”字状时,不能围成正方体.【详解】解:依据正方体的展开图的特征,所有选项中只有B选项出现“凹”字状,所以不能组成正方体,而A,C,D选项中,能围成正方体.故选B.【点睛】本题考查了展开图折叠成几何体,解题时注意:当六个正方形组成“田”字,“凹”字状时,不能折成正方体.10.B解析:B【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【详解】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“保”字相对的面上的汉字是“碳”.故选:B.【点睛】本题考查了正方体的展开图形,熟练掌握是解题的关键.11.D解析:D【分析】直接利用正方体的表面积为:6×棱长的平方进而得出答案.【详解】解:棱长为acm的正方体的表面积为:6a2cm2.故选:D.【点睛】此题主要考查了几何体的表面积,正确掌握立方体的性质是解题关键.12.A解析:A【分析】先由数轴可得a <0<b ,且|a|<|b|,再判定即可.【详解】解:由图可得:a <0<b ,且|a|<|b|,∴ab <0,a-b <a+b ,∴正确的有:①②;故选:A .【点睛】本题主要考查了数轴,解题的关键是利用数轴确定a ,b 的取值范围.利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大.二、填空题13.26【分析】由题意易得则有同理可得进而可得这列数是每三个一循环则由可得然后依次规律可求解【详解】解:由题意得:∴同理可得:∴这列数是每三个一循环∵∴∴∵∴;故答案为26【点睛】本题主要考查有理数的运 解析:26【分析】由题意易得123234a a a a a a ++=++,则有14a a =,同理可得25a a =,36a a =,进而可得这列数是每三个一循环,则由39a =,77a =-,981a =-可得17a =-,21a =-,39a =,然后依次规律可求解.【详解】解:由题意得:123234a a a a a a ++=++,∴14a a =,同理可得:25a a =,36a a =,∴这列数是每三个一循环,∵39a =,77a =-,981a =-,∴177a a ==-,2981a a ==-,39a =,∴1231a a a ++=,∵1003331÷=⋅⋅⋅⋅⋅∴()12100331726a a a +++=⨯+-=; 故答案为26.【点睛】本题主要考查有理数的运算,关键是由题意得到数字的规律,然后进行有理数的运算即可. 14.x2【分析】合并同类项是指同类项的系数的相加并把得到的结果作为新系数要保持同类项的字母和字母的指数不变据此计算即可【详解】解:-2x2+3x2=(-2+3)x2=x2故答案为:x2【点睛】本题主要考解析:x 2【分析】合并同类项是指同类项的系数的相加,并把得到的结果作为新系数,要保持同类项的字母和字母的指数不变,据此计算即可.【详解】解:-2x 2+3x 2=(-2+3)x 2= x 2故答案为:x 2.【点睛】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.15.5【分析】根据相反数倒数绝对值的概念及性质解题【详解】解:的相反数是5;的倒数是;的绝对值是5故答案为:55【点睛】此题考查了相反数倒数绝对值的定义注意区分概念不要混淆 解析:15- 5 【分析】根据相反数、倒数、绝对值的概念及性质解题.【详解】解:5-的相反数是5;5-的倒数是15-; 5-的绝对值是5. 故答案为:5,15-,5. 【点睛】此题考查了相反数、倒数、绝对值的定义,注意区分概念,不要混淆.16.【分析】利用题中的方法求出原式的值即可;【详解】设①把①式两边都乘以3得:②由②-①得:即;故答案为【点睛】本题主要考查了有理数的乘方运算准确分析计算是解题的关键 解析:101312- 【分析】利用题中的方法求出原式的值即可;【详解】设2100133...3=++++M ①,把①式两边都乘以3,得:231013333...3=++++M ②,由②-①得:101231M =-,即101312M -=; 故答案为101312-. 【点睛】本题主要考查了有理数的乘方运算,准确分析计算是解题的关键.17.±2或0【分析】分ab 同号与ab 异号两种情况根据绝对值的意义和有理数的加法法则解答即可【详解】解:因为ab≠0若ab 同号当a >0b >0时=1+1=2;当a <0b <0时=﹣1﹣1=﹣2;若ab 异号当a解析:±2或0【分析】分a 、b 同号与a 、b 异号两种情况,根据绝对值的意义和有理数的加法法则解答即可.【详解】解:因为ab ≠0,若a 、b 同号,当a >0,b >0时,a a +b b =1+1=2; 当a <0,b <0时,a a +b b =﹣1﹣1=﹣2; 若a 、b 异号,当a >0,b <0时,a a +b b =1-1=0; 当a <0,b >0时,a a +b b =﹣1+1=0; 故答案为:±2或0.【点睛】本题考查了有理数的绝对值和有理数的加法运算,属于常考题型,全面分类、掌握解答的方法是解题关键.18.友19.真20.圆锥三、解答题21.93,2abc - 【分析】先去中括号,然后去小括号,合并同类项进行计算即可,化简后将a 、b 、c 的值代入即可【详解】解:原式2222(644)3a b a b abc ac ac abc =--+--2263a b a b abc abc =-+-3abc = .当 1132a b c ==-=,,时, 原式3abc =1931322=⨯⨯-⨯=-(). 【点睛】本题考查了整式的化简,熟练掌握运算法则是解本题的关键;22.【计算与发现】−36;−36;不同位置的“H”所对应的“H 值”都是−36;【探究与证明】x ﹣10,x+8,x+10,x ﹣8;见解析【分析】【计算与发现】直接根据有理数的加减运算法则计算即可;根据结果即可得出规律;【探究与证明】先分别表示出A 、B 、C 、D 所对应的数,再代入(A+D )−(B+C )即可验证规律.【详解】解:【计算与发现】(2+4)−(20+22)=6-42=-36;(24+26)−(42+44)=50-86=-36;我们可以初步发现:不同位置的“H”所对应的“H 值”都是−36.【探究与证明】A 、B 、C 、D 所对应的数分别为:x ﹣10,x+8,x+10,x ﹣8;(A+D )−(B+C )=(x ﹣10+ x ﹣8)﹣(x+8+ x+10)=2x ﹣18﹣2x ﹣18=−36.【点睛】本题考查了有理数的加减运算及整式的加减的应用,熟练掌握运算法则是解题的关键. 23.(1)减少41吨;(2)2100元【分析】(1)结合题意,根据有理数加减运算、正负数的性质分析,即可得到答案;(2)根据绝对值、有理数加法性质计算,即可得到装卸的总吨数;结合题意,再通过有理数乘法计算,即可得到答案.【详解】(1)根据题意,得:323218353622+--+--41=-∴经过这6天,仓库里的货品减少41吨;(2)|32||32||18||35||36||22|175++-+-+++-+-=,即装卸的总吨数为175吨 结合题意,6天装卸费总共为:121752100⨯=元.【点睛】本题考查了正负数、有理数加减运算、绝对值、有理数乘法的知识;解题的关键是熟练掌握正负数、有理数加减运算、绝对值的性质,从而完成求解.24.(1)289-;(2)968-【分析】(1)先计算乘除,再相减即可;(2)按照有理数运算顺序和法则计算即可.【详解】解:(1)664( 2.5)(0.1)-⨯--÷-=26425--=289-(2)()232(10)[(4)132]-+---⨯ =()1000[1682]-+--⨯=()1000[1616]-+--=100032-+=968-【点睛】本题考查了有理数的混合运算,解题关键是熟练运用有理数运算法则和正确的按照有理数混合运算顺序进行计算.25.见解析.【解析】【分析】视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示.【详解】如图所示;【点睛】此题主要考查三视图的画法,注意实线和虚线在三视图的用法.26.(1)如图所示见解析; (2) 26.【解析】分析:(1)由已知条件可知,主视图有2列,每列小正方形数目分别为2,3,左视图有2列,每列小正方数形数目分别为3,2.据此可画出图形;(2)由(1)还原几何体即可求解.详解:(1)如图所示.(2)几何体的表面积为2×(5+5+3)=26.点睛:本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.。
【鲁教版】七年级数学上期中试卷(附答案)(1)
一、选择题1.有一种密码,将英文26个字母,,,,a b c z (不论大小写)依次对应1,2,3,…,26这26个序号(见表格),当明码对应的序号x 为奇数时,密码对应的序号为|25|2x -,当明码对应的序号x 为偶数时,密码对应的序号为122x+,按照此规定,将明码“love ”译成密码是( )A .loveB .rkwuC .sdriD .rewj2.化简2a -[3b -5a -(2a -7b )]的值为( )A .9a -10bB .5a +4bC .-a -4bD .-7a +10b3.下列关于多项式21ab a b --的说法中,正确的是( )A .该多项式的次数是2B .该多项式是三次三项式C .该多项式的常数项是1D .该多项式的二次项系数是1-4.式子5x x-是( ). A .一次二项式B .二次二项式C .代数式D .都不是5.一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,466.下列说法错误的是( ) A .23-2x y 的系数是32-B .数字0也是单项式C .-x π是二次单项式D .23xy π的系数是23π 7.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比( ) A .提高20元B .减少20元C .提高10元D .售价一样8.下列说法:①a -一定是负数;②||a 一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l ;⑤平方等于它本身的数是1.其中正确的个数是( ) A .1个B .2个C .3个D .4个9.下列各组数中,互为相反数的是( ) A .(﹣3)2和﹣32B .(﹣3)2和32C .(﹣2)3和﹣23D .|﹣2|3和|﹣23|10.下列四个式子,正确的是( ) ①33.834⎛⎫->-+ ⎪⎝⎭;②3345⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+ ⎪⎝⎭. A .③④ B .①C .①②D .②③11.计算 -2的结果是( )A .0B .-2C .-4D .412.已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( ) A .a b a b a 1a 1+<-<-<+ B .a 1a b a b a 1+>+>->- C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>-二、填空题13.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项. 14.将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.15.已知22 251,34A x ax y B x x by =+-+=+--,且对于任意有理数 ,x y ,代数式 2A B - 的值不变,则12()(2)33a Ab B ---的值是_______.16.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示) 17.运用加法运算律填空:212+1(3)3-+612+2(8)3-=1(22+____)+[ ____+2(8)3-].18.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克,某地今年计划栽种这种超级杂交稻30万亩,预计今年这种超级杂交稻的产量_____千克(用科学记数法表示)19.在一次区级数学竞赛中,某校8名参赛学生的成绩与全区参赛学生平均成绩80分的差分别为(单位:分):5,2-,8,14,7,5,9,6-,则该校8名参赛学生的平均成绩是______ .20.某班同学用一张长为1.8×103mm ,宽为1.65×103mm 的大彩色纸板制作一些边长为3×102mm 的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.三、解答题21.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒.22.计算:(1)()()34287⨯-+-÷; (2)()223232-+---. 23.计算: (1)()()312⨯-+-(2)2235223x x x x -+-+-24.设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立. 25.已知一个多项式加上223x y xy -得222x y xy -,求这个多项式. 佳佳的解题过程如下:解:222223x y xy x y xy ---①224x y xy =-②请问佳佳的解题过程是从哪一步开始出错的?并写出正确的解题过程. 26.化简下列各式: (1)32476x y y -+--+; (2)4(32)3(52)x y y x ----.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D明码“love”中每一个字母所代表的数字分别为12,15,22,5,再根据这四个数字的奇偶性,求得其密码.【详解】l对应的序号12为偶数,则密码对应的序号为1212182+=,对应r;o对应的序号15为奇数,则密码对应的序号为|1525|52-=,对应e;v对应的序号22为偶数,则密码对应的序号为2212232+=,对应w;e对应的序号5为奇数,则密码对应的序号为|525|102-=,对应j.由此可得明码“love”译成密码是rewj.故选:D.【点睛】本题考查了绝对值和求代数式的值.解题的关键是明确字母与数字的相互转化,每一个字母代表一个数字,一一对应关系.2.A解析:A【解析】2a-[3b-5a-(2a-7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b,故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.3.B解析:B【分析】直接利用多项式的相关定义进而分析得出答案.【详解】A、多项式21ab a b--次数是3,错误;B、该多项式是三次三项式,正确;C、常数项是-1,错误;D、该多项式的二次项系数是1,错误;故选:B.【点睛】此题考查多项式,正确掌握多项式次数与系数的确定方法是解题关键.4.C解析:C根据代数式以及整式的定义即可作出判断. 【详解】式子5x x -分母中含有未知数,因而不是整式,故A 、B 错误,是代数式,故C 正确. 故选:C . 【点睛】本题考查了代数式的定义,就是利用运算符号把数或字母连接而成的式子,单独的数或字母都是代数式.5.C解析:C 【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数. 【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63. 故选:C . 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.6.C解析:C 【分析】根据单项式的有关定义逐个进行判断即可. 【详解】A. 23-2x y 的系数是32-,故不符合题意;B. 数字0也是单项式 故不符合题意;C. -x π是一次单项式 ,故原选项错误D.23xy π的系数是23π,故不符合题意. 故选C . 【点睛】本题考查对单项式有关定义的应用,能熟记单项式的有关定义是解此题关键.7.B解析:B 【分析】根据题意可列式现在的售价为()()2000110110⨯+%⨯-%,即可求解.解:根据题意可得现在的售价为()()20001101101980⨯+%⨯-%=(元), 所以现在的售价与原售价相比减少20元, 故选:B . 【点睛】本题考查有理数运算的实际应用,根据题意列出算式是解题的关键.8.A解析:A 【分析】根据正数与负数的意义对①进行判断即可;根据绝对值的性质对②与④进行判断即可;根据倒数的意义对③进行判断即可;根据平方的意义对⑤进行判断即可. 【详解】①a -不一定是负数,故该说法错误; ②||a 一定是非负数,故该说法错误; ③倒数等于它本身的数是±1,故该说法正确; ④绝对值等于它本身的数是非负数,故该说法错误; ⑤平方等于它本身的数是0或1,故该说法错误. 综上所述,共1个正确, 故选:A. 【点睛】本题主要考查了有理数的性质,熟练掌握相关概念是解题关键.9.A解析:A 【分析】各项中两式计算得到结果,即可作出判断. 【详解】A 、(﹣3)2=9,﹣32=﹣9,互为相反数;B 、(﹣3)2=32=9,不互为相反数;C 、(﹣2)3=﹣23=﹣8,不互为相反数;D 、|﹣2|3=|﹣23|=8,不互为相反数, 故选:A . 【点睛】此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.10.D解析:D 【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.①∵33 3.754⎛⎫-+=-⎪⎝⎭,33.83 3.754>=,∴33.834⎛⎫-<-+⎪⎝⎭,故①错误;②∵33154420⎛⎫--==⎪⎝⎭,21335502⎛⎫--==⎪⎝⎭,1512 2020>,∴3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭,故②正确;③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确;④∵111523623⎛⎫--==⎪⎝⎭,217533346+==,3334 66<,∴125523⎛⎫-->+⎪⎝⎭,故④错误.综上,正确的有:②③.故选:D.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.11.A解析:A【详解】解:因为|-2|-2=2-2=0,故选A.考点:绝对值、有理数的减法12.C解析:C【分析】根据有理数大小比较的法则分别进行解答,即可得出答案.解:∵-1<b <a <0, ∴a+b <a+(-b)=a-b . ∵b >-1, ∴a-1=a+(-1)<a+b . 又∵-b <1, ∴a-b=a+(-b)<a+1.综上得:a-1<a+b <a-b <a+1, 故选:C . 【点睛】本题主要考查了实数大小的比较,熟练掌握有理数大小比较的法则和有理数的加法法则是解题的关键.二、填空题13.3【分析】先合并同类项然后使xy 的项的系数为0即可得出答案【详解】解:=∵多项式不含xy 项∴k-3=0解得:k=3故答案为:3【点睛】本题考查了多项式的知识属于基础题解答本题的关键是掌握合并同类项的解析:3 【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案. 【详解】解:()221325x k xy y xy +----=()22335x k xy y +---,∵多项式不含xy 项, ∴k-3=0, 解得:k=3. 故答案为:3. 【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则.14.﹣2b3+3ab2+4a2b+a3【分析】找出a 的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b 3+3ab 2+4a 2b+a 3. 【分析】找出a 的次数的高低后,由低到高排列即可得出答案. 【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3. 【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.15.-2【分析】先根据代数式为定值求出ab 的值及的值然后对所求代数式进行变形然后代入计算即可【详解】∵对于任意有理数代数式的值不变∴∵∴原式=故答案为:-2【点睛】本题主要考查代数式的求值能够对代数式进解析:-2 【分析】先根据代数式 2A B -为定值求出a,b 的值及 2A B -的值,然后对所求代数式进行变形,然后代入计算即可. 【详解】222(251)2(34)A B x ax y x x by -=+-+-+-- 222512628x ax y x x by =+-+--++ (6)(25)9a x b y =-+-+∵对于任意有理数 ,x y ,代数式 2A B - 的值不变∴60,250a b -=-=,29A B -=56,2a b ∴==∵121()(2)2(2)333a Ab B a b A B ---=--- ∴原式=51629653223-⨯-⨯=--=- 故答案为:-2 【点睛】本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.16.【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分别数出图 解析:()43n -【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形. 【详解】分别数出图①、图②、图③中的三角形的个数, 图①中三角形的个数为1=4×1-3; 图②中三角形的个数为5=4×2-3; 图③中三角形的个数为9=4×3-3; …可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.17.【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可【详解】解:2++6+=)++故答案为:;【点睛】本题考查了有理数的加法掌握加法法则和运算律是解题的关键解析:1621(3)3-【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可.【详解】解:212+1(3)3-+612+2(8)3-=1(22+162)+[1(3)3-+2(8)3-].故答案为:162;1(3)3-.【点睛】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.18.46×108【分析】本题已知的是亩产量和亩数要求总产量就要利用三者之间的关系式先计算总产量通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案【详解】解:依题意得:解析:46×108【分析】本题已知的是亩产量和亩数,要求总产量,就要利用三者之间的关系式先计算总产量.通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案.【详解】解:依题意得:820×300000=246000000=2.46×108.故答案为:2.46×108.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为10na⨯的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.85【解析】分析:先求出总分再求出平均分即可解:∵5+(−2)+8+14+7+5+9+(−6)=(5+14+7+5+9)+(−2)+(−6)+8=40(分)∴该校8名参赛学生的平均成绩是80+(40解析:85【解析】分析:先求出总分,再求出平均分即可.解:∵5+(−2)+8+14+7+5+9+(−6)=(5+14+7+5+9)+[(−2)+(−6)+8]=40(分),∴该校8名参赛学生的平均成绩是80+(40÷8)=85(分).故答案为85.点睛:本题考查的是正数和负数,熟知正数和负数的概念是解答此题的关键.20.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.三、解答题21.9秒.【分析】根据平均成绩的计算方法,先列式计算表格中所有数据的平均数,再加上标准成绩即可得出结果.【详解】解:1.20.7010.30.20.30.50.18-++--+++=-(秒)140.113.9-=(秒).答:这个小组8名男生的平均成绩是13.9秒.【点睛】此题考查了有理数的混合运算的实际应用,正确理解题目中正数和负数的含义是列式计算的关键.22.(1)16-;(2)6.【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值.【详解】(1)原式12416=--=-(2)原式34926=-+-=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.(1)5-;(2)241x x --【分析】(1)直接根据有理数的混合运算法则即可求解.(2)直接根据整式的加减混合运算法则即可求解.【详解】解:(1)原式(3)(2)=-+-5=-;(2)原式2(32)(51)(23)x x =---+-241x x =--.【点睛】此题主要考查有理数的加减运算和整式的加减运算,熟练掌握运算法则是解题关键. 24.(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一)【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算;(2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可.【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <,所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※;(3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立.【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可.25.是从第①步开始出错的,见解析【分析】根据多项式的加减运算法则进行运算即可求解.【详解】解:佳佳是从第①步开始出错的,正确的解题过程如下:根据题意,得:()()222223x y xy x y xy ---222223x y xy x y xy =--+222x y xy =+,∴这个多项式为222x y xy +.故答案为222x y xy +.【点睛】本题考查了多项式的加减混合运算,注意:只有同类项才能进行加减运算. 26.(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键.。
【鲁教版】七年级数学上期中试题及答案(1)
一、选择题1.已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .62.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- 3.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2 B .3 C .4 D .54.下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n 不是整式; (3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个5.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ).A .0B .-2C .0或-2D .任意有理数6.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a ;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个 7.若b<0,刚a ,a+b ,a-b 的大小关系是( )A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b 8.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有( )A .4个B .3个C .2个D .1个9.据报通,国家计划建设港珠澳大桥,估解该项工程总报资726亿元,用科学记数法表示726亿正确的是A .B .C .D . 10.下列各数中,互为相反数的是( )A .+(-2)与-2B .+(+2)与-(-2)C .-(-2)与2D .-|-2|与+(+2)11.下列正确的是( )A .5465-<-B .()()2121--<+-C .1210823-->D .227733⎛⎫--=-- ⎪⎝⎭ 12.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm (1nm=10﹣9m ),主流生产线的技术水平为14~28nm ,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( )A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m二、填空题13.观察下列顺序排列的等式:9×0+1 = 1,9×1+2 = 11,9×2+3=21, 9×3+4=31, 9×4+5=41,……,猜想:第n 个等式(n 为正整数)用n 表示,可表示成_________. 14.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.15.已知|a|=-a ,b b =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________. 16.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.17.33278.5 4.5 1.67--=____(精确到千分位) 18.有理数a ,b ,c 在数轴上的位置如图所示:填空:+a b ________0,1b -_______0,a c -_______0,1c -_______0.19.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB ,则线段AB 盖住的整点个数是______.20.化简﹣|+(﹣12)|=_____.三、解答题21.计算题:(1)()()121876---+-+;(2)()231513221428⎫⎛---⨯-+ ⎪⎝⎭; (3)2111(3)[]()63⨯--÷-. 22.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负)(2)这周生产量最多的一天比生产量最少的一天多生产多少辆? (3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?23.计算:(1)()()128715--+--; (2)()()3241223125---÷+⨯--. 24.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a ,那么第二年的产量是多少?25.观察下列等式.第1个等式:a 1=113⨯=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=135⨯=12×1135⎛⎫- ⎪⎝⎭; 第3个等式:a 3=157⨯=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=179⨯=12×1179⎛⎫- ⎪⎝⎭; …请解答下列问题.(1)按以上规律列出第5个等式:a 5=____=____;(2)求a 1+a 2+a 3+a 4+…+a 100的值.26.窗户的形状如图所示(图中长度单位:cm ),其中上部是半圆形,下部是边长相同的四个小正方形. 已知下部小正方形的边长是acm.(1)计算窗户的面积(计算结果保留π).(2)计算窗户的外框的总长(计算结果保留π).(3)安装一种普通合金材料的窗户单价是175元/平方米,当a=50cm 时,请你帮助计算这个窗户安装这种材料的费用(π≈3.14,窗户面积精确到0.1).【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 2.C解析:C【分析】本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.3.B解析:B【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4,解得,n=3,故选:B.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.4.B解析:B【分析】根据同类项概念和单项式的系数以及多项式的次数的概念分析判断.【详解】解:(1)23a bc 与2bca -是同类项,故错误;(2)25m n 是整式,故错; (3)单项式-x 3y 2的系数是-1,正确;(4)3x 2-y+5xy 2是3次3项式,故错误.故选:B .【点睛】本题主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法.5.A解析:A【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c ,d 互为倒数,∴cd =1,∵m 的绝对值等于1,∴m =±1,∴原式=0110-+=故选:A.【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.6.A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.【详解】字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误;235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.7.D解析:D【分析】根据有理数减法法则,两两做差即可求解.【详解】∵b<0∴()0a a b b -+=->,()0a b a b --=->∴()a a b >+,()a b a ->∴()()a b a a b ->>+故选D .【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数.8.B解析:B【分析】根据有理数的减法运算法则对各小题分析判断即可得解.【详解】①减去一个数等于加上这个数的相反数,故本小题正确;②互为两个相反数的两数相加得零,故本小题正确;③减数是负数时,差大于被减数,故本小题错误;④如果两个数的绝对值相等,这两个数可能相等,也可能互为相反数,故本小题正确;综上所述,正确的有①②④共3个.故选B.【点睛】本题考查了相反数的定义,有理数的减法,是基础题,熟记运算法则是解题的关键.9.A解析:A【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】726亿=7.26×1010.故选A.【点睛】本题考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n 的值是解题的关键.10.D解析:D【解析】【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可.【详解】A. +(-2)=-2,-2=-2,故A选项中的两个数不互为相反数;B. +(+2)=2, -(-2)=2,故B选项中的两个数不互为相反数;C. -(-2)=2,2=2,故C选项中的两个数不互为相反数;D. -|-2|=-2,+(+2)=2,-2与2互为相反数,故D选项中的两个数互为相反数,故选D.【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键. 11.A解析:A【分析】根据不等式的性质对各选项进行判断即可.【详解】解:(1)∵5465>,∴5465-<-,故选项A符合题意;(2)∵-(-21)=21,+(-21)=-21,21>-21,∴()()2121--+->,故选项B 错误; (3)∵11210=108223---<,故选项C 错误; (4)∵227=-733--,227=733⎛⎫-- ⎪⎝⎭,∴227733⎛⎫---- ⎪⎝⎭<; 故选:A .【点睛】此题主要考查了有理数的大小比较,熟练掌握有理数比较大小的方法是解答此题的关键. 12.B解析:B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】28nm =28×10﹣9m = 2.8×10﹣8m ,所以28nm 用科学记数法可表示为:2.8×10﹣8m ,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题13.【分析】根据数据所显示的规律可知:第一数列都是9第2数列开始有顺序且都是所对序号的数减去1加号后的数据有顺序且与所在的序号项吻合等号右端是的规律所以第n 个等式(n 为正整数)应为【详解】根据分析:即第 解析:109n -【分析】根据数据所显示的规律可知:第一数列都是9,第2数列开始有顺序且都是所对序号的数减去1,加号后的数据有顺序且与所在的序号项吻合,等号右端是()10?11n -+的规律,所以第n 个等式(n 为正整数)应为()()9110?11n n n -+=-+.【详解】根据分析:即第n 个式子是()()9110?11109n n n n -+=-+=-.故答案为:109n -.【点睛】本题主要考查了数字类规律探索题.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解. 14.65【分析】根据题目中数字的特点可知每组的个数依次增大每组中的数字都是连续的偶数然后即可求出2020是多少组第多少个数从而可以得到mn 的值然后即可得到m+n 的值【详解】解:∵将正偶数按照如下规律进行解析:65【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m 、n 的值,然后即可得到m +n 的值.【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m 组有m 个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+ (44)44(441)2⨯+=990,1+2+3+…+45=45(451)2⨯+=1035, ∴2020是第45组第1010-990=20个数,∴m =45,n =20,∴m +n =65.故答案为:65.【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键. 15.-2a 【分析】由已知可以判断出ab 及c 的正负进而确定出a+ba-c 与b-c 的正负利用绝对值的代数意义化简即可得到结果【详解】解:∵|a|=-a=-1|c|=c ∴∴则|a+b|+|a-c|-|b-c|解析:-2a【分析】由已知可以判断出a, b 及c 的正负,进而确定出a+b ,a-c 与b-c 的正负,利用绝对值的代数意义化简,即可得到结果.【详解】解:∵|a|=-a ,bb=-1,|c|=c∴00, 0,a b c ≤<≥, ∴000,a b a c b c +<-≤-<,,则|a+b| + |a-c| - |b-c| =-+2a b a c b c a --+-=- .故答案为: -2a.【点睛】此题考查了整式的加减, 涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.16.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键 解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键. 17.【分析】根据有理数的运算法则进行运算再精确到精确到千分位【详解】故答案为【点睛】此题主要考查近似数解题的关键是熟知有理数的运算法则 解析: 2.559-【分析】根据有理数的运算法则进行运算,再精确到精确到千分位.【详解】33278.5 4.55231.6 2.56 2.5597823543--=-≈- 故答案为 2.559-.【点睛】此题主要考查近似数,解题的关键是熟知有理数的运算法则.18.<<<>【分析】数轴上右边表示的数总大于左边表示的数左边的数为负数右边的数为正数;根据有理数减法法则进行判断即可【详解】由题图可知所以故答案为:<<<>【点睛】考核知识点:有理数减法掌握有理数减法法 解析:< < < >【分析】数轴上右边表示的数总大于左边表示的数.左边的数为负数,右边的数为正数;根据有理数减法法则进行判断即可.【详解】由题图可知01b a c <<<<,所以0,10,0,10a b b a c c +<-<-<->故答案为:<,<,<,>【点睛】考核知识点:有理数减法.掌握有理数减法法则是关键.19.2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑重合时盖住的整点是线段的长度+1不重合时盖住的整点是线段的长度由此即可得出结论【详解】若线段的端点恰好与整点重合则1厘米长的线解析:2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【详解】若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点+=,所以2020厘米不与整点重合,则1厘米长的线段盖住1个整点,因为202012021长的线段AB盖住2020或2021个整点.故答案为:2020或2021.【点睛】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.20.﹣12;【分析】利用绝对值的定义化简即可【详解】﹣|+(﹣12)|=故答案为﹣12【点睛】本题考查了绝对值化简熟练掌握绝对值的定义是解题关键解析:﹣12;【分析】利用绝对值的定义化简即可.【详解】--=-﹣|+(﹣12)|=|12|12故答案为﹣12.【点睛】本题考查了绝对值化简,熟练掌握绝对值的定义是解题关键.三、解答题21.(1)29;(2)5-;(3)4【分析】(1)根据有理数的加减法即可解答本题;(2)根据有理数的乘方和乘法分配律即可解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【详解】解:(1)|-12|-(-18)+(-7)+6=12+18+(-7)+6 =30+(-7)+6=23+6=29;(2)23151(32)(21)428 ---⨯-+=3513 132()428 -+⨯-+=3513 1323232428 -+⨯-⨯+⨯=-1+24-80+52 =-5;(3)16×[1-(-3)2]÷(−13)=16×(1-9)×(-3)=16×(-8)×(-3)=4.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.22.(1)该厂本周实际生产自行车1409辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(3)该厂工人这一周工资总额是70558元.【分析】(1)根据每天的增减量,依次相加,可得答案;(2)根据每天的增减量,用最多的一天减去最少的一天即可;(3)该厂一周工资=实际自行车产量×50+超额自行车产量×12.【详解】解:(1)1400+5-2-4+13-10+16-9=1409(辆),答:该厂本周实际生产自行车1409辆;(2)16-(-10)=26(辆),答:产量最多的一天比产量最少的一天多生产自行车26辆;(3)50×1409+12×9=70558.答:该厂工人这一周工资总额是70558元.【点睛】本题考查有理数加、减运算的应用,用正数和负数表示.明白“+”是比计划多、“-”是比计划少是解题的关键.23.(1)2-;(2)7.【分析】(1)先去括号,再进行有理数运算即可;(2)根据有理数混合运算顺序和运算法则计算可得.【详解】解:(1)12﹣(﹣8)+(﹣7)﹣15=12+8﹣7﹣15=(12+8)+(﹣7﹣15)=20﹣22=﹣2(2)﹣12﹣(﹣2)3÷45 +3×|1﹣(﹣2)2| =﹣12﹣(﹣8)×54+3×|1﹣4| =﹣12+10+3×|﹣3|=﹣12+10+9=7【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.24.15a【分析】设第一年的产量为a ,以15%的速度增长,表示在m 的基础上增长a 的15%.【详解】解:根据题意,得设第一年的产量为a ,以15%的速度增长,∴第二年的产量为a (1+15%)=1.15a .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系. 25.(1)1911⨯;12×11911⎛⎫- ⎪⎝⎭;(2)100201. 【分析】(1)根据连续奇数乘积的倒数等于这两个奇数的倒数差的一半列式可得;(2)根据以上所得规律列式111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再进一步计算可得. 【详解】(1)由观察知, 左边:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1,右边:这两个奇数的倒数差的一半,∴第5个式子是:()()111115215219112911⎛⎫==⨯- ⎪⨯-⨯-⨯⎝⎭; 故答案为:1911⨯;12×11911⎛⎫- ⎪⎝⎭; (2)a 1+a 2+a 3+a 4+…+a 100111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111111233557199201⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111111111233557199201⎛⎫=⨯-+-+-++- ⎪⎝⎭1112201⎛⎫=⨯- ⎪⎝⎭ 12002201=⨯ 100201=. 【点睛】 本题主要考查了数字的变化规律,解题的关键是根据已知等式得出规律:连续奇数乘积的倒数等于这两个奇数的倒数差的一半.26.(1)2214a +a 2π;(2)6a a π+;(3)245.【分析】(1)根据图示,窗户的面积等于4个小正方形的面积加上半径是a 的半圆的面积;(2)根据图示,窗户外框的总长就是用3条长度是2acm 的边的长度加上半径是acm 的半圆的长度;(3)根据窗户的总面积,代入求值即可.【详解】 解:(1)窗户的面积为:()()222214a a 422a a a cm ππ⎛⎫⨯+=+ ⎪⎝⎭ (2)窗户的外框的总长为:()()132a 262a a a cm ππ⨯+⨯=+ (3)当a=50cm ,即:a=0.5m 时,窗户的总面积为:()2220.540.5128m ππ⎛⎫⨯+=+ ⎪⎝⎭ 取π≈3.14,原式=1+0.3925≈1.4(m 2)安装窗户的费用为:1.4×175=245(元).【点睛】本题考查的知识点是求组合图形的面积与周长,将已知图形分解为所熟悉的简单图形是解此题的关键.。
【鲁教版】七年级数学上期中试卷附答案(1)
一、选择题1.某养殖场2018年年底的生猪出栏价格是每千克a 元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )A .(1-15%)(1+20%)a 元B .(1-15%)20%a 元C .(1+15%)(1-20%)a 元D .(1+20%)15%a 元 2.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3- B .0C .3D .6 3.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣7 4.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4 5.如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a6.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0 7.按如图所示的运算程序,能使输出的结果为12的是( )A .x=-4,y=-2B .x=3, y=3C .x=2,y=4D .x=4,y=0 8.13-的倒数的绝对值( )A .-3B .13- C .3 D .139.下列说法中,其中正确的个数是( )(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a 表示正有理数,则-a 一定是负数;(4)a 是大于-1的负数,则a 2小于a 3A .1B .2C .3D .410.若|a |=1,|b |=4,且ab <0,则a +b 的值为( )A .3±B .3-C .3D .5±11.下列说法中正确的是( )A .a -表示的数一定是负数B .a -表示的数一定是正数C .a -表示的数一定是正数或负数D .a -可以表示任何有理数 12.在数3,﹣13,0,﹣3中,与﹣3的差为0的数是( ) A .3 B .﹣13 C .0 D .﹣3二、填空题13.如图,是由一些点组成的图形,按此规律,在第n 个图形中,点的个数为_____.14.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………15.当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____.16.已知22211m mn n ++=,26mn n +=,则22m n +的值为______.17.若230x y ++-= ,则x y -的值为________.18.运用加法运算律填空:(1)[(-1)+2]+(-4)=___=___;(2)117+(-44)+(-17)+14=____=____.19.我们知道,海拔高度每上升100米,温度下降0.6℃,肥城市区海拔大约100米,某时刻肥城市区地面温度为16℃,泰山的海拔大约为1530米,那么此时泰山顶部的气温大约为______.℃20.绝对值小于4.5的所有负整数的积为______.三、解答题21.观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.22.计算:()2213113244812⎛⎫-+--⨯-- ⎪⎝⎭. 23.把4-,4.5,0,12-四个数在数轴上分别表示出来,再用“<”把它们连接起来.24.如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ;(2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?25.已知多项式2x 2+25x 3+x ﹣5x 4﹣13. (1)请指出该多项式的次数,并写出它的二次项和常数项;(2)把这个多项式按x 的指数从大到小的顺序重新排列.26.已知一个多项式加上223x y xy -得222x y xy -,求这个多项式.佳佳的解题过程如下:解:222223x y xy x y xy ---①224x y xy =-②请问佳佳的解题过程是从哪一步开始出错的?并写出正确的解题过程.【参考答案】***试卷处理标记,请不要删除一、选择题1.A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1-15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1-15%)(1+20%)a 元.故选:A .【点睛】本题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.2.C解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.A解析:A【分析】由已知可得3b ﹣6a+5=-3(2a ﹣b )+5,把2a ﹣b =3代入即可.【详解】3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.4.B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.21412na b--与83mab是同类项,∴21184nm-=⎧⎨=⎩解得:121mn⎧=⎪⎨⎪=⎩则()()5711n m+-=14-故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.5.A解析:A【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:根据题意得:b<a<0,且|a|<|b|,∴a-b>0,a+b<0,∴原式=a-b-a-b=-2b.故选:A.【点睛】此题主要考查了数轴以及绝对值,熟练掌握绝对值的性质是解本题的关键.6.B解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy+-+,∵不含二次项,∴6﹣7m=0,解得m=67.故选:B.【点睛】本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0.解析:C【分析】根据y的正负然后代入两个式子内分别求解,看清条件逐一排除即可.【详解】当x=-4,y=-2时,-2<0,故代入x2-2y,结果得20,故不选A;当x=3,y=3时,3>0,故代入x2+2y,结果得15,故不选B;当x=2,y=4时,4>0,故代入x2+2y,结果得12,C正确;当x=4,y=0时,00≥,故代入x2+2y,结果得16,故不选D;故选C.【点睛】此题考查了整式的运算,重点是看清楚程序图中的条件,分别代入两个条件式中进行求解.8.C解析:C【分析】首先求13-的倒数,然后根据绝对值的含义直接求解即可.【详解】13-的倒数为-3,-3绝对值是3,故答案为:C.【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.9.C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.【详解】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a表示正有理数,则-a一定是负数,符合题意;(4)a是大于-1的负数,则a2大于a3,不符合题意,故选:C.【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.解析:A【分析】通过ab<0可得a、b异号,再由|a|=1,|b|=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a+b的值【详解】解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab<0,∴a+b=1-4=-3或a+b=-1+4=3,故选A.【点睛】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.11.D解析:D【分析】直接根据有理数的概念逐项判断即可.【详解】-表示的数不一定是负数,当a为负数时,-a就是正数,故该选项错误;解:A. a-表示的数不一定是正数,当a为正数时,-a就是负数,故该选项错误;B. a-表示的数不一定是正数或负数,当a为0时,-a也为0,故该选项错误;C. a-可以表示任何有理数,故该选项正确.D. a故选:D.【点睛】此题主要考查有理数的概念,熟练掌握有理数的概念是解题关键.12.D解析:D【分析】与-3的差为0的数就是0+(-3),据此即可求解.【详解】解:根据题意得:0+(﹣3)=﹣3,则与﹣3的差为0的数是﹣3,故选:D.【点睛】本题考查了有理数的运算.熟练掌握有理数减法法则是解本题的关键.二、填空题13.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.14.【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n由以上规律即可求解【详解n解析:83【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.15.-25【分析】由x=1时代数式ax+b+1的值是﹣3求出a+b的值将所得的值整体代入所求的代数式中进行计算即可得解【详解】解:∵当x=1时ax+b+1的值为﹣3∴a+b+1=﹣3∴a+b=﹣4∴(a解析:-25.【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x =1时,ax +b +1的值为﹣3,∴a +b +1=﹣3,∴a +b =﹣4,∴(a +b ﹣1)(1﹣a ﹣b )=(a +b ﹣1)[1﹣(a +b )]=(﹣4﹣1)×(1+4)=﹣25. 故答案为:﹣25.【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.16.5【分析】观察多项式之间的关系可知将已知两式相减再化简即可得到结果【详解】∵∴∴的值为5【点睛】本题考查整式的加减观察得出整式之间的关系再进行去括号化简是解题的关键解析:5【分析】观察多项式之间的关系可知,将已知两式相减,再化简即可得到结果.【详解】∵22211m mn n ++=,26mn n +=,∴()22222222221165mn m mn n m n n mn nm mn n ---=+++=++=-=+, ∴22m n +的值为5.【点睛】本题考查整式的加减,观察得出整式之间的关系再进行去括号化简是解题的关键. 17.【分析】先利用绝对值的非负性求出xy 的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可.【详解】解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =,∴235-=--=-x y ,故答案为: 5.-【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.18.(-1)+(-4)+2-3117+(-17)+(-44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【解析:[(-1)+(-4)]+2 -3 [117+(-17)]+[(-44)+14] 70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(-1)+(-4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(-1)+2]+(-4)=[(-1)+(-4)]+2=-3(2)117和(-17)可通过抵消凑整,(-44)和14也可通过抵消凑整,故:117+(-44)+(-17)+14=[117+(-17)]+[(-44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算. 19.【分析】首先用泰山的海拔减去肥城市区海拔求出泰山的海拔比肥城市区海拔高多少米进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可【详解】解: 解析:7.42【分析】首先用泰山的海拔减去肥城市区海拔,求出泰山的海拔比肥城市区海拔高多少米,进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可.【详解】解:()1615301001000.6--÷⨯1614301000.6=-÷⨯168.58=-7.42=(℃);答:此时泰山顶部的气温大约为7.42℃.故答案为:7.42.【点睛】此题主要考查了有理数混合运算的实际应用,正确理解题意并列出算式是解题的关键. 20.24【分析】找出绝对值小于45的所有负整数求出之积即可【详解】解:绝对值小于45的所有负整数为:-4-3-2-1∴积为:故答案为:24【点睛】此题考查了有理数的乘法以及绝对值熟练掌握运算法则是解本题解析:24【分析】找出绝对值小于4.5的所有负整数,求出之积即可.【详解】解:绝对值小于4.5的所有负整数为:-4,-3,-2,-1,∴积为:4(3)(2)(1)24-⨯-⨯-⨯-=,故答案为:24.【点睛】此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.三、解答题21.()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.22.13【分析】运用乘法的分配律去括号,再按有理数混合运算的顺序计算.【详解】解:原式()19692=-+---()85=--13=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.23.数轴表示见解析,140 4.52-<-<<. 【分析】 先根据数轴的定义将这四个数表示出来即可,再根据数轴上的表示的数,左边的总小于右边的用“<”将它们连接起来即可得.【详解】将这四个数在数轴上分别表示出来如下所示:则140 4.52-<-<<. 【点睛】本题考查了数轴,熟练掌握数轴的定义是解题关键.24.(1)8;(2)14,22;(3)奶奶现在的年龄为67岁.【分析】(1)由观察数轴可知三根这样长的木棒的长度,即可求出这根木棒的长;(2)由所求出的这根木棒的长,结合图中的已知条件即可求得A 和B 所表示的数; (3)根据题意,设数轴上小木棒的A 端表示妙妙的年龄,小木棒的B 端表示奶奶的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可.【详解】(1)观察数轴可知三根这样长的木棒长为30624cm -=,则这根木棒的长为2438cm ÷=;(2)由这根木棒的长为8cm ,所以A 点表示为6+8=14,B 点表示为6+8+8=22;(3)借助数轴,把妙妙和奶奶的年龄差看做木棒AB ,奶奶像妙妙这样大时,可看做点B 移动到点A ,此时点A 向左移后所对应的数为37-,可知奶奶比妙妙大()11937352⎡⎤⎣÷⎦--=,则奶奶现在的年龄为1195267-=(岁). 【点睛】此题考查认识数轴及用数轴表示有理数和有理数的加减法,难度一般,读懂题干要求是关键.25.(1)该多项式的次数是4,它的二次项是2x 2,常数项是﹣13;(2)﹣5x 4+25x 3+2x 2+x ﹣13. 【分析】 (1)根据多项式的次数、项等定义解答即可;(2)按x 得降幂排列多项式即可.【详解】解:(1)该多项式的次数是4,它的二次项是2x 2,常数项是﹣13; (2)这个多项式按x 的指数从大到小的顺序为:432215253x x x x -+++-. 【点睛】本题考查的是多项式的概念及应用.26.是从第①步开始出错的,见解析【分析】根据多项式的加减运算法则进行运算即可求解.【详解】解:佳佳是从第①步开始出错的,正确的解题过程如下: 根据题意,得:()()222223x y xy x y xy ---222223x y xy x y xy =--+222x y xy =+,∴这个多项式为222x y xy +.故答案为222x y xy +.【点睛】本题考查了多项式的加减混合运算,注意:只有同类项才能进行加减运算.。
【鲁教版】初一数学上期中试卷(附答案)(1)
一、选择题1.如图①是1个小正方体木块水平摆放而成,图②是由6个小正方体木块叠放而成,图③是由15个小正方体木块叠放而成,……,按照这样的规律继续叠放下去,第⑥个叠放的图形中,小正方体木块总个数是( )A .61B .66C .91D .1202.下列所给代数式中,属于单项式的是( ) A .aπB .aC .12a + D .2a3.如图,数轴上的三个点对应的数分别是a ,a ,b ,化简a b a b -++的结果是( )A .2aB .2a -C .2bD .2b - 4.一个正方形的边长减少10%,则它的面积减少( )A .19%B .20%C .1%D .10%5.2020年是我国在航天方面收获满满的一年,12月19日,中国嫦娥五号任务月球样品正式交接.嫦娥五号任务是“探月工程”的第六次任务,也是中国航天迄今为止最复杂,难度最大的任务之一.其有着非常重要的意义,实现中国开展航天活动以来的四个“首次”:首次在月球表面自动采样;首次从月面起飞;首次在38万公里外的月球轨道上进行无人交会对接;首次带着月壤以接近第二宇宙速度返回地球.38万公里用科学记数法表示为( )A .3.8×103公里B .3.8×104公里C .3.8×105公里D .38×104公里6.我们根据指数运算,得出了一种新的运算,如下表是两种运算对应关系的一组实例: 指数 运算122= 224= 328= … 31=3 239= 3327= …新运 算2log 2 =12log 4 =22log 8=3…3log 3=13log 9=23log 27=3…根据上表规律,某同学写出了三个式子:①4log 162=,②2log 84=,③31log 29=-,其中正确的是( ) A .①②B .①③C .②③D .①②③7.中国人最早使用负数,可追溯到两千多年前的秦汉时期,2021-的相反数是( ) A .2021-B .2021C .12021D .12021-8.已知有理数a ,b 在数轴上的对应点的位置如图所示,则下列式子中正确的是( )A .0a b ->B .0b a ->C .0ab >D .0a b +>9.如图是由几个相同的小正方体组成的立体图形的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是( )A .B .C .D .10.如图,由 5 个相同的小正方体组成的立体图形,分别从正面、左面、上面三个不用方向观察这个立体图形,你看不到哪个平面图形?( )A .B .C .D .11.将如图所示的图形剪去两个小正方形,使余下的部分图形恰好能折成一个正方体,应剪去的两个小正方形可以是( )A .②③B .①⑥C .①⑦D .②⑥12.如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与“看”相对的面上的汉字是( )A .伦B .奥C .运D .会二、填空题13.若35a x y 与310.2b x y --的和仍是单项式,则a =____,b =____.14.如表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为________. 3abc-52 …15.某商品进价为100元,按进价提高50%后标价,实际销售时给顾客打了八折,卖出这件商品的利润是_________.16.||8a =,4b =-,则-a b 的值为__________. 17.如果a 与3互为相反数,则|a -5|=_______.18.下图是一个立体图形的表面展开图,则该立体图形的名称为______.19.如图是一个正方体的表面展开图,则原正方体中与“祝”相对的面上标的是 ___ .20.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是_____.三、解答题21.某大型商场销售一种茶具和茶碗,茶具每套定价200元,茶碗每只定价20元,“双十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案,方案一:买一套茶具送一只茶碗;方案二,茶具和茶碗按定价的九五折付款,现在某客户要到商场购买茶具30套,茶碗x 只(x >30).(1)若客户按方案一,需要付款 元;若客户按方案二,需要付款 元.(用含x 的代数式表示)(2)若x =40,试通过计算说明此时哪种购买方案比较合适?(3)当x =40,能否找到一种更为省钱的方案,如果能,写出你的方案,并计算出此方案应付钱数;如果不能,说明理由. 22.先化简,再求值:()()2222134823212xy xy x y xy x y ++-++,其中1x =-,3y =.23.新华文具用品店最近购进了一批钢笔,进价为每支6元,为了合理定价,在销售前五天试行机动价格,卖出时每支以10元为标准,超过10元的部分记为正,不足10元的部分记为负.文具店记录了这五天该钢笔的售价情况和售出情况,如下表所示:(2)求新华文具用品店这五天出售这种钢笔一共赚了多少钱;(3)新华文具用品店准备用这五天赚的钱全部购进这种钢笔,进价仍为每支6元为了促销这种钢笔,每只钢笔的售价在10元的基础上打九折,本次购进的这种钢笔全部售出后共赚了多少钱?24.2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因实际每天生产量相比有出入,下表是二月份某一周的生产情况(超产为正,减产为负,单位:个).(2)产量最多的一天比产量最少的一天多生产多少个?(3)该口罩加工厂实行计件工资制,每生产一个口罩0.2元,本周口罩加工厂应支付工人的工资总额是多少元?25.如图,一只蚂蚁要从正方体纸箱的一个顶点A 沿表面爬行到顶点P .(1)画出正方体的一种展开图.(可适当调整大小.)(2)在展开图上画出蚂蚁爬行的最短路线.(3)在原纸箱图上画出蚂蚁爬行的最短路线.26.如图,用一张长为2π米、宽为2米的铁皮制作一个圆柱形管道,如果制作中不考虑材料损耗,试求可围成管道的最大体积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】观察所给的前三个图形,把正方体木块的总个数按层数拆分找出规律,解决问题.【详解】观察前三个图形发现第①个图形是1个正方体木块水平摆放而成,图②是1+5个正方体木块叠放而成,图③是1+5+9个正方体木块叠放而成,由此得到第⑥个图形是1+5+9+13+17+21个正方体木块叠放而成的,而1+5+9+13+17+21=66.故选:B.【点睛】此题考查观察发现规律及运用规律的能力,其关键是要结合图形,对前几个图形中的正方体木块的总个数进行拆分.2.A解析:A【分析】根据单项式的定义逐一验证即可.【详解】∵aπ是单项式,a 是二次根式,12a +是多项式, 2a是分式, 故选A . 【点睛】本题考查了单项式的定义,熟练把握数与字母的积这一特征是解题的关键.3.C解析:C 【分析】根据数轴观察可以确定原点的位置,再由数轴可得a <0,b >0,且且b a >,依此再化简原式即可. 【详解】解:如下图数轴可得原点0的位置,且可得a >0, a 点在原点左边,a <0, b 点在原点的右边,b >0,且b a >,.因此可得:0a b -<,0a b +>. 则:a b a b -++()()=b a a b -++=b a a b -++ =2b故选:C . 【点睛】本题考查数轴的基本知识结合绝对值的综合运用,看清题中条件即可.4.A解析:A 【分析】正方形的面积=边长×边长,设原来正方形的边长为a ,则现在的正方形的边长为(1-10%)a ,代入公式即可求解. 【详解】解:设原来正方形的边长为a ,则现在的正方形的边长为(1-10%)a ,(1-10%)a×(1-10%)a =0.81a 2, (a 2-0.81a 2)÷a 2×100% =0.19 a 2÷a 2×100% =19% 故选:A 【点睛】本题主要考查了列代数式和整式的加减运算.通过设原边长为a ,根据已知条件求出原面积及边长减少10%后的面积是完成本题的关键.5.C解析:C 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数. 【详解】解:38万公里=380000公里=3.8×105米, 故选:C . 【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.B解析:B 【分析】根据题中的新定义法则判断即可. 【详解】解:根据题意得:①log 416=log 442=2,故①正确; ②322log 8log 23==,故②错误 ③123331log log 9log 329--===-,故③正确. ∴正确的式子是①③, 故选:B . 【点睛】此题考查了有理数的乘方运算和负整数指数幂,熟练掌握运算法则是解本题的关键.7.B解析:B 【分析】根据相反数的定义求解即可. 【详解】解:根据相反数的定义:−2021的相反数是2021,故选:B.【点睛】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.8.A解析:A【分析】观察数轴可得:b<0<a,|b|>|a|,据此及有理数的运算法则逐个分析即可.【详解】解:∵由数轴可得:b<0<a,|b|>|a|a b->,故A正确;∴0b a-<,故B错误;ab<0,故C错误;+<,故D错误.a b故选:A.【点睛】本题考查了借助数轴进行的相关运算,数形结合,得出相关基本结论,并明确有理数的运算法则,是解题的关键.9.A解析:A【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】该几何体的左视图为故选A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.10.B解析:B【分析】从正面看:共有3列,从左往右分别有1,2,1个小正方形;从左面看:共有2列,左面一列有2个,右边一列有1个小正方形;从上面看:共分3列,从左往右分别有2,1,1个小正方形.【详解】从正面看到的平面图形是A;从左面看到的平面图形是C;从上面看到的平面图形是D.故选:B.【点睛】本题考查了从不同方向看几何体;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.11.A解析:A【分析】利用正方体及其表面展开图的特点解题.【详解】A. 剪去②③后,恰好能折成一个正方体,符合题意;B. 剪去①⑥后,不能折成一个正方体,不符合题意;C. 剪去①⑦后,不能折成一个正方体,不符合题意;D. 剪去②⑥后,不能折成一个正方体,不符合题意.故选:A【点睛】本题考查了正方体的展开图及学生的空间想象能力,正方体展开图规律:十一种类看仔细,中间四个成一行,两边各一无规矩;二三紧连错一个,三一相连一随意;两两相连各错一,三个两排一对齐;一条线上不过四,田七和凹要放弃.12.C解析:C【分析】根据正方体及其表面展开图的特点可让“看”字面不动,分别把各个面围绕该面折成正方体,这需要空间想象能力,如果想象不出就动手操作,或者拿手边的正方体展成该形状观察.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“伦”与面“”相对,面“会”与面“敦”相对,“看”与面“运”相对.故选:C.【点睛】本题考查正方体的表面展开图,属于“一三二”型,解题关键是利用空间想象能力找出相对的面.二、填空题13.4【分析】由和仍是单项式可知它们是同类项所以根据同类项:所含字母相同并且相同字母的指数也相同可得出a和b的值继而代入可得出答案【详解】解:因为单项式与的和仍是单项式所以单项式与是同类项所以a=3b=解析:4 【分析】由和仍是单项式可知它们是同类项,所以根据同类项:所含字母相同,并且相同字母的指数也相同,可得出a 和b 的值,继而代入可得出答案. 【详解】解:因为单项式35a x y 与310.2b x y --的和仍是单项式, 所以单项式35a x y 与310.2b x y --是同类项, 所以a=3,b=4, 故答案为:3,4. 【点睛】本题考查合并同类项,熟记同类项的定义是解答本题的关键,注意只有同类项才能合并.14.-5【分析】根据三个相邻格子的整数的和相等列式求出ac 的值再根据有一个不同数是2可得b =2然后找出格子中的数每3个为一个循环组依次循环再用2018除以3根据余数的情况确定与第几个数相同即可得解【详解解析:-5 【分析】根据三个相邻格子的整数的和相等列式求出a 、c 的值,再根据有一个不同数是2可得b =2,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解. 【详解】解:∵任意三个相邻格子中所填整数之和都相等, ∴3+a +b =a +b +c , 解得c =3,a +b +c =b +c +(−5), 解得a =−5,所以数据从左到右依次为3、−5、b 、3、−5、b , 有一个不同数是2,即b =2,所以每3个数“3、-5、2”为一个循环组依次循环, ∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为-5. 故答案为:-5. 【点睛】此题考查数字的变化规律,仔细观察排列规律求出a 、b 、c 的值,从而得到其规律是解题的关键.15.20元【分析】根据利润=售价-成本价要先求售价再求利润【详解】解:实际售价为:(1+50)×100×80=120(元)利润为120-100=20元故答案为:20元【点睛】此题考查有理混合运算的应用掌【分析】根据利润=售价-成本价,要先求售价,再求利润.【详解】解:实际售价为:(1+50%)×100×80%=120(元),利润为120-100=20元.故答案为:20元.【点睛】此题考查有理混合运算的应用,掌握销售问题中的基本数量关系是解决问题的关键.16.12或-4【分析】根据绝对值的定义即可求出答案【详解】解:由题意可知:a=±8当a=8b=﹣4时a﹣b=8+4=12当a=﹣8b=﹣4时a﹣b=﹣8+4=﹣4故答案:12或-4【点睛】本题考查绝对值解析:12或-4【分析】根据绝对值的定义即可求出答案.【详解】b=-,解:由题意可知:a=±8,4当a=8,b=﹣4时,a﹣b=8+4=12,当a=﹣8,b=﹣4时,a﹣b=﹣8+4=﹣4,故答案:12或-4.【点睛】本题考查绝对值的定义,解题的关键是熟练运用绝对值的定义,本题属于基础题型.17.8【分析】先根据相反数的意义求出a的值然后代入所求式子中再根据绝对值的意义进行求解即可【详解】∵a与3互为相反数∴a=-3∴|a-5|=|-3-5|=8故答案为:8【点睛】本题考查了相反数绝对值有理解析:8【分析】先根据相反数的意义求出a的值,然后代入所求式子中再根据绝对值的意义进行求解即可.【详解】∵a与3互为相反数,∴a=-3,∴|a-5|=|-3-5|=8,故答案为:8.【点睛】本题考查了相反数,绝对值,有理数的减法等,熟练掌握相关知识,准确进行计算是解题18.四棱锥19.利20.4三、解答题21.(1)(20x+5400);(19x+5700 );(2)方案一更合适,见解析;(3)可以有更合适的购买方式,按方案一购买30套茶具和30只茶碗,按方案二购买剩余10只茶碗,此方案应付钱数为6190元【分析】(1)由题意分别求出两种方案购买的费用即可;(2)将x =40分别代入(1)中所求的代数式,再比较哪个更优惠即可;(3)两种方案一起购买,按方案一购买30套茶具和30只茶碗,按方案二购买剩余10只茶碗,依此计算即可求解.【详解】解:(1)若客户按方案一,需要付款30×200+20(x ﹣30)=(20x+5400)元; 若客户按方案二,需要付款30×200×0.95+20x×0.95=(19x+5700 )元.故答案为:(20x+5400);(19x+5700 );(2)当x =40时,方案一:20x+5400=800+5400=6200,方案二:19x+5700=760+5700=6460,因为6200<6460,所以方案一更合适;(3)可以有更合适的购买方式.按方案一购买30套茶具赠30只茶碗,需要200×30=6000(元),按方案二购买剩余10只茶碗,需要10×20×0.95=190(元),共计6000+190=6190(元).故此方案应付钱数为6190元.【点睛】本题考查了列代数式及代数式求值问题,得到两种优惠方案付费的关系式是解答本题的关键.22.2xy --,1【分析】整式的加减计算,先去括号,合并同类项进行化简,然后代入求值即可.【详解】 解:()()2222134823212xy xy x y xy x y ++-++ 2222324642xy xy x y xy x y =++---2xy =--当1,3x y =-=时原式(1)32=--⨯-1=【点睛】本题考查整式的加减运算,掌握运算顺序和计算法则正确计算是解题关键.23.(1)这五天中赚钱最多的是第4天,赚了96元;(2)360元;(3)180元【分析】(1)通过看图表的每支价格相对于标准价格,及出售支数即可得出结论;(2)将(1)中的各天的盈利相加即可;(3)根据购进的数量×(售价-进价),计算即可;【详解】(1)第一天:()136749-⨯=元, 第二天:()1261272-⨯=元,第三天:()1161575-⨯=元,第四天:()963296-⨯=元,第五天:()863468-⨯=元, 则这五天中赚钱最多的是第4天,赚了96元;(2)4972759668360++++=元;答:这五天一共赚了360元;(3)()36061090%6180÷⨯⨯-=元;本次购进的这种钢笔全部售出后共赚了180元;【点睛】本题主要考查了正数和负数的实际应用,准确计算是解题的关键.24.(1)20100个;(2)650个;(3)7100元【分析】(1)把前三四天的记录相加,再加上每天计划生产量,计算即可得解;(2)根据正负数的意义确定星期三产量最多,星期二产量最少,然后用记录相减计算即可得解;(3)求出一周记录的和,然后根据工资总额的计算方法列式计算即可得解.【详解】解:(1)(+100-250+400-150)+4×5000=20100(个).故前四天共生产20100个口罩;(2)+400-(-250)=650(个).故产量最多的一天比产量最少的一天多生产650个;(3)5000×7+(100-250+400-150-100+350+150)=35500(个),35500×0.2=7100(元),答:本周口罩加工厂应支付工人的工资总额是7100元.【点睛】此题主要考查了正负数的意义及有理数的混合运算的应用,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.(1)见解析;(2)见解析;(3)见解析【分析】(1)根据题意画出正方体的展开图即可;(2)根据线段的性质:两点之间线段最短,把正方体展开,直接连接A、P两点可得最短路线;(3)共有三条路线ANP,AMP,AQP.【详解】(1)展开图如图(2)如图,连接AP.即是蚂蚁爬行的最短路线.(3)如图,共3条路线.【点睛】此题主要考查了平面展开-最短路径问题,几何体的展开图,线段的性质:两点之间线段最短,正确的画出图形是解题的关键.26.2π【解析】【分析】由2πr=2π,求出r=1,再根据:体积=底面积×高,即可求解.【详解】设围城管道后底面的半径为r,由题意得:2πr=2π,则r=1,管道的最大体积=底面积×高=πr2×2=2π.【点睛】本题是一个简单的体积计算问题.。
【鲁教版】初一数学上期中试题含答案(1)
一、选择题1.与(-b)-(-a)相等的式子是( ) A .(+b)-(-a) B .(-b)+a C .(-b)+(-a)D .(-b)-(+a)2.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( ) A .-7B .-1C .5D .113.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++4.点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A .2x -+B .2x --C .2x +D .-25.下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n不是整式;(3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个6.如果m ,n 都是正整数,那么多项式的次数是( )A .B .mC .D .m ,n 中的较大数7.一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积( ) A .缩小到原来的12B .扩大到原来的10倍C.缩小到原来的110D.扩大到原来的2倍8.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有()A.4个B.3个C.2个D.1个9.2--的相反数是()A.12-B.2-C.12D.210.若,则化简|-2|+|1-|的结果是()A.-1 B.1 C.+1 D.-311.计算11212312341254 2334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值()A.54 B.27 C.272D.012.若|a|=1,|b|=4,且ab<0,则a+b的值为()A.3±B.3-C.3 D.5±二、填空题13.如图,图1是“杨辉三角”数阵;图2是(a+b)n的展开式(按b的升幂排列).若(1+x)45的展开式按x的升幂排列得:(1+x)45=a0+a1x+a2x2+…+a45x45,则a2=_____.14.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.15.如图,在整式化简过程中,第②步依据的是_______.(填运算律)化简:()22253a b ab a b ab +--+解:()22253ab ab a b ab +--+22253a b ab a b ab =++-① 22253a b a b ab ab =++-②()222(53)a b a b ab ab =++-③232a b ab =+.④16.将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕.17.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.18.在括号中填写题中每步的计算依据,并将空白处补充完整: (-4)×8×(-2.5)×(-125) =-4×8×2.5×125 =-4×2.5×8×125______ =-(4×2.5)×(8×125)______ =____×____ =____.19.比较大小:364--_____________()6.25--. 20.根据二十四点算法,现有四个数3、4、6、10,每个数用且只用一次进行加、减、乘、除,使其结果等于24,则列式为___=24.三、解答题21.(1)()()()()413597--++---+; (2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭. 22.点A 、B 在数轴上所表示的数如图所示,回答下列问题:(1)将A 在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C ,求出B 、C 两点间的距离是多少个单位长度?(2)若点B 在数轴上移动了m 个单位长度到点D ,且A 、D 两点间的距离是3,求m 的值.23.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④_____________;⑤_____________;…. (2)通过猜想写出与第n 个点阵图相对应的等式.24.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当2a =-,2018b =,求222221(324)2(23)2()12a b ab a a b a ab a b -+--++-的值”.小明做完后对同桌说:“老师给的条件2018b =是多余的,这道题不给b 的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?25.如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.26.单项式233x y π-的系数是______,次数是______.佳佳认为此单项式的系数是3-,次数为6,请问佳佳的答案正确吗?如果不正确,请说明错误的理由,并且把正确的答案写出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】将各选项去括号,然后与所给代数式比较即可﹒【详解】解: (-b)-(-a)=-b+aA. (+b)-(-a)=b+a;B. (-b)+a=-b+a;C. (-b)+(-a)=-b-a;D. (-b)-(+a)=-b-a;故与(-b)-(-a)相等的式子是:(-b)+a﹒故选:B﹒【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒2.A解析:A【分析】先确定第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;第7次操作,a7=|-7+4|-10=-7;…第2020次操作,a2020=|-7+4|-10=-7.故选:A.【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.3.B解析:B依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案. 【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形; ()232S S x x +=++正方形小矩形; ()36S S x x +=++小矩形小矩形.故选:B. 【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握.4.A解析:A 【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解. 【详解】解:∵BC=2,C 点所表示的数为x , ∴B 点表示的数是x-2, 又∵OA=OB ,∴B 点和A 点表示的数互为相反数, ∴A 点所表示的数是-(x-2),即-x+2. 故选:A . 【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.5.B解析:B 【分析】根据同类项概念和单项式的系数以及多项式的次数的概念分析判断. 【详解】解:(1)23a bc 与2bca -是同类项,故错误;(2)25m n 是整式,故错;(3)单项式-x 3y 2的系数是-1,正确; (4)3x 2-y+5xy 2是3次3项式,故错误.【点睛】本题主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法.6.D解析:D【解析】【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式的次数是m,n中的较大数是该多项式的次数.【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式中次数最高的多项式的次数,即m,n中的较大数是该多项式的次数.故选D.【点睛】此题考查多项式,解题关键在于掌握其定义.7.A解析:A【分析】根据题意列出乘法算式,计算即可.【详解】设一个因数为a,另一个因数为b∴两数乘积为ab根据题意,得11 10202a b ab故选A.【点睛】本题考查了有理数乘法运算,根据有理数乘法运算法则计算即可.8.B解析:B【分析】根据有理数的减法运算法则对各小题分析判断即可得解.【详解】①减去一个数等于加上这个数的相反数,故本小题正确;②互为两个相反数的两数相加得零,故本小题正确;③减数是负数时,差大于被减数,故本小题错误;④如果两个数的绝对值相等,这两个数可能相等,也可能互为相反数,故本小题正确;综上所述,正确的有①②④共3个.【点睛】本题考查了相反数的定义,有理数的减法,是基础题,熟记运算法则是解题的关键.9.D解析:D【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.10.B解析:B【解析】【分析】绝对值的化简求值主要需要判断绝对值里面的正负,从而去掉绝对值,再对式子进行计算进而得到答案.【详解】∵∴a-2<0,1-a<0∴|-2|+|1-|= -(a-2)-(1-a)=-a+2-1+a=1,因此答案选择B.【点睛】本题考查的是绝对值的化简求值,注意一个正数的绝对值等于它本身,一个负数的绝对值等于它的相反数,0的绝对值还是0.11.C解析:C【分析】根据有理数的加减混合运算先算括号内的,进而即可求解.【详解】解:原式=﹣12+1﹣32+2﹣52+3﹣72+…+27=27×1 2=272.故选:C.本题考查了有理数的加减混合运算,解决本题的关键是寻找规律.12.A解析:A 【分析】通过ab <0可得a 、b 异号,再由|a |=1,|b |=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a +b 的值 【详解】解:∵|a|=1,|b|=4, ∴a=±1,b=±4, ∵ab <0,∴a+b=1-4=-3或a+b=-1+4=3, 故选A. 【点睛】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.二、填空题13.990【分析】根据图形中的规律即可求出(1+x )45的展开式中第三项的系数为前44个数的和计算得到结论【详解】解:由图2知:(a+b )1的第三项系数为0(a+b )2的第三项的系数为:1(a+b )3的解析:990 【分析】根据图形中的规律即可求出(1+x )45的展开式中第三项的系数为前44个数的和,计算得到结论. 【详解】解:由图2知:(a+b )1的第三项系数为0, (a+b )2的第三项的系数为:1, (a+b )3的第三项的系数为:3=1+2, (a+b )4的第三项的系数为:6=1+2+3, …∴发现(1+x )3的第三项系数为:3=1+2; (1+x )4的第三项系数为6=1+2+3; (1+x )5的第三项系数为10=1+2+3+4;不难发现(1+x )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1), ∴(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=1+2+3+…+44=44(441)2⨯+=990; 故答案为:990.本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b)n中,相同字母a的指数是从高到低,相同字母b的指数是从低到高.14.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+3×209=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律.15.加法交换律【分析】直接利用整式的加减运算法则进而得出答案【详解】解:原式=2a2b+5ab+a2b-3ab=2a2b+a2b+5ab-3ab=(2a2b+a2b)+(5ab-3ab)=3a2b+2a解析:加法交换律【分析】直接利用整式的加减运算法则进而得出答案.【详解】解:原式=2a2b+5ab+a2b-3ab=2a2b+a2b+5ab-3ab=(2a2b+a2b)+(5ab-3ab)=3a2b+2ab.第②步依据是:加法交换律.故答案为:加法交换律.【点睛】此题主要考查了整式的加减运算,正确掌握相关运算法则是解题关键.16.31【分析】根据题意找出折叠次的折痕条数的函数解析式再将代入求解即可【详解】折叠次的折痕为;折叠次的折痕为;折叠次的折痕为;……故折叠次的折痕应该为;折叠次将代入折痕为故答案为:31【点睛】本题考查 解析:31【分析】根据题意找出折叠n 次的折痕条数的函数解析式,再将5n =代入求解即可.【详解】折叠1次的折痕为1,1121=-;折叠2次的折痕为3,2321=-;折叠3次的折痕为7,3721=-;……故折叠n 次的折痕应该为21n -;折叠5次,将5n =代入,折痕为52131-=故答案为:31.【点睛】本题考查了图形类的规律题,找出折叠n 次的折痕条数的函数解析式是解题的关键. 17.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键解析:2-【分析】根据3A B '=可得点A '为12,再根据A 与A '以C 为折点对折,即C 为A ,A '中点即可求解.【详解】解:翻折后A '在B 右侧,且3A B '=.所以点A '为12,∵A 与A '以C 为折点对折,则C 为A ,A '中点, 即1216:22C -=-. 【点睛】 本题考查数轴上两点间的距离,得到C 为A ,A '中点是解题的关键.18.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律 乘法结合律 -10 1000 -10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可.【详解】(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125(乘法交换律)=-(4×2.5)×(8×125)(乘法结合律)=-10×1000=-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000.【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.19.【分析】利用绝对值的性质去掉绝对值符号再根据正数大于负数两个负数比较大小大的数反而小可得答案【详解】∵由于∴故答案为:【点睛】本题考查了绝对值的化简以及有理数大小比较两个负数比较大小绝对值大的数反而小解析:<【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】∵3276 6.7544--=-=-,()6.25 6.25--=,由于 6.75 6.25-<,∴36( 6.25)4--<--,故答案为:<.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.20.6÷3×10+4【分析】灵活利用运算符号将34610连接使结果为24即可解答本题【详解】由题意可得6÷3×10+4故答案为:6÷3×10+4【点睛】本题考查了有理数的混合运算关键是明确题意进行灵活变解析:6÷3×10+4【分析】灵活利用运算符号将3、4、6、10连接,使结果为24即可解答本题.【详解】由题意可得,6÷3×10+4.故答案为:6÷3×10+4.【点睛】本题考查了有理数的混合运算,关键是明确题意,进行灵活变化,最终求出问题的答案.三、解答题21.(1)-6;(2)715. 【分析】(1)原式根据有理数的加减法法则进行计算即可得到答案;(2)原式把除法转换为乘法,再进行乘法运算即可得到答案.【详解】解:(1)()()()()413597--++---+=-4-13-5+9+7=-22+9+7=-13+7=-6;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭ =174435⨯⨯ =715. 【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.22.(1)B 、C 两点间的距离是3个单位长度;(2)m 的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C 所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC =|2﹣5|=3;(2)分类考虑当点D 在点A 的左侧与右侧,利用AD=3,求出点D 所表示的数,再利用BD=m 求出m 的值即可.【详解】解:(1)点C 所表示的数为﹣3﹣1+9=5,∴BC =|2﹣5|=3.(2)当点D 在点A 的右侧时,点D 所表示的数为﹣3+3=0,所以点B 移动到点D 的距离为m =|2﹣0|=2,当点D 在点A 的左侧时,点D 所表示的数为﹣3﹣3=﹣6,所以点B 移动到点D 的距离为m =|2﹣(﹣6)|=8,答:m 的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD 的距离分类讨论点D 的位置是解题关键. 23.(1) 1+3+5+7=42; 1+3+5+7+9=52;(2)1+3+5+…+(2n -1)=n 2.【分析】根据图示和数据可知规律是:等式左边是连续的奇数和,等式右边是等式左边的首数与末数的平均数的平方,据此进行解答即可.【详解】(1)由图①知黑点个数为1个,由图②知在图①的基础上增加3个,由图③知在图②基础上增加5个,则可推知图④应为在图③基础上增加7个即有1+3+5+7=42,图⑤应为1+3+5+7+9=52,故答案为④1+3+5+7=42;⑤1+3+5+7+9=52;(2)由(1)中推理可知第n 个图形黑点个数为1+3+5+…+(2n -1)=n 2.【点睛】本题考查了规律型——数字的变化类,解答此类问题的关键是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.24.-21【分析】首先化简代数式,通过去括号、合并同类项,得出结论即含有b 的代数式相加为0,即可说明.【详解】解()()222221324223212a b ab a a b a ab a b ⎛⎫-+--++- ⎪⎝⎭=222223244621a b ab a a b a ab a b -+-+++-=101a -当2a =-时原式=()1021⨯--=-21.【点睛】考查整式的化简求值,熟练掌握去括号法则以及合并同类项法则是解题的关键. 25.(1)1- (2)0.5 (3)3-或7-【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D 是线段AC 的中点;(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解.【详解】解:(1)点B 表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点,AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E 在点B 的右侧时,即点E 在AB 上,则点E 表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.26.23π-,4.佳佳的答案不正确,此题错将π当成是未知数,因而加上了“π的次数”.正确的答案为系数是23π-,次数是4.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】佳佳的答案不正确,此题错将π当成是未知数,因而加上了“π的次数”.故正确的答案为系数是23π-,次数是4.【点睛】考查了单项式,解答此题关键是构造单项式的系数和次数,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.。
【鲁教版】七年级数学上期中试卷及答案(1)
一、选择题1.若2312a b x y +与653a bx y -的和是单项式,则+a b =( ) A .3- B .0 C .3 D .6 2.有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( ) A .100x 100B .﹣100x 100C .101x 100D .﹣101x 1003.已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( ) A .36 B .40C .44D .464.化简2a -[3b -5a -(2a -7b )]的值为( )A .9a -10bB .5a +4bC .-a -4bD .-7a +10b5.如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a6.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数 7.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=-A .1个B .2个C .3个D .4个 8.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是( ) A .28B .34C .45D .759.下列各组数中,互为相反数的是( ) A .(﹣3)2和﹣32B .(﹣3)2和32C .(﹣2)3和﹣23D .|﹣2|3和|﹣23|10.下列结论错误的是( ) A .若a ,b 异号,则a ·b <0,a b <0 B .若a ,b 同号,则a ·b >0,a b>0 C .a b -=a b-=-a bD .a b--=-a b11.计算-3-1的结果是( ) A .2 B .-2C .4D .-412.当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,记作( ) A .海拔23米B .海拔﹣23米C .海拔175米D .海拔129米二、填空题13.将一列数1,2,3,4,5,6---,…,按如图所示的规律有序排列.根据图中排列规律可知,“峰1”中峰顶位置(C 的位置)是4,那么“峰206”中C 的位置的有理数是______.14.已知22 251,34A x ax y B x x by =+-+=+--,且对于任意有理数,x y ,代数式 2A B - 的值不变,则12()(2)33a Ab B ---的值是_______.15.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n 个图形中有白色正方形__________个 (用含n 的代数式表示).16.已知()11nn a =-+,当1n =时,10a =;当2n =时,22a =;当3n =时,30a =;…;则123a a a ++456a a a +++的值为______.17.3-的平方的相反数的倒数是___________. 18.计算:3122--=__________;︱-9︱-5=______. 19.把点P 从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,此时点P 所表示的数是______.20.(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到____位; (2)近似数2.428×105精确到___位;(3)用四舍五入法把3.141 592 6精确到百分位是____,近似数3.0×106精确到____位.三、解答题21.计算(1)21145()5 -÷⨯-(2)21(2)8(2)()2--÷-⨯-.22.(1)371(24)812⎛⎫-+⨯-⎪⎝⎭;(2)431(2)2(3)----⨯-23.已知多项式2x2+4xy﹣3y2+x2+kxy+5y2,当k为何值时,它与多项式3x2+6xy+2y2是相等的多项式.24.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A和点B刚好对着直尺上的刻度2和刻度8.(1)写出点A和点B表示的数;(2)写出在点B左侧,并与点B距离为9.5厘米的直尺左端点C表示的数;(3)若直尺长度为a厘米,移动直尺,使得直尺的长边CD的中点与数轴上的点A重合,求此时左端点C表示的数.25.日历上的规律:下图是2020年元月的日历,图中的阴影区域是在日历中选取的一块九宫格.(1)九宫格中,四个角上的四个数之和与九宫格中央这个数有什么关系?(2)请你自选一块九宫格进行计算,观察四个角上的四个数之和与九宫格中央那个数是否还有这种关系.(3)试说明原理.26.生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26cm,宽为cmx,分别回答下列问题:(1)为了保证能折成图④的形状(即纸条两端均超出点P ),试求P 的取值范围. (2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P 的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M 与点P 的距离(用P 表示)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值. 【详解】解:根据题意可得:26{3a b a b +=-=,解得:3{a b ==, 所以303a b +=+=, 故选:C . 【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.2.C解析:C 【分析】由单项式的系数,字母x 的指数与序数的关系求出第100个单项式为101x 100. 【详解】由﹣2x,3x2,﹣4x3,5x4……得,单项式的系数的绝对值为序数加1,系数的正负为(﹣1)n,字母的指数为n,∴第100个单项式为(﹣1)100(100+1)x100=101x100,故选C.【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.3.A解析:A【分析】原式去括号整理后,将已知等式代入计算即可求出值.【详解】∵a+b=5,ab=4,∴原式=3ab+5a+8b+3a−4ab=8(a+b)−ab=40−4=36,故选A.【点睛】本题考查的是代数式的求值,熟练掌握先化简再求值是解题的关键.4.A解析:A【解析】2a-[3b-5a-(2a-7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b,故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.5.A解析:A【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:根据题意得:b<a<0,且|a|<|b|,∴a-b>0,a+b<0,∴原式=a-b-a-b=-2b.故选:A.【点睛】此题主要考查了数轴以及绝对值,熟练掌握绝对值的性质是解本题的关键.6.D解析:D【分析】根据单价×数量=总价,等边三角形周长=边长×3,售价=进价+利润,两位数的表示=十位数字×10+个位数字进行分析即可. 【详解】A 、根据“单价×数量=总价”可知3a 表示买a kg 葡萄的金额,此选项不符合题意;B 、由等边三角形周长公式可得3a 表示这个等边三角形的周长,此选项不符合题意;C 、由“售价=进价+利润”得售价为1.5a 元,则2×1.5a =3a (元),此选项不符合题意;D 、由题可知,这个两位数用字母表示为10×3+a =30+a ,此选项符合题意. 故选:D . 【点睛】本题主要考查了列代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.7.A解析:A 【分析】根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可. 【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-=⎪ ⎪⎝⎭⎝⎭,故③错误;()30.10.001-=-,故④错误;22433-=-,故⑤正确; 故选A . 【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则.8.C解析:C 【分析】日历纵列上圈出相邻的三个数,下边的数总比上边上的数大7,设中间的数是a ,则上边的数是a - 7,下边的数是a + 7,则三个数的和是3a ,因而一定是3的倍数,且3数之和一定大于等于24,一定小于等于72,据此即可判断. 【详解】日历纵列上圈出相邻的三个数,下边的数总比上边的数大7,设中间的数是a ,则上边的数是a - 7,下边的数是a + 7,则三个数的和是3a ,因而一定是3的倍数,当第一个数为1,则另两个数为8,15,则它们的和为24,当第一个数为17,则另两个数为24,31,则它们的和为72,所以符合题意的三数之和一定在24到72之间,所以符合题意的只有45,所以C选项是正确的.【点睛】此题主要考查了一元一次方程的应用和有理数的计算,正确理解图表,得到日历纵列上圈出相邻的三个数的和一定是3的倍数以及它的取值范围是关键.9.A解析:A【分析】各项中两式计算得到结果,即可作出判断.【详解】A、(﹣3)2=9,﹣32=﹣9,互为相反数;B、(﹣3)2=32=9,不互为相反数;C、(﹣2)3=﹣23=﹣8,不互为相反数;D、|﹣2|3=|﹣23|=8,不互为相反数,故选:A.【点睛】此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.10.D解析:D【解析】根据有理数的乘法和除法法则可得选项A、B正确;根据有理数的除法法则可得选项C正确;根据有理数的除法法则可得选项D原式=ab,选项D错误,故选D.11.D解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.12.B解析:B【解析】由已知,当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,则应该记作“海拔-23米”,故选B.二、填空题13.-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝对值为以此进行分析即可【详解】解:由图可知每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝解析:-1029 【分析】由题意根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,以此进行分析即可. 【详解】解:由图可知,每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,当206n =时,52061103011029⨯-=-=,因为1029是奇数,所以“峰206”中C 的位置的有理数是1029-. 故答案为:1029-. 【点睛】本题考查图形的数字规律,熟练掌握根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -是解题的关键.14.-2【分析】先根据代数式为定值求出ab 的值及的值然后对所求代数式进行变形然后代入计算即可【详解】∵对于任意有理数代数式的值不变∴∵∴原式=故答案为:-2【点睛】本题主要考查代数式的求值能够对代数式进解析:-2 【分析】先根据代数式 2A B -为定值求出a,b 的值及 2A B -的值,然后对所求代数式进行变形,然后代入计算即可. 【详解】222(251)2(34)A B x ax y x x by -=+-+-+-- 222512628x ax y x x by =+-+--++ (6)(25)9a x b y =-+-+∵对于任意有理数 ,x y ,代数式 2A B - 的值不变∴60,250a b -=-=,29A B -=56,2a b ∴==∵121()(2)2(2)333a Ab B a b A B ---=--- ∴原式=51629653223-⨯-⨯=--=-故答案为:-2 【点睛】本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.15.【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个 解析:()31-n【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案. 【详解】图①白色正方形:2个; 图②白色正方形:5个; 图③白色正方形:8个,∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个, 故答案为:(3n-1). 【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键.16.【分析】利用乘方符号的规律当n 为奇数时(-1)n=-1;当n 为偶数时(-1)n=1找到此规律就不难得到答案6【详解】∵当n 为奇数时此时;当n 为偶数时(-1)n=1此时∴故填:6【点睛】本题乘方符号的解析:【分析】利用乘方符号的规律,当n 为奇数时,(-1)n =-1;当n 为偶数时,(-1)n =1.找到此规律就不难得到答案6. 【详解】∵当n 为奇数时,(1)1n -=-,此时110n a =-+=;当n 为偶数时,(-1)n =1,此时112n a =+=.∴1234560202026a a a a a a +++++=+++++=. 故填:6. 【点睛】本题乘方符号的规律,解题的关键是找出(1)n-的符号规律.17.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义解析:19-【分析】根据倒数,相反数,平方的概念可知. 【详解】−3的平方是9,9的相反数是-9,-9的倒数是19-故答案为19-. 【点睛】此题考查倒数,相反数,平方的概念及性质.解题关键在于掌握各性质定义.18.-24【分析】直接根据有理数的减法运算即可;先运算绝对值再进行减法运算【详解】=-=-2;︱-9︱-5==9-5=4故答案为-24【点睛】本题考查了绝对值的化简以及有理数的运算解题的关键是掌握有理数解析:-2 4 【分析】直接根据有理数的减法运算即可;先运算绝对值,再进行减法运算. 【详解】3122--=-42=-2;︱-9︱-5==9-5=4, 故答案为-2,4. 【点睛】本题考查了绝对值的化简以及有理数的运算,解题的关键是掌握有理数的运算法则.19.【分析】根据向右移动加向左移动减进行解答即可【详解】因为点P 从数轴的原点开始先向右移动2个单位长度再向左移动7个单位长度所以点P 所表示的数是0+2-7=-5故答案为:-5【点睛】本题考查的是数轴熟知 解析:5-【分析】根据向右移动加,向左移动减进行解答即可. 【详解】因为点P 从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度, 所以点P 所表示的数是 0+2-7=-5. 故答案为:-5. 【点睛】本题考查的是数轴,熟知数轴的特点是解答此题的关键.20.(1)千分(2)百(3)314十万【分析】(1)根据精确到哪位就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位就解析:(1)千分 (2)百 (3)3.14 十万 【分析】(1)根据精确到哪位,就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位解答即可; (3)根据精确到哪位,就是对它后边的一位进行四舍五入以及科学记数法的精确方法解答即可. 【详解】解:(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到千分位;(2)近似数2.428×105中,2.428的小数点前面的2表示20万,则这一位是十万位,因而2.428的最后一位8应该是在百位上,因而这个数是精确到百位;(3)用四舍五入法把3.141 592 6精确到百分位是3.14,近似数3.0×106精确到十万位.故答案为: (1)千分; (2)百; (3)3.14、十万.【点睛】本题考查了近似数,掌握确定近似数精确的位数和科学记数法的精确方法是解答本题的关键.三、解答题21.(1)4125;(2)2.【分析】第(1)和(2)小题都属于有理数的混合运算,根据混合运算的运算顺序:先算乘方,并利用有理数的除法法则将除法转化为乘法,再计算乘法,最后计算加减即可求出结果.【详解】解:(1)21145()5-÷⨯-11116()55=-⨯⨯-16125=+4125=;(2)21(2)8(2)()2--÷-⨯-1148()()22=-⨯-⨯-42=-2=.【点睛】本题考查了有理数的混合运算,解题的关键是确定正确的运算顺序并运用运算法则准确计算.22.(1)-29;(2)13.【分析】(1)利用乘法分配律进行简便运算,即可得出结果;(2)先计算有理数的乘方与乘法,再进行加减运算即可.【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭ 37(1242424)812=-⨯-⨯+⨯ (24914)=--+29=-;(2)431(2)2(3)----⨯-1(8)(6)=-----186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键.23.k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,=3x 2+(4+k )xy+2y 2,因为它与多项式3x 2+6xy+2y 2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.24.(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果;(2)利用点B 表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a 个单位计算即可.【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数,∴点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3,∴直尺此时左端点C 表示的数-3-0.5a .【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.25.(1)四个角上的四个数之和等于九宫格中央这个数的4倍;(2)四个角上的四个数之和等于九宫格中央这个数的4倍,选取九宫格见解析;(3)见解析.【分析】(1)求出四个角上的四个数之和与九宫格中央这个数,从而验证它们的关系. (2)选择如下图的九宫格,验证他们的关系即可.(3)设九宫格中央这个数为a ,列等式进行验证即可.【详解】(1)四个角上的四个数之和等于九宫格中央这个数的4倍.理由如下:6228202828414+++=+=⨯.(2)如图,9112325174+++=⨯,所以四个角上的四个数之和等于九宫格中央这个数的4倍.(选取的九宫格不唯一).(3)设九宫格中央这个数为a ,那么左上角的数为71a --,右上角的数为71a -+,左下角的数为71a +-,右下角的数为71a ++,四个数的和为(71)(71)(71)(71)4a a a a a --+-+++-+++=.即四个角上的四个数之和等于九宫格中央这个数的4倍.【点睛】本题考查了整式的加减应用,掌握整式的加减运算法则是解题的关键.26.(1) x <5.2(2) 13-1.5x【详解】分析:(1)按图中方式折叠后可得到除去两端,纸条使用的长度为5x ,那么纸条使用的长度应大于0,小于纸条总长度.(2)是轴对称图形,那么AM=AP+x .解答:解:(1)由折纸过程可知0<5x <26,∴0<x <5.2.(2)∵图④为轴对称图形,∴AM=2652x -+x=13-1.5x , 即点M 与点A 的距离是(13-1.5x )cm . 点评:本题考查学生的动手操作能力,难点是得到纸条除去两端使用的纸条的长度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鲁教版数学七年级上册期中水平测试题(1)
一、试试你的身手(每小题3分,共30分)
1|5|0b -=,那么||a b -的平方根是 .
2.若一个正数的两个不同的平方根是21a -和2a -+,则a = ,这个正数是 . 3.如图1,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,先将直角边AC 沿AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD = .
4.请你观察、思考下列计算过程:
因为112=121,所以=11,同样,因为1112=12321,所以=111,…由此猜想
= .
5.如图2,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B 200m ,结果他在水中实际游了520m ,求该河流的宽度为 .
6.用1、2、3三个数字排成一个三位数,则排出的数是偶数的概率是 .
7.某班有一个同学想给老师打电话可他记不清其中一个号码,58*9188,恰好拨通的概率为 . 8.等腰三角形的一个内角为110°,则它的顶角为 . 9.△ABC 中,AB =13,AC =15,高AD =12,则BC 的长是 . 10.直角三角形的周长为12cm ,斜边的长为5cm ,则其面积为 . 二、相信你的选择(每小题3分,共30分) 1.等边三角形的对称轴有( ) A .1条
B .3条
C .6条
D .无数条
2.下列说法不能推出△ABC 是直角三角形的是( ) A .2
2
2
a c
b -= B .2
()()0a b a b c -++= C .∠A =∠B =∠C
D .∠A =2∠B =2∠C
3.如图3,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中.从A 地到B 地有2条水路、2条陆路,从B 地到C 地有3条陆路可供选择,走空中从A 地不经B 地直接到C 地.则从A 地到C 地可供选择的方案有( ) A .20种
B .8种
C .5种
D .13种
4.下列运算结果正确的是( )
A .6=-
B .2(9=
C 16=±
D .2
1625⎛-= ⎝
5.边长为2的正方形的对角线长是( ) A .整数 B .分数 C .有理数
D .不是有理数
6.若规定误差小于1 ) A .3
B .7
C .8
D .7或8
7.设a 、b 为非零实数,则||a a b
+
) A .±2
B .±2或0
C .±1或0
D .±2或±1
8.有五组数:①7,24,25;②12,16,20;③9,40,41;④4,6,8;⑤32,42,52,以各组数为边长,能组成直角三角形的个数为( ) A .1
B .2
C .3
D .4
9.下列说法正确的是( ) A .可能性很大的事件是必然发生的
B .在装有黑白两种颜色球的袋子里摸到红球是不可能的
C .几乎不可能的事件是不可能发生的
D .可能性很小的事件是不可能发生的
10.橱柜里有8双鞋取出穿右脚的鞋子的概率是( ) A .
1
16
B .
18
C .
12
D .
13
三、挑战你的技能(本大题共50分)
1.(本题8分)细心算一算:要求写出必要的步骤. (1)2
(1)25x -=,求x .
(2)38(3)27x --=,求x .
2.(本题8分)以直线l 为对称轴,画出下列图形的另一部分使它们成为轴对称图形.
3.(本题8分)工人师傅要在一块面积为20m 2的正方形的地面上铺地板,试估计这块地面的边长约为多少?(误差小于0.1m )
4.(本题8分)已知x 、y 都是实数,且3y ,求x y 的平方根?
5.(本题8分)已知Rt ABC △,90C ∠=
,若a +b =14cm ,c =10cm ,则Rt △ABC 的面积是多少?
6.(本题10分)如图4,铁路上A 、B 两点相距25km ,C 、D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA =15km ,CB =10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C 、D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?
四、拓广探索(本大题10分)
直角三角形的直角边为a 、b ,斜边为c ,斜边上的高为h ,试判断以c +h ,a +b ,h 为边的三角形的形状.
参考答案: 一、1.3和-3 2.1-,9 3.3cm 4.111111111
5.480m
6.
13
7.
110
8.110° 9.14或4
10.6cm 2
二、1.B 2.C
3.D 4.A
5.D
6.D
7.B
8.C
9.B
10.C
三、1.(1)6x =或4x =-;(2)3
2
x =. 2.略.
3 4.4=或4.5. 4.3和3-. 5.24cm 2. 6.10km .
四、三角形为直角三角形.。