山东省济宁市微山县高中数学第一章集合与函数概念1.2.1函数的概念学案
高中数学第一章集合与函数概念2 1函数的概念3教案新人教版必修1
函数的概念(一)教学目标1.知识与技能(1)理解函数的概念;体会随着数学的发展,函数的概念不断被精炼、深化、丰富.(2)初步了解函数的定义域、值域、对应法则的含义.2.过程与方法(1)回顾初中阶段函数的定义,通过实例深化函数的定义.(2)通过实例感知函数的定义域、值域,对应法则是构成函数的三要素,将抽象的概念通过实例具体化.3.情感、态度与价值观在函数概念深化的过程中,体会数学形成和发展的一般规律;由函数所揭示的因果关系,培养学生的辨证思想.(二)教学重点与难点重点:理解函数的概念;难点:理解函数符号y = f (x)的含义.(三)教学方法回顾旧知,通过分析探究实例,深化函数的概念;体会函数符号的含义. 在自我探索、合作交流中理解函数的概念;尝试自学辅导法.(四)教学过程h = 130t– 5t2.示例2:近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空沿问题. 下图中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情况.示例 3 国际上常用恩格尔系数②反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高,下表中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.“八五”计划以来我国城镇居民恩格尔系数变化情况时间(年) 199119921993199419951996城镇居民家庭恩格尔系数(%) 53.852.950.149.949.948.6时199199199200200师生合作交流揭示三个示例中的自变量以及自变量的变化范围,自变量与因变量之间的对应关系.究规律,形成并深化函数的概念.3.函数的表达式.课后作业 1.2第一课时习案 独立完成巩固知识备选例题例1 函数y = f (x )表示( C ) A .y 等于f 与x 的乘积 B .f (x )一定是解析式 C .y 是x 的函数D .对于不同的x ,y 值也不同 例2 下列四种说法中,不正确的是( B )A .函数值域中每一个数都有定义域中的一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域只含有一个元素,则值域也只含有一个元素例3 已知f (x ) = x 2+ 4x + 5,则f (2) = 2.7 ,f (–1) = 2 .例4 已知f (x ) = x 2 (x ∈R ),表明的“对应关系”是 平方 ,它是 R → R 的函数. 例5 向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系如右图示,那么水瓶的形状是下图中的( B )〖解 析〗取水深2H h ,注水量V ′>2V,即水深为一半时,实际注水量大小水瓶总水量的一半,A 中V ′<2V ,C 、D 中V ′=2V,故排除A 、C 、D.。
函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2
第一章集合与函数概念1.2 函数及其表示1.2.1 函数的概念和函数的表示法1 教学目标1.1 知识与技能:[1]理解函数的概念,了解构成函数的三要素.[2]会判断给出的两个函数是否是同一函数.[3]能正确使用区间表示数集.[4]函数的三种表示方法,并会求简单函数的定义域和值域.[5]通过实例体会分段函数的概念.[6]了解映射的概念及表示方法,并会判断一个对应关系是否是映射.1.2过程与方法:[1]通过具体实例,体会函数的概念和函数三要素,会求简单函数的定义域和值域。
[2]通过观察、画图等具体动手,体会分段函数的概念。
[3]通过具体习题,了解映射的概念,并会判断一个对应关系是否是映射.1.3 情感态度与价值观:[1]通过学习函数的概念及其表示法以及相关练习,培养学生逻辑思维。
[2]通过细致作图,培养学生的动手能力和识图能力。
2 教学重点/难点/易考点2.1 教学重点[1]函数的三种表示方法。
[2]分段函数的概念。
2.2 教学难点[1]根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.[2]会求函数的定义域和值域。
3 专家建议此节为高中数学函数的第一节内容,一定要让学生充分理解函数的概念,结合具体习题提升学生的逻辑思维和数学素养。
4 教学方法实例探究——归纳总结,提炼概念——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板。
6 教学过程6.1 引入新课【师】同学们好。
初中的时候我们就接触过函数,并掌握了一次函数,二次函数和反比例函数。
这节课我们来继续进一步学习和函数有关的内容。
【板书】第一章集合与函数概念 1.2 函数及其表示6.2 新知介绍[1]函数的概念【师】下面请同学们看三个实例,看有什么不同点和相同点。
【板演/PPT】PPT演示三个实例。
【师】那我们现在可以发现不同点是三个实例分别用解析式,图像和表格刻画变量之间的对应关系。
相同点是都有两个非空数集,并且两个数集之间都有一种确定的对应关系。
高中数学 第一章 集合与函数概念 1.2.1 函数的概念教案 新人教A版必修1(2021年最新整理)
高中数学第一章集合与函数概念 1.2.1 函数的概念教案新人教A版必修1 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章集合与函数概念1.2.1 函数的概念教案新人教A版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章集合与函数概念 1.2.1 函数的概念教案新人教A版必修1的全部内容。
1.2.1 函数的概念1。
知识与技能(1)通过丰富的实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型;(2)用集合与对应的语言刻画函数;理解函数的三要素及函数符号f(x)的含义;(3)会求一些简单函数的定义域及值域。
2.过程与方法让学生通过合作探究,经历函数概念的形成过程,渗透归纳推理的数学思想,培养学生的抽象概括能力,体会数学形成和发展的一般规律,强化“形”与“数”结合并相互转化的数学思想。
3。
情感、态度与价值观(1)树立“数学源于实践,又服务于实践”的数学应用意识;(2)渗透数学思想,强化学生参与意识,培养学生严谨的学习态度;同时感受数学的抽象性和简洁美,激发学生学习数学的热情。
重点:体会函数是描述变量之间的依赖关系的重要数学模型,理解函数的概念。
难点:函数概念及函数符号y=f(x)的理解.(1)重点的突破:以学生熟知的函数及初中函数的定义为切入点,引导学生结合具体实例,分组交流讨论,归纳概括出实例的共同特点,在此基础上,结合集合知识,利用对应的观点形成函数概念的教学,整个过程通过学生的“观察→分析→比较→归纳→概括”,最终由特殊到一般,由具体到抽象,从感性认识上升到理性认识,在培养学生抽象概括能力的同时重难点也得以突破。
高中数学第一章集合与函数概念2 1函数的概念4教案新人教版必修1
函数的三要素(一)教学目标1.知识与技能(1)了解函数三要素的含义,掌握根据函数的三要素判定两个函数是否为同一个函数的方法.(2)会求简单函数的定义域和函数值.2.过程与方法通过示例分析,让学生掌握求函数定义域的基本题型及方法,进一步加深对函数概念的理解.通过求出函数的函数值,加深对应法则的认识.3.情感、态度与价值观通过动手实践研究数学问题,提高分析问题,解决问题能力;体会成功地解答数学问题的学习乐趣,培养钻研精神.(二)教学重点与难点重点:掌握函数定义域的题型及求法.难点:理解函数由定义域与对应法则确定函数这一基本原则.(三)教学方法启发式教学,在老师引导,学生在合作的状态下理解知识、应用知识,提升学生应用知识和基本技能探究解决问题的能力.(四)教学过程备选例题例1 求下列函数的定义域(1)2112y x =-+; (2)224x y x -=-;(3)1||y x x =+;(4)2y =;(5)1||3y x =-;(6)y =(a 为常数).〖解 析〗(1)x ∈R ;(2)要使函数有意义,必须使x 2– 4≠0,得原函数定义域为{x | x ∈R 且x ≠±2}; (3)要使函数有意义,必须使x + |x |≠0,得原函数定义域为{x | x >0}; (4)要使函数有意义,必须使10,40,x x -≥⎧⎨-≥⎩得原函数的定义域为{x | 1≤x ≤4};(5)要使函数有意义,必须使240,||30;x x ⎧-≥⎨-≠⎩得原函数定义域为{x | –2≤x ≤2};(6)要使函数有意义,必须使ax – 3≥0,得 当a >0时,原函数定义域为{x | x ≥3a }; 当a <0时,原函数定义域为{x | x ≤3a}; 当a = 0时,ax – 3≥0的解集为∅,故原函数定义域为∅. 例2 (1)已知函数f (x )的定义域为(0, 1),求f (x 2)的定义域. (2)已知函数f (2x + 1)的定义域为(0, 1),求f (x )的定义域.(3)已知函数f (x + 1)的定义域为〖–2, 3〗,求f (2x 2 – 2)的定义域. 〖解 析〗(1)∵f (x )的定义域为(0, 1),∴要使f (x 2)有意义,须使0<x 2<1,即–1<x <0或0<x <1,∴函数f (x 2)的定义域为{x | –1<x <0或0<x <1}.(2)∵f (2x + 1)的定义域为(0, 1),即其中的函数自变量x 的取值范围是0<x <1,令t = 2x + 1,∴1<t <3,∴f (t )的定义域为1<x <3,∴函数f (x )的定义域为{x | 1<x <3}.(3)∵f (x + 1)的定义域为–2≤x ≤3, ∴–2≤x ≤3.令t = x + 1,∴–1≤t ≤4, ∴f (t )的定义域为–1≤t ≤4.即f (x )的定义域为–1≤x ≤4,要使f (2x 2– 2)有意义,须使–1≤2x 2– 2≤4,∴≤x≤≤x.函数f (2x2– 2)的定义域为{x |≤x≤≤x}. 注意:对于以上(2)(3)中的f (t)与f (x)其实质是相同的.。
人教版高中数学必修1第一章集合与函数的概念-《1.2.1函数的概念》教案(1)
函数的概念》的教学设计【教材分析】本节课选自《普通高中课程标准实验教科书数学Ⅰ必修本( A 版)》的第一章 1.2.1 函 数的概念。
函数是中学数学中最重要的基本概念之一, 它贯穿在中学代数的始终, 从初一字 母表示数开始引进了变量, 使数学从静止的数的计算变成量的变化, 而且变量之间也是相互 联系、 相互依存、相互制约的, 变量间的这种依存性就引出了函数。
在初中已初步探讨了函 数概念、 函数关系的表示法以及函数图象的绘制。
到了高一再次学习函数, 是对函数概念的 再认识, 是利用集合与对应的思想来理解函数的定义, 从而加深对函数概念的理解。
函数与 数学中的其他知识紧密联系,与方程、不等式等知识都互相关联、 互相转化。
函数的学习也 是今后继续研究数学的基础。
在中学不仅学习函数的概念、性质、 图象等知识,尤为重要的 是函数的思想要更广泛地渗透到数学研究的全过程。
函数是中学数学的主体内容, 起着承上启下的作用。
函数又是初等数学和高等数学衔接 的枢纽, 特别在应用意识日益加深的今天, 函数的实质是揭示了客观世界中量的相互依存又 互有制约的关系。
因此对函数概念的再认识, 既有着不可替代的重要位置, 又有着重要的现 实意义。
本节的内容较多,分二课时。
本课时的内容为:函数的概念、函数的三要素、简单 函数的定义域及值域的求法、区间表示等。
(第二课时内容为:函数概念的复习、较复杂函 数的定义域及值域的求法、分段函数、函数图象等)【学情分析】 学生在学习本节内容之前, 已经在初中学习过函数的概念, 并且知道可以用函数描述变 量之间的依赖关系。
然而, 函数概念本身的表述较为抽象, 学生对于动态与静态的认识尚为 薄弱,对函数概念的本质缺乏一定的认识, 对进一步学习函数的图象与性质造成了一定的难 度。
初中是用运动变化的观点对函数进行定义, 虽然这种定义较为直观, 但并未完全揭示出 函数概念的本质。
例如,对于函数如果用集合与对应的观点来解释,就十分自然。
高中数学 第1章 集合与函数 1.2 函数的概念和性质教案 湘教版必修1
1.2 函数的概念和性质知识、方法、技能I .函数的定义设A ,B 都是非空的数集,f 是从A 到B 的一个对应法则.那么,从A 到B 的映射f :A →B 就叫做从A 到B 的函数.记做y=f(x),其中x ∈A ,y ∈B ,原象集合,A 叫做函数f(x)的定义域,象的集合C 叫做函数的值域,显然C ⊆B.II .函数的性质(1)奇偶性 设函数f(x)的定义域为D ,且D 是关于原点对称的数集.若对任意的x ∈D ,都有f(-x)=-f(x),则称f(x)是奇函数;若对任意的x ∈D ,都有f(-x)=f(x),则称f(x)是偶函数.(2)函数的增减性 设函数f(x)在区间D ′上满足:对任意x 1, x 2∈D ′,并且x 1<x 2时,总有f(x 1)<f(x 2) (f(x 1)>f(x 2)),则称f(x)在区间D ′上的增函数(减函数),区间D ′称为f(x)的一个单调增(减)区间.III .函数的周期性对于函数 f(x),如果存在一个不为零的正数T ,使得当x 取定义域中的每个数时,f(x+T)=f(x)总成立,那么称f(x)是周期函数,T 称做这个周期函数的周期.如果函数f(x)的所有周期中存在最小值T 0,称T 0为周期函数f(x)的最小值正周期.IV .高斯函数对任意实数x,我们记不超过x 的最大整数为[x],通常称函数y=[x]为取整函数,又称高斯函数.进一步,记{x}=x -[x],则函数y={x}称为小数部分函数,它表示的是x 的小数部分. 根据高斯函数的定义,可得到其如下性质.性质1 对任意x ∈R ,均有x -1<[x]≤x<[x]+1.性质2 对任意x ∈R ,函数y={x}的值域为)1,0[.性质3 高斯函数是一个不减函数,即对任意x 1, x 2∈R ,若x 1≤x 2, 则[x 1] ≤[x 2]. 性质3 若n ∈Z , x ∈R ,则有 [x+n]=n+[x], {n+x}={x}后一个式子表明y={x}是一个以1为周期的函数.性质4 若x , y ∈R , 则 [x]+ [y]≤[x+y] ≤[x]+ [y]+1.性质5 若n ∈N*, x ∈R , 则[nx]≥n[x]性质6 若n ∈N*, x ∈R , 则]][[][n x n x =. 性质7 若n ∈N*, x ∈R +, 则在区间[1,x]内,恰有][n x个整数是n 的倍数.性质8 设p 为质数,n ∈N*,在p 在n!的质因数分解式中的幂次为K ++=][][)!(2pn p n n p 赛题精讲函数是高中数学,也是高等数学的基础.因此,也是高考和高中数学竞赛的重要内容.下面分类介绍此类题目.I 函数的定义域和值域例1 当x 为何值时,x lg lg lg lg lg lg 才有意义.【思路分析】应根据对数的意义,从最外层开始一层一层地逐步消去根号和对数符号求出x 的范围. 【略解】由x lg lg lg lg lg lg >0,得x lg lg lg lg lg ≥1……∴1021021021010⋅⋅⋅≥x【评述】这种多层对数及根式问题,一定要逐层由外向内求解,要有耐心。
高中数学第一章集合与函数概念1.2.1函数的概念第2课时函数的定义域与值域教案数学教案
第2课时函数的定义域与值域[目标] 1.了解构成函数的要素,理解函数相等的概念;2.会求简单函数的定义域与值域;3.会求形如f(g(x))的函数的定义域.[重点] 函数相等的概念,求函数的值域.[难点] 求函数的值域,求形如f(g(x))的函数的定义域.知识点一函数相等[填一填]1.条件:①定义域相同;②对应关系完全一致.2.结论:两个函数相等.[答一答]1.若两个函数的定义域和值域相同,它们是否为同一函数?对应关系和值域相同呢?提示:观察下表:12对于f3(x)和f4(x),对应关系和值域虽相同,但定义域不同,故不是同一函数.知识点二函数的定义域[填一填]函数的定义域是使函数有意义的所有自变量的集合.求函数的定义域时,一般遵循以下原则:1.f(x)是整式时,定义域是全体实数的集合.2.f (x )是分式时,定义域是使分母不为0的一切实数的集合. 3.f (x )是偶次根式时,定义域是使被开方式为非负值的实数的集合. 4.零(负)指数幂的底数不能为零.5.对于含字母参数的函数,求其定义域时,需根据问题的具体情况对字母参数进行讨论.6.由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.[答一答]2.函数f (x )=x -1x -2+(x -1)0的定义域为( D ) A .{x |x ≥1} B .{x |x >1}C .{x |1≤x <2或x >2}D .{x |1<x <2或x >2}解析: 要使函数有意义,则只需⎩⎪⎨⎪⎧x -1≥0,x -2≠0,x -1≠0,解得1<x <2或x >2,所以函数的定义域为{x |1<x <2或x >2}.故选D.知识点三 函数的值域[填一填]求函数的值域是一个较复杂的问题,要首先明确两点:一是值域的概念,即对于定义域A 上的函数y =f (x ),其值域就是指其函数值的集合:{f (x )|x ∈A };二是函数的定义域、对应关系是确定函数的依据.另外,在求函数的值域时,要根据所给的函数的形式,采用相应的方法.[答一答]3.已知函数y =x 2,x ∈{0,1,2,-1},函数y =x 2的值域是什么?提示:当x =0时,y =0;当x =±1时,y =1;当x =2时,y =4.所以函数的值域是{0,1,4}.[例1] 下列各组函数:①f (x )=x 2-xx,g (x )=x -1;②f (x )=x x ,g (x )=x x; ③f (x )=x +1·1-x ,g (x )=1-x 2; ④f (x )=(x +3)2,g (x )=x +3;⑤汽车匀速运动时,路程与时间的函数关系f (t )=80t (0≤t ≤5)与一次函数g (x )=80x (0≤x ≤5).其中表示相等函数的是____________(填上所有正确的序号). [答案] ③⑤[解析] ①不同,定义域不同,f (x )定义域为{x |x ≠0},g (x )定义域为R .②不同,对应法则不同,f (x )=1x,g (x )=x .③相同,定义域、对应法则都相同.④不同,值域不同,f (x )≥0,g (x )∈R .⑤相同,定义域、对应法则都相同.讨论函数问题时,要保持定义域优先的原则.判断两个函数是否相等,要先求定义域,若定义域不同,则不相等;若定义域相同,再化简函数的解析式,若解析式相同,则相等,否则不相等.[变式训练1] 下列各组中两个函数是否表示相等函数? (1)f (x )=6x ,g (x )=63x 3;(2)f (x )=x 2-9x -3,g (x )=x +3;(3)f (x )=x 2-2x -1,g (t )=t 2-2t -1.解:(1)g (x )=63x 3=6x ,它与f (x )=6x 定义域相同,对应关系也相同,所以是相等函数.(2)f (x )=x 2-9x -3=x +3(x ≠3),它与g (x )=x +3的定义域不同,故不是相等函数.(3)虽然自变量用不同的字母表示,但两个函数的定义域和对应关系都相同,故是相等函数.命题视角1:求具体函数的定义域[例2] 求下列函数的定义域,结果用区间表示: (1)y =x +2+1x 2-x -6;(2)y =(x +1)|x |-x .[解] (1)要使函数有意义,则有⎩⎪⎨⎪⎧x +2≥0,x 2-x -6≠0⇒⎩⎪⎨⎪⎧x ≥-2,x ≠-2且x ≠3,故函数的定义域是(-2,3)∪(3,+∞).(2)要使函数有意义,必须满足⎩⎪⎨⎪⎧x +1≠0,|x |-x >0,解得⎩⎪⎨⎪⎧x ≠-1,x <0,故函数的定义域是(-∞,-1)∪(-1,0).求函数的定义域就是求使函数式有意义的自变量的取值范围.当一个函数式由两个以上数学式子的和、差、积、商的形式构成时,定义域是使各部分都有意义的公共部分的集合.[变式训练2] 求下列函数的定义域: (1)y =1-x +1x +5;(2)y =31-1-x. 解析:(1)由已知得⎩⎪⎨⎪⎧1-x ≥0,x +5≠0,解得x ≤1且x ≠-5.所求定义域为{x |x ≤1且x ≠-5}.(2)由已知得⎩⎨⎧1-x ≥0,1-1-x ≠0,解得x ≤1且x ≠0.所求定义域为{x |x ≤1且x ≠0}.命题视角2:求抽象函数的定义域[例3] (1)已知函数f (x )的定义域是[-1,4],求函数f (2x +1)的定义域. (2)已知函数f (2x +1)的定义域是[-1,4],求函数f (x )的定义域.[分析] 在对应关系相同的情况下,f (x )中x 应与f (g (x ))中g (x )的取值范围相同,据此可解答该题.[解] (1)由已知f (x )的定义域是[-1,4], 即-1≤x ≤4.故对于f (2x +1)应有-1≤2x +1≤4. ∴-2≤2x ≤3,∴-1≤x ≤32.∴f (2x +1)的定义域是⎣⎢⎡⎦⎥⎤-1,32. (2)由已知f (2x +1)的定义域是[-1,4],即f (2x +1)中,应有-1≤x ≤4,∴-1≤2x +1≤9. ∴f (x )的定义域是[-1,9].因为f (g (x ))就是用g (x )代替了f (x )中的x ,所以g (x )的取值范围与f (x )中的x 的取值范围相同.若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域是指满足不等式a ≤g (x )≤b 的x 的取值范围;而已知f (g (x ))的定义域是[a ,b ],指的是x ∈[a ,b ],要求f (x )的定义域,就是求x ∈[a ,b ]时g (x )的值域.[变式训练3] 若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是( B )A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)解析:因为f (x )的定义域为[0,2],所以对于函数g (x )满足0≤2x ≤2,且x ≠1,故x ∈[0,1).类型三 求函数的值域[例4] 求下列函数的值域. (1)f (x )=3x -1,x ∈[-5,2); (2)y =2x +1,x ∈{1,2,3,4,5}; (3)y =x 2-4x +6,x ∈[1,5); (4)y =5x -14x +2.[解] (1)∵x ∈[-5,2),∴-15≤3x <6,∴-16≤3x -1<5,∴函数f (x )=3x -1,x ∈[-5,2)的值域是[-16,5).(2)∵x ∈{1,2,3,4,5},∴2x +1∈{3,5,7,9,11},即所求函数的值域为{3,5,7,9,11}. (3)y =x 2-4x +6=(x -2)2+2. ∵x ∈[1,5),∴其图象如图所示, 当x =2时,y =2;当x =5时,y =11. ∴所求函数的值域为[2,11). (4)y =5x -14x +2=54(4x +2)-1-1044x +2=54(4x +2)-1444x +2=54-72(4x +2).∵72(4x +2)≠0,∴y ≠54,∴函数y =5x -14x +2的值域为{y ∈R |y ≠54}.根据函数关系式,选择恰当的方法求函数的值域.(1)对于一次函数,已知自变量的取值范围,依据简单不等式的运算,求得函数的取值范围,即为函数的值域;(2)对于二次函数,可借助图象求函数的值域;(3)通过分离常数,借助反比例函数的特征求值域.无论哪种方法求值域,都应注意定义域的限制.[变式训练4] 求下列函数的值域: (1)y =2x +1,x ∈{0,1,3,4}; (2)y =xx +1;(3)y =x 2-4x ,x ∈[1,4].解:(1)∵y =2x +1,x ∈{0,1,3,4}, ∴y ∈{1,3,7,9}. (2)∵y =xx +1=(x +1)-1x +1=1-1x +1,且1x +1≠0, ∴函数y =xx +1的值域为{y |y ≠1}.(3)配方,得y =(x -2)2-4. ∵x ∈[1,4],∴函数的值域为[-4,0].1.函数f (x )=x +1+12-x 的定义域为( A )A .[-1,2)∪(2,+∞)B .(-1,+∞)C .[-1,2)D .[-1,+∞)解析:由⎩⎪⎨⎪⎧x +1≥0,2-x ≠0,解得x ≥-1且x ≠2.故选A.2.函数f (x )=x 2+1(0<x ≤2且x ∈N *)的值域是( D ) A .{x |x ≥1} B .{x |x >1} C .{2,3}D .{2,5}解析:∵0<x ≤2且x ∈N *, ∴x =1或x =2. ∴f (1)=2,f (2)=5, 故函数的值域为{2,5}.3.若函数f (x )与g (x )=32-x -2是相等的函数,则函数f (x )的定义域是[2,6)∪(6,+∞).解析:∵2-x -2≠0,∴x ≠6, 又x -2≥0,∴x ≥2,∴g (x )的定义域为[2,6)∪(6,+∞). 故f (x )的定义域是[2,6)∪(6,+∞).4.已知函数f (x )的定义域为{x |-1<x <1},则函数f (2x +1)的定义域为{x |-1<x <0}. 解析:因为f (x )的定义域为{x |-1<x <1}, 所以-1<2x +1<1,解得-1<x <0.所以f (2x +1)的定义域为{x |-1<x <0}. 5.试求下列函数的定义域与值域: (1)f (x )=(x -1)2+1; (2)y =5x +4x -1;(3)y =x -x +1.解:(1)函数的定义域为R ,因为(x -1)2+1≥1,所以函数的值域为{y |y ≥1}.(2)函数的定义域为{x |x ≠1},y =5x +4x -1=5+9x -1,所以函数的值域为{y |y ≠5}.(3)要使函数式有意义,需x +1≥0,即x ≥-1,故函数的定义域为{x |x ≥-1}.设t =x +1,则x =t 2-1(t ≥0),于是y =t 2-1-t =(t -12)2-54,又t ≥0,故y ≥-54,所以函数的值域为{y |y ≥-54}.——本课须掌握的三大问题1.两个函数当且仅当它们的三要素完全相同时才表示同一函数,根据它们之间的关系,判断两个函数是否为同一函数,主要看它们的定义域和对应法则是否相同.因为只要定义域相同,对应法则相同,则值域就相同.2.研究函数问题必须树立“定义域优先”原则.求函数定义域一般有三种类型:(1)函数来自实际问题的定义域;(2)已知函数解析式求定义域;(3)抽象函数求定义域.3.求值域的方法有:(1)观察法:根据定义域和对应关系求出;(2)数形结合法:作出函数的图象,然后求解;(3)配方法:配方求解;(4)分离常数法:添一项、减一项,分离出常数再求解;(5)换元法:可以将无理函数转换成有理函数再求解.学习至此,请完成课时作业7 学科素养培优精品微课堂 复合函数与抽象函数开讲啦1.复合函数的概念如果函数y =f (t )的定义域为A ,函数t =g (x )的定义域为D ,值域为C ,则当C ⊆A 时,称函数y =f (g (x ))为f (t )与g (x )在D 上的复合函数,其中t 叫做中间变量,t =g (x )叫做内层函数,y =f (t )叫做外层函数.2.抽象函数的概念没有给出具体解析式的函数,称为抽象函数. 3.抽象函数或复合函数的定义域理解抽象函数或复合函数的定义域,要明确以下几点: (1)函数f (x )的定义域是指x 的取值范围.(2)函数f (φ(x ))的定义域是指x 的取值范围,而不是φ(x )的范围.(3)f (t ),f (φ(x )),f (h (x ))三个函数中的t ,φ(x ),h (x )在对应关系f 下的范围相同.[典例] 若函数f (x )的定义域为[0,1],求g (x )=f (x +m )+f (x -m )(m >0)的定义域. [解] ∵f (x )的定义域为[0,1],∴g (x )=f (x +m )+f (x -m )中自变量x 需满足⎩⎪⎨⎪⎧0≤x +m ≤1,0≤x -m ≤1,解得⎩⎪⎨⎪⎧-m ≤x ≤1-m ,m ≤x ≤1+m .当1-m =m ,即m =12时,x =12;当1-m >m ,即0<m <12时,如图1,m ≤x ≤1-m .当1-m <m ,即m >12时,如图2,x ∈∅.综上所述,当0<m <12时,g (x )的定义域为[m,1-m ];当m =12时,g (x )的定义域为⎩⎨⎧⎭⎬⎫12;当m >12时,函数g (x )的定义域为∅.[对应训练] 已知函数f (x +3)的定义域为[-4,5],则函数f (2x -3)的定义域为⎣⎢⎡⎦⎥⎤1,112. 解析:∵函数f (x +3)的定义域为[-4,5],∴-4≤x ≤5,∴-1≤x +3≤8,即函数f (x )的定义域为[-1,8].由-1≤2x -3≤8,解得1≤x ≤112.故函数f (2x -3)的定义域为⎣⎢⎡⎦⎥⎤1,112.。
高中数学 第一章集合与函数1.2.1函数的概念教案 新人教A版必修1
§1.2.1函数的概念一、教学目标1、知识与技能:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.2、过程与方法:(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;3、情态与价值,使学生感受到学习函数的必要性的重要性,激发学习的积极性。
二、教学重点与难点:重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;三、学法与教学用具1、学法:学生通过自学、思考、交流、讨论和概括,从而更好地完成本节课的教学目标 .2、教学用具:投影仪 .四、教学思路(一)创设情景,揭示课题1、复习初中所学函数的概念,强调函数的模型化思想;2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题3、分析、归纳以上三个实例,它们有什么共同点。
4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.(二)研探新知1、函数的有关概念(1)函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y 值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range).注意:①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.(2)构成函数的三要素是什么?定义域、对应关系和值域(3)区间的概念①区间的分类:开区间、闭区间、半开半闭区间;②无穷区间;③区间的数轴表示.(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?通过三个已知的函数:y =ax +b (a ≠0)y =ax 2+b x +c (a ≠0)y =xk (k ≠0) 比较描述性定义和集合,与对应语言刻画的定义,谈谈体会。
高中数学 第一章 集合与函数概念 1.2.1 函数的概念学案 新人教A版必修1(2021年最新整理)
2018版高中数学第一章集合与函数概念1.2.1 函数的概念学案新人教A 版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第一章集合与函数概念1.2.1 函数的概念学案新人教A版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第一章集合与函数概念1.2.1 函数的概念学案新人教A版必修1的全部内容。
1.2。
1 函数的概念1.进一步体会函数是描述变量之间的依赖关系的重要数学模型.能用集合与对应的语言刻画出函数,体会对应关系在刻画数学概念中的作用.(重点、难点)2.了解构成函数的要素,会求一些简单函数的定义域和值域.(重点)3.能够正确使用区间表示数集.(易混点)[基础·初探]教材整理1 函数的相关概念阅读教材P15~P17“思考”,完成下列问题.函数的有关概念错误!错误!错误!错误!判断(正确的打“√",错误的打“×”)(1)任何两个集合之间都可以建立函数关系.()(2)根据函数的定义,定义域中的任何一个x可以对应着值域中不同的y。
( )(3)在函数的定义中,集合B是函数的值域.( )【解析】(1)×.任何两个非空数集之间都可以建立函数关系.(2)×。
根据函数的定义,对于定义域中的任何一个x,在值域中都有唯一确定的y与之对应.(3)×.在函数的定义中,函数的值域是集合B的子集.【答案】(1)×(2)×(3)×教材整理2 区间的概念与表示阅读教材P17“思考"以下至“例1”以上部分,完成下列问题.1.一般区间的表示设a,b∈R,且a<b,规定如下:定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x <b}半闭半开区间[a,b){x|a<x≤b}半开半闭区间(a,b]2定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a}符号(-∞,+∞)[a,+∞)(a,+∞)(-∞,a](-∞,a)填空:(1)集合{x|1〈x≤3}用区间可表示为________;(2)集合{x|x〉-2}用区间可表示为________;(3)集合{x|x≤2}用区间可表示为________.【答案】(1)(1,3] (2)(-2,+∞)(3)(-∞,2]教材整理3 函数的三要素及函数相等的条件阅读教材P18例1以下至例2以上部分,完成下列问题.1.构成函数的三要素为定义域、对应关系和值域.2.判断两个函数相等,需同时具备以下两个条件:(1)定义域相同;(2)对应关系完全一致.下列函数中,与f(x)=x+2相等的是( )A.g(x)=错误!B.h(x)=错误!C.F(x)=(错误!)2D.G(x)=错误!【解析】g(x)=错误!=|x+2|与f(x)的对应关系不一致;h(x)的定义域为(-∞,-2)∪(-2,+∞),与f(x)的定义域(-∞,+∞)不同;F(x)的定义域为[-2,+∞)与f(x)的定义域不同,故选D.【答案】D[小组合作型]函数的概念(1(2)下列各组函数是同一函数的是( )【导学号:97030025】①f(x)=错误!与g(x)=x错误!;②f(x)=x与g(x)=错误!;③f(x)=x0与g(x)=错误!;④f(x)=x2-2x-1与g(t)=t2-2t-1.A.①② B.①③ C.③④ D.①④(3)判断下列对应是否为函数:①x→y,y=错误!,x≠0,x∈R,y∈R;②x→y,y2=x,x∈N,y∈R;③x→y,y=x,x∈{x|0≤x≤6},y∈{y|0≤y≤3};④x→y,y=错误!x,x∈{x|0≤x≤6},y∈{y|0≤y≤3}.【精彩点拨】(1)函数的图象与平行于y轴的直线最多只能有一个交点,对照选项即可得出答案.(2)结合函数的三要素逐一判断.(3)利用函数的定义判定.【自主解答】(1)根据函数的定义知:y是x的函数中,x确定一个值,y就随之确定一个值,体现在图象上,图象与平行于y轴的直线最多只能有一个交点,对照选项,可知只有B不符合此条件.故选B.(2)①f(x)=错误!=|x|错误!与y=x错误!的对应法则和值域不同,故不是同一函数.②g(x)=错误!=|x|与f(x)=x的对应法则和值域不同,故不是同一函数.③f(x)=x0与g(x)=错误!都可化为y=1且定义域是{x|x≠0},故是同一函数.④f(x)=x2-2x-1与g(t)=t2-2t-1的定义域都是R,对应法则也相同,而与用什么字母表示无关,故是同一函数.由上可知是同一函数的是③④.故选C。
高中数学 第一章 集合与函数概念 12 函数及其表示 121 函数的概念学案(含解析)新人教版必修1
§1.2函数及其表示1.2.1 函数的概念学习目标 1.理解函数的概念(重点、难点).2.了解构成函数的三要素(重点).3.正确使用函数、区间符号(易错点).知识点1 函数的概念(1)函数的概念概念设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数三要素对应关系y=f(x),x∈A定义域x的取值X围值域与x对应的y的值的集合{f(x)|x∈A}如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等.【预习评价】(正确的打“√”,错误的打“×”)(1)函数的定义域和值域一定是无限集合.( )(2)根据函数的定义,定义域中的任何一个x可以对应着值域中不同的y.( )(3)在函数的定义中,集合B是函数的值域.( )提示(1)×函数的定义域和值域也可能是有限集,如f(x)=1;(2)×根据函数的定义,对于定义域中的任何一个x,在值域中都有唯一确定的y与之对应;(3)×在函数的定义中,函数的值域是集合B的子集.知识点2 区间及有关概念(1)一般区间的表示.设a,b∈R,且a<b,规定如下:定义 名称 符号 数轴表示{x |a ≤x ≤b } 闭区间 [a ,b ] {x |a <x <b }开区间 (a ,b ){x |a ≤x <b }半开半闭区间 [a ,b ){x |a <x ≤b }半开半闭区间(a ,b ](2)特殊区间的表示. 定义 R {x |x ≥a } {x |x >a } {x |x ≤a } {x |x <a } 符号(-∞,+∞)[a ,+∞)(a ,+∞)(-∞,a ](-∞,a )【预习评价】已知全集U =R ,A ={x |1<x ≤3},则∁U A 用区间表示为________. 解析 ∁U A ={x |x ≤1或x >3},用区间可表示为(-∞,1]∪(3,+∞). 答案 (-∞,1]∪(3,+∞)题型一 函数关系的判定【例1】 (1)下列图形中,不能确定y 是x 的函数的是( )(2)下列各题的对应关系是否给出了实数集R 上的一个函数?为什么? ①f :把x 对应到3x +1;②g :把x 对应到|x |+1; ③h :把x 对应到1x;④r :把x 对应到x .(1)解析 任作一条垂直于x 轴的直线x =a ,移动直线,根据函数的定义可知,此直线与函数图象至多有一个交点.结合选项可知D 不满足要求,因此不表示函数关系. 答案 D(2)解 ①是实数集R 上的一个函数.它的对应关系f 是:把x 乘3再加1,对于任意x ∈R ,3x +1都有唯一确定的值与之对应,如当x =-1时,有3x +1=-2与之对应. 同理,②也是实数集R 上的一个函数. ③不是实数集R x =0时,1x的值不存在.④不是实数集R x <0时,x 的值不存在.(1)任取一条垂直于x 轴的直线l ; (2)在定义域内平行移动直线l ;(3)若l 与图形有且只有一个交点,则是函数;若在定义域内没有交点或有两个或两个以上的交点,则不是函数.【训练1】 设M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的有( )解析 ①错,x =2时,在N 中无元素与之对应,不满足任意性.②对,同时满足任意性与唯一性.③错,x =2时,对应元素y =3∉N ,不满足任意性.④错,x =1时,在N 中有两个元素与之对应,不满足唯一性. 答案 B题型二 相等函数【例2】(1)下列各组函数:①f (x )=x 2-xx,g (x )=x -1;②f (x )=x x ,g (x )=x x;③f (x )=(x +3)2,g (x )=x +3; ④f (x )=x +1,g (x )=x +x 0;⑤汽车匀速运动时,路程与时间的函数关系f (t )=80t (0≤t ≤5)与一次函数g (x )=80x (0≤x ≤5).其中表示相等函数的是________(填上所有正确的序号).(2)试判断函数y =x -1·x +1与函数y =(x +1)(x -1)是否相等,并说明理由. (1)解析 ①f (x )与g (x )的定义域不同,不是相等函数;②f (x )与g (x )的解析式不同,不是相等函数;③f (x )=|x +3|,与g (x )的解析式不同,不是相等函数;④f (x )与g (x )的定义域不同,不是相等函数;⑤f (t )与g (x )的定义域、值域、对应关系皆相同,故是相等函数. 答案 ⑤y =x -1·x +1,由⎩⎪⎨⎪⎧x -1≥0,x +1≥0,解得x ≥1,故定义域为{x |x ≥1},对于函数y =(x +1)(x -1),由(x +1)(x -1)≥0解得x ≥1或x ≤-1,故定义域为{x |x ≥1或x ≤-1},显然两个函数定义域不同,故不是相等函数. 规律方法 判断两个函数为相等函数应注意的三点(1)定义域、对应关系两者中只要有一个不相同就不是相等函数,即使定义域与值域都相同,也不一定是相等函数.(2)函数是两个数集之间的对应关系,所以用什么字母表示自变量、因变量是没有限制的. (3)在化简解析式时,必须是等价变形.【训练2】 判断以下各组函数是否表示相等函数: (1)f (x )=(x )2;g (x )=x 2.(2)f (x )=x 2-2x -1;g (t )=t 2-2t -1.解 (1)由于函数f (x )=(x )2的定义域为{x |x ≥0},而g (x )=x 2的定义域为{x |x ∈R },它们的定义域不同,所以它们不表示相等函数.(2)两个函数的定义域和对应关系都相同,所以它们表示相等函数. 题型三 求函数值【例3】 已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值; (2)求f (g (3))的值.解 (1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=22+2=6. (2)∵g (3)=32+2=11, ∴f (g (3))=f (11)=11+11=112. 规律方法 求函数值的方法及关注点(1)方法:①已知f (x )的解析式时,只需用a 替换解析式中的x 即得f (a )的值;②求f (g (a ))的值应遵循由里往外的原则.(2)关注点:用来替换解析式中x 的数a 必须是函数定义域内的值,否则函数无意义. 【训练3】 已知函数f (x )=x +1x +2. (1)求f (2);(2)求f (f (1)). 解 (1)∵f (x )=x +1x +2,∴f (2)=2+12+2=34. (2)f (1)=1+11+2=23,f (f (1))=f ⎝ ⎛⎭⎪⎫23=23+123+2=58.【例4-1】 求下列函数的定义域: (1)y =(x +1)2x +1-1-x ;(2)y =5-x |x |-3.解 (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0.解得x ≤1,且x ≠-1,即函数定义域为{x |x ≤1,且x ≠-1}.(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0,|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}. 规律方法 求函数定义域的实质及结果要求(1)求函数的定义域实质是解不等式(组),即将满足的条件转化为解不等式(组)的问题,要求把满足条件的不等式列全.(2)结果要求:定义域的表达形式可以是集合形式,也可以是区间形式. 方向2 求抽象函数的定义域【例4-2】 (1)设函数f (x )=x ,则f (x +1)等于什么?f (x +1)的定义域是什么? (2)若函数y =f (x )的定义域是[0,+∞),那么函数y =f (x +1)的定义域是什么? 解 (1)f (x +1)=x +1.令x +1≥0,解得x ≥-1,所以f (x +1)=x +1的定义域为[-1,+∞).(2)函数y =f (x )的定义域是[0,+∞),所以令x +1≥0,解得x ≥-1,所以函数y =f (x +1)的定义域是[-1,+∞).【例4-3】 若函数y =f (x +1)的定义域是[1,2],根据函数定义域的定义,这里的“[1,2]”是指谁的取值X 围?使对应关系f 有意义的自变量t =x +1的X 围是什么?函数y =f (x )的定义域是什么?解 这里的“[1,2]”是自变量xx ∈[1,2],所以x +1∈[2,3],所以使对应关系f 有意义的自变量t =x +1的X 围是[2,3],所以函数y =f (x )的定义域是[2,3].【例4-4】 (1)已知函数y =f (x )的定义域为[-2,3],求函数y =f (2x -3)的定义域; (2)已知函数y =f (2x -3)的定义域是[-2,3],求函数y =f (x +2)的定义域.解 (1)因为函数y =f (x )的定义域为[-2,3],即x ∈[-2,3],函数y =f (2x -3)中2x -3的X 围与函数y =f (x )中x 的X 围相同,所以-2≤2x -3≤3,解得12≤x ≤3,所以函数y =f (2x -3)的定义域为⎣⎢⎡⎦⎥⎤12,3. (2)因为x ∈[-2,3],所以2x -3∈[-7,3],即函数y =f (x )的定义域为[-7,3]. 令-7≤x +2≤3,解得-9≤x ≤1,所以函数y =f (x +2)的定义域为[-9,1]. 规律方法 两类抽象函数的定义域的求法(1)已知f (x )的定义域,求f (g (x ))的定义域:若f (x )的定义域为[a ,b ],则f (g (x ))中a ≤g (x )≤b ,从中解得x 的取值集合即为f (g (x ))的定义域.(2)已知f (g (x ))的定义域,求f (x )的定义域:若f (g (x ))的定义域为[a ,b ],即a ≤x ≤b ,求得g (x )的取值X 围,g (x )的值域即为f (x )的定义域.课堂达标1.下列图象中表示函数图象的是( )解析 根据函数的定义,对定义域中任意的一个x 都存在唯一的y 与之对应,而A ,B ,D 都存在一对多,只有C 满足函数的定义.故选C. 答案 C2.下列各组函数中表示相等函数的是( ) A.f (x )=x 与g (x )=(x )2B.f (x )=|x |与g (x )=x (x >0)C.f (x )=2x -1与g (x )=2x +1(x ∈N *)D.f (x )=x 2-1x -1与g (x )=x +1(x ≠1)解析 选项A ,B ,C 中两个函数的定义域均不相同,故选D. 答案 Df (x )=x -4+1x -5的定义域是________.解析 ∵函数f (x )=x -4+1x -5,∴⎩⎪⎨⎪⎧x -4≥0,x -5≠0,解得x ≥4,且x ≠5.∴函数f (x )的定义域是[4,5)∪(5,+∞). 答案 [4,5)∪(5,+∞)f (x )的定义域为(0,2),则f (x -1)的定义域为________.解析 由题意知0<x -1<2,解得1<x <3,故f (x -1)的定义域为(1,3). 答案 (1,3)f (x )=x 2+x -1.(1)求f (2),f ⎝ ⎛⎭⎪⎫1x ;(2)若f (x )=5,求x 的值. 解 (1)f (2)=22+2-1=5, f ⎝ ⎛⎭⎪⎫1x =1x 2+1x-1=1+x -x 2x 2.(2)∵f (x )=x 2+x -1=5,∴x 2+x -6=0, ∴x =2或x =-3.课堂小结1.函数的本质:两个非空数集间的一种确定的对应关系.由于函数的定义域和对应关系一经确定,值域随之确定,所以判断两个函数是否相等只须两个函数的定义域和对应法则一样即可.2.f (x )是函数符号,f 表示对应关系,f (x )表示x 对应的函数值,绝对不能理解为f 与xff (x )表示外,还可用g (x ),F (x )等表示.基础过关1.下列函数中,与函数y =x 相等的是( ) A.y =(x )2B.y =x 2C.y =⎩⎪⎨⎪⎧x ,x >0-x ,x <0D.y =3x 3解析 函数y =x 的定义域为R ;y =(x )2的定义域为[0,+∞);y =x 2=|x |,对应关系不同;y =⎩⎪⎨⎪⎧x ,x >0,-x ,x <0,对应关系不同;y =3x 3=x ,且定义域为R .故选D.答案 D2.下列四个图象中,是函数图象的是( )A.①B.①③④C.①②③D.③④解析 由每一个自变量x 对应唯一一个f (x )可知②不是函数图象,①③④是函数图象. 答案 By =1-x +x 的定义域为( )A.{x |x ≤1}B.{x |x ≥0}C.{x |x ≥1或x ≤0}D.{x |0≤x ≤1}解析 由题意可知⎩⎪⎨⎪⎧1-x ≥0,x ≥0,解得0≤x ≤1.答案 Df (x )=2x -1,g (x )=x 2,则g (f (2)-1)=________.解析 f (2)-1=2×2-1-1=2,所以g (f (2)-1)=g (2)=22=4. 答案 45.用区间表示下列集合: (1){x |-12≤x <5}=________;(2){x |x <1或2<x ≤3}=________.解析 (1)注意到包括不包括区间的端点与不等式含不含等号对应,则{x |-12≤x <5}=⎣⎢⎡⎭⎪⎫-12,5. (2)注意到集合中的“或”对应区间中的“∪”,则{x |x <1或2<x ≤3}=(-∞,1)∪(2,3].答案 (1)⎣⎢⎡⎭⎪⎫-12,5 (2)(-∞,1)∪(2,3]f (x )=x +5+1x -2.(1)求函数的定义域;(2)求f (-4),f ⎝ ⎛⎭⎪⎫23的值. 解 (1)使根式x +5有意义的实数x 的取值集合是{x |x ≥-5},使分式1x -2有意义的实数x 的取值集合是{x |x ≠2},所以这个函数的定义域是{x |x ≥-5}∩{x |x ≠2}={x |x ≥-5且x ≠2}. (2)f (-4)=-4+5+1-4-2=1-16=56. f ⎝ ⎛⎭⎪⎫23=23+5+123-2=173-34=513-34.f (x )=x 21+x2.(1)求f (2)+f ⎝ ⎛⎭⎪⎫12,f (3)+f ⎝ ⎛⎭⎪⎫13的值; (2)求证f (x )+f ⎝ ⎛⎭⎪⎫1x 是定值.(1)解 ∵f (x )=x 21+x2, ∴f (2)+f ⎝ ⎛⎭⎪⎫12=221+22+⎝ ⎛⎭⎪⎫1221+⎝ ⎛⎭⎪⎫122=1. f (3)+f ⎝ ⎛⎭⎪⎫13=321+32+⎝ ⎛⎭⎪⎫1321+⎝ ⎛⎭⎪⎫132=1. (2)证明 f (x )+f ⎝ ⎛⎭⎪⎫1x =x 21+x 2+⎝ ⎛⎭⎪⎫1x 21+⎝ ⎛⎭⎪⎫1x 2 =x 21+x 2+1x 2+1=x 2+1x 2+1=1. 能力提升f (x )=ax 2-1,a 为一个正常数,且f (f (-1))=-1,那么a 的值是( )A.1B.0解析 f (-1)=a ·(-1)2-1=a -1,f (f (-1))=a ·(a -1)2-1=a 3-2a 2+a -1=-1. ∴a 3-2a 2+a =0,∴a =1或a =0(舍去). 答案 Af (x )=x -4mx 2+4x +3的定义域为R ,则实数m 的取值X 围是( )A.(-∞,+∞)B.⎝ ⎛⎭⎪⎫0,43C.⎝ ⎛⎭⎪⎫43,+∞ D.⎣⎢⎡⎭⎪⎫0,43 解析 (1)当m =0时,分母为4x +3,此时定义域不为R ,故m =0不符合题意.(2)当m ≠0时,由题意,得⎩⎪⎨⎪⎧m ≠0,Δ=16-4×3m <0,解得m >43. 由(1)(2)知,实数m 的取值X 围是⎝ ⎛⎭⎪⎫43,+∞. 答案 Cf (x )的定义域为(-1,1),则函数g (x )=f ⎝ ⎛⎭⎪⎫x 2+f (x -1)的定义域是________. 解析 由题意知⎩⎪⎨⎪⎧-1<x 2<1,-1<x -1<1,即⎩⎪⎨⎪⎧-2<x <2,0<x <2.从而0<x <2, 于是函数g (x )的定义域为(0,2).答案 (0,2)f (x )满足f (x )+f (y )=f (xy ),且f (5)=m ,f (7)=n ,则f (175)=________.解析 ∵f (x )满足f (x )+f (y )=f (xy ),且f (5)=m ,f (7)=n ,∴把x =5,y =7代入得f (5)+f (7)=f (35),∴m +n =f (35),把x =5,y =35代入得f (5)+f (35)=f (175),∴m +m +n =f (175),即2m +n =f (175),∴f (175)=2m +n .答案 2m +n数的定义域:(1)y =(x +1)0x +2; (2)y =2x +3-12-x +1x . 解 (1)由于00无意义,故x +1≠0,即x ≠-1.又x +2>0,x >-2,所以x >-2且x ≠-1.所以函数y =(x +1)0x +2的定义域为{x |x >-2,且x ≠-1}. (2)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0,解得-32≤x <2,且x ≠0,所以函数y =2x +3-12-x +1x 的定义域为⎩⎨⎧⎭⎬⎫x |-32≤x <2,且x ≠0. 13.(选做题)已知甲地到乙地的高速公路长1 500 km ,现有一辆汽车以100 km/h 的速度从甲地驶往乙地,写出汽车离开甲地的距离s (单位:km)与时间t (单位:h)的函数解析式,并求出函数的定义域.解 ∵汽车在甲、乙两地之间匀速行驶,∴s =100 t .∵汽车行驶速度为100 km/h ,两地之间的距离为1 500 km ,∴从甲地到乙地所用时间为15小时.∴所求函数解析式为s =100t ,0≤t ≤15.。
山东省济宁市微山县高中数学第一章集合与函数概念1.1.1集合的表示学案(无答案)新人教A版必修1
1.1.1集合的表示班级 姓名学习目标1. 掌握集合的两种表示方法:列举法、描述法.2. 会选择适当的方法表示集合.重难点用适当的方法表示集合.自学指导请认真阅读课本P3-P5页的内容,并完成下面填空一、列举法把集合的元素_________出来,并用花括号_____括起来表示集合的方法叫做列举法.二、 描述法(1) 定义:用集合所含元素的______表示集合的方法叫做描述法.(2) 具体方法:在花括号内先写上表示这个集合元素的________及_______,再画一条________,在竖线后写出这个集合元素所具有的共同特征.三、 图示法(Venn 图)画一条封闭的曲线,用它的内部表示一个集合的方法叫做图示法.四、 集合的分类(1) 有限集:含有有限个元素的集合;(2) 无限极:含有无限个元素的集合;(3) 空集:不含任何元素的集合,记作φ;(4) 数集:由数组成的集合;(5) 点集:由点构成的集合.五、 小试牛刀判断下列是否正确(1)集合{}1,2的元素是1和2. ( )(2)集合(){}1,2的元素是1和2. ( )(3)由1,1,2,3组成的集合用列举法表示为{}1,1,2,3. ( )(4)集合{}20A x =-=与集合{}2B =表示同一个集合. ( ) 典题例析1、 用列举法表示下列集合:(1)1到10以内的偶数;(2)方程2x x =的所有实数解组成的集合;(3)不等式260x -<的所有自然数组成的集合;(4)直线1y x =+与x 轴的交点所组成的集合.2、 用描述法表示下列集合:(1) 不大于10的实数;(2) 大于10小于100的所有整数;(3) 直线1y x =+上所有点;(4) 不等式260x -<的解集;(5) 方程21x =-的实数解.跟踪训练用适当的方法表示下列集合:(1) 抛物线21y x =-与x 轴的交点所组成的集合.(2) 被2除余1的所有整数的集合.(3) 坐标平面内第一象限的点的集合.(4) 大于2的所有偶数.(5) 0到10以内的所有质数.(6) 方程7,3x y x y +=⎧⎨-=⎩的解集.课堂小结1. 集合的表示方法:列举法、描述法、图示法.2. 集合的分类.。
人教版高中数学必修1第一章集合与函数的概念-《1.2.1函数的概念》教案(7)
《1.2.1函数的概念》
教学设计
《函数的概念》的教学设计
一、教学目标
知识与技能——通过函数概念这节课的学习,了解函数的定义及其三要素,掌握区间的符号表
示,会求简单函数的定义域和值域。
培养学生分析、判断、抽象、归纳概括的逻辑思维能力
过程与方法——通过函数定义获得的学习过程,体会由具体逐步过渡到符号化、代数化,特殊到
一般的数学思想。
情感态度与价值观—— 通过本节的学习,培养学生的抽象思维能力、渗透静与动的辩证唯物主
义观点;树立“数学源于实践,又服务于实践”的数学应用意识。
二、教学重点与难点
重点:了解函数定义及其三要素,掌握区间的符号表示方法,会求简单函数的定义域和值域。
难点:理解函数符号)(x f y 的含义,掌握区间的符号表示方法及无穷大的概念。
三、教学过程设计。
高中数学 第一章 集合与函数概念 1.2.1 函数的概念 第1课时 函数的概念教案数学教案
第1课时函数的概念[目标] 1.理解函数的概念,明确函数的三要素;2.能正确使用区间表示数集;3.会判断两个函数是否相等;会求简单函数的函数值(或值域)和定义域,培养数学运算核心素养.[重点] 函数概念的理解及对区间的认识.[难点] 函数概念和符号y=f(x)的理解及已知函数解析式求函数定义域的方法.知识点一函数的有关概念[填一填]1.定义2.相关名称(1)自变量是x.(2)函数的定义域是集合A.(3)函数的值域是集合{f(x)|x∈A}.3.函数的记法集合A上的函数可记作:f:A→B或y=f(x),x∈A.[答一答]1.任何两个集合之间都可以建立函数关系吗?提示:不能.只有非空数集之间才能建立函数关系.2.对于一个函数y=f(x),在定义域内任取一个x值,有几个函数值与其对应?提示:根据函数的定义,对于定义域内的任意一个x,只有一个函数值与其对应.3.在函数的定义中,值域与集合B有什么关系?提示:值域是集合B的子集.知识点二区间及有关概念[填一填]1.区间的定义条件:a<b(a,b为实数).结论:[答一答]4.数集都能用区间表示吗?提示:区间是数集的又一种表示方法,但并不是所有数集都能用区间表示,如{1,2,3,4},就不能用区间表示.5.“∞”是一个数吗?提示:“∞”是一个趋向符号,表示无限接近,却永远不能达到,不是一个数.因此以“-∞”和“+∞”为区间的一端时,这一端点必须用小括号.6.区间之间可以像集合之间那样进行“交、并、补”运算吗?若A=(1,+∞),B=(-∞,2],A∩B如何表示?提示:区间只是集合的一种表示形式,因此对于集合的“交、并、补”运算仍然成立.A∩B=(1,2].类型一函数的概念[例1] 下列对应关系是集合A到集合B的函数的个数是( )①A=R,B={x|x>0},f:x→y=|x|;②A=Z,B=Z,f:x→y=x2;③A=Z,B=Z,f:x→y=x;④A=[-1,1],B={0},f:x→y=0;⑤A={1,2,3},B={4,5,6},对应关系如图所示.A.1 B.2 C.3 D.4[答案] B[解析]②A中任何一个元素在B中必须有元素与其对应;③A中任一元素在B中必有唯一元素与其对应.(2)函数的定义中“任一x”与“有唯一确定的y”说明函数中的变量x,y的对应关系是“一对一”或者是“多对一”而不能是“一对多”.[变式训练1] 下列对应关系或关系式中,是A到B的函数的是( B )A.x2+y2=1,x∈A,y∈BB.A={1,2,3,4},B={0,1},对应关系如图C.A=R,B=R, f:x→y=1 x-2D.A=Z,B=Z, f:x→y=2x-1解析:A错误,x2+y2=1可化为y=±1-x2,显然对任意x∈A,y值不一定唯一.B 正确,符合函数的定义.C错误,2∈A,在B中找不到与之相对应的数.D错误,-1∈A,在B中找不到与之相对应的数.类型二函数的图象特征[例2] 设M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示从集合M到集合N的函数关系的是( )[答案] B[解析]A中,当1<x≤2时,在N中无元素与之对应,不满足任意性,所以不能构成函数关系;B中,同时满足任意性与唯一性.能构成函数关系;C中,当x=0或x=2时,对应元素y=3∉N,不满足任意性,不能构成函数关系;D中x=1时,在N中有两个元素与之对应,不满足唯一性.故选B.判定图形是否是函数的图象的方法:(1)任取一条垂直于x轴的直线l;(2)在定义域内移动直线l;(3)若l与图形有一个交点,则是函数,若有两个或两个以上的交点,则不是函数.例如:[变式训练2] 下图中的图象能够作为函数y=f(x)的图象的有( A )A.2个 B.3个 C.4个 D.5个解析:由函数的定义可知(1)(5)可作为函数图象,(2)、(3)、(4)对于x的值,可能有多个y值与之对应,所以不是函数图象.故选A.类型三用区间表示数集[例3] 把下列数集用区间表示:(1){x|x≥-2};(2){x|x<0};(3){x|-1<x<1,或2≤x<6}.[分析] 依据区间定义写出集合对应的区间,要注意端点的“取”、“舍”与中括号、小括号的关系.[解](1){x|x≥-2}用区间表示为[-2,+∞);(2){x|x<0}用区间表示为(-∞,0);(3){x|-1<x<1,或2≤x<6}用区间表示为(-1,1)∪[2,6).区间是数集的另一种表示形式,它具有简单、直观的优点,是表示函数的定义域、值域及不等式解集的重要工具.使用时要按要求书写.[变式训练3] 集合{x|2≤x<5}用区间表示为[2,5);集合{x|x≤-1,或3<x<4}用区间表示为(-∞,-1]∪(3,4).类型四 函数的求值问题[例4] 设f (x )=2x 2+2,g (x )=1x +2, (1)求f (2),f (a +3),g (a )+g (0)(a ≠-2),g (f (2)). (2)求g (f (x )).[分析] 求函数值,首先注意自变量的取值是否在函数的定义域内,然后才能代入运算;对于复合函数,要注意函数值不同的“身份”,函数值在复合函数中也会充当某些函数定义域内的元素.[解] (1)因为f (x )=2x 2+2, 所以f (2)=2×22+2=10,f (a +3)=2(a +3)2+2=2a 2+12a +20.因为g (x )=1x +2,所以g (a )+g (0)= 1a +2+10+2=1a +2+12(a ≠-2), g (f (2))=g (10)=110+2=112. (2)g (f (x ))=1f (x )+2=12x 2+2+2=12x 2+4. (1)已知函数y =f (x ),f (a )表示当x =a 时f (x )的函数值,是一个常量,而f (x )是自变量x 的函数,在一般情况下,它是一个变量,f (a )是f (x )的一个特殊值.(2)求形如f (g (x ))的函数值时,应遵循先内后外的原则. (3)若是抽象函数求值问题,则一般采用赋值法.[变式训练4] (1)设函数f (x )=2x -1,g (x )=3x +2,则f (2)=3,g (2)=8,f (g (2))=15.(2)已知函数f (2x +1)=3x +2,且f (a )=4,则a =73.解析:(1)f (2)=2×2-1=3;g (2)=3×2+2=8;f (g (2))=f (8)=2×8-1=15.(2)令3x +2=4,得x =23.又a =2x +1=73,∴a =73.1.下列各图中,可表示函数y =f (x )图象的只可能是( D ) 解析:根据函数定义,每一个x 值对应唯一的y 值,选D. 2.已知函数f (x )=3x ,则f (1a)=( D )A.1aB.3aC .aD .3a解析:f (1a )=31a=3a .3.集合{x |-1≤x <5,且x ≠3}用区间表示为[-1,3)∪(3,5). 4.已知函数f (x )=2x -1,则f [f (2)]=5.解析:∵f (2)=2×2-1=3,∴f [f (2)]=f (3)=3×2-1=5. 5.已知函数f (x )=x +1x,(1)求f (x )的定义域; (2)求f (-1),f (2)的值; (3)当a ≠-1时,求f (a +1)的值. 解:(1)要使函数有意义,必须使x ≠0, ∴f (x )的定义域是(-∞,0)∪(0,+∞). (2)f (-1)=-1+1-1=-2, f (2)=2+12=52.(3)当a ≠-1时,a +1≠0,∴f (a +1)=a +1+1a +1. ——本课须掌握的两大问题1.函数定义中强调“三性”:任意性、存在性、唯一性,即对于非空数集A 中的任意一个(任意性)元素x ,在非空数集B 中都有(存在性)唯一(唯一性)确定的元素y 与之对应.这三个性质只要有一个不满足便不能构成函数.2.对符号f (x )的理解(1)f (x )表示关于x 的函数,又可以理解为自变量x 对应的函数值,是一个整体符号,分开写符号f (x ),如f ,x ,(x )等都是没有意义的.符号f 可以看作是对“x ”施加的某种法则或运算.(2)函数符号f(x)并不一定是解析式,它可以是其他任意的一个对应关系,如图象、表格、文字、描述等.(3)f(x)与f(a),a∈A的关系:f(x)表示自变量为x的函数,表示的是变量,f(a)表示当x=a时的函数值,是一个值域内的值,是常量.学习至此,请完成课时作业6。
【配套K12】山东省济宁市微山县高中数学 第一章 集合与函数概念 1.1.1 集合的含义学案(无答案)新人教A版
1.1.1集合的含义班级 姓名学习目标1. 理解集合的定义2. 掌握集合中元素的特性重难点:对集合含义和集合元素特性的理解.自学指导 请认真阅读课本P2-P3页的内容,并完成下面填空.一、 元素与集合的概念1. 元素:一般地,把___________统称为元素,元素常用小写拉丁字母_______表示.2. 集合:把一些________组成的________叫做集合(简称为_____).通常用大写字母_________表示.3. 集合相等:只要构成两个集合的_______是一样的,就称这两个集合是相等的.4. 集合元素的特性:确定性、________、________.二、 元素与集合的关系 语言描述三、常用的数集及其记法四、小试牛刀1、用“∈”或“∉” 填空.(1) 3.14_____Q (2) π____Q (3) 0_____N +(4) 0(2)-_____N + (5) R (6) Q . 2、判断正误.(1) 21x =的实数解构成的集合元素为1和-1. ( )(2) 一个集合可以找到两个相同的元素. ( )(3) 一个集合的元素可以无限多个. ( )(4) 若,x R x N ∈∈则. ( )典题例析1、判断以下元素的全体是否能组成集合.(1)我国的小河流. ( )(2)1到10内的自然数. ( )(3)我校个子高的男同学. ( )(4)我班个子超过175cm 的男同学. ( )2、若A 是20x x -=的实数解组成的集合,则( )A. 1M ∉B. 1M -∈C. 0M ∈D. 2M ∈3、已知集合A 中含有三个元素,1,0,x ,若A x ∈3,求实数x 的值.跟踪练习1、下列每组对象,能构成一个集合的是_________________.(1) 我校成绩好的学生.(2) 不小于5的自然数.(3) 我校高一年级漂亮的女生.(4) 方程0652=+-x x 的所有实数根.2、设M 是所有偶数组成的集合,则有 ( )A .3M ∈ B. 1M ∈ C. 2M ∈ D. 2M ∉3、下列关系中,正确的有_________________. (1) 12R ∈(2)Q(3) 4N -∈Q4、已知集合A 有两个元素3a -和21a -,(1)若3A -∈,试求的实数a 值.(2)若a A ∈,试求实数a 的值.课堂小结1.集合的定义2.合元素的性质: 确定性、互异性、无序性.。
【配套K12】山东省济宁市微山县高中数学 第一章 集合与函数概念 1.3.2 函数的奇偶性学案(无答案)新人教A
1.3.2函数的奇偶性
学会运用函数图象理解和研究函数的性看下列各函数有什么共性?
它们对应的函数值
练习:判断下列函数是否为偶函数?
定义域的任意一个
的步骤
奇函数、偶函数、既奇又偶函数、非奇非偶函数
奇、偶函数图象的性质:
⑴奇函数的图象关于原点对称.反过来,如果一个函数的图象关于原点对称,
那么这个函数为奇函数.
是偶函数练习:(1)已知函数y=f(x)是),0()0,(+∞-∞ 上的奇函数,它在,0(+∞图像如图所示,画出它在)0,(-∞上的图像。
【当堂训练】利用定义判断下列函数的奇偶性
1)(2
-=x x f (2)⎩
⎨⎧>+<-=0),1(0),1()(x x x x x x x f。
山东省济宁市微山县高中数学集合与函数概念1.1.2集合间的基本关系学案
1.1.2 集合间的基本关系班级 姓名学习目标1.理解集合间的包含与相等关系.2.理解、区分子集、真子集的含义.3.能判断集合间的基本关系.重难点:判断集合间的基本关系,空集的理解和应用.自学指导请认真阅读课本P6-P7页的内容,并完成下面填空:一、子集及其相关概念子集:对于两个集合A 和B ,若A 中的_____元素都是B 中元素,我就说这两个集合有____关系,称集合A 是集合B 的子集.记作______(或______),读作_________(或___________).真子集:如果A B ⊆,但存在元素__________,称集合A 是集合B 的真子集,记作________(或________).二、集合的相等:如果集合A 是集合B 的_____(A B ⊆),且集合B 是集合A 的______(B A ⊆),就说集合A 与集合B 相等,记作________.三、空集:我们把______________的集合叫做空集,记作________.规定:空集是任何集合的_____,即A ∅⊆.四、小试牛刀1、判断正误.(1)空集中只有元素0,而没有其余元素. ( )(2)任何集合都有子集. ( )(3)空集是任何非空集合的真子集. ( )(4)若A B ⊆,则集合B 中的元素都是集合A 中的元素. ( )(5)若A B =,则A B ⊆. ( )2、用适当的符号填空.(1) a _____{},,,a b c d ;(2) ∅_____{}2|1x x =;(3)∅_______{}2|1x x =-; (4) {}1,2,3______Z .典题例析1、已知{}{}1,2,3,4,1,4M N ==,则有 ( )A .M N ⊆ B. N M ⊆ C. N M ∈ D.M N =2、请写出集合{}1,2,3A =的所有子集和真子集.3、判断下列两个集合之间的关系:(1){}|A x x =是等边三角形,{}|B x x =是等腰三角形;(2){}|2A x x =<,{}|30B x x =-<;(3) {}|21,A x x n n N +==+∈,B 是所有奇数组成的集合;(4){}2|60A x x x =--=,{}2,3,2,3A =--.跟踪训练1、集合{}0,2,3A =,{}|,,B x x ab a b A ==∈,试写出集合B 的元素,集合B 的子集并指出个数.2、指出下列各对集合之间的关系:(1){}2|1A x x ==,{}1B =; (2){}|14A x x =-<<,{}|50B x x =-<;(3){}A x =是平行四边形,{}B x =是菱形;(4){}|3,A x x k k N ==∈,{}|6,B x x t t N ==∈.3、设集合{},A x y =,{}20,B x =,若A B =,求实数,x y 的值.4、已知集合{}|3A x x =<,集合{}|A x x m =<,且A B ⊆,则实数m 的取值范围是___________. 课堂小结1、子集、真子集的含义与判断.2、空集的理解.3、集合的相等.4、与子集、真子集个数有关的3个结论:假设集合A 中含有n 个元素,则有 (1)A 的子集个数为2n 个;(2)A 的真子集的个数为12n -个;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.1 函数的概念1.回顾初中形如y=kx+b(k≠0)的函数叫一次函数,其中x叫自变量,与x对应的y的值叫函数值,它的图象为一条倾斜直线.形如y=ax2+bx+c(a≠0)的函数叫二次函数,它的图象为抛物线.2.函数的概念一般地,设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么f:A→B就称为从集合A到集合B的一个函数.记作y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应y的值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.例如:正方形边长为x,与x的值相对应的面积为y,把y表示为x的函数:y=x2;该函数的定义域为{x|x>0};值域为{y|y>0};当边长为4的时候,面积为16;当面积为4的时候,相应的边长为2 .3.区间设a,b∈R,且a<b.(1)满足a≤x≤b的全体实数x的集合叫做闭区间,表示为[a,b].(2)满足a<x<b的全体实数x的集合叫做开区间,表示为(a,b).(3)满足a≤x<b或a<x≤b的全体实数x的集合叫做半开半闭区间,分别表示为[a,b) 或(a,b].(4)实数集R用区间表示为(-∞,+∞).(5)把满足x≥a,x>a,x≤a,x<a的全体实数x的集合分别表示为[a,+∞),(a,+∞),(-∞,a],(-∞,a).4.函数的三要素(部分教材为二要素)函数的定义含有三个要素,它们分别是:定义域、值域和对应法则.当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数.5.常见问题1)怎样检验两个变量之间是否具有函数关系?解析:由函数近代定义知,我们要检验两个变量之间是否具有函数关系,只要检验:①定义域和对应关系是否给出且定义域为非空数集;②根据给出的对应关系,自变量在其定义域内任一个值,是否都能确定唯一的函数值.2)函数f(x)与f(a)(a是常数)有什么区别与联系?解析:由f(a)表示当x=a时函数f(x)的值,是一个常量,而f(x)是自变量x的函数,在一般情况下,它是一个变量,f(a)是f(x)的一个特殊值。
3)如何认识集合{x|a≤x≤b}与区间[a,b]的区别?解析:区间[a,b]一定是无限集,且隐含a<b,集合{x|a≤x≤b}中对实数,a,b大小关系无限制条件.当a=b时,{x|a≤x≤b}={a}是单元素集:当a>b时,{x|a≤x≤b}=∅,这两种情况均不能用区间[a,b]表示.例题讲解题型一函数概念的理解例1下列对应关系是否为A到B的函数?(1)A=R,B={x|x>0},f:x→y=|x|;(2)A=Z,B=Z,f:x→y=x2;(3)A=R,B=Z,f:x→y=;(4)A=[-1,1],B={0},f:x→y=0.解析:(1)A中的元素0在B中没有对应元素,故不是A到B的函数;(2)对于集合A中的任意一个整数x,按照对应关系f:x→y=x2,在集合B中都有唯一一个确定的整数x2与其对应,故是集合A到集合B的函数;(3)A中元素负数没有平方根,故在B中没有对应的元素且不一定为整数,故此对应关系不是A 到B的函数;(4)对于集合A中任意一个实数x,按照对应关系f:x→y=0,在集合B中都有唯一一个确定的数0与它对应,故是集合A到集合B的函数.点评:判断所给对应是否是函数,首先观察两个集合A,B是否是非空集合(数集),其次验证对应关系下,集合A中数x的任意性,集合B中数y的唯一性.巩固若集合A={x|0≤x≤2},B={y|0≤y≤3},则下列图形给出的对应中能构成从A到B的函数f:A→B的是( )解析:A中的对应不满足函数的存在性,即存在x∈A,但B中无与之对应的y;B、C均不满足函数的唯一性,只有D正确.答案:D题型二“f”的含义及函数值的问题例2已知f(x)=x2-6x.(1)求f(2),f(a+1)的值;(2)若f(x)=-5,求x的值.解析:(1)f(2)=22-6×2=-8,f(a+1)=(a+1)2-6(a+1)=a2-4a-5.(2)f(x)=x2-6x=-5⇒x=1或x=5.点评:(1)在函数y=f(x)中,x为自变量,f为对应关系,f(x)是对应关系f下x对应的函数值,所以求函数值时,只需将f(x)的x用对应的值(包括值在定义域内的代数式)代入既可;(2)求f[f(x)]时,一般应遵循由里到外的原则.巩固已知f(x)=(x∈R且x≠-1),g(x)=x2+2(x∈R).求:(1)f(2)、g(2)的值;(2)f[g(2)]的值;(3)f [g (x )]的解析式.分析:依函数的定义可知,该题是给定自变量和对应关系求函数值,分别将自变量的值代入解析式中的x 即可求解.解析:题型三 求函数的定义域 例3 求下列函数的定义域:(1)y =3-12x ;(2)y =31-1-x;(3)y =-x2x 2-3x -2;(4)y =2x +3-12-x+1x.解析:(1)函数y =3-12x 的定义域为R ;(2)要使函数有意义,需⎩⎨⎧1-x ≥0,1-1-x ≠0⇔⎩⎪⎨⎪⎧x ≤1x ≠0⇔x ≤1且x ≠0,所以函数y =31-1-x的定义域为{x |x ≤1且x ≠0}=(-∞,0)∪(0,1];(3)要使函数有意义,需⎩⎪⎨⎪⎧-x ≥0,2x 2-3x -2≠0⇔⎩⎪⎨⎪⎧x ≤0,x ≠2且x ≠-12⇔x ≤0且x ≠-12.故函数y =-x2x 2-3x -2的定义域为⎩⎨⎧⎭⎬⎫x |x ≤0且x ≠-12=⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎦⎥⎤-12,0;(4)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0.解得-32≤x <2且x ≠0,所以函数y =2x +3-12-x +1x的定义域为⎩⎨⎧⎭⎬⎫x |-32≤x <2且x ≠0=⎣⎢⎡⎭⎪⎫-32,0∪(0,2).点评:求函数定义域的原则:(1)分式的分母不等于零;(2)偶次根式的被开方数(式)为非负数;(3)零指数幂的底数不等于零等.巩 固 求下列函数的定义域:(1)f (x )=6x 2-3x +2; (2)f (x )=3x -1+1-2x +4;(3)f (x )= x +1 0|x |-x .解析:(1)由x 2-3x +2≠0, 得:x ≠1,x ≠2 ∴f (x )=6x 2-3x +2的定义域是{x ∈R |x ≠1且x ≠2}.(2)由⎩⎪⎨⎪⎧3x -1≥01-2x ≥0,得13≤x ≤12.∴f (x )=3x -1+1-2x +4的定义域是⎣⎢⎡⎦⎥⎤13,12.(3)由⎩⎪⎨⎪⎧x +1≠0|x |-x ≠0,得⎩⎪⎨⎪⎧x ≠-1|x |≠x ,∴x <0且x ≠-1,∴原函数的定义域为{x |x <0且x ≠-1}.题型四 两函数相同的判定例4 下列各题中两个函数是否表示同一函数:(1)f (x )=x ,g (x )=(x )2; (2)f (t )=t ,g (x )=3x 3;(3)f (x )=x 2-4x -2,g (x )=x +2.解析:(1)f (x )的定义域为R ,g (x )的定义域为{x |x ≥0},两个函数的定义域不同,故不是同一函数.(2)g(x)=x,两者的定义域和对应法则相同,故是同一函数.(3)f(x)的定义域为(-∞,2)∪(2,+∞),g(x)的定义域为R,故不是同一函数.点评:只有当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一函数,这就是说:(1)定义域不同,两个函数也就不同;(2)对应法则不同,两个函数也是不同的;(3)即使是定义域和值域分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应法则;(4)两个函数是否相同,与自变量是什么字母无关.巩固试判断下列函数是否为同一函数:(1)f(x)=x·x+1与g(x)=x x+1 ;(2)f(x)=x2-2x与g(t)=t2-2t;(3)f(x)=1与g(x)=x0(x≠0).解析:(2)是,(1)、(3)不是.对于(1),f(x)的定义域为[0,+∞),而g(x)定义域为(-∞,-1]∪[0,+∞).(3)也是定义域不同.综合练习题A组1.下列各图中,可表示函数y=f(x)的图象的只可能是( )答案:D2.下列各组函数表示同一函数的是( )A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1 C .y =x 0(x ≠0)与y =1(x ≠0) D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z答案:C3.给出四个命题:①函数就是定义域到值域的对应关系;②若函数的定义域只含有一个元素,则值域也只含有一个元素;③因为f (x )=5(x ∈R ),这个函数值不随x 的变化而变化,所以f (0)=5也成立;④定义域和对应关系确定后,函数值域也就确定了.以上命题正确的有( ) A .1个 B .2个C .3个D .4个答案:DB 组1.函数y =1x +1的定义域为( )A .(-∞,-1]B .(-∞,-1)C .[-1,+∞) D.(-1,+∞) 答案:D2.设函数f (x )=x 2-3x +1,则f (a )-f (-a )=( ) A .0 B .-6aC .2a 2+2 D .2a 2-6a +2 答案:B3.下列用表给出的函数关系中,当x =6时,对应的函数值y 等于( )A.2 B .C .4 D .无法确定 答案:B4.函数y =-3x +1,x ∈[-1,1]的值域为________.答案:[-2,4]5.函数y =x +1x的定义域为________.解析:利用解不等式组的方法求解. 要使函数有意义,需⎩⎪⎨⎪⎧x +1≥0,x ≠0.解得⎩⎪⎨⎪⎧x ≥-1,x ≠0.∴原函数的定义域为{x |x ≥-1且x ≠0}. 答案:{x |x ≥-1且x ≠0}6.已知f (x )=⎩⎪⎨⎪⎧x +4 x <0 ,x -4 x >0 ,则f [f (-3)]的值为________.解析:f (-3)=-3+4=1,f (f (-3))=f (1)=1-4=-3. 答案:-3C 组1.已知集合P ={x |-4≤x ≤4},Q ={y |-2≤y ≤2},下列函数不表示从P 到Q 的函数的是( ) A .2y =x B .y 2=12(x +4)C .y =14x 2-2D .x 2=-8y答案:B2.已知函数f (x )=x 2+2x +a ,f (bx )=9x 2-6x +2,其中x ∈R,a ,b 为常数,则方程f (ax +b )=0的解集为____________.解析:f (bx )=(bx )2+2bx +a =9x 2-6x +2⇒⎩⎪⎨⎪⎧b 2=9,2b =-6,a =2,⇒⎩⎪⎨⎪⎧a =2,b =-3.∴f (2x -3)=(2x -3)2+2(2x -3)+2, f (ax +b )=0,即为4x 2-8x +5=0,而Δ<0,故方程f (ax +b )=0的解集为∅.答案:∅3.求下列函数的值域: (1)y =x +1,x ∈{2,3,4,5,6}; (2)y =x +1; (3)y =x 2-4x +6.解析:(1){3,4,5,6,7}.(2)∵x ≥0,∴y ≥1,故值域为{y |y ≥1}. (3)∵y =x 2-4x +6=(x -2)2+2,而(x -2)2≥0,∴y ≥2,故值域为{y |y ≥2}.4.已知函数f (x )=x 21+x2.(1)求f (2)+f ⎝ ⎛⎭⎪⎫12,f (3)+f ⎝ ⎛⎭⎪⎫13的值; (2)求证f (x )+f ⎝ ⎛⎭⎪⎫1x是定值; (3)求f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+f (2 012)+f ⎝ ⎛⎭⎪⎫12 012的值.解析:(1)∵f (x )=x 21+x2,∴f (2)+f ⎝ ⎛⎭⎪⎫12=221+2+⎝ ⎛⎭⎪⎫1221+⎝ ⎛⎭⎪⎫122=1, f (3)+f ⎝ ⎛⎭⎪⎫13=321+32+⎝ ⎛⎭⎪⎫1321+⎝ ⎛⎭⎪⎫132=1. (2)证明:f (x )+f ⎝ ⎛⎭⎪⎫1x =x 21+x 2+⎝ ⎛⎭⎪⎫1x 21+⎝ ⎛⎭⎪⎫1x 2=x 21+x 2+ 1x 2+1=x 2+1x 2+1=1. (3)由(2)知,f (x )+f ⎝ ⎛⎭⎪⎫1x =1,∴f (2)+f ⎝ ⎛⎭⎪⎫12=1,f (3)+f ⎝ ⎛⎭⎪⎫13=1,f (4)+f ⎝ ⎛⎭⎪⎫14=1,…f (2 012)+f ⎝⎛⎭⎪⎫12 012=1,∴f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+f (2 012)+f ⎝ ⎛⎭⎪⎫12 012=2 011.5.已知f (x )的定义域为(0,1],求g (x )=f (x +a )·f (x -a ) (a ≤0)的定义域.11解析:由已知得⎩⎪⎨⎪⎧ 0<x +a ≤1,0<x -a ≤1, 即⎩⎪⎨⎪⎧ -a <x ≤1-a ,a <x ≤1+a ,(a ≤0)用数轴法,讨论(1)当a =0时,x ∈(0,1];(2)当a ≤-12时,x ∈∅,即函数不存在; (3)当-12<a <0时,x ∈(-a,1+a ].课后总结:1.“y =f (x )”是函数符号,可以用任意的字母表示,如“y =g (x )”.2.函数符合“y =f (x )”中的f (x )表示与x 对应的函数值,f (x )是一个数,而不是f 乘x .3.构成函数的三要素是:定义域、对应关系和值域.4.函数中的自变量可以在定义域范围内任意取值,包括变成其他字母,这是函数抽象的重要原因.5.函数的定义域包含三种形式:(1)自然型.指函数的解析式有意义的自变量x 的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,等等).(2)限制型.指命题的条件或人为对自变量x 的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误.(3)实际型.解决函数的综合问题与应用问题时,应认真考查自变量x 的实际意义.。