2013年中考数学试卷分析_4
2013年福建省福州市中考数学试卷及答案
福建省福州市2013年中考数学试卷一.选择题(共10小题,每小题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(2013福州)2的倒数是()A.B.﹣ C.2 D.﹣2考点:倒数.分析:根据倒数的概念求解.解答:解:2的倒数是.故选A.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(2013福州)如图,OA⊥OB,若∠1=40°,则∠2的度数是()A.20°B.40°C.50°D.60°考点:余角和补角.分析:根据互余两角之和为90°即可求解.解答:解:∵OA⊥OB,∠1=40°,∴∠2=90°﹣∠1=90°﹣40°=50°.故选C.点评:本题考查了余角的知识,属于基础题,掌握互余两角之和等于90°是解答本题的关键.3.(2013福州)2012年12月13日,嫦娥二号成功飞抵距地球约700万公里远的深空,7 000 000用科学记数法表示为()A.7×105B.7×106C.70×106D.7×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7 000 000有7位,所以可以确定n=7﹣1=6.解答:解:7 000 000=7×106.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(2013福州)下列立体图形中,俯视图是正方形的是()A.B. C.D.考点:简单几何体的三视图.分析:俯视图是从上面看所得到的视图,结合选项进行判断即可.解答:解:A.俯视图是带圆心的圆,故本选项错误;B.俯视图是一个圆,故本选项错误;C.俯视图是一个圆,故本选项错误;D.俯视图是一个正方形,故本选项正确;故选D.点评:此题主要考查了简单几何体的三视图,关键是掌握俯视图的定义.5.(2013福州)下列一元二次方程有两个相等实数根的是()A.x2+3=0 B.x2+2x=0 C.(x+1)2=0 D.(x+3)(x﹣1)=0考点:根的判别式.专题:计算题.分析:根据计算根的判别式,根据判别式的意义可对A、B、C进行判断;由于D的两根可直接得到,则可对D进行判断.解答:解:A.△=0﹣4×3=﹣12<0,则方程没有实数根,所以A选项错误;B.△=4﹣4×0=4>0,则方程有两个不相等的实数根,所以B选项错误;C.x2+2x+1=0,△=4﹣4×1=0,则方程有两个相等的实数根,所以C选项正确;D.x1=﹣3,x2=1,则方程有两个不相等的实数根,所以D选项错误.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6.(2013福州)不等式1+x<0的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.专题:计算题.分析:求出不等式的解集,即可作出判断.解答:解:1+x<0,解得:x<﹣1,表示在数轴上,如图所示:故选A点评:此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.(2013福州)下列运算正确的是()A.a•a2=a3B.(a2)3=a5C. D.a3÷a3=a考点:分式的乘除法;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.专题:计算题.分析:A.原式利用同底数幂的乘法法则计算得到结果,即可作出判断;B.原式利用幂的乘方运算法则计算得到结果,即可作出判断;C.原式分子分母分别乘方得到结果,即可作出判断;D.原式利用同底数幂的除法法则计算得到结果,即可作出判断.解答:解:A.a•a2=a3,本选项正确;B.(a2)3=a6,本选项错误;C.()2=,本选项错误;D.a3÷a3=1,本选项错误,故选A点评:此题考查了分式的乘除法,同底数幂的乘除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.8.(2013福州)如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB 长为半径画弧,两弧交于点D,且点A,点D在BC异侧,连结AD,量一量线段AD的长,约为()A.2.5cm B.3.0cm C.3.5cm D.4.0cm考点:平行四边形的判定与性质;作图—复杂作图.分析:首先根据题意画出图形,知四边形ABCD是平行四边形,则平行四边形ABCD的对角线相等,即AD=BC.再利用刻度尺进行测量即可.解答:解:如图所示,连接BD、BC、AD.∵AC=BD,AB=CD,∴四边形ABCD是平行四边形,∴AD=BC.测量可得BC=AD=3.0cm,故选:B.点评:此题主要考查了复杂作图,关键是正确理解题意,画出图形.9.(2013福州)袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A.3个B.不足3个C.4个D.5个或5个以上考点:可能性的大小.分析:根据取到白球的可能性交大可以判断出白球的数量大于红球的数量,从而得解.解答:解:∵袋中有红球4个,取到白球的可能性较大,∴袋中的白球数量大于红球数量,即袋中白球的个数可能是5个或5个以上.故选D.点评:本题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.10.(2013福州)A,B两点在一次函数图象上的位置如图所示,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是()A.a>0 B.a<0 C.b=0 D.ab<0考点:一次函数图象上点的坐标特征.分析:根据函数的图象可知:y随x的增大而增大,y+b<y,x+a<x得出b<0,a<0,即可推出答案.解答:解:∵根据函数的图象可知:y随x的增大而增大,∴y+b<y,x+a<x,∴b<0,a<0,∴选项A、C、D都不对,只有选项B正确,故选B.点评:本题考查了一次函数图象上点的坐标特征的应用,主要考查学生的理解能力和观察图象的能力.二.填空题(共5小题,每小题4分.满分20分;请将正确答案填在答题卡相应位置)11.(2013福州)计算:= .考点:分式的加减法.专题:计算题.分析:因为分式的分母相同,所以分母不变,分子相减即可得出答案.解答:解:原式==.故答案为.点评:本题比较容易,考查分式的减法运算.12.(2013福州)矩形的外角和等于度.考点:多边形内角与外角.分析:根据多边形的外角和定理解答即可.解答:解:矩形的外角和等于360度.故答案为:360.点评:本题考查了多边形的外角和,多边形的外角和与边数无关,任何多边形的外角和都是360°.13.(2013福州)某校女子排球队队员的年龄分布如下表:则该校女子排球队队员的平均年龄是岁.考点:加权平均数.分析:根据加权平均数的计算公式把所有人的年龄数加起来,再除以总人数即可.解答:解:根据题意得:(13×4+14×7+15×4)÷15=14(岁),故答案为:14.点评:此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,是一道基础题.14.(2013福州)已知实数a,b满足a+b=2,a﹣b=5,则(a+b)3(a﹣b)3的值是.考点:幂的乘方与积的乘方.专题:计算题.分析:所求式子利用积的乘方逆运算法则变形,将已知等式代入计算即可求出值.解答:解:∵a+b=2,a﹣b=5,∴原式=[(a+b)(a﹣b)]3=103=1000.故答案为:1000点评:此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.15.(2013福州)如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是.考点:正多边形和圆.分析:延长AB,然后作出C所在的直线,一定交于格点E,根据S△ABC=S△AEC﹣S△BEC即可求解.解答:解:延长AB,然后作出C所在的直线,一定交于格点E.正六边形的边长为1,则半径是1,则CE=4,相邻的两个顶点之间的距离是:,则△BCE的边EC上的高是:,△ACE边EC上的高是:,则S△ABC=S△AEC﹣S△BEC=×4×(﹣)=2.故答案是:2.点评:本题考查了正多边形的计算,正确理解S△ABC=S△AEC﹣S△BEC是关键.三.解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置,作图或添辅助线用铅笔画完,再用黑色签字笔描黑)16.(2013福州)(1)计算:;(2)化简:(a+3)2+a(4﹣a)考点:整式的混合运算;实数的运算;零指数幂.分析:(1)原式第一项利用零指数幂法则计算,第二项利用负数的绝对值等于它的相反数计算,最后一项化为最简二次根式,计算即可得到结果;(2)原式第一项利用完全平方公式展开,第二项利用单项式乘多项式法则计算即可得到结果.解答:解:(1)原式=1+4﹣2=5﹣2;(2)原式=a2+6a+9+4a﹣a2=10a+9.点评:此题考查了整式的混合运算,以及实数的运算,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.17.(2013福州)(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?考点:全等三角形的判定与性质;一元一次方程的应用.分析:(1)求出∠CAB=∠DAB,根据SAS推出△ABC≌△ABD即可;(2)设这个班有x名学生,根据题意得出方程3x+20=4x﹣25,求出即可.解答:(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名小学生.点评:本题考查了全等三角形的性质和判定,一元一次方程的应用,主要考查学生的推理能力和列方程的能力.18.(2013福州)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm)根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在组,中位数在组;(2)样本中,女生身高在E组的人数有人;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图;中位数;众数.专题:图表型.分析:(1)根据众数的定义,以及中位数的定义解答即可;(2)先求出女生身高在E组所占的百分比,再求出总人数然后计算即可得解;(3)分别用男、女生的人数乘以C、D两组的频率的和,计算即可得解.解答:解:∵B组的人数为12,最多,∴众数在B组,男生总人数为4+12+10+8+6=40,按照从低到高的顺序,第20、21两人都在C组,∴中位数在C组;(2)女生身高在E组的频率为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在E组的人数有40×5%=2人;(3)400×+380×(25%+15%)=180+152=332(人).答:估计该校身高在160≤x<170之间的学生约有332人.故答案为(1)B,C;(2)2.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.(2013福州)如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;△AOC与△BOD 关于直线对称,则对称轴是;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是度;(2)连结AD,交OC于点E,求∠AEO的度数.考点:旋转的性质;等边三角形的性质;轴对称的性质;平移的性质.专题:计算题.分析:(1)由点A的坐标为(﹣2,0),根据平移的性质得到△AOC沿x轴向右平移2个单位得到△OBD,则△AOC与△BOD关于y轴对称;根据等边三角形的性质得∠AOC=∠BOD=60°,则∠AOD=120°,根据旋转的定义得△AOC绕原点O顺时针旋转120°得到△DOB;(2)根据旋转的性质得到OA=OD,而∠AOC=∠BOD=60°,得到∠DOC=60°,所以OE为等腰△AOD的顶角的平分线,根据等腰三角形的性质得到OE垂直平分AD,则∠AEO=90°.解答:解:(1)∵点A的坐标为(﹣2,0),∴△AOC沿x轴向右平移2个单位得到△OBD;∴△AOC与△BOD关于y轴对称;∵△AOC为等边三角形,∴∠AOC=∠BOD=60°,∴∠AOD=120°,∴△AOC绕原点O顺时针旋转120°得到△DOB.(2)如图,∵等边△AOC绕原点O顺时针旋转120°得到△DOB,∴OA=OD,∵∠AOC=∠BOD=60°,∴∠DOC=60°,即OE为等腰△AOD的顶角的平分线,∴OE垂直平分AD,∴∠AEO=90°.故答案为2;y轴;120.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的性质、轴对称的性质以及平移的性质.20.(2013福州)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB 于点E,且ME=1,AM=2,AE=(1)求证:BC是⊙O的切线;(2)求的长.考点:切线的判定;勾股定理的逆定理;弧长的计算;解直角三角形.分析:(1)欲证明BC是⊙O的切线,只需证明OB⊥BC即可;(2)首先,在Rt△AEM中,根据特殊角的三角函数值求得∠A=30°;其次,利用圆心角、弧、弦间的关系、圆周角定理求得∠BON=2∠A=60°,由三角形函数的定义求得ON==;最后,由弧长公式l=计算的长.解答:(1)证明:如图,∵ME=1,AM=2,AE=,∴ME2+AE2=AM2=4,∴△AME是直角三角形,且∠AEM=90°.又∵MN∥BC,∴∠ABC=∠AEM=90°,即OB⊥BC.又∵OB是⊙O的半径,∴BC是⊙O的切线;(2)解:如图,连接ON.在Rt△AEM中,sinA==,∴∠A=30°.∵AB⊥MN,∴=,EN=EM=1,∴∠BON=2∠A=60°.在Rt△OEN中,sin∠EON=,∴ON==,∴的长度是:•=.点评:本题综合考查了切线的判定与性质、勾股定理的逆定理,弧长的计算,解直角三角形等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.21.(2013福州)如图,等腰梯形ABCD中,AD∥BC,∠B=45°,P是BC边上一点,△PAD 的面积为,设AB=x,AD=y(1)求y与x的函数关系式;(2)若∠APD=45°,当y=1时,求PB•PC的值;(3)若∠APD=90°,求y的最小值.考点:相似形综合题.专题:综合题.分析:(1)如图1,过A作AE垂直于BC,在直角三角形ABE中,由∠B=45°,AB=x,利用锐角三角函数定义表示出AE,三角形PAD的面积以AD为底,AE为高,利用三角形面积公式表示出,根据已知的面积即可列出y与x的函数关系式;(2)根据∠APC=∠APD+∠CPD,以及∠APC为三角形ABP的外角,利用外角性质得到关系式,等量代换得到∠BAP=∠CPD,再由四边形ABCD为等腰梯形,得到一对底角相等及AB=CD,可得出三角形ABP与三角形PDC相似,由相似得比例,将CD换为AB,由y的值求出x的值,即为AB的值,即可求出PB•PC的值;(3)取AD的中点F,过P作PH垂直于AD,由直角三角形PF大于等于PH,当PF=PH时,PF最小,此时F与H重合,由三角形APD为直角三角形,利用直角三角形斜边上的中线等于斜边的一半得到PF等于AD的一半,表示出PF即为PH,三角形APD面积以AD为底,PH为高,利用三角形面积公式表示出三角形APD面积,由已知的面积求出y的值,即为最小值.解答:解:(1)如图1,过A作AE⊥BC于点E,在Rt△ABE中,∠B=45°,AB=x,∴AE=AB•sinB=x,∵S△APD=AD•AE=,∴•y•x=,则y=;(2)∵∠APC=∠APD+∠CPD=∠B+∠BAP,∠APD=∠B=45°,∴∠BAP=∠CPD,∵四边形ABCD为等腰梯形,∴∠B=∠C,AB=CD,∴△ABP∽△PCD,∴=,∴PB•PC=AB•DC=AB2,当y=1时,x=,即AB=,则PB•PC=()2=2;(3)如图2,取AD的中点F,连接PF,过P作PH⊥AD,可得PF≥PH,当PF=PH时,PF有最小值,∵∠APD=90°,∴PF=AD=y,∴PH=y,∵S△APD=•AD•PH=,∴•y•y=,即y2=2,∵y>0,∴y=,则y的最小值为.点评:此题考查了相似形综合题,涉及的知识有:等腰梯形的性质,相似三角形的判定与性质,直角三角形斜边上的中线性质,以及三角形的面积求法,熟练掌握相似三角形的判定与性质是解本题的关键.22.(2013福州)我们知道,经过原点的抛物线的解析式可以是y=ax2+bx(a≠0)(1)对于这样的抛物线:当顶点坐标为(1,1)时,a= ;当顶点坐标为(m,m),m≠0时,a与m之间的关系式是(2)继续探究,如果b≠0,且过原点的抛物线顶点在直线y=kx(k≠0)上,请用含k的代数式表示b;(3)现有一组过原点的抛物线,顶点A1,A2,…,A n在直线y=x上,横坐标依次为1,2,…,n(为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,…,B n,以线段A n B n为边向右作正方形A n B n C n D n,若这组抛物线中有一条经过D n,求所有满足条件的正方形边长.考点:二次函数综合题.分析:(1)利用顶点坐标公式(﹣,)填空;(2)首先,利用配方法得到抛物线的解析式y=a(x+)2﹣,则易求该抛物线的顶点坐标(﹣,﹣);然后,把该顶点坐标代入直线方程y=kx(k≠0),即可求得用含k的代数式表示b;(3)根据题意可设可设A n(n,n),点D n所在的抛物线顶点坐标为(t,t).由(1)(2)可得,点D n所在的抛物线解析式为y=﹣x2+2x.所以由正方形的性质推知点D n的坐标是(2n,n),则把点D n的坐标代入抛物线解析式即可求得4n=3t.然后由n、t的取值范围来求点A n的坐标,即该正方形的边长.解答:解:(1)∵顶点坐标为(1,1),∴,解得,,即当顶点坐标为(1,1)时,a=1;当顶点坐标为(m,m),m≠0时,,解得,则a与m之间的关系式是:a=﹣或am+1=0.故答案是:﹣1;a=﹣或am+1=0.(2)∵a≠0,∴y=ax2+bx=a(x+)2﹣,∴顶点坐标是(﹣,﹣).又∵该顶点在直线y=kx(k≠0)上,∴k(﹣)=﹣.∵b≠0,∴b=2k;(3)∵顶点A1,A2,…,A n在直线y=x上,∴可设A n(n,n),点D n所在的抛物线顶点坐标为(t,t).由(1)(2)可得,点D n所在的抛物线解析式为y=﹣x2+2x.∵四边形A n B n C n D n是正方形,∴点D n的坐标是(2n,n),∴﹣(2n)2+22n=n,∴4n=3t.∵t、n是正整数,且t≤12,n≤12,∴n=3,6或9.∴满足条件的正方形边长是3,6或9.点评:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的顶点坐标公式以及正方形的性质.解答(3)题时,要注意n的取值范围.。
2013北京中考数学试卷分析
专家点评:2013年北京市中考数学难度下降一、各个知识模块试卷占比二、各个知识模块考查的难易程度三、通过对试题的分析,2013年北京市中考数学试题有如下特点:1. 难度下降我想大家最关心的是今年的数学试卷难还是不难?当拿到试题时,简单浏览了整张试卷,给人的第一感觉就是“稳”,2013年中考的考点设置与近几年中考真题的考点设置没有太大变化。
于是动笔亲身做了一遍,发现整体难度较2012年有所下降,因此预计2013年北京中考数学平均分会高于去年。
难度下降也是符合预期的,因为它依然符合“大小年”的规律。
2. 立足课标要求,注重考查基础试题除了第8、12、22、23、24、25题以外,其他题都属于基础或者中档题。
试题覆盖面广,对数与代数、统计与概率、图形与几何各大块内容给予了充分的重视;函数与方程、数形结合、分类与整合、化归与转化等思想方法都有体现,强调学生熟悉的常用方法在解题中的作用。
3. 关注社会热点,联系生活实际,注重知识应用试题注重从生活实际出发,创设问题情境,有利于培养学生运用数学知识解决问题的意识。
如第1题用科学计数法表示数,第5题利用相似求河的宽度,第7题求平均体育锻炼时间,第17题以园林绿化为背景的应用题,第21题园博会停车位数量问题,背景材料都源于学生熟悉的生活,所用的知识都是基础的,有利于激发学生学习的兴趣,同时也考查了学生解决问题的能力。
4. 稳中求变、变化中求创新考点设置上比较稳定,然而题型设置上较以往有微调,如第1、2题位置的互换;今年的第12题为找规律中的循环规律,与智康的压轴卷风格雷同,与11年和12年的递推规律类型有所不同;第18题一次函数综合题换成了一元二次方程整数根问题;第19题回归梯形考法,但是与以往不同的是除了计算以外,还考查了平行四边形的证明;第20题第一问并没有考查证明切线,第25题给出新定义“关联点”等。
5. 多思少算,突出能力立意,注重学生对数学本质的理解,淡化特殊的解题技巧,避免繁琐的计算如第8题,容易得出,当时,的面积最大,因此排除B、D;再看A、C 选项,最大值两边的图象,A是像开口向下的抛物线,C是像开口向上的抛物线,过O作AP垂线,借助勾股易求出高,进一步可得,所以选择A.第12题,可通过精准作图,很容易发现与重合,进而得出周期是3,很容易算出前2空,对于第3空,有较好的观察能力,可以发现直线与坐标轴的交点为不可能点;第19、20题的计算量与去年相比难度都有所下降;第22题,对于第1空,读懂题意,则新正方形的边长就是四个等腰直角三角形的斜边长,而,所以斜边长与原正方形边长相等,都为;对于第2空,由于四个等腰直角三角形拼成的面积与原正方形面积相等,因此,的面积就是图2中,四个小等腰直角三角形的面积和,由于直角边长为1,所以面积和为2;对于第3空,利用类比的想法,仿照材料,延长与边长的延长线相交,这样得到三个的等腰三角形,这三个三个的等腰三角形可拼成一个等边三角形,与面积相等,进而很容易求出的长度。
2013年中考数学试卷分析
2013年中考数学试卷分析一、命题指导思想、趋势及变化1.从知识点上看,没有太大的变化;不要求学生记忆概念、性质,而是要求学生对这些概念、性质能够做到灵活运用。
2.与历届上海中考试卷对比,考察的内容差异不大。
数与运算、方程与函数、数据整理与概率统计、图形与几何等都是主要考察内容。
3.从能力上看,重点考察学生数学思维的理解以及运用。
要求学生能够做到学以致用、灵活运用所学知识。
二、试卷总体评价与湖北等地的中考试卷相比,试卷较为简单。
主要注重基础知识的考察以及概念、性质的理解与应用。
与历年上海中考试卷相比,在题量、题型、难度保证稳定的同时,对学生的审题、分析能力要求加以提高。
在试卷结构方面,中档题占25%左右、难题占10%左右。
合理的分配到不同的题型当中,这种不把所有难点放在同一道题目中的方式,继有利于适度区分,又有利于合理诊断学生解决问题过程的认知情况。
三、试卷结构1、考试范围:数与运算、方程与代数、图形与几何、函数与分析、数据整理和概率统计2、试卷结构、题型及各题分值,以及选做题分值及范围试卷结构:2013年上海市数学中考试卷满分150分,考试时间100分钟。
共三道大题,25道小题。
第一大题选择题6道小题24分第二大题填空题12道小题48分第三大题解答题7道小题78分分值情况:1.今年试卷150分,代数约占分,几何约占分,统计约占分。
2.方程(分左右)和函数(分左右)占较大的分值,学生应引起足够的重视。
3.统计的分值占8%(选做题无)3、试题难度及容易题、中等题、难题分值比例容易题:选择题6道,填空题7-17,解答题19-22中等题:填空题18,解答题23难题:解答题24,25分值比例为:5.4:2.3:14、考点分析选择题(共6小题,每小题4分,共24分)四、试题主要特点上海中考数学试题分三大块,选择题6道(24分),填空题12道(48分),解答题7道(78分)。
整套试题以基础题为主,所占分值较大,中等难度题目主要有第与第24题的第一问和25题的前两问,而难题只有24题(2)(3)和25题(3)。
2013年广东省广州市中考数学试卷(解析版)
2013年广东省广州市中考数学试卷(解析版)一.选择题:1.(2013广州)比0大的数是()A.﹣1 B. C.0 D.1考点:有理数大小比较.分析:比0的大的数一定是正数,结合选项即可得出答案.解答:解:4个选项中只有D选项大于0.故选D.点评:本题考查了有理数的大小比较,注意掌握大于0的数一定是正数.2.(2013广州)如图所示的几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从几何体的正面看可得图形.故选:A.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(2013广州)在6×6方格中,将图1中的图形N平移后位置如图2所示,则图形N的平移方法中,正确的是()A.向下移动1格 B.向上移动1格 C.向上移动2格 D.向下移动2格考点:生活中的平移现象.分析:根据题意,结合图形,由平移的概念求解.解答:解:观察图形可知:从图1到图2,可以将图形N向下移动2格.故选D.点评:本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后图形的位置.4.(2013广州)计算:(m3n)2的结果是()A.m6n B.m6n2 C.m5n2 D.m3n2考点:幂的乘方与积的乘方.分析:根据幂的乘方的性质和积的乘方的性质进行计算即可.解答:解:(m3n)2=m6n2.故选:B.点评:此题考查了幂的乘方,积的乘方,理清指数的变化是解题的关键,是一道基础题.5.(2013广州)为了解中学生获取资讯的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图所示,该调查的方式是(),图中的a的值是()A.全面调查,26 B.全面调查,24 C.抽样调查,26 D.抽样调查,24考点:条形统计图;全面调查与抽样调查.分析:根据关键语句“先随机抽取50名中学生进行该问卷调查,”可得该调查方式是抽样调查,调查的样本容量为50,故6+10+6+a+4=50,解即可.解答:解:该调查方式是抽样调查,a=50﹣6﹣10﹣6﹣4=24,故选:D.点评:此题主要考查了条形统计图,以及抽样调查,关键是读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6.(2013广州)已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是()A.B.C.D.考点:由实际问题抽象出二元一次方程组.专题:数字问题.分析:根据等量关系为:两数x,y之和是10;x比y的3倍大2,列出方程组即可.解答:解:根据题意列方程组,得:.故选:C.点评:此题主要考查了由实际问题抽象出二元一次方程组,要注意抓住题目中的一些关键性词语“x比y的3倍大2”,找出等量关系,列出方程组是解题关键.7.(2013广州)实数a在数轴上的位置如图所示,则|a﹣2.5|=()A.a﹣2.5 B.2.5﹣a C.a+2.5 D.﹣a﹣2.5考点:实数与数轴.分析:首先观察数轴,可得a<2.5,然后由绝对值的性质,可得|a﹣2.5|=﹣(a﹣2.5),则可求得答案.解答:解:如图可得:a<2.5,即a﹣2.5<0,则|a﹣2.5|=﹣(a﹣2.5)=2.5﹣a.故选B.点评:此题考查了利用数轴比较实数的大小及绝对值的定义等知识.此题比较简单,注意数轴上的任意两个数,右边的数总比左边的数大.8.(2013广州)若代数式有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x>0 D.x≥0且x≠1考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:,解得:x≥0且x≠1.故选D.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.9.(2013广州)若5k+20<0,则关于x的一元二次方程x2+4x﹣k=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根 D.无法判断考点:根的判别式.专题:计算题.分析:根据已知不等式求出k的范围,进而判断出根的判别式的值的正负,即可得到方程解的情况.解答:解:∵5k+20<0,即k<﹣4,∴△=16+4k<0,则方程没有实数根.故选A点评:此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.10.(2013广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=()A.2 B.2C.D.考点:梯形;等腰三角形的判定与性质;勾股定理;三角形中位线定理.分析:先判断DA=DC,过点D作DE∥AB,交AC于点F,交BC于点E,由等腰三角形的性质,可得点F是AC中点,继而可得EF是△CAB的中位线,继而得出EF、DF的长度,在Rt△ADF中求出AF,然后得出AC,tanB的值即可计算.解答:解:∵CA是∠BCD的平分线,∴∠DCA=∠ACB,又∵AD∥BC,∴∠ACB=∠CAD,∴∠DAC=∠DCA,∴DA=DC,过点D作DE∥AB,交AC于点F,交BC于点E,∵AB⊥AC,∴DE⊥AC(等腰三角形三线合一的性质),∴点F是AC中点,∴AF=CF,∴EF是△CAB的中位线,∴EF=AB=2,∵==1,∴EF=DF=2,在Rt△ADF中,AF==4,则AC=2AF=8,tanB===2.故选B.点评:本题考查了梯形的知识、等腰三角形的判定与性质、三角形的中位线定理,解答本题的关键是作出辅助线,判断点F是AC中点,难度较大.二.填空题(本大题共6小题,每小题3分,满分18分)11.(2013广州)点P在线段AB的垂直平分线上,PA=7,则PB= .考点:线段垂直平分线的性质.分析:根据线段垂直平分线的性质得出PA=PB,代入即可求出答案.解答:解:∵点P在线段AB的垂直平分线上,PA=7,∴PB=PA=7,故答案为:7.点评:本题考查了对线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.12.(2013广州)广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将5250000用科学记数法表示为:5.25×106.故答案为:5.25×106.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(2013广州)分解因式:x2+xy= .考点:因式分解-提公因式法.分析:直接提取公因式x即可.解答:解:x2+xy=x(x+y).点评:本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.14.(2013广州)一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是.考点:一次函数图象与系数的关系.分析:根据图象的增减性来确定(m+2)的取值范围,从而求解.解答:解:∵一次函数y=(m+2)x+1,若y随x的增大而增大,∴m+2>0,解得,m>﹣2.故答案是:m>﹣2.点评:本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0.15.(2013广州)如图,Rt△ABC的斜边AB=16,Rt△ABC绕点O顺时针旋转后得到Rt△A′B′C′,则Rt△A′B′C′的斜边A′B′上的中线C′D的长度为.考点:旋转的性质;直角三角形斜边上的中线.分析:根据旋转的性质得到A′B′=AB=16,然后根据直角三角形斜边上的中线性质求解即可.解答:解:∵Rt△ABC绕点O顺时针旋转后得到Rt△A′B′C′,∴A′B′=AB=16,∵C′D为Rt△A′B′C′的斜边A′B′上的中线,∴C′D=A′B′=8.故答案为8.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了直角三角形斜边上的中线性质.16.(2013广州)如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为.考点:垂径定理;坐标与图形性质;勾股定理.专题:探究型.分析:过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.解答:解:过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中,∵OP=,OD=3,∴PD===2,∴P(3,2).故答案为:(3,2).点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤)17.(2013广州)解方程:x2﹣10x+9=0.考点:解一元二次方程-因式分解法.分析:分解因式后得出两个一元一次方程,求出方程的解即可.解答:解:x2﹣10x+9=0,(x﹣1)(x﹣9)=0,x﹣1=0,x﹣9=0,x1=1,x2=9.点评:本题啊扣除了解一元一次方程和解一元二次方程的应用,关键是能把解一元二次方程转化成解一元一次方程.18.(2013广州)如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.考点:菱形的性质;勾股定理.分析:根据菱形的性质得出AC⊥BD,再利用勾股定理求出BO的长,即可得出答案.解答:解:∵四边形ABCD是菱形,对角线AC与BD相交于O,∴AC⊥BD,DO=BO,∵AB=5,AO=4,∴BO==3,∴BD=2BO=2×3=6.点评:此题主要考查了菱形的性质以及勾股定理,根据已知得出BO的长是解题关键.19.(2013广州)先化简,再求值:,其中.考点:分式的化简求值;二次根式的化简求值.专题:计算题.分析:分母不变,分子相减,化简后再代入求值.解答:解:原式===x+y=1+2+1﹣2=2.点评:本题考查了分式的化简求值和二次根式的加减,会因式分解是解题的题的关键.20.(2013广州)已知四边形ABCD是平行四边形(如图),把△ABD沿对角线BD翻折180°得到△A′BD.(1)利用尺规作出△A′BD.(要求保留作图痕迹,不写作法);(2)设DA′与BC交于点E,求证:△BA′E≌△DCE.考点:平行四边形的性质;全等三角形的判定;作图-轴对称变换;翻折变换(折叠问题).分析:(1)首先作∠A′BD=∠ABD,然后以B为圆心,AB长为半径画弧,交BA′于点A′,连接BA′,DA′,即可作出△A′BD.(2)由四边形ABCD是平行四边形与折叠的性质,易证得:∠BA′D=∠C,A′B=CD,然后由AAS即可判定:△BA′E≌△DCE.解答:解:(1)如图:①作∠A′BD=∠ABD,②以B为圆心,AB长为半径画弧,交BA′于点A′,③连接BA′,DA′,则△A′BD即为所求;(2)∵四边形ABCD是平行四边形,∴AB=CD,∠BAD=∠C,由折叠的性质可得:∠BA′D=∠BAD,A′B=AB,∴∠BA′D=∠C,A′B=CD,在△BA′E和△DCE中,,∴△BA′E≌△DCE(AAS).点评:此题考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.21.(2013广州)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下表:(1)求样本数据中为A级的频率;(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数;(3)从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.考点:列表法与树状图法;用样本估计总体;频数与频率.分析:(1)由抽取30个符合年龄条件的青年人中A级的有15人,即可求得样本数据中为A级的频率;(2)根据题意得:1000个18~35岁的青年人中“日均发微博条数”为A级的人数为:1000×=500;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽得2个人的“日均发微博条数”都是3的情况,再利用概率公式求解即可求得答案.解答:解:(1)∵抽取30个符合年龄条件的青年人中A级的有15人,∴样本数据中为A级的频率为:=;(2)1000个18~35岁的青年人中“日均发微博条数”为A级的人数为:1000×=500;(3)C级的有:0,2,3,3四人,画树状图得:∵共有12种等可能的结果,抽得2个人的“日均发微博条数”都是3的有2种情况,∴抽得2个人的“日均发微博条数”都是3的概率为:=.点评:本题考查的是用列表法或画树状图法求概率、频数与频率的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.22.(2013广州)如图,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里.(1)求船P到海岸线MN的距离(精确到0.1海里);(2)若船A.船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.考点:解直角三角形的应用-方向角问题.分析:(1)过点P作PE⊥AB于点E,在Rt△APE中解出PE即可;(2)在Rt△BPF中,求出BP,分别计算出两艘船需要的时间,即可作出判断.解答:解:(1)过点P作PE⊥AB于点E,由题意得,∠PAE=32°,AP=30海里,在Rt△APE中,PE=APsin∠PAE=APsin32°≈15.9海里;(2)在Rt△PBE中,PE=15.9海里,∠PBE=55°,则BP=≈19.4,A船需要的时间为:=1.5小时,B船需要的时间为:=1.3小时,故B船先到达.点评:本题考查了解直角三角形的应用,解答本题的关键是理解仰角的定义,能利用三角函数值计算有关线段,难度一般.23.(2013广州)如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数(x>0,k≠0)的图象经过线段BC的中点D.(1)求k的值;(2)若点P(x,y)在该反比例函数的图象上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC 所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围.考点:反比例函数综合题;分类讨论;分段函数.分析:(1)首先根据题意求出C点的坐标,然后根据中点坐标公式求出D点坐标,由反比例函数(x>0,k≠0)的图象经过线段BC的中点D,D点坐标代入解析式求出k即可;(2)分两步进行解答,①当D在直线BC的上方时,即0<x<1,如图1,根据S四边形CQPR=CQ•PD列出S关于x的解析式,②当D在直线BC的下方时,即x>1,如图2,依然根据S四边形CQPR=CQ•PD列出S 关于x的解析式.解答:解:(1)∵正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),∴C(0,2),∵D是BC的中点,∴D(1,2),∵反比例函数(x>0,k≠0)的图象经过点D,∴k=2;(2)当D在直线BC的上方时,即0<x<1,如图1,∵点P(x,y)在该反比例函数的图象上运动,∴y=,∴S四边形CQPR=CQ•PD=x•(﹣2)=2﹣2x(0<x<1),如图2,同理求出S四边形CQPR=CQ•PD=x•(2﹣)=2x﹣2(x>1),综上S=.点评:本题主要考查反比例函数的综合题的知识,解答本题的关键是熟练掌握反比例函数的性质,解答(2)问的函数解析式需要分段求,此题难度不大.24.(2013广州)已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D在⊙O上运动(不与点B重合),连接CD,且CD=OA.(1)当OC=时(如图),求证:CD是⊙O的切线;(2)当OC>时,CD所在直线于⊙O相交,设另一交点为E,连接AE.①当D为CE中点时,求△ACE的周长;②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE•ED的值;若不存在,请说明理由.考点:圆的综合题;存在型;分类讨论;含30度角的直角三角形;等腰直角三角形的判定与性质;等边三角形的判定与性质;梯形的性质;切线的判定;解直角三角形;相似三角形的判定与性质.分析:(1)关键是利用勾股定理的逆定理,判定△OCD为直角三角形,如答图①所示;(2)①如答图②所示,关键是判定△EOC是含30度角的直角三角形,从而解直角三角形求出△ACE的周长;②符合题意的梯形有2个,答图③展示了其中一种情形.在求AE•ED值的时候,巧妙地利用了相似三角形,简单得出了结论,避免了复杂的运算.解答:(1)证明:连接OD,如答图①所示.由题意可知,CD=OD=OA=AB=2,OC=,∴OD2+CD2=OC2由勾股定理的逆定理可知,△OCD为直角三角形,则OD⊥CD,又∵点D在⊙O上,∴CD是⊙O的切线.(2)解:①如答图②所示,连接OE,OD,则有CD=DE=OD=OE,∴△ODE为等边三角形,∠1=∠2=∠3=60°;∵OD=CD,∴∠4=∠5,∵∠3=∠4+∠5,∴∠4=∠5=30°,∴∠EOC=∠2+∠4=90°,因此△EOC是含30度角的直角三角形,△AOE是等腰直角三角形.在Rt△EOC中,CE=2OA=4,OC=4cos30°=,在等腰直角三角形AOE中,AE=OA=,∴△ACE的周长为:AE+CE+AC=AE+CE+(OA+OC)=+4+(2+)=6++.②存在,这样的梯形有2个.答图③是D点位于AB上方的情形,同理在AB下方还有一个梯形,它们关于直线AB成轴对称.∵OA=OE,∴∠1=∠2,∵CD=OA=OD,∴∠4=∠5,∵四边形AODE为梯形,∴OD∥AE,∴∠4=∠1,∠3=∠2,∴∠3=∠5=∠1,在△ODE与△COE中,∴△ODE∽△COE,则有,∴CE•DE=OE2=22=4.∵∠1=∠5,∴AE=CE,∴AE•DE=CE•DE=4.综上所述,存在四边形AODE为梯形,这样的梯形有2个,此时AE•DE=4.点评:本题是几何综合题,考查了圆、含30度角的直角三角形、等腰直角三角形、等边三角形、梯形等几何图形的性质,涉及切线的判定、解直角三角形、相似三角形的判定与性质等多个知识点,难度较大.25.(2013广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.(1)使用a、c表示b;(2)判断点B所在象限,并说明理由;(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(),求当x≥1时y1的取值范围.考点:二次函数综合题.分析:(1)抛物线经过A(1,0),把点代入函数即可得到b=﹣a﹣c;(2)判断点在哪个象限,需要根据题意画图,由条件:图象不经过第三象限就可以推出开口向上,a>0,只需要知道抛物线与x轴有几个交点即可解决,判断与x轴有两个交点,一个可以考虑△,由△就可以判断出与x轴有两个交点,所以在第四象限;或者直接用公式法(或十字相乘法)算出,由两个不同的解,进而得出点B所在象限;(3)当x≥1时,y1的取值范围,只要把图象画出来就清晰了,难点在于要观察出是抛物线与x轴的另一个交点,理由是,由这里可以发现,b+8=0,b=﹣8,a+c=8,还可以发现C在A的右侧;可以确定直线经过B、C两点,看图象可以得到,x≥1时,y1大于等于最小值,此时算出二次函数最小值即可,即求出即可,已经知道b=﹣8,a+c=8,算出a,c即可,即是要再找出一个与a,c有关的式子,即可解方程组求出a,c,直线经过B、C两点,把B、C两点坐标代入直线消去m,整理即可得到c﹣a=4联立a+c=8,解得c,a,即可得出y1的取值范围.解答:解:(1)∵抛物线y1=ax2+bx+c(a≠0,a≠c),经过A(1,0),把点代入函数即可得到:b=﹣a﹣c;(2)B在第四象限.理由如下:∵抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),∴,所以抛物线与x轴有两个交点,又因为抛物线不经过第三象限,所以a>0,且顶点在第四象限;(3)∵,且在抛物线上,∴b+8=0,∴b=﹣8,∵a+c=﹣b,∴a+c=8,把B、C两点代入直线解析式易得:c﹣a=4,即解得:,如图所示,C在A的右侧,∴当x≥1时,.点评:此题主要考查了二次函数的综合应用以及根与系数的关系和一次函数与二次函数交点问题等知识,根据数形结合得出是解题关键.。
2013年浙江绍兴市中考数学(含解析)试卷真题
2013年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选,均不得分)1.(4分)﹣2的绝对值是()A.2B.﹣2C.0D.【考点】15:绝对值.【分析】根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案.【解答】解:﹣2的绝对值是2,故选:A.【点评】此题主要考查了绝对值,关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(4分)计算3a•(2b)的结果是()A.3ab B.6a C.6ab D.5ab【考点】49:单项式乘单项式.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:3a•(2b)=3×2a•b=6ab.故选:C.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.3.(4分)地球半径约为6400000米,则此数用科学记数法表示为()A.0.64×109B.6.4×106C.6.4×104D.64×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6 400 000=6.4×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】细心观察图中几何体摆放的位置,根据主视图是从正面看到的图象判定则可.【解答】解:从正面可看到从左往右三列小正方形的个数为:1,1,2.故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.(4分)一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色可以不同外其他完全相同,则从袋子中随机摸出一个球是黄球的概率为()A.B.C.D.【考点】X4:概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.【解答】解:根据题意可得:袋子中有3个白球,2个黄球和1个红球,共6个,从袋子中随机摸出一个球,它是黄球的概率2÷6=.故选:B.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.(4分)绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4m B.5m C.6m D.8m【考点】KQ:勾股定理;M3:垂径定理的应用.【分析】连接OA,根据桥拱半径OC为5m,求出OA=5m,根据CD=8m,求出OD=3m,根据AD=求出AD,最后根据AB=2AD即可得出答案.【解答】解:连接OA,∵桥拱半径OC为5m,∴OA=5m,∵CD=8m,∴OD=8﹣5=3m,∴AD===4m,∴AB=2AD=2×4=8(m);故选:D.【点评】此题考查了垂径定理的应用,关键是根据题意做出辅助线,用到的知识点是垂径定理、勾股定理.7.(4分)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90°B.120°C.150°D.180°【考点】MP:圆锥的计算.【分析】设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,然后设正圆锥的侧面展开图的圆心角是n°,利用弧长的计算公式即可求解.【解答】解:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,设正圆锥的侧面展开图的圆心角是n°,则=2πr,解得:n=180°.故选:D.【点评】正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.8.(4分)如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是()A.B.C.D.【考点】E6:函数的图象.【分析】由题意知x表示时间,y表示壶底到水面的高度,然后根据x、y的初始位置及函数图象的性质来判断.【解答】解:由题意知:开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除A、B;由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除D选项.故选:C.【点评】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.9.(4分)小敏在作⊙O的内接正五边形时,先做了如下几个步骤:(1)作⊙O的两条互相垂直的直径,再作OA的垂直平分线交OA于点M,如图1;(2)以M为圆心,BM长为半径作圆弧,交CA于点D,连结BD,如图2.若⊙O的半径为1,则由以上作图得到的关于正五边形边长BD的等式是()A.BD2=OD B.BD2=OD C.BD2=OD D.BD2=OD 【考点】MM:正多边形和圆.【分析】首先连接BM,根据题意得:OB=OA=1,AD⊥OB,BM=DM,然后由勾股定理可求得BM与OD的长,继而求得BD2的值.【解答】解:如图2,连接BM,根据题意得:OB=OA=1,AD⊥OB,BM=DM,∵OA的垂直平分线交OA于点M,∴OM=AM=OA=,∴BM==,∴DM=,∴OD=DM﹣OM=﹣=,∴BD2=OD2+OB2===OD.故选:C.【点评】此题考查了勾股定理、线段垂直平分线的性质以及分母有理化的知识.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.10.(4分)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A.7:20B.7:30C.7:45D.7:50【考点】GA:反比例函数的应用.【专题】16:压轴题.【分析】第1步:求出两个函数的解析式;第2步:求出饮水机完成一个循环周期所需要的时间;第3步:求出每一个循环周期内,水温不超过50℃的时间段;第4步:结合4个选择项,逐一进行分析计算,得出结论.【解答】解:∵开机加热时每分钟上升10℃,∴从30℃到100℃需要7分钟,设一次函数关系式为:y=k1x+b,将(0,30),(7,100)代入y=k1x+b得k1=10,b=30∴y=10x+30(0≤x≤7),令y=50,解得x=2;设反比例函数关系式为:y=,将(7,100)代入y=得k=700,∴y=,将y=30代入y=,解得x=;∴y=(7≤x≤),令y=50,解得x=14.所以,饮水机的一个循环周期为分钟.每一个循环周期内,在0≤x≤2及14≤x≤时间段内,水温不超过50℃.逐一分析如下:选项A:7:20至8:45之间有85分钟.85﹣×3=15,位于14≤x≤时间段内,故可行;选项B:7:30至8:45之间有75分钟.75﹣×3=5,不在0≤x≤2及14≤x≤时间段内,故不可行;选项C:7:45至8:45之间有60分钟.60﹣×2=≈13.3,不在0≤x≤2及14≤x≤时间段内,故不可行;选项D:7:50至8:45之间有55分钟.55﹣×2=≈8.3,不在0≤x≤2及14≤x ≤时间段内,故不可行.综上所述,四个选项中,唯有7:20符合题意.故选:A.【点评】本题主要考查了一次函数及反比例函数的应用题,还有时间的讨论问题.同学们在解答时要读懂题意,才不易出错.二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)分解因式:x2﹣y2=(x+y)(x﹣y).【考点】54:因式分解﹣运用公式法.【分析】因为是两个数的平方差,所以利用平方差公式分解即可.【解答】解:x2﹣y2=(x+y)(x﹣y).故答案是:(x+y)(x﹣y).【点评】本题考查了平方差公式因式分解,熟记平方差公式的特点:两项平方项,符号相反,是解题的关键.12.(5分)分式方程=3的解是x=3.【考点】B3:解分式方程.【专题】11:计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3x﹣3,解得:x=3,经检验x=3是分式方程的解.故答案为:x=3【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.(5分)我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有22只,兔有11只.【考点】9A:二元一次方程组的应用.【分析】设鸡有x只,兔有y只,就有x+y=33,2x+4y=88,将这两个方程构成方程组求出其解即可.【解答】解:设鸡有x只,兔有y只,由题意,得:,解得:,∴鸡有22只,兔有11只.故答案为:22,11.【点评】本题考查了列二元一次方程解生活实际问题的运用,二元一次方程的解法的运用,根据条件找到反映全题题意的等量关系建立方程是关键.14.(5分)在平面直角坐标系中,O是原点,A是x轴上的点,将射线OA绕点O旋转,使点A与双曲线y=上的点B重合,若点B的纵坐标是1,则点A的横坐标是2或﹣2.【考点】G6:反比例函数图象上点的坐标特征;R7:坐标与图形变化﹣旋转.【分析】根据反比例函数的性质得出B点坐标,进而得出A点坐标.【解答】解:如图所示:∵点A与双曲线y=上的点B重合,点B的纵坐标是1,∴点B的横坐标是,∴OB==2,∵A点可能在x轴的正半轴也可能在负半轴,∴A点坐标为:(2,0),(﹣2,0).故答案为:2或﹣2.【点评】此题主要考查了勾股定理以及反比例函数的性质等知识,根据已知得出BO的长是解题关键.15.(5分)如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是12°.【考点】KH:等腰三角形的性质.【分析】设∠A=x,根据等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和求出∠AP7P8,∠AP8P7,再根据三角形的内角和定理列式进行计算即可得解.【解答】解:设∠A=x,∵AP1=P1P2=P2P3=…=P13P14=P14A,∴∠A=∠AP2P1=∠AP13P14=x,∴∠P2P1P3=∠P13P14P12=2x,∴∠P3P2P4=∠P12P13P11=3x,…,∠P7P6P8=∠P8P9P7=7x,∴∠AP7P8=7x,∠AP8P7=7x,在△AP7P8中,∠A+∠AP7P8+∠AP8P7=180°,即x+7x+7x=180°,解得x=12°,即∠A=12°.故答案为:12°.【点评】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,规律探寻题,难度较大.16.(5分)矩形ABCD中,AB=4,AD=3,P,Q是对角线BD上不重合的两点,点P关于直线AD,AB的对称点分别是点E、F,点Q关于直线BC、CD的对称点分别是点G、H.若由点E、F、G、H构成的四边形恰好为菱形,则PQ的长为 2.8.【考点】RB:几何变换综合题.【专题】16:压轴题.【分析】如解答图所示,本题要点如下:(1)证明矩形的四个顶点A、B、C、D均在菱形EFGH的边上,且点A、C分别为各自边的中点;(2)证明菱形的边长等于矩形的对角线长;(3)求出线段AP的长度,证明△AOP为等腰三角形;(4)利用勾股定理求出线段OP的长度;(5)同理求出OQ的长度,从而得到PQ的长度.【解答】解:由矩形ABCD中,AB=4,AD=3,可得对角线AC=BD=5.依题意画出图形,如右图所示.由轴对称性质可知,∠P AF+∠P AE=2∠P AB+2∠P AD=2(∠P AB+∠P AD)=180°,∴点A在菱形EFGH的边EF上.同理可知,点B、C、D均在菱形EFGH的边上.∵AP=AE=AF,∴点A为EF中点.同理可知,点C为GH中点.连接AC,交BD于点O,则有AF=CG,且AF∥CG,∴四边形ACGF为平行四边形,∴FG=AC=5,即菱形EFGH的边长等于矩形ABCD的对角线长.∴EF=FG=5,∵AP=AE=AF,∴AP=EF=2.5.∵OA=AC=2.5,∴AP=AO,即△APO为等腰三角形.过点A作AN⊥BD交BD于点N,则点N为OP的中点.由S△ABD=AB•AD=AC•AN,可求得:AN=2.4.在Rt△AON中,由勾股定理得:ON===0.7,∴OP=2ON=1.4;同理可求得:OQ=1.4,∴PQ=OP+OQ=1.4+1.4=2.8.故答案为:2.8.【点评】本题是几何变换综合题,难度较大.首先根据题意画出图形,然后结合轴对称性质、矩形性质、菱形性质进行分析,明确线段之间的数量关系,最后由等腰三角形和勾股定理求得结果.三、解答题(本大题共有8小题,第17--20小题每小题8分,第21小题10分,第22、23小题每小题8分,第24小题14分,共80分,解答需写出毕必要的文字说明、演算步骤或证明过程)17.(8分)(1)化简:(a﹣1)2+2(a+1)(2)解不等式:+≤1.【考点】4I:整式的混合运算;C6:解一元一次不等式.【专题】11:计算题.【分析】(1)原式第一项利用完全平方公式展开,去括号合并即可得到结果.【解答】解:(1)原式=a2﹣2a+1+2a+2=a2+3;(2)去分母得:3(x+1)+2(x﹣1)≤6,去括号得:3x+3+2x﹣2≤6,解得:x≤1.【点评】此题考查了整式的混合运算,以及解一元一次不等式,涉及的知识有:完全平方公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.18.(8分)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式.(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.【考点】FH:一次函数的应用.【分析】(1)根据函数图象可以得出出租车的起步价是8元,设当x>3时,y与x的函数关系式为y=kx+b,运用待定系数法就可以求出结论;(2)将y=32代入(1)的解析式就可以求出x的值.【解答】解:(1)由图象得:出租车的起步价是8元;设当x>3时,y与x的函数关系式为y=kx+b(k≠0),由函数图象,得,解得:,故y与x的函数关系式为:y=2x+2;(2)∵32元>8元,∴当y=32时,32=2x+2,x=15答:这位乘客乘车的里程是15km.【点评】本题考查了待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时理解函数图象是重点,求出函数的解析式是关键.19.(8分)如图,矩形ABCD中,AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,第n次平移将矩形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到矩形A n B n∁n D n(n>2).(1)求AB1和AB2的长.(2)若AB n的长为56,求n.【考点】8A:一元一次方程的应用;LB:矩形的性质;Q2:平移的性质.【专题】2A:规律型.【分析】(1)根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1﹣A1A2=6﹣5=1,进而求出AB1和AB2的长;(2)根据(1)中所求得出数字变化规律,进而得出AB n=(n+1)×5+1求出n即可.【解答】解:(1)∵AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,∴AA1=5,A1A2=5,A2B1=A1B1﹣A1A2=6﹣5=1,∴AB1=AA1+A1A2+A2B1=5+5+1=11,∴AB2的长为:5+5+6=16;(2)∵AB1=2×5+1=11,AB2=3×5+1=16,∴AB n=(n+1)×5+1=56,解得:n=10.【点评】此题主要考查了平移的性质以及一元一次方程的应用,根据平移的性质得出AA1=5,A1A2=5是解题关键.20.(8分)某校体育组为了了解学生喜欢的体育项目,从全校同学中随机抽取了若干名同学进行调查,每位同学从乒乓球、篮球、羽毛球、排球、跳绳中选择一项最喜欢的项目,并将调查的结果绘制成如下的两幅统计图.根据以上统计图,解答下列问题:(1)这次被调查的共有多少名同学?并补全条形统计图.(2)若全校有1200名同学,估计全校最喜欢篮球和排球的共有多少名同学?【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)利用条形统计图可得喜欢羽毛球的人数有30人,根据扇形统计图可得喜欢羽毛球的人数有15%,利用30÷15%即可得到被调查的总人数;用总人数﹣喜欢乒乓球的人数﹣喜欢篮球的人数﹣喜欢羽毛球的人数﹣喜欢排球的人数可得喜欢跳绳的人数,再补图即可;(2)计算出调查的人数中喜欢篮球和排球的人数所占百分比,再乘以1200即可.【解答】解:(1)这次被调查的学生总数:30÷15%=200(人),跳绳人数:200﹣70﹣40﹣30﹣12=48,如图所示:(2)1200××100%=312(人).答:全校有1200名同学,估计全校最喜欢篮球和排球的共有312名同学.【点评】本题考查的是条形统计图和扇形统计图的综合运用,以及样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(10分)如图,伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞架所成的角∠BAC,当伞收紧时,结点D与点M重合,且点A、E、D在同一条直线上,已知部分伞架的长度如下:单位:cm伞架DE DF AE AF AB AC长度363636368686(1)求AM的长.(2)当∠BAC=104°时,求AD的长(精确到1cm).备用数据:sin52°=0.788,cos52°=0.6157,tan52°=1.2799.【考点】T8:解直角三角形的应用.【分析】(1)根据AM=AE+DE求解即可;(2)先根据角平分线的定义得出∠EAD=∠BAC=52°,再过点E作EG⊥AD于G,由等腰三角形的性质得出AD=2AG,然后在△AEG中,利用余弦函数的定义求出AG的长,进而得到AD的长度.【解答】解:(1)由题意,得AM=AE+DE=36+36=72(cm).故AM的长为72cm;(2)∵AD平分∠BAC,∠BAC=104°,∴∠EAD=∠BAC=52°.过点E作EG⊥AD于G,∵AE=DE=36,∴AG=DG,AD=2AG.在△AEG中,∵∠AGE=90°,∴AG=AE•cos∠EAG=36•cos52°=36×0.6157=22.1652,∴AD=2AG=2×22.1652≈44(cm).故AD的长约为44cm.【点评】本题考查了解直角三角形在实际生活中的应用,其中涉及到角平分线的定义,等腰三角形的性质,三角函数的定义,难度适中.22.(12分)若一个矩形的一边是另一边的两倍,则称这个矩形为方形,如图1,矩形ABCD 中,BC=2AB,则称ABCD为方形.(1)设a,b是方形的一组邻边长,写出a,b的值(一组即可).(2)在△ABC中,将AB,AC分别五等分,连结两边对应的等分点,以这些连结线为一边作矩形,使这些矩形的边B1C1,B2C2,B3C3,B4C4的对边分别在B2C2,B3C3,B4C4,BC上,如图2所示.①若BC=25,BC边上的高为20,判断以B1C1为一边的矩形是不是方形?为什么?②若以B3C3为一边的矩形为方形,求BC与BC边上的高之比.【考点】LO:四边形综合题.【专题】16:压轴题;23:新定义.【分析】(1)答案不唯一,根据已知举出即可;(2)①求出△ABC∽△AB1C1∽△AB2C2∽△AB3C3∽△AB4C4,推出==,==,==,==,求出B1C1=5,B2C2=10,B3C3=15,B4C4=20,AE=4,AH=8,AG=12,AN=16,MN=GN=GH=HE=4,B1Q=B2O=B3Z=B4K=4,根据已知判断即可;②设AM=h,根据△ABC∽△AB3C3,得出==,求出MN=GN=GH=HE =h,分为两种情况:当B3C3=2×h时,当B3C3=×h时,代入求出即可.【解答】解:(1)答案不唯一,如a=2,b=4;(2)①以B1C1为一边的矩形不是方形.理由是:过A作AM⊥BC于M,交B1C1于E,交B2C2于H,交B3C3于G,交B4C4于N,则AM⊥B4C4,AM⊥B3C3,AM⊥B2C2,AM⊥B1C1,∵由矩形的性质得:BC∥B1C1∥B2C2∥B3C3∥B4C4,∴△ABC∽△AB1C1∽△AB2C2∽△AB3C3∽△AB4C4,∴==,==,==,==,∵AM=20,BC=25,∴B1C1=5,B2C2=10,B3C3=15,B4C4=20,AE=4,AH=8,AG=12,AN=16,∴MN=GN=GH=HE=4,∴B1Q=B2O=B3Z=B4K=4,即B1C1≠2B1Q,B1Q≠2B1C1,∴以B1C1为一边的矩形不是方形;②∵以B3C3为一边的矩形为方形,设AM=h,∴△ABC∽△AB3C3,∴==,则AG=h,∴MN=GN=GH=HE=h,当B3C3=2×h时,==;当B3C3=×h时,==.综合上述:BC与BC边上的高之比是或.【点评】本题考查了相似三角形的性质和判定和矩形的性质的应用,注意:相似三角形的对应高的比等于相似比.23.(12分)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD 交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.【考点】KD:全等三角形的判定与性质;S9:相似三角形的判定与性质.【专题】16:压轴题.【分析】(1)根据同角的余角相等得出∠CAD=∠B,根据AC:AB=1:2及点E为AB 的中点,得出AC=BE,再利用AAS证明△ACD≌△BEF,即可得出EF=CD;(2)作EH⊥AD于H,EQ⊥BC于Q,先证明四边形EQDH是矩形,得出∠QEH=90°,则∠FEQ=∠GEH,再由两角对应相等的两三角形相似证明△EFQ∽△EGH,得出EF:EG=EQ:EH,然后在△BEQ中,根据正弦函数的定义得出EQ=BE,在△AEH中,根据余弦函数的定义得出EH=AE,又BE=AE,进而求出EF:EG的值.【解答】(1)证明:如图1,在△ABC中,∵∠CAB=90°,AD⊥BC于点D,∴∠CAD=∠B=90°﹣∠ACB.∵AC:AB=1:2,∴AB=2AC,∵点E为AB的中点,∴AB=2BE,∴AC=BE.在△ACD与△BEF中,,∴△ACD≌△BEF,∴CD=EF,即EF=CD;(2)解:如图2,作EH⊥AD于H,EQ⊥BC于Q,∵EH⊥AD,EQ⊥BC,AD⊥BC,∴四边形EQDH是矩形,∴∠QEH=90°,∴∠FEQ=∠GEH=90°﹣∠QEG,又∵∠EQF=∠EHG=90°,∴△EFQ∽△EGH,∴EF:EG=EQ:EH.∵AC:AB=1:,∠CAB=90°,∴∠B=30°.在△BEQ中,∵∠BQE=90°,∴sin B==,∴EQ=BE.在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH==,∴EH=AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=BE:AE=1:=:3.【点评】本题考查了相似三角形的判定和性质、全等三角形的判定和性质、矩形的判定和性质,解直角三角形,综合性较强,有一定难度.解题的关键是作辅助线,构造相似三角形,并且证明四边形EQDH是矩形.24.(14分)抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点.(1)求点B及点D的坐标.(2)连结BD,CD,抛物线的对称轴与x轴交于点E.①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标.②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标.【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】(1)解方程(x﹣3)(x+1)=0,求出x=3或﹣1,根据抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),确定点B的坐标为(3,0);将y=(x﹣3)(x+1)配方,写成顶点式为y=x2﹣2x﹣3=(x﹣1)2﹣4,即可确定顶点D的坐标;(2)①根据抛物线y=(x﹣3)(x+1),得到点C、点E的坐标.连接BC,过点C作CH⊥DE于H,由勾股定理得出CD=,CB=3,证明△BCD为直角三角形.分别延长PC、DC,与x轴相交于点Q,R.根据两角对应相等的两三角形相似证明△BCD∽△QOC,则==,得出Q的坐标(﹣9,0),运用待定系数法求出直线CQ的解析式为y=﹣x﹣3,直线BD的解析式为y=2x﹣6,解方程组,即可求出点P的坐标;②分两种情况进行讨论:(Ⅰ)当点M在对称轴右侧时.若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G,先证明△MCN∽△DBE,由相似三角形对应边成比例得出MN=2CN.设CN=a,再证明△CNF,△MGF均为等腰直角三角形,然后用含a的代数式表示点M的坐标,将其代入抛物线y=(x﹣3)(x+1),求出a的值,得到点M的坐标;若点N在射线DC上,同理可求出点M的坐标;(Ⅱ)当点M在对称轴左侧时.由于∠BDE<45°,得到∠CMN<45°,根据直角三角形两锐角互余得出∠MCN>45°,而抛物线左侧任意一点M,都有∠MCN<45°,所以点M不存在.【解答】解:(1)∵抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),∴当y=0时,(x﹣3)(x+1)=0,解得x=3或﹣1,∴点B的坐标为(3,0).∵y=(x﹣3)(x+1)=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D的坐标为(1,﹣4);(2)①如右图.∵抛物线y=(x﹣3)(x+1)=x2﹣2x﹣3与与y轴交于点C,∴C点坐标为(0,﹣3).∵对称轴为直线x=1,∴点E的坐标为(1,0).连接BC,过点C作CH⊥DE于H,则H点坐标为(1,﹣3),∴CH=DH=1,∴∠CDH=∠BCO=∠BCH=45°,∴CD=,CB=3,△BCD为直角三角形.分别延长PC、DC,与x轴相交于点Q,R.∵∠BDE=∠DCP=∠QCR,∠CDB=∠CDE+∠BDE=45°+∠DCP,∠QCO=∠RCO+∠QCR=45°+∠DCP,∴∠CDB=∠QCO,∴△BCD∽△QOC,∴==,∴OQ=3OC=9,即Q(﹣9,0).∴直线CQ的解析式为y=﹣x﹣3,直线BD的解析式为y=2x﹣6.由方程组,解得.∴点P的坐标为(,﹣);②(Ⅰ)当点M在对称轴右侧时.若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=a,则MN=2a.∵∠CDE=∠DCF=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=a,∴MF=MN+NF=3a,∴MG=FG=a,∴CG=FG﹣FC=a,∴M(a,﹣3+a).代入抛物线y=(x﹣3)(x+1),解得a=,∴M(,﹣);若点N在射线DC上,如备用图2,MN交y轴于点F,过点M作MG⊥y轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=a,则MN=2a.∵∠CDE=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=a,∴MF=MN﹣NF=a,∴MG=FG=a,∴CG=FG+FC=a,∴M(a,﹣3+a).代入抛物线y=(x﹣3)(x+1),解得a=5,∴M(5,12);(Ⅱ)当点M在对称轴左侧时.∵∠CMN=∠BDE<45°,∴∠MCN>45°,而抛物线左侧任意一点M,都有∠MCN<45°,∴点M不存在.综上可知,点M坐标为(,﹣)或(5,12).【点评】本题是二次函数的综合题型,其中涉及到的知识点有二次函数图象上点的坐标特征,二次函数的性质,运用待定系数法求一次函数、二次函数的解析式,勾股定理,等腰直角三角形、相似三角形的判定与性质,综合性较强,有一定难度.(2)中第②问进行分类讨论及运用数形结合的思想是解题的关键.。
2013长春中考数学试题(解析版)
吉林省长春市2013年中考数学试卷一、选择题(每小题3分,共24分)1.(3分)(2013•长春)的绝对值等于()B的绝对值等于|=2.(3分)(2013•长春)如图是由四个相同的小长方体组成的立体图形,这个立体图形的正视图是()B3.(3分)(2013•长春)我国第一艘航空母舰辽宁航空舰的电力系统可提供14 000 000瓦的B5.(3分)(2013•长春)如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D在边AB上,DE⊥AB.若∠B为锐角,BC∥DF,则∠B的大小为()6.(3分)(2013•长春)如图,△ABC内接于⊙O,∠ABC=71°,∠CAB=53°,点D在AC 弧上,则∠ADB的大小为()7.(3分)(2013•长春)如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD 的长为()B=,即=CD=8.(3分)(2013•长春)如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x 轴向右平移后得到△O′A′B′,点A的对应点在直线y=x上一点,则点B与其对应点B′间的距离为()Bxx二、填空题(每小题3分,共18分)9.(3分)(2013•长春)计算:a2•5a=5a3.10.(3分)(2013•长春)吉林广播电视塔“五一”假期第一天接待游客m人,第二天接待游客n人,则这2天平均每天接待游客人(用含m、n的代数式表示).天平均每天接待游客故答案为:.11.(3分)(2013•长春)如图,MN是⊙O的弦,正方形OABC的顶点B、C在MN上,且点B是CM的中点.若正方形OABC的边长为7,则MN的长为28.12.(3分)(2013•长春)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.若∠B=65°,则∠ADC 的大小为65度.中,13.(3分)(2013•长春)如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点B在反比例函数位于第一象限的图象上,则k的值为.AOB==60=3)在反比例函数3,.14.(3分)(2013•长春)如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线y=于点B、C,则BC的长值为6.y=时,三、解答题(本大题共10小题,共78分)15.(6分)(2013•长春)先化简,再求值:,其中x=.时,原式16.(6分)(2013•长春)甲、乙两人各有一个不透明的口袋,甲的口袋中装有1个白球和2个红球,乙的口袋中装有2个白球和1个红球,这些球除颜色外其他都相同.甲、乙两人分别从各自口袋中随机摸出1个球,用画树状图(或列表)的方法,求两人摸出的球颜色相同的概率..17.(6分)(2013•长春)某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍.求第一组的人数.=,18.(7分)(2013•长春)在△ABC中,AB=AC,点D、E、F分别是AC、BC、BA延长线上的点,四边形ADEF为平行四边形.求证:AD=BF.19.(7分)(2013•长春)如图,岸边的点A处距水面的高度AB为2.17米,桥墩顶部点C 距水面的高度CD为23.17米.从点A处测得桥墩顶部点C的仰角为26°,求岸边的点A与桥墩顶部点C之间的距离.(结果精确到0.1米)(参考数据:sin26°=0.44,cos26°=0.90,tan26°=0.49)CAE=,==20.(7分)(2013•长春)某校学生会为了解学生在学校食堂就餐剩饭情况,随机对上周在食堂就餐的n名学生进行了调查,先调查是否剩饭的情况,然后再对其中剩饭的每名学生的剩饭次数进行调查.根据调查结果绘制成如下统计图.(1)求这n名学生中剩饭学生的人数及n的值.(2)求这n名学生中剩饭2次以上的学生占这n名学生人数的百分比.(3)按上述统计结果,估计上周在学校食堂就餐的1 200名学生中剩饭2次以上的人数.21.(8分)(2013•长春)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC﹣CD﹣DE,如图所示,从甲队开始工作时计时.(1)分别求线段BC、DE所在直线对应的函数关系式.(2)当甲队清理完路面时,求乙队铺设完的路面长.25=(22.(9分)(2013•长春)探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于点E.若AE=10,求四边形ABCD的面积.应用:如图②,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E.若AE=19,BC=10,CD=6,则四边形ABCD的面积为152.BC××23.(10分)(2013•长春)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2 与x轴交于点A(﹣1,0)、B(4,0).点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m.(1)求这条抛物线所对应的函数关系式.(2)求点C在这条抛物线上时m的值.(3)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.①当点D在这条抛物线的对称轴上时,求点D的坐标.②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,直接写出所有符合条件的m值.(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(,))x xy=﹣x=,x=x=x﹣m﹣.的值为DN=CN=CM=CN=2CM=2MNx x x=,﹣x x x=,解得m=x x x=,解得﹣x x x=x x x=,解得﹣﹣.24.(12分)(2013•长春)如图①,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A ﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(2)连结AQ,在点P沿B﹣A﹣D运动过程中,当点P与点B、点A不重合时,记△APQ 的面积为S.求S与t之间的函数关系式.(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.时,根据三角形的面积公式分别求出<时,当<<t=,==时,如图②.=t=.时,如图④.t=<≤时,线段.t=.t=,t=。
江西省2013年中考数学试卷(解析版)
江西省2013年中考数学试卷一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项.3.(3分)(2013•江西)下列数据是2013年3月7日6点公布的中国六大城市的空气污染4.(3分)(2013•江西)如图,直线y=x+a﹣2与双曲线y=交于A、B两点,则当线段AB 的长度取最小值时,a的值为()5.(3分)(2013•江西)一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则它的左视图可以是()B解:从几何体的左边看可得6.(3分)(2013•江西)若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,则下列判断二、填空题(本大题共8小题,每小题3分,共24分)7.(3分)(2013•江西)分解因式:x2﹣4=(x+2)(x﹣2).8.(3分)(2013•江西)如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为65°.9.(3分)(2013•江西)某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组.故答案为:10.(3分)(2013•江西)如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE 和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若AB=2,BC=2,则图中阴影部分的面积为2.×,,×2..11.(3分)(2013•江西)观察下列图形中点的个数,若按其规律再画下去,可以得到第n 个图形中所有点的个数为(n+1)2(用含n的代数式表示).=12.(3分)(2013•江西)若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程x2﹣5x+6=0(答案不唯一).13.(3分)(2013•江西)如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为25°.DAE==2514.(3分)(2013•江西)平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是2,3,4.ACB=∠三、(本大题共2小题,每小题5分,共10分)15.(5分)(2013•江西)解不等式组,并将解集在数轴上表示出来.,16.(5分)(2013•江西)如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C 在半圆内,请仅用无刻度的直尺按要求画图.(1)在图1中,画出△ABC的三条高的交点;(2)在图2中,画出△ABC中AB边上的高.四、(本大题共2小题,每小题6分,共12分)17.(6分)(2013•江西)先化简,再求值:÷+1,在0,1,2三个数中选一个合适的,代入求值.÷÷+1×+1+1,.18.(6分)(2013•江西)甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是()A、乙抽到一件礼物B、乙恰好抽到自己带来的礼物C、乙没有抽到自己带来的礼物D、只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A),请列出事件A的所有可能的结果,并求事件A的概率.=五、(本大题共2小题,每小题8分,共16分)19.(8分)(2013•江西)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).(1)直接写出B、C、D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.y=20.(8分)(2013•江西)生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶500ml的矿泉水,会后对所发矿泉水喝的情况进行统计,大致可分为四种:A、全部喝完;B、喝剩约;C、喝剩约一半;D开瓶但基本未喝.同学们根据统计结果绘制成如下两个统计图,根据统计图提供的信息,解答下列问题:(1)参加这次会议的有多少人?在图(2)中D所在扇形的圆心角是多少度?并补全条形统计图;(2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫升?(计算结果请保留整数)(3)据不完全统计,该单位每年约有此类会议60次,每次会议人数约在40至60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500ml/瓶)约有多少瓶?(可使用科学记算器)×××××÷六、(本大题共2小题,每小题9分,共18分)21.(9分)(2013•江西)如图1,一辆汽车的背面,有一种特殊性状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB,如图2所示,量得连杆OA长为10cm,雨刮杆AB长为48cm,∠OAB=120°.若启动一次刮雨器,雨刮杆AB正好扫到水平线CD的位置,如图3所示.(1)求雨刮杆AB旋转的最大角度及O、B两点之间的距离;(结果精确到0.01)(2)求雨刮杆AB扫过的最大面积.(结果保留π的整数倍)(参考数据:sin60°=,cos60°=,tan60°=,≈26.851,可使用科学记算器)OA=5=5=2≈π22.(9分)(2013•江西)如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y 轴交点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.(1)证明PA是⊙O的切线;(2)求点B的坐标;(3)求直线AB的解析式.,﹣x=,,的坐标是(,﹣)的坐标代入得:﹣k+2七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)(2013•江西)某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是①②③④(填序号即可)①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.●数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD与ME具有怎样的数量和位置关系?请给出证明过程;●类比探究:在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:等腰直角三角形.AG=GC=GE= ABAB ACDF=ACAC MG=AB24.(12分)(2013•江西)已知抛物线y n=﹣(x﹣a n)2+a n(n为正整数,且0<a1<a2<…<a n)与x轴的交点为A n﹣1(b n﹣1,0)和A n(b n,0),当n=1时,第1条抛物线y1=﹣(x ﹣a1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.(1)求a1,b1的值及抛物线y2的解析式;(2)抛物线y3的顶点坐标为(9,9);依此类推第n条抛物线y n的顶点坐标为(n2,n2);所有抛物线的顶点坐标满足的函数关系式是y=x;(3)探究下列结论:①若用A n﹣1A n表示第n条抛物线被x轴截得的线段长,直接写出A0A1的值,并求出A n﹣1A n;②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得的线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.。
北京市2013年中考数学试题(解析版)
个完全相同的不透明礼盒中,准备将它们奖给小本题考核的立意相对较新,考核了学生的空间想象能力,结合图形理解两点之间距离的概念,认识两点间距离变化产生的数量关系。
采取验证法和排除法求解较为简单。
本题考点:两点间距离、线段.难度系数:0.4分解因式: .269mn mn m ++=的代数式表示.)本题是建立在反比例函数基础上的一次函数解析式确定及与一次函数图象有关的本题考点:一次函数解析式的确定、一次函数图像与坐标轴上点的确定.据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年毫克所需的银杏树叶的片数与一年滞尘毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.设一片国槐树叶一年的滞尘量为毫克,则一片银杏树叶一年的滞尘量为毫克,解得检验:将带入中,不等于零,则是方程的根=CF=请根据以上信息解答下列问题:(1)补全条形统计图并在图中标明相应数据;(2)按照2011年规划方案,预计2020年北京市轨道交通运营里程将达到多少千米?(3)要按时完成截至2015年的轨道交通规划任务,从2011每年需新增运营里程多少千米?【解析】228;1000;82.75【点评】本题将北京市轨道交通发展规划与统计结合的一道考题,考查了学生对图表绘制过程的理解、阅读图表并提取有用信息的技能,借助数据处理结果做合理推测的能力。
这是北京市这几年考核统计这部分知识的常见题型本题考点:条形统计图、扇形统计图、平均数以及用样本估算总体的数学思想难度系数:0.622.操作与探究:P(1)对数轴上的点进行如下操作:先把点2,在平面直角坐标系中,对正方形及其内部的每个xOy ABCD 点进行如下操作:把每个点的横、纵坐标都乘以同一种实数到的点先向右平移个单位,再向上平移个单位(m n m 得到正方形及其内部的点,其中点的对应点分别为A B C D ''''A B ,个单位。
2013年安徽省中考数学试卷及答案(Word解析版)
安徽省2013年中考数学试卷一、选择题(共10小题,每小题4分,满分40分)))5.(4分)(2013?安徽)已知不等式组,其解集在数轴上表示正确的是()放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率123∴能让两盏灯泡同时发光的概率为:=();当CE=3,CF=3EC=,而EM=3EC?CF=﹣;CE=BC=3CF=CD=3,而EM=3,所以EC?CF=x6xCBP=安徽)若x≤.x≤.x≤、PC的=8.2BCEF=EF=EF=时,四边形EF=EF=EF=,所以由已知条件可以推知EF=EF=AB=.EF=BD===EF=EF=.分)﹣|.=2×+12+=0,0),17.(8分)(2013?安徽)如图,已知A(﹣3,﹣3),B(﹣2,﹣1),C(﹣1,﹣2)是直角坐标平面上三点.(1)请画出△ABC关于原点O对称的△A1B1C1;(2)请写出点B关于y轴对称的点B2的坐标,若将点B2向上平移h个单位,使其落在△A1B1C1)放在直角坐标系中,设其中第一个基本图的对称中心x1,2),规律型:图形的变化类;规律型:点的坐标.M==M=2×=,=;+2=3)的对称中心的横坐标为=5,=7,=4025,,汛AE.(结ABF=∠α=60°=10m∠β=45°AE==10m2000元要)根据购买的两种球拍数一样,列出方程=,求出方程的=,21.(12分)(2013?安徽)某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1﹣8这8个整数,现提供统400×=64q=30+q=20+35元/件?(2)求该网店第x天获得的利润y关于x的函数关系式;(30+20+=3530+x20+﹣=﹣y=,x﹣(∴随时,最大,y=﹣=23.(14分)(2013?安徽)我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:=;(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不,∴△ABE∽△DEC∴,∴。
2013北京中考数学试题、答案解析版
2013年北京市高级中等学校招生考试数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的。
1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划。
将3 960用科学计数法表示应为 ( ) A 。
39。
6×102 B 。
3.96×103 C. 3。
96×104 D. 3.96×104 考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解答:将3960用科学记数法表示为3。
96×103.故选B .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.43-的倒数是 ( )A. 34B. 43C. 43-D. 34-考点:倒数分析:据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数 解答:D点评:本题主要考查倒数的定义,要求熟练掌握.需要注意的是: 倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数. 倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为( )A. 51 B 。
52 C 。
53 D. 54考点:概率公式分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小. 解答:C点评:本题考查概率的求法与运用,一般方法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率n mA P)(,难度适中。
中、高考各科试卷分析
中考各科试卷分析中考英语试卷:满分120分,时间100钟试卷结构(以河南省2013年中考试卷为例):一、听力理解。
(20道题,每题1分,共计20分。
第一小节、第二小节为对话,第三小节为短文)二、单项选择。
(15道题,每题1分,共计15分)三、完形填空。
(10道题,每题1分,共计10分)四、阅读理解。
(四篇短文,每篇5道题,每题2分,共计40分)五、词语运用。
(即为以单词的适当形式填空,10道题共计10分)六、补全对话。
(5道题,每题2分,共计10分)七、书面表达。
(要求80词左右,共计15分)中考数学试卷:满文120分,时间100分钟试卷结构(以河南省2013年中考试卷为例):一、单项选择题。
(8道题,每题3分,共计24分)二、填空题。
(7道题,每题3分,共计21分)三、解答题。
(8道题,共计75分)试卷主要考察三大部分内容:一、数与代数:1、数与式;2、方程与不等式;3、函数及其图像二、图形与几何:1、图形的性质;2、图形的变换;3、图形与坐标三、统计与概率:统计、概率中考语文试卷:满分120分,时间120分钟试卷结构(以河南省2013年中考试卷为例):积累与运用共计28分,现代文阅读共计28分,古诗文阅读共计14分,写作共计50分。
中考物理试卷:满分70分,时间60分钟试卷结构(以河南省2013年中考试卷为例):一、填空题。
(7道题,每空1分,共计14分,占试卷比例20%)二、选择题。
(8道题,每题2分,共计16分,占试卷比例22.9%)三、作图题。
(2道题,每题2分,共计4分,占试卷比例5.7%)四、实验探究题。
(3道题,共计19分,占试卷比例27.1%)五、综合应用题。
(2道题,共计17分,占试卷比例24.3%)知识结构比例:声学3%,光学6分题8.5%,热学6分题8.5%,电学28分题40%,力学28分题40%。
中考政治试卷:满分70分,时间60分钟(开卷)试卷结构(以河南省2013年中考试卷为例):一、选择题。
2013淄博中考数学试题(解析版)
山东省淄博市2013年中考数学试卷一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的.每小题4分,错选、不选或选出的答案超过一个,均记零分.B.====,故本选项正确;、﹣3.(4分)(2013•淄博)把一根长100cm的木棍锯成两段,使其中一段的长比另一段的24.(4分)(2013•淄博)下面关于正六棱柱的视图(主视图、左视图、俯视图)中,画法错误的是( ) B解:从上面看易得俯视图为:,从正面看主视图为:,5.(4分)(2013•淄博)如果分式的值为0,则x 的值是()6.(4分)(2013•淄博)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()7.(4分)(2013•淄博)如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB 绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()(),,±8.(4分)(2013•淄博)如图,直角梯形ABCD中,AB∥CD,∠C=90°,∠BDA=90°,AB=a,BD=b,CD=c,BC=d,AD=e,则下列等式成立的是()==,即=,9.(4分)(2013•淄博)如图,矩形AOBC的面积为4,反比例函数的图象的一支经过矩形对角线的交点P,则该反比例函数的解析式是()B×y=(矩形×y=.y=(y=(11.(4分)(2013•淄博)假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成BP=12.(4分)(2013•淄博)如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为()BPQ=DE=3二、填空题:本题共5小题,满分20分.只要求填写最后结果,每小题填对得4分.13.(4分)(2013•淄博)当实数a<0时,6+a<6﹣a(填“<”或“>”).14.(4分)(2013•淄博)请写出一个概率小于的随机事件:掷一个骰子,向上一面的点数为2.,再结合本题题意,写出符合要求的事件即可,答案不唯一.概率小于.15.(4分)(2013•淄博)在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有3条.16.(4分)(2013•淄博)如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB=.DCA=即可得出答案.=3==,=,DCA==故答案为:.17.(4分)(2013•淄博)如下表,从左到右在每个小格中都填入一个整数,使得任意三个三、解答题:本大题共7小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤.18.(5分)(2013•淄博)解方程组.,故此方程组的解为:19.(5分)(2013•淄博)如图,AD∥BC,BD平分∠ABC.求证:AB=AD.20.(8分)(2013•淄博)某中学积极开展跳绳活动,体育委员统计了全班同学1分钟跳绳(2)画出适当的统计图,表示上面的信息.21.(8分)(2013•淄博)关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求的值.≤﹣16x++≤=4+﹣16x+.22.(8分)(2013•淄博)分别以▱ABCD(∠CDA≠90°)的三边AB,CD,DA为斜边作等腰直角三角形,△ABE,△CDG,△ADF.(1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF.请判断GF 与EF的关系(只写结论,不需证明);(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.23.(9分)(2013•淄博)△ABC是等边三角形,点A与点D的坐标分别是A(4,0),D (10,0).(1)如图1,当点C与点O重合时,求直线BD的解析式;(2)如图2,点C从点O沿y轴向下移动,当以点B为圆心,AB为半径的⊙B与y轴相切(切点为C)时,求点B的坐标;(3)如图3,点C从点O沿y轴向下移动,当点C的坐标为C(0,)时,求∠ODB 的正切值.,),x)OEA=∠,.OC=4.CE=+.),ODB==24.(9分)(2013•淄博)矩形纸片ABCD中,AB=5,AD=4.(1)如图1,四边形MNEF是在矩形纸片ABCD中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;(2)请用矩形纸片ABCD剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).。
2013年青海省中考数学试卷(含解析版)
2013年青海省中考数学试卷一、填空题(本大题共12小题15空,每空2分,共30分).1.(4分)﹣7+4的倒数是;(﹣2a2b)2=.2.(4分)分解因式:x3y﹣2x2y2+xy3=;分式方程的解是.3.(2分)2013年4月青海省著名品牌商品推介会签约总金额达7805000000元,该数据用科学记数法表示为元.4.(4分)已知实数a在数轴上的位置如图1所示,则化简的结果是;不等式组的解集是.5.(2分)在函数y=中,自变量x的取值范围是.6.(2分)如图,把一张长方形纸片ABCD沿EF折叠,点C、D分别落在点C′、D′的位置上,EC交AD于G,已知∠EFG=56°,那么∠BEG=.7.(2分)中国象棋一方棋子按兵种不同分布如下:1个“帅”、5个“兵”、“士、象、马、车、炮”各2个,将一方棋子反面朝上放在棋盘上,随机抽取一个棋子是“兵”的概率为.8.(2分)如图,BC=EC,∠1=∠2,添加一个适当的条件使△ABC≌△DEC,则需添加的条件是(不添加任何辅助线).9.(2分)如图,在⊙O中直径CD垂直弦AB,垂足为E,若∠AOD=52°,则∠DCB=.10.(2分)如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为.11.(2分)如图,小明在测量旗杆高度的实践活动中,发现地面上有一滩积水,他刚好能从积水中看到旗杆的顶端,测得积水与旗杆底部距离CD=6米,他与积水的距离BC=1米,他的眼睛距离地面AB=1.5米,则旗杆的高度DE= 米.12.(2分)用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n个图案中正三角形的个数为(用含n的代数式表示).二、选择题(本大题共8小题,每小题3分,共24分,每小题给出的四个选项中,只有一个选项符合要求,请把你认为正确的选项序号填入下面相应题号的表格内).13.(3分)下列计算正确的是()A.a2•a3=a6B.C.D.14.(3分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.15.(3分)在正方形网格中,△ABC的位置如图所示,则tanB的值为()A.B.C.D.16.(3分)在同一直角坐标系中,函数y=2x与的图象大致是()A.B.C.D.17.(3分)几名同学准备参加“大美青海”旅游活动,包租一辆面包车从西宁前往青海湖.面包车的租价为240元,出发时又增加了4名同学,结果每个同学比原来少分担了10元车费.设原有人数为x人,则可列方程()A.B.C.D.18.(3分)如图是一个物体的俯视图,则它所对应的物体是()A.B.C.D.19.(3分)数学老师布置了10道选择题作为课堂练习,课代表将全班答题情况绘制成如图10所示的条形统计图,根据此图可知,每位同学答对的题数所组成样本的中位数和众数分别为()A.8,8B.9,8C.8,9D.9,9 20.(3分)如图在直角△ABC中,∠ACB=90°,AC=8cm,BC=6cm,分别以A、B为圆心,以的长为半径作圆,将直角△ABC截去两个扇形,则剩余(阴影)部分的面积为()A.B.C.D.三、(本大题共3小题,第21题5分,第22题7分,第23题7分,共19分).21.(5分)|﹣|+()﹣1﹣(2013﹣π)0﹣3tan30°.22.(7分)先化简再求值:,其中a=3+,b=3﹣.23.(7分)如图,已知▱ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于N,交BD于F,连结AF、CE.求证:四边形AECF为平行四边形.四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分).24.(9分)如图,线段AB、CD分别表示甲、乙两建筑物的高,AB⊥BC,DC⊥BC,垂足分别为B、C,从B点测得D点的仰角α为60°,从A点测得D点的仰角β为30°,已知甲建筑物的高度AB=34m,求甲、乙两建筑物之间的距离BC和乙建筑物的高度DC.(结果保留根号)25.(8分)为了进一步了解某校九年级学生的身体素质,体育老师从该年级各班中随机抽取50名学生进行1分钟跳绳次数测试,以测试数据为样本,绘制出如图表.表:(1)求表中a和b的值:a=;b=.(2)请将频数分布直方图补充完整:(3)若在1分钟内跳绳次数大于等于120次认定为合格,则从全年级任意抽测一位同学为合格的概率是多少?(4)今年该校九年级有320名学生,请你估算九年级跳绳项目不合格的学生约有多少人?26.(9分)如图,已知△ABC内接于⊙O,AC是⊙O的直径,D是的中点,过点D作直线BC的垂线,分别交CB、CA的延长线E、F.(1)求证:EF是⊙O的切线;(2)若EF=8,EC=6,求⊙O的半径.五、(本大题共2小题,第27题8分,第28题13分,共21分).27.(8分)请你认真阅读下面的小探究系列,完成所提出的问题.(1)探究1:如图1,点E、F分别在正方形ABCD边BC、CD上,AE⊥BF 于点O,小芳看到该图后,发现AE=BF,这是因为∠EAB和∠FBC都是∠ABF的余角,就会由ASA判定得出△ABE≌△BCF.小芳马上联想到正方形的对角线也是互相垂直且相等的(如图2),是不是在一般情况下,正方形内部两条长度大于边长且互相垂直的线段,即使它们不经过正方形的顶点,也会相等呢?很快她发现结果是成立的,除了通过构造法证明两条线段所在的三角形全等之外,还可以通过平移的方法把图3转化为图1,得到GH=EF,该方法更加简捷;(2)探究2:小芳进一步思考,如果让两个全等正方形组成矩形ABCD,如图4所示,GH⊥EF于点O,她发现GH=2EF,请你替她完成证明;(3)探究3:如图5所示,让8个全等正方形组成矩形ABCD,GH⊥EF于点O,请你猜想GH和EF有怎样的数量关系,写在下面:.28.(13分)如图,已知抛物线经过点A(2,0),B(3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且以A,O,D,E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上第二象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P使得以点P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.2013年青海省中考数学试卷参考答案与试题解析一、填空题(本大题共12小题15空,每空2分,共30分).1.(4分)﹣7+4的倒数是;(﹣2a2b)2=4a4b2.【考点】17:倒数;19:有理数的加法;47:幂的乘方与积的乘方.【分析】根据倒数和幂的乘方和积的乘方的运算法则求解.【解答】解:﹣7+4=﹣3,倒数为﹣;(﹣2a2b)2=4a4b2.故答案为:;4a4b2.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.2.(4分)分解因式:x3y﹣2x2y2+xy3=xy(x﹣y)2;分式方程的解是x=1.【考点】55:提公因式法与公式法的综合运用;B3:解分式方程.【分析】先提取公因式xy,再根据完全平方公式进行二次分解;方程两边都乘以(x﹣2),把分式方程转化为整式方程,然后求解,再进行验证即可.【解答】解:x3y﹣2x2y2+xy3,=xy(x2﹣2xy+y2),=xy(x﹣y)2;方程两边都乘以(x﹣2),把分式方程转化为整式方程得,x﹣3+x﹣2=﹣3,解得x=1,检验:当x=1时,x﹣2≠0,所以,x=1是原方程方程的解.故答案为:xy(x﹣y)2;x=1.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.3.(2分)2013年4月青海省著名品牌商品推介会签约总金额达7805000000元,该数据用科学记数法表示为7.805×109元.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7805000000用科学记数法表示为:7.805×109.故答案为:7.805×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)已知实数a在数轴上的位置如图1所示,则化简的结果是1;不等式组的解集是x≤1.【考点】29:实数与数轴;CB:解一元一次不等式组.【分析】根据数轴得到0<a<1,由此可以计算绝对值和二次根式;不等组的解集是两个不等式解集的交集.【解答】解:如图所示,0<a<1,则=1﹣a+a=1;,不等式(1)的解集为:x≤1.不等式(2)的解集为:x<6,所以,原不等式组的解集为:x≤1.故答案是:1;x≤1.【点评】本题考查了实数与数轴,解一元一次不等式组.根据图示得到a的取值范围是解答第一个空的关键.5.(2分)在函数y=中,自变量x的取值范围是x≥﹣1.【考点】E4:函数自变量的取值范围.【分析】根据二次根式的性质,被开方数大于等于0,列不等式求解.【解答】解:根据题意得:x+1≥0,解得,x≥﹣1.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.6.(2分)如图,把一张长方形纸片ABCD沿EF折叠,点C、D分别落在点C′、D′的位置上,EC交AD于G,已知∠EFG=56°,那么∠BEG=68°.【考点】IK:角的计算;PB:翻折变换(折叠问题).【分析】根据平行线的性质求得∠CEF的度数,然后根据折叠的性质可得∠FEG=∠CEF,进而求得∠BEG的度数.【解答】解:∵长方形ABCD中,AD∥BC,∴∠CEF=∠EFG=56°,∴∠CEF=∠FEG=56°,∴∠BEG=180°﹣∠CEF﹣∠FEG=180°﹣56°﹣56°=68°.故答案是:68°.【点评】本题考查了折叠的性质,正确确定折叠过程中出现的相等的角是关键.7.(2分)中国象棋一方棋子按兵种不同分布如下:1个“帅”、5个“兵”、“士、象、马、车、炮”各2个,将一方棋子反面朝上放在棋盘上,随机抽取一个棋子是“兵”的概率为.【考点】X4:概率公式.【分析】让兵的个数除以棋子的总个数即为所求的概率.【解答】解:∵共有16个棋子,其中有5个兵,∴抽到兵的概率是;故答案为:.【点评】此题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.8.(2分)如图,BC=EC,∠1=∠2,添加一个适当的条件使△ABC≌△DEC,则需添加的条件是∠A=∠D(不添加任何辅助线).【考点】KB:全等三角形的判定.【专题】26:开放型.【分析】先求出∠ACB=∠DCE,再添加∠A=∠D,由已知条件BC=EC,即可证明△ABC≌△DEC.【解答】解:添加条件:∠A=∠D;∵∠1=∠2,∴∠1+∠ECA=∠2+∠ECA,即∠ACB=∠DCE,在△ABC和△DEC中,∴△ABC≌△DEC(AAS).【点评】本题考查了全等三角形的判定;熟练掌握全等三角形的判定方法是解题的关键.9.(2分)如图,在⊙O中直径CD垂直弦AB,垂足为E,若∠AOD=52°,则∠DCB=26°.【考点】M2:垂径定理;M5:圆周角定理.【分析】连接OB,先根据直径CD垂直弦AB得出=,故可得出∠BOE=∠AOE,由圆周角定理即可得出结论.【解答】解:连接OB,∵直径CD垂直弦AB,∴=,∴∠BOE=∠AOE=52°,∴∠DCB=∠BOE=26°.答案为:26°.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.(2分)如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为(﹣b,a).【考点】R7:坐标与图形变化﹣旋转.【专题】16:压轴题.【分析】根据旋转的性质“旋转不改变图形的大小和形状”以及直角三角形的性质解题.【解答】解:由图易知A′B′=AB=b,OB′=OB=a,∠A′B′0=∠ABO=90°,∵点A'在第二象限,∴A'的坐标为(﹣b,a).【点评】需注意旋转前后对应角的度数不变,对应线段的长度不变.11.(2分)如图,小明在测量旗杆高度的实践活动中,发现地面上有一滩积水,他刚好能从积水中看到旗杆的顶端,测得积水与旗杆底部距离CD=6米,他与积水的距离BC=1米,他的眼睛距离地面AB=1.5米,则旗杆的高度DE= 9米.【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】先根据光的反射定律得出∠ACB=∠ECD,再得出Rt△ACB∽Rt△ECD,根据相似三角形对应边成比例即可得出结论.【解答】解:根据光的反射定律,∠ACB=∠ECD,∵∠ACB=∠EDC,CD=6米,AB=1.5米,BC=1米,∴Rt△ACB∽Rt△ECD,∴=,即=,解得DE=9.故答案为:9.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟知相似三角形的对应边成比例是解答此题的关键.12.(2分)用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n个图案中正三角形的个数为2n+2(用含n的代数式表示).【考点】38:规律型:图形的变化类.【专题】16:压轴题;2A:规律型.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:由图可知:第一个图案有正三角形4个为2×2.第二图案比第一个图案多2个为2×2+2=6个.第三个图案比第二个多2个为2×3+2=8个.那么第n个就有正三角形2n+2个.【点评】本题是一道找规律的题目,注意由特殊到一般的分析方法,此题的规律为:第n个就有正三角形2n+2个.这类题型在中考中经常出现.二、选择题(本大题共8小题,每小题3分,共24分,每小题给出的四个选项中,只有一个选项符合要求,请把你认为正确的选项序号填入下面相应题号的表格内).13.(3分)下列计算正确的是()A.a2•a3=a6B.C.D.【考点】46:同底数幂的乘法;48:同底数幂的除法;75:二次根式的乘除法;78:二次根式的加减法.【分析】结合选项分别进行同底数幂的乘法、二次根式的乘法、同底数幂的除法、二次根式的乘除法等运算,然后选择正确选项.【解答】解:A、a2•a3=a5,原式计算错误,故本选项错误;B、3和2不是同类二次根式,不能合并,故本选项错误;C、a2÷a3=a﹣1=(a≠0),计算正确,故本选项正确;D、÷=,原式计算错误,故本选项错误.故选:C.【点评】本题考查了同底数幂的乘法、二次根式的乘法、同底数幂的除法、二次根式的乘除法等知识,掌握运算法则是解答本题的关键.14.(3分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】P3:轴对称图形;R5:中心对称图形.【专题】1:常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.15.(3分)在正方形网格中,△ABC的位置如图所示,则tanB的值为()A.B.C.D.【考点】T1:锐角三角函数的定义.【专题】24:网格型.【分析】根据锐角三角函数的正切是对边比邻边,可得答案.【解答】解:由正切是对边比邻边,得tanB==,故选:B.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.16.(3分)在同一直角坐标系中,函数y=2x与的图象大致是()A.B.C.D.【考点】F4:正比例函数的图象;G2:反比例函数的图象.【分析】根据正比例函数与反比例函数图象的特点与系数的关系解答即可.【解答】解:∵y=2x中的2>0,∴直线y=2x经过第一、三象限.∵中的﹣1<0,∴双曲线经过第二、四象限,综上所述,只有D选项符合题意.故选:D.【点评】本题考查一次函数,正比例函数的图象.注意,反比例函数中系数与图象位置之间关系.17.(3分)几名同学准备参加“大美青海”旅游活动,包租一辆面包车从西宁前往青海湖.面包车的租价为240元,出发时又增加了4名同学,结果每个同学比原来少分担了10元车费.设原有人数为x人,则可列方程()A.B.C.D.【考点】B6:由实际问题抽象出分式方程.【分析】设原有人数为x人,根据增加之后的人数为(x+4)人,根据增加人数之后每个同学比原来少分担了10元车费,列方程.【解答】解:设原有人数为x人,根据则增加之后的人数为(x+4)人,由题意得,﹣10=.故选:A.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可.18.(3分)如图是一个物体的俯视图,则它所对应的物体是()A.B.C.D.【考点】U3:由三视图判断几何体.【分析】根据俯视图是从物体上面看,从而得到出物体的形状.【解答】解:从俯视图可以看出直观图的下面部分为长方体,上面部分为圆柱,且与下面的长方体的顶面的两边相切高度相同,符合这些条件的只有C;故选:C.【点评】本题考查了三视图的概念.本题的关键是要考虑到俯视图中圆的直径与长方形的宽的关系.19.(3分)数学老师布置了10道选择题作为课堂练习,课代表将全班答题情况绘制成如图10所示的条形统计图,根据此图可知,每位同学答对的题数所组成样本的中位数和众数分别为()A.8,8B.9,8C.8,9D.9,9【考点】VC:条形统计图;W4:中位数;W5:众数.【分析】根据众数和中位数的概念求解.【解答】解:由图可得,答对8道题的人数最多,故众数为8,∵共有50名同学,∴第25和26人答对题目数的平均数为中位数,即中位数为:=2.故选:B.【点评】本题考查了众数和平均数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.20.(3分)如图在直角△ABC中,∠ACB=90°,AC=8cm,BC=6cm,分别以A、B为圆心,以的长为半径作圆,将直角△ABC截去两个扇形,则剩余(阴影)部分的面积为()A.B.C.D.【考点】MO:扇形面积的计算.【分析】根据勾股定理求出AB,则得出圆的半径,分别求出三角形ACB和扇形AEF和扇形BEM的面积和,即可得出答案.【解答】解:∵在Rt△ACB中,∠C=90°,BC=6,AC=8,由勾股定理得:AB=10,即两圆的半径是5,∴阴影部分的面积是S=S△ACB﹣S扇形AEF﹣S扇形BEM=×6×8﹣=24﹣π.故选:A.【点评】本题考查了勾股定理,三角形面积,扇形的面积的应用,注意:圆心角是n度,半径是r的扇形的面积S=.三、(本大题共3小题,第21题5分,第22题7分,第23题7分,共19分).21.(5分)|﹣|+()﹣1﹣(2013﹣π)0﹣3tan30°.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】11:计算题.【分析】原式第一项利用绝对值的代数意义化简,第二项利用负指数幂法则计算,第三项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=+5﹣1﹣=4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(7分)先化简再求值:,其中a=3+,b=3﹣.【考点】6D:分式的化简求值.【专题】11:计算题.【分析】先把括号内通分,再把分子分母因式分解,然后把除法运算化为乘法运算后约分得到原式=,再把a和b的值代入后进行二次根式的混合运算.【解答】解:原式=÷=•=,当a=3+,b=3﹣,原式==.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.23.(7分)如图,已知▱ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于N,交BD于F,连结AF、CE.求证:四边形AECF为平行四边形.【考点】KD:全等三角形的判定与性质;L7:平行四边形的判定与性质.【专题】14:证明题.【分析】由条件可证明△ABE≌△CDF,可证得AE=CF,且AE∥CF,由平行四边形的判定可证得四边形AECF为平行四边形.【解答】证明:在▱ABCD中,AD∥BC,AB=CD,∠ABC=∠ADC,∴∠ABD=∠CDB,又∵AM⊥BC,CN⊥AD,∴∠BAM=∠DCN,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴AE=CF,∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,∴四边形AECF为平行四边形.【点评】本题主要考查平行四边形的判定和性质,掌握平行四边形的判定和性质是解题的关键,即①两组对边分别平行⇔四边形为平行四边形,②两组对边分别相等⇔四边形为平行四边形,③一组对边平行且相等⇔四边形为平行四边形,④两组对角分别相等⇔四边形为平行四边形,⑤对角线互相平分⇔四边形为平行四边形.四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分).24.(9分)如图,线段AB、CD分别表示甲、乙两建筑物的高,AB⊥BC,DC⊥BC,垂足分别为B、C,从B点测得D点的仰角α为60°,从A点测得D点的仰角β为30°,已知甲建筑物的高度AB=34m,求甲、乙两建筑物之间的距离BC和乙建筑物的高度DC.(结果保留根号)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】作AE⊥CD,用BC可以分别表示DE,CD的长,根据CD﹣DE=AB,即可求得BC的长,即可解题.【解答】解:作AE⊥CD,∵CD=BC•tanα=BC,DE=BC•tanβ=BC,∴AB=CD﹣DE=BC,∴BC=17m,CD=BC•tanα=BC=51m.答:甲、乙两建筑物之间的距离BC为17m,乙建筑物的高度DC为51m.【点评】本题考查了直角三角形中三角函数的应用,考查了特殊角的三角函数值,本题中求的BC的长是解题的关键.25.(8分)为了进一步了解某校九年级学生的身体素质,体育老师从该年级各班中随机抽取50名学生进行1分钟跳绳次数测试,以测试数据为样本,绘制出如图表.表:(1)求表中a和b的值:a=12;b=0.24.(2)请将频数分布直方图补充完整:(3)若在1分钟内跳绳次数大于等于120次认定为合格,则从全年级任意抽测一位同学为合格的概率是多少?(4)今年该校九年级有320名学生,请你估算九年级跳绳项目不合格的学生约有多少人?【考点】V5:用样本估计总体;V7:频数(率)分布表;V8:频数(率)分布直方图;X4:概率公式.【分析】(1)用总数减去其他小组的频数即可求得a的值,用频数除以样本容量即可求得频数b;(2)根据求得的第四小组的频数补全统计图即可;(3)用合格的人数除以总人数即可求得合格的概率;(4)用学生总数乘以不合格的频率即可求得不合格的人数.【解答】解:(1)a=50﹣4﹣6﹣18﹣10=12;b=12÷50=0.24.(2)直方图为:)=1﹣0.08﹣0.12=0.80;(3)全年级任意抽测一位同学为合格的概率为:P(合格(4)九年级跳绳项目不合格的学生约有320×(0.08+0.12)=64(人).【点评】此题考查了频数分布直方图,关键是读懂统计图,能从统计图中获得有关信息,列出算式.26.(9分)如图,已知△ABC内接于⊙O,AC是⊙O的直径,D是的中点,过点D作直线BC的垂线,分别交CB、CA的延长线E、F.(1)求证:EF是⊙O的切线;(2)若EF=8,EC=6,求⊙O的半径.【考点】KQ:勾股定理;MD:切线的判定;S9:相似三角形的判定与性质.【专题】152:几何综合题.【分析】(1)要证EF是⊙O的切线,只要连接OD,再证OD⊥EF即可.(2)先根据勾股定理求出CF的长,再根据相似三角形的判定和性质求出⊙O 的半径.【解答】(1)证明:连接OD交于AB于点G.∵D是的中点,OD为半径,∴AG=BG.∵AO=OC,∴OG是△ABC的中位线.∴OG∥BC,即OD∥CE.又∵CE⊥EF,∴OD⊥EF,∴EF是⊙O的切线.(2)解:在Rt△CEF中,CE=6,EF=8,∴CF=10.设半径OC=OD=r,则OF=10﹣r,∵OD∥CE,∴△FOD∽△FCE,∴,∴=,∴r=,即:⊙O的半径为.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.五、(本大题共2小题,第27题8分,第28题13分,共21分).27.(8分)请你认真阅读下面的小探究系列,完成所提出的问题.(1)探究1:如图1,点E、F分别在正方形ABCD边BC、CD上,AE⊥BF 于点O,小芳看到该图后,发现AE=BF,这是因为∠EAB和∠FBC都是∠ABF的余角,就会由ASA判定得出△ABE≌△BCF.小芳马上联想到正方形的对角线也是互相垂直且相等的(如图2),是不是在一般情况下,正方形内部两条长度大于边长且互相垂直的线段,即使它们不经过正方形的顶点,也会相等呢?很快她发现结果是成立的,除了通过构造法证明两条线段所在的三角形全等之外,还可以通过平移的方法把图3转化为图1,得到GH=EF,该方法更加简捷;(2)探究2:小芳进一步思考,如果让两个全等正方形组成矩形ABCD,如图4所示,GH⊥EF于点O,她发现GH=2EF,请你替她完成证明;(3)探究3:如图5所示,让8个全等正方形组成矩形ABCD,GH⊥EF于点O,请你猜想GH和EF有怎样的数量关系,写在下面:GH=8EF.【考点】LO:四边形综合题;S9:相似三角形的判定与性质.【专题】2B:探究型.【分析】(2)平移FE至DE′,平移GH至AH′,根据平移的性质可得:FE=DE′,GH=AH′,FE∥DE′,GH∥AH′,易证Rt△BAH′∽Rt△ADE′,然后运用相似三角形的性质就可解决问题.(3)借鉴(2)中的解题经验可得===8,则有GH=8EF.【解答】(2)证明:平移FE至DE′,平移GH至AH′,如图4.根据平移的性质可得:FE=DE′,GH=AH′,FE∥DE′,GH∥AH′,∴四边形OPQR为平行四边形.∵GH⊥EF,即∠POR=90°,∴平行四边形OPQR为矩形,∴∠AQE′=∠PQR=90°,∴∠QAE′+∠QE′A=90°.又∵∠ADE′+∠DE′A=90°,∴∠ADE′=∠QAE′.又∵∠DAE′=∠ABH′=90°,∴Rt△BAH′∽Rt△ADE′,∴==2,∴==2,∴GH=2EF.(3)猜想:GH=8EF.解:平移FE至DE′,平移GH至AH′,如图5.根据平移的性质可得:FE=DE′,GH=AH′,FE∥DE′,GH∥AH′,∴四边形OPQR为平行四边形.∵GH⊥EF,即∠POR=90°,∴平行四边形OPQR为矩形,∴∠AQE′=∠PQR=90°,∴∠QAE′+∠QE′A=90°.又∵∠ADE′+∠DE′A=90°,∴∠ADE′=∠QAE′.又∵∠DAE′=∠ABH′=90°,∴Rt△BAH′∽Rt△ADE′,∴==8,∴==8,∴GH=8EF.。
2013年上海市中考数学试卷分析
A F C
图3
3.5 2.5
B
E
O
图4
160 240
甲
乙
丁
图2
D
x(千米)
14. 在⊙ O 中, 已知半径长为 3, 弦 AB 长为 4, 那么5.如图 3,在△ ABC 和△ DEF 中,点 B、F、C、E 在同一直线上,BF = C E,AC∥ DF,请添加一个条件,使△ ABC ≌△ DEF ,这个添加的条件可以是____________. (只需 写一个,不添加辅助线) 16.李老师开车从甲地到相距 240 千米的乙地,如果邮箱剩余油量 y (升)与行驶里程
10 10 12 12 14
易 易 易 中&难 中&难
(1)解答题重点考查了理解能力、重题干获取信息的能力和综合运用能力。 (2)第 19、20 题考查学生代数的基本计算。 (3)第 21 题考查学生对一次函数和反比例函数相关概念性质的理解及运用。 (4)第 22 题涉及到数学知识与生活的联系,是今年出现的新题型,有助于学生更深刻理解 所学知识。 (5)第 23 题综合考查了初中平面几何的大部分知识点,综合度较高,需要学生对几何知识 有较为深入的理解、掌握。 (6)第 24 题和第 25 题是代数与几何相结合的题型,体现了“数形结合”的思想,综合程 度高,难度较大,是中考中区分度较大的题型。
B A
图5
C
1 2 − 1 − π 0 + ( ) −1 2
.
20.解方程组:
−2 x − y =
2 2 0 x − xy − 2 y =
(1)选择题的考查范围比较广,涵盖了初中数学四大模块基本知识点。 (2)题目设置:概念题、理解运用题型。 (3) 考查侧重于对基础概念的考查。 (4)选择题的选项设置全部为单选题 (5) 通过以上分析,我们可以看出,选择题的考查以基本知识为核心内容。只要同学们对 课本内容熟悉,基础知识牢固,是可以轻松解决的。
2013中考试题评析及答卷分析
2013中考数学试题评析及答卷分析第一部分 试题分析一、 整体分析:1、 总体:今年试题在设计形式上,难度、题量等方面与2012年相比保持相对稳定。
整卷结构均为三道大题。
分别为选择题10道、填空题6道、解答题9道,共25道小题,满分120分。
难度方面适中,个别基础题型较2012年相比,难度有所提升,(如概率题、圆的第2问等),但压轴题比2012温和很多。
三种题型在平缓中不失梯度,既有对基础的考察,又有对水平的考验;既有基本方法的考察,又有对灵活性的考验。
2、 创新:陕西中考数学试卷一直比较平稳,题型相对稳定,但今年很多题目有很多创新亮点让人眼前一亮。
其中,很多题目既体现出了出题人的良苦用心,又考察了学生的灵活使用水平与创新思维水平,同时完美的诠释了数学的魅力所在。
如第6题的正比例函数,考法特别。
引导学生正比例函数的性质入手,从容应对;一般考查的是一次函数或者反比例函数的图象性质及待定系数法求函数的解析式。
解析:因为A ,B 是不同象限的点,而正比例函数的图象要不在一、三象限或在二、四象限,由点A 与点B 的横纵坐标能够知:点A 与点B 在一、三象限时:横纵坐标的符号应一致,显然此题不可能,点A 与点B 在二、四象限:点A 在四象限得m<0,点B 在二象限得n<0,故选D .(另解:就有两种情况一、三或二、四象限,代入特值即可判定)第10题的二次函数性质,新颖创新,主要考察二次函数的增减性;考点:二次函数图象性质的应用及对称性的考查。
解析:由点),(00y x C 是该抛物线的顶点,且021y y y ≥>,所以0y 为函数的最小值,即得出抛物线的开口向上,因为021y y y ≥>,所以得出点A 、B 可能在对称轴的两侧或者是在对称轴的左侧,当在对称轴的左侧时,y 随x 的增大而减小,所以0x >3,当在对称轴的两侧时,点B 距离对称轴的距离小于点A 到对称轴的距离,即得0x -(-5)>3-0x ,解得10->x ,综上所得:10->x ,故选B第16题的与圆完美结合,巧妙的考查最大最小问题。
2013年无锡中考数学试卷分析
6 . 对 平 时 的知 识 漏 点 的强 化 考查
这两底边又要 求在其 中构 建两个 直 角三 角形 , 最后 利 用 勾股定理计算 出这 两底边之 比. 【 例2 1 ( 2 0 1 3 , 1 8 ) 已知 点 D 与点 A( 8 , 0 ) , B( 0 , 6 ) , C ( a , -a ) 是一平 行 四边 形 的 四个 顶点 , 则 C D长 的
2 . 强 化 了学 生 的操 作 动 手 能 力
B 、 / , : 2 C .  ̄ / , : 2 D . 2 :v 厂 西 解析: 连接 D F, 过点 D作 D E 上AB于点 E ' . . . A
=
1
A 一 、 E , 与点
题 的数学模 型学生虽 熟悉 , 但 难度 又有 提高 , 第 9题 的 背 景是 面积 , 但要 求学生会在平行 四边形 中 四次 构建三 角形 , 建立 底与对 应边上 的高 之间 的关 系 ; 第1 8 题 首先 要解决 直角坐标 系 中特殊点坐标 的几何 意义 , 才 能解决 最值 问题.
数学 ・ 考 斌研 究
2 0 1 3年 无 锡 中考 数 学 试 卷 分 析
江 苏宜兴 市 实验 中学 ( 2 1 4 2 0 0 ) 蒋晨 欣
一
、
试 题 难 度 特 点 分 析
AB : B C =3: 2 , D AB= 6 O 。 , E 在 AB 上 , 且 A E: E B
2 0 1 3 年无锡 中考数学试卷整体呈现 出“ 老问题新考 法” 的特点 , 与近几 年中考 试题 以及今年一 模 、 二模 试题 有 比较 大的差 异. 总体 难度 与去 年持平 , 但是 最难 的题 目难 度并 没有 去年高 , 中等难 度 的题 目比去 年高 , 考生 做起来会感觉不太顺手 , 此份 试卷对 于优 秀学生 的区分 度 比去年大 , 而对 于中等 学生 的 区分 度将不会 有太 大变 化. 此份试卷呈现 出以下几个特点. 1 . 题 目的背景和题 型都比较 熟悉 例如选择题 的第 9 题、 填 空题 的第 1 8 题, 解答题第
2013年中考数学试卷分析
2013年中考数学试卷分析一选择题1、答案:D解析:考查轴对称图形的判断及图形观察能力。
2、答案:D解析:考查整式的计算。
3、答案:B解析:考查平行四边形的性质。
4、答案:A解析:考查二元一次方程组的解法及一元二次方程根的解法。
5、答案:D解析:由图得,A :2010年到2011年的GDP 增长略大于1000亿元左右,但2011年到2012年的GDP 增长小于1000亿元,故两次增长率必不相同。
B :2012年的GDP 为小于8000亿元,而2008年的GDP 大于4000亿元,所以没有翻一番。
C :2010年GDP 接近6000亿元,图中很显然超过5500亿元6、答案:B解析:甲阴影部分面积22=-a b ,而乙阴影部分的面积2=-a ab ,则2221-+===+-a b a b b k a ab a a ,由图得出<b a ,所以01<<b a,则12<<k7、答案:C解析:A :如图则A 不正确;B :如图则B 不正确C :如图则C 正确;D :如图则D 不正确8、答案:A解析:由俯视图和主视图易得此图形为正六边形,根据主视图得其六边形的边长为6,而正六边形由6个正三角形所组成,2=6正三角形S ,则=3643正六边形S ,而通过左视图可得2=h ,所以=正六边形⋅=V S h9、答案:B 解析:通过3sinA 5=,4=AB ,可得出4sinB 5=,125=BC ,如图,过点C 做AB 边的垂线交AB 边于点D ,则根据4sinB 5==CD BC ,125=BC ,得出4825=CD10、答案:A 解析:如图分析:交点坐标已给出,由图得 ① 描述正确。
② 如果21>>a a a ,则根据图像可得1>a 或10-<<a ,所以②描述错误。
③ 如果21>>a a a,则根据图像没有这样的a 存在,所以③描述错误。
2013年河南省中考数学试卷分析
2013年河南省中考数学试卷分析贾静总体评价:一、中考试卷的功能:1、学业水平测试------基础性2、名校选拔测试------选拔性二、试卷难度2013年试卷在继承前几年的基础上,严格按照新课标标准的要求去执行,但稳中有变,力求创新。
容易题、中等题、难题的比例为7:2:1。
整体难度略微下降,但压轴题的难度提升明显,体现了中考的选拔性功能。
学生的思维能力,还要让学生养成良好的书写规范。
题型分析:一、试题整体分析2013年的中考数学试题与去年相比,试卷考查的内容稍有变化,试题注重通性通法,淡化特殊技巧,解答题设置了多个问题,层次分明,难度适中,比较平和,同去年变化不大,但更加突出了对考生解决实际问题能力的考查,有利于高中阶段学校综合、有效地评价学生的数学学习状况。
1、试题题型稳中有变试卷体现了“稳中求变,稳中求新”。
最后的压轴题难度的提高成为大多数好学生的丢分之处,重视基础知识、基本技能、基本思想方法和基本活动经验等考查,试题涉及的生活实际应用题共计28分,约占整个试卷的23.3﹪,这一改变正体现了“贴近学生学习、生活实际”这一新的教育教学理念。
2、试卷突出对数学思想方法与数学活动过程的考查试卷中综合实践与应用的能力要求数学知识要回归本质,学以致用,这份试卷充分体现了课改精神,共考察了函数、方程、统计、概率思想,同时还渗透数形结合、待定系数、归纳等方法。
二、试题特点及失分分析1、选择题A.题型特征选择题(共8小题,每小题3分,共24分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题,选对得3分,不选,选错或选出的代号超过一个的(不论是否写在括号内)一律0分.B.题型特点1.试题着重考查了“双基”,考查了数学中的重点、重要知识,考查了考查了学生的基础知识和基本能力。
2.考查内容紧扣考纲,主要考察简单的概念及计算,没有出现“怪、偏、繁”题.C.试题考点1. 难试题的起步较低,坡度不大,以基础性试题为主2. 考点设置规律性比较强:主要集中在基本定义、基本运算、简单综合应用方面,这也是我们在设计题型时要借鉴学习的一个重要方面.D.失分情况分析选择题突出了对学生基本知识和基本技能的考查,试题难度不大,从学生答卷的情况看,失分原因有以下两个方面:1.概念不清,如第4题中位数的计算,由于概念不清导致计算错误。
试卷分析(中考数学2013)
3.规范解题格式,做到每一步清楚明了,多练习,养成习惯。
4.注重板书规范,严格要求学生,注重概念和细节,注重数学语言的表达能力。
5.总结规律探索类题目的题型,归纳相关方法,通过做题练习提高学生的观察能力,读题能力,理解归纳能力。
6.注意数学思想和方法的透露,掌握一般的解题思路与方法,做好总结,注重学生思维能力的培养,加强学生几何计算能力的提高,加强学生书写的严谨性与规范性。
第1题.相反数(七上第二章)
混淆相反数与倒数,忘记相反数定义。
第2题同底数幂的乘法幂的乘方与积的乘方(七下第一章)
不能熟练掌握和区分同底数幂的乘法幂的乘方与积的乘方的定义与计算法
第3题几何体的三视图(九上第四章)
掌握三视图的概念,空间想象能力
第4题分解因式(提公因式法和公式法综合)(八下第二章)
因式分解的一般方法与步骤,因式分解要分解彻底。
第12题解一元二次方程(配方法)(九上第二章)
掌握配方法的解题步骤,计算要准确。
第13题概率的计算(列表法与树状图法)(七下第四章)
掌握概率的定义及其常用的计算方法,
第14题圆的性质(圆周角定理平行线性质)(九下第三章)
准确掌握圆周角定理,不可混淆圆心角与圆周角。
第15题命题与定理(八下第六章)。
弄清命题的相关概念,准确把握命题的分类。
第22题文字题(全等三角形的判定命题与定理)
面对文字题有些不知所措,掌握一般解题步骤,掌握基础知识及其简单证明过程。
第23题统计(扇形统计图用样本估计总体统计表)
掌握各种统计图,能从统计图里获得数法解解析式掌握二次函数的相关性质把握二次函数的图像及其几何变换本题解题方法不易想到
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年中考数学试卷分析
一选择题
1、答案:D
解析:考查轴对称图形的判断及图形观察能力。
2、答案:D
解析:考查整式的计算。
3、答案:B
解析:考查平行四边形的性质。
4、答案:A
解析:考查二元一次方程组的解法及一元二次方程根的解法。
5、答案:D
解析:由图得,A :2010年到2011年的GDP 增长略大于1000亿元左右,但2011年到2012年的GDP 增长小于1000亿元,故两次增长率必不相同。
B :2012年的GDP 为小于8000亿元,而2008年的GDP 大于4000亿元,所以没有翻一番。
C :2010年GDP 接近6000亿元,图中很显然超过5500亿元
6、答案:B
解析:甲阴影部分面积22=-a b ,而乙阴影部分的面积2
=-a ab ,则2221-+===+-a b a b b k a ab a a ,由图得出<b a ,所以01<<b a
,则12<<k
7、答案:C
解析:A :如图则A 不正确;B :如图则B 不正确
C :如图
则C 正确;D :如图则D 不正确
8、答案:A
解析:由俯视图和主视图易得此图形为正六边形,根据主视图得其六边形的边长为6,而正六边形由6个正三角形所
组成,2=634正三角形⨯S ,则=3643正六边形S ,而通过左视图可得2=h ,所以
=32083正六边形⋅
=⨯V S h
9、答案:B
解析:通过3sinA 5=,4=AB ,可得出4sinB 5=,125=BC ,如图,过点C 做AB 边的垂线交
AB 边于点D ,则根据4sinB 5=
=CD BC ,125=BC ,得出4825
=CD
10、答案:A 解析:如图分析:
交点坐标已给出,由图得 ① 描述正确。
② 如果21>>
a a a ,则根据图像可得1>a 或10-<<a ,所以②描述错误。
③ 如果21>>a a a
,则根据图像没有这样的a 存在,所以③描述错误。
④ 描述正确。