高中数学课时跟踪检测(九)双曲线及其标准方程(含解析)新人教A版选修11
双曲线及其标准方程(教学设计)高二数学 (人教A版2019选择性 必修第一册)
3.2.1双曲线及其标准方程教学设计本小节内容选自《普通高中数学选择性必修第一册》人教A版(2019)第二章《圆锥曲线的方程》的第二节《双曲线》。
以下是本节的课时安排:第三章圆锥曲线的方程课时内容 3.2.1双曲线及其标准方程 3.2.2双曲线的简单几何性质所在位置教材第118页教材第121页新教材内容分析双曲线是生产生活中的常见曲线,教材在用拉链画双曲线的过程中,体会双曲线的定义,感知双曲线的形状,为选择适当的坐标系,建立双曲线的标准方程、研究双曲线的几何性质做好铺垫。
通过对双曲线标准方程的讨论,使学生掌握标准方程中的a,b,c,e的几何意义及相互关系,体会坐标法研究曲线性质的基本思路与方法,感受通过代数运算研究曲线性质所具有的程序化、普适性特点。
核心素养培养通过双曲线的标准方程的推导,培养数学运算的核心素养;通过对双曲线的定义理解,培养数学抽象的核心素养。
通过双曲线的几何性质的研究,培养数学运算的核心素养;通过直线与双曲线的位置关系的判定,培养逻辑推理的核心素养。
教学主线双曲线的标准方程、几何性质学生已经学习了直线与圆的方程,已经具备了坐标法研究解析几何问题的能力。
本章学习圆锥曲线方程及几何性质,进一步提升用代数方法研究解析几何问题的方法。
1.了解双曲线的定义、几何图形和标准方程,培养数学抽象的核心素养.2.能利用双曲线的定义和待定系数法求双曲线的标准方程,培养逻辑推理的核心素养.重点:双曲线的定义及双曲线的标准方程难点:运用双曲线的定义及标准方程解决相关问题(一)新知导入双曲线也是具有广泛应用的一种圆锥曲线,如发电厂冷却塔的外形、通过声音时差测定定位等都要用到双曲线的性质。
本节我们将类比椭圆的研究方法研究双曲线的有关问题。
(二)双曲线及其标准方程知识点一双曲线的定义【探究1】取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F1、F2处,把笔尖放于点M,拉开闭拢拉链,笔尖经过的点可画出一条曲线,思考曲线满足什么条件?【提示】如图,曲线上的点满足条件:|MF1|-|MF2|=常数;如果改变一下位置,使|MF2|-|MF1|=常数,可得到另一条曲线.◆双曲线的定义F F?【思考1】双曲线的定义中,常数为2a,为什么2a12【提示】若2a=|F1F2|,则动点的轨迹是以F1或F2为端点的射线;若2a>|F1F2|,则动点的轨迹不存在.若a=0,则动点的轨迹是线段F1F2的中垂线.【思考2】双曲线的定义中,为什么要加“绝对值”三个字?没有“绝对值”三个字呢?【提示】若去掉定义中的“绝对值”三个字,则动点的轨迹只能是双曲线的一支.【易错辨析】设F1、F2是双曲线的焦点,a=4,c=6,点P在双曲线上,若点P到焦点F1的距离等于9,求点P 到焦点F2的距离.【错解一】双曲线的a=4,由|PF1|-|PF2|=8,即9-|PF2|=8,得|PF2|=1.【错解二】双曲线的a=4,由双曲线的定义得||PF1|-|PF2||=8,所以|9-|PF2||=8,所以|PF2|=1或17.【错因】错解一是对双曲线的定义中的差的绝对值掌握不够,是概念性的错误.错解二没有验证两解是否符合题意,这里用到双曲线的一个隐含条件:双曲线的一个顶点到另一分支上的点的最小距离是2a,到一个焦点的距离是c-a,到另一个焦点的距离是a+c,本题是2或10,|PF2|=1小于2,不合题意.【正解】双曲线的实轴长为8,由双曲线的定义得||PF1|-|PF2||=8,所以|9-|PF2||=8,所以|PF2|=1或17.因为|F1F2|=12,当|PF2|=1时,|PF1|+|PF2|=10<|F1F2|,不符合公理“两点之间线段最短”,应舍去.所以|PF2|=17.知识点二双曲线的标准方程【探究2】类比推导椭圆标准方程的方法,怎样推导双曲线的标准方程?【提示】(1)建系:以经过两焦点F1和F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立平面直角坐标系.(2)设点:设M(x,y)是双曲线上任意一点,双曲线的焦距为2c(c>0),那么双曲线的焦点F1,F2的坐标分别是(-c,0),(c,0).(3)列式:由|MF1|-|MF2|=±2a,可得(x+c)2+y2-(x-c)2+y2=±2a.(4)化简:移项,平方后可得(c2-a2)x2-a2y2=a2(c2-a2).令c2-a2=b2,得双曲线的标准方程为x2 a2-y2b2=1(a>0,b>0).◆双曲线的标准方程【思考3】怎样区分焦点在不同位置的两类双曲线的方程?它与椭圆的区分方法有何不同?【提示】椭圆由分母常数的大小判定,双曲线由各项前面的符号判定.【思考4】双曲线的标准方程与椭圆的标准方程在形式上有什么区别?a 、b 、c 之间的关系有何不同? 【提示】a 、b 、c 之间的关系:椭圆是222b a c -=,双曲线是222b a c += (记忆方法:椭圆的焦点在顶点之内,所有a c <;双曲线焦点在顶点之外,所有a c >)【做一做1】双曲线x 210-y 22=1的焦距为( )A .32B .4 2C .3 3D .43答案:D【做一做2】已知双曲线a =5,c =7,则该双曲线的标准方程为________.解析:∵a =5,c =7,∴b =c 2-a 2=24=26, 当焦点在x 轴上时,双曲线方程为x 225-y 224=1; 当焦点在y 轴上时,双曲线方程为y 225-x 224=1. 答案:x 225-y 224=1或y 225-x 224=1(三)典型例题1.求双曲线的标准方程例1.根据下列条件,求双曲线的标准方程.(1)经过点P (3,154),Q (-163,5); (2)c =6,经过点(-5,2),焦点在x 轴上.[分析] 可先设出双曲线的标准方程,再构造关于a ,b 的方程组,求得a ,b ,从而求得双曲线的标准方程.注意对平方关系c 2=a 2+b 2的运用.[解析] (1)法一:若焦点在x 轴上,设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),由于点P (3,154)和Q (-163,5)在双曲线上,所以⎩⎨⎧9a 2-22516b 2=1,2569a 2-25b 2=1,解得⎩⎨⎧a 2=-16,b 2=-9,(舍去).若焦点在y 轴上,设双曲线的方程为y 2a 2-x 2b 2=1(a >0,b >0),将P 、Q 两点坐标代入可得⎩⎨⎧22516a 2-9b 2=1,25a 2-2569b 2=1,解得⎩⎨⎧a 2=9,b 2=16,所以双曲线的标准方程为y 29-x 216=1. 综上,双曲线的标准方程为y 29-x 216=1.法二:设双曲线方程为x 2m +y 2n =1(mn <0). ∵P 、Q 两点在双曲线上,∴⎩⎨⎧9m +22516n =1,2569m +25n =1,解得⎩⎨⎧m =-16,n =9.∴所求双曲线的标准方程为y 29-x 216=1.(2)法一:依题意可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).则有⎩⎪⎨⎪⎧a 2+b 2=6,25a 2-4b2=1,解得⎩⎨⎧a 2=5,b 2=1,求双曲线的标准方程为x 25-y 2=1. 法二∵焦点在x 轴上,c =6,∴设所求双曲线方程为x 2λ-y 26-λ=1(其中0<λ<6).∴25λ-46-λ=1,∴λ=5或λ=30(舍去).∴所求双曲线的标准方程是x 25-y 2=1.【类题通法】用待定系数法求双曲线标准方程的步骤(1)定位:确定双曲线的焦点位置,如果题目没有建立坐标系,一般把焦点放在x 轴上;(2)设方程:根据焦点的位置设相应的双曲线标准方程(当焦点在两个坐标轴上都有可能时,一般设为Ax 2+By 2=1(AB <0));(3)定值:根据题目的条件确定相关的系数的方程,解出系数,代入所设方程. 【巩固练习1】已知双曲线过M (1,1),N (-2,5)两点,求双曲线的标准方程.[解析] 设双曲线的方程为Ax 2+By 2=1(AB <0).∵双曲线过M (1,1),N (-2,5),∴⎩⎪⎨⎪⎧A +B =1,4A +25B =1,解得⎩⎨⎧A =87,B =-17,∴双曲线的标准方程为x 278-y 27=1.2.双曲线标准方程的识别例2. (1)若曲线x 2k +4+y 2k -1=1表示双曲线,则k 的取值范围是( )A .[-4,1)B .(-∞,-4)∪(1,+∞)C .(-4,1)D .(-∞,-4]∪[1,+∞)(2)3<m <5是方程x 2m -5+y 2m 2-m -6=1表示的图形为双曲线的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析: (1)根据题意,若曲线x 2k +4+y 2k -1=1表示双曲线,则有(k +4)(k -1)<0,解得-4<k <1.(2)3<m <5时,m -5<0,m 2-m -6>0,方程x 2m -5+y 2m 2-m -6=1表示焦点在y 轴的双曲线;若方程x 2m -5+y 2m 2-m -6=1表示的图形为双曲线,则(m -5)(m 2-m -6)<0,所以3<m <5或m <-2,所以3<m <5是方程x 2m -5+y 2m 2-m -6=1表示的图形为双曲线的充分不必要条件.答案:(1)C (2)A【类题通法】将双曲线的方程化为标准方程的形式,假如双曲线的方程为x 2m +y 2n=1,则当mn <0时,方程表示双曲线.若⎩⎪⎨⎪⎧m >0,n <0,则方程表示焦点在x 轴上的双曲线;若⎩⎪⎨⎪⎧m <0,n >0,则方程表示焦点在y 轴上的双曲线.【巩固练习2】若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在y 轴上的双曲线 D .焦点在x 轴上的双曲线 解析:原方程化为y 2k 2-1-x 2k +1=1,∵k >1,∴k 2-1>0,k +1>0.∴方程所表示的曲线为焦点在y 轴上的双曲线. 答案:C3.双曲线的定义及应用例3.设双曲线x 24-y 29=1,F 1、F 2是其两个焦点,点P 在双曲线右支上. 若∠F 1PF 2=90°,求△F 1PF 2的面积.[分析] 用双曲线定义及余弦定理求出|PF 1|·|PF 2|. [解析] 由双曲线方程知a =2,b =3,c =13, 设|PF 1|=r 1,|PF 2|=r 2(r 1>r 2),如图所示.由双曲线定义,有r 1-r 2=2a =4,两边平方得r 21+r 22-2r 1r 2=16. ∵∠F 1PF 2=90°,∴r 21+r 22=4c 2=4×(13)2=52.∴2r 1r 2=52-16=36,∴S △F 1PF 2=12r 1r 2=9.【类题通法】双曲线中的焦点三角形:双曲线上的点P 与其两个焦点F 1,F 2连接而成的三角形PF 1F 2称为焦点三角形.令|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ,因|F 1F 2|=2c ,所以有 (1)定义:|r 1-r 2|=2a .(2)余弦公式:4c 2=r 21+r 22-2r 1r 2cos θ.(3)面积公式:S △PF 1F 2=12r 1r 2sin θ.一般地,在△PF 1F 2中,通过以上三个等式,所求问题就会顺利解决.【巩固练习3】若F 1,F 2是双曲线x 29-y 216=1的两个焦点,P 是双曲线上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2的面积.[解析] 由双曲线方程x 29-y 216=1,可知a =3,b =4,c =a 2+b 2=5.由双曲线的定义,得|PF 1|-|PF 2|=±2a =±6,将此式两边平方,得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36,∴|PF 1|2+|PF 2|2=36+2|PF 1|·|PF 2|=36+2×32=100. 如图所示,在△F 1PF 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=100-1002|PF 1|·|PF 2|=0,∴∠F 1PF 2=90°,∴S △F 1PF 2=12|PF 1|·|PF 2|=12×32=16.所以S △PF 1F 2=12|PF 1||F 1F 2|·sin 120°=12×65×2×32=335,即△PF 1F 2的面积是35 3. 4. 与双曲线有关的轨迹问题例4.已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,求动圆圆心M 的轨迹方程.[解析] 如图所示,设动圆M 与圆C 1及圆C 2分别外切于点A 和B ,根据两圆外切的条件,得 |MC 1|=|AC 1|+|MA |,|MC 2|=|BC 2|+|MB |. ∵|MA |=|MB |,∴|MC 2|-|MC 1|=|BC 2|-|AC 1|=3-1=2.这表明动点M 与两定点C 2,C 1的距离的差是常数2,且2<| C 1C 2|.根据双曲线的定义,动点M 的轨迹为双曲线的左支,则2a =2,a =1,c =3,∴b 2=c 2-a 2=8.因此所求动点M 的轨迹方程为x 2-y 28=1(x ≤1). 【类题通法】求与双曲线有关的点的轨迹问题的方法(1)列出等量关系,化简得到方程.(2)寻找几何关系,由双曲线的定义,得出对应的方程.提醒:①双曲线的焦点所在的坐标轴是x 轴还是y 轴.②检验所求的轨迹对应的是双曲线的一支还是两支.【巩固练习4】如图所示,在△ABC 中,已知|AB |=42,且三个内角A ,B ,C 满足2sin A +sin C =2sin B ,建立适当的坐标系,求顶点C 的轨迹方程.[解析]以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系,如图所示,则A (-22,0),B (22,0).由正弦定理,得sin A =|BC |2R ,sin B =|AC |2R ,sin C =|AB |2R(R 为△ABC 的外接圆半径).∵2sin A +sin C =2sin B ,∴2|BC |+|AB |=2|AC |,即|AC |-|BC |=|AB |2=22<|AB |. 由双曲线的定义知,点C 的轨迹为双曲线的右支(除去与x 轴的交点).由题意,设所求轨迹方程为x 2a 2-y 2b 2=1(x >a ), ∵a =2,c =22,∴b 2=c 2-a 2=6.即所求轨迹方程为x 22-y 26=1(x >2). (四)操作演练 素养提升1.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是( ) A.x 216-y 29=1(x ≤-4) B.x 29-y 216=1(x ≤-3) C.x 216-y 29=1(x ≥4) D.x 29-y 216=1(x ≥3)解析:由已知动点P 的轨迹是以F 1,F 2为焦点的双曲线的右支,且a =3,c =5,b 2=c 2-a 2=16,∴所求轨迹方程为x 29-y 216=1(x ≥3).答案:D2.方程x 22+m -y 22-m=1表示双曲线,则m 的取值范围为( ) A .-2<m <2B .m >0C .m ≥0D .|m |≥2解析:∵已知方程表示双曲线,∴(2+m )(2-m )>0.∴-2<m <2.答案:A3.若双曲线E :x 29-y 216=1的左,右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A .11B .9C .5D .3解析:由题意知||PF 2|-3|=6,即|PF 2|-3=±6,解得|PF 2|=9或|PF 2|=-3(舍去).答案:B4.已知双曲线的中心在原点,两个焦点F 1,F 2分别为(5,0)和(-5,0),点P 在双曲线上,且PF 1⊥PF 2,△PF 1F 2的面积为1,则双曲线的方程为( )A.x 22-y 23=1B.x 23-y 22=1C.x 24-y 2=1 D .x 2-y 24=1解析:由⎩⎨⎧|PF 1|·|PF 2|=2,|PF 1|2+|PF 2|2=(25)2,⇒(|PF 1|-|PF 2|)2=16,即2a =4,解得a =2,又c =5,所以b =1,故选C.答案:C答案:1.D 2.A 3.B 4.C【设计意图】通过练习巩固本节所学知识,通过学生解决问题的能力,感悟其中蕴含的数学思想,增强学生的应用意识。
2021_2022学年高中数学第二章圆锥曲线与方程2.2.1双曲线及其标准方程练习(含解析)新人教A
2.2.1 双曲线及其标准方程[学生用书P105(单独成册)])[A 根底达标]1.平面内两定点A (-5,0),B (5,0),动点M 满足|MA |-|MB |=6,那么点M 的轨迹方程是( )A.x 216-y 29=1 B .x 216-y 29=1(x ≥4)C.x 29-y 216=1 D .x 29-y 216=1(x ≥3)解析:选D.由|MA |-|MB |=6,且6<|AB |=10,得a =3,c =5,b 2=c 2-a 2=16. 故其轨迹为以A ,B 为焦点的双曲线的右支. 所以方程为x 29-y 216=1(x ≥3).2.双曲线方程为x 2-2y 2=1,那么它的右焦点坐标为( ) A.⎝ ⎛⎭⎪⎫22,0 B .⎝⎛⎭⎪⎫52,0 C.⎝⎛⎭⎪⎫62,0 D .(3,0)解析:选C.将双曲线方程化成标准方程为x 21-y 212=1, 所以a 2=1,b 2=12,所以c =a 2+b 2=62,故右焦点坐标为⎝⎛⎭⎪⎫62,0. 3.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线的方程是( )A.x 23-y 2=1 B .y 2-x 23=1C.x 23-y 24=1 D .y 23-x 24=1解析:选B.由题意知,双曲线的焦点在y 轴上,且a =1,c =2,所以b 2=3,所以双曲线的方程为y 2-x 23=1.4.(2021·绍兴高二检测)双曲线Γ:x 2λ-y 29=1上有一点M 到Γ的右焦点F 1(34,0)的距离为18,那么点M 到Γ的左焦点F 2的距离是( )A .8B .28C .12D .8或28解析:选D.因为双曲线Γ:x 2λ-y 29=1的右焦点F 1(34,0),所以λ=34-9=25,所以双曲线Γ:x 225-y 29,可知||MF 1|-|MF 2||=2a =10,又|MF 1|=18,那么|MF 2|D.5.(2021·邯郸高二检测)设F 1,F 2是双曲线x 24-y 2=1的左、右焦点,点P 在双曲线上,当△F 1PF 2的面积为1时,PF 1→·PF 2→的值为( )A .0B .1 C.12D .2解析:选A.易知F 1(-5,0),F 2(5,0). 不妨设P (x 0,y 0)(x 0,y 0>0), 由12×2c ×y 0=1,得y 0=55, 所以P ⎝ ⎛⎭⎪⎫2305,55,所以PF 1→=⎝ ⎛⎭⎪⎫-5-2305,-55,PF 2→=⎝⎛⎭⎪⎫5-2305,-55,所以PF 1→·PF 2→=0.6.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有一样的焦点,那么a 的值是________.解析:依题意得⎩⎪⎨⎪⎧a >0,0<a 2<4,4-a 2=a +2,解得a =1.答案:17.在平面直角坐标系xOy 中,双曲线x 24-y 212=1上一点M 的横坐标为3,那么点M 到此双曲线的右焦点的距离为________.解析:双曲线右焦点为(4,0), 将x =3代入x 24-y 212=1,得y =±15.所以点M 的坐标为(3,15)或(3,-15),所以点M 到双曲线右焦点的距离为〔4-3〕2+〔±15〕2=4.答案:48.双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,假设PF 1⊥PF 2,那么|PF 1|+|PF 2|的值为____________.解析:不妨设点P 在双曲线的右支上,因为PF 1⊥PF 2, 所以|F 1F 2|2=|PF 1|2+|PF 2|2=(22)2, 又|PF 1|-|PF 2|=2, 所以(|PF 1|-|PF 2|)2=4, 可得2|PF 1|·|PF 2|=4,那么(|PF 1|+|PF 2|)2=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=12,所以|PF 1|+|PF 2|=2 3. 答案:2 39.焦点在x 轴上的双曲线过点P (42,-3),且点Q (0,5)与两焦点的连线互相垂直,求此双曲线的标准方程.解:因为双曲线的焦点在x 轴上,所以设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),F 1(-c ,0),F 2(c ,0).因为双曲线过点P (42,-3),所以32a 2-9b2=1.①又因为点Q (0,5)与两焦点的连线互相垂直, 所以QF 1→·QF 2→=0,即-c 2+25=0. 解得c 2=25.② 又c 2=a 2+b 2,③所以由①②③可解得a 2=16或a 2=50(舍去). 所以b 2=9,所以所求的双曲线的标准方程是x 216-y 29=1.10.如图,假设F 1,F 2是双曲线x 29-y 216=1的两个焦点.(1)假设双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离;(2)假设P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2的面积.解:(1)由双曲线的定义得||MF 1|-|MF 2||=2a =6,又双曲线上一点M 到它的一个焦点的距离等于16,假设点M 到另一个焦点的距离等于x ,那么|16-x |=6,解得x =10或x =22. 由于c -a =5-3=2,10>2,22>2,故点M 到另一个焦点的距离为10或22.(2)将||PF 2|-|PF 1||=2a =6两边平方得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36, 所以|PF 1|2+|PF 2|2=36+2|PF 1|·|PF 2|=36+2×32=100. 在△F 1PF 2中,由余弦定理得cos ∠F 1PF 2= |PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=100-1002|PF 1|·|PF 2|=0,所以∠F 1PF 2=90°,所以S △F 1PF 2=12×32=16.[B 能力提升]11.(2021·保定检测)双曲线x 2m -y 27=1,直线l 过其左焦点F 1,交双曲线左支于A ,B 两点,且|AB |=4,F 2为双曲线的右焦点,△ABF 2的周长为20,那么m 的值为( )A .8B .9C .16D .20解析:选B.由,|AB |+|AF 2|+|BF 2|=20.又|AB |=4,那么|AF 2|+|BF 2|,2a =|AF 2|-|AF 1|=|BF 2|-|BF 1|,所以4a =|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16-4=12,即a =3,所以m =a 2=9.12.(2021·西安高二检测)如图,双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M 与双曲线C 的焦点不重合,点M 关于F 1,F 2的对称点分别为点A ,B ,线段MN 的中点Q 在双曲线的右支上,假设|AN |-|BN |=12,那么a =( )A .3B .4C .5D .6解析:选A.连接QF 1,QF 2.因为线段MN 的中点为Q ,点F 2为MB 的中点,所以|QF 2|=12|BN |,同理可得|QF 1|=12|AN |.因为点Q 在双曲线C 的右支上,所以|QF 1|-|QF 2|=2a ,所以12(|AN |-|BN |)=2a ,所以12×12=2a ,解得a A.13.求与椭圆x 2+4y 2=8有公共焦点的双曲线的方程,使得以此双曲线与椭圆的四个交点为顶点的四边形的面积最大.解:椭圆的方程可化为x 28+y 22=1,①所以c 2=8-2=6.因为椭圆与双曲线有公共焦点,所以在双曲线中,a 2+b 2=c 2=6,即b 2=6-a 2.设双曲线的方程为x 2a 2-y 26-a2=1(0<a 2<6).②由①②解得⎩⎪⎨⎪⎧x 2=4a 23,y 2=6-a 23.由椭圆与双曲线的对称性可知四个交点构成一个矩形, 其面积S =4|xy |=4·4a 23·6-a 23=83 a 2〔6-a 2〕≤83·a 2+〔6-a 2〕2=8, 当且仅当a 2=6-a 2,即a 2=3,b 2=6-3=3时,取等号. 所以双曲线的方程是x 23-y 23=1. 14.(选做题)双曲线过点(3,-2)且与椭圆4x 2+9y 2=36有一样的焦点. (1)求双曲线的标准方程;(2)假设点M 在双曲线上,F 1,F 2为左、右焦点,且|MF 1|+|MF 2|=63,试判断△MF 1F 2的形状.解:(1)椭圆方程可化为x 29+y 24=1,焦点在x 轴上,且c =9-4=5,故可设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).依题意得⎩⎪⎨⎪⎧9a 2-4b 2=1,a 2+b 2=5,解得a 2=3,b 2=2,所以双曲线的标准方程为x 23-y 22=1.(2)不妨设点M 在双曲线的右支上,那么有|MF 1|-|MF 2|=23,因为|MF 1|+|MF 2|=63,所以|MF 1|=43,|MF 2|=2 3.又|F 1F 2|=25,因此在△MF 1F 2中,边MF 1最长,而cos ∠MF 2F 1=|MF 2|2+|F 1F 2|2-|MF 1|22|MF 2|·|F 1F 2|<0,所以∠MF 2F 1为钝角,故△MF 1F 2为钝角三角形.。
2020年高中数学课时跟踪检测含解析(全一册)新人教A版
2020年高中数学课时跟踪检测含解析新人教A版课时跟踪检测一变化率问题导数的概念课时跟踪检测二导数的几何意义课时跟踪检测三几个常用函数的导数基本初等函数的导数公式及导数的运算法则课时跟踪检测四复合函数求导及应用课时跟踪检测五函数的单调性与导数课时跟踪检测六函数的极值与导数课时跟踪检测七函数的最大小值与导数课时跟踪检测八生活中的优化问题举例课时跟踪检测九定积分的概念课时跟踪检测十微积分基本定理课时跟踪检测十一定积分的简单应用课时跟踪检测十二合情推理课时跟踪检测十三演绎推理课时跟踪检测十四综合法和分析法课时跟踪检测十五反证法课时跟踪检测十六数学归纳法课时跟踪检测十七数系的扩充和复数的概念课时跟踪检测十八 复数的几何意义课时跟踪检测十九 复数代数形式的加减运算及其几何意义 课时跟踪检测二十 复数代数形式的乘除运算课时跟踪检测(一) 变化率问题、导数的概念一、题组对点训练对点练一 函数的平均变化率1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a =( ) A .-3 B .2 C .3 D .-2解析:选C 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b )2-1=a =3.2.若函数f (x )=-x 2+10的图象上一点⎝ ⎛⎭⎪⎫32,314及邻近一点⎝ ⎛⎭⎪⎫32+Δx ,314+Δy ,则Δy Δx =( )A .3B .-3C .-3-(Δx )2D .-Δx -3解析:选D ∵Δy =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32=-3Δx -(Δx )2,∴Δy Δx =-3Δx -(Δx )2Δx =-3-Δx . 3.求函数y =f (x )=1x在区间[1,1+Δx ]内的平均变化率.解:∵Δy =f (1+Δx )-f (1)=11+Δx-1=1-1+Δx 1+Δx =1-(1+Δx )(1+1+Δx )1+Δx=-Δx(1+1+Δx )1+Δx, ∴Δy Δx =-1(1+1+Δx )1+Δx. 对点练二 求瞬时速度4.某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 3-2表示,则此物体在t =1 s 时的瞬时速度(单位:m/s)为( )A .1B .3C .-1D .0 答案:B5.求第4题中的物体在t 0时的瞬时速度. 解:物体在t 0时的平均速度为v =s (t 0+Δt )-s (t 0)Δt=(t 0+Δt )3-2-(t 30-2)Δt =3t 20Δt +3t 0(Δt )2+(Δt )3Δt=3t 20+3t 0Δt +(Δt )2.因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20,故此物体在t =t 0时的瞬时速度为3t 20 m/s. 6.若第4题中的物体在t 0时刻的瞬时速度为27 m/s,求t 0的值.解:由v =s (t 0+Δt )-s (t 0)Δt =(t 0+Δt )3-2-(t 30-2)Δt=3t 20Δt +3t 0(Δt )2+(Δt )3Δt =3t 20+3t 0Δt +(Δt )2,因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20. 所以由3t 20=27,解得t 0=±3, 因为t 0>0,故t 0=3,所以物体在3 s 时的瞬时速度为27 m/s. 对点练三 利用定义求函数在某一点处的导数 7.设函数f (x )可导,则lim Δx →0 f (1+3Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1) D .f ′(3)解析:选A lim Δx →0f (1+3Δx )-f (1)3Δx=f ′(1).8.设函数f (x )=ax +3,若f ′(1)=3,则a 等于( ) A .2 B .-2 C .3 D .-3 解析:选C ∵f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0a (1+Δx )+3-(a +3)Δx=a ,∴a =3.9.求函数f (x )=x 在x =1处的导数f ′(1).解:由导数的定义知,函数在x =1处的导数f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx,而f (1+Δx )-f (1)Δx =1+Δx -1Δx =11+Δx +1,又lim Δx →0 11+Δx +1=12,所以f ′(1)=12.二、综合过关训练1.若f (x )在x =x 0处存在导数,则lim h →0 f (x 0+h )-f (x 0)h( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .以上答案都不对解析:选B 由导数的定义知,函数在x =x 0处的导数只与x 0有关.2.函数y =x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1与k 2的大小关系为( )A .k 1>k 2B .k 2<k 2C .k 1=k 2D .不确定解析:选D k 1=f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=2x 0+Δx ;k 2=f (x 0)-f (x 0-Δx )Δx =x 20-(x 0-Δx )2Δx=2x 0-Δx .因为Δx 可正也可负,所以k 1与k 2的大小关系不确定. 3.A ,B 两机关开展节能活动,活动开始后两机关的用电量W 1(t ),W 2(t )与时间t (天)的关系如图所示,则一定有( )A .两机关节能效果一样好B .A 机关比B 机关节能效果好C .A 机关的用电量在[0,t 0]上的平均变化率比B 机关的用电量在[0,t 0]上的平均变化率大D .A 机关与B 机关自节能以来用电量总是一样大解析:选B 由题图可知,A 机关所对应的图象比较陡峭,B 机关所对应的图象比较平缓,且用电量在[0,t 0]上的平均变化率都小于0,故一定有A 机关比B 机关节能效果好.4.一个物体的运动方程为s =1-t +t 2,其中s 的单位是:m,t 的单位是:s,那么物体在3 s 末的瞬时速度是( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s解析:选C ∵Δs Δt =1-(3+Δt )+(3+Δt )2-(1-3+32)Δt=5+Δt ,∴lim Δt →0 Δs Δt =lim Δt →0 (5+Δt )=5 (m/s). 5.如图是函数y =f (x )的图象,则(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案:(1)12 (2)346.函数y =-1x在点x =4处的导数是________.解析:∵Δy =-14+Δx+14=12-14+Δx =4+Δx -224+Δx =Δx24+Δx (4+Δx +2). ∴Δy Δx =124+Δx (4+Δx +2). ∴lim Δx →0 Δy Δx =lim Δx →0124+Δx (4+Δx +2) =12×4×(4+2)=116.∴y ′|x =4=116.答案:1167.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移:m ;时间:s). (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时平均速度.解:(1)初速度v 0=lim Δt →0 s (Δt )-s (0)Δt =lim Δt →0 3Δt -(Δt 2)Δt=lim Δt →0 (3-Δt )=3(m/s). 即物体的初速度为3 m/s. (2)v =lim Δt →0s (2+Δt )-s (2)Δt=lim Δt →0 3(2+Δt )-(2+Δt )2-(3×2-4)Δt=lim Δt →0 -(Δt )2-Δt Δt =lim Δt →0 (-Δt -1)=-1(m/s). 即此物体在t =2时的瞬时速度为1 m/s,方向与初速度相反. (3)v =s (2)-s (0)2-0=6-4-02=1(m/s).即t =0到t =2时的平均速度为1 m/s.8.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围.解:因为函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx =-3-Δx ,所以由-3-Δx ≤-1, 得Δx ≥-2. 又因为Δx >0,即Δx 的取值范围是(0,+∞).课时跟踪检测(二) 导数的几何意义一、题组对点训练对点练一 求曲线的切线方程1.曲线y =x 3+11在点(1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15解析:选C ∵切线的斜率k =lim Δx →0 Δy Δx =lim Δx →0 (1+Δx )3+11-12Δx =lim Δx →0 1+3·Δx +3·(Δx )2+(Δx )3-1Δx =lim Δx →0[3+3(Δx )+(Δx )2]=3, ∴切线的方程为y -12=3(x -1). 令x =0得y =12-3=9.2.求曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2的切线方程.解:因为y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx -1x Δx =lim Δx →0 -1x 2+x ·Δx =-1x 2, 所以曲线在点⎝ ⎛⎭⎪⎫12,2的切线斜率为k =y ′|x =12=-4.故所求切线方程为y -2=-4⎝ ⎛⎭⎪⎫x -12,即4x +y -4=0.对点练二 求切点坐标3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A ∵点(0,b )在直线x -y +1=0上,∴b =1. 又y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a , ∴过点(0,b )的切线的斜率为y ′|x =0=a =1.4.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 解析:设P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 2(Δx )2+4x 0Δx +4ΔxΔx=4x 0+4, 又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)5.曲线y =f (x )=x 2的切线分别满足下列条件,求出切点的坐标. (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)切线的倾斜角为135°.解:f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,∴x 0=2,y 0=4,即P (2,4),显然P (2,4)不在直线y =4x -5上,∴符合题意.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,∴x 0=-32,y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,∴x 0=-12,y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14. 对点练三 导数几何意义的应用 6.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C 根据导数的几何意义及切线的定义知曲线在(x 0,y 0)处有导数,则切线一定存在,但反之不一定成立,故A,B,D 错误.7.设曲线y =f (x )在某点处的导数值为0,则过曲线上该点的切线( ) A .垂直于x 轴B .垂直于y 轴C .既不垂直于x 轴也不垂直于y 轴D .方向不能确定解析:选B 由导数的几何意义知曲线f (x )在此点处的切线的斜率为0,故切线与y 轴垂直.8.如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是( )解析:选D 不妨设A 固定,B 从A 点出发绕圆周旋转一周,刚开始时x 很小,即弧AB 长度很小,这时给x 一个改变量Δx ,那么弦AB 与弧AB 所围成的弓形面积的改变量非常小,即弓形面积的变化较慢;当弦AB 接近于圆的直径时,同样给x 一个改变量Δx ,那么弧AB 与弦AB 所围成的弓形面积的改变量将较大,即弓形面积的变化较快;从直径的位置开始,随着B点的继续旋转,弓形面积的变化又由变化较快变为越来越慢.由上可知函数y =f (x )图象的上升趋势应该是首先比较平缓,然后变得比较陡峭,最后又变得比较平缓,对比各选项知D 正确.9.已知函数y =f (x )的图象如图所示, 则函数y =f ′(x )的图象可能是________(填序号).解析:由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0,故②符合.答案:②二、综合过关训练1.函数f (x )的图象如图所示,则下列结论正确的是( ) A .0<f ′(a )<f ′(a +1)<f (a +1)-f (a ) B .0<f ′(a +1)<f (a +1)-f (a )<f ′(a ) C .0<f ′(a +1)<f ′(a )<f (a +1)-f (a ) D .0<f (a +1)-f (a )<f ′(a )<f ′(a +1)解析:选B f ′(a ),f ′(a +1)分别为曲线f (x )在x =a ,x =a +1处的切线的斜率,由题图可知f ′(a )>f ′(a +1)>0,而f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a表示(a ,f (a ))与(a +1,f (a+1))两点连线的斜率,且在f ′(a )与f ′(a +1)之间.∴0<f ′(a +1)<f (a +1)-f (a )<f ′(a ).2.曲线y =1x -1在点P (2,1)处的切线的倾斜角为( ) A .π6 B .π4 C .π3 D .3π4解析:选D Δy =12+Δx -1-12-1=11+Δx -1=-Δx 1+Δx ,lim Δx →0 Δy Δx =lim Δx →0 -11+Δx =-1,斜率为-1,倾斜角为3π4.3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x +1 C .y =2x -2D .y =-2x +2解析:选 A 由Δy =(1+Δx )3-2(1+Δx )+1-(1-2+1)=(Δx )3+3(Δx )2+Δx 得lim Δx →0 Δy Δx =lim Δx →0 (Δx )2+3Δx +1=1,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得切线方程为y =x -1.4.设P 0为曲线f (x )=x 3+x -2上的点,且曲线在P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4)解析:选C f ′(x )=lim Δx →0 (x +Δx )3+(x +Δx )-2-(x 3+x -2)Δx=lim Δx →0 (3x 2+1)Δx +3x (Δx )2+(Δx )3Δx =3x 2+1.由于曲线f (x )=x 3+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4.设P 0(x 0,y 0),则有f ′(x 0)=3x 20+1=4,解得x 0=±1,P 0的坐标为(1,0)或(-1,-4).5.已知二次函数y =f (x )的图象如图所示,则y =f (x )在A 、B 两点处的导数f ′(a )与f ′(b )的大小关系为:f ′(a )________f ′(b )(填“<”或“>”).解析:f ′(a )与f ′(b )分别表示函数图象在点A 、B 处的切线斜率,故f ′(a )>f ′(b ).答案:>6.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程为____________.解析:曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1=lim Δx →03(1+Δx )2-4(1+Δx )+2-3+4-2Δx=lim Δx →0 (3Δx +2)=2.所以过点 P (-1,2)的直线的斜率为2.由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.答案:2x-y+4=07.甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图①②,试问:(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?解:(1)图①中乙的切线斜率比甲的切线斜率大,故乙跑得快;(2)图②中在快到终点时乙的瞬时速度大,故快到终点时,乙跑得快.8.“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高时爆裂.如果烟花距地面的高度h(m)与时间t(s)之间的关系式为h(t)=-4.9t2+14.7t.其示意图如图所示.根据图象,结合导数的几何意义解释烟花升空后的运动状况.解:如图,结合导数的几何意义,我们可以看出:在t=1.5 s附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s之间,曲线在任何点的切线斜率大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5 s后,曲线在任何点的切线斜率小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.课时跟踪检测(三) 几个常用函数的导数、基本初等函数的导数公式及导数的运算法则一、题组对点训练对点练一 利用导数公式求函数的导数 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( )A .0B .1C .2D .3解析:选B 因为(cos x )′=-sin x ,所以①错误.sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误.⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x 3,所以③错误.⎝ ⎛⎭⎪⎫-1x ′=-0-(x 12)′x =12x -12x =12x -32=12x x,所以④正确. 2.已知f (x )=x α(α∈Q *),若f ′(1)=14,则α等于( )A .13B .12C .18D .14 解析:选D ∵f (x )=x α,∴f ′(x )=αx α-1.∴f ′(1)=α=14.对点练二 利用导数的运算法则求导数 3.函数y =sin x ·cos x 的导数是( ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin xD .y ′=cos x ·sin x解析:选B y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 4.函数y =x 2x +3的导数为________.解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x (x +3)2.答案:x 2+6x (x +3)25.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3, 所以a =3.答案:36.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =exsin x.解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos xx.(3)y ′=⎝ ⎛⎭⎪⎫e x sin x ′=(e x )′·sin x -e x ·(sin x )′sin 2x =e x ·sin x -e x ·cos x sin 2x =e x(sin x -cos x )sin 2x. 对点练三 利用导数公式研究曲线的切线问题7.(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________. 解析:∵y ′=3(2x +1)e x +3(x 2+x )e x =e x (3x 2+9x +3), ∴切线斜率k =e 0×3=3,∴切线方程为y =3x . 答案:y =3x8.若曲线f (x )=x ·sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝ ⎛⎭⎪⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以根据题意得1×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =2.答案:29.已知a ∈R,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a=(a -1)(x -1),令x =0,得y =1.答案:110.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,求点P 的坐标.解:设点P 的坐标为(x 0,y 0),因为y ′=3x 2-10,所以3x 20-10=2,解得x 0=±2.又点P 在第一象限内,所以x 0=2,又点P 在曲线C 上,所以y 0=23-10×2+13=1,所以点P 的坐标为(2,1).二、综合过关训练1.f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N,则f 2 019(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:选D 因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 019(x )=f 3(x )=-cos x .2.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .12解析:选A 因为y ′=x 2-3x ,所以根据导数的几何意义可知,x 2-3x =12,解得x =3(x =-2不合题意,舍去).3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B .12C .-22D .22解析:选B y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12,即为所求切线的斜率.4.已知直线y =3x +1与曲线y =ax 3+3相切,则a 的值为( ) A .1 B .±1 C .-1D .-2解析:选A 设切点为(x 0,y 0),则y 0=3x 0+1,且y 0=ax 30+3,所以3x 0+1=ax 30+3…①.对y =ax 3+3求导得y ′=3ax 2,则3ax 20=3,ax 20=1…②,由①②可得x 0=1,所以a =1.5.设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在点(2,f (2))处的切线方程为____________.解析:f ′(x )=3x 2+2ax +a -3, ∵f ′(x )是偶函数,∴a =0, ∴f (x )=x 3-3x ,f ′(x )=3x 2-3, ∴f (2)=8-6=2,f ′(2)=9,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -2=9(x -2), 即9x -y -16=0. 答案:9x -y -16=06.设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=________. 解析:令g (x )=(x +1)(x +2)…(x +n ),则f (x )=xg (x ), 求导得f ′(x )=x ′g (x )+xg ′(x )=g (x )+xg ′(x ), 所以f ′(0)=g (0)+0×g ′(0)=g (0)=1×2×3×…×n . 答案:1×2×3×…×n7.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2), ∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:88.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R.求曲线y =f (x )在点(1,f (1))处的切线方程.解:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b . 令x =1,得f ′(1)=3+2a +b , 又f ′(1)=2a,3+2a +b =2a , 解得b =-3,令x =2得f ′(2)=12+4a +b , 又f ′(2)=-b , 所以12+4a +b =-b , 解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3, 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1), 即6x +2y -1=0.9.已知两条直线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),所以两条曲线在P (x 0,y 0)处的斜率分别为k 1=y ′|x =x 0=cos x 0,k 2=y ′|x =x 0=-sinx 0.若使两条切线互相垂直,必须使cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.课时跟踪检测(四) 复合函数求导及应用一、题组对点训练对点练一 简单复合函数求导问题 1.y =cos 3x 的导数是( ) A .y ′=-3cos 2x sin x B .y ′=-3cos 2x C .y ′=-3sin 2xD .y ′=-3cos x sin 2x解析:选A 令t =cos x ,则y =t 3,y ′=y t ′·t x ′=3t 2·(-sin x )=-3cos 2x sin x . 2.求下列函数的导数. (1)y =ln(e x +x 2); (2)y =102x +3;(3)y =sin 4x +cos 4x .解:(1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x+2x )=e x+2x e x +x2.(2)令u =2x +3,则y =10u,∴y ′x =y ′u ·u ′x =10u·ln 10·(2x +3)′=2×102x +3ln10.(3)y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x ·cos 2x =1-12sin 22x =1-14(1-cos 4x )=34+14cos 4x . 所以y ′=⎝ ⎛⎭⎪⎫34+14cos 4x ′=-sin 4x . 对点练二 复合函数与导数运算法则的综合应用 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x解析:选B y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x .4.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5)D .x2x +5解析:选 B y ′=[x ln(2x +5)]′=x ′ln(2x +5)+x [ln(2x +5)]′=ln(2x +5)+x ·12x +5·(2x +5)′=ln(2x +5)+2x 2x +5. 5.函数y =sin 2x cos 3x 的导数是________. 解析:∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x . 答案:2cos 2x cos 3x -3sin 2x sin 3x6.已知f (x )=e πxsin πx ,求f ′(x )及f ′⎝ ⎛⎭⎪⎫12.解:∵f (x )=e πxsin πx ,∴f ′(x )=πe πxsin πx +πe πxcos πx =πe πx(sin πx +cos πx ). f ′⎝ ⎛⎭⎪⎫12=πe π2⎝ ⎛⎭⎪⎫sin π2+cos π2=πe 2π. 对点练三 复合函数导数的综合问题7.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D 令y =ax -ln(x +1),则f ′(x )=a -1x +1.所以f (0)=0,且f ′(0)=2.联立解得a =3.8.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5D .0解析:选A 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴y ′|x =x 0=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.9.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( )A .5太贝克B .75ln 2太贝克C .150ln 2 太贝克D .150太贝克解析:选D M ′(t )=-130ln 2×M 02-t30,由M ′(30)=-130ln 2×M 02-3030=-10 ln 2,解得M 0=600, 所以M (t )=600×2-t 30,所以t =60时,铯137的含量为M (60)=600×2-6030=600×14=150(太贝克).二、综合过关训练1.函数y =(2 019-8x )3的导数y ′=( ) A .3(2 019-8x )2B .-24xC .-24(2 019-8x )2D .24(2 019-8x 2)解析:选C y ′=3(2 019-8x )2×(2 019-8x )′=3(2 019-8x )2×(-8)=-24(2 019-8x )2.2.函数y =12(e x +e -x)的导数是( )A .12(e x -e -x) B .12(e x +e -x) C .e x-e -xD .e x+e -x解析:选A y ′=12(e x +e -x )′=12(e x -e -x).3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B 设切点坐标是(x 0,x 0+1),依题意有⎩⎪⎨⎪⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.4.函数y =ln ex1+ex 在x =0处的导数为________.解析:y =ln e x1+e x =ln e x -ln(1+e x )=x -ln(1+e x),则y ′=1-e x1+e x .当x =0时,y ′=1-11+1=12. 答案:125.设曲线y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 解析:令y =f (x ),则曲线y =e ax在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax,所以f ′(0)=a e 0=a ,故a =2.答案:26.f (x )=ax 2-1且f ′(1)=2,则a 的值为________.解析:∵f (x )=(ax 2-1)12,∴f ′(x )=12(ax 2-1)-12·(ax 2-1)′=ax ax 2-1 .又f ′(1)=2,∴aa -1=2,∴a =2. 答案:27.求函数y =a sin x3+b cos 22x (a ,b 是实常数)的导数.解:∵⎝⎛⎭⎪⎫a sin x 3′=a cos x 3·⎝ ⎛⎭⎪⎫x 3′=a 3cos x3,又(cos 22x )′=⎝ ⎛⎭⎪⎫12+12cos 4x ′=12(-sin 4x )×4=-2sin 4x , ∴y =a sin x3+b cos 22x 的导数为y ′=⎝ ⎛⎭⎪⎫a sin x 3′+b (cos 22x )′=a 3cos x 3-2b sin 4x .8.曲线y =e 2xcos 3x 在(0,1)处的切线与l 的距离为5,求l 的方程. 解:由题意知y ′=(e 2x)′cos 3x +e 2x(cos 3x )′ =2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2xsin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2. 所以该切线方程为y -1=2x ,即y =2x +1. 设l 的方程为y =2x +m ,则d =|m -1|5= 5.解得m =-4或m =6.当m =-4时,l 的方程为y =2x -4;当m=6时,l的方程为y=2x+6.综上,可知l的方程为y=2x-4或y=2x+6.课时跟踪检测(五)函数的单调性与导数一、题组对点训练对点练一函数与导函数图象间的关系1.f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是下列选项中的( )解析:选C 题目所给出的是导函数的图象,导函数的图象在x轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在x轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由x∈(-∞,0)时导函数图象在x轴的上方,表示在此区间上,原函数的图象呈上升趋势,可排除B、D两选项.由x∈(0,2)时导函数图象在x轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除A选项.故选C.2.若函数y=f′(x)在区间(x1,x2)内是单调递减函数,则函数y=f(x)在区间(x1,x2)内的图象可以是( )解析:选B 选项A中,f′(x)>0且为常数函数;选项C中,f′(x)>0且f′(x)在(x1,x2)内单调递增;选项D中,f′(x)>0且f′(x)在(x1,x2)内先增后减.故选B.3.如图所示的是函数y=f(x)的导函数y=f′(x)的图象,则在[-2,5]上函数f(x)的递增区间为________.解析:因为在(-1,2)和(4,5]上f′(x)>0,所以f(x)在[-2,5]上的单调递增区间为(-1,2)和(4,5].答案:(-1,2)和(4,5]对点练二判断(证明)函数的单调性、求函数的单调区间4.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4) D.(2,+∞)解析:选D f′(x)=(x-3)′e x+(x-3)(e x)′=e x(x-2).由f′(x)>0得x>2,∴f(x)的单调递增区间是(2,+∞).5.函数f (x )=2x 2-ln x 的递增区间是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-12,0和⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝⎛⎭⎪⎫-∞,-12和⎝ ⎛⎭⎪⎫0,12解析:选C 由题意得,函数的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x=(2x +1)(2x -1)x ,令f ′(x )=(2x +1)(2x -1)x >0,解得x >12,故函数f (x )=2x 2-ln x 的递增区间是⎝ ⎛⎭⎪⎫12,+∞.故选C. 6.已知f (x )=ax 3+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x . (1)求y =f (x )的解析式; (2)求y =f (x )的单调递增区间.解:(1)∵f (x )=ax 3+bx 2+c 的图象经过点(0,1),∴c =1,f ′(x )=3ax 2+2bx ,f ′(1)=3a +2b =1,切点为(1,1),则f (x )=ax 3+bx 2+c 的图象经过点(1,1),得a +b +c =1,解得a =1,b =-1,即f (x )=x 3-x 2+1.(2)由f ′(x )=3x 2-2x >0得x <0或x >23,所以单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫23,+∞.对点练三 与参数有关的函数单调性问题7.若函数f (x )=x -a x 在[1,4]上单调递减,则实数a 的最小值为( ) A .1 B .2 C .4D .5解析:选C 函数f (x )=x -a x 在[1,4]上单调递减,只需f ′(x )≤0在[1,4]上恒成立即可,令f ′(x )=1-12ax -12≤0,解得a ≥2x ,则a ≥4.∴a min =4.8.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________.解析:f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.答案:-32-69.已知函数f (x )=(x -2)e x+a (x -1)2.讨论f (x )的单调性. 解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ).(1)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.(2)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增;②若-e2<a <0,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a ))∪(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减;③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1)∪(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.二、综合过关训练1.若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x解析:选A 对于选项A,f (x )=2-x=⎝ ⎛⎭⎪⎫12x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫12x =⎝ ⎛⎭⎪⎫e 2x ,∵e 2>1,∴e x f (x )在R 上单调递增,∴f (x )=2-x具有M 性质.对于选项B,f (x )=x 2,e xf (x )=e x x 2,[e xf (x )]′=e x(x 2+2x ),令e x (x 2+2x )>0,得x >0或x <-2;令e x (x 2+2x )<0,得-2<x <0,∴函数e xf (x )在(-∞,-2)和(0,+∞)上单调递增,在(-2,0)上单调递减,∴f (x )=x 2不具有M 性质.对于选项C,f (x )=3-x=⎝ ⎛⎭⎪⎫13x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫13x =⎝ ⎛⎭⎪⎫e 3x ,∵e3<1, ∴y =⎝ ⎛⎭⎪⎫e 3x在R 上单调递减,∴f (x )=3-x不具有M 性质.对于选项D,f (x )=cos x ,e xf (x )=e xcos x ,则[e x f (x )]′=e x (cos x -sin x )≥0在R 上不恒成立,故e x f (x )=e xcos x 在R 上不是单调递增的,∴f (x )=cos x 不具有M 性质.故选A.2.若函数f (x )=x -eln x,0<a <e<b ,则下列说法一定正确的是( ) A .f (a )<f (b ) B .f (a )>f (b ) C .f (a )>f (e)D .f (e)>f (b )解析:选C f ′(x )=1-e x =x -ex,x >0,令f ′(x )=0,得x =e,f (x )在(0,e)上为减函数,在(e,+∞)上为增函数,所以f (a )>f (e),f (b )>f (e),f (a )与f (b )的大小不确定.3.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是( )解析:选D 对于选项A,若曲线C 1为y =f (x )的图象,曲线C 2为y =f ′(x )的图象,则函数y =f (x )在(-∞,0)内是减函数,从而在(-∞,0)内有f ′(x )<0;y =f (x )在(0,+∞)内是增函数,从而在(0,+∞)内有f ′(x )>0.因此,选项A 可能正确.同理,选项B 、C 也可能正确.对于选项D,若曲线C 1为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为增函数,与C 2不相符;若曲线C 2为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为减函数,与C 1不相符.因此,选项D 不可能正确.4.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C 因为⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2,又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).5.(2019·北京高考)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.解析:∵f (x )=e x +a e -x(a 为常数)的定义域为R, ∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x-ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x≥ae x 在R 上恒成立,∴a ≤e 2x在R 上恒成立.又e 2x>0,∴a ≤0,即a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]6.如果函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x.由f ′(x )>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12.由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0.解得:1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32 7.已知函数f (x )=x ln x .(1)求曲线f (x )在x =1处的切线方程;(2)讨论函数f (x )在区间(0,t ](t >0)上的单调性. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1. 曲线f (x )在x =1处的切线的斜率为k =f ′(1)=1.把x =1代入f (x )=x ln x 中得f (1)=0,即切点坐标为(1,0).所以曲线f (x )在x =1处的切线方程为y =x -1.(2)令f ′(x )=1+ln x =0,得x =1e.①当0<t <1e时,在区间(0,t ]上,f ′(x )<0,函数f (x )为减函数.②当t >1e 时,在区间⎝ ⎛⎭⎪⎫0,1e 上,f ′(x )<0,f (x )为减函数;在区间⎝ ⎛⎭⎪⎫1e ,t 上,f ′(x )>0,f (x )为增函数.8.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解:h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立,令G (x )=1x 2-2x,则a ≥G (x )max .而G (x )=⎝ ⎛⎭⎪⎫1x-12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x .因为x ∈[1,4],所以h ′(x )=(7x -4)(x -4)16x ≤0,即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.课时跟踪检测(六) 函数的极值与导数一、题组对点训练对点练一 求函数的极值1.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值D .极小值-27,无极大值解析:选C 由y ′=3x 2-6x -9=0, 得x =-1或x =3.当x <-1或x >3时,y ′>0; 当-1<x <3时,y ′<0.∴当x =-1时,函数有极大值5; 3∉(-2,2),故无极小值.2.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0 B .0,427C .-427,0D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.3.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________. ①当x =32时,函数取得极小值;②f (x )有两个极值点; ③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由题图知,当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点,分别为1和2,且当x =2时函数取得极小值,当x =1时函数取得极大值.只有①不正确.答案:①对点练二 已知函数的极值求参数4.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.5.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( ) A .b <1 B .b >1 C .0<b <1 D .b <12解析:选C f ′(x )=2x -2b =2(x -b ),令f ′(x )=0,解得x =b ,由于函数f (x )在区间(0,1)内有极小值,则有0<b <1.当0<x <b 时,f ′(x )<0;当b <x <1时,f ′(x )>0,符合题意.所以实数b 的取值范围是0<b <1.6.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.解析:f ′(x )=3x 2+6ax +3(a +2),∵函数f (x )既有极大值又有极小值,∴方程f ′(x )=0有两个不相等的实根,∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1.答案:(-∞,-1)∪(2,+∞) 对点练三 函数极值的综合问题7.设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.。
人教a版数学【选修1-1】2.2.1双曲线及其标准方程(含答案)
§2.2 双曲线2.2.1 双曲线及其标准方程 课时目标 1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的应用问题.1.双曲线的有关概念(1)双曲线的定义平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于________)的点的轨迹叫做双曲线.平面内与两个定点F 1,F 2的距离的差的绝对值等于|F 1F 2|时的点的轨迹为 __________________________________________.平面内与两个定点F 1,F 2的距离的差的绝对值大于|F 1F 2|时的点的轨迹__________.(2)双曲线的焦点和焦距双曲线定义中的两个定点F 1、F 2叫做________________,两焦点间的距离叫做________________.2.双曲线的标准方程(1)焦点在x 轴上的双曲线的标准方程是________________,焦点F 1__________,F 2__________.(2)焦点在y 轴上的双曲线的标准方程是________________________,焦点F 1________,F 2__________.(3)双曲线中a 、b 、c 的关系是____________.一、选择题1.已知平面上定点F 1、F 2及动点M ,命题甲:||MF 1|-|MF 2||=2a (a 为常数),命题乙:M 点轨迹是以F 1、F 2为焦点的双曲线,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.若ax 2+by 2=b (ab <0),则这个曲线是( )A .双曲线,焦点在x 轴上B .双曲线,焦点在y 轴上C .椭圆,焦点在x 轴上D .椭圆,焦点在y 轴上3.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( )A .x 2-y 23=1 B.x 23-y 2=1 C .y 2-x 23=1 D .x 22-y 22=1 4.双曲线x 2m -y 23+m=1的一个焦点为(2,0),则m 的值为( ) A .12B .1或3C .1+22D .2-125.一动圆与两圆:x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹为( )A .抛物线B .圆C .双曲线的一支D .椭圆6.已知双曲线中心在坐标原点且一个焦点为F 1(-5,0),点P 位于该双曲线上,线段PF 1的中点坐标为(0,2),则该双曲线的方程是( )A .x 24-y 2=1B .x 2-y 24=1 C .x 22-y 23=1 D .x 23-y 22=1题号 1 2 3 4 5 6 答案7.设F 1、F 2是双曲线 x 24-y 2=1的两个焦点,点P 在双曲线上,且PF 1→·PF 2→=0,则|PF 1|·|PF 2|=______.8.已知方程x 21+k -y 21-k=1表示双曲线,则k 的取值范围是________. 9.F 1、F 2是双曲线x 29-y 216=1的两个焦点,P 在双曲线上且满足|PF 1|·|PF 2|=32,则∠F 1PF 2=______.三、解答题10.设双曲线与椭圆x 227+y 236=1有相同的焦点,且与椭圆相交,一个交点A 的纵坐标为4,求此双曲线的标准方程.11.在△ABC 中,B (4,0)、C (-4,0),动点A 满足sin B -sin C =12sin A ,求动点A 的轨迹方程.能力提升12.若点O 和点F(-2,0)分别为双曲线x 2a2-y 2=1(a>0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为( )A .[3-23,+∞)B .[3+23,+∞)C .[-74,+∞)D .[74,+∞) 13.已知双曲线的一个焦点为F (7,0),直线y =x -1与其相交于M ,N 两点,MN 中点的横坐标为-23,求双曲线的标准方程.1.双曲线的标准方程可以通过待定系数法求得.2.和双曲线有关的轨迹问题要按照求轨迹方程的一般步骤来解,也要和双曲线的定义相结合.3.直线和双曲线的交点问题可以转化为解方程组(设而不求),利用韦达定理,弦长公式等解决.§2.2 双曲线2.2.1 双曲线及其标准方程答案知识梳理1.(1)|F 1F 2| 以F 1,F 2为端点的两条射线 不存在 (2)双曲线的焦点 双曲线的焦距2.(1)x 2a 2-y 2b 2=1(a >0,b >0) (-c,0) (c,0) (2)y 2a 2-x 2b 2=1(a >0,b >0) (0,-c ) (0,c ) (3)c 2=a 2+b 2作业设计1.B [根据双曲线的定义,乙⇒甲,但甲 乙,只有当2a <|F 1F 2|且a ≠0时,其轨迹才是双曲线.]2.B [原方程可化为x 2b a+y 2=1,因为ab <0,所以b a<0,所以曲线是焦点在y 轴上的双曲线,故选B.]3.A [∵双曲线的焦点在x 轴上,∴设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0). 由题知c =2,∴a 2+b 2=4. ①又点(2,3)在双曲线上,∴22a 2-32b 2=1. ② 由①②解得a 2=1,b 2=3,∴所求双曲线的标准方程为x 2-y 23=1.] 4.A [∵双曲线的焦点为(2,0),在x 轴上且c =2,∴m +3+m =c 2=4.∴m =12.] 5.C [由题意两定圆的圆心坐标为O 1(0,0),O 2(4,0),设动圆圆心为O ,动圆半径为r ,则|OO 1|=r +1,|OO 2|=r +2,∴|OO 2|-|OO 1|=1<|O 1O 2|=4,故动圆圆心的轨迹为双曲线的一支.]6.B [设双曲线方程为x 2a 2-y 2b 2=1,因为c =5,c 2=a 2+b 2,所以b 2=5-a 2,所以 x 2a 2-y 25-a 2=1.由于线段PF 1的中点坐标为(0,2),则P 点的坐标为(5,4).代入双曲线方程得5a 2-165-a 2=1,解得a 2=1或a 2=25(舍去),所以双曲线方程为x 2-y 24=1.故选B.]7.2解析 ∵||PF 1|-|PF 2||=4, 又PF 1⊥PF 2,|F 1F 2|=25, ∴|PF 1|2+|PF 2|2=20,∴(|PF 1|-|PF 2|)2=20-2|PF 1||PF 2|=16,∴|PF 1|·|PF 2|=2.8.-1<k <1解析 因为方程x 21+k -y 21-k=1表示双曲线, 所以(1+k )(1-k )>0.所以(k +1)(k -1)<0.所以-1<k <1.9.90°解析 设∠F 1PF 2=α,|PF 1|=r 1,|PF 2|=r 2.在△F 1PF 2中,由余弦定理,得(2c )2=r 21+r 22-2r 1r 2cos α,∴cos α=(r 1-r 2)2+2r 1r 2-4c 22r 1r 2=36+64-10064=0. ∴α=90°.10.解 方法一 设双曲线的标准方程为y 2a 2-x 2b2=1 (a >0,b >0),由题意知c 2=36-27 =9,c =3.又点A 的纵坐标为4,则横坐标为±15,于是有⎩⎪⎨⎪⎧ 42a 2-(±15)2b 2=1,a 2+b 2=9,解得⎩⎪⎨⎪⎧a 2=4,b 2=5. 所以双曲线的标准方程为y 24-x 25=1. 方法二 将点A 的纵坐标代入椭圆方程得A (±15,4),又两焦点分别为F 1(0,3),F 2(0,-3).所以2a =|(±15-0)2+(4+3)2-(±15-0)2+(4-3)2|=4,即a =2,b 2=c 2-a 2=9-4=5,所以双曲线的标准方程为y 24-x 25=1. 11.解 设A 点的坐标为(x ,y ),在△ABC 中,由正弦定理,得a sin A =b sin B =c sin C=2R , 代入sin B -sin C =12sin A , 得|AC |2R -|AB |2R =12·|BC |2R,又|BC |=8, 所以|AC |-|AB |=4.因此A 点的轨迹是以B 、C 为焦点的双曲线的右支(除去右顶点)且2a =4,2c =8,所以 a =2,c =4,b 2=12.所以A 点的轨迹方程为x 24-y 212=1 (x >2). 12.B[由c =2得a 2+1=4,∴a 2=3,∴双曲线方程为x 23-y 2=1. 设P (x ,y )(x ≥3),∴ OP →·FP →=(x ,y )·(x +2,y )=x 2+2x +y 2 =x 2+2x +x 23-1 =43x 2+2x -1(x ≥3). 令g (x )=43x 2+2x -1(x ≥3),则g (x )在[3,+∞)上单调递增.g (x )min =g (3)=3+2 3. OP →·FP →的取值范围为[3+23,+∞).]13.解 设双曲线的标准方程为x 2a 2-y 2b2=1, 且c =7,则a 2+b 2=7.① 由MN 中点的横坐标为-23知, 中点坐标为⎝⎛⎭⎫-23,-53. 设M (x 1,y 1),N (x 2,y 2),则由⎩⎨⎧ x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1, 得b 2(x 1+x 2)(x 1-x 2)-a 2(y 1+y 2)(y 1-y 2)=0.∵⎩⎨⎧x 1+x 2=-43y 1+y 2=-103,且y 1-y 2x 1-x 2=1, ∴2b 2=5a 2.②由①,②求得a 2=2,b 2=5.∴所求双曲线的标准方程为x 22-y 25=1.。
双曲线及其标准方程 说课课件2024-2025学年高二上学期数学人教A版(2019)选择性必修第一册
B
x
教学过程分析
让学生自己体验求轨迹
方程的方法,体会双曲
线与椭圆的联系与区别。
探究:如图,点A,B的坐标分别是(−5,0),
(5,0),直线 AM,BM相交于点M,且它们斜率
4
之积是 ,试求点M的轨迹方程,并由点M的轨
9
迹方程判断轨迹的形状,与3.1例3比较,你有
什么发现?
y
M
A
O
B
x
探究
探究:如图,点A,B的坐标分别是(−5,0),(5,0),直线 AM,BM
与
01
03
02
能类比椭圆,借助信息技
能类比椭圆,推
能利用双曲线的定义和标
术,通过实际绘制双曲线图象
导出双曲线的标准方
准方程解决一些简单的问题和实
的过程认识双曲线的几何特征,
程,发展数学运算,
际问题,从中体会建立曲线的
抽象出双曲线的概念,发展数
直观想象,逻辑推理
方程的方法,发展数学建模素
学抽象素养。
素养;
劣势
但学生对双曲线的形
和椭圆的方程,掌握了求曲
成还不是很 清 楚 ,这是
线方程的一般步骤,了解了
本节课的一 个 难点 。学
含有两个根式的方程的化简,
生也容易混 淆 椭圆与双
也体会了坐标法,类比法,
曲线的有关 知 识 ,要加
数学结合思想的应用.
以对比,归纳总结。
教学目标与学科素养分析
教学
目标
学科
素质
双曲线与椭圆之间的区别与联系
椭
定 义
|MF1|+|MF2|=2a
x
a
2
焦点在x轴上:2
2021年高中数学课时跟踪检测八双曲线及其标准方程新人教A版选修
2021年高中数学课时跟踪检测八双曲线及其标准方程新人教A 版选修1.已知F 1(-8,3),F 2(2,3),动点P 满足|PF 1|-|PF 2|=10,则P 点的轨迹是( ) A .双曲线 B .双曲线的一支 C .直线D .一条射线解析:选D F 1,F 2是定点,且|F 1F 2|=10,所以满足条件|PF 1|-|PF 2|=10的点P 的轨迹应为一条射线.2.在方程mx 2-my 2=n 中,若mn <0,则方程表示的曲线是( ) A .焦点在x 轴上的椭圆B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在y 轴上的双曲线解析:选D 将方程化为y 2-n m -x 2-n m=1,由mn <0,知-n m>0,所以方程表示的曲线是焦点在y 轴上的双曲线.3.已知定点A ,B 且|AB |=4,动点P 满足|PA |-|PB |=3,则|PA |的最小值为( ) A .12 B .32C .72D .5解析:选C 如图所示,点P 是以A ,B 为焦点的双曲线的右支上的点,当P 在M 处时,|PA |最小,最小值为a +c =32+2=72.4.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值是( )A .12 B .1或-2 C .1或12D .1解析:选D 依题意知⎩⎪⎨⎪⎧a >0,0<a 2<4,4-a 2=a +2,解得a =1.5.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( ) A .x 2-y 23=1B .x 23-y 2=1C .y 2-x 23=1D .x 22-y 22=1解析:选A 由双曲线定义知, 2a =2+22+32-2-22+32=5-3=2,∴a =1.又c =2,∴b 2=c 2-a 2=4-1=3, 因此所求双曲线的标准方程为x 2-y 23=1.6.设m 是常数,若点F (0,5)是双曲线y 2m -x 29=1的一个焦点,则m =________.解析:由点F (0,5)可知该双曲线y 2m -x 29=1的焦点落在y 轴上,所以m >0,且m +9=52,解得m =16.答案:167.经过点P (-3,27)和Q (-62,-7),且焦点在y 轴上的双曲线的标准方程是________________.解析:设双曲线的方程为mx 2+ny 2=1(mn <0),则⎩⎪⎨⎪⎧9m +28n =1,72m +49n =1,解得⎩⎪⎨⎪⎧m =-175,n =125,故双曲线的标准方程为y 225-x 275=1. 答案:y 225-x 275=18.已知双曲线的两个焦点F 1(-5,0),F 2(5,0),P 是双曲线上一点,且·=0,|PF 1|·|PF 2|=2,则双曲线的标准方程为________________.解析:由题意可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0). 由·=0,得PF 1⊥PF 2.根据勾股定理得 |PF 1|2+|PF 2|2=(2c )2,即|PF 1|2+|PF 2|2=20. 根据双曲线定义有|PF 1|-|PF 2|=±2a .两边平方并代入|PF 1|·|PF 2|=2得20-2×2=4a 2,解得a 2=4,从而b 2=5-4=1, 所以双曲线方程为x 24-y 2=1.答案:x 24-y 2=19.已知与双曲线x 216-y 29=1共焦点的双曲线过点P ⎝ ⎛⎭⎪⎫-52,-6,求该双曲线的标准方程.解:已知双曲线x 216-y 29=1,由c 2=a 2+b 2, 得c 2=16+9=25,∴c =5.设所求双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0).依题意,c =5,∴b 2=c 2-a 2=25-a 2,故双曲线方程可写为x 2a 2-y 225-a 2=1.∵点P ⎝ ⎛⎭⎪⎫-52,-6在双曲线上, ∴⎝ ⎛⎭⎪⎫-522a 2--6225-a2=1. 化简,得4a 4-129a 2+125=0, 解得a 2=1或a 2=1254.又当a 2=1254时,b 2=25-a 2=25-1254=-254<0,不合题意,舍去,故a 2=1,b 2=24.∴所求双曲线的标准方程为x 2-y 224=1.10.已知△ABC 的两个顶点A ,B 分别为椭圆x 2+5y 2=5的左焦点和右焦点,且三个内角A ,B ,C 满足关系式sin B -sin A =12sin C .(1)求线段AB 的长度; (2)求顶点C 的轨迹方程.解:(1)将椭圆方程化为标准形式为x 25+y 2=1.∴a 2=5,b 2=1,c 2=a 2-b 2=4, 则A (-2,0),B (2,0),|AB |=4.(2)∵sin B -sin A =12sin C ,∴由正弦定理得|CA |-|CB |=12|AB |=2<|AB |=4,即动点C 到两定点A ,B 的距离之差为定值. ∴动点C 的轨迹是双曲线的右支,并且c =2,a =1, ∴所求的点C 的轨迹方程为x 2-y 23=1(x >1).层级二 应试能力达标1.设θ∈⎝ ⎛⎭⎪⎫3π4,π,则关于x ,y 的方程x 2sin θ+y 2cos θ=1所表示的曲线是( )A .焦点在y 轴上的双曲线B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在x 轴上的椭圆 解析:选B 由题意,知x 2sin θ-y 2-cos θ=1,因为θ∈⎝⎛⎭⎪⎫3π4,π,所以sin θ>0,-cos θ>0,则方程表示焦点在x 轴上的双曲线.故选B .2.若双曲线x 2n-y 2=1(n >1)的左、右焦点分别为F 1,F 2,点P 在双曲线上,且满足|PF 1|+|PF 2|=2n +2,则△PF 1F 2的面积为( )A .1B .12C .2D .4解析:选A 设点P 在双曲线的右支上,则|PF 1|-|PF 2|=2n ,已知|PF 1|+|PF 2|=2n +2,解得|PF 1|=n +2+n ,|PF 2|=n +2-n ,|PF 1|·|PF 2|=2.又|F 1F 2|=2n +1,则|PF 1|2+|PF 2|2=|F 1F 2|2,所以△PF 1F 2为直角三角形,且∠F 1PF 2=90°,于是S △PF 1F 2=12|PF 1|·|PF 2|=12×2=1.故选A .3.若双曲线8kx 2-ky 2=8的一个焦点坐标是(3,0),则k =( ) A .1 B .-1 C .12D .-12解析:选A 依题意,知双曲线的焦点在x 轴上,方程可化为x 21k-y 28k=1,则k >0,且a2=1k ,b 2=8k ,所以1k +8k=9,解得k =1.4.已知双曲线x 2a 2-y 2b2=1(a >0,b >0),F 1,F 2为其两个焦点,若过焦点F 1的直线与双曲线的一支相交的弦长|AB |=m ,则△ABF 2的周长为( )A .4aB .4a -mC .4a +2mD .4a -2m解析:选C 由双曲线的定义,知|AF 2|-|AF 1|=2a ,|BF 2|-|BF 1|=2a ,所以|AF 2|+|BF 2|=(|AF 1|+|BF 1|)+4a =m +4a ,于是△ABF 2的周长l =|AF 2|+|BF 2|+|AB |=4a +2m .故选C .5.已知双曲线x 225-y 29=1的两个焦点分别为F 1,F 2,双曲线上的点P 到F 1的距离为12,则点P 到F 2的距离为________.解析:设F 1为左焦点,F 2为右焦点,当点P 在双曲线的左支上时,|PF 2|-|PF 1|=10,所以|PF 2|=22;当点P 在双曲线的右支上时,|PF 1|-|PF 2|=10,所以|PF 2|=2.答案:22或26.过双曲线x 2144-y 225=1的一个焦点作x 轴的垂线,则垂线与双曲线的一个交点到两焦点的距离分别为________.解析:因为双曲线方程为x 2144-y 225=1, 所以c =144+25=13,设F 1,F 2分别是双曲线的左、右焦点, 则F 1(-13,0),F 2(13,0).设过F 1且垂直于x 轴的直线l 交双曲线于A (-13,y )(y >0),则y 225=132144-1=25144,所以y =2512,即|AF 1|=2512.又|AF 2|-|AF 1|=2a =24, 所以|AF 2|=24+2512=31312.即所求距离分别为2512,31312.答案:2512,313127.已知△OFQ 的面积为26,且·=m ,其中O 为坐标原点. (1)设6<m <46,求与的夹角θ的正切值的取值范围;(2)设以O 为中心,F 为其中一个焦点的双曲线经过点Q ,如图所示,||=c ,m =⎝⎛⎭⎪⎫64-1c 2,当||取得最小值时,求此双曲线的标准方程. 解:(1)因为⎩⎪⎨⎪⎧12| |·||sin π-θ=26,| |·||cos θ=m ,所以tan θ=46m.又6<m <46,所以1<tan θ<4. 即tan θ的取值范围为(1,4).(2)设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),Q (x 1,y 1),则||=(x 1-c ,y 1),所以S △OFQ =12||·|y 1|=26,则y 1=±46c .又·=m ,即(c,0)·(x 1-c ,y 1)=⎝ ⎛⎭⎪⎫64-1c 2,解得x 1=64c ,所以||=x 21+y 21=38c 2+96c2≥12=23, 当且仅当c =4时,||最小,这时Q 的坐标为(6,6)或(6,-6). 因为⎩⎪⎨⎪⎧6a 2-6b2=1,a 2+b 2=16,所以⎩⎪⎨⎪⎧a 2=4,b 2=12.于是双曲线的标准方程为x 24-y 212=1.8.设圆C 与两圆(x +5)2+y 2=4,(x -5)2+y 2=4中的一个内切,另一个外切. (1)求C 的圆心轨迹L 的方程; (2)已知点M ⎝⎛⎭⎪⎫355,455,F (5,0),且P 为L 上动点.求||MP |-|FP ||的最大值.解:(1)两圆的圆心分别为A (-5,0),B (5,0),半径为2,设圆C 的半径为r .由题意得|CA |=r -2,|CB |=r +2或|CA |=r +2,|CB |=r -2,两式相减得|CA |-|CB |=-4或|CA |-|CB |=4,即||CA |-|CB ||=4.则圆C 的圆心轨迹为双曲线,其中2a =4,c =5,b 2=1, ∴圆C 的圆心轨迹L 的方程为x 24-y 2=1.(2)由(1)知F 为双曲线L 的一个焦点,如图,连接MF 并延长交双曲线于一点P ,此时|PM |-|PF |=|MF |为||PM |-|FP ||的最大值.又|MF |=⎝ ⎛⎭⎪⎫355-52+⎝ ⎛⎭⎪⎫4552=2, ∴||MP |-|FP ||的最大值为2.。
高中数学课时跟踪检测十双曲线的简单几何性质含解析新人教A版选修11
高中数学课时跟踪检测十双曲线的简单几何性质含解析新人教A 版选修11层级一 学业水平达标1.下列双曲线中离心率为62的是( ) A .x 22-y 24=1B .x 24-y 22=1C .x 24-y 26=1D .x 24-y 210=1解析:选B 由e =62得e 2=32,∴c 2a 2=32,则a 2+b 2a 2=32,∴b 2a 2=12,即a 2=2b 2.因此可知B 正确.2.中心在原点,实轴在x 轴上,一个焦点在直线3x -4y +12=0上的等轴双曲线方程是( )A .x 2-y 2=8 B .x 2-y 2=4 C .y 2-x 2=8D .y 2-x 2=4解析:选A 令y =0得,x =-4, ∴等轴双曲线的一个焦点坐标为(-4,0), ∴c =4,a 2=12c 2=12×16=8,故选A .3.双曲线x 24+y 2k=1的离心率e ∈(1,2),则k 的取值范围是( )A .(-10,0)B .(-12,0)C .(-3,0)D .(-60,-12)解析:选B 由题意知k <0,∴a 2=4,b 2=-k .∴e 2=a 2+b 2a 2=4-k 4=1-k 4.又e ∈(1,2),∴1<1-k4<4,∴-12<k <0.4.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A .x 23-y 26=1B .x 24-y 25=1C .x 26-y 23=1D .x 25-y 24=1解析:选B 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由题意知c =3,a 2+b 2=9,设A (x 1,y 1),B (x 2,y 2)则有⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,x 22a 2-y22b 2=1,两式作差得y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 1=-12b 2-15a 2=4b25a2,又AB 的斜率是-15-0-12-3=1,所以4b 2=5a 2,代入a 2+b 2=9得a 2=4,b 2=5, 所以双曲线标准方程是x 24-y 25=1.5.(全国卷Ⅱ)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A . 5B .2C . 3D . 2解析:选D 不妨取点M 在第一象限,如图所示,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),则|BM |=|AB |=2a ,∠MBx =180°-120°=60°,∴M 点的坐标为()2a ,3a .∵M 点在双曲线上,∴4a 2a 2-3a2b2=1,a =b ,∴c =2a ,e =c a=2.故选D .6.(全国卷Ⅱ)已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.解析:法一:∵双曲线的渐近线方程为y =±12x ,∴可设双曲线的方程为x 2-4y 2=λ(λ≠0). ∵双曲线过点(4,3),∴λ=16-4×(3)2=4, ∴双曲线的标准方程为x 24-y 2=1.法二:∵渐近线y =12x 过点(4,2),而3<2,∴点(4,3)在渐近线y =12x 的下方,在y =-12x 的上方(如图).∴双曲线的焦点在x 轴上, 故可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0). 由已知条件可得⎩⎪⎨⎪⎧b a =12,16a 2-3b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,∴双曲线的标准方程为x 24-y 2=1. 答案:x 24-y 2=17.过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M ,N两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率为________.解析:由题意知,a +c =b 2a,即a 2+ac =c 2-a 2,∴c 2-ac -2a 2=0,∴e 2-e -2=0, 解得e =2或e =-1(舍去). 答案:28.双曲线x 29-y 216=1的右顶点为A ,右焦点为F ,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.解析:双曲线x 29-y 216=1的右顶点A (3,0),右焦点F (5,0),渐近线方程为y =±43x .不妨设直线FB 的方程为y =43(x -5),代入双曲线方程整理,得x 2-(x -5)2=9,解得x =175,y =-3215,所以B ⎝⎛⎭⎪⎫175,-3215.所以S △AFB =12|AF ||y B |=12(c -a )·|y B |=12×(5-3)×3215=3215.答案:32159.(全国卷Ⅰ)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,求该三角形的面积.解:设双曲线的左焦点为F 1,由双曲线方程x 2-y 28=1可知,a =1,c =3,故F (3,0),F 1(-3,0).当点P 在双曲线左支上运动时,由双曲线定义知|PF |-|PF 1|=2,所以|PF |=|PF 1|+2,从而△APF 的周长=|AP |+|PF |+|AF |=|AP |+|PF 1|+2+|AF |.因为|AF |=32+662=15为定值,所以当(|AP |+|PF 1|)最小时,△APF 的周长最小,由图象可知,此时点P 在线段AF 1与双曲线的交点处(如图所示). 由题意可知直线AF 1的方程为y =26x +66,由⎩⎪⎨⎪⎧y =26x +66,x 2-y 28=1,得y 2+66y -96=0,解得y =26或y =-86(舍去), 所以S △APF =S △AF 1F -S △PF 1F =12×6×66-12×6×26=126. 10.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,且a 2c =33.(1)求双曲线C 的方程;(2)已知直线x -y +m =0与双曲线C 交于不同的两点A ,B ,且线段AB 的中点在圆x 2+y 2=5上,求m 的值.解:(1)由题意得⎩⎪⎨⎪⎧a 2c =33,c a =3,解得⎩⎨⎧a =1,c = 3.所以b 2=c 2-a 2=2.所以双曲线C 的方程为x 2-y 22=1.(2)设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),线段AB 的中点为M (x 0,y 0).由⎩⎪⎨⎪⎧x -y +m =0,x 2-y 22=1,得x 2-2mx -m 2-2=0(判别式Δ>0). 所以x 0=x 1+x 22=m ,y 0=x 0+m =2m .因为点M (x 0,y 0)在圆x 2+y 2=5上, 所以m 2+(2m )2=5. 故m =±1.层级二 应试能力达标1.双曲线x 24-y 212=1的焦点到渐近线的距离为( )A .2 3B .2C . 3D .1解析:选A 不妨取焦点(4,0)和渐近线y =3x ,则所求距离d =|43-0|3+1=23.故选A .2.若双曲线与椭圆x 216+y 264=1有相同的焦点,它的一条渐近线方程为y =-x ,则双曲线的方程为( )A .y 2-x 2=96 B .y 2-x 2=160 C .y 2-x 2=80D .y 2-x 2=24解析:选D 设双曲线方程为x 2-y 2=λ(λ≠0),因为双曲线与椭圆有相同的焦点,且焦点为(0,±43),所以λ<0,且-2λ=(43)2,得λ=-24.故选D .3.若中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )A . 6B . 5C .62D .52解析:选D 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0).由题意,知过点(4,-2)的渐近线方程为y =-b a x ,所以-2=-b a×4,即a =2b .设b =k (k >0),则a =2k ,c =5k ,所以e =c a =5k 2k =52.故选D .4.(全国甲卷)已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左、右焦点,点M 在E 上,MF 1与x轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A . 2B .32C . 3D .2解析:选A 法一:作出示意图,如图,离心率e =c a =2c 2a =|F 1F 2||MF 2|-|MF 1|,由正弦定理得e =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin ∠MF 1F 2-sin ∠MF 2F 1=2231-13=2.故选A .法二:因为MF 1与x 轴垂直,所以|MF 1|=b 2a.又sin ∠MF 2F 1=13,所以|MF 1||MF 2|=13,即|MF 2|=3|MF 1|.由双曲线的定义得2a =|MF 2|-|MF 1|=2|MF 1|=2b 2a ,所以b 2=a 2,所以c 2=b 2+a 2=2a 2,所以离心率e =c a=2.5.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为F (25,0),且离心率为e =52,则双曲线的标准方程为________.解析:由焦点坐标,知c =25,由e =c a =52,可得a =4,所以b =c 2-a 2=2,则双曲线的标准方程为x 216-y 24=1. 答案:x 216-y 24=16.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e 的取值范围是________.解析:由题意,知b a ≥3,则b 2a 2≥3,所以c 2-a 2≥3a 2,即c 2≥4a 2,所以e 2=c 2a2≥4,所以e ≥2.答案:[2,+∞)7.设双曲线x 2a 2-y 2b2=1(0<a <b )的半焦距为c ,直线l 过(a,0),(0,b )两点,已知原点到直线l 的距离为34c ,求双曲线的离心率.解:直线l 的方程为x a +yb=1,即bx +ay -ab =0. 于是有|b ·0+a ·0-ab |a 2+b 2=34c ,所以ab =34c 2,两边平方,得a 2b 2=316c 4. 又b 2=c 2-a 2,所以16a 2(c 2-a 2)=3c 4, 两边同时除以a 4,得3e 4-16e 2+16=0, 解得e 2=4或e 2=43.又b >a ,所以e 2=a 2+b 2a 2=1+b 2a2>2,则e =2.于是双曲线的离心率为2.8.已知双曲线C :x 2-y 2=1及直线l :y =kx -1.(1)若直线l 与双曲线C 有两个不同的交点,求实数k 的取值范围;(2)若直线l 与双曲线C 交于A ,B 两点,O 为坐标原点,且△AOB 的面积是2,求实数k 的值.解:(1)由⎩⎪⎨⎪⎧y =kx -1,x 2-y 2=1消去y ,得(1-k 2)x 2+2kx -2=0.①由直线l 与双曲线C 有两个不同的交点,得⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+81-k2>0,解得-2<k <2且k ≠±1.即k 的取值范围为(-2,-1)∪(-1,1)∪(1,2). (2)设A (x 1,y 1),B (x 2,y 2),由方程①,得x 1+x 2=-2k 1-k 2,x 1x 2=-21-k 2.因为直线l :y =kx -1恒过定点D (0,-1), 则当x 1x 2<0时,S △AOB =S △OAD +S △OBD =12|x 1-x 2|=2;当x 1x 2>0时,S △AOB =|S △OAD -S △OBD |=12|x 1-x 2|=2.。
3.2.1双曲线及其标准方程课件(人教版)
又 AB 800,所以2c 800,
c 400, b 2 c 2 a 2 44400
因为 PA PB 680>0所以点P的轨迹是双曲线的右支,因此x 340
x2
y2
所以,炮弹爆炸点的轨迹方程为
1( x 340)
115600 44400
B.(1,+∞)
C.(-∞,-1)
练1.双曲线 − = 的焦距是6,则k=
D.(-∞,-1)∪(1,+∞)
.
变1.已知方程
=1对应的图形是双曲线,那么k的取值范围是(
− ||−
A.(5,+∞)
B.(-2,2)∪(5,+∞)
C.(-2,2)
)
D.(-∞,-2)∪(2,+∞)
外切,求动圆圆心M的轨迹方程.
双曲线的轨迹问题
5.已知点 A(0, 7) , B(0, 7) , C (12, 2) ,以点 C 为焦点作过 A、B 两点的椭圆,求满足条件的椭圆
的另一焦点 F 的轨迹方程.
2
x
y2
1( y ≤ 1)
48
6.已知动点P(x,y)满足 ( + ) + - ( − ) + =2,求动点P的轨迹方程.
(1)定义:|r1-r2|=2a.
(2)余弦公式:4c2= + -2r1r2cos θ.
(3)面积公式:△ = r1r2sin θ.
双曲线中的焦点三角形
变式训练3:设双曲线 - =1,F1,F2是其两个焦点,点P在双曲线右支上.
(1)若∠F1PF2=90°,求△F1PF2的面积;
2017-2018学年高中数学选修2-1- 课时达标训练九 双曲
课时跟踪训练(九) 双曲线的标准方程1.双曲线x 225-y 224=1上的点P 到一个焦点的距离为11,则它到另一个焦点的距离为________.2.已知点F 1,F 2分别是双曲线x 216-y 29=1的左、右焦点,P 为双曲线右支上一点,I 是△PF 1F 2的内心,且S △IPF 2=S △IPF 1-λS △IF 1F 2,则λ=________. 3.若方程x 2k -3+y 2k +3=1(k ∈R )表示双曲线,则k 的范围是________. 4.已知椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则实数a =________. 5.已知双曲线的两个焦点为F 1(-10,0),F 2=(10,0),M 是此双曲线上的一点,且满足1MF ·2MF =0,|1MF |·|2MF |=2,则该双曲线的方程是__________. 6.求适合下列条件的双曲线的标准方程:(1)以椭圆x 225+y 29=1的长轴端点为焦点,且经过点P (5,94); (2)过点P 1(3,-4 2),P 2(94,5).7.设F 1,F 2为双曲线x 24-y 2=1的两个焦点,点P 在双曲线上,且满足∠F 1PF 2=120°.求△F 1PF 2的面积.8.如图,在△ABC 中,已知|AB |=4 2,且三内角A ,B ,C 满足2sin A +sin C =2sin B ,建立适当的坐标系,求顶点C 的轨迹方程.答 案1.解析:设双曲线的左、右焦点分别为F 1,F 2,不妨设PF 1=11,根据双曲线的定义知|PF 1-PF 2|=2a =10,∴PF 2=1或PF 2=21,而F 1F 2=14,∴当PF 2=1时,1+11<14(舍去),∴PF 2=21.答案:212.解析:设△PF 1F 2内切圆的半径为r ,则由S △IPF 2=S △IPF 1-λS △IF1F 2⇒12×PF 2×r =12×PF 1×r -12λ×F 1F 2×r ⇒PF 1-PF 2=λF 1F 2,根据双曲线的标准方程知2a =λ·2c ,∴λ=a c =45. 答案:453.解析:依题意可知:(k -3)(k +3)<0,求得-3<k <3.答案:-3<k <34.解析:由双曲线x 2a -y 22=1可知a >0,且焦点在x 轴上,根据题意知4-a 2=a +2,即a 2+a -2=0,解得a =1或a =-2(舍去).故实数a =1.答案:15.解析:∵1MF ·2MF =0,∴1MF ⊥2MF .∴|1MF |2+|2MF |2=40.∴(|1MF |-|2MF |)2=|1MF |2-2|1MF |·|2MF |+|2MF |2=40-2×2=36.∴||1MF |-|2MF ||=6=2a ,a =3.又c =10,∴b 2=c 2-a 2=1,∴双曲线方程为x 29-y 2=1. 答案:x 29-y 2=1 6.解:(1)因为椭圆x 225+y 29=1的长轴端点为A 1(-5,0),A 2(5,0),所以所求双曲线的焦点为F 1(-5,0),F 2(5,0).由双曲线的定义知,|PF 1-PF 2|=⎪⎪⎪⎪(5+5)2+(94-0)2- (5-5)2+(94-0)2=⎪⎪⎪⎪ (414)2- (94)2=8,即2a =8,则a =4. 又c =5,所以b 2=c 2-a 2=9.故所求双曲线的标准方程为x 216-y 29=1. (2)设双曲线的方程为Ax 2+By 2=1(AB <0),分别将点P 1(3,-4 2),P 2(94,5)代入,得⎩⎪⎨⎪⎧ 9A +32B =1,8116A +25B =1,解得⎩⎨⎧ A =-19,B =116,故所求双曲线的标准方程为y 216-x 29=1. 7.解:由已知得a =2,b =1;c =a 2+b 2=5, 由余弦定理得:F 1F 22=PF 21+PF 22-2PF 1·PF 2cos 120° 即(2 5)2=(PF 1-PF 2)2+3PF 1·PF 2∵|PF 1-PF 2|=4.∴PF 1·PF 2=43. ∴S △F 1PF 2=12PF 1·PF 2·sin 120°=12×43×32=33. 8.解:以AB 边所在直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系(如图所示).则A (-2 2,0),B (2 2,0).设边BC 、AC 、AB 的长分别为a 、b 、c ,由正弦定理得sin A =a 2R ,sin B =b 2R,sin C =c 2R(R 为△ABC 外接圆的半径). ∵2sin A +sin C =2sin B ,∴2a +c =2b ,即b -a =c 2. 从而有|CA |-|CB |=12|AB |=2 2<|AB |. 由双曲线的定义知,点C 的轨迹为双曲线的右支(除去与x 轴的交点).∵a =2,c =2 2,∴b 2=6.∴顶点C 的轨迹方程为x 22-y 26=1(x >2).。
人教A版高中数学选修1-1课时跟踪检测(11) 抛物线及其标准方程
课时跟踪检测(十一) 抛物线及其标准方程层级一 学业水平达标1.抛物线y =12x 2上的点到焦点的距离的最小值为( ) A .3 B .6 C.148D.124解析:选C 将方程化为标准形式是x 2=112y,因为2p =112,所以p =124.故到焦点的距离最小值为148.2.已知抛物线y 2=2px(p>0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) A.12 B .1 C .2D .4解析:选C ∵抛物线y 2=2px 的准线x =-p 2与圆(x -3)2+y 2=16相切,∴-p2=-1,即p =2.3.若抛物线y 2=2px(p>0)上横坐标是2的点M 到抛物线焦点的距离是3,则p =( ) A .1 B .2 C .4D .8解析:选B ∵抛物线的准线方程为x =-p2,点M 到焦点的距离为3,∴2+p2=3,∴p =2.4.过抛物线y 2=4x 的焦点F 的直线交抛物线于A,B 两点,O 为坐标原点,若|AF|=3,则△AOB 的面积为( )A.22 B. 2C.322D .2 2解析:选C 焦点F(1,0),设A,B 分别在第一、四象限, 则由点A 到准线l :x =-1的距离为3, 得A 的横坐标为2,纵坐标为22,直线AB 的方程为y =22(x -1), 与抛物线方程联立可得2x 2-5x +2=0, 所以点B 的横坐标为12,纵坐标为-2,所以S △AOB =12×1×(22+2)=322.5.已知双曲线C 1:x 2a 2-y 2b 2=1(a>0,b>0)的离心率为2.若抛物线C 2:x 2=2py(p>0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( )A .x 2=833yB .x 2=1633yC .x 2=8yD .x 2=16y解析:选D 双曲线的渐近线方程为y =±ba x,由于c a=a 2+b2a2= 1+⎝ ⎛⎭⎪⎫b a 2=2,所以b a =3,所以双曲线的渐近线方程为y =±3x.抛物线的焦点坐标为⎝ ⎛⎭⎪⎫0,p 2,所以p 22=2,所以p =8,所以抛物线方程为x 2=16y.6.已知抛物线C :4x +ay 2=0恰好经过圆M :(x -1)2+(y -2)2=1的圆心,则抛物线C 的焦点坐标为_______,准线方程为________.解析:圆M 的圆心为(1,2),代入4x +ay 2=0得a =-1, 将抛物线C 的方程化为标准方程得y 2=4x, 故焦点坐标为(1,0),准线方程为x =-1. 答案:(1,0) x =-17.已知抛物线y 2=2px(p>0)上一点M(1,m)到其焦点的距离为5,双曲线x 2-y2a=1的左顶点为A,若双曲线的一条渐近线与直线AM 垂直,则实数a =________.解析:根据抛物线的定义得1+p2=5,p =8.不妨取M(1,4),则AM 的斜率为2,由已知得-a ×2=-1,故a =14.答案:148.对标准形式的抛物线,给出下列条件: ①焦点在y 轴上; ②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6; ④由原点向过焦点的某直线作垂线,垂足坐标为(2,1).其中满足抛物线方程为y 2=10x 的是________.(要求填写适合条件的序号) 解析:抛物线y 2=10x 的焦点在x 轴上,②满足,①不满足;设M(1,y 0)是y 2=10x 上一点,则|MF|=1+p 2=1+52=72≠6,所以③不满足;由于抛物线y 2=10x 的焦点为⎝ ⎛⎭⎪⎫52,0,过该焦点的直线方程为y =k ⎝ ⎛⎭⎪⎫x -52,若由原点向该直线作垂线,垂足为(2,1)时,则k =-2,此时存在,所以④满足.答案:②④9.已知抛物线的顶点在原点,焦点在y 轴上,抛物线上一点M(m,-3)到焦点的距离为5,求m 的值、抛物线方程和准线方程.解:法一:如图所示,设抛物线的方程为x 2=-2py(p>0), 则焦点F ⎝ ⎛⎭⎪⎫0,-p 2,准线l :y =p 2,作MN ⊥l,垂足为N,则|MN|=|MF|=5,而|MN|=3+p 2,3+p2=5,即p =4.所以抛物线方程为x 2=-8y,准线方程为y =2. 由m 2=-8×(-3)=24,得m =±2 6.法二:设所求抛物线方程为x 2=-2py(p>0),则焦点为F ⎝ ⎛⎭⎪⎫0,-p 2.∵M(m,-3)在抛物线上,且|MF|=5, 故⎩⎪⎨⎪⎧m 2=6p , m 2+⎝⎛⎭⎪⎫-3+p 22=5,解得⎩⎨⎧p =4,m =±2 6.∴抛物线方程为x 2=-8y,m =±26,准线方程为y =2. 10.如图所示,一隧道内设双行线公路,其截面由长方形的三条边和抛物线的一段构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5米.(1)以抛物线的顶点为原点O,其对称轴所在的直线为y 轴,建立平面直角坐标系(如图),求该抛物线的方程;(2)若行车道总宽度AB 为7米,请计算通过隧道的车辆限制高度为多少米(精确到0.1米)?解:如图所示.(1)依题意,设该抛物线的方程为x 2=-2py(p>0), 因为点C(5,-5)在抛物线上, 所以该抛物线的方程为x 2=-5y. (2)设车辆高为h,则|DB|=h +0.5, 故D(3.5,h -6.5),代入方程x 2=-5y,解得h =4.05, 所以车辆通过隧道的限制高度为4.0米.层级二 应试能力达标1.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ) A .4 B .6 C .8D .12解析:选B 由抛物线的方程得p 2=42=2,再根据抛物线的定义,可知所求距离为4+2=6.2.抛物线y 2=4x 的焦点为F,点P 为抛物线上的动点,点M 为其准线上的动点,当△FPM 为等边三角形时,其面积为( )A .2 3B .4C .6D .4 3解析:选D 如图,∵△FPM 是等边三角形. ∴由抛物线的定义知PM ⊥l. 在Rt △MQF 中,|QF|=2, ∠QMF =30°,∴|MF|=4, ∴S △PMF =34×42=4 3.故选D. 3.设圆C 与圆x 2+(y -3)2=1外切,与直线y =0相切,则C 的圆心的轨迹为( ) A .抛物线 B .双曲线 C .椭圆D .圆解析:选A 法一:设圆C 的半径为r,则圆心C 到直线y =0的距离为r.由两圆外切,得圆心C 到点(0,3)的距离为r +1,也就是说,圆心C 到点(0,3)的距离比到直线y =0的距离大1,故点C 到点(0,3)的距离和它到直线y =-1的距离相等,符合抛物线的特征,故点C 的轨迹为抛物线.法二:设圆C 的圆心坐标为(x,y),半径为r,点A(0,3), 由题意得|CA|=r +1=y +1,∴x 2+y -32=y +1,化简得y =18x 2+1,∴圆心的轨迹是抛物线.4.经过抛物线C 的焦点F 作直线l 与抛物线C 交于A,B 两点,如果A,B 在抛物线C 的准线上的射影分别为A 1,B 1,那么∠A 1FB 1为( )A.π6B.π4C.π2D.2π3解析:选C 由抛物线的定义可知|BF|=|BB 1|,|AF|=|AA 1|, 故∠BFB 1=∠BB 1F,∠AFA 1=∠AA 1F. 又∠OFB 1=∠BB 1F,∠OFA 1=∠AA 1F, 故∠BFB 1=∠OFB 1,∠AFA 1=∠OFA 1,所以∠OFA 1+∠OFB 1=12×π=π2,即∠A 1FB 1=π2.5.设F 为抛物线y 2=4x 的焦点,A,B,C 为该抛物线上三点,若FA ―→+FB ―→+FC ―→=0,则|FA ―→|+|FB ―→|+|FC ―→|=________.解析:因为FA ―→+FB ―→+FC ―→=0, 所以点F 为△ABC 的重心,则A,B,C 三点的横坐标之和为点F 的横坐标的三倍, 即x A +x B +x C =3,所以|FA ―→|+|FB ―→|+|FC ―→|=x A +1+x B +1+x C +1=6. 答案:66.已知F 1,F 2分别是双曲线3x 2-y 2=3a 2(a>0)的左、右焦点,P 是抛物线y 2=8ax 与双曲线的一个交点,若|PF 1|+|PF 2|=12,则抛物线的准线方程为________.解析:将双曲线方程化为标准方程,得x 2a 2-y23a 2=1,∴其焦点坐标为(±2a,0),(2a,0)与抛物线的焦点重合, 联立抛物线与双曲线方程⎩⎪⎨⎪⎧x 2a 2-y 23a2=1,y 2=8ax⇒x =3a,而由⎩⎪⎨⎪⎧|PF 1|+|PF 2|=12,|PF 1|-|PF 2|=2a ⇒|PF 2|=6-a,∴|PF 2|=3a +2a =6-a,得a =1,∴抛物线的方程为y 2=8x,其准线方程为x =-2. 答案:x =-27.如图,已知抛物线y 2=2px(p>0)的焦点为F,A 是抛物线上横坐标为4,且位于x 轴上方的点,点A 到抛物线准线的距离等于5,过点A 作AB 垂直于y 轴,垂足为点B,OB 的中点为M.(1)求抛物线的方程;(2)过点M 作MN ⊥FA,垂足为N,求点N 的坐标. 解:(1)抛物线y 2=2px 的准线方程为x =-p 2,于是4+p 2=5,p =2,所以抛物线的方程为y 2=4x.(2)由题意得A(4,4),B(0,4),M(0,2).又F(1,0), 所以k AF =43,则直线FA 的方程为y =43(x -1).因为MN ⊥FA,所以k MN =-34,则直线MN 的方程为y =-34x +2.解方程组⎩⎪⎨⎪⎧ y =-34x +2,y =43x -1得⎩⎪⎨⎪⎧x =85,y =45,所以N ⎝ ⎛⎭⎪⎫85,45.8.设P 是抛物线y 2=4x 上的一个动点,F 为抛物线的焦点.(1)若点P 到直线x =-1的距离为d,A(-1,1),求|PA|+d 的最小值; (2)若B(3,2),求|PB|+|PF|的最小值.解:(1)依题意,抛物线的焦点为F(1,0),准线方程为x =-1. 由抛物线的定义,知|PF|=d,于是问题转化为求|PA|+|PF|的最小值.如图,连接AF,交抛物线于点P,则最小值为22+12= 5.(2)把点B的横坐标代入y2=4x中,得y=±12,因为12>2,所以点B在抛物线内部.自点B作BQ垂直准线于点Q,交抛物线于点P1(如图).由抛物线的定义,知|P1Q|=|P1F|,则|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=3+1=4.即|PB|+|PF|的最小值为4.。
2017-2018学年人教A版数学选修1-1课时达标检测九 双曲
课时达标检测(九) 双曲线及其标准方程一、选择题1.已知双曲线的a =5,c =7,则该双曲线的标准方程为( )A.x 225-y 224=1 B.y 225-x 224=1 C.x 225-y 224=1或y 225-x 224=1 D.x 225-y 224=0或y 225-x 224=0 解析:选C 由于焦点所在轴不确定,∴有两种情况.又∵a =5,c =7,∴b 2=72-52=24.2.已知m ,n ∈R ,则“m ·n <0”是“方程x 2m +y 2n =1表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 若方程x 2m +y 2n =1表示双曲线,则必有m ·n <0;当m ·n <0时,方程x 2m +y 2n=1表示双曲线.所以“m ·n <0”是“方程x 2m +y 2n=1表示双曲线”的充要条件. 3.已知定点A ,B 且|AB |=4,动点P 满足|PA |-|PB |=3,则|PA |的最小值为( ) A.12B.32C.72 D .5解析:选C 如图所示,点P 是以A ,B 为焦点的双曲线的右支上的点,当P 在M 处时,|PA |最小,最小值为a +c =32+2=72. 4.双曲线x 225-y 29=1的两个焦点分别是F 1,F 2,双曲线上一点P 到焦点F 1的距离是12,则点P 到焦点F 2的距离是( )A .17B .7C .7或17D .2或22解析:选D 依题意及双曲线定义知,||PF 1|-|PF 2||=10,即12-|PF 2|=±10,∴|PF 2|=2或22,故选D.5.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( )A .x 2-y 23=1 B.x 23-y 2=1 C .y 2-x 23=1 D.x 22-y 22=1 解析:选A 由双曲线定义知,2a =(2+2)2+32-(2-2)2+32=5-3=2,∴a =1.又c =2,∴b 2=c 2-a 2=4-1=3,因此所求双曲线的标准方程为x 2-y 23=1. 二、填空题6.设m 是常数,若点F (0,5)是双曲线y 2m -x 29=1的一个焦点,则m =________. 解析:由点F (0,5)可知该双曲线y 2m -x 29=1的焦点落在y 轴上, 所以m >0,且m +9=52,解得m =16.答案:167.经过点P (-3,27)和Q (-62,-7),且焦点在y 轴上的双曲线的标准方程是______________.设双曲线的方程为mx 2+ny 2=1(mn <0),则{ 9m +28n =1, 72m +49n =1,解得⎩⎨⎧m =-175, n =125, 故双曲线的标准方程为y 225-x 275=1. 答案:y 225-x 275=1 8.已知双曲线的两个焦点F 1(-5,0),F 2(5,0),P 是双曲线上一点,且PF 1―→→·PF 2―→=0,|PF 1|·|PF 2|=2,则双曲线的标准方程为________.解析:解析:由题意可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0). 由PF 1―→·PF 2―→=0,得PF 1⊥PF 2.根据勾股定理得|PF 1|2+|PF 2|2=(2c )2,即|PF 1|2+|PF 2|2=20.根据双曲线定义有|PF 1|-|PF 2|=±2a .两边平方并代入|PF 1|·|PF 2|=2得20-2×2=4a 2,解得a 2=4,从而b 2=5-4=1,所以双曲线方程为x 24-y 2=1. 答案:x 24-y 2=1 三、解答题9.已知与双曲线x 216-y 29=1共焦点的双曲线过点P ⎝⎛⎭⎫-52,-6,求该双曲线的标准方程. 解:已知双曲线x 216-y 29=1. 据c 2=a 2+b 2,得c 2=16+9=25,∴c =5.设所求双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0). 依题意,c =5,∴b 2=c 2-a 2=25-a 2,故双曲线方程可写为x 2a 2-y 225-a 2=1. ∵点P ⎝⎛⎭⎫-52,-6在双曲线上, ∴⎝⎛⎭⎫-522a 2-(-6)225-a 2=1.化简,得4a 4-129a 2+125=0,解得a 2=1或a 2=1254. 又当a 2=1254时, b 2=25-a 2=25-1254=-254<0,不合题意,舍去,故a 2=1,b 2=24. ∴所求双曲线的标准方程为x 2-y 224=1.10.已知△ABC 的两个顶点A ,B 分别为椭圆x 2+5y 2=5的左焦点和右焦点,且三个内角A ,B ,C 满足关系式sin B -sin A =12sin C . (1)求线段AB 的长度;(2)求顶点C 的轨迹方程.解:(1)将椭圆方程化为标准形式为x 25+y 2=1. ∴a 2=5,b 2=1,c 2=a 2-b 2=4,则A (-2,0),B (2,0),|AB |=4.(2)∵sin B -sin A =12sin C , ∴由正弦定理得|CA |-|CB |=12|AB |=2<|AB |=4, 即动点C 到两定点A ,B 的距离之差为定值.∴动点C 的轨迹是双曲线的右支,并且c =2,a =1,∴所求的点C 的轨迹方程为x 2-y 23=1(x >1).。
高中数学圆锥曲线与方程学业分层测评9双曲线及其标准方程新人教A版选修11
【课堂新坐标】 2016-2017 学年高中数学 第二章 圆锥曲线与方程学业分层测评 9 双曲线及其标准方程新人教 A 版选修 1-1( 建议用时: 45 分钟 )[ 学业达标 ]一、选择题x 2 y 2121,则 P1.双曲线 25- 9 = 1 的两个焦点分别是F ,F ,双曲线上一点 P 到 F 的距离是 12 到F 的距离是()2A . 17B . 7C .7 或 17D .2 或 22x 2 y 2【分析】 由双曲线方程 25- 9 = 1 得 a = 5,∴ || PF 1| - | PF 2|| =2×5= 10.又∵ | PF | = 12,∴ | PF | =2 或 22.12应选 D.【答案】D2.焦点分别为 ( - 2,0) ,(2,0) 且经过点 (2,3) 的双曲线的标准方程为 ()2 y 2x 2 2A . x - 3 = 1B. 3 -y = 12 x 2x 2y 2C . y - = 1D.- = 1322【分析】 由双曲线定义知,2a = 2222= 5- 3=2,+ + 3 - -+3 ∴ a = 1.又 c =2,∴ b 2= c 2-a 2= 4- 1= 3,22y所以所求双曲线的标准方程为 x - =1.【答案】A3.设动点 M 到 A ( - 5,0) 的距离与它到 B (5,0) 的距离的差等于6,则 P 点的轨迹方程是( )x 2 y 2y 2 x 2A. 9-16=1B. 9-16= 12222xy xyC. 9 - 16= 1( x < 0)D. 9 -16= 1( x > 0)【分析】由双曲线的定义得,P点的轨迹是双曲线的一支.由已知得2c= 10,∴2 =6,ax2y2a=3, c=5, b=4.故 P 点的轨迹方程为9-16= 1( x> 0) ,所以选 D.【答案】Dx2y24.已知双曲线6-3= 1 的焦点为F1,F2,点M在双曲线上,且MF1⊥x轴,则F1到直线F2M的距离为()3656A.5B.665C. 5D. 6【分析】没关系设点 F1(-3,0),简单计算得出| MF1| =36 2=2,| MF2| -| MF1| =2 6.5解得|MF2|=2 6.而 | F1F2| =6,在直角三角形MF1F2中,11由2| MF1| ·|F1F2| =2| MF2| ·d,6求得 F1到直线 F2M的距离 d 为5.应选C.【答案】Cx2y2x2 y2a 的值是() 5.椭圆4+a2= 1与双曲线a-2= 1 有同样的焦点,则1B.1 或- 2A.21C.1 或2D. 1【分析】因为>0,0<a 2< 4,且 4-a2=+2,所以可解得= 1,应选 D.a a a 【答案】D二、填空题6.经过点P(-3,2 7)和 Q(-62,- 7) ,且焦点在y 轴上的双曲线的标准方程是________.【导学号: 26160046】9m+ 28n= 1,【分析】设双曲线的方程为 mx2+ ny2=1( mn<0),则解得72m+49n=1,m=-175,y2x2n1,故双曲线的标准方程为25-75=1.=25y2x2【答案】25-75=1x2y27.已知方程4-t+t-1= 1 表示的曲线为C.给出以下四个判断:①当 1<t< 4 时,曲线C表示椭圆;②当t> 4 或t< 1 时,曲线C表示双曲线;③若曲5线 C表示焦点在x 轴上的椭圆,则1<t<2;④若曲线C表示焦点在y 轴上的双曲线,则t>4.此中判断正确的选项是________( 只填正确命题的序号) .5【分析】①错误,当t =2时,曲线C 表示圆;②正确,若 C 为双曲线,则(4 -t )(t -1) < 0,∴t< 1 或t> 4;③正确,若C为焦点在x轴上的椭圆,则4-t>t- 1> 0. ∴ 1<54-t< 0t <2;④正确,若曲线C为焦点在 y 轴上的双曲线,则t -1>0,∴ t >4.【答案】②③④x2y28.已知F是双曲线4-12= 1 的左焦点,点A(1,4),P 是双曲线右支上的动点,则|PF|+|PA| 的最小值为 ________.【分析】设右焦点为F′,依题意,| PF| =| PF′| + 4,∴ | PF| +| PA| = | PF′| + 4+| PA| = | PF′| + | PA| +4≥|AF′| + 4=5+ 4= 9.【答案】 9三、解答题x 2 y 2且过点 A (4 ,- 5) 的双曲线的标准方程.9.求以椭圆 16+ 9 =1 短轴的两个端点为焦点,由x22【解】+ y= 1,得= 4, = 3,所以短轴两端点的坐标为 (0 ,± 3) ,又双曲线16 9 a b过 A 点,由双曲线定义得2a = |-2+ -5- 2--2+ -5+2|= 2 5,∴ a = 5,又 c = 3,从而 b 2=c 2- a 2= 4,又焦点在 y 轴上,y 2 x 2所以双曲线的标准方程为5- 4=1.10.已知△ ABC 的两个极点A ,B 分别为椭圆x 2+ 5y 2= 5 的左焦点和右焦点,且三个内1角 A , B , C 满足关系式 sin B - sin A =2sin C .(1) 求线段 AB 的长度;(2) 求极点 C 的轨迹方程.2x2【解】(1) 将椭圆方程化为标准形式为+ y =1.5∴ a 2= 5,b 2= 1, c 2=a 2- b 2= 4,则 A ( - 2,0) , B (2,0) , | AB | = 4.1(2) ∵ sin B - sin A = 2sin C ,1 ∴由正弦定理得| CA | - | CB | = | AB | = 2<| AB | = 4,2即动点C 到两定点 , 的距离之差为定值.A B∴动点 C 的轨迹是双曲线的右支,而且c = 2, a = 1,2y 2∴所求的点 C 的轨迹方程为x - 3 = 1( x >1) .[ 能力提高 ]1222=1 的左、右焦点,点 121.已知 F ,F 分别为双曲线C :x - y P 在 C 上,∠ F PF =60°,则| PF 1|| PF 2| =( )A . 2B . 4C . 6D . 8【分析】由题意,得 || 121 2121 2PF | -| PF || =2,| F F | =2 2. 因为∠ F PF =60°, 所以 | PF |+ | PF 2| 2 - 2| PF 1| ·|PF 2| ·cos 60° = | F 1F 2| 2 , 所 以 (| PF 1| - | PF 2|) 2 + 2| PF 1|| PF 2 | -122| PF1|| PF2| ×2= 8,所以 | PF1| ·|PF2| = 8-2 =4.【答案】B2.(2016 ·临沂高二检测 ) 已知双曲线的两个焦点 F (-10,0) ,F (10,0) ,M是此12双曲线上的一点,且→1·→2=0,|→1|·|→2|=2,则该双曲线的方程是() MF MF MF MFx22=12y2A. -y B.x-= 199x2y2x2y2C. 3-7=1D. 7-3=1【分析】由双曲线定义|| MF1|-|MF2||= 2a,两边平方得: | MF1|2+ | MF2|2- 2| MF1|| MF2| 2→→222→= 4a,因为MF1·MF2= 0,故△MF1F2为直角三角形,有 | MF1|+ | MF2| = (2 c)= 40,而 | MF1→222x22| ·|MF2|= 2,∴ 40-2×2=4a,∴a= 9,∴b= 1,所以双曲线的方程为9- y =1.【答案】A3.若F1,F2是双曲线8x2-y2=8 的两焦点,点P在该双曲线上,且△PF1F2是等腰三角形,则△ PF1F2的周长为________.2222y【分析】双曲线8x-y=8 可化为标准方程x -=1,所以a=1, c=3,| F1F2|=2c=6. 因为点P在该双曲线上,且△PF1F2是等腰三角形,所以| PF1| =| F1F2| = 6,或 | PF2| =| 1 2| =6,当 |1|=6时,依据双曲线的定义有| 2|=|1|- 2a = 6- 2=4,所以△1 2F F PF PF PF PFF 的周长为 6+ 6+ 4=16;同应该 | PF2| = 6 时,△PF1F2的周长为 6+6+ 8= 20.【答案】16或204.如图 2- 2- 2,已知双曲线中c= 2a,F1,F2为左、右焦点,P是双曲线上的点,∠F1PF2=60°,S△F1PF2= 12 3. 求双曲线的标准方程.【导学号: 26160047】图 2- 2-2x2y2【解】由题意可知双曲线的标准方程为a2-b2=1.因为 ||1|-|2||=2,PF PF a在△ F PF 中,由余弦定理得12| PF1| 2+ | PF2| 2- | F1F2| 2cos 60°=2| 1|·|2|=PF PFPF 1| -| PF 22+ 2| PF 1| ·|PF 2| - | F 1F 2| 22|1|·| 2| ,PFPF所以 | 1| ·| 2| =4(c2- 2) =4 2,PFPFab1232所以 S △ F 1PF 2= 2| PF 1| ·|PF 2| ·sin 60 °= 2b · 2 = 3 b , 从而有3b 2= 12 3,所以 b 2= 12, c = 2a ,联合 c 2= a 2+ b 2,得 a 2= 4.所以双曲线的标准方程为x 2y 2-= 1.412。
高中数学 2.2.1 双曲线及其标准方程课后知能检测 新人教A版选修11
【课堂新坐标】(教师用书)2013-2014学年高中数学 2.2.1 双曲线及其标准方程课后知能检测 新人教A 版选修1-1一、选择题1.(2013·台州高二检测)设动点P 到A (-5,0)的距离与它到B (5,0)距离的差等于6,则P 点的轨迹方程是( )A.x 29-y 216=1B.y 29-x 216=1C.x 29-y 216=1(x ≤-3)D.x 29-y 216=1(x ≥3) 【解析】 由题意动点P 的轨迹是以A 、B 为焦点的双曲线的右支,且a =3,b =4,故应选D.【答案】 D2.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值是( )A.12 B .1或-2 C .1或12D .1【解析】 由于a >0,0<a 2<4且4-a 2=a +2,∴a =1. 【答案】 D3.(2013·泰安高二检测)已知双曲线方程为x 2a 2-y 2b2=1,点A 、B 在双曲线的右支上,线段AB 经过右焦点F 2,|AB |=m ,F 1为左焦点,则△ABF 1的周长为( )A .2a +2mB .4a +2mC .a +mD .2a +4m【解析】 根据双曲线的定义:|AF 1|-|AF 2|=2a ,|BF 1|-|BF 2|=2a ,而三角形的周长为|AF 1|+|BF 1|+|AB |=(|AF 1|-|AF 2|)+(|BF 1|-|BF 2|)+2|AB |=4a +2m .【答案】 B4.已知平面内有一线段AB ,其长度为4,动点P 满足|PA |-|PB |=3,O 为AB 中点,则|PO |的最小值是( )A .1 B.32 C .2D .4【解析】 ∵|PA |-|PB |=3<|AB |=4, ∴点P 在以A 、B 为焦点的双曲线的一支上, 其中2a =3,2c =4, ∴|PO |min =a =32.【答案】 B5.(2013·临沂高二检测)已知双曲线的两个焦点F 1(-10,0),F 2(10,0),M 是此双曲线上的一点,且MF 1→·MF 2→=0,|MF 1→|·|MF 2→|=2,则该双曲线的方程是( )A.x 29-y 2=1 B .x 2-y 29=1C.x 23-y 27=1 D.x 27-y 23=1 【解析】 由双曲线定义||MF 1|-|MF 2||=2a ,两边平方得:|MF 1|2+|MF 2|2-2|MF 1||MF 2|=4a 2,因为MF 1→·MF 2→=0,故△MF 1F 2为直角三角形,有|MF 1|2+|MF 2|2=(2c )2=40,而|MF 1|·|MF 2|=2,∴40-2×2=4a 2,∴a 2=9,∴b 2=1,所以双曲线的方程为x 29-y 2=1.【答案】 A 二、填空题6.设m 为常数,若点F (0,5)是双曲线y 2m -x 29=1的一个焦点,则m =_____.【解析】 由题意c =5,且m +9=25,∴m =16. 【答案】 167.(2013·莱芜高二检测)若方程x 2k +2-y 25-k=1表示双曲线,则k 的取值范围是________.【解析】 方程表示双曲线需满足(5-k )(k +2)>0,解得:-2<k <5,即k 的取值范围为(-2,5).【答案】 (-2,5)8.已知F 是双曲线x 24-y 212=1的左焦点,A (1,4),P 是双曲线右支上的动点,则|PF |+|PA |的最小值为______.【解析】 设右焦点为F ′,由题意知F ′(4,0),根据双曲线的定义,|PF |-|PF ′|=4,∴|PF |+|PA |=4+|PF ′|+|PA |,∴要使|PF |+|PA |最小,只需|PF ′|+|PA |最小即可,即需满足P 、F ′、A 三点共线,最小值为4+|F ′A |=4+9+16=9.【答案】 9 三、解答题9.求与椭圆x 29+y 24=1有相同焦点,并且经过点(2,-3)的双曲线的标准方程.【解】 由x 29+y 24=1知焦点F 1(-5,0),F 2(5,0).依题意,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).∴a 2+b 2=5,①又点(2,-3)在双曲线x 2a 2-y 2b2=1上,∴4a 2-3b2=1.②联立①②得a 2=2,b 2=3, 因此所求双曲线的方程为x 22-y 23=1.10.(2013·杭州高二检测)已知A (-7,0),B (7,0),C (2,-12),椭圆过A 、B 两点且以C 为其一个焦点,求椭圆另一个焦点的轨迹方程.【解】 设椭圆的另一个焦点为P (x ,y ), 则由题意知|AC |+|AP |=|BC |+|BP |, ∴|BP |-|AP |=|AC |-|BC | =2<|AB |=14,所以点P 的轨迹是以A 、B 为焦点,实轴长为2的双曲线的左支,且c =7,a =1, ∴b 2=c 2-a 2=48.∴所求的轨迹方程为x 2-y 248=1.11.A 、B 、C 是我方三个炮兵阵地,A 在B 的正东,相距6 km ,C 在B 的北偏西30°方向上,相距4 km ,P 为敌炮阵地,某时刻A 发现敌炮阵地的某种信号,由于B 、C 两地比A 距P 地远,因此4秒后,B 、C 才同时发现这一信号(该信号的传播速度为每秒1 km).A 若炮击P 地,求炮击的方位角.【解】 以AB 的中点为原点,BA 所在的直线为x 轴建立直角坐标系,则A (3,0),B (-3,0),C (-5,23).∵|PB |-|PA |=4,∴点P 在以A 、B 为焦点的双曲线的右支上,该双曲线右支的方程是x 24-y 25=1(x ≥2). ①又∵|PB |=|PC |,∴点P 在线段BC 的垂直平分线上,该直线的方程为x -3y +7=0.②将②代入①得11x 2-56x -256=0,得x =8或x =-3211(舍).于是可得P (8,53).设α为PA 所在直线的倾斜角,又k PA =tan α=3,∴α=60°,故点P 在点A 的北偏东30°方向上,即A 炮击P 地的方位角是北偏东30°.。
高中数学 课时跟踪训练(九)双曲线及其标准方程 北师大版选修11
课时跟踪训练(九) 双曲线及其标准方程1.双曲线x 225-y 224=1上的点P 到一个焦点的距离为11,则它到另一个焦点的距离为( )A .1或21B .14或36C .2D .21 2.与椭圆x 24+y 2=1共焦点且过点Q (2,1)的双曲线方程是( ) A.x 22-y 2=1 B.x 24-y 2=1 C.x 23-y 23=1 D .x 2-y 22=1 3.k <2是方程x 24-k +y 2k -2=1表示双曲线的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 4.设P 为双曲线x 2-y 212=1上的 一点,F 1,F 2是该双曲线的两个焦点,若|PF 1|∶|PF 2|=3∶2,则△PF 1F 2的面积为( )A .6 3B .12C .12 3D .24 5.在平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为____________. 6.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在直线y =b ax 上,则C 的方程为 ________________________________________________________________________.7.已知双曲线C 1:x 2-y 24=1.求与双曲线C 1有相同的焦点,且过点P (4,3)的双曲线C 2的标准方程.8.若双曲线x 2a 2-y 2b 2=1的两个焦点为F 1,F 2,|F 1F 2|=10,P 为双曲线上一点,|PF 1|=2|PF 2|,PF 1⊥PF 2,求此双曲线的方程.答 案1.选D 设双曲线的左右焦点分别为F 1,F 2,不妨设|PF 1|=11,根据双曲线的定义知||PF 1|-|PF 2||=2a =10,所以|PF 2|=1或|PF 2|=21,而1<c -a =7-5=2,故舍去|PF 2|=1,所以点P 到另一个焦点的距离为21,故选D.2.选A ∵c 2=4-1=3,∴共同焦点坐标为(±3,0), 设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),则由 ⎩⎪⎨⎪⎧4a 2-1b 2=1,a 2+b 2=3,解得⎩⎪⎨⎪⎧ a 2=2,b 2=1, ∴双曲线方程为x 22-y 2=1. 3.选A ∵k <2⇒方程x 24-k +y 2k -2=1表示双曲线, 而方程x 24-k +y 2k -2=1表示双曲线⇒(4-k )(k -2)<0⇒k <2或k >4⇒/ k <2. 4.选B 由已知得2a =2,又由双曲线的定义得,|PF 1|-|PF 2|=2,∵|PF 1|∶|PF 2|=3∶2,∴|PF 1|=6,|PF 2|=4.又∵|F 1F 2|=2c =213.由余弦定理得cos ∠F 1PF 2=62+42-522×6×4=0. ∴三角形PF 1F 2为直角三角形.∴S △PF 1F 2=12×6×4=12.5.解析:由题易知,双曲线的右焦点为(4,0),点M 的坐标为(3,15)或(3,-15),则点M 到此双曲线的右焦点的距离为4.答案:46.解析:点P (2,1)在直线y =b a x 上,则1=2b a,a =2b ①. 双曲线的焦距为10,则有a 2+b 2=52,将①代入上式可得b 2=5,从而a 2=20,故双曲线C 的方程为x 220-y 25=1. 答案:x 220-y 25=1 7.解:双曲线C 1的焦点坐标为(5,0),(-5,0),设双曲线C 2的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),则⎩⎪⎨⎪⎧ a 2+b 2=5,16a 2-3b 2=1,解得⎩⎪⎨⎪⎧ a 2=4,b 2=1.所以双曲线C 2的标准方程为x 24-y 2=1. 8.解:∵|F 1F 2|=10,∴2c =10,c =5.又∵|PF 1|-|PF 2|=2a ,且|PF 1|=2|PF 2|,∴|PF 2|=2a ,|PF 1|=4a .在Rt △PF 1F 2中,|F 1F 2|2=|PF 1|2+|PF 2|2,∴4a 2+16a 2=100.∴a 2=5.则b 2=c 2-a 2=20.故所求的双曲线方程为x 25-y 220=1.。
高中数学人教A版选修11课时达标训练:(十) Word版含解析.doc
课时达标训练(十) [即时达标对点练]题组1 根据双曲线的标准方程研究几何性质1.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 的值为( ) A .-14 B .-4C .4 D.142.双曲线x 225-y 24=1的渐近线方程是( )A .y =±25xB .y =±52xC .y =±425xD .y =±254x3.已知双曲线x 2a 2-y 2b 2=1的两条渐近线互相垂直,则双曲线的离心率为( )A. 3B. 2C.52 D.22题组2 由双曲线的几何性质求标准方程4.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为( ) A.x 24-y 212=1 B.x 212-y 24=1 C.x 210-y 26=1 D.x 26-y 210=1 5.中心在原点,实轴在x 轴上,一个焦点在直线3x -4y +12=0上的等轴双曲线方程是( )A .x 2-y 2=8B .x 2-y 2=4C .y 2-x 2=8D .y 2-x 2=46.已知双曲线两顶点间距离为6,渐近线方程为y =±32x ,求双曲线的标准方程.题组3 求双曲线的离心率7.设F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得(|PF 1|-|PF 2|)2=b 2-3ab ,则该双曲线的离心率为( )A. 2B.15 C .4 D.178.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,以线段F 1F 2为边作等边三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率e =________.题组4 直线与双曲线的位置关系9.已知双曲线方程为x 2-y 24=1,过P (1,0)的直线l 与双曲线只有一个公共点,则l的条数为( )A .4B .3C .2D .110.若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,那么k 的取值范围是________.[能力提升综合练]1.如图,ax -y +b =0和bx 2+ay 2=ab (ab ≠0)所表示的曲线只可能是( )2.中心在原点,焦点在x 轴上的双曲线的实轴与虚轴长相等,一个焦点到一条渐近线的距离为2,则双曲线方程为( )A .x 2-y 2=2B .x 2-y 2= 2C .x 2-y 2=1D .x 2-y 2=123.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12x D .y =±x4.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2-y 24=1有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点.若C 1恰好将线段AB 三等分,则( )A .a 2=132 B .a 2=13C .b 2=12D .b 2=25.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是________.6.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为________.7.双曲线x 2a 2-y 2b 2=1(0<a <b )的半焦距为c ,直线l 过(a ,0),(0,b )两点,且原点到直线l 的距离为34c ,求双曲线的离心率.8.中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的半长轴长与双曲线半实轴长之差为4,离心率之比为3∶7.(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求△F 1PF 2的面积.答 案即时达标对点练1. 解析:选A 由双曲线方程mx 2+y 2=1,知m <0,则双曲线方程可化为y 2-x 2-1m=1,则a 2=1,a =1.又虚轴长是实轴长的2倍,∴b =2, ∴-1m =b 2=4,∴m =-14.2. 解析:选A 由x 225-y 24=0,得y 2=425x 2,即y =±25x .3. 解析:选B 由题意可知, 此双曲线为等轴双曲线.等轴双曲线的实轴与虚轴相等,则a =b ,c =a 2+b 2=2a ,于是e =ca= 2.4. 解析:选A 由题意知c =4,焦点在x 轴上,所以⎝⎛⎭⎫b a 2+1=e 2=4,所以b a =3,又由a 2+b 2=4a 2=c 2=16,得a 2=4,b 2=12.所以双曲线方程为x 24-y 212=1.5. 解析:选A 令y =0得,x =-4, ∴等轴双曲线的一个焦点坐标为(-4,0), ∴c =4,a 2=12c 2=12×16=8,故选A.6. 解:设以y =±32x 为渐近线的双曲线方程为x 24-y 29=λ(λ≠0),当λ>0时,a 2=4λ, ∴2a =24λ=6⇒λ=94.当λ<0时,a 2=-9λ, ∴2a =2-9λ=6⇒λ=-1.∴双曲线的标准方程为x 29-y 2814=1和y 29-x 24=1.7. 解析:选D 由双曲线的定义知, (|PF 1|-|PF 2|)2=4a 2,所以4a 2=b 2-3ab ,即b 2a 2-3·ba=4,解得ba =4(-1舍去).因为双曲线的离心率e =ca =1+b 2a2, 所以e =17,故选D.8. 解析:依题意知,F 1(-c ,0),F 2(c ,0), 不妨设M 在x 轴上方,则M (0,3c ),所以MF 1的中点为⎝⎛⎭⎫-c 2,32c ,代入双曲线方程可得c 24a 2-3c 24b 2=1,又c 2=a 2+b 2,所以c 24a 2-3c 24(c 2-a 2)=1, 整理得e 4-8e 2+4=0,解得e 2=4+23(e 2=4-23<1舍去), 所以e =3+1. 答案:3+19. 解析:选B ∵双曲线方程为x 2-y 24=1,故P (1,0)为双曲线右顶点,∴过P 点且与双曲线只有一个公共点的直线共3条(一条切线和两条与渐近线平行的直线).10. 解析:由⎩⎪⎨⎪⎧x 2-y 2=6,y =kx +2,得x 2-(kx +2)2=6.则(1-k 2)x 2-4kx -10=0有两个不同的正根.则⎩⎨⎧Δ=40-24k 2>0,x 1+x 2=4k 1-k 2>0,x 1x 2=-101-k 2>0,得-153<k <-1.答案:⎝⎛⎭⎫-153,-1能力提升综合练1. 解析:选C 直线方程可化为y =ax +b ,曲线方程可化为x 2a +y 2b =1,若a >0,b >0,则曲线表示椭圆,可排除A 、B 、D ,若a >0,b <0,C 符合.2. 解析:选A 设双曲线方程为x 2-y 2=λ(λ>0),渐近线方程为y =±x ,焦点到渐近线的距离c2=2,∴c =2.∵2λ=c 2=4,∴λ=2. 3. 解析:选C 因为双曲线x 2a 2-y 2b 2=1的焦点在x 轴上,所以双曲线的渐近线方程为y=±b a x .又离心率为e =ca =a 2+b 2a =1+⎝⎛⎭⎫b a 2=52,所以b a =12,所以双曲线的渐近线方程为y =±12x .4. 解析:选C 双曲线的渐近线方程为y =±2x ,设直线AB :y =2x 与椭圆C 1的一个交点为C (第一象限的交点),则|OC |=a 3,∵tan ∠COx =2,∴sin ∠COx =25,cos ∠COx =15, 则C 的坐标为⎝⎛⎭⎫a35,2a 35, 代入椭圆方程得a 245a 2+4a 245b 2=1,∴a 2=11b 2. ∵5=a 2-b 2,∴b 2=12.5. 解析:由题可得直线的斜率为3,要使直线l 与双曲线的右支有且只有一个交点,只要b a≥3,∴e 2=1+⎝⎛⎭⎫b a 2≥4.答案:[2,+∞)6. 解析:设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),由题意知c =3,a 2+b 2=9,设A (x 1,y 1),B (x 2,y 2)则有:⎩⎨⎧x 21a 2-y 21b2=1,x 22a 2-y 22b 2=1,两式作差得,y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 2)=-12b 2-15a 2=4b 25a 2,又AB 的斜率是-15-0-12-3=1,所以4b 2=5a 2,代入a 2+b 2=9得a 2=4,b 2=5,所以双曲线标准方程是x 24-y 25=1.答案:x 24-y 25=17. 解:由l 过两点(a ,0),(0,b ), 设l 的方程为bx +ay -ab =0. 由原点到l 的距离为34c ,得ab a 2+b2=34c . 将b =c 2-a 2代入,平方后整理,得16⎝⎛⎭⎫a 2c 22-16×a 2c 2+3=0.令a 2c2=x , 则16x 2-16x +3=0,解得x =34或x =14.因为e =ca,有e =1x .故e =233或e =2. 因为0<a <b ,故e =ca =a 2+b 2a=1+b 2a2>2,所以离心率e 为2. 8. 解:(1)设椭圆方程为x 2a 2+y 2b 2=1,双曲线方程为x 2m 2-y 2n 2=1(a ,b ,m ,n >0,且a >b ),则⎩⎪⎨⎪⎧a -m =4,7·13a =3·13m ,解得a =7,m =3,所以b =6,n =2,所以椭圆方程为x 249+y 236=1,双曲线方程为x 29-y 24=1.(2)不妨设F 1,F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,所以|PF 1|=10,|PF 2|=4, 所以cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=45,所以S △F 1PF 2=12|PF 1|·|PF 2|sin ∠F 1PF 2=12×10×4×35=12.。