第四章_因式分解复习巩固练习卷
北师大版八年级数学下册 《因式分解》全章复习与巩固(提高)巩固练习 含答案解析
【巩固练习】一.选择题1. 下列式子变形是因式分解的是( )A .()25656x x x x -+=-+B .()()25623x x x x -+=--C .()()22356x x x x --=-+D .()()25623x x x x -+=++2. 已知:△ABC 的三边长分别为a b c 、、,那么代数式2222b c ac a -+-的值( )A.大于零B.等于零C.小于零 D 不能确定3.已知31216x x -+有一个因式是4x +,把它分解因式后应当是( )A .2(4)(2)x x +-B .2(4)(1)x x x +++C .2(4)(2)x x ++D .2(4)(1)x x x +-+4.若()()2x a x b x px q ++=++,且0p >,0q <,那么a b ,必须满足条件( ). A.a b ,都是正数B. a b ,异号,且正数的绝对值较大C.a b ,都是负数D. a b ,异号,且负数的绝对值较大 5.(2016•张家港市期末)把2288x y xy y -+分解因式,正确的是( )A .()2244x y xy y -+B .()2244y x x -+ C .()222y x - D .()222y x + 6.将下述多项式分解后,有相同因式1x -的多项式有 ( ) ①; ②; ③; ④; ⑤; ⑥ A .2个 B .3个 C .4个 D .5个7. 已知()()()()1931131713171123x x x x -----可因式分解成()()8ax b x c ++,其中,,a b c 均为整数,则a b c ++=( )A .-12B .-32C .38D .728. 将3223x x y xy y --+分组分解,下列的分组方法不恰当的是( )A. 3223()()x x y xy y -+-+B. 3223()()x xy x y y -+-+C. 3322()()x y x y xy ++--D. 3223()x x y xy y --+二.填空题9.(2016•诸城市一模)因式分解:()222416x x +-= . 10. 分解因式:()()229a b a b +--=_____________.11.已知2226100m m n n ++-+=,则mn = .12.分解因式:()()223a a a +-+=__________.13.若32213x x x k --+有一个因式为21x +,则k 的值应当是_________.14.把多项式22ac bc a b -+-分解因式的结果是__________.15.已知5,3a b ab +==,则32232a b a b ab -+= .16.分解因式:(1)4254x x -+=________;(2)3322a m a m am +--=________. 三.解答题17.求证:791381279--能被45整除.18.(2015春•焦作校级期中)已知x 2+x=1,求x 4+x 3﹣2x 2﹣x+2015的值.19.(1)有若干块长方形和正方形硬纸片如图1所示,用若干块这样的硬纸片拼成一个新的长方形,如图2.①用两种不同的方法,计算图2中长方形的面积;②由此,你可以得出的一个等式为:________.(2)有若干块长方形和正方形硬纸片如图3所示.①请你用拼图等方法推出一个完全平方公式,画出你的拼图;②请你用拼图等方法推出22252a ab b ++因式分解的结果,画出你的拼图.20.下面是某同学对多项式()()642422+-+-x x x x +4进行因式分解的过程:解:设y x x =-42原式=()()264y y +++ (第一步)=2816y y ++ (第二步)=()24+y (第三步)=()2244+-x x (第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的( )A .提取公因式 B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?______________(填彻底或不彻底)若不彻底,请直接写出因式分解的最后结果_______________.(3)请你模仿以上方法尝试对多项式()()122222++--x x x x 进行因式分解.【答案与解析】一.选择题1. 【答案】B ;【解析】A.()25656x x x x -+=-+右边不是整式积的形式,故不是分解因式,故本选项错误;B.()()25623x x x x -+=--是整式积的形式,故是分解因式,故本选项正确; C.()()22356x x x x --=-+是整式的乘法,故不是分解因式,故本选项错误; D.()()25623x x x x -+=--,故本选项错误. 2. 【答案】C ;【解析】()()()222222a ac c b a c b a c b a c b -+-=--=-+--,因为a b c 、、为三角形三边长,所以0,0a b c a b c +->--<,所以原式小于零.3. 【答案】A【解析】代入答案检验.4. 【答案】B ;【解析】由题意00a b ab +><,,所以选B.5. 【答案】C ;【解析】2288x y xy y -+()2244y x x =-+()222y x =- 6. 【答案】C ;【解析】①,③,⑤,⑥分解后有因式1x -.7.【答案】A;【解析】原式=()()()()131719311123131788x x x x x ---+=--,∵可以分解成()()8ax b x c ++,∴13,17,8a b c ==-=-∴a b c ++=-12.8. 【答案】D ;【解析】A 、B 各组提公因式后,又有公因式可提取分解,所以分组合理,C 第一组运用立方和公式,第二组提取公因式后,有公因式x y +,所以分组合理,D 第一组提取公因式后与第二组无公因式且又不符公式,所以分解不恰当.二.填空题9. 【答案】()()2222x x +-;【解析】()222416x x +-=()()224444x x x x +-++=()()2222x x +-10.【答案】()()422a b a b ++;【解析】()()()()()()22933a b a b a b a b a b a b +--=++-+--⎡⎤⎡⎤⎣⎦⎣⎦=()()4224a b a b ++=()()422a b a b ++.11.【答案】-3;【解析】()()22222610130,1,3m m n n m n m n ++-+=++-==-=.12.【答案】()()14a a -+;【解析】()()223a a a +-+=234a a +-=()()14a a -+.13.【答案】-6;【解析】由题意,当12x =-时,322130x x x k --+=,解得k =-6.14.【答案】()()a b a b c -++;【解析】22ac bc a b -+-=()()()c a b a b a b -++-=()()a b a b c -++.15.【答案】39;【解析】原式=()()()2224353439ab a b ab a b ab ⎡⎤-=+-=⨯-⨯=⎣⎦.16.【答案】()()()()1122x x x x +-+-;()()2a m a m -+;【解析】()()()()()()422254141122x x x x x x x x -+=--=+-+-;()()332222a m a m am a a m m a m +--=---()()()()222a m a m a m a m =--=-+.三.解答题 17.【解析】证明:原式=1499132827269939333-⨯-=--=()2623331--=262435345⨯=⨯.所以能被45整除.18.【解析】解:∵x 2+x=1,∴x 2=1﹣x ,x 2﹣1=﹣x ,∴x 4+x 3﹣2x 2﹣x+2015=x 2(x 2﹣1)+x 3﹣x 2﹣x+2015=x 2(﹣x )+x 3﹣x 2﹣x+2015=﹣(x 2+x )+2015=﹣1+2015=2014.即x 4+x 3﹣2x 2﹣x+2015=2014.19.【解析】解:(1)①长方形的面积=221a a ++;长方形的面积=()21a +;②()22211a a a ++=+;(2)①如图,可推导出()2222a ab b a b ++=+;②()()2225222a ab b a b a b ++=++.20.【解析】解:(1)C ;(2)不彻底;()42x -;(3)设22x x y -=,原式=()22121y y y y ++=++()()()22421211y x x x =+=-+=-.。
八年级第四章因式分解复习测试题
2014八年级下册数学第四章因式分解一、选择题1.下列从左到右的变形属于因式分解的是( )( A )(x+3)(x-3)=x 2-9 ( B ) x 2-4x+3=x(x-4)+3 ( C )(x+3)(x-2)= x 2-5x+6 ( D ) a 2+3a=a(a+3)2.下列因式分解错误的是( )A .22()()x y x y x y -=+-B .2269(3)x x x ++=+C .2()x xy x x y +=+D .222()x y x y +=+3.利用分解因式计算22011-22010,则结果是( )( A )2 ( B ) 1 ( C )22010 ( D ) 220114.把多项式-8a 2b 3c +16a 2b 2c 2-24a 3bc 3分解因式,应提的公因式是( ),A.-8a 2bcB. 2a 2b 2c 3C.-4abcD. 24a 3b 3c 36.把-6(x -y)2-3y(y -x)2分解因式,结果是( ).A.-3(x -y)2(2+y)B. -(x -y)2(6-3y)C. 3(x -y)2(y +2)D. 3(x -y)2(y -2)7能用平方差公式分解因式的是( )A.22)(b a -+;B.mn m 2052-; C.22y x --; D.92+-x ;8.分解因式a a -3的结果是( )A .)1(2-a a B .2)1(-a a C .)1)(1(-+a a a D .)1)((2-+a a a9.边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b ).把余下的部分剪拼成一个矩形(如图). 通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A.))((22b a b a b a -+=-B.2222)(b ab a b a ++=+C.2222)(b ab a b a +-=-D.)(2b a a ab a -=-10.如图,在边长为a 的正方形上剪去一个边长为b 的小正方形(a>b ),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是( )( A )a 2-b 2=(a+b )(a-b ) ( B )(a+b )2=a 2+2ab+b 2( C )(a-b )2=a 2-2ab+b 2 (D ) a 2-ab=a (11.A.))((22b a b a b a -+=- B.2222)(b ab a b a ++=+C.2222)(b ab a b a +-=-D.)(2b a a ab a -=-12.如果2592++kx x 是一个完全平方式,那么k=( )A.15 B.±5 C.30 D.±30;13.下列各式中,能用完全平方公式分解因式的是( ).A.4x2-2x +1 B.4x 2+4x -1 C.x 2-xy +y 2 D .x 2-x +1214已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为( )A.1,3-==c b ;B.2,6=-=c b ;C.4,6-=-=c b ;D.6,4-=-=c b D 、错误!未找到引用源。
【精选】北师大版八年级下册数学第四章《因式分解》测试卷(含答案)
【精选】北师大版八年级下册数学第四章《因式分解》测试卷(含答案)一、选择题(每题3分,共30分)1.【教材P 94习题T 2改编】【2021·兴安盟】下列等式从左到右变形,属于因式分解的是( )A .(a +b )(a -b )=a 2-b 2B .x 2-2x +1=(x -1)2C .2a -1=a ⎝ ⎛⎭⎪⎫2-1aD .x 2+6x +8=x (x +6)+82.下列四个多项式中,能因式分解的是( )A .a -1B .a 2+1C .x 2-4yD .x 2-4x +43.下列各式中能用完全平方公式进行因式分解的是( )A .x 2+x +1B .x 2+2x -1C .x 2-1D .x 2-10x +254.分解因式-2m (n -p )2+6m 2(p -n )时,应提取的公因式为( )A .-2m 2(n -p )2B .2m (n -p )2C .-2m (n -p )D .-2m5.一次课堂练习,小红同学做了如下4道因式分解题,你认为小红做得不够完整的一题是( )A .a 3-a =a (a 2-1)B .m 2-2mn +n 2=(m -n )2C .x 2y -xy 2=xy (x -y )D .x 2-y 2=(x -y )(x +y )6.下列因式分解正确的是( ) A .3ax 2-6ax =3(ax 2-2ax )B .x 2+y 2=(-x +y )(-x -y )C .a 2+2ab -4b 2=(a +2b )2D .-ax 2+2ax -a =-a (x -1)27.如果x -2是多项式x 2-6x +m 的一个因式,那么m 的值为( )A .8B .6C .4D .28.【2023·绵阳南山双语学校模拟】从边长为a 的正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形,如图①所示,然后拼成一个平行四边形,如图②所示,那么通过计算两个图形阴影部分的面积,可以验证成立的为( )A .a 2-b 2=(a -b )2B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .a 2-b 2=(a +b )(a -b )9.【教材P 105复习题T 12变式】已知a ,b ,c 为△ABC 的三边长,且满足a 2c 2-b 2c 2=a 4-b 4,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形10.下列各数中,可以写成两个连续偶数的平方差的是( )A .500B .520C .250D .205二、填空题(每题3分,共24分)11.分解因式:3m 3+6m 2=____________.12.把多项式()1+x ()1-x -()x -1提取公因式x -1后,余下的部分是__________.13.【2022·苏州】已知x +y =4,x -y =6,则x 2-y 2=________.14.一个长方体的体积为x 2y -9y ,长和宽是关于x 的一次二项式(一次项系数为1),则长是________,宽是________.15.【教材P 105复习题T 13改编】若关于x 的二次三项式x 2+ax +14是完全平方式,则a 的值是__________.16.已知a ,b 满足|a +2|+b -4=0,分解因式:(x 2+y 2)-(axy +b )=________________.17.在对多项式x 2+ax +b 进行因式分解时,小明看错了b ,分解的结果是(x -10)(x +2);小亮看错了a ,分解的结果是(x -8)(x -2),则多项式x 2+ax +b 进行因式分解的正确结果为____________.18.【规律探索题】观察下列各式:x 2-1=(x -1)(x +1),x 3-1=(x -1)(x 2+x +1),x 4-1=(x -1)(x 3+x 2+x +1),根据前面各式的规律可猜想:x n +1-1=_________________________________________.三、解答题(19题16分,20,24题每题12分,21,22题每题8分,23题10分,共66分)19.【教材P104复习题T2改编】把下列各式因式分解:(1)4x2-64;(2)a3b+2a2b2+ab3;(3)(a-b)2-2(b-a)+1;(4)x2-2xy+y2-16z2.20.【数学运算】利用因式分解计算:(1)57×99+44×99-99;(2)2 0242-4 048×2 023+2 0232;(3)9×1.22-16×1.42.21.【教材P105复习题T6变式】已知x+y=4,x2+y2=14,求x3y-2x2y2+xy3的值.22.【教材P105复习题T5变式】若一个两位正整数m的个位数字为8,求证:m2-64一定为20的倍数.23.【阅读理解题】阅读下列材料:配方法是指将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,巧妙地运用配方法不仅可以将一个看似不能分解的多项式进行因式分解,还能结合非负数的意义来解决一些问题.如:将x2+2x-3因式分解.解:原式=x2+2x+1-4=(x+1)2-22=(x+1+2)(x+1-2)=(x+3)(x-1).(1)请你仿照以上方法,完成因式分解:a2+4ab-5b2;(2)若m2+2n2+6m-4n+11=0,求m+n的值.24.【直观想象】观察猜想如图,大长方形是由三个小长方形和一个小正方形拼成的,请根据此图填空:x2+(p+q)x +pq=x2+px+qx+pq=(________)(________).说理验证事实上,我们也可以用如下方法进行变形:x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)=_______________=(________)(________).于是,我们可以利用上面的方法进行多项式的因式分解.尝试运用例题:把x2+3x+2因式分解.解:x2+3x+2=x2+(2+1)x+2×1=(x+2)(x+1).请利用上述方法将下列多项式因式分解:。
第四章《因式分解》测试题(含答案)
第四章因式分解一、选择题(本大题共8小题,每小题4分,共32分)1.下列从左到右的变形,是因式分解的是()A.(3-x)(3+x)=9-x2B.m3-mn2=m(m+n)(m-n)C.(y+1)(y-3)=-(3-y)(y+1) D.4yz-2y2z+z=2y(2z-yz)+z2.一次课堂练习,小璇同学做了如下4道因式分解题,你认为小璇做得不正确的一题是()A.a3-a=a(a2-1) B.m2-2mn+n2=(m-n)2C.x2y-xy2=xy(x-y) D.x2-y2=(x-y)(x+y)3.如果多项式4a2-(b-c)2=M(2a-b+c),那么M表示的多项式应为()A.2a-b+c B.2a-b-c C.2a+b-c D.2a+b+c4.若a2+8ab+m2是一个完全平方式,则m应是()A.b2B.±2b C.16b2D.±4b5.对于任何整数m,多项式(4m+5)2-9一定能()A.被8整除B.被m整除C.被m-91整除D.被2m-1整除6.若m-n=-1,则(m-n)2-2m+2n的值是()A.3 B.2 C.1 D.-17.因式分解x2+ax+b时,甲看错了a的值,分解的结果是(x+6)(x-1),乙看错了b 的值,分解的结果是(x-2)(x+1),那么x2+ax+b因式分解的正确结果为() A.(x+2)(x-3) B.(x-2)(x+1) C.(x+6)(x-1) D.无法确定8.若a,b,c是三角形三边的长,则代数式(a2-2ab+b2)-c2的值()A.大于零B.小于零C.大于或等于零D.小于或等于零二、填空题(本大题共6小题,每小题4分,共24分)9.因式分解:3a2-3b2=______________.10.计算:201820192-20172=________.11.请在二项式x2-□y2中的“□”里面添加一个整式,使其能因式分解,你在“□”中添加的整式是________(写出一个即可).12.在半径为R的圆形钢板上,裁去半径为r的四个小圆,当R=7.2 cm,r=1.4 cm时,剩余部分的面积是________cm2(π取3.14,结果精确到个位).13.若△ABC的三边长分别是a,b,c,且a+2ab=c+2bc,则△ABC是____________.14.如图4-Z-1,已知边长为a,b的长方形,若它的周长为24,面积为32,则a2b +ab2的值为________.图4-Z-1三、解答题(本大题共5小题,共44分)15.(9分)将下列各式因式分解:(1)2x3y-2xy3;(2)3x3-27x;(3)(a-b)(3a+b)2+(a+3b)2(b-a).16.(7分)给出三个多项式:12x2+2x-1,12x2+4x+1,12x2-2x,请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.17.(8分)阅读材料:若m2-2mn+2n2-8n+16=0,求m,n的值.解:∵m2-2mn+2n2-8n+16=0,∴(m2-2mn+n2)+(n2-8n+16)=0,∴(m-n)2+(n-4)2=0,∴(m-n)2=0,(n-4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)若a2+b2-4a+4=0,则a=________,b=________;(2)已知x2+2y2-2xy+6y+9=0,求x y的值;(3)已知△ABC的三边长a,b,c都是正整数,且满足2a2+b2-4a-6b+11=0,求△ABC的周长.18.(10分)如图4-Z-2①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图②的方式拼成一个正方形.图4-Z-2(1)请用两种不同的方法求图②中阴影部分的面积(直接用含m,n的代数式表示).方法一:________________________________________________________________________;方法二:________________________________________________________________________.(2)根据(1)的结论,请你写出代数式(m+n)2,(m-n)2,mn之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:已知实数a,b满足:a+b=6,ab=5,求a-b的值.19.(10分)阅读材料:对于多项式x2+2ax+a2可以直接用公式法分解为(x+a)2的形式.但对于多项式x2+2ax -3a2就不能直接用公式法了,我们可以根据多项式的特点,在x2+2ax-3a2中先加上一项a2,再减去a2这项,使整个式子的值不变.解题过程如下:x2+2ax-3a2=x2+2ax-3a2+a2-a2(第一步)=x2+2ax+a2-a2-3a2(第二步)=(x+a)2-(2a)2(第三步)=(x+3a)(x-a).(第四步)参照上述材料,回答下列问题:(1)上述因式分解的过程,从第二步到第三步,用到了哪种因式分解的方法()A.提公因式法B.平方差公式法C.完全平方公式法D.没有因式分解(2)从第三步到第四步用到的是哪种因式分解的方法:__________;(3)请你参照上述方法把m2-6mn+8n2因式分解.参考答案1.[答案] B2.[解析] A a 3-a =a (a 2-1)=a (a +1)(a -1).故选A.3.[解析] C 4a 2-(b -c )2=[2a +(b -c )][2a -(b -c )]=(2a +b -c )(2a -b +c ).故选C.4.[答案] D5.[解析] A 因为(4m +5)2-9=(4m +5)2-32=(4m +5+3)(4m +5-3)=(4m +8)(4m +2)=4·(m +2)·2(2m +1)=8(m +2)(2m +1),所以(4m +5)2-9一定能被8整除.6.[解析] A ∵(m -n )2-2m +2n =(m -n )2-2(m -n )=(m -n )(m -n -2),m -n =-1,∴原式=(-1)×(-1-2)=3.故选A.7.[解析] A 因为甲看错了a 的值,分解的结果为(x +6)(x -1),所以b =-6.因为乙看错了b 的值,分解的结果是(x -2)(x +1),所以a =-1.所以x 2+ax +b =x 2-x -6=(x +2)(x -3). 8.[解析] B (a 2-2ab +b 2)-c 2=(a -b )2-c 2=(a -b +c )(a -b -c ).因为a ,b ,c 是三角形三边的长,所以a +c >b ,a <b +c ,即a -b +c >0,a -b -c <0,所以(a -b +c )(a -b -c )<0,即(a 2-2ab +b 2)-c 2<0.故选B.[点评] 本题要充分挖掘题目的隐含条件,即a ,b ,c 是三角形的三边长,则a ,b ,c 应是正数且满足三角形三边的关系.9.[答案] 3(a -b )(a +b )10.[答案] 14[解析] 原式=2018(2019+2017)×(2019-2017)=20184036×2=14. 11.[答案] 答案不唯一,如412.[答案] 138[解析] 剩余部分的面积为πR 2-4πr 2.当R =7.2 cm ,r =1.4 cm 时,πR 2-4πr 2=π(R -2r )(R +2r )=π×(7.2-2.8)×(7.2+2.8)=π×4.4×10≈3.14×44≈138(cm 2).13.[答案] 等腰三角形[解析] ∵a +2ab =c +2bc ,∴a +2ab -c -2bc =0,∴(a -c )+2b (a -c )=0,∴(a -c )(2b +1)=0.∵2b +1≠0,∴a =c.14.[答案] 384[解析] 由题意易得a +b =12,ab =32,∴a 2b +ab 2=ab (a +b )=384.故答案为384.15.[解析] (1)先提取公因式2xy ,再用平方差公式;(2)先提取公因式3x ,再运用平方差公式;(3)先提取公因式(a -b ),再运用平方差公式.无论哪一道题目都需要分解到底.解:(1)2x 3y -2xy 3=2xy (x 2-y 2)=2xy (x +y )(x -y ).(2)3x 3-27x=3x (x 2-9)=3x (x +3)(x -3).(3)(a -b )(3a +b )2+(a +3b )2(b -a )=(a -b )[(3a +b )2-(a +3b )2]=(a -b )(3a +b +a +3b )(3a +b -a -3b )=8(a -b )2(a +b ).16.解:(1)⎝⎛⎭⎫12x 2+2x -1+⎝⎛⎭⎫12x 2+4x +1=x 2+6x=x (x +6).(2)⎝⎛⎭⎫12x 2+2x -1+⎝⎛⎭⎫12x 2-2x=x 2-1=(x +1)(x -1).(3)⎝⎛⎭⎫12x 2+4x +1+⎝⎛⎭⎫12x 2-2x=x 2+2x +1=(x +1)2.(答案不唯一,选择其中一种即可)17.解:(1)2 0(2)∵x 2+2y 2-2xy +6y +9=0,∴x 2+y 2-2xy +y 2+6y +9=0,即(x -y )2+(y +3)2=0,则x-y=0,y+3=0,解得x=y=-3,∴x y=(-3)-3=-127.(3)∵2a2+b2-4a-6b+11=0,∴2a2-4a+2+b2-6b+9=0,∴2(a-1)2+(b-3)2=0,则a-1=0,b-3=0,解得a=1,b=3,∵a,b,c都是正整数,由三角形三边关系可知,三角形的三边长分别为1,3,3,则△ABC的周长为1+3+3=7.18.解:(1)方法一:(m+n)2-4mn;方法二:(m-n)2.(2)(m+n)2-4mn=(m-n)2.(3)由(2)可知(a-b)2=(a+b)2-4ab=62-4×5=16.∴a-b=4或a-b=-4.19.解:(1)C(2)平方差公式法(3)m2-6mn+8n2=m2-6mn+8n2+n2-n2=m2-6mn+9n2-n2=(m-3n)2-n2=(m-2n)(m-4n).。
北师大版八年级下册 第4章 因式分解 单元练习卷 含解析
第4章因式分解一.选择题(共5小题)1.若多项式x2+bx+c因式分解后的一个因式是(x+1),则b﹣c的值是()A.﹣1 B.1 C.0 D.﹣22.把多项式a2﹣4a分解因式的正确结果是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣43.下列式子中,属于2x3+x2﹣13x+6的因式是()A.x+2 B.x﹣3 C.2x﹣1 D.2x+14.下多项式中,在实数范围内能分解因式的是()A.x2﹣x+1 B.x2﹣2x+2 C.x2﹣3x+3 D.x2﹣5x+5.5.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于()A.﹣1 B.﹣1或﹣11 C.1 D.1或11二.填空题(共5小题)6.若多项式x2﹣mx+n(m、n是常数)分解因式后,有一个因式是x﹣3,则3m﹣n的值为.7.若对于一切实数x,等式x2﹣px+q=(x+1)(x﹣2)均成立,则p2﹣4q的值是.8.已知x2﹣2x﹣1=0,则3x2﹣6x=;则2x3﹣7x2+4x﹣2019=.9.定义一种运算:〈a,b〉=ab+2a+3b,例如:〈﹣2,1〉=﹣2﹣4+3=﹣3.则〈a,b〉+6要进行因式分解的结果为;如果x,y都是整数,且〈x,y〉=1,那么x+y的值为.10.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x =9,y=9时,则各个因式的值是:(x+y)=18,(x﹣y)=0,(x2+y2)=162=162,于是就可以把“180162”作为一个六位数的密码,对于多项式9x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是(写出一个即可).三.解答题(共7小题)11.把下列各式因式分解:(1)8x2yz﹣4xy(2)(x2+4)2﹣16x2.12.因为x2+2x﹣3=(x+3)(x﹣1),这说明多项式x2+2x﹣3有一个因式为x﹣1,我们把x=1代入此多项式发现x=1能使多项式x2+2x﹣3的值为0.利用上述阅读材料求解:(1)若x﹣3是多项式x2+kx+12的一个因式,求k的值;(2)若(x﹣3)和(x﹣4)是多项式x3+mx2+12x+n的两个因式,试求m,n的值.(3)在(2)的条件下,把多项式x3+mx2+12x+n因式分解.13.先阅读材料,再回答问题:分解因式:(a﹣b)2﹣2(a﹣b)+1解:设a﹣b=M,则原式=M2﹣2M+1=(M﹣1)2再将a﹣b=M还原,得到:原式=(a﹣b﹣1)2上述解题中用到的是“整体思想”,它是数学中常用的一种思想,请你用整体思想解决下列问题:(1)分解因式:(x+y)(x+y﹣4)+4(2)若a为正整数,则(a﹣1)(a﹣2)(a﹣3)(a﹣4)+1为整数的平方,试说明理由.14.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x ﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.15.阅读题:分解因式:x2+2x﹣3解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,我们称这种方法为配方法.此题为用配方法分解因式.请体会配方法的特点,然后用配方法解决下列问题:在实数范围内分解因式:4a2+4a﹣1.16.阅读理解应用待定系数法:设某一多项式的全部或部分系数为未知数、利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值.待定系数法可以应用到因式分解中,例如问题:因式分解:x3﹣1.因为x3﹣1为三次多项式,若能因式分解,则可以分解成一个一次多顶式和一个二次多项式的乘积.故我们可以猜想x3﹣1可以分解成(x﹣1)(x2+ax+b),展开等式右边得:x3+(a﹣1)x2+(b﹣a)x﹣b,根据待定系数法原理,等式两边多项式的同类项的对应系数相等:a ﹣1=0,b﹣a=0,﹣b=﹣1可以求出a=1,b=1.所以x3﹣1=(x﹣1)(x2+x+1).(1)若x取任意值,等式x2+2x+3=x2+(3﹣a)x+s恒成立,则a=;(2)已知多项式x3+2x+3有因式x+1,请用待定系数法求出该多项式的另一因式;(3)请判断多项式x4+x2+1是否能分解成的两个整系数二次多项式的乘积,并说明理由.17.如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.参考答案与试题解析一.选择题(共5小题)1.【分析】根据多项式x2+bx+c因式分解后的一个因式是(x+1),即可得到当x+1=0,即x=﹣1时,x2+bx+c=0,即1﹣b+c=0,即可得到b﹣c的值.【解答】解:∵多项式x2+bx+c因式分解后的一个因式是(x+1),∴当x+1=0,即x=﹣1时,x2+bx+c=0,即1﹣b+c=0,∴b﹣c=1,故选:B.2.【分析】根据提公因式法的分解方法分解即可.【解答】解:a2﹣4a=a(a﹣4).故选:A.3.【分析】将2x3+x2﹣13x+6利用分组分解法分解因式,注意首先拆项可得:2x3+x2﹣10x ﹣3x+6,然后将前三项作为一组,后两项作为一组分解即可求得答案.【解答】解:∵2x3+x2﹣13x+6=2x3+x2﹣10x﹣3x+6=x(2x2+x﹣10)﹣3(x﹣2)=x(2x+5)(x﹣2)﹣3(x﹣2)=(x﹣2)(2x2+5x﹣3)=(x﹣2)(2x﹣1)(x+3),∴2x3+x2﹣13x+6的因式是:(x﹣2),(2x﹣1),(x+3).故选:C.4.【分析】求出各项中根的判别式的值,根的判别式的值大于等于0即为在实数范围内能分解因式.【解答】解:A、∵a=1,b=﹣1,c=1,∴△=1﹣4=﹣3<0,本选项不合题意;B、∵a=1,b=﹣2,c=2,∴△=4﹣8=﹣4<0,本选项不合题意;C、∵a=1,b=﹣3,c=3,∴△=9﹣12=﹣3<0,本选项不合题意;D、∵a=1,b=﹣5,c=5,∴△=25﹣20=5>0,本选项符合题意;故选:D.5.【分析】根据因式分解的分组分解法即可求解.【解答】解:a2﹣ab﹣ac+bc=11(a2﹣ab)﹣(ac﹣bc)=11a(a﹣b)﹣c(a﹣b)=11(a﹣b)(a﹣c)=11∵a>b,∴a﹣b>0,a,b,c是正整数,∴a﹣b=1或11,a﹣c=11或1.故选:D.二.填空题(共5小题)6.【分析】设另一个因式为x+a,(x+a)(x﹣3)=x2+(﹣3+a)x﹣3a,根据题意得出﹣m=﹣3+a,n=﹣3a,求出m、n后代入即可.【解答】解:设另一个因式为x+a,则(x+a)(x﹣3)=x2+(﹣3+a)x﹣3a,∴﹣m=﹣3+a,n=﹣3a,∴m=3﹣a∴3m﹣n=3(3﹣a)﹣(﹣3a)=9﹣3a+3a=9,故答案为:9.7.【分析】根据十字相乘法的分解方法和特点可知:﹣p=1﹣2,q=1×(﹣2),即可求得p、q的值,代入求值即可.【解答】解:由题意得:﹣p=1﹣2,q=1×(﹣2),∴p=1,q=﹣2,∴p2﹣4q=1﹣4×(﹣2)=1+8=9.故答案为:9.8.【分析】根据因式分解的提公因式法分解因式,利用整体代入的方法即可求得第一个空的解;分解第二个因式后把﹣7x写成﹣4x﹣3x再重新组合,进行提公因式,最后整体代入即可求得第二个空的解.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,2x2﹣4x=2,∴3x2﹣6x=3(x2﹣2x)=3.2x3﹣7x2+4x﹣2019=x(2x2﹣7x)+4x﹣2019=x(2x2﹣4x﹣3x)+4x﹣2019=x(2﹣3x)+4x﹣2019=2x﹣3x2+4x﹣2019=﹣3x2+6x﹣2019=﹣3(x2﹣2x)﹣2019=﹣3×1﹣2019=﹣2022.故答案为:3,﹣2022.9.【分析】由已知可得〈a,b〉+6=ab+2a+3b+6,再分组分解;由〈x,y〉=xy+2x+3y=1,将式子变形为xy+2x+3y+6=7,进行分组分解得到(x+2)(y+3)=7,再由x,y都是整数,分别得到+2=1,y+3=7或x+2=﹣1,y+3=﹣7,即可求解.【解答】解:〈a,b〉+6=ab+2a+3b+6=a(b+2)+3(b+2);〈x,y〉=xy+2x+3y=1,∵xy+2x+3y+6=7,∴(x+2)(y+3)=7,∵x,y都是整数,∴x+2=1,y+3=7或x+2=﹣1,y+3=﹣7,∴x=﹣1,y=4或x=﹣3,y=﹣10,∴x+y=3或x+y=﹣13;故答案为(b+2)(a+3);3或﹣13.10.【分析】9x3﹣xy2=x(9x2﹣y2)=x(3x+y)(3x﹣y),当x=10,y=10时,密码可以是10、40、20的任意组合即可.【解答】解:9x3﹣xy2=x(9x2﹣y2)=x(3x+y)(3x﹣y),当x=10,y=10时,密码可以是104020或102040等等都可以,答案不唯一.三.解答题(共7小题)11.【分析】(1)直接提取公因式4xy,进而分解因式得出答案;(2)直接利用平方差公式分解因式,进而结合完全平方公式分解因式得出答案.【解答】解:(1)8x2yz﹣4xy=4xy(2xz﹣1);(2)(x2+4)2﹣16x2=(x2+4﹣4x)(x2+4+4x)=(x﹣2)2(x+2)2.12.【分析】(1)由已知条件可知,当x=3时,x2+kx+12=0,将x的值代入即可求得(2)由题意可知,x=3和x=4时,x3+mx2+12x+n=0,由此得二元一次方程组,从而可求得m和n的值;(3)将(2)中m和n的值代入x3+mx2+12x+n,提取公因式x,则由题意知(x﹣3)和(x﹣4)也是所给多项式的因式,从而问题得解.【解答】解:(1)∵x﹣3是多项式x2+kx+12的一个因式∴x=3时,x2+kx+12=0∴9+3k+12=0∴3k=﹣21∴k=﹣7∴k的值为﹣7.(2)(x﹣3)和(x﹣4)是多项式x3+mx2+12x+n的两个因式∴x=3和x=4时,x3+mx2+12x+n=0∴解得∴m、n的值分别为﹣7和0.(3)∵m=﹣7,n=0,∴x3+mx2+12x+n可化为:x3﹣7x2+12x∴x3﹣7x2+12x=x(x2﹣7x+12)=x(x﹣3)(x﹣4)13.【分析】(1)设M=x+y,据此原式=M(M﹣4)+4=M2﹣4M+4=(M﹣2)2,再将M=x+y代回即可得;(2)由原式变形为(a2﹣5a+4)(a2﹣5a+6)+1,令N=a2﹣5a+4,据此可得原式N(N+2)+1=N2+2N+1=(N+1)2,根据a为正整数可作出判断.【解答】解:(1)设M=x+y,则原式=M(M﹣4)+4=M2﹣4M+4=(M﹣2)2,将M=x+y代入还原可得原式=(x+y﹣2)2;(2)原式=(a﹣1)(a﹣4)(a﹣2)(a﹣3)+1=(a2﹣5a+4)(a2﹣5a+6)+1令N=a2﹣5a+4,∵a为正整数,∴N=(a﹣1)(a﹣4)=a2﹣5a+4也是整数,则原式=N(N+2)+1=N2+2N+1=(N+1)2,∵N为整数,∴原式=(N+1)2即为整数的平方.14.【分析】(1)首先将前三项组合,利用完全平方公式分解因式,进而利用平方差公式分解因式得出即可;(2)首先将前两项以及后两项组合,进而提取公因式法分解因式,即可得出a,b,c 的关系,判断三角形形状即可.【解答】解:(1)x2﹣2xy+y2﹣16=(x﹣y)2﹣42=(x﹣y+4)(x﹣y﹣4);(2)∵a2﹣ab﹣ac+bc=0∴a(a﹣b)﹣c(a﹣b)=0,∴(a﹣b)(a﹣c)=0,∴a=b或a=c或a=b=c,∴△ABC的形状是等腰三角形或等边三角形.15.【分析】首先将原式配方,进而利用平方差公式分解因式即可.【解答】解:4a2+4a﹣1=(2a+1)2﹣2=(2a+1﹣)(2a+1+).16.【分析】(1)根据题目中的待定系数法原理即可求得结果;(2)根据待定系数法原理先设另一个多项式,然后根据恒等原理即可求得结论;(3)根据待定系数原理和多项式乘以多项式即可求得结论.【解答】解:(1)根据待定系数法原理,得3﹣a=2,a=1.故答案为1.(2)设另一个因式为(x2+ax+b),(x+1)(x2+ax+b)=x3+ax2+bx+x2+ax+b=x3+(a+1)x2+(a+b)x+b∴a+1=0 a=﹣1 b=3∴多项式的另一因式为x2﹣x+3.答:多项式的另一因式x2﹣x+3.(3)多项式x4+x2+1能分解成两个整系数二次多项式的乘积.理由如下:设多项式x4+x2+1能分解成①(x2+1)(x2+ax+b)或②(x+1)(x3+ax2+bx+c)或(x2+x+1)(x2+ax+1),①(x2+1)(x2+ax+b)=x4+ax3+bx2+ax+b=x4+ax3+(b+1)x2+ax+b∴a=o b+1=1 b=1由b+1=1得b=0≠1②(x+1)(x3+ax2+bx+c),=x4+ax3+bx2+cx+x3+ax2+bx+c=x4+(a+1)x3+(b+a)x2+(b+c)x+c∴a+1=0 b+a=1 b+c=0 c=1解得a=﹣1,b=2,c=1,又b+c=0,b=﹣1≠2.③(x2+x+1)(x2+ax+1)=x4+(a+1)x3+(a+2)x2+(a+1)x+1∴a+1=0,a+2=1,解得a=﹣1.即x4+x2+1=(x2+x+1)(x2﹣x+1)∴x4+x2+1能分解成两个整系数二次三项式的乘积却不能分解成两个整系数二次二项式与二次三项式的乘积.答:多项式x4+x2+1能分解成两个整系数二次三项式的乘积.17.【分析】(1)根据图象由长方形面积公式将代数式2m2+5mn+2n2因式分解即可;(2)根据正方形的面积得出正方形的边长,再利用每块小矩形的面积为10厘米2,得出等式求出m+n,进一步得到图中所有裁剪线(虚线部分)长之和即可.【解答】解:(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为:(m+2n)(2m+n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴.图中所有裁剪线(虚线部分)长之和为6m+6n=6(m+n)=42cm.。
八年级下数学《第四章因式分解》单元测试(含答案)
第四章因式分解一、选择题1.下列因式分解结果正确的是()A. x2+3x+2=x(x+3)+2B. 4x2﹣9=(4x+3)(4x﹣3)C. x2﹣5x+6=(x﹣2)(x﹣3)D. a2﹣2a+1=(a+1)22.下列从左到右的变形,是因式分解的是()A. (x+3)(x-2)=x2+x-6B. ax-ay-1=a(x-y)-1C. 8a2b3=2a2•4b3D. x2-4=(x+2)(x-2)3.若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3,则△ABC是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰或直角三角形4.把多项式x2﹣x分解因式,得到的因式是()A. 只有xB. x2和xC. x2和﹣xD. x和x﹣15.计算:22014﹣(﹣2)2015的结果是()A. B. C. ﹣ D. 3×6.下列多项式能因式分解的是()A. B. C. D.7.下列从左边到右边的变形,属于因式分解的是()A. (x+1)(x﹣1)=x2﹣1B. x2﹣2x+1=x(x﹣2)+1C. x2﹣4y2=(x﹣2y)2D. 2x2+4x+2=2(x+1)28.在实数范围内分解因式x5﹣64x正确的是()A. x(x4﹣64)B. x(x2+8)(x2﹣8)C. x(x2+8)(x+2)(x﹣2)D. x(x+2)3(x﹣2)9.分解因式得正确结果为()A. a2b(a2﹣6a+9)B. a2b(a﹣3)(a+3)C. b(a2﹣3)2D. a2b(a﹣3)210.若多项式x4+mx3+nx﹣16含有因式(x﹣2)和(x﹣1),则mn的值是()A. 100B. 0C. -100D. 50二、填空题11.分解因式:a3﹣ab2=________.12.分解因式:m2﹣16=________.13.分解因式x2-8x+16=________14. 分解因式:x2﹣9= ________.15.分解因式:a2﹣16=________.16.已知一个长方形的面积是a2﹣b2(a>b),其中长边为a+b,则短边长是________ .17.分解因式:x2y﹣4xy+4y=________.18. 分解因式:9x3﹣18x2+9x=________19.已知a=2,x+2y=3,则3ax+6ay=________20.分解因式:9a﹣a3=________ .三、解答题21.因式分解:(1)2x(a﹣b)+3y(b﹣a)(2)x(x2﹣xy)﹣(4x2﹣4xy)22.化简求值:当a=2005时,求﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005的值.23.阅读材料:分解因式:x2+2x﹣3解:原式=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:(1)分解因式x2﹣2x﹣3=________;a2﹣4ab﹣5b2=________;(2)无论m取何值,代数式m2+6m+13总有一个最小值,请你尝试用配方法求出它的最小值;(3)观察下面这个形式优美的等式:a2+b2+c2﹣ab﹣bc﹣ca= [(a﹣b)2+(b﹣c)2+(c﹣a)2] 该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.请你说明这个等式的正确性.参考答案一、选择题C D D D D C D C D C二、填空题11.a(a+b)(a﹣b)12.(m+4)(m-4)13.(x-4)214.(x+3)(x﹣3)15.(a+4)(a﹣4)16.解:(a2﹣b2)÷(a+b)=(a+b)(a﹣b)÷(a+b)=a﹣b.故答案为a﹣b.17.y(x﹣2)218.9x(x﹣1)219.1820.a(3+a)(3﹣a)三、解答题21.解:(1)原式=2x(a﹣b)﹣3y(a﹣b)=(a﹣b)(2x﹣3y);(2)原式=x2(x﹣y)﹣4x(x﹣y)=x(x﹣y)(x﹣4).22.解:﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005=﹣3a2(a2﹣2a﹣3)+3a2(a2﹣2a﹣3)+2005=2005.23.(1)(x﹣3)(x+1);(a+b)(a﹣5b)(2)解:m2+6m+13=m2+6m+9+4=(m+3)2+4,因为(m+3)2≥0,所以代数式m2+6m+13的最小值是4(3)解:a2+b2+c2﹣ab﹣bc﹣ca,= (2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),= (a2﹣2b+b2+b2﹣2bc+c2+c2﹣2ca+a2),= [(a﹣b)2+(b﹣c)2+(c﹣a)2]。
第4章 因式分解 北师大版数学八年级下册计算题专项练习(含答案)
2023年北师大版数学八年级下册《因式分解计算题》专项练习一、选择题1.若实数a,b满足a+b=5,a2b+ab2=-10,则ab的值是( )A.-2B.2C.-50D.502.因式分解x2-9y2的正确结果是( )A.(x+9y)(x-9y)B.(x+3y)(x-3y)C.(x-3y)2D.(x-9y)23.若a+b=3,a-b=7,则b2-a2的值为( )A.-21B.21C.-10D.104.下列各式中不能用完全平方公式因式分解的是( )A.-x2+2xy-y2B.x4-2x3y+x2y2C.(x2-3)2-2(3-x2)+1D.x2-xy+12y25.把多项式2x2-8x+8因式分解,结果正确的是( )A.(2x-4)2B.2(x-4)2C.2(x-2)2D.2(x+2)26.计算:101×1022﹣101×982=( )A.404B.808C.40400D.808007.把多项式x2+ax+b分解因式,得(x+1)(x﹣3)则a,b的值分别是()A.a=2,b=3B.a=﹣2,b=﹣3C.a=﹣2,b=3D.a=2,b=﹣38.已知(19x﹣31)(13x﹣17)﹣(13x﹣17)(11x﹣23)可因式分解成(ax+b)(8x+c),其中a、b、c均为整数,则a+b+c=( )A.﹣12B.﹣32C.38D.729.若a、b、c为一个三角形的三边长,则式子(a-c)2-b2的值( )A.一定为正数B.一定为负数C.可能是正数,也可能是负数D.可能为010.若m2+m-1=0,则m3+2m2+2026的值为( )A.2028B.2027C.2026D.202511.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为x2﹣4,乙与丙相乘为x2+15x﹣34,则甲与丙相加的结果与下列哪一个式子相同?( )A.2x+19B.2x﹣19C.2x+15D.2x﹣1512. (-8)2 020+(-8)2 019能被下列数整除的是( )A.3B.5C.7D.9二、填空题13.把多项式(x﹣2)2﹣4x+8因式分解开始出现错误的一步是 解:原式=(x﹣2)2﹣(4x﹣8)…A=(x﹣2)2﹣4(x﹣2)…B=(x﹣2)(x﹣2+4)…C=(x﹣2)(x+2)…D.14.若ab=3,a﹣2b=5,则a2b﹣2ab2的值是.15.已知a2+b2=13,ab=6,则a4-2a2b2+b4= .16.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是_________.17.已知x=1,y=-2是方程mx+ny=4的解,则m2﹣4mn+4n2的值为.18.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式x3-xy2,取x=27,y=3时,用上述方法产生的密码是:(写出一个即可).三、解答题19.因式分解:3x2﹣12xy+12y2;20.因式分解:4a2﹣3b(4a﹣3b);21.因式分解:2x3(a-1)+8x(1-a).22.因式分解:-4x3y+16x2y2-16xy3.23.已知x2+3x-1=0,先化简,再求值:4x(x+2)+(x-1)2-3(x2-1).24.已知x-y=2,y-z=2,x+z=4,求x2-z2的值.25.已知一个长方形的周长为20,其长为a,宽为b,且a,b满足a2﹣2ab+b2﹣4a+4b+4=0,求a,b的值.26.两位数相乘:19×11=209,18×12=216,25×25=625,34×36=1 224,47×43=2 021,…(1)认真观察,分析上述各式中两因数的个位数字、十位数字分别有什么联系,找出因数与积之间的规律,并用字母表示出来;(2)验证你得到的规律.27.阅读理解:对于二次三项式x2+2ax+a2,能直接用公式法进行因式分解,得到x2+2ax+a2=(x+a)2,但对于二次三项式x2+2ax﹣8a2,就不能直接用公式法了.我们可以采用这样的方法:在二次三项式x2+2ax﹣8a2中先加上一项a2,使其成为完全平方式,再减去a2这项,使整个式子的值不变,于是:x2+2ax﹣8a2=x2+2ax﹣8a2+a2﹣a2=x2+2ax+a2﹣8a2﹣a2=(x2+2ax+a2)﹣(8a2+a2)=(x+a)2﹣9a2=(x+a+3a)(x+a﹣3a)=(x+4a)(x﹣2a)像这样把二次三项式分解因式的方法叫做添(拆)项法.问题解决:请用上述方法将二次三项式x2+2ax﹣3a2分解因式.拓展应用:二次三项式x2﹣4x+5有最小值或是最大值吗?如果有,请你求出来并说明理由.答案1.A2.B3.A4.D5.C6.D7.B8.A9.B10.B11.A12.C13.答案为:C.14.答案为:15.15.答案为:2516.答案为:2m+317.答案为:1618.答案为:273024或27243019.解:原式=3(x2﹣4xy+4y2)=3(x﹣2y)2;20.解:原式=4a2﹣12ab+9b2=(2a﹣3b)2.21.解:原式=2x(a-1)(x-2)(x+2).22.解:原式=-4xy(x-2y)2.23.解:原式=6.24.解:由x-y=2,y-z=2,得x-z=4.又∵x+z=4,∴原式=(x+z)(x-z)=16.25.解∵长方形的周长为20,其长为a,宽为b,∴a+b=20÷2=10.∵a2-2ab+b2-4a+4b+4=0,∴(a-b)2-4(a-b)+4=0.∴(a-b-2)2=0.∴a-b-2=0,由此得方程组a+b=10,a-b-2=0,解得a=6,b=4.26.解:(1)上述等式的规律是:两因数的十位数字相等,个位数字相加等于10,而积后两位是两因数个位数字相乘、前两位是十位数字相乘,乘积再加上这个十位数字之和;如果用m表示十位数字,n表示个位数字的话,则第一个因数为10m+n,第二个因数为10m+(10-n),积为100m(m+1)+n(10-n);表示出来为:(10m+n)[10m+(10-n)]=100m(m+1)+n(10-n);(2)∵左边=(10m+n)(10m-n+10)=(10m+n)[10(m+1)-n]=100m(m+1)-10mn+10n(m+1)-n2=100m(m+1)-10mn+10mn+10n-n2=100m(m+1)+n(10-n)=右边,∴(10m+n)[10m+(10-n)]=100m(m+1)+n(10-n),成立.27.解:(1)x2+2ax﹣3a2=x2+2ax﹣3a2+a2﹣a2=x2+2ax+a2﹣3a2﹣a2,=(x+a)2﹣4a2=(x+a)2﹣(2a)2=(x+a+2a)(x+a﹣2a)=(x+3a)(x﹣a);(2)有最小值,x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1,∵(x﹣2)2≥0,∴(x﹣2)2+1≥1,∴最小值为1.。
《第4章因式分解》期末复习能力提升训练(附答案)2020-2021学年八年级数学北师大版下册
2021年北师大版八年级数学下册《第4章因式分解》期末复习能力提升训练(附答案)一.因式分解的意义1.下列各式分解因式结果是(a﹣2)(b+3)的是()A.﹣6+2b﹣3a+ab B.﹣6﹣2b+3a+abC.ab﹣3b+2a﹣6D.ab﹣2a+3b﹣62.若多项式x2﹣ax﹣1可分解为(x﹣2)(x+b),则a+b的值为()A.2B.1C.﹣2D.﹣1 3.已知关于x的三次三项式2x3+3x﹣k有一个因式是2x﹣5,则另一个因式为.4.若多项式x2﹣mx+n(m、n是常数)分解因式后,有一个因式是x﹣3,则3m﹣n的值为.5.给出六个多项式:①x2+y2;②﹣x2+y2;③x2+2xy+y2;④x4﹣1;⑤x(x+1)﹣2(x+1);⑥m2﹣mn+n2.其中,能够分解因式的是(填上序号).6.多项式x2+mx+6因式分解得(x﹣2)(x+n),则m=.7.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.8.已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.9.已知三次四项式2x3﹣5x2﹣6x+k分解因式后有一个因式是x﹣3,试求k的值及另一个因式.二.公因式10.对多项式24ab2﹣32a2bc进行因式分解时提出的公因式是.11.2x3y2与12x4y的公因式是.12.多项式m(m﹣3)+2(3﹣m),m2﹣4m+4,m4﹣16中,它们的公因式是.三.提公因式法因式分解13.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=.14.已知a﹣b=3,ab=﹣2,则a2b﹣ab2的值为.15.分解因式:2m(m﹣n)2﹣8m2(n﹣m)四.运用公式法因式分解16.下列各式:①﹣x2﹣y2;②﹣a2b2+1;③a2+ab+b2;④﹣x2+2xy﹣y2;⑤﹣mn+m2n2,可以用公式法分解因式的有()A.2个B.3个C.4个D.5个17.请仔细阅读下面某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程,然后回答问题:解:令x2﹣4x+2=y,则:原式=y(y+4)+4(第一步)=y2+4y+4(第二步)=(y+2)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的;A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)另外一名同学发现第四步因式分解的结果不彻底,请你直接写出因式分解的最后结果;(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.18.已知,求下列各式的值:(1)x2+2xy+y2(2)x2﹣y2.五.提公因式法与公式法的综合运用19.因式分解:4a3﹣16a=.20.因式分解:(1)﹣3ma2+12ma﹣12m;(2)n2(m﹣2)+4(2﹣m).21.分解因式:(1)8a3b2+12ab3c;(2)(2x+y)2﹣(x+2y)2.六.分组分解法因式分解22.分解因式:2x2+7xy﹣15y2﹣3x+11y﹣2=.23.把下列多项式因式分解(要写出必要的过程):(1)﹣x2y+6xy﹣9y;(2)9(x+2y)2﹣4(x﹣y)2;(3)1﹣x2﹣y2+2xy.24.因式分解:(1)6x2﹣13x+5(2)1﹣x2+2xy﹣y225.甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),求a+b的值.七.十字相乘法等因式分解26.你会对多项式(x2+5x+2)(x2+5x+3)﹣12分解因式吗?对结构较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),能使复杂的问题简单化、明朗化.从换元的个数看,有一元代换、二元代换等.对于(x2+5x+2)(x2+5x+3)﹣12.解法一:设x2+5x=y,则原式=(y+2)(y+3)﹣12=y2+5y﹣6=(y+6)(y﹣1)=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).解法二:设x2+5x+2=y,则原式=y(y+1)﹣12=y2+y﹣12=(y+4)(y﹣3)=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).解法三:设x2+2=m,5x=n,则原式=(m+n)(m+n+1)﹣12=(m+n)2+(m+n)﹣12=(m+n+4)(m+n﹣3)=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).按照上面介绍的方法对下列多项式分解因式:(1)(x2+x﹣4)(x2+x+3)+10;(2)(x+1)(x+2)(x+3)(x+6)+x2;(3)(x+y﹣2xy)(x+y﹣2)+(xy﹣1)2.八.实数范围内分解因式27.下列关于x的二次三项式中(m表示实数),在实数范围内一定能分解因式的是()A.x2﹣2x+2B.2x2﹣mx+1C.x2﹣2x+m D.x2﹣mx﹣1九.因式分解的应用28.已知x2+x=1,那么x4+2x3﹣x2﹣2x+2020的值为()A.2019B.2020C.2021D.202229.已知x2﹣3x+1=0,则=.30.若a+b﹣2=0,则代数式a2﹣b2+4b的值等于.参考答案一.因式分解的意义1.解:(a﹣2)(b+3)=﹣6﹣2b+3a+ab.故选:B.2.解:∵(x﹣2)(x+b)=x2+bx﹣2x﹣2b=x2+(b﹣2)x﹣2b=x2﹣ax﹣1,∴b﹣2=﹣a,﹣2b=﹣1,∴b=0.5,a=1.5,∴a+b=2.故选:A.3.解:设另一个因式为x2+ax+b,则2x3+3x﹣k=(2x﹣5)(x2+ax+b)=2x3+(2a﹣5)x2+(2b﹣5a)x﹣5b,所以,解得:a=2.5,b=,即另一个因式为x2+2.5x+,故答案为:x2+2.5x+.4.解:设另一个因式为x+a,则(x+a)(x﹣3)=x2+(﹣3+a)x﹣3a,∴﹣m=﹣3+a,n=﹣3a,∴m=3﹣a∴3m﹣n=3(3﹣a)﹣(﹣3a)=9﹣3a+3a=9,故答案为:9.5.解:①x2+y2不能因式分解,故①错误;②﹣x2+y2利用平方差公式,故②正确;③x2+2xy+y2完全平方公式,故③正确;④x4﹣1平方差公式,故④正确;⑤x(x+1)﹣2(x+1)提公因式,故⑤正确;⑥m2﹣mn+n2完全平方公式,故⑥正确;故答案为:②③④⑤⑥.6.解:x2+mx+6因式分解得(x﹣2)(x+n),得x2+mx+6=(x﹣2)(x+n),(x﹣2)(x+n)=x2+(n﹣2)x﹣2n,x2+mx+6=x2+(n﹣2)x﹣2n,﹣2n=6,m=n﹣2.解得n=﹣3,m=﹣5,故答案为:﹣5.7.解:设另一个因式为(x+a),得(1分)2x2+3x﹣k=(2x﹣5)(x+a)(2分)则2x2+3x﹣k=2x2+(2a﹣5)x﹣5a(4分)∴(6分)解得:a=4,k=20(8分)故另一个因式为(x+4),k的值为20(9分)8.解:设另一个因式为x+a,则(x+3)(x+a)=x2+(3+a)x+3a,∵x2﹣4x+m=(x+3)(x+a),∴3+a=﹣4,3a=m,∴a=﹣7,m=﹣21,即另一个因式为x﹣7,m=﹣21.9.解:设另一个因式为2x2+mx﹣,∴(x﹣3)(2x2+mx﹣)=2x3﹣5x2﹣6x+k,2x3+mx2﹣x﹣6x2﹣3mx+k=2x3﹣5x2﹣6x+k,2x3+(m﹣6)x2﹣(+3m)x+k=2x3﹣5x2﹣6x+k,∴,解得:,∴另一个因式为:2x2+x﹣3.二.公因式10.解:24ab2﹣32a2bc进行因式分解时提出的公因式是8ab,故答案为:8ab.11.解:∵2x3y2=2x3y•y,12x4y=2x3y•6x,∴2x3y2与12x4y的公因式是2x3y,故答案为:2x3y.12.解:m(m﹣3)+2(3﹣m)=m(m﹣3)﹣2(m﹣3)=(m﹣3)(m﹣2);m2﹣4m+4=(m﹣2)2;m4﹣16=m4﹣24=(m2+4)(m2﹣4)=(m2+4)(m+2)(m﹣2).各项都含有m﹣2,因此它们的公因式是m﹣2.三.提公因式法因式分解13.解:原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98]=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97]=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96]=…=(a+1)100.故答案为:(a+1)100.14.解:a2b﹣ab2=ab(a﹣b)=﹣2×3=﹣6,故答案为:﹣6.15.解:2m(m﹣n)2﹣8m2(n﹣m)=2m(m﹣n)[(m﹣n)+4m]=2m(m﹣n)(5m﹣n).四.运用公式法因式分解16.解:①﹣x2﹣y2=﹣(x2+y2),因此①不能用公式法分解因式;②﹣a2b2+1=1﹣(ab)2=(1+ab)(1﹣ab),因此②能用公式法分解因式;③a2+ab+b2不符合完全平方公式的结果特征,因此③不能用公式法分解因式;④﹣x2+2xy﹣y2=﹣(x2﹣2xy+y2)=﹣(x﹣y)2,因此④能用公式法分解因式;⑤﹣mn+m2n2=(﹣mn)2,因此⑤能用公式法分解因式;综上所述,能用公式法分解因式的有②④⑤,故选:B.17.解:(1)运用了C,两数和的完全平方公式;故答案为:C;(2)x2﹣4x+4还可以分解,分解不彻底;(x2﹣4x+4)2=(x﹣2)4.故答案为:(x﹣2)4.(3)设x2﹣2x=y.(x2﹣2x)(x2﹣2x+2)+1,=y(y+2)+1,=y2+2y+1,=(y+1)2,=(x2﹣2x+1)2,=(x﹣1)4.18.解:x+y=2,xy=()2﹣()2=4,x﹣y=2(1)x2+2xy+y2=(x+y)2=(2)2=24;(2)x2﹣y2=(x+y)(x﹣y)=2×2=8.五.提公因式法与公式法的综合运用19.解:原式=4a(a2﹣4)=4a(a+2)(a﹣2),故答案为:4a(a+2)(a﹣2)20.解:(1)原式=﹣3m(a2﹣4a+4)=﹣3m(a﹣2)2;(2)原式=(m﹣2)(n2﹣4)=(m﹣2)(n+2)(n﹣2).21.解:(1)8a3b2+12ab3c=4ab2(2a2+3bc);(2)(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).六.分组分解法因式分解22.解:∵2x2+7xy﹣15y2=(x+5y)(2x﹣3y),∴可设2x2+7xy﹣15y2﹣3x+11y﹣2=(x+5y+a)(2x﹣3y+b),a、b为待定系数,∴2a+b=﹣3,5b﹣3a=11,ab=﹣2,解得a=﹣2,b=1,∴原式=(x+5y﹣2)(2x﹣3y+1).故答案为:(x+5y﹣2)(2x﹣3y+1).23.解:(1)﹣x2y+6xy﹣9y=﹣y(x2﹣6x+9)=﹣y(x﹣3)2;(2)9(x+2y)2﹣4(x﹣y)2;=[3(x+2y)+2(x﹣y)][3(x+2y)﹣2(x﹣y)]=(5x+4y)(x+8y);(3)1﹣x2﹣y2+2xy=1﹣(x2+y2﹣2xy)=1﹣(x﹣y)2=[1+(x﹣y)][1﹣(x﹣y)]=(1+x﹣y)(1﹣x+y).24.解:(1)原式=(2x﹣1)(3x﹣5);(2)原式=1﹣(x2﹣2xy+y2)=1﹣(x﹣y)2=(1+x﹣y)(1﹣x+y);25.解:∵甲看错了b,所以a正确,∵(x+2)(x+4)=x2+6x+8,∴a=6,∵因为乙看错了a,所以b正确∵(x+1)(x+9)=x2+10x+9,∴b=9,∴a+b=6+9=15.七.十字相乘法因式分解26.解:(1)设x2+x=y,则原式=(y﹣4)(y+3)+10=y2﹣y﹣2=(y﹣2)(y+1)=(x2+x﹣2)(x2+x+1)=(x+2)(x﹣1)(x2+x+1);(2)设x2+6=m,原式=(x2+6+7x)(x2+6+5x)+x2=(m+7x)(m+5x)+x2=m2+12xm+35x2+x2=m2+12xm+36x2=(m+6x)2=(x2+6x+6)2;(3)设x+y=m,xy=n(x+y﹣2xy)(x+y﹣2)+(xy﹣1)2=(m﹣2n)(m﹣2)+(n﹣1)2=m2﹣2m﹣2mn+4n+n2﹣2n+1=m2﹣2m﹣2mn+n2+2n+1=m2﹣2m(1+n)+(n+1)2=(m﹣n﹣1)2=(x+y﹣xy﹣1)2=(y﹣1)2(1﹣x)2八.实数范围内分解因式27.解:选项A,x2﹣2x+2=0,△=4﹣4×2=﹣4<0,方程没有实数根,即x2﹣2x+2在数范围内不能分解因式;选项B,2x2﹣mx+1=0,△=m2﹣8的值有可能小于0,即2x2﹣mx+1在数范围内不一定能分解因式;选项C,x2﹣2x+m=0,△=4﹣4m的值有可能小于0,即x2﹣2x+m在数范围内不一定能分解因式;选项D,x2﹣mx﹣1=0,△=m2+4>0,方程有两个不相等的实数根,即x2﹣mx﹣1在数范围内一定能分解因式.故选:D.九.因式分解的应用28.解:∵x2+x=1,∴x4+2x3﹣x2﹣2x+2020=x4+x3+x3﹣x2﹣2x+2020=x2(x2+x)+x3﹣x2﹣2x+2020=x2+x3﹣x2﹣2x+2020=x(x2+x)﹣x2﹣2x+2020=x﹣x2﹣2x+2020=﹣x2﹣x+2020=﹣(x2+x)+2020=﹣1+2020=2019.故选:A.29.解:∵x2﹣3x+1=0,∴x+=3,∴===,故答案为.30.解:∵a+b﹣2=0,∴a+b=2.∴a2﹣b2+4b=(a+b)(a﹣b)+4b=2(a﹣b)+4b =2a﹣2b+4b=2a+2b=2(a+b)=2×2=4.故答案为4.。
第四章 因式分解复习题---解答题(含解析)
北师大版数学八下第四章分解因式---解答题一.解答题1.(2018秋•西城区期末)(1)分解因式x(x﹣a)+y(a﹣x)(2)分解因式x3y﹣10x2y+25xy2.(2018秋•双阳区校级期中)因式分解:﹣24m2x﹣16n2x.3.(2018秋•如皋市期中)因式分解:(1)x2﹣10x(2)﹣8ax2+16axy﹣8ay24.(2018秋•宁阳县期中)把下列各式分解因式:(1)2a(x﹣y)﹣6b(y﹣x)(2)(a2﹣2a+1)﹣b(a﹣1)(3)2x(y﹣x)+(x+y)(x﹣y)5.(2018秋•句容市期中)如图,图①、图②分别由两个长方形拼成,其中a>b.(1)用含a、b的代数式表示它们的面积,则S①=,S②=;(2)S①与S②之间有怎样的大小关系?请你解释其中的道理;(3)请你利用上述发现的结论计算式子:20182﹣20172.6.(2018秋•松江区期中)因式分解:x4﹣16y4.7.(2018春•工业园区期末)分解因式:x4﹣2x2+1.8.(2018秋•江门期末)分解因式:﹣2a3+12a2﹣18a9.(2018秋•荔湾区期末)分解因式:(1)mn2﹣2mn+m(2)x2﹣2x+(x﹣2)10.(2018秋•安岳县期末)将下列各式分解因式:(1)﹣25ax2+10ax﹣a(2)4x2(a﹣b)+y2(b﹣a)11.(2018春•定边县期末)因式分解(1)﹣4a3b3+6a2b﹣2ab(2)(x+1)(x+2)+.12.(2018秋•海淀区期末)已知2a﹣b=﹣2,求代数式3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b的值.13.(2018秋•宽城区期末)已知a、b、c分别是△ABC的三边.(1)分别将多项式a2c2﹣b2c2,a4﹣b4进行因式分解,(2)若a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状,并说明理由.14.(2018秋•思明区校级期中)定义:任意两个数a,b,按规则c=ab+a+b扩充得到一个新数c,称所得的新数c为“如意数”.(1)若a=,b=1,直接写出a,b的“如意数”c;(2)如果a=m﹣4,b=﹣m,证明“如意数”c≤0.15.(2018秋•思明区校级期中)已知a(a+1)﹣(a2+2b)=1,求a2﹣4ab+4b2﹣2a+4b的值.16.(2018秋•延边州期末)如图,边长为a,b的矩形,它的周长为14,面积为10,求下列各式的值:(1)a2b+ab2;(2)a2+b2+ab.17.(2018秋•宽城区月考)给你若干个长方形和正方形的卡片,如图所示,请你运用拼图的方法,选取相应种类和数量的卡片,拼成一个大长方形,使它的面积等于a2+3ab+2b2,并根据你拼成的图形分解因式:a2+3ab+2b2.18.(2018秋•海门市期中)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”.(1)试分析28是否为“神秘数”;(2)2019是“神秘数”吗?为什么?(3)说明两个连续偶数2k+2和2k(其中k取非负整数)构造的“神秘数”是4的倍数.(4)设两个连续奇数为2k+1和2k﹣1,两个连续奇数的平方差(k取正整数)是“神秘数”吗?为什么?19.(2018秋•延庆区期中)定义:任意两个数a,b,按规则c=﹣a+b得到一个新数c,称所得的新数c为数a,b的“机智数”.(1)若a=1,b=2,直接写出a,b的“机智数”c;(2)如果,a=m2+2m+1,b=m2+m,求a,b的“机智数”c;(3)若(2)中的c值为一个整数,则m的整数值是多少?20.(2018秋•万州区期中)如果一个整数,将其末三位截去,这个末三位数与余下的数的7倍的差能被19整除,则这个数能被19整除,否则不能被19整除,能被19整除的我们称之为“灵异数”.如46379,由379﹣7×46=57,∵57能被19整除,∴46379能被19整除,是“灵异数”.(1)请用上述规则判断52478和9115是否为“灵异数”;(2)有一个首位数字是1的五位正整数,它的个位数字不为0且是千位数字的2倍,十位和百位上的数字之和为8,若这个数恰好是“灵异数”,请求出这个数.21.(2018秋•南关区期中)如图,有若干个长方形和正方形卡片,请你选取相应种类和数量的卡片,拼成一个新长方形,使它的面积等于2a2+3ab+b2(1)则需要A类卡片张,B类卡片张,C类卡片张;(2)画出你所拼成的图形,并且请你用不同于2a2+3ab+b2的形式表示出所拼图形的面积;(3)根据你拼成的图形把多项式2a2+3ab+b2分解因式.22.(2018春•宁波期中)如果一个正整数能表示为两个不相等正整数的平方差,那么称这个正整数为“奇妙数”.例如:5=32﹣22,16=52﹣32,则5,16都是奇妙数.(1)15和40是奇妙数吗?为什么?(2)如果两个连续奇数的平方差为奇特奇妙数,问奇特奇妙数是8的倍数吗?为什么?(3)如果把所有的“奇妙数”从小到大排列后,请直接写出第12个奇妙数.23.(2018春•凤阳县期中)发现:任意五个连续整数的平方和是5的倍数.验证:(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸:任意三个连续整数的平方和能被3整除吗?如果不能,余数是几呢?请给出结论并写出理由.24.(2018春•东明县期中)如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“和谐数”(1)28和2020这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?25.(2018春•沙坪坝区校级月考)我们把形如:,,,的正整数叫“轴对称数”,例如:22,131,2332,40604…(1)写出一个最小的五位“轴对称数”.(2)设任意一个n(n≥3)位的“轴对称数”为,其中首位和末位数字为A,去掉首尾数字后的(n﹣2)位数表示为B,求证:该“轴对称数”与它个位数字的11倍的差能被10整除.(3)若一个三位“轴对称数”(个位数字小于或等于4)与整数k(0≤k≤5)的和能同时被5和9整除,求出所有满足条件的三位“轴对称数”.26.(2018春•巴南区期中)任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,那么称p×q是n的最佳分解,并规定:F(n)=p+q+pq.例如12可以分解成1×12、2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=3+4+12=19.(1)计算:F(18),F(24)(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为27,那么我们称这个数t为“吉祥数”.求所有“吉祥数”中F(t)的最大值.27.(2018•九龙坡区校级模拟)在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568(填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N的值.(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.北师大版数学八下第四章分解因式---解答题参考答案与试题解析一.解答题1.(2018秋•西城区期末)(1)分解因式x(x﹣a)+y(a﹣x)(2)分解因式x3y﹣10x2y+25xy【分析】(1)直接提取公因式(x﹣a)分解因式即可.(2)先提取公因式xy,然后利用完全平方公式进一步进行因式分解.【解答】(1)解:x(x﹣a)+y(a﹣x)=x(x﹣a)﹣y(x﹣a)=(x﹣a)(x﹣y);(2)解:x3y﹣10x2y+25xy=xy(x2﹣10x+25)=xy(x﹣5)2.2.(2018秋•双阳区校级期中)因式分解:﹣24m2x﹣16n2x.【分析】直接找出公因式﹣8x,进而提取公因式得出答案.【解答】解:原式=﹣8x(3m2+2n2).3.(2018秋•如皋市期中)因式分解:(1)x2﹣10x(2)﹣8ax2+16axy﹣8ay2【分析】(1)直接提取公因式x,进而分解因式即可;(2)直接提取公因式﹣8a,进而利用完全平方公式分解因式即可.【解答】解:(1)x2﹣10x=x(x﹣10);(2)﹣8ax2+16axy﹣8ay2=﹣8a(x2﹣2xy+y2)=﹣8a(x﹣y)2.4.(2018秋•宁阳县期中)把下列各式分解因式:(1)2a(x﹣y)﹣6b(y﹣x)(2)(a2﹣2a+1)﹣b(a﹣1)(3)2x(y﹣x)+(x+y)(x﹣y)【分析】根据分解因式的方法﹣提公因式法分解因式即可.【解答】解:(1)2a(x﹣y)﹣6b(y﹣x)=2(x﹣y)(a+3b);(2)(a2﹣2a+1)﹣b(a﹣1)=(a﹣1)(a﹣b﹣1);(3)2x(y﹣x)+(x+y)(x﹣y)=(y﹣x)(2x﹣x﹣y)=﹣(x﹣y)2.5.(2018秋•句容市期中)如图,图①、图②分别由两个长方形拼成,其中a>b.(1)用含a、b的代数式表示它们的面积,则S①=a2﹣b2,S②=(a+b)(a﹣b);(2)S①与S②之间有怎样的大小关系?请你解释其中的道理;(3)请你利用上述发现的结论计算式子:20182﹣20172.【分析】(1)根据长方形和正方形的面积公式列代数式即可;(2)根据(1)得出的结果即可直接得出答案;(3)根据(2)的公式进行计算即可.【解答】解:(1)图①的面积是a2﹣b2;图②的面积是(a+b)(a﹣b);故答案为:a2﹣b2;(a+b)(a﹣b),(2)根据(1)可得:(a+b)(a﹣b)=a2﹣b2;相同的两个长方形拼成的两个图形的面积相等,即都等于这两个长方形面积的和;(3)20182﹣20172=(2018+2017)(2018﹣2017)=4035×1=4035.6.(2018秋•松江区期中)因式分解:x4﹣16y4.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x4﹣16y4=(x2+4y2)(x2﹣4y2)=(x2+4y2)(x+2y)(x﹣2y).7.(2018春•工业园区期末)分解因式:x4﹣2x2+1.【分析】直接利用完全平方公式以及平方差公式分解因式得出答案.【解答】解:x4﹣2x2+1=(x2﹣1)2=(x+1)2(x﹣1)2.8.(2018秋•江门期末)分解因式:﹣2a3+12a2﹣18a【分析】先提取公因式﹣2a,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a ±b)2.【解答】解:原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2.9.(2018秋•荔湾区期末)分解因式:(1)mn2﹣2mn+m(2)x2﹣2x+(x﹣2)【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式即可得到结果.【解答】解:(1)原式=m(n2﹣2n+1)=m(n﹣1)2;(2)原式=x(x﹣2)+(x﹣2)=(x﹣2)(x+1).10.(2018秋•安岳县期末)将下列各式分解因式:(1)﹣25ax2+10ax﹣a(2)4x2(a﹣b)+y2(b﹣a)【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=﹣a(25x2﹣10x+1)=﹣a(5x﹣1)2;(2)原式=4x2(a﹣b)﹣y2(a﹣b)=(a﹣b)(2x+y)(2x﹣y).11.(2018春•定边县期末)因式分解(1)﹣4a3b3+6a2b﹣2ab(2)(x+1)(x+2)+.【分析】(1)提公因式分解因式即可;(2)先根据多项式乘法法则将式子展开,再根据完全平方公式分解因式即可.【解答】解:(1)﹣4a3b3+6a2b﹣2ab=﹣2ab(2a2b2﹣3a+1)(2)(x+1)(x+2)+=x2+3x+2+=x2+3x+=(x+)2.12.(2018秋•海淀区期末)已知2a﹣b=﹣2,求代数式3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b的值.【分析】利用去括号法则和合并同类项的方法先对所求式子进行化简,然后根据2a﹣b的值,即可求得所求式子的值,本题得以解决.【解答】解:3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b=6ab2﹣12a+3b﹣6ab2+4a+b=﹣8a+4b,∵2a﹣b=﹣2,∴原式=﹣8a+4b=﹣4(2a﹣b)=﹣4×(﹣2)=8.13.(2018秋•宽城区期末)已知a、b、c分别是△ABC的三边.(1)分别将多项式a2c2﹣b2c2,a4﹣b4进行因式分解,(2)若a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状,并说明理由.【分析】(1)利用平方差公式分解因式;(2)利用(1)中分解的结果得到c2(a+b)(a﹣b)﹣(a﹣b)(a+b)(a2+b2)=0,再提公因式得到(a+b)(a﹣b)(c2﹣a2﹣b2)=0,于是a﹣b=0或c2﹣a2﹣b2=0,然后判断三角形的形状.【解答】解:(1)a2c2﹣b2c2=c2(a2﹣b2)=c2(a+b)(a﹣b);a4﹣b4=(a2﹣b2)(a2+b2)=(a﹣b)(a+b)(a2+b2);(2)∵a2c2﹣b2c2=a4﹣b4,∴c2(a+b)(a﹣b)=(a﹣b)(a+b)(a2+b2);∴c2(a+b)(a﹣b)﹣(a﹣b)(a+b)(a2+b2)=0;∴(a+b)(a﹣b)(c2﹣a2﹣b2)=0,∵a、b、c分别是△ABC的三边.∴a﹣b=0或c2﹣a2﹣b2=0,∴a=b或c2=a2+b2,∴△ABC为等腰三角形或直角三角形.14.(2018秋•思明区校级期中)定义:任意两个数a,b,按规则c=ab+a+b扩充得到一个新数c,称所得的新数c为“如意数”.(1)若a=,b=1,直接写出a,b的“如意数”c;(2)如果a=m﹣4,b=﹣m,证明“如意数”c≤0.【分析】(1)c=ab+a+b=++1=2+1;(2)c=ab+a+b=(m﹣4)(﹣m)+m﹣4+(﹣m)=4m﹣m2﹣4=﹣(m﹣2)2≤0.【解答】解:(1)c=ab+a+b=++1=2+1;(2)c=ab+a+b=(m﹣4)(﹣m)+m﹣4+(﹣m)=4m﹣m2﹣4,=﹣(m﹣2)2≤0,即:c≤0.15.(2018秋•思明区校级期中)已知a(a+1)﹣(a2+2b)=1,求a2﹣4ab+4b2﹣2a+4b的值.【分析】先将已知化简得:a﹣2b=1,再把所求的式子进行因式分解,最后代入计算.【解答】解:a(a+1)﹣(a2+2b)=1,a2+a﹣a2﹣2b﹣1=0,a﹣2b=1,a2﹣4ab+4b2﹣2a+4b,=(a﹣2b)2﹣2(a﹣2b),=12﹣2×1,=﹣1.16.(2018秋•延边州期末)如图,边长为a,b的矩形,它的周长为14,面积为10,求下列各式的值:(1)a2b+ab2;(2)a2+b2+ab.【分析】(1)应把所给式子进行因式分解,整理为与所给周长和面积相关的式子,代入求值即可.(2)先根据a+b=7,ab=10求出a2+b2的值,即可求出a2+b2+ab的值.【解答】解:(1)∵a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.(2)a2+b2=(a+b)2﹣2ab=72﹣2×10=29,∴a2+b2+ab=29+10=39.17.(2018秋•宽城区月考)给你若干个长方形和正方形的卡片,如图所示,请你运用拼图的方法,选取相应种类和数量的卡片,拼成一个大长方形,使它的面积等于a2+3ab+2b2,并根据你拼成的图形分解因式:a2+3ab+2b2.【分析】用6张卡片(边长为a的正方形卡片1张,边长为b的正方形卡片2张,边长为a、b的矩形卡片3张)拼成一个大长方形,可判断矩形ABCD的面积为a2+3ab+2b2,从而得到因式分解得结果.【解答】解:如图,矩形ABCD的面积为a2+3ab+2b2,a2+3ab+2b2可分解为(a+b)(a+2b).18.(2018秋•海门市期中)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”.(1)试分析28是否为“神秘数”;(2)2019是“神秘数”吗?为什么?(3)说明两个连续偶数2k+2和2k(其中k取非负整数)构造的“神秘数”是4的倍数.(4)设两个连续奇数为2k+1和2k﹣1,两个连续奇数的平方差(k取正整数)是“神秘数”吗?为什么?【分析】(1)根据“神秘数”定义可判断;(2)把2019写成平方差的形式,解方程即可判断是否是神秘数;(3)由(2k+2)2﹣(2k)2=(2k+2﹣2k)(2k+2+2k)=4(2k+1),可判断构造的“神秘数”是4的倍数;(4)设两个连续奇数为2k+1和2k﹣1,则(2k+1)2﹣(2k﹣1)2=8k=4×2k,即可判断两个连续奇数的平方差不是神秘数.【解答】解:(1)∵28=82﹣62=64﹣36∴28是“神秘数”(2)2019不是“神秘数”设2 019是由y和y﹣2两数的平方差得到的,则y2﹣(y﹣2)2=2 019,解得:y=505.75,不是偶数,∴2 019不是“神秘数”.(3)(2k+2)2﹣(2k)2=(2k+2﹣2k)(2k+2+2k)=4(2k+1),∴由2k+2和2k构造的“神秘数”是4的倍数,且是奇数倍(4)(2k+1)2﹣(2k﹣1)2=8k,是8的倍数,但不是4的倍数,根据定义得出结论,不是“神秘数”.19.(2018秋•延庆区期中)定义:任意两个数a,b,按规则c=﹣a+b得到一个新数c,称所得的新数c为数a,b的“机智数”.(1)若a=1,b=2,直接写出a,b的“机智数”c;(2)如果,a=m2+2m+1,b=m2+m,求a,b的“机智数”c;(3)若(2)中的c值为一个整数,则m的整数值是多少?【分析】(1)根据题意和a、b的值可以求得“机智数”c;(2)根据题意,可以求得a=m2+2m+1,b=m2+m时的“机智数”c;(3)根据(2)中的结论和分式有意义的条件可以求得m的值.【解答】解:(1)∵a=1,b=2,c=,∴c==,即a,b的“机智数”c是;(2)∵a=m2+2m+1,b=m2+m,c=,∴c=﹣(m2+2m+1)+(m2+m)=﹣m;(3)∵c=﹣(m2+2m+1)+(m2+m)=﹣m,c=﹣m为一个整数,∴m=1或m=﹣1(舍去),即m的整数值是1.20.(2018秋•万州区期中)如果一个整数,将其末三位截去,这个末三位数与余下的数的7倍的差能被19整除,则这个数能被19整除,否则不能被19整除,能被19整除的我们称之为“灵异数”.如46379,由379﹣7×46=57,∵57能被19整除,∴46379能被19整除,是“灵异数”.(1)请用上述规则判断52478和9115是否为“灵异数”;(2)有一个首位数字是1的五位正整数,它的个位数字不为0且是千位数字的2倍,十位和百位上的数字之和为8,若这个数恰好是“灵异数”,请求出这个数.【分析】(1)根据题意可以判断52478和9115是否能被19整除,从而判断是否为灵异数;(2)根据题意.写出相应的式子,从而可以解答本题.【解答】解:(1)∵478﹣7×52=114,114÷19=6,∴52478能被19整除,是“灵异数”;∵115﹣7×9=52,52÷19=2…14,∴9115不能被19整除,不是“灵异数”;(2)设这个五位数的千位为a,则个位为2a,十位为b,则百位为8﹣b,∵[100(8﹣b)+10b+2a]﹣7×(10×1+a)=730﹣90b﹣5a,这个数恰好是灵异数,即能被19整除,a为正整数、b为非负整数,∴730﹣90b﹣5a能被19整除,解得,,,∴这个数为:11172或12084.21.(2018秋•南关区期中)如图,有若干个长方形和正方形卡片,请你选取相应种类和数量的卡片,拼成一个新长方形,使它的面积等于2a2+3ab+b2(1)则需要A类卡片2张,B类卡片3张,C类卡片1张;(2)画出你所拼成的图形,并且请你用不同于2a2+3ab+b2的形式表示出所拼图形的面积;(3)根据你拼成的图形把多项式2a2+3ab+b2分解因式.(2)由图形可得;(3)由图形面积的两种表达形式可把多项式2a2+3ab+b2分解因式.【解答】解:(1)∵面积等于2a2+3ab+b2∴需要A类卡片2张,B类卡片3张,C类卡片1张;故答案为:2,3,1(2)如图:图形的面积=(2a+b)(a+b)(3)2a2+3ab+b2=(2a+b)(a+b)22.(2018春•宁波期中)如果一个正整数能表示为两个不相等正整数的平方差,那么称这个正整数为“奇妙数”.例如:5=32﹣22,16=52﹣32,则5,16都是奇妙数.(1)15和40是奇妙数吗?为什么?(2)如果两个连续奇数的平方差为奇特奇妙数,问奇特奇妙数是8的倍数吗?为什么?(3)如果把所有的“奇妙数”从小到大排列后,请直接写出第12个奇妙数.【分析】(1)根据题意可判断;(2)利用平方差公式可证;(3)将“奇妙数”从小到大排列后,可求第12个奇妙数.【解答】解:(1)15和40是奇妙数,理由:15=42﹣12,40=72﹣32.(2)设这两个数为2n﹣1,2n+1∵(2n+1)2﹣(2n﹣1)2=8n∴是8的倍数.(3)“奇妙数”从小到大排列为:3,5,7,8,9,11,12,13,15,16,17,19∴第12个奇妙数为1923.(2018春•凤阳县期中)发现:任意五个连续整数的平方和是5的倍数.验证:(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸:任意三个连续整数的平方和能被3整除吗?如果不能,余数是几呢?请给出结论并写出理由.(2)通过完全平方公式可求平方和,即可证平方和是5的倍数;延伸:通过完全平方公式可求平方和,即可判断平方和是否被3整除.【解答】解:(1)∵(﹣1)2+02+12+22+32=1+0+1+4+9=15=5×3∴结果是5的3倍.(2)设五个连续整数的中间一个为n,则另四个整数为:n﹣2,n﹣1,n+1,n+2∴它们的平方和为(n﹣2)2+(n﹣1)2+n2+(n+1)2+(n+2)2∵(n﹣2)2+(n﹣1)2+n2+(n+1)2+(n+2)2=5n2+10=5(n2+2)∴它们的平方和是5的倍数延伸:不能被3整除,余数为2设中间的整数为n,∵(n﹣1)2+n2+(n+1)2=3n2+2∴不能被3整除,余数为224.(2018春•东明县期中)如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“和谐数”(1)28和2020这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?【分析】按照新概念的定义,进行验证即可.【解答】解:(1)∵28=82﹣62,2020=5062﹣5042,∴28和2020是“和谐数”;(2)∵(2k+2)2﹣(2k)2=4(2k+1),∴两个连续偶数构成的“和谐数”是4的倍数.25.(2018春•沙坪坝区校级月考)我们把形如:,,,的正整数叫“轴对称数”,例如:22,131,2332,40604…(1)写出一个最小的五位“轴对称数”.(2)设任意一个n(n≥3)位的“轴对称数”为,其中首位和末位数字为A,去掉首尾数字后的(n﹣2)位数表示为B,求证:该“轴对称数”与它个位数字的11倍的差能被10整除.(3)若一个三位“轴对称数”(个位数字小于或等于4)与整数k(0≤k≤5)的和能同时被5和9整除,求出所有满足条件的三位“轴对称数”.【分析】(1)写出最小的五位“轴对称数”,即首位数字和个位数字为1,其它为0的数;(2)先表示这个任意的n(n≥3)位“轴对称数”:=A×10n+B×10+A,再表示“轴对称数”与它个位数字的11倍的差,合并同类项并提公因式,可得结论;(3)设这个三位“轴对称数”为(1≤a≤4,0≤b≤9),根据与k的和能同时被5和9整除,即能被45整除,设100a+10b+a+k=45c,化为90a+11a+10b+k=45c,所以11a+10b+k能同时被45整除,分情况计算可得结论.【解答】(1)解:最小的五位“轴对称数”是10001;(2)证明:由题意得:A×10n+B×10+A﹣11A=A×10n+10B﹣10A=10(A×10n﹣1+B﹣A),∴该“轴对称数”与它个位数字的11倍的差能被10整除;(3)解:设这个三位“轴对称数”为(1≤a≤4,0≤b≤9),∵与整数k(0≤k≤5)的和能同时被5和9整除,∴设100a+10b+a+k=45c,101a+10b+k=45c,90a+11a+10b+k=45c,∴因为101a+10b+k能同时被5和9整除,所以11a+10b+k能同时被5和9整除,即11a+10b+k的值为0或45或90或135,又1≤a≤4,0≤b≤9,∴当a=1,b=3,k=4时,这个三位“轴对称数”是131.当a=1,b=8,k=4时,这个三位“轴对称数”是131.当a=2,b=2,k=3时,这个三位“轴对称数”是222.当a=3,b=1,k=2时,这个三位“轴对称数”是313.当a=4,b=0,k=1时,这个三位“轴对称数”是404.当a=4,b=9,k=1时,这个三位“轴对称数”是494.所有满足条件的三位“轴对称数”为:131,222,313,404,494.26.(2018春•巴南区期中)任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,那么称p×q是n的最佳分解,并规定:F(n)=p+q+pq.例如12可以分解成1×12、2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=3+4+12=19.(1)计算:F(18),F(24)(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为27,那么我们称这个数t为“吉祥数”.求所有“吉祥数”中F(t)的最大值.【分析】(1)把18因式分解为1×18,2×9,3×6,再由定义即可得F(18),把24因式分解为1×24,2×12,3×8,4×6,再由定义即可得F(24);(2)根据吉祥数的定义,求出两位数的吉祥数,再根据F(t)的概念计算即可.【解答】解:(1)∵18=1×18=2×9=3×6,其中3与6的差的绝对值最小;∴F(18)=3+6+18=27;∵24=1×24=2×12=3×8=4×6,其中4与6的差的绝对值最小,∴F(24)=4+6+24=34;(2)设t=10x+y,则新的两位是10y+x,∴(10y+x)﹣(10x+y)=27,即y﹣x=3,∵1≤x≤y≤9,x,y是自然数,∴t的值为14,25,36,47,58,69,∵F(14)=2+7+14=23,F(25)=5+5+25=35,F(36)=6+6+36=48,F(47)=1+47+47=95,F(58)=2+29+58=81,F(69)=3+23+69=94,∴吉祥数中F(t)的最大的值为95.27.(2018•九龙坡区校级模拟)在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568是(填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N的值.(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.【分析】(1)根据定义表示31568的“顺数”与“逆数”,计算它们的差能否被17整除,可判断31568是“最佳拍档数”;根据定义设这个首位是5的四位“最佳拍档数”N,并表示出来,计算的它的“顺数”与“逆数”之差,根据“最佳拍档数”的定义,分情况讨论可得结论;(2)先证明三位的正整数K的“顺数”与“逆数”之差一定能被30整除,再证明四位的正整数K的“顺数”与“逆数”之差一定能被30整除,同理可得结论.【解答】(1)解:31568的“顺数”为361568,31568的“逆数”为315668,31568的“顺数”与“逆数”之差为361568﹣315668=45900,45900÷17=2700,所以31568是“最佳拍档数”;设“最佳拍档数”N的十位数字为x,百位数字为y,则个位数字为8﹣x,y≥x,N=5000+100y+10x+8﹣x=100y+9x+5008,∵N是四位“最佳拍档数”,∴50000+6000+100y+10x+8﹣x﹣[50000+1000y+100x+60+8﹣x],=6000+100y+9x+8﹣1000y﹣100x﹣68+x,=5940﹣90x﹣900y,=90(66﹣x﹣10y),∴66﹣x﹣10y能被17整除,①x=2,y=3时,66﹣x﹣10y=34,能被17整除,此时N为5326;②x=3,y=8时,66﹣x﹣10y=﹣17,能被17整除,此时N为5835;③x=5,y=1时,66﹣x﹣10y=51,能被17整除,但x>y,不符合题意;④x=6,y=6时,66﹣x﹣10y=0,能被17整除,此时N为5662;⑤x=8,y=3时,66﹣x﹣10y=28,不能被17整除,但x>y,不符合题意;⑥当x=9,y=4时,66﹣x﹣10y=17,能被17整除,但x>y,不符合题意;综上,所有符合条件的N的值为5326,5835,5662;故答案为:是;(2)证明:设三位正整数K的个位数字为x,十位数字为y,百位数字为z,它的“顺数”:1000z+600+10y+x,它的“逆数”:1000z+100y+60+x,∴(1000z+600+10y+x)﹣(1000z+100y+60+x)=540﹣90y=90(6﹣y),∴任意三位正整数K的“顺数”与“逆数”之差一定能被30整除,设四位正整数K的个位数字为x,十位数字为y,百位数字为z,千位数字为a,∴(10000a+6000+100z+10y+x)﹣(10000a+1000z+100y+60+x)=5940﹣900z﹣90y=90(66﹣10z﹣y),∴任意四位正整数K的“顺数”与“逆数”之差一定能被30整除,同理得:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.。
初中数学章节专项《因式分解巩固》练习
因式分解巩固练习姓名: 日期: 教师:1、下列多项式中,能用公式法分解因式的是( )A .2x xy -B .2x xy +C .22x y -D .22x y +2、下列分解因式正确的是( )A . )1(222--=--y x x x xy xB .)32(322---=-+-x xy y y xy xy C . 2)()()(y x y x y y x x -=--- D .3)1(32--=--x x x x 3、下列式子中是完全平方式的是 ( )A .22b ab a ++B .222++a aC .222b b a +-D .122++a a C: 4、分解因式:=-ay ax _______________5、分解因式:2a a -=______________6、分解因式:21x -=_______________7、分解因式:24x -=_______________8、分解因式:x 2-25=9、分解因式:29x -=________________10、分解因式:3y 2-27=_______________B: 11、因式分解:x 3-9x=12、因式分解:24xy x -=_______________13、分解因式:39a a -=___________14、分解因式:34x y xy -=_______________15、分解因式:328m m -= _______________16、分解因式:=-2282b a _______________17、分解因式:32a ab -=_______________18、分解因式:33416m n mn -=_______________ A: 19、因式分解:122+-x x =_______________20、分解因式x (x+4)+4=_______________21、分解因式:=--2242y xy x22、分解因式221218x x -+=_______________23、分解因式:22ab ab a -+=________________24、分解因式:322x x x -+=_______________25、分解因式x 3+6x 2-27x=________________26、分解因式:3214x x x +-=_______________________27、分解因式:32244x x y xy -+=_______________28、分解因式:32232x y x y xy -+=_______________ 29、分解因式:33222ax y axy ax y +-= 30、分解因式:ab b a 8)2(2+- =____________31、分解因式:(2a+b)2-8ab=_______________32、分解因式:=+-652x x33、分解因式:=+-4524x x34、分解因式:=+-m ma ma 44235、分解因式:=-+-y y x 1)1(236、分解因式:=+--y x y x 2237、分解因式:=-+-4222y xy x 38、分解因式__________________________)2(422=-+-y x y x 39、分解因式:_____________________502022=+-x x 40、分解因式:_____________________1222=-+-b a a。
第四章 因式分解复习题---填空题(含解析)
北师大版数学八下第四章因式分解---填空题一.填空题1.(2018春•泗县期中)多项式15m3n2+5m2n﹣20m2n的公因式是.2.(2018秋•道外区期末)把多项式3mx﹣6my分解因式的结果是.3.(2018秋•松江区校级月考)分解因式:3x2yz+15xz2﹣9xy2z=.4.(2018秋•闵行区期末)因式分解:9a2﹣12a+4=.5.(2018秋•昆明期末)因式分解:1﹣4a2=.6.(2018秋•如皋市期中)把a2﹣16分解因式,结果为.7.(2017秋•雨花区校级期末)因式分解:(a+b)2﹣64=.8.(2018•义乌市模拟)多项式x2+1加上一个单项式后,可以分解因式,那么加上的单项式可以是(只需填写二个).9.(2018•沈河区二模)分解因式:x4﹣2x2y2+y4=.10.(2018•苏州)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为.11.(2018•株洲)因式分解:a2(a﹣b)﹣4(a﹣b)=.12.(2018•井研县模拟)分解因式:(y+2x)2﹣(x+2y)2=.13.(2017秋•新津县期末)若2a=3b﹣1,则4a2﹣12ab+9b2﹣1的值为.14.(2018秋•宁城县期末)因式分解:4x2y﹣9y3=.15.(2018秋•松北区期末)代数式a2b﹣2ab+b分解因式为.16.(2018秋•鸡东县期末)分解因式:4m2﹣16n2=.17.(2018•武威模拟)分解因式:﹣3x2+6x﹣3=.18.(2018•祁县模拟)因式分解:3x2﹣18xy+27y2=.19.(2018•葫芦岛一模)分解因式:a2b﹣8ab+16b=.20.(2018春•宿豫区期末)已知xy=,x+y=5,则2x3y+4x2y2+2xy3=.21.(2017秋•宜春期末)计算50×1252﹣50×252的结果是.22.(2018春•郯城县期中)分解因式:a2+2ab+b2﹣4=.23.(2017秋•松滋市期末)y2﹣x2﹣x+y分解因式:.24.(2018秋•靖远县期末)如果一个三角形的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,那么这个三角形一定是.25.(2017秋•昌江区校级期末)若ab+bc+ca=﹣3,且a+b+c=0,则a4+b4+c4=.26.(2018春•高密市期末)已知a﹣b=3,a+c=﹣4,则代数式ac﹣bc+a2﹣ab的值为.27.(2018秋•金牛区校级月考)若3x3﹣x=1,则9x4+12x3﹣3x2﹣7x+2001=.28.(2018秋•汉阳区校级期中)已知a2+a﹣1=0,则a3+2a2+2018=.29.(2018秋•文登区期中)已知a,b,c为三角形ABC的三边,且a4﹣b4=c2(a2+b2),则三角形ABC为三角形30.(2018春•雨城区校级期中)已知△ABC的三边长分别为a、b、c,且a、b、c满足等式3(a2+b2+c2)=(a+b+c)2,则该三角形是三角形.31.(2018春•宿豫区期中)已知a、b、c为△ABC的三边长,且a、b满足a2﹣6a+b2﹣4b+13=0,c为奇数,则△ABC的周长为.32.(2018•建湖县二模)若a+b=﹣5,ab=6,则a2b+ab2的值为.33.(2018春•常州期中)一个长、宽分别为m、n的长方形的周长为16,面积为6,则m2n+mn2的值为.北师大版数学八下第四章因式分解---填空题参考答案与试题解析一.填空题1.(2018春•泗县期中)多项式15m3n2+5m2n﹣20m2n的公因式是5m2n.【分析】根据确定多项式中各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂进行解答即可.【解答】解:多项式15m3n2+5m2n﹣20m2n的公因式是:5m2n,故答案为:5m2n.2.(2018秋•道外区期末)把多项式3mx﹣6my分解因式的结果是3m(x﹣2y).【分析】直接提取公因式3m,进而分解因式即可.【解答】解:3mx﹣6my=3m(x﹣2y).故答案为:3m(x﹣2y).3.(2018秋•松江区校级月考)分解因式:3x2yz+15xz2﹣9xy2z=3xz(xy+5z﹣3y2).【分析】直接找出公因式3xz,进而提取3xz分解因式得出答案.【解答】解:3x2yz+15xz2﹣9xy2z=3xz(xy+5z﹣3y2).故答案为:3xz(xy+5z﹣3y2).4.(2018秋•闵行区期末)因式分解:9a2﹣12a+4=(3a﹣2)2.【分析】直接利用完全平方公式分解因式得出答案.【解答】解:9a2﹣12a+4=(3a﹣2)2.5.(2018秋•昆明期末)因式分解:1﹣4a2=(1﹣2a)(1+2a).【分析】直接利用平方差分解因式进而得出答案.【解答】解:1﹣4a2=(1﹣2a)(1+2a).故答案为:(1﹣2a)(1+2a).6.(2018秋•如皋市期中)把a2﹣16分解因式,结果为(a+4)(a﹣4).【分析】利用平方差公式进行因式分解.【解答】解:a2﹣16=(a+4)(a﹣4).故答案是:(a+4)(a﹣4).7.(2017秋•雨花区校级期末)因式分解:(a+b)2﹣64=(a+b﹣8)(a+b+8).【分析】直接利用平方差公式分解因式得出答案.【解答】解:(a+b)2﹣64=(a+b﹣8)(a+b+8).故答案为:(a+b﹣8)(a+b+8).8.(2018•义乌市模拟)多项式x2+1加上一个单项式后,可以分解因式,那么加上的单项式可以是2x或﹣2x(只需填写二个).【分析】直接利用完全平方公式分解因式得出答案.【解答】解:多项式x2+1加上一个单项式后,可以分解因式,加上的单项式可以是:±2x,则x2±2x+1=(x±1)2.故答案为:2x或﹣2x.9.(2018•沈河区二模)分解因式:x4﹣2x2y2+y4=(x+y)2(x﹣y)2.【分析】直接利用完全平方公式分解因式,进而利用平方差公式分解因式即可.【解答】解:x4﹣2x2y2+y4=(x2﹣y2)2=(x+y)2(x﹣y)2.故答案为:(x+y)2(x﹣y)2.10.(2018•苏州)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为12.【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【解答】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.11.(2018•株洲)因式分解:a2(a﹣b)﹣4(a﹣b)=(a﹣b)(a﹣2)(a+2).【分析】先提公因式,再利用平方差公式因式分解即可.【解答】解:a2(a﹣b)﹣4(a﹣b)=(a﹣b)(a2﹣4)=(a﹣b)(a﹣2)(a+2),故答案为:(a﹣b)(a﹣2)(a+2).12.(2018•井研县模拟)分解因式:(y+2x)2﹣(x+2y)2=3(x+y)(x﹣y).【分析】原式利用平方差公式分解即可.【解答】解:原式=(y+2x+x+2y)(y+2x﹣x﹣2y)=3(x+y)(x﹣y),故答案为:3(x+y)(x﹣y)13.(2017秋•新津县期末)若2a=3b﹣1,则4a2﹣12ab+9b2﹣1的值为0.【分析】把式子4a2﹣12ab+9b2﹣1运用完全平方公式整理,整体代入求得数值即可.【解答】解:∵2a=3b﹣1,∴2a﹣3b=﹣1,∴4a2﹣12ab+9b2﹣1=(2a﹣3b)2﹣1=(﹣1)2﹣1=0.故答案是:0.14.(2018秋•宁城县期末)因式分解:4x2y﹣9y3=y(2x+3y)(2x﹣3y).【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=y(4x2﹣9y2)=y(2x+3y)(2x﹣3y),故答案为:y(2x+3y)(2x﹣3y)15.(2018秋•松北区期末)代数式a2b﹣2ab+b分解因式为b(a﹣1)2.【分析】先提取公因式b,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:a2b﹣2ab+b=b(a2﹣2a+1)=b(a﹣1)2.故答案为:b(a﹣1)2.16.(2018秋•鸡东县期末)分解因式:4m2﹣16n2=4(m+2n)(m﹣2n).【分析】原式提取4后,利用平方差公式分解即可.【解答】解:原式=4(m+2n)(m﹣2n).故答案为:4(m+2n)(m﹣2n)17.(2018•武威模拟)分解因式:﹣3x2+6x﹣3=﹣3(x﹣1)2.【分析】直接提取公因式﹣3,再利用完全平方公式分解因式得出答案.【解答】解:﹣3x2+6x﹣3=﹣3(x2﹣2x+1)=﹣3(x﹣1)2.故答案为:﹣3(x﹣1)2.18.(2018•祁县模拟)因式分解:3x2﹣18xy+27y2=3(x﹣3y)2.【分析】直接提取公因式3,再利用完全平方公式分解因式得出答案.【解答】解:3x2﹣18xy+27y2=3(x2﹣6xy+9y2)=3(x﹣3y)2.故答案为:3(x﹣3y)2.19.(2018•葫芦岛一模)分解因式:a2b﹣8ab+16b=b(a﹣4)2..【分析】先提公因式,再用完全平方公式进行因式分解.【解答】解:a2b﹣8ab+16b=b(a2﹣8a+16)=b(a﹣4)2.20.(2018春•宿豫区期末)已知xy=,x+y=5,则2x3y+4x2y2+2xy3=﹣25.【分析】因式分解后,整体代入计算即可;【解答】解:2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)2,∵xy=,x+y=5,∴原式=﹣25.故答案为﹣25.21.(2017秋•宜春期末)计算50×1252﹣50×252的结果是750000.【分析】直接提取公因式50,再利用平方差公式分解因式进而得出答案.【解答】解:原式=50×(125+25)×(125﹣25)=50×150×100=750000.故答案为:750000.22.(2018春•郯城县期中)分解因式:a2+2ab+b2﹣4=(a+b+2)(a+b﹣2).【分析】前三项利用完全平方公式分解,再进一步利用平方差公式分解可得.【解答】解:原式=(a+b)2﹣22=(a+b+2)(a+b﹣2),故答案为:(a+b+2)(a+b﹣2).23.(2017秋•松滋市期末)y2﹣x2﹣x+y分解因式:(y﹣x)(y+x+1).【分析】将y2﹣x2、﹣x+y各为一组,利用平方差公式分解后,再提取公因式y﹣x可得.【解答】解:原式=(y+x)(y﹣x)+(y﹣x)=(y﹣x)(y+x+1),故答案为:(y﹣x)(y+x+1).24.(2018秋•靖远县期末)如果一个三角形的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,那么这个三角形一定是直角三角形.【分析】已知等式变形后,利用非负数的性质求出a,b及c的值,即可对于三角形形状进行判断.【解答】解:∵a2+b2+c2+50=6a+8b+10c,∴(a﹣3)2+(b﹣4)2+(c﹣5)2=0,∴a=3,b=4,c=5,∵32+42=52,∴三角形为直角三角形.故答案是:直角三角形.25.(2017秋•昌江区校级期末)若ab+bc+ca=﹣3,且a+b+c=0,则a4+b4+c4=18.【分析】由a+b+c=0,利用平方公式结合ab+bc+ca=﹣3可得出a2+b2+c2=6,由ab+bc+ca=﹣3,利用平方公式结合a+b+c=0可得出a2b2+b2c2+c2a2=9,再由a2+b2+c2=6,利用平方公式结合a2b2+b2c2+c2a2=9即可求出a4+b4+c4=18,此题得解.【解答】解:a+b+c=0,两边平方得:a2+b2+c2+2ab+2bc+2ca=0,∵ab+bc+ca=﹣3,∴a2+b2+c2+2×(﹣3)=0,∴a2+b2+c2=6.ab+bc+ca=﹣3,两边平方得:a2b2+b2c2+c2a2+2ab2c+2abc2+2a2bc=9,即a2b2+b2c2+c2a2+2abc(a+b+c)=9,∴a2b2+b2c2+c2a2=9.a2+b2+c2=6,两边平方得:a4+b4+c4+2a2b2+2b2c2+2c2a2=36,∴a4+b4+c4=36﹣2(a2b2+b2c2+c2a2)=18.故答案为:18.26.(2018春•高密市期末)已知a﹣b=3,a+c=﹣4,则代数式ac﹣bc+a2﹣ab的值为﹣12.【分析】先利用分组分解的方法把ac﹣bc+a2﹣ab因式分解为(a﹣b)(c+a),再利用整体代入的方法计算.【解答】解:∵ac﹣bc+a2﹣ab=c(a﹣b)+a(a﹣b)=(a﹣b)(c+a),∵a﹣b=3,a+c=﹣4,∴ac﹣bc+a2﹣ab=3×(﹣4)=﹣12;故答案为:﹣12.27.(2018秋•金牛区校级月考)若3x3﹣x=1,则9x4+12x3﹣3x2﹣7x+2001=2005.【分析】利用提公因式法将多项式分解为3x(3x3﹣x)+4(3x3﹣x)﹣3x+2001,将3x3﹣x=1代入可求其值.【解答】解:∵9x4+12x3﹣3x2﹣7x+2001=3x(3x3﹣x)+4(3x3﹣x)﹣3x+2001,且3x3﹣x=1,∴9x4+12x3﹣3x2﹣7x+2001=3x+4﹣3x+2001=2005故答案为200528.(2018秋•汉阳区校级期中)已知a2+a﹣1=0,则a3+2a2+2018=2019.【分析】将已知条件变形为a2=1﹣a、a2+a=1,然后将代数式a3+2a2+2018进一步变形进行求解.【解答】解:∵a2+a﹣1=0,∴a2=1﹣a、a2+a=1,∴a3+2a2+3,=a•a2+2(1﹣a)+2018,=a(1﹣a)+2﹣2a+2020,=a﹣a2﹣2a+2020,=﹣a2﹣a+2020,=﹣(a2+a)+2020,=﹣1+2020,=2019.故答案为:2019.29.(2018秋•文登区期中)已知a,b,c为三角形ABC的三边,且a4﹣b4=c2(a2+b2),则三角形ABC为直角三角形【分析】首先将等式的左边利用公式法因式分解,然后移项后提取公因式,根据乘积为0的条件确定三边的关系,从而可以确定三角形的形状.【解答】解:等式左边因式分解得:(a2﹣b2)(a2+b2)=c2(a2+b2),移项得:(a2﹣b2)(a2+b2)﹣c2(a2+b2)=0,所以三角形是直角三角形,提取公因式得:(a2+b2)(a2﹣b2﹣c2)=0,得:a2+b2=0或(a2﹣b2﹣c2)=0,所以,a2=b2+c2所以三角形是直角三角形,故答案为:直角.30.(2018春•雨城区校级期中)已知△ABC的三边长分别为a、b、c,且a、b、c满足等式3(a2+b2+c2)=(a+b+c)2,则该三角形是等边三角形.【分析】根据题目中的式子进行变形,然后因式分解,由非负数的性质可以求得a、b、c之间的关系,从而可以判断△ABC的形状,本题得以解决.【解答】解:∵3(a2+b2+c2)=(a+b+c)2,∴3a2+3b2+3c2=a2+b2+c2+2ab+2bc+2ac∴2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=0∴(a﹣b)2+(a﹣c)2+(b﹣c)2=0∴a﹣b=0,a﹣c=0,b﹣c=0,解得,a=b,a=c,b=c,∴a=b=c,∴△ABC是等边三角形,故答案为:等边.31.(2018春•宿豫区期中)已知a、b、c为△ABC的三边长,且a、b满足a2﹣6a+b2﹣4b+13=0,c为奇数,则△ABC的周长为8.【分析】利用配方法把原式变形,根据非负数的性质和三角形三边关系解答即可.【解答】∵a2+b2﹣4a﹣6b+13=0,∴(a2﹣4a+4)+(b2﹣6b+9)=0,∴(a﹣2)2+(b﹣3)2=0,∴a=2,b=3,∴边长c的范围为1<c<5.∵边长c的值为奇数,∴c=3,∴△ABC的周长为2+3+3=8.故答案为:8.32.(2018•建湖县二模)若a+b=﹣5,ab=6,则a2b+ab2的值为﹣30.【分析】根据因式分解得出a2b+ab2=ab(a+b),进而解答即可.【解答】解:∵a+b=﹣5,ab=6,∴a2b+ab2=ab(a+b)=6×(﹣5)=﹣30,故答案为:﹣3033.(2018春•常州期中)一个长、宽分别为m、n的长方形的周长为16,面积为6,则m2n+mn2的值为48.【分析】根据长方形周长与面积公式求出mn与m+n的值,原式提取公因式后,代入计算即可求出值.【解答】解:∵一个长、宽分别为m、n的长方形的周长为16,面积为6,∴2(m+n)=16,mn=6,即m+n=8,mn=6,则原式=mn(m+n)=48,故答案为:48。
北师大版八年级下册数学基础巩固训练:第四章《因式分解》 测试卷A(包含答案)
第四章《因式分解》测试A卷(时间90分钟,满分100分)一、选择题(每题3分,共30分)1.下列各式由左边到右边的变形中,是因式分解的是()A.3(a+b)=3a+3b B.x2+6x+9=x(x+6)+9C.a2-2=(a+2)(a-2) D.ax-ay=a(x-y)2.将多项式x-x3因式分解正确的是()A.x(x2-1) B.x(1-x2)C.x(x+1)(x-1) D.x(1+x)(1-x)3.下列各组多项式中,没有公因式的是( )A.(a-b)3与(a-b)2B.3m(x-y)与n(y-x)C.2(a-3)2与-a+3 D.ax2+by2与ax+by4.多项式-6a2b+18a2b3x+24ab2y的公因式是()A.2ab B.-6a2bC.-6ab2D.-6ab5.852-152等于()A. 70B. 700C. 4900D. 70006.利用分解因式计算1.222×9-1.332×4变形正确的是()A.6(1.22+1.33)(1.22-1.33) B.36(1.22+1.33)(1.22-1.33)C.(1.22×9+1.33×4)(1.22×9-1.33×4) D.(1.22×3+1.33×2)(1.22×3-1.33×2)7.小明用四张如图所示的纸片拼成一个大长方形,并据此写出一个多项式的因式分解,正确的是( )A.x2+2x=x(x+2) B.x2-2x+1=(x-1)2C.x2+2x+1=(x+1)2D.x2+3x+2=(x+2)(x+1)8.已知多项式2x2+bx+c因式分解后为2(x-3)(x+1),则b,c的值为()A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-69.计算(-2)99+(-2)100的结果为( )A.299B.2100C.-299D.-210.若n为任意整数,(n+11)2-n2的值总可以被k(k≠1)整除,则k等于()A.11 B.22C.11或12 D.11的倍数二、填空题(本大题7小题,每小题4分,共28分)11.因式分解:(x+2)x-x-2=12.下列从左到右的变形中,是因式分解的有(填序号).① 24x2y=4x·6xy;② (x+5)(x-5)=x2-25;③x2+2x-3=(x+3)(x-1);④ 9x2-6x+1=3x(3x-2)+1;13.利用因式分解计算:3.46×14.7+0.54×14.7-29.4=______.14.若x+y=6,xy=4,则x2y+xy2的值为;若x2-y2=10,x-y=2,则x+y=. 15.已知(x+1)2+y2-4y+4=0,则x+y=.16.从边长为a的正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形,如图甲,然后拼成一个平行四边形,如图乙,那么通过计算两个图形阴影部分的面积,可以验证成立的为17.观察下列各式:1×3=22-1,2×4=32-1,3×5=42-1,4×6=52-1,…,10×12=112-1,….将你猜想的规律用只含一个字母的式子表示出来________________________.三、解答题(本大题3小题,每小题6分,共18分)18.将下列各式因式分解:(1)4x3-8x2+4x;(2)(x2+2)2-12(x2+2)+36.19.计算:(1)5552×7-4452×7; (2)2042+204×192+962.20.因式分解:(1)(x 2-6x )2+18(x 2-6x )+81; (2)x (x -y )+y (x -y )-(x -y )2;四、解答题(本大题3小题,每小题8分,共24分)21.若a +b =-3,ab =1,求12a 3b +a 2b 2+12ab 3的值.22.232-1可以被10和20之间的某两个整数整除,求这两个整数.23.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘数”.(1)28和2020这两个数是“神秘数”吗?为什么?(2分)(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的“神秘数”是4的倍数吗?为什么?(3分)(3)两个连续奇数的平方差(取正数)是“神秘数”吗?为什么?(3分)五、解答题(本大题2小题,每小题10分,共20分)24.先阅读下面的内容,再解决问题.例题:若m2+2mn+2n2-6n+9=0,求m和n的值.解:∵m2+2mn+2n2-6n+9=0,∴m2+2mn+n2+n2-6n+9=0,∴(m+n)2+(n-3)2=0,∴m+n=0,n-3=0,∴m=-3,n=3.问题:(1)若x2+2y2-2xy+4y+4=0,求x y的值;(2)已知△ABC的三边长a,b,c都是正整数,且满足a2+b2-6a-6b+18+|3-c|=0,请问△ABC 是什么形状的三角形?25.多项式的乘法公式中,除了平方差公式,完全平方公式之外,还有立方和公式与立方差公式如下:立方和公式:(a+b)(a2-ab+b2)=a3+b3;立方差公式:(a-b)(a2+ab+b2)=a3-b3.如果把公式逆运用,则成为因式分解中的立方和与立方差公式.根据以上材料,请完成下列问题:(1)因式分解:a9+b9=_____________________________________;(2)因式分解:a6-b6=___________________________________;答案1~10:DDDDDD DD A A11.(x+2)(x-1)12.③⑥13.29.414.24 515.116.a2-b2=(a+b)(a-b).17.n(n+2)=(n+1)2-118.(1)解:原式=4x(x2-2x+1)=4x(x-1)2. (2)解:原式=(x2+2-6)2=(x2-4)2=(x+2)2(x-2)2.19.(1)解:原式=7×(5552-4452)=7×(555+445)×(555-445)=7×1 000×110=770 000.(2)解:原式=(204+96)2=90 000.20.(1)解:原式=(x2-6x+9)2=[(x-3)2]2=(x-3)4.(2)解: 原式=(x-y)[x+y-(x-y)]=2y(x-y).21.解:∵a+b=-3,ab=1,∴12a3b+a2b2+12ab3=12ab(a2+2ab+b2)=12ab(a+b)2=12×1×(-3)2=92.22.解:原式=(216+1)(216-1)=(216+1)(28+1)(28-1)=(216+1)(28+1)(24+1)(24-1).因为24+1=17,24-1=15,所以232-1可以被10和20之间的15,17两个整数整除.23.解:(1)因为28=82-62,2020=5062-5042,所以28和2020都是“神秘数”(2)(2k+2)2-(2k)2=4(2k+1),因此由2k+2和2k构造的“神秘数”是4的倍数(3)由(2)知“神秘数”可表示为4的倍数但一定不是8的倍数.设两个连续奇数为2k+1和2k-1,则(2k+1)2-(2k-1)2=8k,所以两个连续奇数的平方差不是“神秘数”24.(1)解:∵x2+2y2-2xy+4y+4=0,∴x2+y2-2xy+y2+4y+4=0,∴(x-y)2+(y+2)2=0,∴x=y=-2,∴x y=(-2)-2=1 4.(2)解:∵a2+b2-6a-6b+18+|3-c|=0,∴a2-6a+9+b2-6b+9+|3-c|=0,∴(a-3)2+(b-3)2+|3-c|=0,∴a=b=c=3,∴△ABC是等边三角形.25.(1)(a+b)(a2-ab+b2)(a6-a3b3+b6)(2)(a-b)(a+b)(a4+a2b2+b4)(3)已知a+b=3,ab=1,求a6+b6的值.解: (3)∵a+b=3,ab=1,∴a2+b2=(a+b)2-2ab=7.∴a6+b6=(a2+b2)(a4-a2b2+b4)=[(a+b)2-2ab][(a2+b2)2-2a2b2-a2b2]=7×(49-2-1)=322.。
新北师大版八年级数学下册第四章《因式分解》单元复习题含答案解析 (13)
(共25题)一、选择题(共10题)1.将多项式ax2−4ax+4a分解因式,下列结果中正确的是( )A.a(x−2)2B.a(x+2)2C.a(x−4)2D.a(x+2)(x−2)2.已知∣a∣=5,b2=16,且ab<0,那么a−b的值为( )A.1B.9C.1或−1D.±93.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环.下面选项一定不是该循环的是A.4,2,1B.2,1,4C.1,4,2D.2,4,14.若xy>0,则∣x∣x +∣y∣∣y+1的值为( )A.−2B.3或−2C.3D.−1或35.若a,b互为相反数,c,d互为倒数,∣m∣=2,则代数式m2−3cd+a+bm的值为( ) A.−1B.1C.−7D.1或−76.按如图所示的运算程序,能使输出结果的值为11的是( )A.x=3,y=1B.x=2,y=2C.x=2,y=3D.x=0,y=1.5 7.已知x−2y=−3,则3(x−2y)2−5(x−2y)+6=( ).A.−6B.48C.−36D.188.对于正整数n,我们定义一种“运算”:①当n为奇数时,结果为n+1;②当n为偶数时,结果12n,并且运算重复进行.例如,取n=9,则若n=12,则第2019次运算的结果是( )A.2018B.2017C.2D.19.下列从左到右的变形,是因式分解的是( )A.(x−1)(x=2)=(x+2)(x−1)B.m2−1=(m+1)(m−1)C.x2+1=x(x+1x)D.a(a−b)(b+1)=(a2−ab)(b+1)10.下列多项式中,分解因式不正确的是( )A.a2+2ab=a(a+2b)B.a2−b2=(a+b)(a−b)C.a2+b2=(a+b)2D.4a2+4ab+b2=(2a+b)2二、填空题(共7题)11.计算(1−1112)(1−1122)(1−1132)⋯(1−1212)=.12.如果代数式3a+b的值为−4,那么代数式2(a+b)−4(2a+b)的值为.13.若多项式100x2+M能用平方差公式分解因式,则M代表的整式为.(写出一个即可)14.分解因式:x3+(2a+1)x2+(a2+2a−1)x+(a2−1)=.15.已知:xb+c−a =yc+a−b=za+b−c,则(b−c)x+(c−a)y+(a−b)z的值为.16.分解因式:x4+x2−2ax−a2+1=.17.分解因式:3y2−12=.三、解答题(共8题)18.已知关于x的代数式ax+b(a≠0),设代数式的值为y.(1) 如表中列出了当 x 分别取 −1,0,1,2 时对应的 y 值,则 a 的值为 ,b 的值为 .x⋯−1012⋯y⋯852−1⋯(2) 当 x 分别取 x 1,x 2 时,代数式的值分别记为 y 1,y 2.①若 x 1=m ,x 2=n 且 m −n =−1,y 1 比 y 2 大 5,求 a 的值; ②若 x 1=k ,x 2=k −1,比较 y 1 与 y 2 的大小.19. 假设图中由四个相邻点围成的正方形面积是一个单位面积,如何计算图 ① 点阵中多边形的面积?你可以把多边形分成若干小正方形和三角形,分别计算面积后相加,这是一个不错的办法.或者你可能想到通过剪拼的方法来计算,这个想法也很好.奥地利数学家皮克(Georg Pick ,1859∼1943)发现了一个计算点阵中多边形面积的公式:S =a +12b −1,其中 a 表示多边形内部的点数,b 表示多边形边界上的点数,S 表示多边形的面积.如图 ①,a =3,b =10,所以多边形面积 S =3+12×10−1=7(单位面积).这个结果与你算出的结果相同吗?请你在图 ② 的点阵中画一个多边形,并利用皮克公式计算它的面积.20. 为方便市民出行,甲、乙两家公司推出专车服务,运价收费如下:设行驶路程 x km 时,用含 x 的代数式表示乙公司的运价.(1) 当 3<x ≤6 时,则费用表示为 元;当 x >6 时,则费用表示为 元. (2) 当行驶路程 10 km 时,对于乘客来说,哪个专车更合算,为什么? (3) 当行驶路程 x km 时,对于乘客来说,哪个专车更合算,为什么?21. 因式分解:2x −8x 3.22.一个三位自然数abc(百位上的数字为a,十位上的数字为b,个位上的数字为c).若满足a+c=b,则称这个三位数为“和悦数”,并规定F(abc)=ac.如231,因为它的百位上的数字2与个位上的数字1之和等于十位上的数字3.所以231是“和悦数”,所以F(231)=2×1=2.(1) 请任意写出两个“和悦数”,并猜想任意一个“和悦数”是否是11的倍数,请说明理由;(2) 已知有两个十位上的数字相同的“和悦数”m,n(m>n),若F(m)−F(n)=5,求m−n的值.23.如图,是一个计算装置示意图,A,B是数据输入口,C是计算输出口,计算过程是由A,B分别输入自然数m和n,经计算后得自然数k由C输出,此种计算装置完成的计算满足以下三个性质:(1)若A,B分别输入1,则输出结果为1;(2)若A输入任何固定的自然数不变,B输入的自然数增大1,则输出结果比原来增大2;(3)若B输入任何固定的自然数不变,A输入的自然数增大1,则输出结果为原来的2倍.求:(1) 若A输入1,B输入4,此时的输出结果.(2) 若B输入1,A输入5,此时的输出结果.24.若一个正整数x能表示成a2−b2(a,b是正整数,且a>b)的形式,则称这个数为“明礼崇德数”,a与b是x的一个平方差分解.例如:因为5=32−22,所以5是“明礼崇德数”,3与2是5的平方差分解;再如:M=x2+2xy=x2+2xy+y2−y2=(x+y)2−y2(x,y是正整数),所以M也是“明礼崇德数”,(x+y)与y是M的一个平方差分解.(1) 判断:9“明礼崇德数”(填“是”或“不是”).(2) 已知N=x2−y2+4x−6y+k(x,y是正整数,k是常数,且x>y+1),要使N是“明礼崇德数”,试求出符合条件的一个k值,并说明理由.(3) 对于一个三位数,如果满足十位数字是7,且个位数字比百位数字大7,称这个三位数为“七喜数”.若m既是“七喜数”,又是“明礼崇德数”,请求出m的所有平方差分解.25. 请回答问题:(1) 在实数范围内分解下列因式,将结果直接写在横线上:x 2−10x +25= . 19x 2+23x +1= .x 2−2√2x +2= .(2) 观察上述三个多项式的系数,有 (−10)2=4×1×25,(23)2=4×19×1,(2√2)2=4×1×2,于是猜测:若多项式 ax 2+bx +c (a >0) 是完全平方式,那么系数 a ,b ,c 之间一定存在某种关系.请你用数学式子表示这一猜想 .(3) 若多项式 x 2−2ax +c 和 x 2+2cx +a 都是完全平方式,利用(2)中的规律求 ac 的值.答案一、选择题(共10题) 1. 【答案】A【解析】ax 2−4ax +4a=a (x 2−4x +4)=a (x −2)2.【知识点】完全平方式、提公因式法2. 【答案】D【解析】 ∵∣a∣=5,b 2=16, ∴a =±5,b =±4, ∵ab <0,∴a =5,b =−4 或 a =−5,b =4, 则 a −b =9 或 −9, 故选:D .【知识点】绝对值的性质、简单的代数式求值3. 【答案】D【解析】如图的程序按照 4,2,1,4,2,1,⋯⋯ 循环. 【知识点】简单的代数式求值4. 【答案】D【解析】 ∵xy >0,∴x >0,y >0 或 x <0,y <0.①当 x >0,y >0 时,原式=1+1+1=3; ②当 x <0,y <0 时,原式=−1+−1+1=−1. 【知识点】简单的代数式求值5. 【答案】B【解析】 ∵a ,b 互为相反数,c ,d 互为倒数,∣m ∣=2, ∴a +b =0,cd =1,m =±2, ∴m 2−3cd +a+b m=4−3+0=1.【知识点】简单的代数式求值6. 【答案】A【解析】A 、把 x =3,y =1 代入运算程序中得:输出结果为 9+2=11,符合题意; B 、把 x =2,y =2 代入运算程序中得:4−4=0,不符合题意; C 、把 x =2,y =3,代入运算程序中得:4−6=−2,不符合题意; D 、把 x =0,y =1.5 代入运算程序得:0−3=−3,不符合题意.【知识点】简单的代数式求值7. 【答案】B【解析】考察整体代入,x−2y=−3,则3(x−2y)2−5(x−2y)+6=3×(−3)2−5×(−3)+ 6=27+15+6=48.【知识点】简单的代数式求值8. 【答案】D【解析】当n=12时,第一次运算结果为:6,第二次运算结果为:3,第三次运算结果为:4,第四次运算结果为:2,第五次运算结果为:1,第六次运算结果为:2,发现:当运算次数大于三次时,第奇数次运算结果为1,第偶数次结果为2.所以第2019次运算结果为:1.【知识点】简单的代数式求值9. 【答案】B【解析】A.是乘法交换律,故A错误;B.把一个多项式转化成几个整式积的形式,故B正确;C.没把一个多项式转化成几个整式积的形式,故C错误;D.整式的乘法,故D错误.【知识点】因式分解的定义10. 【答案】C【解析】A.原式=a(a+2b),不符合题意;B,原式=(a+b)(a−b),不符合题意;C.原式不能分解,符合题意;D.原式=(2a+b)2,不符合题意.【知识点】完全平方式二、填空题(共7题)11. 【答案】2021【解析】原式=(1+111)(1−111)(1+112)(1−112)⋯(1+121)(1−121)=1011×1112×⋯×2021×1211×1312×⋯×2221=1021×2211=20.【知识点】平方差12. 【答案】8【解析】2(a+b)−4(2a+b)=2a+2b−8a−4b=−6a−2b=−(6a+2b)=−2(3a+b),∵3a+b=−4,整体代入后,得2(a+b)−4(2a+b)=−2×(−4)=8.【知识点】整式的加减运算、简单的代数式求值13. 【答案】−1(答案不唯一)【解析】答案不唯一,当M=−1时,100x2+M=100x2−1=(10x)2−12=(10x+1)(10x−1).【知识点】平方差14. 【答案】(x+1)(x+a+1)(x+a−1)【知识点】分组分解法15. 【答案】0【解析】设xb+c−a =yc+a−b=za+b−c=m,则x=(b+c−a)m,y=(c+a−b)m,z=(a+b−c)m,(b−c)x+(c−a)y+(a−b)z=(b−c)(b+c−a)m+(c−a)(c+a−b)m+(a−b)(a+b−c)m=(b2−c2+c2−a2+a2−b2)m+(ac−ab−bc+ab−ac+bc)m=0【知识点】简单的代数式求值16. 【答案】(x2+x+a+1)(x2−x−a+1)【知识点】分组分解法17. 【答案】3(y+2)(y−2)【解析】3y2−12=3(y2−4)=3(y+2)(y−2).【知识点】平方差三、解答题(共8题) 18. 【答案】(1) −3;5(2) ① ∵x 1=m ,x 2=n ,∴y 1=ax 1+b =am +b ,y 2=ax 2+b =an +b , ∵y 1 比 y 2 大 5,∴y 1−y 2=am −an =a (m −n )=5, ∴a =5m−n,∵m −n =−1, ∴a =−5;② ∵x 1=k ,x 2=k −1,∴y 1=−3k +5,y 2=−3(k −1)+5, ∴y 1−y 2=−3<0, ∴y 1<y 2. 【解析】(1) 当 x =−1 时,y =8; 当 x =0 时,y =5, ∴{−a +b =8,b =5.解得:{a =−3,b =5.【知识点】简单的代数式求值、二元一次方程组的应用19. 【答案】略【知识点】简单的代数式求值20. 【答案】(1) (1.6x +2.2);(2.2x −1.4)(2) 当行驶路程 10 km 时,甲公司的运价为:6+2.1(10−3)=20.7(元); 乙公司的运价为:2.2×10−1.4=20.6(元); ∵20.7>20.6,∴ 当行驶路程 10 km 时,对于乘客来说,乙公司的专车更合算. (3) ①当 x ≤3 时,对于乘客来说,显然甲公司的专车更合算.②当 3<x ≤6 时,甲公司的运价为:6+2.1(x −3)=2.1x −0.3(元),乙公司的运价为 (1.6x +2.2) 元.如果 2.1x −0.3=1.6x +2.2,那么 x =5.即当 3<x <5 时,对于乘客来说,甲公司的专车更合算; 当 x =5 时,对于乘客来说,甲、乙两家公司的专车一样合算;当5<x≤6时,对于乘客来说,乙公司的专车更合算;②当x>6时,甲公司的运价为:6+2.1(x−3)=2.1x−0.3(元),乙公司的运价为(2.2x−1.4)元.如果2.1x−0.3=2.2x−1.4,那么x=11.即当6<x<11时,对于乘客来说,乙公司的专车更合算;当x=11时,对于乘客来说,甲、乙两家公司的专车一样合算;;当x>11时,对于乘客来说,甲公司的专车更合算.综上所述,当x<5或x>1时,对于乘客来说,甲公司的专车更合算;当x=5或x=11时,对于乘客来说,甲、乙两家公司的专车一样合算;当5<x<11时,对于乘客来说,乙公司的专车更合算.【解析】(1) 当3<x≤6时,乙公司的运价为:7+1.6(x−3)=1.6x+2.2(元);当x>6时,乙公司的运价为:7+1.6×3+2.2(x−6)=2.2x−1.4(元).【知识点】简单列代数式、一元一次方程的应用、简单的代数式求值21. 【答案】2x(1+2x)(1−2x).【知识点】提公因式法、平方差22. 【答案】(1) 设三位自然数为abc(1≤a≤9,0<b≤9,0<c≤9的整数),∵三位数abc是“和悦数”,∴b=a+c,取a=2,c=5,则b=7,∴三位数为275,取a=5,c=3,则b=8,∴三位数为583,任意一个“和悦数”是11的倍数,设三位自然数为abc,∵三位数abc是“和悦数”,∴b=a+c,∴三位数为100a+10(a+c)+c=110a+11c=11(10a+c),∵a,c是整数,∴10a+c是整数,∴11(10a+c)能被11整除,即:任意一个“和悦数”是11的倍数.(2) 设两个十位上的数字相同的“和悦数”为m=abc,n=ebd,(a≥e,当a=e时,c>d),则b=a+c=e+d,∴c−d=e−a,c=b−a.d=b−e.∴F(m)=a⋅c=a(b−c),F(n)=e⋅d=e(b−e),∵F(m)−F(n)=5,∴a ⋅(b −a )−e (b −e )=ab −a 2−eb −e 2=(ab −eb )−(a 2−e 2)=b (a −e )−(a +e )(a −e )=(a −e )(b −a −e )=5,∵a ,b ,e 是整数,∴a −e =1 或 a −e =5,∴m −n =(100a +10b +c )−(100e +10b +d )=(110a +11c )−(110e +11d )=110(a −e )+11(c −d )=110(a −e )−11(a −e )=99(a −e )=99 或 495.【知识点】提公因式法、整式的加减运算、平方差23. 【答案】(1) 根据题意得当 A 输入 1,B 输入 4 时,输出结果为 1+(4−1)×2=7.(2) 当 B 输入 1,A 输入 5 时,输出结果为 1×2×2×2×2=16.【知识点】简单的代数式求值、简单列代数式24. 【答案】(1) 是(2) ∵N =x 2−y 2+4x −6y +k ,∴N =(x 2+4x )−(y 2+6y )+k=(x 2+4x +4−4)−(y 2+6y +9−9)+k=(x +2)2−(y +32)−4+9+k =(x +2)2−(y +3)2+5+k,∵x >y +1,∴x +2>y +3,∴ 当 5+k =0 即 k =−5 时,N 是明礼崇德数,∴k =−5.(3) 满足条件的七喜数有 178,279 两个,∵m =a 2−b 2=(a +b )(a −b ) 时 x 是明礼崇德数,①当 m =178 时,m =1×178=2×89,i )当 m =1×178 时,{a +b =178,a −b =1,∴a =1792,b =1772,∵a ,b 均不为整数,∴ 不符合题意舍去,ii )当 m =2×89 时,{a +b =89,a −b =2,解之得 a =912,b =872,∵a ,b 均不为整数,∴ 不符合题意舍去,②当 m =279 时,m =1×279=3×93=9×31,i )当 m =1×279 时,{a +b =279,a −b =1,解之得 a =140,b =139,ii )当 m =3×93 时,{a +b =93,a −b =3,解之得 a =48,b =45,iii )当 m =9×31 时,{a +b =31,a −b =9,解之得 a =20,b =11,综上所述,m 既是“七喜数”又是明礼崇德数的所有平方差分解为 140 和 139,48 和 45,20 和 11.【解析】(1) ∵9=52−42=25−16,∴9 是明礼崇德数.【知识点】完全平方式、平方差、解二元一次方程组25. 【答案】(1) (x −5)2;(13x +1)2;(x −√2)2(2) b 2=4ac(3) 由题意得:{(2a )2=4c,(2c )2=4a,∴{a 2=c,c 2=a.∴a 2c 2=ac ,ac =1 或 0.【解析】(2) 由例子总结规律b2=4ac.【知识点】完全平方式、用代数式表示规律。
2022年最新浙教版初中数学七年级下册第四章因式分解章节练习试题(含答案解析)
初中数学七年级下册第四章因式分解章节练习(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(15小题,每小题3分,共计45分)1、下列各式由左到右的变形中,属于因式分解的是( )A.﹣a 2﹣ab ﹣ac =﹣a (a +b +c )B.x 2+x +1=(x +1)2﹣x C.(x +2)(x ﹣1)=x 2+x ﹣2 D.a 2+b 2=(a +b )2﹣2ab 2、下列各式中,正确的因式分解是( )A.2222()()a b ab c a b c a b c -+-=+---B.2()()()(1)x y x y x y x y ----=---+C.2()3()(23)()a b a b a a a b -+-=+-D.222422(222)(1)x x y x y x y ++-=+++-3、下列各式中,因式分解正确的是( )A.()22121x x x x ++=++B.()()22a b a b a b +=+-C.()222412923a ab b a b ++=+D.()231x x x x -=- 4、下列各式中,能用完全平方公式因式分解的是( )A.2161x +B.221x x +-C.214x x -+D.2224a ab b +-5、下列各式从左到右的变形是因式分解的是( )A.ax +bx +c =(a +b )x +cB.(a +b )(a ﹣b )=a 2﹣b 2C.(a +b )2=a 2+2ab +b 2D.a 2﹣5a ﹣6=(a ﹣6)(a +1) 6、下列各式从左到右的变形,因式分解正确的是( )A.x 2+4=(x +2)2B.x 2﹣10x +16=(x ﹣4)2C.x 3﹣x =x (x 2﹣1)D.2xy +6y 2=2y (x +3y )7、小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x ﹣1,a ﹣b ,3,x 2+1,a ,x +1分别对应下列六个字:化,爱,我,数,学,新,现将3a (x 2﹣1)﹣3b (x 2﹣1)因式分解,结果呈现的密码信息可能是( )A.我爱学B.爱新化C.我爱新化D.新化数学 8、下面的多项式中,能因式分解的是( )A.2m ﹣2B.m 2+n 2C.m 2﹣nD.m 2﹣n +1 9、下列各式从左到右的变形,属于因式分解的是( )A.ab +bc +b =b (a +c )+bB.a 2﹣9=(a +3)(a ﹣3) C.(a ﹣1)2+(a ﹣1)=a 2﹣a D.a (a ﹣1)=a 2﹣a 10、下列各式中从左到右的变形,是因式分解的是( )A.2x x x =⋅B.()()()()a x y b y x x y a b ---=-+C.()()2224a a a +-=-D.()222241221x y xy xy x y +-=+-11、下列式子的变形是因式分解的是( )A.() m x y mx my +=+B.()22 21441x x x -=-+ C.()()2 1343x x x x ++=++ D.()3 11x x x x x -=+-()12、下列多项式中,能用平方差公式进行因式分解的是( )A.222a ab b ++B.22a b --C.22a b +D.22a b -13、已知222(3)x ax b x -+=-,则22b a - 的值是( )A.72-B.45-C.45D.7214、下列等式从左到右的变形,属于因式分解的是( )A.x 2+2x ﹣1=(x ﹣1)2B.(a +b )(a ﹣b )=a 2﹣b 2C.x 2+4x +4=(x +2)2D.ax 2﹣a =a (x 2﹣1) 15、下列等式中,从左到右的变形是因式分解的是( )A.2x (x ﹣1)=2x 2﹣2xB.4m 2﹣n 2=(4m +n )(4m ﹣n ) C.﹣x 2+2x =﹣x (x ﹣2) D.x 2﹣2x +3=x (x ﹣2)+3 二、填空题(10小题,每小题4分,共计40分)1、边长为a 、b 的长方形,它的周长为14,面积为10,则22a b ab +的值为__.2、小明将(2020x +2021)2展开后得到a 1x 2+b 1x +c 1;小红将(2021x ﹣2020)2展开后得到a 2x 2+b 2x +c 2,若两人计算过程无误,则c 1﹣c 2的值是__________.3、若20182019a x =+,20182020b x =+,20182021c x =+,则多项式222a b c ab ac bc ++---的值为______________.4、若多项式x 2+ax +b 可分解为(x +1)(x +4),则a =________,b =________.5、因式分解:22416a b _______.6、如果9x y +=,3x y -=,那么222x 2y -的值为______.7、已知a =2b ﹣5,则代数式a 2﹣4ab +4b 2﹣5的值是_____.8、请从24a ,2()x y +,16,29b 四个式子中,任选两个式子做差得到一个多项式,然后对其进行因式分解是_____________________.9、因式分解:256x x --=______.10、分解因式:3mn 2﹣12m 2n =___.三、解答题(3小题,每小题5分,共计15分)1、因式分解:(1)2a 2b ﹣8ab 2+8b 3.(2)a 2(m ﹣n )+9(n ﹣m ).(3)81x 4﹣16.(4)(m 2+5)2﹣12(m 2+5)+36.2、如果一个正整数的各位数字都相同,我们称这样的数为“同花数”,比如:3,22,666,8888,对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“异花数”.将一个“异花数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和记为()F n .如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132.这三个新三位数的和()213321132666F n =++=,是一个“同花数”.(1)计算:()432F ,()716F ,并判断它们是否为“同花数”;(2)若a 是“异花数”,证明:()F a 等于a 的各数位上的数字之和的111倍;(2)若“数”10010n p q =++(中p 、q 都是正整数,19p ≤≤,19q ≤≤),且()F n 为最大的三位“同花数”,求n 的值.3、(1)因式分解:()()29x m n n m -+-(2)解方程组:92153410x y x y +=⎧⎨+=⎩---------参考答案-----------一、单选题1、A【分析】根据因式分解是把一个多项式转化成几个整式的积的形式,可得答案;【详解】解:A 、把一个多项式转化成了几个整式的积,故A 符合题意;B 、没把一个多项式转化成几个整式积,故B 不符合题意;C 、是整式的乘法,故C 不符合题意;D 、没把一个多项式转化成几个整式积,故D 不符合题意;故选:A.【点睛】本题考查了因式分解的意义,解题的关键是掌握因式分解是把一个多项式转化成几个整式积.2、B【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:A .2222()()a b ab c a b c a b c -+-=-+--,故此选项不合题意;B .2()()()(1)x y x y x y x y ----=---+,故此选项符合题意;C .()()()()2323a b a b a a a b -+-=--,故此选项不合题意;D .()()222422211x x y x y x y ++-=+++-,故此选项不合题意;故选:B .【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.3、C【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:A .2221(1)x x x ++=+,故此选项不合题意;B .22a b +,无法分解因式,故此选项不合题意;222.4129(23)C a ab b a b ++=+,故此选项符合题意;D .32(1)(1)(1)x x x x x x x -=-=-+,故此选项不合题意;故选:C .【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用提取公因式法以及公式法分解因式是解题关键.4、C【分析】根据完全平方公式的特点判断即可;【详解】2161x +不能用完全平方公式,故A 不符合题意;221x x +-不能用完全平方公式,故B 不符合题意;221142x x x ⎛⎫-+=- ⎪⎝⎭,能用完全平方公式,故C 符合题意;22+-不能用完全平方公式,故D不符合题意;a ab b24故答案选C.【点睛】本题主要考查了因式分解公式法的判断,准确判断是解题的关键.5、D【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A、ax+bx+c=(a+b)x+c,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(a+b)(a﹣b)=a2﹣b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C、(a+b)2=a2+2ab+b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D、a2﹣5a﹣6=(a﹣6)(a+1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.6、D【分析】根据因式分解的方法解答即可.【详解】解:A、x2+4≠(x+2)2,因式分解错误,故此选项不符合题意;B 、x 2-10x +16≠(x -4)2,因式分解错误,故此选项不符合题意;C 、x 3-x =x (x 2-1)=x (x +1)(x -1),因式分解不彻底,故此选项不符合题意;D 、2xy +6y 2=2y (x +3y ),因式分解正确,故此选项符合题意;故选:D.【点睛】本题考查了因式分解的方法,明确因式分解的结果应是整式的积的形式.运用提公因式法分解因式时,在提取公因式后,不要漏掉另一个因式中商是1的项.7、C【分析】把所给的式子运用提公因式和平方差公式进行因式分解,查看对应的字即可得出答案.【详解】解:()()223131a x b x --- ()()231x a b =--()()()311x x a b =+--,∵x ﹣1,a ﹣b ,3,x 2+1,a ,x +1分别对应下列六个字:化,爱,我,数,学,新,∴结果呈现的密码信息可能是:我爱新化,故选:C .【点睛】本题考查因式分解,解题的关键是熟练掌握提公因式法和套用平方差公式.8、A【分析】分别根据提公因式法因式分解以及乘法公式逐一判断即可.【详解】解:A、2m﹣2=2(m﹣1),故本选项符合题意;B、m2+n2,不能因式分解,故本选项不合题意;C、m2﹣n,不能因式分解,故本选项不合题意;D、m2﹣n+1,不能因式分解,故本选项不合题意;故选A.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.9、B【分析】根据因式分解的定义逐项排查即可.【详解】解:根据因式分解的定义可知:A、C、D都不属于因式分解,只有B属于因式分解.故选B.【点睛】本题主要考查了因式分解的定义,把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解.10、B【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.2x x x =⋅,单项式不能因式分解,故此选项不符合题意;B.()()()()a x y b y x x y a b ---=-+,是因式分解,故此选项符合题意;C.()()2224a a a +-=-,是整式计算,故此选项不符合题意;D.()222241221x y xy xy x y +-=+-,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:B.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.11、D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,由此结合选项即可作出判断.【详解】解:A 、右边不是整式积的形式,不是因式分解,故本选项错误;B 、右边不是整式积的形式,不是因式分解,故本选项错误;C 、右边不是整式积的形式,不是因式分解,故本选项错误;D 、是因式分解,故本选项正确;故正确的选项为:D【点睛】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,属于基础题.12、D【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A、a2+2ab+b2是三项,不能用平方差公式进行因式分解.B、−a2−b2两平方项符号相同,不能用平方差公式进行因式分解;C、a2+b2两平方项符号相同,不能用平方差公式进行因式分解;D、a2−b2符合平方差公式的特点,能用平方差公式进行因式分解;故选:D.【点睛】本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2−b2=(a+b)(a−b).13、D【分析】直接利用完全平方公式:a2±2ab+b2=(a±b)2,得出a,b的值,进而得出答案.【详解】解:∵x2﹣2ax+b=(x﹣3)2=x2﹣6x+9,∴﹣2a=﹣6,b=9,解得:a=3,故b2﹣a2=92﹣32=72.故选:D.【点睛】此题主要考查了公式法分解因式,正确记忆完全平方公式是解题关键.14、C【分析】根据因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解分别进行判断,即可得出答案.【详解】A. x2+2x﹣1≠(x﹣1)2,故A不符合题意;B. a2﹣b2=(a+b)(a﹣b),故B不符合题意;C. x2+4x+4=(x+2)2,是因式分解,故C符合题意;D. ax2﹣a=a(x2﹣1)=a(x+1)(x-1),分解不完全,故D不符合题意;故选:C.【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义.15、C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.2x(x﹣1)=2x2﹣2x,原变形是整式乘法,不是因式分解,故此选项不符合题意;B.4m2﹣n2=(2m+n)(2m﹣n),故此选项不符合题意;C.﹣x2+2x=﹣x(x﹣2),把一个多项式化为几个整式的积的形式,原变形是因式分解,故此选项符合题意;D.x2﹣2x+3=x(x﹣2)+3,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:C.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.二、填空题1、70【分析】直接利用长方形的周长和面积公式结合提取公因式法分解因式计算即可.【详解】解:依题意:2a+2b=14,ab=10,则a+b=7∴a2b+ab2=ab(a+b)=70;故答案为:70【点睛】此题主要考查了提取公因式法分解因式,正确得出a+b和ab的值是解题关键.2、4041【分析】根据(2020x+2021)2=(2020x)2+2×2021×2020x+20212得到c1=20212,同理可得c2=20202,所以c1-c2=20212-20202,进而得出结论.【详解】解:∵(2020x+2021)2=(2020x)2+2×2021×2020x+20212,∴c1=20212,∵(2021x-2020)2=(2021x)2-2×2020×2021x+20202,∴c2=20202,∴c1-c2=20212-20202=(2021+2020)×(2021-2020)=4041,故答案为:4041.【点睛】本题主要考查了完全平方公式,平方差公式,解决本题的关键是要熟悉公式的结构特点.3、3【分析】将多项式多项式a2+b2+c2﹣ab﹣bc﹣ac分解成12[(a﹣b)2+(a﹣c)2+(b﹣c)2],再把a,b,c代入可求.【详解】解:20182019201820201a b x x-=+--=-;20182020201820211b c x x-=+--=-;20182019201820212a c x x-=+--=-;∵a2+b2+c2﹣ab﹣bc﹣ac=12(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=12[(a﹣b)2+(a﹣c)2+(b﹣c)2],∴a2+b2+c2﹣ab﹣bc﹣ac=12(1+4+1)=3;故答案为:3.【点睛】本题考查了因式分解的应用,关键是将多项式配成完全平方形式.4、5 4【分析】把(x+1)(x+4)展开,合并同类项,可确定a、b的值.【详解】解:∵(x+1)(x+4),=244x x x+++,=254x x ++,∴54a b ==,;故答案为:5,4.【点睛】本题考查了因式分解和多项式乘多项式,解题关键是熟练运用多项式的乘法法则进行计算,取得字母的值.5、422a b a b【分析】先提公因式4,再利用平方差公式分解.【详解】解:22416a b -=2244a b=422a b a b故答案为:422a b a b .【点睛】本题考查提公因式法和公式法进行因式分解,掌握提平方差公式是解题关键.6、54【分析】先利用平方差公式分解因式,再代入求值,即可.【详解】解:222x 2y -=()222x y -=()()2x y x y +-=2×9×3=54,故答案是:54.【点睛】本题主要考查代数式求值,掌握平方差公式,进行分解因式,是解题的关键.7、20【分析】将a =2b -5变为a -2b =-5,再根据完全平方公式分解a 2-4ab +4b 2-5=(a -2b )2-5,代入求解.【详解】解:∵a =2b -5,∴a -2b =-5,∴a 2-4ab +4b 2-5=(a -2b )2-5=(-5)2-5=20.故答案为:20.【点睛】此题考查的是代数式求值,掌握完全平方公式是解此题的关键.8、4a 2-16=4(a -2)(a +2)【分析】任选两式作差,例如,4a 2-16,运用平方差公式因式分解,即可解答.【详解】解:根据平方差公式,得,4a 2-16,=(2a )2-42,=(2a -4)(2a +4),=4(a -2)(a +2)故4a 2-16=4(a -2)(a +2),故答案为:4a 2-16=4(a -2)(a +2).【点睛】本题考查了运用平方差公式因式分解:把一个多项式化为几个整式的积的形式;属于基础题. 9、()()16x x +-【分析】根据十字相乘法分解即可.【详解】解:256x x --=()()16x x +-,故答案为:()()16x x +-.【点睛】本题考查了因式分解,熟练掌握十字相乘法是解题的关键.10、3mn (n -4m )【分析】根据提公因式法进行分解即可.【详解】3mn 2-12m 2n =3mn (n -4m ).故答案为:3mn (n -4m ).【点睛】本题考查了因式分解,掌握提公因式法分解因式是解题的关键.三、解答题1、(1)2b(a-2b) 2;(2)(m﹣n)( a+3)(a-3);(3)(3x+2)(3x-2)(9x2+4);(4)(m+1)2(m-1)2【分析】(1)先提取2b,再利用完全平方公式分解因式即可;(2)先提取(m﹣n),再利用平方差公式分解因式即可;(3)利用平方差公式分解因式,即可;(4)先用完全平方公式分解因式,再用平方差公式分解因式即可.【详解】解:(1)原式=2b(a2-4ab+4b2)=2b(a2-4ab+4b2)=2b(a-2b) 2;(2)原式=a2(m﹣n)-9(m﹣n)=(m﹣n)( a2-9)=(m﹣n)( a+3)(a-3);(3)原式=(9x2﹣4)(9x2+4)=(3x+2)(3x-2)(9x2+4);(4)原式=[(m2+5)-6]2=(m2-1)2=(m+1)2(m-1)2.【点睛】本题主要考查分解因式,熟练掌握提取公因式法和公式法分解因式,是解题的关键.2、(1)(432)F 是同花数;(716)F 不是同花数;(2)见解析;(3)n 为162或153或135或126【分析】(1)由“同花数”定义,计算即可得到答案;(2)百位数的表示方法;(2)由“异花数”的定义,()F n 为最大的三位“称心数”得()999F n =且19p q ++=,计算n 的值为162或153或135或126.【详解】解:(1)(432)342234423999F =++=,(432)F ∴是同花数;(716)1676177611554F =++=,(716)F ∴不是同花数;(2)若a 是“异花数”10010a b c d ∴=++,(其中,,b c d 均为小于10的正整数),[]()100()10()()111()F a b c d b c d b c d b c d ∴=++++++++=++,()F a ∴等于a 的各数位上的数字之和的111; (3)异花数” 10010n p q =++,100110n p q ∴=⨯++,又19p ,19(q p ,q 为正整数),()F n 为最大的三位“同花数”,()999F n ∴=且19p q ++=,p ∴、q 取值如下:62p q =⎧⎨=⎩或53p q =⎧⎨=⎩或35p q =⎧⎨=⎩或26p q =⎧⎨=⎩, 由上可知符合条件三位“异花数”n 为162或153或135或126.【点睛】本题考查了新定义问题,解题的关键是读懂新定义“同花数”和“异花数”.3、(1)()()()33m n x x -+-;(2)4332x y ⎧=⎪⎪⎨⎪=⎪⎩【分析】(1)先提公因式()m n -,再利用平方差公式即可;(2)利用加减消元法先消去x ,求出y ,再将y 的值代入求出x ,进而确定方程组的解即可.【详解】解:(1)原式2()9()x m n m n =---2()(9)m n x =--()(3)(3)m n x x =-+-;(2)92153410x y x y +=⎧⎨+=⎩①②, ②3⨯-①得,1015y =,32y ∴=, 把32y =代入②得. 3610x +=,43x ∴=, ∴原方程组的解为4332x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】本题考查提公因式法、公式法分解因式,二元一次方程组的解,掌握平方差公式的结构特征以及二元一次方程组的解法是正确解答的关键.。
北师大版数学八年级下册因式分解强化练习题
北师大版数学八年级下册因式分解强化练习题第四章因式分解期末复题题型一:直接提公因式1、因式分解:xy-y=y(x-1)2、分解因式:x^2+2x=x(x+2)3、分解因式:x^2-4=(x+2)(x-2)4、分解因式:2a^2-4a=2a(a-2)5、因式分解:2x^3-x^2=x^2(2x-1)6、分解因式:ax+ay=a(x+y)7、分解因式:7x^321x^2=7x^2(x-3)8、分解因式:x^23x=x(x+3)题型二:直接用公式平方差公式:a^2b^2(a b)(a b)a+b)^2=a^2+2ab+b^2a-b)^2=a^2-2ab+b^2完全平方公式:(a+b)^2=a^2+2ab+b^2a-b)^2=a^2-2ab+b^21、分解因式:x^2-25=(x+5)(x-5)2、分解因式:x^2-4=(x+2)(x-2)3、因式分解:a^2+5a=a(a+5)4、分解因式:x^2-4=-1(x+2)(x-2)5、因式分解:2-4y^2=-2(2y+1)(y-1)6、分解因式:4x^2-1=(2x+1)(2x-1)7、分解因式:4x+2x+1=2(2x+1)^28、分解因式:16-8(x-y)+(x-y)=(4-x+y)^2题型三:先提公因式,再套平方差或者完全平方公式。
A:先提后套平方差1、分解因式:2x8=2(x-4)2、因式分解:x^3-x=x(x+1)(x-1)3、分解因式:x^3-4x=x(x^2-4)=(x+2)(x-2)x4、分解因式:2x^2-18=2(x^2-9)=2(x+3)(x-3)5、分解因式:9a-ab^2=a(9-b^2)=a(3+b)(3-b)6、因式分解:a^3-a=a(a^2-1)=a(a+1)(a-1)7、因式分解:x^3-9x=x(x^2-9)=(x+3)(x-3)x8、分解因式:8a^2-2=2(4a^2-1)=2(2a+1)(2a-1)9、因式分解:x^3y^2-x^5=x^3(y^2-x^2)=x^3(y+x)(y-x)B:先提后套完全平方1、分解因式:x^2y2xy y=(x-y)^22、因式分解:x^32x^2y xy^2=x(x-y)^23、因式分解:a^2b+2ab+b=(a+b)^24、分解因式:8xy8xy2y=2y(1-4xy)5、把多项式(m+1)(m-1)+(m-1)提公因式(m-1)后,余下的部分是()A.m+1.B.2m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章:因式分解复习巩固练习
一、选择题(共10小题,每小题3分,共30分)
1.下列从左到右的变形,属于因式分解的是( )
A .(x +3)(x -2)=x 2+x -6
B .ax -ay -1=a (x -y )-1
C .8a 2b 3=2a 2·4b 3
D .x 2-4=(x +2)(x -2)
2.下列各式中,不能继续分解因式的是( )
A .8xy -6x 2=2(4xy -3x 2)
B .3x -12xy =12
x (6-y ) C .4x 3+8x 2+4x =4x (x 2+2x +1) D .16x 2-4=4(4x 2-1)
3.下列添括号错误的是( )
A .-x +5=-(x +5)
B .-7m -2n =-(7m +2n )
C .a 2-3=+(a 2-3)
D .2x -y =-(y -2x )
4.若x 2+mx +16是完全平方式,则m 的值等于( )
A .-8
B .8
C .4
D .8或-8
5.下列各式中,能用平方差公式分解因式的是( )。
A 、x 2+4y 2
B 、x 2-2y +1
C 、-x 2+4y 2
D 、-x 2-4y 2
6.利用因式分解计算22009-22008,则结果是( )
A .2
B .1
C .22008
D .-1
7.把代数式244ax ax a -+分解因式,下列结果中正确的是( )
A .2(2)a x -
B .2(2)a x +
C .2(4)a x -
D .(2)(2)a x x +-
8.如图,在边长为a 的正方形上剪去一个边长为b 的小正方形(a >b ),把剩下 的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的
等式是(• )
A.a 2-b 2=(a +b )(a -b ) B .(a +b )2=a 2+2ab +b 2
C .(a -b )2=a 2-2ab +b 2
D .a 2-ab =a (a -b )
9.已知多项式4x 2-(y -z )2的一个因式为2x -y +z ,则另一个因式是( )
A .2x -y -z
B .2x -y +z
C .2x +y +z
D .2x +y -z
10.若x 2-3x =1,则x 2y -3xy -y 的值为( )
A .1
B .0
C .2y
D .-2y
二、填空题(共6小题,每小题4分,共24分)
11.若x 2+ax +b =(x +5)(x -2),则a =_____,b =______.
12.(4a 2-b 2)÷(b -2a )=________. 13.3311()()82x y x y -=-
2214.()()()()a bc ab ac a ab -+-=+-=
15.当m =______时,x 2+2(m -3)x +25是完全平方式.
三、解答题(共7题,共66分)
16.把下列各式分解因式:
(1) 42681y x x - (2)a a a +-232
(3) 641622++ax x a (4) z xy yz x z x 22344+-
(5) 9624++x x (6) ()()22
4141y y x x +---
(7) ()()
5451022++-x x (8)()()()()y x a b y x b a +----
(9)4235484mn n m m ++ (10)2294n m -;
(11)2
2)(16)(9n m n m --+; (12)4416n m -;
(13)
25)(10)(2++++y x y x ; (14)4224817216b b a a +-;
17.若多项式k x x +-2
32是一个完全平方式,求k 的值是多少?
18. 已知32=
+b a ,2=ab ,求32232ab b a b a ++的值;
19. 已知,23,4-=-=-y x y x 求2234y xy x +-的值;
20. 已知,6,5=-=b a xy 求
xy b abxy xy a 222+-的值;
21. 已知3,1-==+ab b a ,求()2b a -的值;
22.先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b )(2a -b ),其中a =2,b =1.
23.已知31=-x ,求代数式4)1(4)1(2
++-+x x 的值.。