对数函数习题及答案
(完整版)对数函数练习题(有答案)
对数函数练习题(有答案)1.函数y =log (2x -1)(3x -2)的定义域是( )A .⎝⎛⎭⎫12,+∞B .⎝⎛⎭⎫23,+∞C .⎝⎛⎭⎫23,1∪(1,+∞)D .⎝⎛⎭⎫12,1∪(1,+∞) 2.若集合A ={ x |log 2x =2-x },且 x ∈A ,则有( )A .1>x 2>xB .x 2>x >1C .x 2>1>xD .x >1>x 23.若log a 3>log b 3>0,则 a 、b 、1的大小关系为( )A .1<a <bB .1 <b <aC .0 <a <b <1D .0 <b <a <14.若log a 45<1,则实数a 的取值范围为( ) A .a >1 B .0<a <45 C .45<a D .0<a <45或a >1 5.已知函数f (x )=log a (x -1)(a >0且 a ≠1)在x ∈(1,2)时,f (x )<0,则f (x )是A .增函数B .减函数C .先减后增D .先增后减6.如图所示,已知0<a <1,则在同一直角坐标系中,函数y =a -x 和y =log a (-x )的图象只可能为( )7.函数y =f (2x )的定义域为[1,2],则函数y =f (log 2x )的定义域为 ( )A .[0,1]B .[1,2]C .[2,4]D .[4,16]8.若函数f (x )=log12()x 3-ax 上单调递减,则实数a 的取值范围是 ( )A .[9,12]B .[4,12]C .[4,27]D .[9,27]9.函数y =a x -3+3(a >0,且a ≠1)恒过定点__________.10.不等式⎝⎛⎭⎫1310-3x<3-2x 的解集是_________________________. 11.(1)将函数f (x )=2x 的图象向______平移________个单位,就可以得到函数g (x )=2x -x 的图象.(2)函数f (x )=⎝⎛⎭⎫12|x -1|,使f (x )是增区间是_________. 12.设 f (log 2x )=2x (x >0).则f (3)的值为 .13.已知集合A ={x |2≤x ≤π,x ∈R}.定义在集合A 上的函数f (x )=log a x (0<a <1)的最大值比最小值大1,则底数a 为__________.14.当0<x <1时,函数y =log (a 2-3)x 的图象在x 轴的上方,则a 的取值范围为________.15.已知 0<a <1,0<b <1,且a log b (x -3)<1,则 x 的取值范围为 . 16.已知 a >1,求函数 f (x )=log a (1-a x )的定义域和值域.17.已知 0<a <1,b >1,ab >1,比较log a 1b ,log a b ,log b 1b的大小.18.已知f (x )=log a x 在[2,+ ∞ )上恒有|f (x )|>1,求实数a 的取值范围.19.设在离海平面高度h m 处的大气压强是x mm 水银柱高,h 与x 之间的函数关系式为:h =k ln x c,其中c 、k 都是常量.已知某地某天在海平面及1000 m 高空的大气压强分别是760 mm 水银柱高和675 mm 水银柱高,求大气压强是720 mm 水银柱高处的高度.20.已知关于x 的方程log 2(x +3)-log 4x 2=a 的解在区间(3,4)内,求实数a 的取值范围.参考答案:1.C 2.B 3.A 4.D 5.A 6.B 7.D 8.A9.(3,4) 10.{x |_x <2} 11.右,2;(-∞,1), 12.25613.2π14.a ∈(-2,-3)∪(3,2) 15.(3,4)16.解 ∵ a >1,1-a x >0,∴ a x <1,∴ x <0,即函数的定义域为(-∞ ,0).∵ a x >0且a x <1,∴ 0<1-a x <1 ∴log a (1-a x )<0,即函数的值域是(-∞ ,0).17.解 ∵ 0<a <1,b >1,∴ log a b <0,log b 1b =-1,log a 1b >0,又ab >1,∴ b >1a >1,log a b <log a 1a=-1,∴ log a b <log b51b <log a 1b.18.解 由|f (x )|>1,得log a x >1或log a x <-1.由log a x >1,x ∈[2,+∞ )得 a >1,(log a x )最小=log a 2,∴ log a 2>1,∴ a <2,∴ 1<a <2;由log a x <-1,x ∈[2,+ ∞ )得 0<a <1,(log a x )最大=log a 2,∴ log a 2<-1,∴ a >12, ∴12<a <1. 综上所述,a 的取值范围为(12,1 )∪(1,2).19.解 ∵ h =k ln x c,当 x =760,h =0,∴ c =760. 当x =675时,h =1 000,∴ 1 000=k ln 675760=k ln0.8907 ∴ k =1000ln0.8907=1000lg e lg0.8907当x =720时,h =1000lg e lg0.8907ln 720760=1000lg e lg0.8907·ln0.9473=1000lg e lg0.8907·lg0.9473lg e≈456 m . ∴ 大气压强为720 mm 水银柱高处的高度为456 m .20.本质上是求函数g (x )=log 2(x +3)-log 4x 2 x ∈(3,4)的值域.∵ g (x )=log 2(x +3)-log 4x 2=log 2(x +3)-log 2x =log 2x +3x =log 2⎝⎛⎭⎫1+1x ∈⎝⎛⎭⎫log 254,log 243 ∴ a ∈⎝⎛⎭⎫log 254,log 243.。
对数函数习题和的答案解析
习题课——对数函数及其性质的应用一、A组1.已知函数y=log a(x+c)(a,c为常数,且a>0,a≠1)的图象如图所示,则下列结论成立的是()A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1解析:由题意可知y=log a(x+c)的图象是由y=log a x的图象向左平移c个单位长度得到的,结合题图知0<c<1.根据单调性易知0<a<1.答案:D2.已知a=,b=log2,c=lo,则()A.a>b>cB.a>c>bC.c>b>aD.c>a>b解析:∵0<a=<20=1,b=log2<log21=0,c=lo>lo=1,∴c>a>b.故选D.答案:D3.函数f(x)=的定义域为()A.(3,5]B.[-3,5]C.[-5,3)D.[-5,-3]解析:要使函数有意义,则3-log2(3-x)≥0,即log2(3-x)≤3,∴0<3-x≤8,∴-5≤x<3.答案:C4.函数f(x)=lo(x2-4)的单调递增区间为()A.(0,+∞)B.(-∞,0)C.(2,+∞)D.(-∞,-2)解析:令t=x2-4>0,可得x>2或x<-2.故函数f(x)的定义域为(-∞,-2)∪(2,+∞),当x∈(-∞,-2)时,t随x的增大而减小,y=lo t随t的减小而增大,所以y=lo(x2-4)随x的增大而增大,即f(x)在(-∞,-2)上单调递增.故选D.答案:D5.已知y=log a(2-ax)在区间[0,1]上为减函数,则a的取值范围为()A.(0,1)B.(1,2)C.(0,2)D.[2,+∞)解析:由题设知a>0,则t=2-ax在区间[0,1]上是减函数.因为y=log a(2-ax)在区间[0,1]上是减函数,所以y=log a t在定义域内是增函数,且t min>0.因此故1<a<2.答案:B6.导学号29900104已知函数f(x)=直线y=a与函数f(x)的图象恒有两个不同的交点,则a的取值范围是.解析:函数f(x)的图象如图所示,要使直线y=a与f(x)的图象有两个不同的交点,则0<a≤1.答案:(0,1]7.已知定义域为R的偶函数f(x)在区间[0,+∞)上是增函数,且f=0,则不等式f(log4x)<0的解集是.解析:由题意可知,f(log4x)<0⇔-<log4x<⇔log4<log4x<log4<x<2.答案:8.已知函数f(x)=log a(x+1)(a>0,且a≠1),g(x)=log a(4-2x).(1)求函数f(x)-g(x)的定义域;(2)求使函数f(x)-g(x)的值为正数时x的取值范围.解:(1)由题意可知,f(x)-g(x)=log a(x+1)-log a(4-2x),要使函数f(x)-g(x)有意义,则解得-1<x<2.故函数f(x)-g(x)的定义域是(-1,2).(2)令f(x)-g(x)>0,得f(x)>g(x),即log a(x+1)>log a(4-2x).当a>1时,可得x+1>4-2x,解得x>1.由(1)知-1<x<2,所以1<x<2;当0<a<1时,可得x+1<4-2x,解得x<1,由(1)知-1<x<2,所以-1<x<1.综上所述,当a>1时,x的取值范围是(1,2);当0<a<1时,x的取值范围是(-1,1).9.导学号29900105若-3≤lo x≤-,求f(x)=的最值.解:f(x)==(log2x-1)(log2x-2)=(log2x)2-3log2x+2.令log2x=t,∵-3≤lo x≤-,∴-3≤-log2x≤-,∴≤log2x≤3.∴t∈.∴f(x)=g(t)=t2-3t+2=.∴当t=时,g(t)取最小值-;此时,log2x=,x=2;当t=3时,g(t)取最大值2,此时,log2x=3,x=8.综上,当x=2时,f(x)取最小值-;当x=8时,f(x)取最大值2.二、B组1.(2016·江西南昌二中高一期中)函数y=x·ln |x|的大致图象是()解析:函数f(x)=x·ln |x|的定义域(-∞,0)∪(0,+∞)关于原点对称,且f(-x)=-x·ln |-x|=-x·ln|x|=-f(x),所以f(x)是奇函数,排除选项B;当0<x<1时,f(x)<0,排除选项A,C.故选D.答案:D2.(2016·河南许昌四校高一联考)若函数f(x)=log2(x2-ax+3a)在区间[2,+∞)上是增函数,则实数a的取值范围是()A.a≤4B.a≤2C.-4<a≤4D.-2≤a≤4解析:∵函数f(x)=log2(x2-ax+3a)在区间[2,+∞)上是增函数,∴y=x2-ax+3a在[2,+∞)上大于零且单调递增,故有解得-4<a≤4,故选C.答案:C3.已知函数f(x)在区间[0,+∞)上是增函数,g(x)=-f(|x|),若g(lg x)>g(1),则x的取值范围是()A.B.(0,10)C.(10,+∞)D.∪(10,+∞)解析:因为g(lg x)>g(1),所以f(|lg x|)<f(1).又f(x)在区间[0,+∞)上单调递增,所以0≤|lg x|<1,解得<x<10.答案:A4.已知a=log23.6,b=log43.2,c=log43.6,则a,b,c的大小关系为.解析:∵b=log23.2=log2,c=log23.6=log2,又函数y=log2x在区间(0,+∞)上是增函数,3.6>,∴log23.6>log2>log2,∴a>c>b.答案:a>c>b5.已知函数y=log a x,当x>2时恒有|y|≥1,则a的取值范围是.解析:当a>1时,y=log a x在区间(2,+∞)上是增函数,由log a2≥1,得1<a≤2;当0<a<1时,y=log a x在区间(2,+∞)上是减函数,且log a2≤-1,得≤a<1.故a的取值范围是∪(1,2].答案:∪(1,2]6.导学号29900106若函数f(x)=log a x(a>0,且a≠1)在区间[a,2a]上的最大值是最小值的3倍,则a的值为.解析:当0<a<1时,f(x)在区间(0,+∞)上是减函数,∴f(x)在区间[a,2a]上的最小值为log a(2a),最大值为log a a,∴log a a=3log a(2a),∴log a(2a)=,即=2a,a=8a3,∴a2=,a=.当a>1时,f(x)在区间(0,+∞)上是增函数,∴f(x)在区间[a,2a]上的最小值为log a a,最大值为log a(2a),∴log a(2a)=3log a a,∴log a(2a)=3,即a3=2a,∴a2=2,a=.故a的值为.答案:7.已知函数f(x)=lg(3x-3).(1)求函数f(x)的定义域和值域;(2)设函数h(x)=f(x)-lg(3x+3),若不等式h(x)>t无实数解,求实数t的取值范围.解:(1)由3x-3>0,得x>1,所以f(x)的定义域为(1,+∞).因为(3x-3)∈(0,+∞),所以函数f(x)的值域为R.(2)因为h(x)=lg(3x-3)-lg(3x+3)=lg=lg的定义域为(1,+∞),且h(x)在区间(1,+∞)上是增函数, 所以函数h(x)的值域为(-∞,0).若不等式h(x)>t无实数解,则t的取值范围为t≥0.8.导学号29900107已知函数f(x-1)=lg.(1)求函数f(x)的解析式;(2)解关于x的不等式f(x)≥lg(3x+1).解:(1)令t=x-1,则x=t+1.由题意知>0,即0<x<2,则-1<t<1.所以f(t)=lg=lg.故f(x)=lg(-1<x<1).(2)lg≥lg(3x+1)⇔≥3x+1>0.由3x+1>0,得x>-.因为-1<x<1,所以1-x>0.由≥3x+1,得x+1≥(3x+1)(1-x),即3x2-x≥0,x(3x-1)≥0,解得x≥或x≤0.又x>-,-1<x<1,所以-<x≤0或≤x<1.故不等式的解集为.。
对数函数精选练习题(带答案)
对数函数精选练习题(带答案)1.函数y =log 23(2x -1)的定义域是( )A .[1,2]B .[1,2) C.⎣⎡⎦⎤12,1 D.⎝⎛⎦⎤12,1答案 D解析 要使函数解析式有意义,须有log 23(2x -1)≥0,所以0<2x -1≤1,所以12<x ≤1,所以函数y =log 23(2x -1)的定义域是⎝⎛⎦⎤12,1.2.函数f (x )=log a (x +b )的大致图象如图,则函数g (x )=a x -b 的图象可能是( ) 答案 D解析 由图象可知0<a <1且0<f (0)<1,即⎩⎪⎨⎪⎧0<a <1, ①0<log a b <1, ②解②得log a 1<log a b <log a a ,∵0<a <1,∴由对数函数的单调性可知a <b <1, 结合①可得a ,b 满足的关系为0<a <b <1,由指数函数的图象和性质可知,g (x )=a x -b 的图象是单调递减的,且一定在y =-1上方.故选D.3.(2017·北京高考)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN 最接近的是( ) (参考数据:lg 3≈0.48)A .1033B .1053C .1073D .1093 答案 D解析 由题意,lg M N =lg 33611080=lg 3361-lg 1080=361lg 3-80lg 10≈361×0.48-80×1=93.28. 又lg 1033=33,lg 1053=53,lg 1073=73,lg 1093=93,故与MN 最接近的是1093.故选D.4.已知函数f (x )是偶函数,定义域为R ,g (x )=f (x )+2x ,若g (log 27)=3,则g ⎝⎛⎭⎫log 217=( )A .-4B .4C .-277 D.277 答案 C解析 由g (log 27)=3可得,g (log 27)=f (log 27)+7=3,即f (log 27)=-4,则g ⎝⎛⎭⎫log 217=f (-log 27)+17=-4+17=-277.5.已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,则f (log 49)=( ) A .-13 B .-12 C.12 D.32 答案 A解析 因为log 49=log 29log 24=log 23>0,f (x )为奇函数,且当x <0时,f (x )=2x ,所以f (log 49)=f (log 23)=-f (-log 23)=-2-log 23=-2log2 13=-13.6.设a =log 54-log 52,b =ln 23+ln 3,c =1012 lg 5,则a ,b ,c 的大小关系为( )A .a <b <cB .b <c <aC .c <a <bD .b <a <c答案 A解析 由题意得,a =log 54-log 52=log 52,b =ln 23+ln 3=ln 2,c =10 12 lg 5=5,得a =1log 25,b =1log 2e ,而log 25>log 2e>1,所以0<1log 25<1log 2e <1,即0<a <b <1.又c =5>1.故a <b <c .故选A.7.(2017·全国卷Ⅰ)已知函数f (x )=ln x +ln (2-x ),则( ) A .f (x )在(0,2)单调递增 B .f (x )在(0,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称 答案 C解析 f (x )的定义域为(0,2).f (x )=ln x +ln (2-x )=ln [x (2-x )]=ln (-x 2+2x ).设u =-x 2+2x ,x ∈(0,2),则u =-x 2+2x 在(0,1)上单调递增,在(1,2)上单调递减.又y =ln u 在其定义域上单调递增,∴f (x )=ln (-x 2+2x )在(0,1)上单调递增,在(1,2)上单调递减. ∴选项A ,B 错误.∵f (x )=ln x +ln (2-x )=f (2-x ),∴f (x )的图象关于直线x =1对称,∴选项C 正确.∵f (2-x )+f (x )=[ln (2-x )+ln x ]+[ln x +ln (2-x )]=2[ln x +ln (2-x )],不恒为0, ∴f (x )的图象不关于点(1,0)对称,∴选项D 错误.故选C. 8.已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( )A .(a -1)(b -1)<0B .(a -1)(a -b )>0C .(b -1)(b -a )<0D .(b -1)(b -a )>0 答案 D解析 因为log a b >1,所以a >1,b >1或0<a <1,0<b <1,所以(a -1)(b -1)>0,故A 错误; 当a >1时,由log a b >1,得b >a >1,故B ,C 错误.故选D.9.(2019·北京模拟)如图,点A ,B 在函数y =log 2x +2的图象上,点C 在函数y =log 2x 的图象上,若△ABC 为等边三角形,且直线BC ∥y 轴,设点A 的坐标为(m ,n ),则m =( ) A .2 B .3 C. 2 D.3 答案 D解析 因为直线BC ∥y 轴,所以B ,C 的横坐标相同;又B 在函数y =log 2x +2的图象上,点C 在函数y =log 2x 的图象上,所以|BC |=2.即正三角形ABC 的边长为2.由点A 的坐标为(m ,n ),得B (m +3,n +1),C (m +3,n -1),所以⎩⎪⎨⎪⎧n =log 2m +2,n +1=log 2(m +3)+2,所以log 2m +2+1=log 2(m +3)+2,所以m = 3.10.(2018·湖北宜昌一中模拟)若函数f (x )=log 0.9(5+4x -x 2)在区间(a -1,a +1)上递增,且b =lg 0.9,c =20.9,则( )A .c <b <aB .b <c <aC .a <b <cD .b <a <c 答案 B解析 由5+4x -x 2>0,得-1<x <5, 又函数t =5+4x -x 2的对称轴方程为x =2, ∴复合函数f (x )=log 0.9(5+4x -x 2)的增区间为(2,5),∵函数f (x )=log 0.9(5+4x -x 2)在区间(a -1,a +1)上递增,∴⎩⎪⎨⎪⎧a -1≥2,a +1≤5,则3≤a ≤4,而b =lg 0.9<0,1<c =20.9<2,所以b <c <a .11.(2019·石家庄模拟)设方程10x =|lg (-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=0 C .x 1x 2>1 D .0<x 1x 2<1答案 D解析 作出y =10x 与y =|lg (-x )|的大致图象,如图.显然x 1<0,x 2<0.不妨设x 1<x 2,则x 1<-1,-1<x 2<0, 所以10 x 1=lg (-x 1),10 x 2=-lg (-x 2), 此时10 x 1<10 x 2, 即lg (-x 1)<-lg (-x 2), 由此得lg (x 1x 2)<0,所以0<x 1x 2<1.12.函数y =log a (x -1)+2(a >0,且a ≠1)的图象恒过的定点是________. 答案 (2,2)解析 令x =2得y =log a 1+2=2,所以函数y =log a (x -1)+2的图象恒过定点(2,2).13.(2019·成都外国语学校模拟)已知2x =3,log 483=y ,则x +2y 的值为________.答案 3解析 因为2x =3,所以x =log 23.又因为y =log 483=12log 283,所以x +2y =log 23+log 283=log 28=3. 14.(2018·兰州模拟)已知函数y =log a x (2≤x ≤4)的最大值比最小值大1,则a 的值为________. 答案 2或12解析 ①当a >1时,y =log a x 在[2,4]上为增函数. 由已知得log a 4-log a 2=1,所以log a 2=1,所以a =2. ②当0<a <1时,y =log a x 在[2,4]上为减函数. 由已知得log a 2-log a 4=1,所以log a 12=1,a =12.综上知,a 的值为2或12.15.若函数f (x )=log a ⎝⎛⎭⎫x 2+32x (a >0,且a ≠1)在区间⎝⎛⎭⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为________.答案 (0,+∞)解析 令M =x 2+32x ,当x ∈⎝⎛⎭⎫12,+∞时,M ∈(1,+∞),f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =⎝⎛⎭⎫x +342-916,因此M 的单调递增区间为⎝⎛⎭⎫-34,+∞.又x 2+32x >0,所以x >0或x <-32,所以函数f (x )的单调递增区间为(0,+∞).16.(2019·江苏南京模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 12 x ,x ≥2,2a x -3a ,x <2(其中a >0,且a ≠1)的值域为R ,则实数a 的取值范围为________. 答案 ⎣⎡⎭⎫12,1解析 由题意,分段函数的值域为R ,故其在(-∞,2)上应是单调递减函数,所以0<a <1,根据图象可知,log 122≥2a 2-3a ,解得12≤a ≤1.综上,可得12≤a <1.。
高一数学(必修一)《第五章-对数函数的图象和性质》练习题及答案解析-人教版
高一数学(必修一)《第五章 对数函数的图象和性质》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.函数()()2log 1f x x =-的图像为( )A .B .C .D .2.已知对数函数()f x 的图像经过点1,38A ⎛⎫- ⎪⎝⎭与点则( )A .c a b <<B .b a c <<C .a b c <<D .c b a <<3.函数1()ln f x x x x ⎛⎫=-⋅ ⎪⎝⎭的图象可能是( ) A . B .C .D .4.下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=- D .21xy =--5.函数f (x )=|ax -a |(a >0且a ≠1)的图象可能为( )A. B . C . D .6.下列函数中是减函数的为( ) A .2()log f x x = B .()13x f x =- C .()f x = D .2()1f x x =-+7.设0.30.50.514,log 0.6,16a b c -⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .b c a <<D .c a b <<8.已知函数2(43)3,0()log (1)2,0a x a x a x f x x x ⎧+-+<=⎨++≥⎩ (a >0且a ≠1)是R 上的单调函数,则a 的取值范围是( )A .30,4⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎡⎤⎢⎥⎣⎦D .23,34⎛⎤ ⎥⎝⎦9.已知定义在R 上的函数()f x 满足()11f =,对于1x ∀,2R x ∈当12x x <时,则都有()()()12122f x f x x x -<-则不等式()222log 1log f x x +<的解集为( )A .(),2-∞B .()0,2C .1,2D .()2,+∞10.函数y ) A .1,2⎛⎤-∞ ⎥⎝⎦B .10,2⎛⎤⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .[]1,211.记函数2log 2x y x=-的定义域为集合A ,若“x A ∈”是关于x 的不等式()22200x mx m m +-<>成立”的充分不必要条件,则实数m 的取值范围是( ) A .()2,+∞ B .[)2,+∞ C .()0,2D .(]0,212.下列函数在(),1-∞-上是减函数的为( )A .()ln f x x =-B .()11f x x =-+ C .()234f x x x =--D .()21f x x =13.下列函数是偶函数且值域为[)0,∞+的是( )①y x =;②3y x =;③||2x y =;④2y x x =+ .A .①②B .②③C .①④D .③④14.已知函数22,2()log ,2x a x f x x x ⎧-<=⎨≥⎩,若()f x 存在最小值,则实数a 的取值范围是( )A .(],2-∞B .[)1,-+∞C .(),1-∞-D .(],1-∞-15.已知910,1011,89m m m a b ==-=-,则( ) A .0a b >>B .0a b >>C .0b a >>D .0b a >>16.已知集合{}1,0,1,2A =-和2{|1}B x x =≤,则A B =( ) A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,217.已知22log log 0a b +=(0a >且1a ≠,0b >且1b ≠),则函数()1()xf x a=与()log b g x x =的图像可能是( )A .B .C .D .18.设123a -=,1312b -⎛⎫= ⎪⎝⎭和21log 3c =,则( ) A .a c b << B .c a b << C .b c a << D .a b c <<19.已知函数212()log (3)f x x ax a =-+ 在[)2,+∞上单调递减,则a 的取值范围( )A .(,4]-∞B .(4,4]-C .[4,4]-D .(4,)-+∞20.函数22log (2)y x x =-的单调递减区间为( )A .(1,2)B .(]1,2C .(0,1)D .[)0,121.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,则()4322x xf x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为( ) A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞二、解答题22.比较下列各数的大小: (1)12log 3与12log π;(2)4log 3与5log 3; (3)5log 2与2log 5.23.已知函数()()()ln 1ln 1f x ax x =++-的图象经过点()3,3ln 2.(1)求a 的值,及()f x 的定义域; (2)求关于x 的不等式()()ln 2f x x ≤的解集.24.已知函数()()9log 91xf x x =++.(1)若()()20f x x a -+>对于任意x 恒成立,求a 的取值范围; (2)若函数()()9231f x xx g x m -=+⋅+和[]90,log 8x ∈,是否存在实数m ,使得()g x 的最小值为0?若存在,求出m 的值,若不存在,请说明理由.25.已知函数()ln f x x =.(1)在①()21g x x =-,②()21g x x =+这两个条件中任选一个,补充在下面的横线上,并解答.问题:已知函数___________,()()()=h x f g x 求()h x 的值域. 注:如果选择两个条件分别解答,按第一个解答计分.(2)若1x ∀∈R ,()20,x ∈+∞和()1122421ln x xa x x -+<-,求a 的取值范围.26.已知______,且函数()22x bg x x a+=+.①函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数;②函数()()0f x ax b a =+>在[1,2]上的值域为[]2,4.在①,②两个条件中选择一个条件,将上面的题目补充完整,求出a ,b 的值,并解答本题. (1)判断()g x 的奇偶性,并证明你的结论;(2)设()2h x x c =--,对任意的1x ∈R ,总存在[]22,2x ∈-,使得()()12g x h x =成立,求实数c 的取值范围. 27.定义:若函数()y f x =在某一区间D 上任取两个实数12x x 、,且12x x ≠,都有()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭则称函数()y f x =在区间D 上具有性质L .(1)写出一个在其定义域上具有性质L 的对数函数(不要求证明). (2)判断函数1()f x x x=+在区间(0,)+∞上是否具有性质L ?并用所给定义证明你的结论. (3)若函数21()g x ax x=-在区间(0,1)上具有性质L ,求实数a 的取值范围.三、填空题28.函数()ln(4)f x x =+-的定义域是___________. 29.()()log 4a f x ax =-在(]1,3上递减,则a 的范围是_________.30.已知函数211,0()2,0xx f x x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪-+>⎩,则函数12()log g x f x ⎛⎫= ⎪⎝⎭的单调递增区间为__. 31.已知函数2(12)0()log (1)0a x a x f x x x +-<⎧=⎨+≥⎩,,的值域为R ,则实数a 的范围是_________32.已知函数()log (23)1(>0a f x x a =-+且1)a ≠,且的图象恒过定点P ,则点P 的坐标为_________.33.已知函数()2log 081584,,⎧<≤⎪=⎨-+>⎪⎩x x f x x x ,若a b c ,,互不相等,且()()()f a f b f c ==,则abc 的取值范围是____.34.若0x >和0y >,且111x y+=,则22log log x y +的最小值为___________.四、多选题35.已知函数()f x 和()g x 的零点所构成的集合分别为M ,N ,若存在M α∈和N β∈,使得1αβ-≤,则称()f x 与()g x 互为“零点伴侣”.若函数()1e 2xf x x -=+-与()23g x x ax a =--+互为“零点伴侣”,则实数a的取值不能是( ) A .1B .2C .3D .436.已知函数()()2lg 1f x x ax a =+--,下列结论中正确的是( )A .当0a =时,则()f x 的定义域为()(),11,-∞-⋃+∞B .()f x 一定有最小值C .当0a =时,则()f x 的值域为RD .若()f x 在区间[)2,+∞上单调递增,则实数a 的取值范围是{}4a a ≥-参考答案与解析1.A【分析】根据函数的定义域为(),1-∞可排除B 、D.再由单调性即可选出答案.【详解】当0x =时,则()()20log 10=0f =-,故排除B 、D. 当1x =-时,则()()21log 1110f -=+=>,故A 正确. 故选A.【点睛】本题考查函数的图像,属于基础题.解决本类题型的两种思路:①将初等函数的图像通过平移、伸缩、对称变换选出答案,对学生能力要求较高;②根据选项代入具体的x 值,判断y 的正负号. 2.C【分析】根据对数函数可以解得2a =,4t =再结合中间值法比较大小. 【详解】设()()log 0,1a f x x a a =>≠,由题意可得:1log 38a =-,则2a = ∴log 164a t ==0.1log 40a =<,()40.20,1b =∈和0.141c =>∴a b c << 故选:C . 3.A【分析】利用函数的奇偶性排除选项D ,利用当01x <<时,则()0f x >,排除选项B ,C ,即得解. 【详解】解:∵函数()f x 的定义域为{}0x x ≠,关于原点对称,1()ln f x x xx ⎛⎫-=-+⋅- ⎪⎝⎭1ln ()x x f x x ⎛⎫--⋅=- ⎪=⎝⎭ ∴()f x 为奇函数,排除选项D .当01x <<时,则2110x x x x--=<和ln 0x < ∴()0f x >,排除选项B ,C . 故选:A . 4.A【分析】根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,则1y =-,故排除B 、D 两项; 当1x >时,则函数图象单调递增,无限接近于0,对于C 项,当1x >时,则12x y -=-单调递减,故排除C项. 故选:A. 5.C【分析】根据指数函数的单调性分类讨论进行求解即可.【详解】当>1a 时,则,1()=,<1x xa a x f x a a x -≥-⎧⎨⎩显然当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而>1a ,故AB 不符合; 对于CD ,因为渐近线为=2y ,故=2a ,故=0x 时,则=1y 故选项C 符合,D 不符合;当0<<1a 时,则,<1()=,1x xa a x f x a a x --≥⎧⎨⎩当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而0<<1a ,故ABD 不符合; 故选:C 6.B【分析】利用对数函数单调性判断选项A ;利用指数函数单调性判断选项B ;利用幂数函数单调性判断选项C ;利用二次函数单调性判断选项D.【详解】选项A :由21>,可得2()log f x x =为增函数.判断错误; 选项B :由31>,可得3x y =为增函数,则()13x f x =-是减函数.判断正确; 选项C :由12-<,可得12y x -=是减函数,则()f x =为增函数.判断错误;选项D :2()1f x x =-+在(),0∞-上单调递增. 判断错误. 故选:B 7.B【分析】计算可得2a =,再分析()0.5log 0.60,1b =∈,0.3116c a -⎛⎫=> ⎪⎝⎭即可判断【详解】由题意0.542a ==,()()0.50.50.5log 0.6log 1,log 0.50,1b =∈=和0.30.30.2511616216c a -⎛⎫==>== ⎪⎝⎭,故b ac <<故选:B 8.C【分析】根据二次函数和对数函数的单调性,结合分段函数的性质进行求解即可.【详解】二次函数2(43)3y x a x a =+-+的对称轴为:432a x -=-因为二次函数开口向上,所以当0x <时,则该二次函数不可能单调递增 所以函数()f x 是实数集上的减函数则有01432302343log 122a a a a a <<⎧⎪-⎪-≥⇒≤≤⎨⎪≥+=⎪⎩故选:C 9.B【分析】由题设知()()2h x f x x =-在R 上递增,将不等式转化为2(log )(1)h x h <,利用单调性求解集即可. 【详解】由题设12x x <时1122()2()2f x x f x x -<-,即()()2h x f x x =-在R 上递增又(1)(1)21h f =-=-,而()222log 1log f x x +<等价于()22log 2log 1f x x -<-所以2(log )(1)h x h <,即2log 1x <,可得02x <<. 故不等式解集为()0,2. 故选:B 10.C【分析】依题意可得21log 0x +≥,根据对数函数的性质解不等式,即可求出函数的定义域. 【详解】解:依题意可得21log 0x +≥,即221log 1log 2x ≥-=,所以12x ≥ 即函数的定义域为1,2⎡⎫+∞⎪⎢⎣⎭.故选:C 11.B【分析】求出函数2log 2x y x=-的定义域得集合A ,解不等式()22200x mx m m +-<>得m 的范围,根据充分不必要条件的定义可得答案. 【详解】函数2log 2xy x =-有意义的条件为02x x>-,解得02x << 所以{}02A x x =<<,不等式()22200x mx m m +-<>,即()()20x m x m +-<因为0m >,所以2m x m -<<,记不等式()22200x mx m m +-<>的解集为集合B所以A B ⊆,所以220≥⎧⎨-≤⎩m m ,得2m ≥.故选:B . 12.C【分析】根据熟知函数的图象与性质判断函数的单调性.【详解】对于选项A ,()ln f x x =-在(),1-∞-上无意义,不符合题意; 对于选项B ,()11f x x =-+在(),1-∞-上是增函数,不符合题意; 对于选项C ,2234,? 4134,? 14x x x x x x x ⎧--≥≤-⎨-++-<<⎩或的大致图象如图所示中由图可知()f x 在(),1-∞-上是减函数,符合题意;对于选项D ,()21f x x =在(),1-∞-上是增函数,不符合题意. 故选:C. 13.C【分析】根据奇偶性的定义依次判断,并求函数的值域即可得答案. 【详解】对于①,y x =是偶函数,且值域为[)0,∞+; 对于②,3y x =是奇函数,值域为R ; 对于③,2xy =是偶函数,值域为[)1,+∞;对于④,2y x x=+是偶函数,且值域为[)0,∞+所以符合题意的有①④ 故选:C. 14.D【分析】根据函数的单调性可知,若函数存在最小值,则最小值是()21f =,则根据指数函数的性质,列式求实数a 的取值范围.【详解】2x <时,则()2,4xa a a -∈--,2x ≥时,则2log 1x ≥若要使得()f x 存在最小值,只需要2log 2a -≥,即1a ≤-. 故选:D. 15.A【分析】法一:根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出. 【详解】[方法一]:(指对数函数性质)由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m > 所以8log 989890m b =-<-=.综上,0a b >>. [方法二]:【最优解】(构造函数) 由910m =,可得9log 10(1,1.5)m =∈.根据,a b 的形式构造函数()1(1)m f x x x x =--> ,则1()1m f x mx -'=- 令()0f x '=,解得110m x m -= ,由9log 10(1,1.5)m =∈ 知0(0,1)x ∈ .()f x 在 (1,)+∞ 上单调递增,所以(10)(8)f f > ,即 a b >又因为9log 10(9)9100f =-= ,所以0a b >> .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用,a b 的形式构造函数()1(1)mf x x x x =-->,根据函数的单调性得出大小关系,简单明了,是该题的最优解.16.A【分析】根据一元二次不等式的求解得{}11B x x =-≤≤,根据集合的交运算即可求解. 【详解】因为{}1,0,1,2A =-和{}11B x x =-≤≤,所以{}1,0,1A B =-故选:A . 17.B【分析】由对数的运算性质可得ab =1,讨论a ,b 的范围,结合指数函数和对数函数的图像的单调性,即可得到答案.【详解】22log log 0a b +=,即为2log 0ab =,即有ab =1. 当a >1时,则0<b <1函数()1()xf x a=与()log b g x x =均为减函数,四个图像均不满足当0<a <1时,则b >1函数数()1()xf x a=与()log b g x x =均为增函数,排除ACD在同一坐标系中的图像可能是B 故选:B . 18.B【分析】结合指数函数,对数函数的单调性,以及临界值0和1,判断即可 【详解】由题意201313a -<==,故(0,1)a ∈ 1130312212b -⎛⎫==>= ⎪⎝⎭2231log log 10c =<= 故c a b << 故选:B 19.B【分析】转化为函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立,再根据二次函数的单调性以及不等式恒成立列式可求出结果. 【详解】因为函数212()log (3)f x x ax a =-+在[)2,+∞上单调递减所以函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立 所以2222230a a a ⎧≤⎪⎨⎪-+>⎩,解得44a -<≤.故选:B 20.A【分析】先求出函定义域,再通过换元法利用复合函数“同增异减”的性质得到结果【详解】由220x x ->,得02x <<令22t x x =-,则2log y t=22t x x =-在(0,1)上递增,在(1,2)上递减因为2log y t=在定义域内为增函数所以22log (2)y x x =-的单调递减区间为(1,2)故选:A 21.A【分析】由()f x 是R 上的奇函数求出a 值,并求出0x <时,则函数()f x 的解析式,再分段讨论解不等式作答.【详解】因函数()f x 是定义在R 上的奇函数,且当0x ≥时,则()4322x xf x a =-⨯+则()0004322220f a a =-⨯+=-=,解得1a =,即当0x ≥时,则()4322x xf x =-⨯+当0x <时,则0x ->,则()()(4322)x x f x f x --=--=--⨯+而当0x ≥时,则()2311(2)244xf x =--≥-,则当()6f x ≤-时,则0(4322)6x xx --<⎧⎨--⨯+≤-⎩,即0(24)(21)0x xx --<⎧⎨-+≥⎩变形得024x x -<⎧⎨≥⎩,解得2x -≤所以不等式()6f x ≤-的解集为(,2]-∞-. 故选:A22.(1)1122log 3log π>.(2)45log 3log 3>.(3)52log 2log 5<. 【分析】(1)根据12()log f x x=,在定义域内是减函数,即可比较二者大小;(2)根据3log y x =,在定义域内是增函数,可得330log 4log 5<<,故3311log 4log 5>,即可比较二者大小; (3)根据5log 21<,2log 51>即可比较二者大小. 【详解】(1)设12()log f x x =.3π<且()f x 是减函数 ∴(3)()f f π>即1122log 3log π>.(2)3log y x =是增函数∴330log 4log 5<<. ∴3311log 4log 5> 即45log 3log 3>. (3)55log 2log 51<=且22log 5log 21>=∴52log 2log 5<.【点睛】本题主要考查了比较对数的大小,解题关键是掌握对数的单调性和对数的运算性质,考查了分析能力和计算能力,属于基础题. 23.(1)1a =,定义域为()1,+∞ (2){112}x x <+∣【分析】(1)直接将()3,3ln 2代入函数解析式,即可求出参数a 的值,从而求出函数解析式,再根据对数的真数大于零得到不等式组,解得即可;(2)依题意可得()()2ln 1ln 2x x -,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可; (1)解:由题意可得()()ln 31ln 313ln2a ++-=,即()ln 312ln2a +=,所以314a += 解得1a =则()()()ln 1ln 1f x x x =++-.由1010x x +>⎧⎨->⎩,解得1x >.所以()f x 的定义域为()1,+∞. (2)解:由(1)可得()()()()2ln 1ln 1ln 1,1f x x x x x =++-=->不等式()()ln 2f x x 可化为()()2ln 1ln 2x x -因为ln y x =在()0,+∞上是增函数所以20121x xx ⎧<-⎨>⎩ 解得112x <+.故不等式()()ln 2f x x 的解集为{}|112x x <+. 24.(1)(],0-∞(2)存在 m =【分析】(1)利用分离参数法得到()9log 91x a x <+-对于任意x 恒成立,令()()9log 91xh x x =+-,利用对数的图像与性质即可求得;(2)先整理得到()9232x xg x m =+⋅+令3x t =, t ⎡∈⎣研究函数()()222222p t t mt t m m =++=++-,t ⎡∈⎣根据二次函数的单调性对m 进行分类讨论,即可求出m . (1)由题意可知,()()20f x x a -+>对于任意x 恒成立代入可得()9log 910x x a +-->所以()9log 91xa x <+-对于任意x 恒成立令()()()99999911log 91log 91log 9log log 199x xxxx xh x x +⎛⎫=+-=+-==+ ⎪⎝⎭因为1119x +>,所以由对数的图像与性质可得:91log 109x⎛⎫+> ⎪⎝⎭,所以0a ≤. 即实数a 的范围为(],0-∞. (2) 由()()9231f x xx g x m -=+⋅+,[]90,log 8x ∈且()()9log 91x f x x =++代入化简可得()9232x xg x m =+⋅+.令3x t =,因为[]90,log 8x ∈,所以t ⎡∈⎣则()()222222p t t mt t m m =++=++- t ⎡∈⎣①当1m -≤,即1m ≥-时,则()p t 在⎡⎣上为增函数所以()()min 1230p t p m ==+=,解得32m =-,不合题意,舍去②当1m <-<1m -<-时,则()p t 在[]1,m -上为减函数,()p t 在m ⎡-⎣上为增函数所以()()2min 20p t p m m =-=-=,解得m =m =③当m ≤-,即m ≤-()p t 在⎡⎣上为减函数所以()(min 100p t p ==+=解得m =综上可知m =【点睛】二次函数中“轴动区间定”或“轴定区间动”类问题,分类讨论的标准是函数在区间里的单调性. 25.(1)答案见解析 (2)1,4⎛⎫-∞- ⎪⎝⎭【分析】(1)根据复合函数的性质即可得到()h x 的值域;(2)令()()1ln F x x x =-,求出其最小值,则问题转化为1142x x a <-恒成立,进而求1142x xy =-最小值即可.(1)选择①,()()2ln 1h x x =-令21t x =-,则()0,t ∈+∞,故函数ln y t =的值域为R ,即()h x 的值域为R .选择②,()()2ln 1h x x =+,令21t x =+,则[)1,t ∈+∞因为函数ln y t =单调递增,所以0y ≥,即()h x 的值域为[)0,∞+. (2)令()()1ln F x x x =-.令12x m =,则()0,m ∈+∞,所以112211142244x x m m m ⎛⎫-=-=--≥- ⎪⎝⎭故14a <-,即a 的取值范围为1,4⎛⎫-∞- ⎪⎝⎭.26.(1)选择条件见解析,a =2,b =0;()g x 为奇函数,证明见解析; (2)77,88⎡-⎤⎢⎥⎣⎦.【分析】(1)若选择①,利用偶函数的性质求出参数,a b ; 若选择②,利用单调性得到关于,a b 的方程,求解即可;将,a b 的值代入到()g x 的解析式中再根据定义判断函数的奇偶性; (2)将题中条件转化为“()g x 的值域是()f x 的值域的子集”即可求解. (1) 选择①.由()()224f x x a x =+-+在[]1,1b b -+上是偶函数得20a -=,且()()110b b -++=,所以a =2,b =0. 所以()222xg x x =+.选择②.当0a >时,则()f x ax b =+在[]1,2上单调递增,则224a b a b +=⎧⎨+=⎩,解得20a b =⎧⎨=⎩ 所以()222xg x x =+.()g x 为奇函数.证明如下:()g x 的定义域为R . 因为()()222xg x g x x --==-+,所以()g x 为奇函数.(2) 当0x >时,则()122g x x x=+,因为224x x +≥,当且仅当22x x =,即x =1时等号成立,所以()104g x <≤; 当0x <时,则因为()g x 为奇函数,所以()104g x -≤<;当x =0时,则()00g =,所以()g x 的值域为11,44⎡⎤-⎢⎥⎣⎦.因为()2h x x c =--在[]22-,上单调递减,所以函数()h x 的值域是[]22,22c c ---. 因为对任意的1x R ∈,总存在[]22,2x ∈-,使得()()12g x h x =成立 所以[]11,22,2244c c ⎡⎤-⊆---⎢⎥⎣⎦,所以12241224c c ⎧--≤-⎪⎪⎨⎪-≥⎪⎩,解得7788c -≤≤. 所以实数c 的取值范围是77,88⎡-⎤⎢⎥⎣⎦.27.(1)12log y x =;(2)函数1()f x x x =+在区间(0,)+∞上具有性质L ;答案见解析;(3)(,1]-∞.【分析】(1)由于底数在(0,1)上的对数函数满足题意,故可得答案; (2)任取12,(0,)x x ∈+∞,且12x x ≠,对()()122f x f x +与122x x f +⎛⎫ ⎪⎝⎭作差化简为因式乘积形式,判断出与零的大小,可得结论; (3)函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离求出最值,可得参数的范围. 【详解】(1)如12log y x=(或底在(0,1)上的对数函数);(2)函数1()f x x x=+在区间(0,)+∞上具有性质L .证明:任取12,(0,)x x ∈+∞,且12x x ≠()()12121212121211122222f x f x x x x x f x x x x x x +⎛⎫⎛⎫++⎛⎫-=+++-+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭()()()()2212121212121212121241112222x x x x x x x x x x x x x x x x x x +--⎛⎫=+-== ⎪+++⎝⎭ 因为12,(0,)x x ∈+∞且12x x ≠所以()()21212120,20x x x x x x ->⋅+>,即()()1212022f x f x x x f ++⎛⎫-> ⎪⎝⎭. 所以函数1()f x x x=+在区间(0,)+∞上具有性质L . (3)任取12,(0,1)x x ∈,且12x x ≠,则()()21222121212121211122222g x g x x x x x g ax ax a x x x x ⎡⎤+⎛⎫++⎛⎫⎛⎫-=-+---⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()()()()()2221212121212121212122244ax x x x x x x x a x x x x x x x x x x -+⎡⎤--⎣⎦=-⋅=-++ 因为12,(0,1)x x ∈且12x x ≠,所以()()21212120,40x x x x x x ->⋅+> 要使上式大于零,必须()121220a x x x x -⋅⋅+>在12,(0,1)x x ∈上恒成立 即()12122a x x x x <+()212124x x x x +< ()()()()231212*********8x x x x x x x x x x +∴++>=+ 令()()3120,8x x t +=∈,则38y t =在()0,1上单调递减,即()()()()2331212121212228148x x x x t x x x x x x ∴>=++=>++ 所以1a ≤,即实数a 的取值范围为(,1]-∞.【点睛】关键点点睛:本题考查函数新概念,考查不等式的恒成立问题,解决本题的关键点是将函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离后转化为求最值问题,并借助于基本不等式和幂函数的单调性得出参数的范围,考查学生逻辑思维能力和计算能力,属于中档题. 28.(3,4)【分析】由对数的真数大于零,同时二次根式在分母,则其被开方数大于零,从而可求出定义域【详解】由题意可得260,40,x x ->⎧⎨->⎩解得34x <<,即()f x 的定义域是(3,4).故答案为:(3,4) 29.413a <<【分析】使复合函数()()log 4a f x ax =-在(]1,3上递减,需内增外减或外增内减,讨论a 求解即可 【详解】由题可得,根据对数的定义,0a >且1a ≠,所以4y ax =-是减函数,根据复合函数单调性的“同增异减”特点,得到1430a a >⎧⎨->⎩,所以413a <<.故答案为:413a <<30.2⎛ ⎝⎭[1,)+∞ 【分析】先根据题意求出()g x 的解析式,然后在每一段上求出函数的增区间即可 【详解】由12log 0x ≤,得1≥x ,由12log 0x >,得01x <<所以当1≥x 时,则12log 1()112xg x x ⎛⎫=-=- ⎪⎝⎭,则()g x 在[1,)+∞上递增当01x <<时,则21122()loglog g x x x =-+则121212log 11()2log 111lnlnln222x g x x x x x -'=-⋅+=由()0g x '>,得1212log 0x -<,解得0x <<所以()g x在⎛ ⎝⎭上递增 综上得函数()g x的单调递增区间为⎛ ⎝⎭ [1,)+∞故答案为:⎛ ⎝⎭,[1,)+∞ 31.1(,0]2-【分析】先求出分段函数中确定的一段的值域,然后分析另一段的值域应该有哪些元素.【详解】当0x ≥时,则2()log 0f x x =≥,因此当0x <时,则()(12)f x a x a =+-的取值范围应包含(,0)-∞ ∴1200a a +>⎧⎨-≥⎩,解得102-<≤a . 故答案为1(,0]2-. 【点睛】本题考查分段函数的值域问题,解题时注意分段讨论.32.()2,1【解析】根据对数函数的性质求解.【详解】令231x -=,则2x =,(2)1f =即()f x 图象过定点(2,1).故答案为:(2,1)33.()820,【分析】利用函数图像,数形结合进行分析.【详解】不妨设a b c <<,画出函数()f x 图像:()()()f a f b f c ==221log log 54a b c ∴==-+- ()2log 0ab ∴= 10534c <-+< 解得1ab = 820c <<820abc ∴<<.故答案为:()820,34.2【分析】由均值不等式求出xy 的最小值,再由对数的运算及性质即可求解.【详解】因为0x >,0y >且111x y+=所以111x y ≥+=4xy ≥,当且仅当11x y =,即2x y ==时等号成立 即xy 的最小值为4所以2222log log log log 42x y xy +=≥=故答案为:235.AD【分析】首先确定函数()f x 的零点,然后结合新定义的知识得到关于a 的等式,分离参数,结合函数的单调性确定实数a 的取值范围即可.【详解】因为函数()1e 2x f x x -=+-是R 上的增函数,且()10f =,所以1α=,结合“零点伴侣”的定义得11β-≤,则02β≤≤又函数()23g x x ax a =--+在区间[]0,2上存在零点,即方程230x ax a --+=在区间[]0,2上存在实数根 整理得2232122411x x x x a x x +++--+==++()4121x x =++-+ 令()()4121h x x x =++-+,[]0,2x ∈所以()h x 在区间[]0,1上单调递减,在[]1,2上单调递增 又()03h =,()723h =和()12h =,所以函数()h x 的值域为[]2,3 所以实数a 的取值范围是[]2,3.故选:AD .36.AC【分析】A 项代入参数,根据对数型函数定义域求法进行求解;B 项为最值问题,问一定举出反例即可;C 项代入参数值即可求出函数的值域;D 项为已知单调性求参数范围,根据二次函数单调性结合对数函数定义域求解即可.【详解】对于A ,当0a =时,则()()2lg 1f x x =-,令210x ->,解得1x <-或1x >,则()f x 的定义域为()(),11,-∞-⋃+∞,故A 正确;对于B 、C ,当0a =时,则()()2lg 1f x x =-的值域为R ,无最小值,故B 错误,C 正确;对于D ,若()f x 在区间[)2,+∞上单调递增,则21y x ax a =+--在[)2,+∞上单调递增,且当2x =时,则0y >则224210aa a⎧-≤⎪⎨⎪+-->⎩,解得3a>-,故D错误.故选:AC.。
对数与对数函数练习题及答案
对数与对数函数同步练习一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D、 23a a -2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或13、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x +==-则等于( )A、m n + B 、m n - C、()12m n + D、()12m n -4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,则αβ的值是( ) A 、lg5lg7 B 、lg35 C 、35 D 、351 5、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C、原点对称 D、直线y x =对称7、函数(21)log x y -=( )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭B、()1,11,2⎛⎫+∞ ⎪⎝⎭C 、2,3⎛⎫+∞ ⎪⎝⎭ D、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A、R B 、[)8,+∞ C 、(),3-∞- D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >> B、1n m >> C 、01n m <<< D 、01m n <<<10、2log 13a<,则a 的取值范围是( ) A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞⎪⎝⎭ C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B、2log y =C、21log y x = D、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的 D、在(),0-∞上是减少的二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13、若2log 2,log 3,m n a a m n a +=== 。
对数函数练习题(含答案)
对数函数一、选择题1.设0.32a =,20.3b =,2log 0.3c =,则,,a b c 的大小关系( )A. a b c <<B. b c a <<C. c b a <<D. c a b <<2.已知0.1 1.32log 0.3,2,0.2a b c ===,则,,a b c 的大小关系是( ) A .a b c << B .c a b << C .a c b << D .b c a <<3.式子25123lg lg lg +-= ( )A.2B.1C.0D.﹣24.使式子 2(1)log (1)x x -- 有意义的 x 的值是( )A. 1x <- 或 1x >B. 1x > 且 2x ≠C. 1x >D. 2x ≠5.函数()()22log 23f x x x =+-的定义域是( )A. []3,1-B. ()3,1-C. (][),31,-∞-⋃+∞D. (,3)(1,)-∞-⋃+∞6.已知0a >,且1a ≠,函数x y a =与log ()a y x =-的图像只能是图中的( ) A. B. C. D.7.函数()2()ln 28f x x x =--的单调递增区间是( )A. (),2-∞-B. (),1-∞C. ()1,+∞D. ()4,+∞ 8.函数()()20.5f log 2x x x =-++的单调递增区间为( ) A. 11,2⎛⎫- ⎪⎝⎭ B. 1,22⎛⎫ ⎪⎝⎭ C. 1,2⎛⎫+∞ ⎪⎝⎭ D.前三个答案都不对二、填空题9.计算: =-⨯5log 3132log 9log 125278__________.10.计算: 4413log 3log 32⨯=__________.11.如图所示的曲线是对数函数log a y x =当a 取4个不同值时的图像,已知a 4313,,,3510,则相应于1234,,,C C C C 的a 值依次为__________.12.函数()()log 21a f x x =--(0,)a a >≠的图像恒过定点__________.13.函数()log 23a y x =++ (0a >且1a ≠)的图像过定点__________.14.若3436x y ==,则21 x y+=__________. 15.已知()()0.450.45log 2log 1x x +>-,则实数x 的取值范围是______.三、解答题16.解不等式: ()()2log 4log 2a a x x ->-.17. 求函数()22log 65y x x =-+的定义域和值域.18. 求函数212log (32)y x x =+-的值域.19.已知()()4log 41x f x =-.1.求()f x 的定义域;2.讨论()f x 的单调性;3.求()f x 在区间1,22⎡⎤⎢⎥⎣⎦上的值域.20.已知指数函数()(0,1)x f x a a a =>≠且.(1)写出()f x 的反函数()g x 的解析式;(2)解不等式()log (23)a g x x ≤-参考答案1.答案:C解析:因为1a >,01b <<,0c <,所以c b a <<,故选C.2.答案:C解析:由对数和指数的性质可知,∵2log 0.30a =<,0.10221b =>=,1.300.20.21c =<=,∴a c b <<.3.答案:A解析:4.答案:B解析:由 210{1011x x x ->->-≠,解得 1x > 且 2x ≠. 5.答案:D解析:由题意,得2230x x +->,事实上,这是个一元二次不等式,此处,我们有两种解决方法:一是利用函数223y x x =+-的图像观察得到,要求图像正确、严谨;二是利用符号法则,即2230x x +->可因式分解为()()310x x +⋅->,则30,{10x x +>->或30,{10,x x +<-<解得1x >或3x <-, 所以函数()f x 的定义域为(,3)(1,)-∞-⋃+∞.6.答案:B解析:可以从图象所在的位置及单调性来判别.也可以利用函数的性质识别图象,特别注意底数a 对图象的影响。
高中数学对数函数经典练习题及答案(优秀4篇)
高中数学对数函数经典练习题及答案(优秀4篇)对数函数练习题篇一一、选择题1、下列函数(1)y= x (2)y=2x-1 (3)y=1x (4)y=2-1-3x (5)y=x2-1中,是一次函数的有( )A.4个B.3个C.2个D.1个2、A 、B(x2,y2)是一次函数y=kx+2(k>0)图像上的不同的两点,若则( )A.t0 C.t>1 D. t≤13、直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的三角形最多有( )A. 5个B.6个C.7个D.8个4、把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是( )A.11 D.m0的解集是( )A.x>3B.-2-29.一次函数y=ax+1与y=bx-2的图象交于x轴上一点,那么a:b等于( )A. B.C. D.以上答案都不对10、函数y=kx+b,那么当y>1时,x的取值范围是:( )A、x>0B、x>2C、x212、在平面直角坐标系中,线段AB的端点A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则k的值不可能是( )A.5B.-5C.-2D.3二、填空题13、如果直线y = -2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.14、平面直角坐标系中,点A的坐标是(4,0),点P在直线y=-x+m上,且AP=OP=4.则m的值是。
15、直线y=kx+2经过点(1,4),则这条直线关于x轴对称的直线解析式为:。
16、已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x 轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为 .17、点A的坐标为(-2,0),点B在直线y=x-4上运动,当线段AB最短时,点B的坐标是___________。
18、已知三个一次函数y1=x,y2= x+1,y3=- x+5。
对数函数练习题(含答案)
对数函数练习题(含答案)对数函数一、选择题1.设a=20.3,b=0.32,c=log2 0.3,则a、b、c的大小关系是()A。
a<b<cB。
b<c<aC。
c<b<aD。
c<a<b2.已知a=log2 0.3,b=20.1,c=0.21.3,则a、b、c的大小关系是()A。
a<b<cB。
c<a<bC。
a<c<bD。
b<c<a3.式子2lg5+lg12-lg3=()A。
2B。
1C。
0D。
-24.使式子log(x-1)/(x-1)有意义的x的值是()A。
x1B。
x>1且x≠2C。
x>1D。
x≠25.函数f(x)=log2(x2+2x-3)的定义域是()A。
[-3,1]B。
(-3,1)C。
(-∞,-3]∪[1,+∞)D。
(-∞,-3)∪(1,+∞)6.已知a>0,且a≠1,函数y=ax2与y=loga(-x)的图像只能是图中的()A.B.C.D.7.函数f(x)=ln(x2-2x-8)的单调递增区间是()A。
(-∞,-2)B。
(-∞,1)C。
(1,+∞)D。
(4,+∞)8.函数f(x)=log0.5(-x2+x+2)的单调递增区间为()A。
(-1,1)B。
(1,2)C。
(-∞,-1)∪[2,+∞)D。
前三个答案都不对二、填空题9.计算:log89×log2732-log1255=__________.10.计算:log43×log1432=__________.11.如图所示的曲线是对数函数y=logax当a取4个不同值时的图像,已知a的值分别为3、4、31、10,则相应于C1、C2、C3、C4的a值依次为__________.12.函数f(x)=loga(x-2)-1(a>0,a≠1)的图像恒过定点__________.13.函数y=loga(x+2)+3(a>0,a≠1)的图像过定点__________.14.若3x/4y=36,则21/x+3/y=__________.15.已知log0.45(x+2)>log0.45(1-x),则实数x的取值范围是__________.三、解答题16.解不等式:2loga(x-4)>loga(x-2)。
对数与对数函数习题及答案
对数和对数函数习题一、选择题1.若3a =2,则log 38-2log 36用a 的代数式可表示为( ) (A )a-2 (B )3a-(1+a)2 (C )5a-2 (D )3a-a 2 2.2log a (M-2N)=log a M+log a N,则NM的值为( ) (A )41(B )4 (C )1 (D )4或1 3.已知x 2+y 2=1,x>0,y>0,且log a (1+x)=m,logaya n xlog ,11则=-等于( ) (A )m+n (B )m-n (C )21(m+n) (D )21(m-n)4.如果方程lg2x+(lg5+lg7)lgx+lg5·lg7=0的两根是α、β,则α·β的值是( ) (A )lg5·lg7 (B )lg35 (C )35 (D )351 5.已知log 7[log 3(log 2x)]=0,那么x 21-等于( )(A )31(B )321 (C )221 (D )331 6.函数y=lg (112-+x)的图像关于( ) (A )x 轴对称 (B )y 轴对称 (C )原点对称 (D )直线y=x 对称 7.函数y=log 2x-123-x 的定义域是( )(A )(32,1)⋃(1,+∞) (B )(21,1)⋃(1,+∞) (C )(32,+∞) (D )(21,+∞)8.函数y=log 21(x 2-6x+17)的值域是( )(A )R (B )[8,+∞] (C )(-∞,-3) (D )[3,+∞] 9.函数y=log 21(2x 2-3x+1)的递减区间为( )(A )(1,+∞) (B )(-∞,43] (C )(21,+∞) (D )(-∞,21] 10.函数y=(21)2x +1+2,(x<0)的反函数为( ) (A )y=-)2(1log )2(21>--x x (B ))2(1log )2(21>--x x(C )y=-)252(1log )2(21<<--x x (D )y=-)252(1log )2(21<<--x x11.若log m 9<log n 9<0,那么m,n 满足的条件是( )(A )m>n>1 (B )n>m>1 (C )0<n<m<1 (D )0<m<n<112.log a132<,则a 的取值范围是( ) (A )(0,32)⋃(1,+∞) (B )(32,+∞)(C )(1,32) (D )(0,32)⋃(32,+∞)14.下列函数中,在(0,2)上为增函数的是( )(A )y=log 21(x+1) (B )y=log 212-x (C )y=log 2x 1(D )y=log 21(x 2-4x+5) 15.下列函数中,同时满足:有反函数,是奇函数,定义域和值域相同的函数是( )(A )y=2x x e e -+ (B )y=lg xx+-11 (C )y=-x 3 (D )y=x16.已知函数y=log a (2-ax)在[0,1]上是x 的减函数,则a 的取值范围是( ) (A )(0,1) (B )(1,2) (C )(0,2) (D )[2,+∞) 17.已知g(x)=log a 1+x (a>0且a ≠1)在(-1,0)上有g(x)>0,则f(x)=a1+x 是( )(A )在(-∞,0)上的增函数 (B )在(-∞,0)上的减函数 (C )在(-∞,-1)上的增函数 (D )在(-∞,-1)上的减函数 18.若0<a<1,b>1,则M=a b ,N=log b a,p=b a 的大小是( )(A )M<N<P (B )N<M<P (C )P<M<N (D )P<N<M 二、填空题1.若log a 2=m,log a 3=n,a 2m+n = 。
(完整版)幂函数、指数函数、对数函数专练习题(含答案)
精心整理1.函数f (x )=x 21-的定义域是A.(-∞,0]B.[0,+∞)C.(-∞,0)D.(-∞,+∞) 2.函数x y 2log =的定义域是A.(0,1]B.(0,+∞)C.(1,+∞)D.[1,+∞)3.4.A.|{y 5.6.A.y C.y 7.A.8.A.C.在9.A.(-10.的取值范围是则若设函数o x x x f ,1)f(x 0)(x )(o >⎪⎩⎨>=11.21||x y =函数A.是偶函数,在区间(﹣∞,0)上单调递增B.是偶函数,在区间(﹣∞,0)上单调递减C.是奇函数,在区间(0,+∞)上单调递增D.是奇函数,在区间(0,+∞)上单调递减12.的定义域是函数xx x y -+=||)1(013.函数12log (32)y x =-的定义域是A.[1,)+∞B.23(,)+∞C.23[,1]D.23(,1]14.下列四个图象中,函数xx x f 1)(-=的图象是15.设A 、B 是非空集合,定义A ×B={x |x ∈A ∪B 且x ∉A ∩B}.已知A={x |y =22x x -},B={y |y =2x ,x >0},则A ×B 等于 A.[0,1)∪(2,+∞)B.[0,1]∪[2,+∞)C.[0,1]D.[0,2]16.设a =20.3,b =0.32,c =log 3.02,则 Aa >c >bB.a >b >cC.b >c >aD.c >b >a 17.已知点33(,)39在幂函数()y f x =的图象上,则()f x 的表达式是 A.()3f x x = B .3()f x x = C.2()f x x -= D.1()()2x f x =18.已知幂函数αx x f =)(的部分对应值如下表:11则不等式1)(<x f 的解集是A.{}20≤<x xB.{}40≤≤x xC.{}22≤≤-x xD.{}44≤≤-x x 19.已知函数的值为),则,的值域为)1(0[93)(2f a ax x f x ∞+--+=A.3B.4C.5D.6 指数函数习题一、选择题1.定义运算a ?b =?a ≤b ?,b ?a >b ?)),则函数f (x )=1?2x 的图象大致为( ) 2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x )的大小关系是( ) A .f (b x )≤f (c x )B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同3.函数y=|2x-1|在区间(k-1,k+1)内不单调,则k的取值范围是( ) A.(-1,+∞)B.(-∞,1)C.(4BA.aC.a5aA.[C.6a的取A.C.[二、填空题7.函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,则a的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1<x2)的长度为x2-x1.已知函数y=2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为________. 三、解答题10.求函数y =211.(2011·银川模拟)若函数y =a 2x +2a x -1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12x ax x(1)(2)1A 、a 2、A 、413A 、4A 、5、已知732log [log (log )]0x =,那么12x -等于() A 、13B C D6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于() A 、x 轴对称B 、y 轴对称C 、原点对称D 、直线y x =对称7、函数(21)log x y -=A 、()2,11,3⎛⎫+∞ ⎪⎝⎭U B 、()1,11,2⎛⎫+∞ ⎪⎝⎭U C 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是()A 、R9A 、10、A 、⎛ ⎝11A 、y C 、y 12A C 13、若2log 2,log 3,m n a a m n a +===。
对数函数练习题及解答1
对数函数练习题及解答1篇一:对数和对数函数练习题(答案)[1]一、选择题:1.23log89的值是()A.B.1 C.D.232log23 2352.若log2[log1(log2x)]?log3[log1(log3y)]?log5[log1(log5z)]=0,则x、y、z的大小关系是()A.z<x<y B.x<y<zC.y<z<x3D.z<y<x3.已知x=2+1,则log4(x-x-6)等于()A.351 B. C.0 D.242 4.已知lg2=a,lg3=b,则2a?ba?2b2a?ba?2blg12等于()A.B.C.D.1?a?b1?a?b1?a?b1?a?blg15 5.已知2 lg(x-2y)=lgx+lgy,则x的值为( )A.1 B.4C.1或4D.4 或y6.函数y=log1(2x?1)的定义域为()A.(2211,+∞) B.[1,+∞) C.( ,1] D.(-∞,1)227.已知函数y=log1 (ax+2x+1)的值域为R,则实数a的取值范围是()2A.a >1 B.0≤a<1C.0<a<1 D.0≤a≤1 x5 e 8.已知f(e)=x,则f(5)等于()A.e B.5C.ln5D.log5e9.若f(x)?logax(a?0且a?1),且f?1(2)?1,则f(x)的图像是()AB CD10.若y??log2(x2?ax?a)在区间(??,1上是增函数,则a的取值范围是()A.[2? B.?2?2 C.2?2? D.2?2 ?????? 11.设集合A?{x|x?1?0},B?{x|log2x?0|},则A?B等于()A.{x|x?1} B.{x|x?0}C.{x|x??1} D.{x|x??1或x?1}2 12.函数y?lnx?1,x?(1,??)的反函数为()x?1ex?1ex?1ex?1ex?1y?x,x?(0,??)B.y?x,x?(0,??)C.y?x,x?(??,0)D .y?x,x?(??,0) e?1e?1e?1e?1A二、填空题:13.计算:log2.56.25+lg211?log23+lne+2= .10014.函数y=log4(x-1)(x<1=的反函数为.0.90.815.已知m>1,试比较(lgm)与(lgm)的大小.16.函数y =(log1x)-log1x+5 在2≤x≤4时的值域为.4422 三、解答题:17.已知y=loga(2-ax)在区间{0,1}上是x的减函数,求a的取值范围.2218.已知函数f(x)=lg[(a-1)x+(a+1)x+1],若f(x)的定义域为R,求实数a的取值范围.219.已知f(x)=x+(lga+2)x+lgb,f(-1)=-2,当x∈R时f(x)≥2x恒成立,求实数a的值,并求此时f(x)的最小值?20.设0<x<1,a>0且a≠1,试比较|loga(1-x)|与|loga(1+x)|的大小。
对数函数解答题(有解题步骤)
14.欲使x∈(-∞,1]时,f(x)有意义,需1+2x+4xa>0恒成立,也就是a>-[( )x+( )x](x≤1)恒成立.
∵u(x)=-[( )x+( )x]在(-∞,1]上是增函数,
∴当x=1时,[u(x)]max=- .
于是可知,当a>- 时,满足题意,
∴ ≤a<1或a≤-2,故当B A时,实数a的取值范围是:(-∞,-2)∪[ ,1)
5.需满足x>1且3>ax
当a≥3时,此时原函数的定义域为Ф;
当0<a<3时,此时原函数的定义域为:
当a=0时,得不等式组x>1且x>0此时原函数的定义域为x∈(1,+∞);
a<0时,此时原函数的定义域为x∈(1,+∞);
24.原方程等价于 。
即等价于 。②③
令y1=-x2+5x-3,y2=a,问题转化为求抛物线弧y1=-x2+5x-3= (1<x<3)与直线y=a的交点个数,如图所示,由此可见:
ⅰ)当a∈(-∞, 1]∪ 时,原方程无实数解;
ⅱ)当a∈(1, 3]∪ 时,原方程只有一个实数解;
ⅲ)当a∈ 时,原方程有两个不同的实数解。
又a>1,所以1<a<3.
27.(1)易知x∈(2, 6),y .原方程可变为lg(6-x)= lg2y,
由此得y= (x-6)2.注意到y ,故函数y=f(x)= (x-6)2,x∈(2, 5)∪(5, 6),其中图象是抛物线的一部分。
(1)求A;(2)若B A,求实数a的取值范围.
5.求函数f(x)=lg(x-1)+lg(3-ax)的定义域。
对数函数基础习题
1.log 5b =2,化为指数式是 ( ) A .5b =2 B .b 5=2 C .52=b D .b 2=5 答案:C2.在b =log (a -2)(5-a )中,实数a 的取值范围是 ( ) A .a >5或a <2 B .2<a <3或3<a <5 C .2<a <5D .3<a <4解析:要使式子b =log (a -2)(5-a )有意义则⎩⎪⎨⎪⎧a -2>0a -2≠15-a >0即2<a <3或3<a <5.答案:B3.下列结论正确的是 ( ) ①lg(lg10)=0 ②lg(lne)=0 ③若10=lg x 则x =10 ④若e =ln x ,则x =e 2 A .①③ B .②④ C .①②D .③④解析:∵lg10=1,∴lg(lg10)=0,故①正确; ∵lne =1,∴lg(lne)=0,故②正确; ∵10=lg x ,∴x =1010,故③不正确; ∵e =ln x ,∴x =e e ,故④也不正确; 答案:C4.若log 31-2x9=0,则x =________.解析: ∵log 31-2x9=0,∴1-2x9=1,1-2x =9. ∴-2x =8.x =-4. 答案:-45.若a >0,a 2=49,则log 23a =________.解析:∵a >0,且a 2=49,∴a =23.∴log 2323=1.答案:16.将下列指数式化为对数式,对数式化为指数式: (1) πx =8;(2)log x 64=-6; (3)lg1 000=3.解:(1)由πx =8,得x =log π8; (2)由log x 64=-6,得x -6=64;(3)由lg1 000=3,得103=1 000.一、选择题1.已知log x 8=3,则x 的值为 ( ) A.12B .2C .3D .4解析:由log x 8=3,得x 3=8,∴x =2. 答案:B 2.方程2log 3x=14的解是( ) A .9 B.33C. 3D.19解析:∵2log 3x=14=2-2.∴log 3x =-2. ∴x =3-2=19.答案:D3.若log x 7y =z 则 ( ) A .y 7=x z B .y =x 7z C .y =7xD .y =z 7x解析:由log x 7y =z 得:x z =7y ,y =x 7z . 答案:B4.log 5[log 3(log 2x )]=0,则x 12等于 ( ) A.36 B.39C.24D.23解析:∵log 5[log 3(log 2x )]=0, ∴log 3(log 2x )=1,∴log 2x =3. ∴x =23=8. ∴x12-=812-=18=122=24. 答案:C 二、填空题5.log 6[log 4(log 381)]=________. 解析:设log 381=x ,则3x =81=34, ∴x =4,∴原式=log 6[log 44]=log 61=0. 答案:0 6.log 23278=________. 解析:设log 23278=x ,则(23)x =278=(23)-3, ∴x =-3.∴log 23278=-3. 答案:-37.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1-x ,x >1,若f (x )=2,则x =________.解析:由⎩⎪⎨⎪⎧x ≤13x =2⇒x =log 32,⎩⎪⎨⎪⎧x >1-x =2⇒x =-2无解.答案:log 328.若log a 2=m ,log a 3=n ,则a 2m +n =________.解析:∵log a 2=m ,∴a m =2,∴a 2m =4,又∵log a 3=n , ∴a n =3,∴a 2m +n =a 2m ·a n =4×3=12.答案:12 三、解答题 9.求下列各式中x . (1)log 2x =-23;(2)log 5(log 2x )=0.解:(1)x =223-=(12)23 (2)log 2x =1,x =2.10.已知二次函数f (x )=(lg a )x 2+2x +4lg a 的最大值为3,求a 的值. 解:原函数式可化为 f (x )=lg a (x +1lg a )2-1lg a+4lg a . ∵f (x )有最大值3, ∴lg a <0,且-1lg a+4lg a =3, 整理得4(lg a )2-3lg a -1=0, 解之得lg a =1或lg a =-14.又∵lg a <0,∴lg a =-14.∴a =1014-.1.若a >0,且a ≠1,x ∈R ,y ∈R ,且xy >0,则下列各式不恒成立的是 ( ) ①log a x 2=2log a x ;②log a x 2=2log a |x |; ③log a (xy )=log a x +log a y ; ④log a (xy )=log a |x |+log a |y |. A .②④ B .①③ C .①④D .②③解析:∵xy >0.∴①中若x <0则不成立;③中若x <0,y <0也不成立. 答案:B2.计算log 916·log 881的值为 ( ) A .18 B.118 C.83D.38解析:log 916·log 881=lg16lg9·lg81lg8=4lg22lg3×4lg33lg2=83. 答案:C3.已知lg2=a ,lg3=b ,则log 36= ( ) A.a +b aB.a +b bC.a a +bD.b a +b解析:log 36=lg6lg3=lg2+lg3lg3=a +b b . 答案:B4.已知log 23=a,3b =7,则log 1256=________. 解析:∵3b =7,∴b =log 37, ∴log 1256=log 356log 312=log 3(7×8)log 3(4×3)=log 37+3log 322log 32+1又∵log 23=a ,∴log 32=1a . 原式=b +3a 2a +1=ab +3a2+a a=ab +3a +2. 答案:ab +3a +25.若lg x -lg y =a ,则lg(x 2)3-lg(y2)3=________.解析:∵lg x -lg y =a , ∴lg(x 2)3-lg(y 2)3=3(lg x 2-lg y2)=3(lg x -lg y )=3a . 答案:3a6.计算下列各式的值. (1)log 2748+log 212-12log 242; (2)log 225·log 34·log 59. 解:(1)原式=log 27×1248×42=log 212=-12.(2)原式=log 252·log 322·log 532 =8log 2·5log 32·log 53=8lg 5lg 2·lg 2lg 3·lg 3lg 5=8.一、选择题1.lg8+3lg5的值为 ( ) A .-3 B .-1 C .1D .3解析:lg8+3lg5=3lg2+3lg5=3(lg2+lg5)=3lg10=3. 答案:D2.若log 34·log 8m =log 416,则m 等于 ( ) A .3 B .9 C .18D .27解析:原式可化为:log 8m =2log 34∴13log 2m =2log 43,∴m 13=3. m =27. 答案:D3.已知a =log 32,用a 来表示log 38-2log 36 ( ) A .a -2B .5a -2C .3a -(1+a )2D .3a -a 2-1解析:log 38-2log 36=3log 32-2(log 32+log 33) =3a -2(a +1) =a -2. 答案:A4.已知方程x 2+x log 26+log 23=0的两根为α、β,则(14)α·(14)β= ( )A.136 B .36 C .-6D .6解析:由题意知:α+β=-log 26,(14)α·(14)β=(14)α+β=(14)-log 26=4log 26=22log 26=36.答案:B 二、填空题5.2(lg 2)2+lg 2·lg 5+(lg 2)2-lg 2+1=________. 解析:原式=2(lg 2)2+lg 2·lg 5+1-lg 2=2(lg 2)2+lg 2(lg 5-1)+1 =2(lg 2)2-2(lg 2)2+1=1. 答案:16.设g (x )=⎩⎪⎨⎪⎧e x ,x ≤0ln x ,x >0,则g (g (12))=________.解析:∵12>0,∴g (12)=ln 12.而g (g (12))=g (ln 12)=e 1ln2=12.答案:127.方程log 3(x -1)=log 9(x +5)的解是________. 解析:由题意知⎩⎪⎨⎪⎧x -1>0,x +5>0,(x -1)2=x +5,解之得x =4.答案:x =48.已知x 3=3,则3log 3x -log x 23=________. 解析:3log 3x =log 3x 3=log 33=1,而log x 23=log x 3332=log 3332=32,∴3log 3x -log x 23=1-32=-12.答案:-12三、解答题9.计算下列各式的值: (1)log 34log 98; (2)lg2+lg50+31-log 92; (3)221log4+(169)12-+lg20-lg2-(log 32)·(log 23)+(2-1)lg1.解:(1)原式=log 322log 923=2log 3232log 32=43.(2)原式=lg2+lg 1002+3×323log 2-=lg2+(2-lg2)+3×3-12log 32231log 2-=2+3×3123log 2-=2+3×2-12=2+322.(3)原式=14+[(43)2]-12+lg 202-lg2lg3·lg3lg2+1=14+(43)-1+lg10-1+1=2.10.设3x =4y =36,求2x +1y 的值. 解:由已知分别求出x 和y , ∵3x =36,4y =36, ∴x =log 336,y =log 436, 由换底公式得: x =log 3636log 363=1log 363,y =log 3636log 364=1log 364, ∴1x =log 363,1y =log 364, ∴2x +1y =2log 363+log 364 =log 36(32×4)=log 3636=1.1.函数f (x )=3x 21-2x +lg(2x +1)的定义域是 ( )A .(-12,+∞)B .(-12,1)C .(-12,12)D .(-∞,-12)解析:由⎩⎪⎨⎪⎧1-2x >02x +1>0得-12<x <12.答案:C2.函数y =log a x 的图像如图所示,则实数a 的可能取值是( ) A .5 B.15 C.1eD.12解析:∵函数y =log a x 的图像一致上升,∴函数y =log a x 为单调增函数, ∴a >1. 答案:A3.设a =log 123,b =(13)0.3,c =213,则a ,b ,c 的大小关系是 ( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c解析:∵a =log 123<log 121=0,0<b =(13)0.3<(13)0=1,c =213>20=1.∴a <b <c .答案:A4.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,则f (f (14))=________.解析:f (14)=log 214=-2.f (f (14))=f (-2)=3-2=19. 答案:195.已知log 0.6(x +2)>log 0.6(1-x ),则实数x 的取值范围是________. 解析:∵函数y =log 0.6x 为减函数, ∴结合定义域可得 ⎩⎪⎨⎪⎧x +2>01-x >0x +2<1-x得⎩⎪⎨⎪⎧x >-2x <1x <-12∴-2<x <-12.答案:(-2,-12)6.已知函数y =loga (x +b )的图像如图所示,求实数a 与b 的值. 解:由图像可知,函数的图像过点(-3,0)和(0,2),∴⎩⎪⎨⎪⎧log a (b -3)=0log a b =2,解之得b =4, a =2.一、选择题 1.已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N 等于 ( )A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅解析:由题意得M ={x |x <1},N ={x |x >-1}, 则M ∩N ={x |-1<x <1}. 答案:C2.函数f (x )=log 2(3x +3-x )是 ( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .不是奇函数又不是偶函数 解析:∵3x +3-x >0恒成立.∴f (x )的定义域为R.又∵f (-x )=log 2(3-x +3x )=f (x ).∴f (x )为偶函数.答案:B3.如图是三个对数函数的图像,则a 、b 、c 的大小关系是 ( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b解析:由图可知a >1,而0<b <1,0<c <1,取y =1,则可知c >b .∴a >c >b . 答案:D4.已知函数f (x )=|lg x |.若a ≠b ,且f (a )=f (b ),则a +b 的取值范围是 ( ) A .(1,+∞) B .[1,+∞) C .(2,+∞)D .[2,+∞)解析:f (x )=|lg x |的图像如图所示, 由题可设0<a <1,b >1, ∴|lg a |=-lg a ,|lg b |=lg b , ∴-lg a =lg b . 即1a=b , ∴a +b =a +1a(0<a <1).又∵函数y =x +1x (0<x <1)为减函数, ∴a +1a >2.答案:C 二、填空题5.对数函数的图像过点(16,4),则此函数的解析式为________. 解析:设f (x )=log a x (a >0且a ≠1),则log a 16=4. ∴a 4=16,又∵a >0且a ≠1,∴a =2. 即f (x )=log 2x . 答案:f (x )=log 2x6.已知函数y =3+log a (2x +3)(a >0且a ≠1)的图像必经过定点P ,则P 点坐标________. 解析:∵当2x +3=1即x =-1时,log a (2x +3)=0,y =3,P (-1,3). 答案:(-1,3)7.方程x 2=log 12x 解的个数是________.解析:函数y =x 2和y =log 12x 在同一坐标系内的图像大致为:答案:18.若实数a 满足log a 2>1,则a 的取值范围为________. 解析:当a >1时,log a 2>1=log a a . ∴2>a .∴1<a <2;当0<a <1时,log a 2<0. 不满足题意. 答案:1<a <2 三、解答题9.(1)已知函数y =lg(x 2+2x +a )的定义域为R ,求实数a 的取值范围;(2)已知函数f (x )=lg[(a 2-1)x 2+(2a +1)x +1],若f (x )的定义域为R ,求实数a 的取值范围.解:(1)因为y =lg(x 2+2x +a )的定义域为R , 所以x 2+2x +a >0恒成立,所以Δ=4-4a <0, 所以 a >1.故a 的取值范围是(1,+∞).(2)依题意(a 2-1)x 2+(2a +1)x +1>0对一切x ∈R 恒成立.当a 2-1≠0时,⎩⎪⎨⎪⎧a 2-1>0,Δ=(2a +1)2-4(a 2-1)<0.解得a <-54.当a 2-1=0时,显然(2a +1)x +1>0,对x ∈R 不恒成立. 所以a 的取值范围是(-∞,-54).10.已知函数f (x )=log a x +1x -1(a >0,且a ≠1).(1)求f (x )的定义域: (2)判断函数的奇偶性.解:(1)要使函数有意义,则有x +1x -1>0,即⎩⎪⎨⎪⎧x +1>0,x -1>0,,或⎩⎪⎨⎪⎧x +1<0,x -1<0,解得x >1或x <-1, 此函数的定义域为(-∞,-1)∪(1,+∞),关于原点对称. (2)f (-x )=log a -x +1-x -1=log a x -1x +1=-log a x +1x -1=-f (x ).∴f (x )为奇函数.1.(2011·天津高考)设a =log 54,b =(log 53)2,c =log 45,则 ( ) A .a <c <b B .b <c <a C .a <b <cD .b <a <c解析:由于b =(log 53)2=log 53·log 53<log 53<a =log 54<1<log 45=c ,故b <a <c . 答案:D2.函数y =log 3x -3的定义域是 ( ) A .(9,+∞) B .[9,+∞) C .[27,+∞)D .(27,+∞)解析:由log 3x -3≥0得log 3x ≥3.即x ≥27. 答案:C3.若log m 8.1<log n 8.1<0,那么m ,n 满足的条件是 ( ) A .m >n >1B .n >m >1C .0<n <m <1D .0<m <n <1解析:由题意知m ,n 一定都是大于0且小于1的,根据函数图像知,当x >1时,底数越大,函数值越小.答案:C4.不等式log 13(5+x )<log 13(1-x )的解集为________.解析:由⎩⎪⎨⎪⎧5+x >01-x >05+x >1-x,得-2<x <1.答案:{x |-2<x <1}5.y =(log 12a )x 在R 上为减函数,则a 的取值范围是________.解析:使0<log 12a <1,得12<a <1.答案:(12,1)6.已知函数f (x )=log a (3-ax ),当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围.解:由题意知,3-ax >0对x ∈[0,2]恒成立,a >0,且a ≠1. 设g (x )=3-ax ,则g (x )在[0,2]上为减函数, ∴g (x )min =g (2)=3-2a >0, ∴a <32.∴a 的取值范围是(0,1)∪(1,32).一、选择题1.与函数y =(14)x 的图像关于直线y =x 对称的函数是 ( )A .y =4xB .y =4-xC .y =log 14xD .y =log 4x解析:作出图像观察可知函数y =(14)x 的图像与y =log 14x 的图像关于直线y =x 对称.答案:C2.函数y =2+log 2x (x ≥1)的值域为 ( ) A .(2,+∞) B .(-∞,2) C .[2,+∞)D .[3,+∞)解析:∵x ≥1,∴log 2x ≥0, ∴y =2+log 2x ≥2. 答案:C3.若log a (a 2+1)<log a 2a <0,则a 的取值范围是 ( )A .(0,1)B .(12,1)C .(0,12)D .(1,+∞)解析:∵(a 2+1)-2a =(a -1)2>0(a ≠1), ∴a 2+1>2a .由log a (a 2+1)<log a 2a 知: 0<a <1.又log a 2a <0=log a 1. ∴2a >1⇒a >12,综上:12<a <1.答案:B4.已知函数y =log a (2-ax )在[0,1]上为减函数,则a 的取值范围为 ( ) A .(0,1) B .(1,2) C .(0,2)D .(2,+∞)解析:∵a >0,∴g (x )=2-ax 为减函数, 即任取x 1,x 2∈[0,1],且x 1<x 2,有g (x 1)>g (x 2), 又log a g (x 1)>log a g (x 2).∴a >1.而又∵g (x )=2-ax 在[0,1]恒为正. ∴2-a >0,∴a <2. 答案:B二、填空题5.函数f (x )=⎩⎪⎨⎪⎧ax +b (x ≤0)log c (x +19)(x >0)的图像如图所示,则a +b +c =________.解析:∵f (x )=ax +b (x ≤0)过点(-1,0),(0,2),∴⎩⎪⎨⎪⎧0=-a +b2=b ,∴a =2,b =2.由图像知f (x )=log c (x +19)过点(0,2)∴2=log c 19,∴c =13.∴a +b +c =2+2+13=133.答案:1336.已知集合A ={x |log 2x ≤2},B =(-∞,a )若A ⊆B ,则a 的取值范围是(c ,+∞),其中c =________.解析:∵log 2x ≤2=log 24 ∴0<x ≤4,∴A ={x |0<x ≤4}. 又∵A ⊆B .∴a >4. ∴c =4. 答案:47.函数f (x )=log a x (a >0且a ≠1)在[2,3]上的最大值为1,则a =________. 解析:当a >1时,f (x )max =f (3)=log a 3=1. ∴a =3.当0<a <1时,f (x )max =f (2)=log a 2=1. ∴a =2(舍去). ∴a =3.答案:38.关于函数f (x )=lg xx 2+1有下列结论:①函数f (x )的定义域是(0,+∞);②函数f (x )是奇函数;③函数f (x )的最小值为-lg2;④当0<x <1时,函数f (x )是增函数;当x >1时,函数f (x )是减函数.其中正确结论的序号是________.解析:由xx 2+1>0知函数f (x )的定义域是(0,+∞),则函数f (x )是非奇非偶函数,所以①正确,②错误;f (x )=lg x x 2+1=-lg(x +1x )≤lg 12=-lg2,即函数f (x )的最大值为-lg2,所以③错误;函数y =x +1x ,当0<x <1时,函数g (x )是减函数;当x >1时,函数g (x )是增函数.而函数y =lg x 在(0,+∞)上单调递增,所以④正确.答案:①④ 三、解答题9.对a ,b ∈R 定义运算“*”为a *b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ),若f (x )=[log 12(3x -2)]*(log 2x ),试求f (x )的值域.解:f (x )=⎩⎨⎧log 12(3x -2) (x ≥1),log 2x (23<x <1)当x ≥1时,log 12(3x -2)≤0,当23<x <1时,1-log 23<log 2x <0, 故f (x )的值域为(-∞,0].10.分贝是计量声音强度相对大小的单位.物理学家引入了声压级(spl)来描述声音的大小:把声压P 0=2×10-5帕作为参考声压,把所要测量的声压P 与参考声压P 0的比值取常用对数后乘以20得到的数值称为声压级.声压级是听力学中最重要的参数之一,单位是分贝(dB).分贝值在60以下为无害区,60~110为过渡区,110以上为有害区.(1)根据上述材料,列出分贝值y 与声压P 的函数关系式. (2)某地声压P =0.002帕,试问该地为以上所说的什么区?(3)2012年央视春晚中,郭冬临、魏积安、何军等表演小品《面试》时,现场多次响起响亮的掌声,某观众用仪器测量到最响亮的一次音量达到了90分贝,试求此时中央电视台演播大厅的声压是多少?解:(1)由已知得y =20lg P P 0,又P 0=2×10-5,则y =20lg P 2×10-5.(2)当P =0.002时,y =20lg0.0022×10-5=20lg102=40(分贝). 由已知条件知40分贝小于60分贝,所以该地区为无害区. (3)由题意得90=20lgP P 0,则PP 0=104.5,所以P=104.5P0=104.5×2×10-5=2×10-0.5≈0.63(帕).。
对数和对数函数练习题(答案)
一、选择题: ADBCB CDCBAAB 13.213,14.y =1-2x (x ∈R), 15. (lg m )0.9≤(lg m )0.8,16.8425≤≤y 17.解析:先求函数定义域:由2-ax >0,得ax <2,又a 是对数的底数,≨a >0且a ≠1,≨x <a 2由递减区间[0,1]应在定义域内可得a2>1,≨a <2,又2-ax 在x ∈[0,1]是减函数≨y =log a (2-ax )在区间[0,1]也是减函数,由复合函数单调性可知:a >1,≨1<a <218、解:依题意(a 2-1)x 2+(a +1)x +1>0对一切x ∈R 恒成立.当a 2-1≠0时,其充要条件是:⎪⎩⎪⎨⎧<--+=∆>-0)1(4)1(01222a a a 解得a <-1或a >35,又a =-1,f (x )=0满足题意,a =1,不合题意.所以a 的取值范围是:(-≦,-1]∪(35,+≦) 19、解析:由f (-1)=-2 ,得:f (-1)=1-(lg a +2)+lg b =-2,解之lg a -lg b =1,≨b a =10,a =10b .又由x ∈R ,f (x )≥2x 恒成立.知:x 2+(lg a +2)x +lg b ≥2x ,即x 2+x lg a +lg b ≥0,对x ∈R 恒成立,由Δ=lg 2a -4lg b ≤0,整理得(1+lg b )2-4lg b ≤0,即(lg b -1)2≤0,只有lg b =1,不等式成立.即b =10,≨a =100.≨f (x )=x 2+4x +1=(2+x )2-3,当x =-2时,f (x ) min =-3.20.解法一:作差法|log a (1-x )|-|log a (1+x )|=|a x lg )1lg(- |-|ax lg )1lg(+|=|lg |1a (|lg(1-x )|-|lg(1+x )|) ≧0<x <1,≨0<1-x <1<1+x≨上式=-|lg |1a [(lg(1-x )+lg(1+x )]=-|lg |1a ·lg(1-x 2) 由0<x <1,得,lg(1-x 2)<0,≨-|lg |1a ·lg(1-x 2)>0, ≨|log a (1-x )|>|log a (1+x )|解法三:平方后比较大小≧log a 2(1-x )-log a 2(1+x )=[log a (1-x )+log a (1+x )][log a (1-x )-log a (1+x )]=log a (1-x 2)·log a x x +-11=|lg |12a ·lg(1-x 2)·lg x x+-11≧0<x <1,≨0<1-x 2<1,0<x x +-11<1≨lg(1-x 2)<0,lg x x+-11<0≨log a 2(1-x )>log a 2(1+x ),即|log a (1-x )|>|log a (1+x )|21.解析:(1)定义域为(-≦,1),值域为(-≦,1)(2)设1>x 2>x 1≧a >1,≨12x x a a >,于是a -2x a <a -1x a 则log a (a -a 2x a )<log a (a -1x a )即f (x 2)<f (x 1)≨f (x )在定义域(-≦,1)上是减函数(3)证明:令y =log a (a -a x )(x <1),则a -a x=a y ,x =log a (a -a y )≨f -1(x )=log a (a -a x )(x <1)故f (x )的反函数是其自身,得函数f (x )=log a (a -a x )(x <1=图象关于y =x 对称.22.解析:根据已知条件,A 、B 、C 三点坐标分别为(a ,log 2a ),(a +1,log 2(a +1)),(a +2,log 2(a +2)),则△ABC 的面积 S=)]2(log [log 2)]2(log )1([log 2)]1(log [log 222222++-++++++a a a a a a222)]2([)1)(2(log 21+++=a a a a a )2()1(log 2122++=a a aa a a a 212log 21222+++=)211(log 2122a a ++=因为1≥a ,所以34log 21)311(log 2122max =+=S。
对数函数练习题(有答案)
对数函数练习题(有答案)1.函数y =log (2x -1)(3x -2)的定义域是( )A .⎝ ⎛⎭⎪⎫12,+∞B .⎝ ⎛⎭⎪⎫23,+∞C .⎝ ⎛⎭⎪⎫23,1∪(1,+∞)D .⎝ ⎛⎭⎪⎫12,1∪(1,+∞) 2.若集合A ={ x |log 2x =2-x},且 x ∈A ,则有( )A .1>x 2>xB .x 2>x >1C .x 2>1>xD .x >1>x 23.若log a 3>log b 3>0,则 a 、b 、1的大小关系为( )A .1<a <bB .1 <b <aC .0 <a <b <1D .0 <b <a <14.若log a 45<1,则实数a 的取值范围为( ) A .a >1 B .0<a <45 C .45<a D .0<a <45或a >1 5.已知函数f (x )=log a (x -1)(a >0且 a ≠1)在x ∈(1,2)时,f (x )<0,则f (x )是A .增函数B .减函数C .先减后增D .先增后减6.如图所示,已知0<a <1,则在同一直角坐标系中,函数y =a -x 和y =log a (-x )的图象只可能为( )7.函数y =f (2x )的定义域为[1,2],则函数y =f (log 2x )的定义域为( )A .[0,1]B .[1,2]C .[2,4]D .[4,16] 8.若函数f (x )=log12()x 3-ax 上单调递减,则实数a 的取值范围是 ( )A .[9,12]B .[4,12]C .[4,27]D .[9,27]9.函数y =a x -3+3(a >0,且a ≠1)恒过定点__________.10.不等式⎝ ⎛⎭⎪⎫1310-3x <3-2x 的解集是_________________________. 11.(1)将函数f (x )=2x 的图象向______平移________个单位,就可以得到函数g (x )=2x -x 的图象.(2)函数f (x )=⎝ ⎛⎭⎪⎫12|x -1| ,使f (x )是增区间是_________. 12.设 f (log 2x )=2x (x >0).则f (3)的值为 .13.已知集合A ={x |2≤x ≤π,x ∈R}.定义在集合A 上的函数f (x )=log a x (0<a <1)的最大值比最小值大1,则底数a 为__________.14.当0<x <1时,函数y =log (a 2-3)x 的图象在x 轴的上方,则a 的取值范围为________.15.已知 0<a <1,0<b <1,且a log b (x -3)<1,则 x 的取值范围为 . 16.已知 a >1,求函数 f (x )=log a (1-a x )的定义域和值域.17.已知 0<a <1,b >1,ab >1,比较log a 1b ,log a b ,log b 1b的大小.18.已知f (x )=log a x 在[2,+ ∞ )上恒有|f (x )|>1,求实数a 的取值范围.19.设在离海平面高度h m 处的大气压强是x mm 水银柱高,h 与x 之间的函数关系式为:h =k ln x c,其中c 、k 都是常量.已知某地某天在海平面及1000 m 高空的大气压强分别是760 mm 水银柱高和675 mm 水银柱高,求大气压强是720 mm 水银柱高处的高度.20.已知关于x 的方程log 2(x +3)-log 4x 2=a 的解在区间(3,4)内,求实数a 的取值范围.参考答案:1.C 2.B 3.A 4.D 5.A 6.B 7.D 8.A9.(3,4) 10.{x |_x <2} 11.右,2;(-∞,1), 12.25613.2π14.a ∈(-2,-3)∪(3,2) 15.(3,4)16.解 ∵ a >1,1-a x >0,∴ a x <1,∴ x <0,即函数的定义域为(-∞ ,0).∵ a x >0且a x <1,∴0<1-a x <1 ∴log a (1-a x )<0,即函数的值域是(-∞ ,0).17.解 ∵ 0<a <1,b >1,∴ log a b <0,log b 1b =-1,log a 1b >0,又ab >1,∴ b >1a >1,log a b <log a 1a=-1,∴ log a b <log b51b <log a 1b.18.解 由|f (x )|>1,得log a x >1或log a x <-1.由log a x >1,x ∈[2,+∞ )得 a >1,(log a x )最小=log a 2,∴ log a 2>1,∴ a <2,∴ 1<a <2;由log a x <-1,x ∈[2,+ ∞ )得 0<a <1,(log a x )最大=log a 2,∴ log a 2<-1,∴ a >12, ∴12<a <1. 综上所述,a 的取值范围为(12,1 )∪(1,2).19.解 ∵ h =k ln x c ,当 x =760,h =0,∴ c =760.当x =675时,h =1 000,∴ 1 000=k ln 675760=k ln0.8907 ∴ k =1000ln0.8907=1000lg e lg0.8907当x =720时,h =1000lg e lg0.8907ln 720760=1000lg e lg0.8907·ln0.9473=1000lg e lg0.8907·lg0.9473lg e≈456 m. ∴ 大气压强为720 mm 水银柱高处的高度为456 m .20.本质上是求函数g (x )=log 2(x +3)-log 4x 2 x ∈(3,4)的值域.∵ g (x )=log 2(x +3)-log 4x 2=log 2(x +3)-log 2x =log 2x +3x =log 2⎝ ⎛⎭⎪⎫1+1x ∈⎝ ⎛⎭⎪⎫log 254,log 243 ∴ a ∈⎝ ⎛⎭⎪⎫log 254,log 243.。
指数函数对数函数专练习题(含答案)
指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.对图象的影响在第一象限内,从顺时针方向看图象,逐渐在第四象限内,从顺时针方向看图象,逐渐指数函数习题一、选择题1.定义运算a ⊗b =⎩⎪⎨⎪⎧aa ≤b b a >b,则函数f (x )=1⊗2x的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x)的大小关系是( )A .f (b x )≤f (c x)B .f (b x )≥f (c x)C .f (b x )>f (c x)D .大小关系随x 的不同而不同3.函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2)4.设函数f (x )=ln[(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x -2x-1)的定义域是B ,若A ⊆B ,则正数a 的取值范围( ) A .a >3 B .a ≥3 C .a > 5D .a ≥ 55.已知函数f (x )=⎩⎪⎨⎪⎧3-a x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A .[94,3)B .(94,3)C .(2,3)D .(1,3)6.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题7.函数y =a x(a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是________.9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题 10.求函数y =2342x x ---+的定义域、值域和单调区间.11.(2011·银川模拟)若函数y =a 2x +2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.1.解析:由a ⊗b =⎩⎪⎨⎪⎧aa ≤b ba >b得f (x )=1⊗2x=⎩⎪⎨⎪⎧2xx ≤0,1x >0.答案:A2. 解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增.若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x).若x <0,则3x <2x <1,∴f (3x )>f (2x).∴f (3x )≥f (2x). 答案:A3.解析:由于函数y =|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4. 解析:由题意得:A =(1,2),a x -2x >1且a >2,由A ⊆B 知a x -2x>1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3. 答案:B5. 解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,注意a 8-6>(3-a )×7-3,所以⎩⎪⎨⎪⎧a >13-a >0a 8-6>3-a ×7-3,解得2<a <3.答案:C6. 解析:f (x )<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,当a >1时,必有a -1≥12,即1<a ≤2,当0<a <1时,必有a ≥12,即12≤a <1,综上,12≤a <1或1<a ≤2.答案:C7. 解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]. 答案:[-1,1]9. 解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110. 解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1. ∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-4或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =2341()2x x --+[28,1]. 由t =-x 2-3x +4=-(x +32)2+254(-4≤x ≤1)可知,当-4≤x ≤-32时,t 是增函数,当-32≤x ≤1时,t 是减函数.根据复合函数的单调性知:y =2341()2x x --+[-4,-32]上是减函数,在[-32,1]上是增函数.∴函数的单调增区间是[-32,1],单调减区间是[-4,-32].11. 解:令a x=t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[1a,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去). ②若0<a <1,∵x ∈[-1,1],∴t =a x∈[a ,1a ],故当t =1a,即x =-1时,y max =(1a+1)2-2=14.∴a =13或-15(舍去).综上可得a =3或13.12. 解:法一:(1)由已知得3a +2=18⇒3a=2⇒a =log 32.(2)此时g (x )=λ·2x -4x, 设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立.由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一.(2)此时g (x )=λ·2x -4x,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x -ln4·4x =ln2[-2·(2x )2+λ·2x]≤0成立.设2x =u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立. 因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.对数与对数函数同步练习一、选择题1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a -2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或13、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n + D 、()12m n - 4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=g的两根是,αβ,则αβg 的值是( )A 、lg5lg 7gB 、lg35C 、35D 、3515、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭UB 、()1,11,2⎛⎫+∞ ⎪⎝⎭UC 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<<10、2log 13a <,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭UB 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭U11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的 二、填空题13、若2log 2,log 3,m n a a m n a +=== 。
高一数学对数函数经典题及详细答案
高一数学对数函数经典练习题一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a -答案A 。
∵3a =2→∴a=log 32则: log 38-2log 36=log 323-2log 3(2*3) =3log 32-2[log 32+log 33] =3a-2(a+1) =a-22、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或1答案B 。
∵2log a (M-2N )=log a M+log a N ,∴log a (M-2N)2=log a (MN ),∴(M-2N)2=MN ,∴M 2-4MN+4N 2=MN ,→m 2-5mn+4n 2=0(两边同除n 2)→(n m )2-5n m +4=0,设x=n m→x 2-5x+4=0→(x 2⎩⎨⎧==1x x 又∵2log (2)log log a a a M N M N -=+,看出M-2N>0 M>0 N>0∴n m =1答案为:43、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y aaa x m n x+==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()12m n -答案D 。
∵loga(1+x)=m loga [1/(1-x)]=n ,loga(1-x)=-n 两式相加得:→ loga [(1+x)(1-x)]=m-n→loga(1-x ²)=m-n →∵ x ²+y ²=1,x>0,y>0, → y ²=1- x ²→loga(y ²)=m-n∴2loga(y)=m-n4. 若x 1,x 2是方程lg 2x +(lg3+lg2)lgx +lg3·lg2 = 0的两根,则x 1x 2的值是( ). (A).lg3·lg2 (B).lg6 (C).6 (D).61答案D∵方程lg 2x+(lg2+lg3)lgx+lg2lg3=0的两根为1x 、2x ,[注:lg 2x 即(lgx)2,这里可把lgx 看成能用X ,这是二次方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对数函数练习题及答案 1.下列式子中正确的个数是 (
)
① l og a (b 2
-c 2
)= 2log a b -2log a c ② (log a 3) 2
= log a 32
③ l oga(bc)= (log ab) ·(log ac) 2
④ log a x = 2log a x
A . 0
B .1
C . 2
D .
3
8.如果方程 lg 2
x + (lg2 + lg3)lg x +lg2 ·lg3 = 0 的两根为 x1、 x2,那么 x1·x2 的值为 (
) A . lg2 lg3· B . lg2 +
lg3
1 C .- 6 D.6 [答案 ] D
10. (09 ·江西理 )函数 y =
ln( x + 1) 的定义域为 ( )
- x 2- 3x + 4
A . (- 4,- 1)
B . (-
4,1)
C .( -1,1)
D .(-
1,1] [答案 ] C
3. 设 lg2=a , lg3 = b ,则 log512 等于 ()
2a + b a + 2b
A.
1+ a B.
1+ a 2a + b
a + 2
b C.
1- a
D.
1- a
+
,且 3a =4b = 6c
,则以下四个式子中恒成立的是 () 6.设 a 、 b 、 c ∈R A
. 1= 1+ 1 B.
2= 2+ 1 c a b
c a b
C. 1= 2+ 2
D. 2= 1+ 2 c a b c a b
3.若函数 y = log(a 2
- 1)x 在区间 (0,1)内的函数值恒为正数,则 a 的取值范围是 ( )
A . |a|
>1 B . |a|> 2
C .|a|< 2
D . 1<|a|<
2 [答案 ] D
1 x ( 当 x ≥ 4
5.给出函数 f(x) =(2)时)
,则 f(log 23)
= ( )
f(x+1) ( 当 x<4
时 )
23 1
A .-8 B.
11
1 1 C.19
D.24
10. (09 ·全国Ⅱ文 )设 a = lge , b = (lge) 2
, c = lg e ,则 () A . a>b>c B . a>c>b C .c>a>b
D . c>b>a
[答案 ] B
11. (09 ·江苏文 )已知集合 A ={ x|log2x ≤ 2} ,B = (-∞, a),若 A? B ,则实
数 a 的取值
范围是 (c ,+∞ ),其中 c =
________.
12.若 log0.2x>0,则 x 的取值范围是 ________;若 logx3<0,则 x 的取值范围是
________. [答案 ] (0,1), (0,1)
- x
和 y = log a(- x)的图象可能是
() 1.已知 a>0 且 a ≠1,则在同一坐标系中, 函数 y = a
[答
案 ]
D
[解
析 ] 若 0<a<1,则 y = a - x
单调增,只能是 A 、 C ,此时, loga(- x)单调增,排除 C , x =1 时, log a(- x)无意义,排除 A ; ∴ a>1,此时 y = loga (- x)单调减,排除 B ,故选
D.
2.若 0<a<1,函数 y = log a(x +5) 的图象不
通过 (
) A. 第一象限
B .第二象限
C.第三象限 D .第四象限
[答
案 ] A
10.已知函数 f(x)= log 1(3x 2
- ax + 5)在 [- 1,+∞ )上是减函数,则实数 a 的取值范围是
2
()
A .- 8≤ a ≤- 6
B .- 8<a<- 6
C .- 8<a ≤- 6
D . a ≤- 6
[答案 ] C
12.方程 2x+ x= 2,log 2x+ x=2,2x= log2 (- x)的根分别为a、 b、 c,则 a、 b、 c 的大小
关系为 ________.
[答案 ] b>a>c
5. (2010 安·徽理, 2)若集合 A=
x log1x
≥1,则 ?RA= ()
22
A . (-∞,
0]∪
2,+∞2
2
B. 2,+∞
C.( -∞,0]∪
2
2 +∞
2
D. ,+∞
[答案 ] A
8.设 A= { x∈ Z|2≤22-x<8} , B= { x∈R||log2x|>1} ,则 A∩ (?RB)中元素个数为( ) A . 0 B. 1
C.2 D. 3
[答案 ] C
a,若 a≤
b;
,
10.对任意两实数 a、 b,定义运算“ * ”如下: a*b =
b,若 a>b
则函数 f(x)= log 1(3x- 2)*log 2x 的
值域为 ( )
2
A . (-∞, 0) B. (0,+∞ )
C.( -∞, 0] D. [0,+∞ )
[答案 ] C
12.若 a=log 3π、 b= log
7 2 ,则 a、b、 c 按从小到大顺序用“ <”连
接起来
6、 c= log 0.8
为________.
[答案 ] c<b<a
1
14.已知 log a2<1,那么 a 的取值范围是__________.[答
案 ] 0<a<1或 a>1
2。