复数综合练习题
复数综合练习题百度文库(1)
一、复数选择题1.复数11z i=-,则z 的共轭复数为( ) A .1i - B .1i + C .1122i + D .1122i - 2.已知a 为正实数,复数1ai +(i 为虚数单位)的模为2,则a 的值为( )A B .1 C .2 D .3 3.已知复数31i z i -=,则z 的虚部为( ) A .1B .1-C .iD .i - 4.复数312i z i =-的虚部是( ) A .65i - B .35i C .35 D .65- 5.已知复数1z i i =+-(i 为虚数单位),则z =( )A.1B .iC iD i 6.满足313i z i ⋅=-的复数z 的共扼复数是( ) A .3i -B .3i --C .3i +D .3i -+ 7.设复数2i 1i z =+,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ⋅④z z ,其结果一定是实数的是( )A .①②B .②④C .②③D .①③ 9.若复数2i 1i a -+(a ∈R )为纯虚数,则1i a -=( )A B C .3 D .510.在复平面内,复数z 对应的点是()1,1-,则1z z =+( ) A .1i -+ B .1i + C .1i --D .1i - 11.已知复数z 满足202122z i i i+=+-+,则复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限12.已知复数z 的共轭复数212i z i -=+,i 是虚数单位,则复数z 的虚部是( ) A .1 B .-1 C .i D .i -13.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( )A B .2 C .10 D 14.122i i-=+( ) A .1B .-1C .iD .-i 15.已知复数z 满足()1+243i z i =+,则z 的虚部是( )A .-1B .1C .i -D .i二、多选题16.i 是虚数单位,下列说法中正确的有( )A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限17.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( )A .z =-1+2iB .|z |=5C .12z i =+D .5z z ⋅= 18.已知复数202011i z i+=-(i 为虚数单位),则下列说法错误的是( )A .z 的实部为2B .z 的虚部为1C .z i =D .||z =19.已知复数122z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .202012z =-+ 20.下面是关于复数21i z =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z = B .22z i =C .z 的共轭复数为1i +D .z 的虚部为1- 21.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( ) A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 22.下列说法正确的是( ) A .若2z =,则4z z ⋅= B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件23.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( ) A .20z B .2z z = C .31z = D .1z =24.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z +=25.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z =B .12i 5z +=-C .复数z 的实部为1-D .复数z 对应复平面上的点在第二象限26.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z = 27.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是( )A .z 的虚部为1-B .||z =C .2z 为纯虚数D .z 的共轭复数为1i -- 28.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( ) A .1 B .4- C .0 D .529.对任意1z ,2z ,z C ∈,下列结论成立的是( )A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅D .12z z =的充要条件是12=z z30.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A .|z |=B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上【参考答案】***试卷处理标记,请不要删除一、复数选择题1.D先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果.【详解】因为,所以其共轭复数为.故选:D.解析:D【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果.【详解】 因为()()11111111222i i z i i i i ++====+--+, 所以其共轭复数为1122i -. 故选:D.2.A【分析】利用复数的模长公式结合可求得的值.【详解】,由已知条件可得,解得.故选:A.解析:A【分析】利用复数的模长公式结合0a >可求得a 的值.【详解】0a >,由已知条件可得12ai +==,解得a =故选:A.3.B【分析】化简复数,可得,结合选项得出答案.【详解】则,的虚部为故选:B解析:B【分析】化简复数z ,可得z ,结合选项得出答案.()311==11i i z i i i i i--=-=+- 则1z i =-,z 的虚部为1-故选:B4.C【分析】由复数除法法则计算出后可得其虚部.【详解】因为,所以复数z 的虚部是.故选:C .解析:C【分析】由复数除法法则计算出z 后可得其虚部.【详解】 因为33(12)366312(12)(12)555i i i i i i i i +-===-+--+, 所以复数z 的虚部是35. 故选:C .5.D【分析】先对化简,求出,从而可求出【详解】解:因为,所以,故选:D解析:D【分析】 先对1z i i =+-化简,求出z ,从而可求出z【详解】解:因为1z i i i i =+-==,所以z i =,故选:D 6.A根据,利用复数的除法运算化简复数,再利用共扼复数的概念求解.【详解】因为,所以,复数的共扼复数是,故选:A解析:A【分析】根据313i z i ⋅=-,利用复数的除法运算化简复数,再利用共扼复数的概念求解.【详解】因为313i z i ⋅=-, 所以()13133i z i i i i-==-=+-, 复数z 的共扼复数是3z i =-,故选:A7.D【分析】先求出,再求出,直接得复数在复平面内对应的点【详解】因为,所以,在复平面内对应点,位于第四象限.故选:D解析:D【分析】先求出z ,再求出z ,直接得复数z 在复平面内对应的点【详解】 因为211i z i i ==++,所以1z i -=-,z 在复平面内对应点()1,1-,位于第四象限. 故选:D8.D【分析】设,则,利用复数的运算判断.【详解】设,则,故,,,.故选:D.【分析】设(),z a bi a b R =+∈,则z a bi =-,利用复数的运算判断.【详解】设(),z a bi a b R =+∈,则z a bi =-, 故2z z a R +=∈,2z z bi -=,22222z a bi a b abi z a bi a b+-+==-+,22z z a b ⋅=+∈R . 故选:D.9.B【分析】把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模.【详解】由复数()为纯虚数,则 ,则所以故选:B解析:B【分析】把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模.【详解】 由()()()()()()21i 2221112a i a a i a i i i i ----+-==++- 复数2i 1i a -+(a ∈R )为纯虚数,则202202a a -⎧=⎪⎪⎨+⎪≠⎪⎩ ,则2a =所以112ai i -=-=故选:B10.A【分析】由得出,再由复数的四则运算求解即可.【详解】由题意得,则.故选:A【分析】由()1,1-得出1i z =-+,再由复数的四则运算求解即可.【详解】由题意得1i z =-+,则1i 1i i 111i 1i i i 1z z -----+==⋅==-++-. 故选:A 11.C【分析】由已知得到,然后利用复数的乘法运算法则计算,利用复数的周期性算出的值,最后利用复数的几何意义可得结果.【详解】由题可得,,所以复数在复平面内对应的点为,在第三象限,故选:C .解析:C【分析】由已知得到2021(2)(2)i i i z -++-=,然后利用复数的乘法运算法则计算(2)(2)i i -++,利用复数n i 的周期性算出2021i 的值,最后利用复数的几何意义可得结果.【详解】由题可得,2021(2)(2)5i z i i i -+=+-=--,所以复数z 在复平面内对应的点为(5,1)--,在第三象限,故选:C .12.A【分析】先化简,由此求得,进而求得的虚部.【详解】,所以,则的虚部为.故选:A解析:A【分析】 先化简z ,由此求得z ,进而求得z 的虚部.【详解】()()()()212251212125i i i i z i i i i ----====-++-,所以z i ,则z 的虚部为1.故选:A13.D【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案.【详解】因为,所以,,所以,故选:D.解析:D【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案.【详解】因为1z i =+, 所以1z i =-,12z i +=+,所以()()()1123z z i i i ⋅+=-⋅+=-==故选:D.14.D【分析】利用复数的除法求解.【详解】.故选:D解析:D【分析】利用复数的除法求解.【详解】()()()()12212222i i i i i i i ---==-++-. 故选:D15.B【分析】利用复数代数形式的乘除运算化简,再由共轭复数的概念求得,则答案可求.【详解】由,得,,则的虚部是1.故选:.解析:B【分析】 利用复数代数形式的乘除运算化简,再由共轭复数的概念求得z ,则答案可求.【详解】由(12)43i z i +=+, 得43(43)(12)105212(12)(12)5i i i i z i i i i ++--====-++-, ∴2z i =+, 则z 的虚部是1.故选:B .二、多选题16.AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+,所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.AD【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z 在复平面上对应的向量,所以,,|z|=,,故选:AD解析:AD【分析】因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.【详解】因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z 5z z ⋅=,故选:AD18.AC【分析】根据复数的运算及复数的概念即可求解.【详解】因为复数,所以z 的虚部为1,,故AC 错误,BD 正确.故选:AC解析:AC【分析】根据复数的运算及复数的概念即可求解.【详解】 因为复数2020450511()22(1)11112i i i z i i i i +++=====+---,所以z 的虚部为1,||z =故AC 错误,BD 正确.故选:AC19.ACD分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确;因为,所以,所以D 正确解析:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为111312244z z ⎛⎫⎛⎫=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为22112222z ⎛⎫-=-- ⎪ ⎪⎝⎭=,12z =,所以2z z ≠,所以B 错误;因为321112222z z z i ⎛⎫⎛⎫=⋅=---=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()202063364431112222z z z z z ⨯+⎛⎫===⋅=-⋅-=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.20.BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A 错误;,B 正确;z 的共轭复数为,C 错误;z 的虚部为,D 正确.故选:BD.【点【分析】 把21iz =-+分子分母同时乘以1i --,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】 解:22(1)11(1)(1)i z i i i i --===---+-+--,||z ∴=A 错误;22i z =,B 正确;z 的共轭复数为1i -+,C 错误;z 的虚部为1-,D 正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.21.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误; 当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.22.AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误;当时解析:AD【分析】 由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.23.BCD【分析】利用复数的运算法则直接求解.【详解】解:复数(其中为虚数单位),,故错误;,故正确;,故正确;.故正确.故选:.【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD【分析】利用复数的运算法则直接求解.【详解】解:复数12z =-(其中i 为虚数单位),2131442z ∴=-=--,故A 错误; 2z z ∴=,故B 正确;31113()()12244z =--+=+=,故C 正确;||1z ==.故D 正确. 故选:BCD .【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.24.ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-;因为2422,2z i z =-=-,所以()5052020410102z z ==-,2211z z i i i z +=-++=-=.故选:ACD .【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题. 25.BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以z ==,故A 错误;1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题. 26.AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是选项C:解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.27.ABC【分析】首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为,对于A :的虚部为,正确;对于B :模长,正确;对于C :因为,故为纯虚数,解析:ABC【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】 因为()()()2122211i 1i 12i i z i i --====-++-, 对于A :z 的虚部为1-,正确;对于B :模长z =对于C :因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D :z 的共轭复数为1i +,错误.故选:ABC .【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.28.ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.29.AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.【详解】解:由复数乘法的运算律知,A 正确;取,;,满足,但且不解析:AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误. 故选:AC【点睛】本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.30.AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.。
复数练习题含答案
复数练习题含答案一、单选题1.下列命题正确的是( ) ①若复数z 满足2R z ∈,则R z ∈; ②若复数z 满足i R z∈,则z 是纯虚数; ③若复数1z ,2z 满足12=z z ,则12=±z z ;④若复数1z ,2z 满足2121z z z =且10z ≠,则12=z z .A .①③B .②④C .①④D .②③2.已知a R ∈,“实系数一元二次方程2904x ax ++=的两根都是虚数”是“存在复数z 同时满足2z =且1z a +=”的( )条件. A .充分非必要 B .必要非充分 C .充分必要D .既非充分又非必要 3.若0a <,则a 的三角形式为( ) A .()cos0isin0a + B .()cos isin a ππ+ C .()cos isin a ππ-+ D .()cos isin a ππ-- 4.复数(sin 10°+icos 10°)(sin 10°+icos 10°)的三角形式是( )A .sin 30°+icos 30°B .cos 160°+isin 160°C .cos 30°+isin 30°D .sin 160°+icos 160°5.已知 i 是虚数单位,复数412⎛⎫+ ⎪ ⎪⎝⎭在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.在复平面内,复数z 满足()1i 3i z -=-+,则复数z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限7.已知复数z 满足()1i 1z +=,则z 的虚部为( ) A .12-B .1i 2-C .12 D .1i 28.复数3i(43i )-在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限9.已知复数1i z =-,则2i z z -=( )A .2B .3C .D .10.设复数z 1=1+i ,z 2=x +2i(x ∈R),若z 1z 2∈R ,则x 等于( ) A .-2B .-1C .1D .211.在复平面内O 为坐标原点,复数()1i 43i z =-+,27i z =+对应的点分别为12,Z Z ,则12Z OZ ∠的大小为( )A .3πB .23π C .34π D .56π12.复数2i z =-(i 为虚数单位)的虚部为( ) A .2 B .1 C .i D .1- 13.复数z 满足(2)i z z =+,则z =( ) A .1i + B .1i - C .1i -+ D .1i -- 14.已知12z i =-,则(i)z z -的模长为( )A .4B C .2D .1015.2021i 1i-=( )A .11i 22+ B .11i 22-- C .11i 22-+D .11i 22-16.已知i 为虚数单位,则复数1i -+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 17.已知复数i(1i)z =-,则其共轭复数z =( )A .1i --B .1i -+C .1i -D .1i + 18.已知复数z 满足(2i)43i z +=-(i 为虚数单位),则z =( ) A .2+i B .2-iC .1+2iD .1-2i19.若复数z 对应的点在直线y =2x 上,且|z |z =( )A .1+2iB .-1-2iC .±1±2iD .1+2i 或-1-2i20.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =( ) A .2i -- B .2i -+ C .2i - D .2i +二、填空题21.若()i 1)(,x y x x y R +=-∈,则2x y +的值为__________. 22.设复数i 12z =+(i 是虚数单位),则在复平面内,复数2z 对应的点的坐标为________.23.已知复数z 满足()1i 42i z -=+,则z =_________(用代数式表示).24.若i(,)i+∈a b a b R 与3+4i 互为共轭复数,则a b -=___________. 25.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如,z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离,在复数平面内,复数02i1ia z +=+ (i 是虚数单位,)a R ∈是纯虚数,其对应的点为0Z ,Z 为曲线1z =上的动点,则0Z 与Z 之间的最小距离为________________. 26.若()1i 1i z +=-,则z =_______ 27.已知复数1i z =+,则2z z+=____________ 28.已知复数z 满足294i z z +=+,则z =___________.29.在复平面内,复数1z 和2z 对应的点分别是(21)A ,和(01)B ,,则12z z =_______. 30.设z C ∈,且1i 0z z +--=,则i z +的最小值为________. 31.若a ∈R ,且i2ia ++是纯虚数,则a =____. 32.已知复数z 为纯虚数且满足1-3z =|z |+3i ,则z =________33.已知复数2i -在复平面内对应的点为P ,复数z 满足|i |1z -=,则P 与z 对应的点Z 间的距离的最大值为________.34.设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则2zz-=________. 35.复数1077(cos isin )66ππ+表示成代数形式为________. 36.计算cos 40isin 40cos10isin10________.37.已知复数cos isin i z θθ=+(为虚数单位),则1z -的最大值为___________ 38.下列命题:①若a R ∈,则()1i a +是纯虚数;②若()()()22132i x x x x R -+++∈是纯虚数,则1x =±;③两个虚数不能比较大小. 其中正确命题的序号是________. 39.已知z =,则22022z z z ++⋅⋅⋅+=___________. 40.定义12,C z z ∈,221212121(||||)4z z z z z z ⊕=+--,121212i(i )z z z z z z ⊗=⊕+⊕.若134i z =+,21z =+,则12||z z ⊗=___________.三、解答题41.已知z =cos θ-sin θi(cos θ+sin θ). (1)当θ为何值时,|z|取得最大值,并求此最大值; (2)若θ∈(π,2π),求arg z (用θ表示). 42.已知复数(2)(3)(2)i()z m m m m =++++∈R . (1)若z 是纯虚数,求z ; (2)若i1,i(,)1z m a b a b z +=-=+∈+R ,求a ,b 的值. 43.在复数集C 内方程610x -=有六个根分别为123456ωωωωωω,,,,, (1)解出这六个根;(2)在复平面内,这六个根对应的点分别为A ,B ,C ,D ,E ,F ;求多边形ABCDEF 的面积 .44.已知复数()21i z a =+,243i z =-,其中a 是实数. (1)若12i z z =,求实数a 的值;(2)若12z z 是纯虚数,a 是正实数,求23202211112222z z z z z z z z ⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.45.(1)已知设方程α,β是方程220x x a ++=的两根,其中a R ∈,则||||αβ+的值;(2)关于x 的方程243i 0x ax +++=有实根,其中a C ∈,求||a 的最小值,并求取得最小值时方程的根.【参考答案】一、单选题 1.B 2.D 3.C 4.B 5.C 6.C 7.A 8.B 9.D11.C 12.D 13.C 14.B 15.C 16.B 17.C 18.B 19.D 20.B 二、填空题 21.122.()34-,23.13i +##3i+1 24.1 25.1 26.i 27.28.529.12i -##2i+1-30. 31.12-##0.5- 32.i33.1##1+34.-1+2i##2i -1 35.-5i##-5i -3612i 37.2 38.③ 39.0三、解答题41.(1)当()24k k Z πθπ=-∈时,z 取最大值为,(2)97,,284arg 77,,2284z θππθπθππθπ⎧⎛⎫+∈ ⎪⎪⎪⎝⎭=⎨⎡⎫⎪-∈⎪⎢⎪⎣⎭⎩.【解析】 【分析】(1)按照复数模的定义求解即可; (2)按照复数的辐角主值的定义求解即可. (1)由复数模的定义可得:z ===,显然当cos 14πθ⎛⎫+= ⎪⎝⎭时最大,即()24k k Z πθπ=-∈, 最大值为; (2)设arg zα= ,()cos sin i cos sin 1cos isin 44z ππθθθθθθ⎤⎛⎫⎛⎫=-+=++++ ⎪ ⎪⎥⎝⎭⎝⎭⎦ ,实部为1cos 04πθ⎛⎫++ ⎪⎝⎭> 59442πππθ⎛⎫≤+≤ ⎪⎝⎭ ,虚部为sin 4πθ⎛⎫+ ⎪⎝⎭,sin 4tan tan 281cos 4πθθπαπθ⎛⎫+ ⎪⎛⎫⎝⎭==+ ⎪⎛⎫⎝⎭++ ⎪⎝⎭ , ∴当7,4πθπ⎛⎫∈ ⎪⎝⎭ 即5,244ππθπ⎛⎫+∈ ⎪⎝⎭ 时, sin 04πθ⎛⎫+ ⎪⎝⎭<, 此时复数z 对应的点在第四象限, 5,288θπππ⎛⎫+∈ ⎪⎝⎭,92828θπθπαπ=++=+ ,当7,24πθπ⎡⎫∈⎪⎢⎣⎭ 即92,44ππθπ⎡⎫+∈⎪⎢⎣⎭,sin 04πθ⎛⎫+ ⎪⎝⎭>, 此时复数z 对应的点在第一象限(或x 轴的非负半轴上),9,288θπππ⎡⎫+∈⎪⎢⎣⎭,∴72828θπθπαπ=+-=- , ∴97,,284arg 77,,2284z θππθπθππθπ⎧⎛⎫+∈ ⎪⎪⎪⎝⎭=⎨⎡⎫⎪-∈⎪⎢⎪⎣⎭⎩ ; 综上,当()24k k Z πθπ=-∈时,z最大,最大值为97,,284arg 77,,2284z θππθπθππθπ⎧⎛⎫+∈ ⎪⎪⎪⎝⎭=⎨⎡⎫⎪-∈⎪⎢⎪⎣⎭⎩.42.(1)i z = (2)42,55a b == 【解析】 【分析】(1)由纯虚数的概念求解 (2)根据复数的运算法则化简 (1)因为(2)(3)(2)i z m m m =++++是纯虚数,所以(2)(3)0,20,m m m ++=⎧⎨+≠⎩解得3m =-.所以i z =-,则i z =. (2)由1m =-,得2i z =+, 代入ii 1z a b z +=++, 得22i (22i)(3i)42i i 3i (3i)(3i)55a b ++-==+=+++-, 即42,55a b ==.43.(1)12345611111,1,2222ωωωωωω==-=-=-=+=-【解析】 【分析】(1)原式可因式分解为22(1)(1)(1)(1)0x x x x x x -+++-+=,令21=0x x ++,设i,,x a b a b R =+∈可求解出21=0x x ++的两个虚根,同理可求解21=0x x -+的两个虚根,即得解;(2)六个点构成的图形为正六边形,边长为1,计算即可 (1)由题意,610x -=22(1)(1)(1)(1)0x x x x x x ∴-+++-+=当21=0x x ++时,设i,,x a b a b R =+∈故222(i)i 1=+1(2)i=0a b a b a b a ab b ++++-+++, 所以22+1=2=0a b a ab b -++ 解得:13,22a b =-=±,即13i 22x =-± 当21=0x x -+时,设i,,x c d c d R =+∈ 故222(i)i 1=1(2)i=0c d c d c d c cd d +--+--++- 所以221=2=0c d c cd d --+- 解得:13,22c d ==±,即13i 22x =±故:123456131313131,1,i,i,i,i 22222222ωωωωωω==-=-+=--=+=- (2)六个根对应的点分别为A ,B ,C ,D ,E ,F , 其中13131313(1,0),(1,0),(,),(,),(,),(,)22222222A B C D E F ----- 在复平面中描出这六个点如图所示:六个点构成的图形为正六边形,边长为1 故233361S ==44.(1)2 (2)1i -+ 【解析】 【分析】(1)利用复数的乘法运算及复数相等的概念求解(2)利用12z z 为纯虚数求a ,从而得12i zz =,然后通过复数的周期性进行求解即可 (1)∵()21i z a =+,243i z =-,12i z z = ∴()22i 12i 34i a a a +=-+=+从而21324a a ⎧-=⎨=⎩,解得a =2所以实数a 的值为2. (2)依题意得:()()()()()2212i i 43i 43i 43i 43i a a z z +++==--+ ()()()()2222222222i i 43i 48i 4i 3i 6i 3i 16943i a a a a a a ++++++++==---()()22464383i25a a a a --++-=因为12z z 是纯虚数,所以:2246403830a a a a ⎧--=⎨+-≠⎩,从而a =2或12a =-;又因为a 是正实数,所以a =2.当a =2时,22124648i 3i 3i 25z a a a a z --++-=16i 12i 3ii 25+-==, 因为1i i =,2i 1=-,3i i =-,41i =,……,41i i n +=,42i 1n +=-,43i i n +=-,4i 1n =,(n N ∈)所以23202211112222z z z z z z z z ⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2342022i i i i i =++++⋅⋅⋅+()()()23456789102019202020212022i i i i i i i i i i i i i i =++++++++++⋅⋅⋅++++ 2i i 000=++++⋅⋅⋅+ 1i =-+所以232022111122221i z z z z z z z z ⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭45.(1)()()()0201a a a a αβ⎧<⎪+=≤≤⎨⎪>⎩;(2)min ||a =3i)+或3i)+.【解析】 【分析】(1)求出判别式4(1)a ∆=-,对a 分类讨论:当01a 时,当0a <时,当1a >时三种情况,分别求出||||αβ+;(2)设0x 为方程的实根,代入原方程,表示出a ,利用基本不等式求出||a 的最小值,并求取得最小值时方程的根. 【详解】(1)判别式444(1)a a ∆=-=-, ①若0∆,即1a ,则α,β是实根,则2αβ+=-,a αβ=,则2222(||||)2||()22||422||a a αβαβαβαβαβαβ+=++=+-+=-+,故||||αβ+,当01a 时,||||2αβ+=, 当0a <时,||||αβ+=②若∆<0,即1a >,则α,β是虚根,1α=-,1β=-,故||||αβ+==综上:()()()0201a a a a αβ⎧<⎪+=≤≤⎨⎪>⎩.(2)设0x 为方程的实根,则20043i 0x ax +++=, 所以00043i a x x x =---,则20020004325||2()2()2818a x x x x x =++=++, 当202025x x =即0x =||min a =当0x =3i)+,当0x =3i)+.。
复数练习题附答案
复数练习题附答案复数是数学中的一个基本概念,它拓展了实数的概念,允许我们处理像-1的平方根这样的数。
复数可以表示为a + bi的形式,其中a和b是实数,i是虚数单位,满足i^2 = -1。
下面是一些复数的练习题,以及它们的答案。
练习题1:计算以下复数的加法:\[ (3 + 4i) + (1 - 2i) \]答案1:首先分别将实部和虚部相加:\[ 3 + 1 = 4 \]\[ 4i - 2i = 2i \]所以,结果是 \( 4 + 2i \)。
练习题2:计算以下复数的乘法:\[ (2 + 3i) \times (1 - 4i) \]答案2:使用分配律:\[ 2 \times 1 + 2 \times (-4i) + 3i \times 1 + 3i \times (-4i) \]\[ = 2 - 8i + 3i - 12i^2 \]由于 \( i^2 = -1 \),所以:\[ = 2 - 5i + 12 \]结果是 \( 14 - 5i \)。
练习题3:求复数 \( z = 3 - 2i \) 的共轭复数。
答案3:共轭复数是将虚部的符号改变得到的数,所以:\[ \bar{z} = 3 + 2i \]练习题4:求复数 \( z = 2 + i \) 的模(magnitude)。
答案4:复数的模定义为:\[ |z| = \sqrt{a^2 + b^2} \]其中 \( a \) 和 \( b \) 分别是复数的实部和虚部。
所以:\[ |2 + i| = \sqrt{2^2 + 1^2} = \sqrt{4 + 1} = \sqrt{5} \] 练习题5:求复数 \( z = 1 + i \) 的逆。
答案5:复数的逆通过公式 \( \frac{1}{z} =\frac{\bar{z}}{|z|^2} \) 计算。
首先求模:\[ |1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2} \]然后求共轭复数:\[ \bar{z} = 1 - i \]最后求逆:\[ \frac{1}{1 + i} = \frac{1 - i}{2} \]因为 \( |1 + i|^2 = 2 \)。
复数练习题含答案
复数练习题含答案一、单选题1.已知i 是虚数单位,复数1z 、2z 在复平面内对应的点分别为()1,2-、()1,1-,则复数21z z 的共轭复数的虚部为( )A .15-B .15C .1i 5-D .1i 52.下列说法正确的是( )A .若复数()i ,z a b a b R =+∈,则z 为纯虚数的充要条件是0a =且0b =.B .若()()21i 0,x y x y R -+->∈,则2x >且1y >.C .若()()2212230Z Z Z Z -++=,则123Z Z Z ==.D .若复数z 满足i 2z -=,则复数z 对应点的集合是以()0,1为圆心,以2为半径的圆. 3.复数(2i 的虚部为( ) A .2 B.C.2-D .04.复数 21(1)i 1z a a =+--是实数,则实数a 的值为( ) A .1或-1 B .1 C .-1D .0或-15.已知复数5i1iz -=+(i 为虚数单位),则z 的共轭复数z =( ) A .23i +B .24i -C .33i +D .24i +6.下列命题正确的是( )①若复数z 满足2z ∈R ,则z R ∈; ②若复数z 满足i R z∈,则z 是纯虚数;③若复数12,z z 满足12=z z ,则12=±z z ; ④若复数12,z z 满足2121z z z =且10z ≠,则12=z z .A .①③B .②④C .①④D .①③7.设i为虚数单位,则)10i 的展开式中含2x 的项为( )A .6210C x - B .6210C x C .8210C x -D .8210C x8.已知m 为实数,则“1m =”是“复数()211i z m m =-++为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.已知复数2ii+=a z (a R ∈,i 是虚数单位)的虚部是3-,则复数z 对应的点在复平面的( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.若复数z 在复平面内对应的点为(1,1),则其共轭复数z 的虚部是( ) A .iB .i -C .1D .1-11.在复平面内O 为坐标原点,复数()1i 43i z =-+,27i z =+对应的点分别为12,Z Z ,则12Z OZ ∠的大小为( )A .3π B .23π C .34π D .56π12.设复数z 满足i 1i(i z ⋅=+为虚数单位),则复数z 在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限13.已知复数1i z a =+(a R ∈),则1a =是z = ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件14.若复数4i1iz =-,则复数z 的模等于( ) AB .2C .D .415.已知复数z 满足(34i)5(1i)z +⋅=-,则z 的虚部是( ) A .15-B .75-C .1i 5-D .7i 5-16.“1x =”是“22(1)(32)i x x x -+++是纯虚数”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件17.设a ,b ∈R ,i 为虚数单位,则“ab >0”是“复数a -b i 对应的点位于复平面上第二象限”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件18.若复数z 对应的点在直线y =2x 上,且|z |z =( ) A .1+2i B .-1-2i C .±1±2iD .1+2i 或-1-2i19.已知复数324i 1iz +=-,则z =( )ABC.D.20.设复数z 1=1+i ,z 2=x +2i(x ∈R),若z 1z 2∈R ,则x 等于( )A .-2B .-1C .1D .2二、填空题21.复数121i,22i z z =+=-,则12_________.z z -=22.在复平面内,复数1z 和2z 对应的点分别是(21)A ,和(01)B ,,则12z z =_______. 23.已知z 是复数,3i 13i z z z z +-⋅⋅=-,则复数z =_________24.已知复数2z =+i ,其中i 为虚数单位,那么复数()2z ·z 所对应的复平面内的点在第________象限25.若i 为虚数单位,复数3i z =+,则表示复数1iz+的点在第_______象限. 26.复数2i z a =+,a ∈R ,若13i i+-z为实数,则=a ________. 27.若()1i 1i z +=-,则z =_______ 28.已知复数()3iR ib z b -=∈的实部和虚部相等,则z =___________. 29.已知复数i 3i z =+(i 为虚数单位),则z =__________.30.若复数2(1i)34iz +=+,则z =__________.31.若复数()()32i z a a R =-+-∈为实数,则2021i 1ia a -+的值为______.32.设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则2zz-=________. 33.计算cos 40isin 40cos10isin10________.34.已知i 是虚数单位,则202220211()1+⎛⎫+= ⎪-⎝⎭i i i ___________.35.方程()()2223256i 0x x x x --+-+=的实数解x =________.36.下列命题:①若a R ∈,则()1i a +是纯虚数;②若()()()22132i x x x x R -+++∈是纯虚数,则1x =±;③两个虚数不能比较大小. 其中正确命题的序号是________. 37.已知z =22022z z z ++⋅⋅⋅+=___________. 38.若a ∈R ,且i2ia ++是纯虚数,则a =____. 39.若i 是虚数单位,则复数310i3i =-________.(写成最简结果) 40.已知2i +是关于x 的方程()20,R x ax b a b ++=∈的根,则b a -=________. 三、解答题41.已知关于x 的方程2(4i)4(1)i 0()x x a a --+-+=∈R 有实数根. (1)求实数a 的值;(2)设2i z a =+,求223z z -+的值.42.已知复数13i z m =-,212i()z m R =+∈. (1)若12z z 是实数,求m 的值;(2)若复数12zz 在复平面内对应的点在第三象限,且15z ≥,求实数m 的取值范围.43.已知复数()()()22232i R z m m m m m =--++-∈,. (1)若0z >,求m 的值; (2)若z 是纯虚数,求z z ⋅的值.44.在复数集C 内方程610x -=有六个根分别为123456ωωωωωω,,,,, (1)解出这六个根;(2)在复平面内,这六个根对应的点分别为A ,B ,C ,D ,E ,F ;求多边形ABCDEF 的面积 .45.(1)设复数z 满足24(1i)(12i)z --=-,求复数z ; (2)若复数z 满足(2i)(1i)1z z ⋅+=⋅-+,求复数z ;(3)已知复数()2256215i m m m m +++--z=,当实数m 为何值时,复数z 对应的点Z 在第四象限.【参考答案】一、单选题1.A 2.D 3.C 4.C 5.A 6.B 7.A 8.C 9.D 10.D 11.C 12.D 13.A 14.C 15.B 16.A 17.B 18.D 19.B 20.A 二、填空题2122.12i -##2i+1-23.12或12##12-或12 24.四 25.四 26.3- 27.i28.2930.825i 625-31.i -32.-1+2i##2i -13312i34 35.2 36.③ 37.0 38.12-##0.5- 39.13i +##3i 1+ 40.9 三、解答题41.(1)1a = (2)2- 【解析】 【分析】(1)由已知,方程2(4i)4(1)i 0()x x a a --+-+=∈R 有实数解,可列出关于x 和a 方程组,解方程即可完成求解;(2)将第(1)问计算出的a 带入2i z a =+中,然后直接计算223z z -+即可. (1)由2(4i)4(1)i 0x x a --+-+=,整理得()244(1)i 0x x x a -++--=,则244010x x x a ⎧-+=⎨--=⎩,解得21x a =⎧⎨=⎩. 所以实数a 的值为1. (2)由(1)可得12z i =+.223z z -+2(12i)2(12i)3=+-++34i 24i 3=-+--+2=-.42.(1)32m =- (2)46m ≤< 【解析】 【分析】(1)由复数的除法法则化简后根据复数的定义计算;(2)由对应点所在象限求得参数范围,再由模求得参数范围,两者结合可得.(1)123i (3i)(12i)6(23)i 12i (12i)(12i)5z m m m m z -----+===++-,它是实数,则(23)0m -+=,32m =-; (2)由(1)12z z 对应点坐标为623(,)55m m -+-,它在第三象限, 则6052305m m -⎧<⎪⎪⎨+⎪-<⎪⎩,解得362m -<<,又15z =,4m ≤-或4m ≥, 综上,46m ≤<. 43.(1)2m =- (2)4或100 【解析】 【分析】(1)根据复数0z >,可知z 为实数,列出方程,解得答案;(2)根据z 是纯虚数,列出相应的方程或不等式,再结合共轭复数的概念以及复数的乘法运算,求得答案. (1)因为0z >,所以R z ∈,所以220m m +-=,所以2m =-或1m =. ①当2m =-时,50z =>,符合题意; ②当1m =时,40z =-<,舍去. 综上可知:2m =-. (2)因为z 是纯虚数,所以2223020m m m m ⎧--=⎨+-≠⎩,所以1m =-或3m =,所以2i z =-,或10i z =,所以2i 2i 4z z ⋅=-⨯=或10i (10i)100z z ⋅=⨯-=, 所以4z z ⋅=或100. 44.(1)12345611111,1,2222ωωωωωω==-=-=-=+=-【解析】 【分析】(1)原式可因式分解为22(1)(1)(1)(1)0x x x x x x -+++-+=,令21=0x x ++,设i,,x a b a b R =+∈可求解出21=0x x ++的两个虚根,同理可求解21=0x x -+的两个虚根,即得解;(2)六个点构成的图形为正六边形,边长为1,计算即可 (1)由题意,610x -=22(1)(1)(1)(1)0x x x x x x ∴-+++-+=当21=0x x ++时,设i,,x a b a b R =+∈故222(i)i 1=+1(2)i=0a b a b a b a ab b ++++-+++, 所以22+1=2=0a b a ab b -++ 解得:13,22a b =-=±,即13i 22x =-± 当21=0x x -+时,设i,,x c d c d R =+∈ 故222(i)i 1=1(2)i=0c d c d c d c cd d +--+--++- 所以221=2=0c d c cd d --+- 解得:13,22c d ==±,即13i 22x =±故:123456131313131,1,i,i,i,i 22222222ωωωωωω==-=-+=--=+=- (2)六个根对应的点分别为A ,B ,C ,D ,E ,F , 其中13131313(1,0),(1,0),(,),(,),(,),(,)22222222A B C D E F ----- 在复平面中描出这六个点如图所示:六个点构成的图形为正六边形,边长为1故261S ==45.(1)2;(2)21i 3z =-;(3)25m -<<. 【解析】 【分析】(1)根据复数的四则运算及复数的摸公式即可求解;(2)利用复数的四则运算、两个复数相等及共轭复数即可求解;(3)复数的几何意义得出点Z 的坐标,再根据点在第四象限的特点即可求解. 【详解】(1)()()()()242i 42i 12i 4(1i)10i2i 12i 12i 12i 12i 5z +++--=====---+,∴2z =(2)设i z a b =+()R a ∈、b ,则()()()i 2i i (1i)1a b a b +⋅+=-⋅-+, 化简得(2)(2)i (1)()i a b a b a b a b -++=-+-+,根据对应相等得:212a b a b a b a b-=-+⎧⎨+=--⎩,解得1a =,23b =-,所以21i 3z =-.(3)由()2256215i m m m m +++--z=,得()2256,215m m m m ++--Z ,因为Z 对应的点在第四象限,所以225602150m m m m ⎧++>⎨--<⎩,解得:25m -<<,故而当25m -<<时,复数Z 对应的点在第四象限.。
复数练习题含答案
复数练习题含答案一、单选题1.已知m 为实数,则“1m =”是“复数()211i z m m =-++为纯虚数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 2.已知复数()1i z a a =-+(a ∈R ),则1a =是1z =的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.设复数z 满足()1i 2i z -=,则z 在复平面内对应的点在第几象限.( )A .一B .二C .三D .四4.复数(2i 的虚部为( )A .2B .C .2-D .05.设集合A 实数 ,{}B =纯虚数,{}C =复数,若全集SC ,则下列结论正确的是( ) A .AB C =B .A B =C .()S A B ⋂=∅D .SSABC6.若0a <,则a 的三角形式为( ) A .()cos0isin0a + B .()cos isin a ππ+ C .()cos isin a ππ-+ D .()cos isin a ππ-- 7.复数(sin 10°+icos 10°)(sin 10°+icos 10°)的三角形式是( )A .sin 30°+icos 30°B .cos 160°+isin 160°C .cos 30°+isin 30°D .sin 160°+icos 160°8.下列命题正确的是( )①若复数z 满足2z ∈R ,则z R ∈; ②若复数z 满足i R z∈,则z 是纯虚数;③若复数12,z z 满足12=z z ,则12=±z z ; ④若复数12,z z 满足2121z z z =且10z ≠,则12=z z .A .①③B .②④C .①④D .①③9.已知复数13i z a =-,22i z =+(i 为虚数单位),若12z z 是纯虚数,则实数=a ( ) A .32-B .32C .6-D .610.已知复数12i1iz -=+(i 是虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .筹四象限11.复数1i1i+-(i 为虚数单位)的共轭复数的虚部等于( ) A .1 B .1- C .i D .i - 12.已知复数z 满足(12i)43i z -=-(i 为虚数单位),则z =( )AB .5CD .213.设z 的共轭复数是z ,若4i z z -=,8z z ⋅=,则z =( ) A .22i --B .22i +C .22i -+D .22i +或22i -+14.设i 为虚数单位,()1i 2i z -+=+,则复数z 的虚部是( ) A .12- B .1i 2C .32- D .3i 2-15.设复数z 满足i 1i(i z ⋅=+为虚数单位),则复数z 在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 16.已知复数i(1i)z =-,则其共轭复数z =( )A .1i --B .1i -+C .1i -D .1i +17.已知z1,z 2∈C ,|z 1+z 2|=|z 1|=2,|z 2|=2,则|z 1-z 2|等于( ) A .1 B .12 C .2 D .18.向量a =(-2,1)所对应的复数是( )A .z =1+2iB .z =1-2iC .z =-1+2iD .z =-2+i19.设a ,b ∈R ,i 为虚数单位,则“ab >0”是“复数a -b i 对应的点位于复平面上第二象限”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件20.若复数i (2i)z m m =++在复平面内对应的点在第二象限,则实数m 的取值范围是( ) A .(1,0)- B .(0,1) C .(,0)-∞ D .(1,)-+∞二、填空题21.已知复数z =(,a b ∈R 且0,0a b ≠≠)的模等于1,则12b a b++的最小值为______.22.已知i 是虚数单位,则202220221i 1i 1i ⎛⎫+⎛⎫+= ⎪ ⎪ ⎪--⎝⎭⎝⎭________.23.若i(,)i+∈a b a b R 与3+4i 互为共轭复数,则a b -=___________. 24.已知复数z 满足211iz -=+,则z 的最小值为___________; 25.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如,z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离,在复数平面内,复数02i1ia z +=+ (i 是虚数单位,)a R ∈是纯虚数,其对应的点为0Z ,Z 为曲线1z =上的动点,则0Z 与Z 之间的最小距离为________________.26.设i 是虚数单位,若复数z =1+2i ,则复数z 的模为__________. 27.计算:()()12i 34i 2i-+=+_________.28.定义12,C z z ∈,221212121(||||)4z z z z z z ⊕=+--,121212i(i )z z z z z z ⊗=⊕+⊕.若134i z =+,21z =+,则12||z z ⊗=___________.29.设i 为虚数单位,若复数(1i)(i)a -+的实部与虚部相等,其中a 是实数,则|1i |-+=a ________.30.若复数()2i m m m -+为纯虚数,则实数m 的值为________.31.设i 是虚数单位,复数z =,则z =___________.32.甲、乙、丙、丁四人对复数z 的陈述如下(i 为虚数单位):甲:z z +=;乙:2z z -=;丙:26;:4z z z z z ⋅==丁,在甲、乙、丙、丁四人陈述中,有且只有两个人的陈述正确,则z =___________. 33.计算cos 40isin 40cos10isin10________.34.已知4cosisin1212z ππ⎛⎫=+ ⎪⎝⎭,则1z 的辐角主值为________. 35.已知i 是虚数单位,则202220211()1+⎛⎫+= ⎪-⎝⎭i i i ___________.36.已知复数21ii z +=,则z =______. 37.方程()()2223256i 0x x x x --+-+=的实数解x =________.38.若z 1=2-i ,z 2=-12+2i ,则z 1,z 2在复平面上所对应的点为Z 1,Z 2,这两点之间的距离为________. 39.若i 是虚数单位,则复数310i3i =-________.(写成最简结果) 40.已知复数z =,则复数z 的虚部为__________. 三、解答题41.设复数z =log 2(m 2-3m -3)+ilog 2(m -2)(m ∈R ),对应的向量为OZ .(1)若OZ 的终点Z 在虚轴上,求实数m 的值及|OZ |; (2)若OZ 的终点Z 在第二象限内,求m 的取值范围. 42.根据要求完成下列问题:(1)已知复数1z 在复平面内对应的点在第四象限,1||1z =,且111z z +=,求1z ;(2)已知复数225(15i)3(2i)12im z m =-+-+-为纯虚数,求实数m 的值. 43.在复数集C 内方程610x -=有六个根分别为123456ωωωωωω,,,,, (1)解出这六个根;(2)在复平面内,这六个根对应的点分别为A ,B ,C ,D ,E ,F ;求多边形ABCDEF 的面积 . 44.已知z 为复数,1i z -为实数,i1z-为纯虚数,求复数z . 45.数列{}n a 满足1112,1n n n a a a a +-==+,试研究数列{}n a 的周期性.【参考答案】一、单选题1.C2.A3.B4.C5.D6.C7.B8.B9.A10.C11.B12.A13.D14.C15.D16.C17.D18.D19.B20.A二、填空题21.72223.1241##1-25.12627.43i-##3i4-+ 28.352930.131.32.2 3312i 34.2312π353637.2 3839.13i +##3i 1+ 40.三、解答题41.(1)m =4,|1OZ =(2)4m ⎫∈⎪⎪⎝⎭. 【解析】 【分析】(1)显然是复数z 的实部为0,即可求解; (2)z 的实部为负数,虚部为正数即可. (1)因为OZ 的终点z 在虚轴上,所以复数z 的实部为0, 则有log 2(m 2-3m -3)=0,所以m 2-3m -3=1, 所以m =4或m =-1; 因为20m -> ,所以m =4, 此时z =i ,()0,1OZ =,1OZ = ; (2)因为OZ 的终点Z 在第二象限内,则有()()2222log 330log 2033020m m m m m m ⎧--<⎪⎪->⎨-->⎪⎪->⎩4m << ,所以4m ⎫∈⎪⎪⎝⎭42.(1)112z = (2)2m =- 【解析】 【分析】(1)设1i z a b =+,由题设可得关于,a b 的方程组,求出其解后可得1z . (2)根据复数的四则运算可求2z ,根据其为纯虚数可求实数m 的值. (1)设1i z a b =+(a b R ∈、),由题意得22121a b a ⎧+=⎨=⎩,解得12a =,b =∵复数1z 在复平面内对应的点在第四象限,∴b =112z =; (2)()()()()2222515i 32i 6253i 12im z m m m m m =-+-+=--+---,依题意得260m m --=,解得3m =或2m =-, 又∵22530m m --≠,∴3m ≠且12m ≠-, ∴2m =-.43.(1)12345611111,1,2222ωωωωωω==-=-=-=+=-【解析】 【分析】(1)原式可因式分解为22(1)(1)(1)(1)0x x x x x x -+++-+=,令21=0x x ++,设i,,x a b a b R =+∈可求解出21=0x x ++的两个虚根,同理可求解21=0x x -+的两个虚根,即得解;(2)六个点构成的图形为正六边形,边长为1,计算即可 (1)由题意,610x -=22(1)(1)(1)(1)0x x x x x x ∴-+++-+=当21=0x x ++时,设i,,x a b a b R =+∈故222(i)i 1=+1(2)i=0a b a b a b a ab b ++++-+++,所以22+1=2=0a b a ab b -++ 解得:13,2a b =-=±,即13i 2x =-± 当21=0x x -+时,设i,,x c d c d R =+∈ 故222(i)i 1=1(2)i=0c d c d c d c cd d +--+--++- 所以221=2=0c d c cd d --+- 解得:13,2c d ==±,即13i 2x =±故:123456131313131,1,i,i,i,i 2222ωωωωωω==-=-+=--=+=- (2)六个根对应的点分别为A ,B ,C ,D ,E ,F , 其中13131313(1,0),(1,0),(,),(,),(,),(,)2222A B C D E F ----- 在复平面中描出这六个点如图所示:六个点构成的图形为正六边形,边长为1 故233361S ==44.1i z =+ 【解析】 【分析】i z a b =+(,R a b ∈),代入1i z -化简由其为实数可求出a ,再代入i1z-化简由其为纯虚数可求出b ,从而可求出复数z 【详解】设i z a b =+(,R a b ∈),所以1(1)i(1)i i iz a b b a --+==--, 因为1iz -为实数,所以10a -=,得1a =, 所以()()()()i 1i i ()()i i 1i 1i 1i 1i 222a b z a b a b a b a b a b +++-++-+====+---+, 因为i1z-为纯虚数, 所以02a b -=且02a b+≠, 所以1a b ==, 所以1i z =+ 45.周期为4 【解析】 【分析】根据通项公式,写出特征方程为210x +=,由方程根的情况求出数列{}n a 的周期. 【详解】数列{}n a 的递归函数为()11x f x x -=+,其特征方程为210x +=. 因为Δ=01440-⨯=-<,解得:i,i m k ==-()1i 36arg arg arg i 1i 24a mc a kc ππ--⎛⎫⎛⎫==-== ⎪ ⎪-+⎝⎭⎝⎭所以数列{}n a 是周期4T =的周期函数.。
复数练习题(有答案)
复数练习题(有答案)1.复数选择题1.若复数 $z=1+i$,则 $z$ 的共轭复数为()解析:$z$ 的共轭复数为 $\bar{z}=1-i$。
答案:C2.若复数 $z=1-i$,则 $z$ 的共轭复数为()解析:$z$ 的共轭复数为 $\bar{z}=1+i$。
答案:D3.在复平面内,复数 $z=3+4i$ 对应的点的坐标为()解析:$z$ 对应的点的坐标为 $(3,4)$。
答案:A4.已知复数 $z=\frac{1}{1+i}$,则 $z$ 的共轭复数为()解析:$\bar{z}=\frac{1}{1-i}=\frac{1+i}{2}$。
答案:B5.已知复数 $z=\frac{3-2i}{5}$,则 $z$ 的虚部是()解析:$z$ 的虚部为$\operatorname{Im}(z)=\frac{-2}{5}$。
答案:C6.已知复数 $z$ 满足 $z(1+i)=1-i$,则复数 $z$ 对应的点在直线 $y=-\frac{1}{2}x$ 上。
解析:将 $z$ 的实部和虚部表示出来,得到 $z=\frac{-1}{2}+\frac{1}{2}i$,对应的点在直线 $y=-\frac{1}{2}x$ 上。
答案:A7.已知复数 $z$ 满足 $z^2=2i$,则 $z\cdot\bar{z}$ 的值为$4$。
解析:$z\cdot\bar{z}=|z|^2=2$,$z^2\cdot\bar{z}^2=(2i)(-2i)=-4$,因此 $z\cdot\bar{z}=\sqrt{-4}=2i$,$|z\cdot\bar{z}|=2$,所以 $z\cdot\bar{z}=4$。
答案:B8.已知复数 $z$ 满足 $z(1-i)=2i$,则在复平面内 $z$ 对应的点位于第二象限。
解析:将 $z$ 的实部和虚部表示出来,得到 $z=-\frac{2}{2i}-i=-1-i$,对应的点在第二象限。
答案:B9.满足 $i^3\cdot z=1-3i$ 的复数 $z$ 的共轭复数是 $3+i$。
数学复数的习题及其答案
数学复数的习题及其答案
题目:数学复数的习题及其答案
在数学中,复数是由实数和虚数组成的数。
复数可以用a+bi的形式表示,其中a是实部,bi是虚部,而i是虚数单位,满足i^2=-1。
复数在数学中有着广泛的应用,包括在电路分析、信号处理、量子力学等领域中都有重要的作用。
下面是一些关于复数的习题及其答案,希望能帮助大家更好地理解复数的概念和运算。
1. 计算下列复数的和与差:
(a) (3+4i) + (2-5i)
(b) (5-2i) - (3+7i)
答案:
(a) (3+4i) + (2-5i) = 5-i
(b) (5-2i) - (3+7i) = 2-9i
2. 计算下列复数的乘积与商:
(a) (2+3i) * (4-5i)
(b) (6-2i) / (2+4i)
答案:
(a) (2+3i) * (4-5i) = 23-2i
(b) (6-2i) / (2+4i) = 1-i
3. 求下列复数的模和共轭复数:
(a) 4+3i
(b) 2-6i
答案:
(a) |4+3i| = √(4^2+3^2) = 5, 共轭复数为4-3i
(b) |2-6i| = √(2^2+(-6)^2) = 2√10, 共轭复数为2+6i
通过以上习题的练习,相信大家对复数的概念和运算有了更深入的理解。
复数在数学中有着重要的地位,希望大家能够在学习中加深对复数的认识,为今后的学习和工作打下坚实的基础。
(完整版)复数练习题(有答案)
复数学校:___________姓名:___________班级:___________考号:___________1.复数21−i (i 为虚数单位)的共轭复数是A . 1+iB . 1−iC . −1+iD . −1−i2.已知a ∈R,i 是虚数单位.若z =a +√3i ,z ·z =4,则a =( )A . 1或-1B . √7或-√7C . -√3D . √33.已知复数1z i =+(i 为虚数单位)给出下列命题:①z =;②1z i =-;③z 的虚部为i . 其中正确命题的个数是A . 0B . 1C . 2D . 34.(2018兰州模拟)若复数z 满足(3−4i )z =4+3i ,则|z |=( )A . 5B . 4C . 3D . 15.(2018北京大兴区一模)若i 为虚数单位,图中复平面内点Z 表示复数z ,则表示复数z 1+i 的点是( )A . EB . FC . GD . H6.(2018江西省景德镇联考)若复数z =a−2i 2在复平面内对应的点在直线x +y =0上,则|z |=( )A . 2B . √2C . 1D . 2√27.(福建省三明市2018届高三下学期质量检查测试)已知复数a +bi =(1−i )21+i (i 是虚数单位,a,b ∈R ),则a +b =( )A . −2B . −1C . 0D . 28.(山东K 12联盟2018届高三开年迎春考试)若复数z = 1 + i + i 2 + i 3 +⋯+ i 2018 +|3−4i |3−4i ,则z 的共轭复数z̅的虚部为 A . −15 B . −95C.95D.−95i9.(上海市徐汇区2018届高三一模)在复平面内,复数5+4ii(i为虚数单位)对应的点的坐标为_____10.(上海市松江、闵行区2018届高三下学期质量监控(二模))设m∈R,若复数(1+ mi )(1+i )在复平面内对应的点位于实轴上,则m=______.11.(2018届浙江省杭州市第二中学6月热身)若复数z满足(1−2i)⋅z=3+i(i为虚数单位),则z=__________;|z|=__________.12.已知z=(a+i)2,(a∈R),i是虚数单位.(1)若z为纯虚数,求a的值;(2)若复数z在复平面上对应的点在第四象限,求实数a的取值范围.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
复数练习题(有答案)
复数练习题(有答案)1.复数选择题1.若复数 $z=\frac{1}{1-i}$,则 $z$ 的共轭复数为()。
A。
$\frac{1+i}{2}$ B。
$\frac{1-i}{2}$ C。
$\frac{-1+i}{2}$ D。
$\frac{-1-i}{2}$2.已知复数 $z=\frac{11+22i}{1-i(m-m^2i)}$ 为纯虚数,则实数 $m=$()。
A。
$1$ B。
$-1$ C。
$i$ D。
$-i$3.若复数 $z=(2+i)i$(其中 $i$ 为虚数单位),则复数$z$ 的模为()。
A。
$5$4.复数 $z=\frac{3i}{5-2i}$ 的虚部是()。
A。
$\frac{15}{29}$ B。
$\frac{3}{29}$ C。
$-\frac{3}{29}$ D。
$-\frac{15}{29}$5.已知 $2i+1=z\cdot5\left(5-\frac{1}{z}\right)$,则$z=$()。
A。
$1$ B。
$3$ C。
$2$ D。
$-2$6.复数 $z$ 满足 $i\cdot z=1-2i$,$z$ 是 $z$ 的共轭复数,则 $z\cdot z=$()。
A。
$5$ B。
$-5$ C。
$5i$ D。
$-5i$7.已知 $i$ 是虚数单位,则复数 $\frac{4i}{1+i}$ 在复平面内对应的点在()。
A。
第一象限 B。
第二象限 C。
第三象限 D。
第四象限8.已知 $i$ 为虚数单位,若复数 $z=5+3i$,则$\frac{z}{i}=$()。
A。
$-3+5i$ B。
$5-3i$ C。
$-5+3i$ D。
$3+5i$9.若复数 $z=\frac{a+i}{1-i}$,$a\in R$,为纯虚数,则$z+a=$()。
A。
$1+2i$ B。
$2i-1$ C。
$2+2i$ D。
$-2i+1$10.已知复数 $z$ 满足 $\frac{z}{2+i}=2-i$,则复数 $z$ 在复平面内对应的点在()。
复数综合练习题百度文库
一、复数选择题1.已知复数1z i =+,则21z+=( ) A .2 BC .4D .52.复数21i=+( ) A .1i --B .1i -+C .1i -D .1i +3.在复平面内,复数534ii-(i 为虚数单位)对应的点的坐标为( ) A .()3,4B .()4,3-C .43,55⎛⎫- ⎪⎝⎭D .43,55⎛⎫- ⎪⎝⎭4.若复数z 满足()13i z i +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( ) A .z 的实部是1 B .z 的虚部是1C.z =D .复数z 在复平面内对应的点在第四象限5.若复数(2)z i i =+(其中i 为虚数单位),则复数z 的模为( ) A .5 BC.D .5i 6.若复数1z i i ⋅=-+,则复数z 的虚部为( )A .-1B .1C .-iD .i7.已知i 为虚数单位,则复数23ii -+的虚部是( ) A .35B .35i -C .15-D .15i -8.复数312iz i=-的虚部是( ) A .65i -B .35iC .35D .65-9.设1z 是虚数,2111z z z =+是实数,且211z -≤≤,则1z 的实部取值范围是( ) A .[]1,1- B .11,22⎡⎤-⎢⎥⎣⎦C .[]22-,D .11,00,22⎡⎫⎛⎤-⋃⎪ ⎢⎥⎣⎭⎝⎦10.已知复数512z i=+,则z =( ) A .1BCD .511.复数12iz i=+(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限12.设复数z 满足41iz i=+,则z 的共轭复数z 在复平面内的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限13.在复平面内,已知平行四边形OABC 顶点O ,A ,C 分别表示25-+i ,32i +,则点B 对应的复数的共轭复数为( ) A .17i -B .16i -C .16i --D .17i --14.已知复数z 满足()1+243i z i =+,则z 的虚部是( ) A .-1 B .1C .i -D .i15.若复数11iz i,i 是虚数单位,则z =( ) A .0B .12C .1D .2二、多选题16.已知复数202011i z i+=-(i 为虚数单位),则下列说法错误的是( )A .z 的实部为2B .z 的虚部为1C .z i =D .||z =17.已知复数z 满足220z z +=,则z 可能为( ) A .0B .2-C .2iD .2i -18.设复数z 满足1z i z+=,则下列说法错误的是( ) A .z 为纯虚数B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .2z =19.下列说法正确的是( ) A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件20.下列结论正确的是( )A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥21.已知复数122,2z i z i =-=则( ) A .2z 是纯虚数 B .12z z -对应的点位于第二象限C .123z z +=D .12z z =22.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:()()()n cos sin co i s s nn n z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( ) A .22z z = B .当1r =,3πθ=时,31z =C .当1r =,3πθ=时,122z =- D .当1r =,4πθ=时,若n 为偶数,则复数n z 为纯虚数23.以下为真命题的是( ) A .纯虚数z 的共轭复数等于z -B .若120z z +=,则12z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数 24.对于复数(,)z a bi a b R =+∈,下列结论错误..的是( ). A .若0a =,则a bi +为纯虚数 B .若32a bi i -=+,则3,2a b == C .若0b =,则a bi +为实数D .纯虚数z 的共轭复数是z -25.已知i 为虚数单位,下列说法正确的是( ) A .若,x y R ∈,且1x yi i +=+,则1x y == B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z == D .i -的平方等于126.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( ) A .1B .4-C .0D .527.给出下列命题,其中是真命题的是( ) A .纯虚数z 的共轭复数是z -B .若120z z -=,则21z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数 28.(多选)()()321i i +-+表示( )A .点()3,2与点()1,1之间的距离B .点()3,2与点()1,1--之间的距离C .点()2,1到原点的距离D .坐标为()2,1--的向量的模29.已知i 为虚数单位,下列命题中正确的是( ) A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y == B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数 B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.B 【分析】先求出,再计算出模. 【详解】 , , . 故选:B. 解析:B 【分析】先求出21z +,再计算出模. 【详解】1z i =+,()()()21221112111i i z i i i -∴+=+=+=-++-,21z∴+==. 故选:B.2.C【分析】根据复数的除法运算法则可得结果. 【详解】.故选:C解析:C【分析】根据复数的除法运算法则可得结果.【详解】2 1i =+2(1)(1)(1)ii i-=+-2(1)12ii-=-.故选:C3.D【分析】运用复数除法的运算法则化简复数的表示,最后选出答案即可. 【详解】因为,所以在复平面内,复数(为虚数单位)对应的点的坐标为.故选:D解析:D【分析】运用复数除法的运算法则化简复数534ii-的表示,最后选出答案即可.【详解】因为55(34)15204334(34)(34)2555i i i iii i i⋅+-===-+--+,所以在复平面内,复数534ii-(i为虚数单位)对应的点的坐标为43,55⎛⎫-⎪⎝⎭.故选:D4.C【分析】利用复数的除法运算求出,即可判断各选项. 【详解】,,则的实部为2,故A错误;的虚部是,故B错误;对应的点为在第一象限,故D 错误. 故选:C.解析:C 【分析】利用复数的除法运算求出z ,即可判断各选项. 【详解】()13i z i +=+,()()()()3132111i i i z i i i i +-+∴===-++-, 则z 的实部为2,故A 错误;z 的虚部是1-,故B 错误;z ==,故C 正;2z i =+对应的点为()2,1在第一象限,故D 错误.故选:C.5.B 【分析】由已知等式,利用复数的运算法则化简复数,即可求其模. 【详解】 ,所以, 故选:B解析:B 【分析】由已知等式,利用复数的运算法则化简复数,即可求其模. 【详解】(2)21z i i i =+=-,所以|z |=故选:B6.B 【分析】 ,然后算出即可. 【详解】由题意,则复数的虚部为1 故选:B解析:B 【分析】1iz i-+=,然后算出即可.由题意()11111i ii iz ii i i-+-+--====+⋅-,则复数z的虚部为1故选:B7.A【分析】先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部. 【详解】因为,所以其虚部是.故选:A.解析:A【分析】先由复数的除法运算化简复数23ii-+,再由复数的概念,即可得出其虚部.【详解】因为22(3)26133(3)(3)1055i i i iii i i-----===--++-,所以其虚部是35.故选:A.8.C【分析】由复数除法法则计算出后可得其虚部.【详解】因为,所以复数z的虚部是.故选:C.解析:C【分析】由复数除法法则计算出z后可得其虚部.【详解】因为33(12)366312(12)(12)555i i i iii i i+-===-+--+,所以复数z的虚部是35.故选:C.9.B【分析】设,由是实数可得,即得,由此可求出.设,, 则,是实数,,则, ,则,解得, 故的实部取值范围是. 故选:B.解析:B 【分析】设1z a bi =+,由2111z z z =+是实数可得221a b +=,即得22z a =,由此可求出1122a -≤≤. 【详解】设1z a bi =+,0b ≠, 则21222222111a bi a b z z a bi a bi a b i z a bi a b a b a b -⎛⎫⎛⎫=+=++=++=++- ⎪ ⎪++++⎝⎭⎝⎭, 2z 是实数,220bb a b∴-=+,则221a b +=, 22z a ∴=,则121a -≤≤,解得1122a -≤≤,故1z 的实部取值范围是11,22⎡⎤-⎢⎥⎣⎦. 故选:B.10.C 【分析】根据模的运算可得选项. 【详解】 . 故选:C.解析:C 【分析】根据模的运算可得选项. 【详解】512z i ====+故选:C.【分析】对复数进行分母实数化,根据复数的几何意义可得结果. 【详解】 由,知在复平面内对应的点位于第一象限, 故选:A. 【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题解析:A 【分析】对复数z 进行分母实数化,根据复数的几何意义可得结果. 【详解】 由()()()122112121255i i i z i i i i -===+++-, 知在复平面内对应的点21,55⎛⎫⎪⎝⎭位于第一象限, 故选:A. 【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题.12.D 【分析】先对化简,从而可求出共轭复数,再利用复数的几何意义可得答案 【详解】 解:因为, 所以,所以共轭复数在复平面内的对应点位于第四象限, 故选:D解析:D 【分析】先对41iz i=+化简,从而可求出共轭复数z ,再利用复数的几何意义可得答案 【详解】解:因为244(1)4(1)=2(1)22221(1)(1)2i i i i i z i i i i i i i i --===-=-=+++-, 所以22z i =-,所以共轭复数z 在复平面内的对应点位于第四象限,13.A 【分析】根据复数的几何意义得出坐标,由平行四边形得点坐标,即得点对应复数,从而到共轭复数. 【详解】 由题意,设,∵是平行四边形,AC 中点和BO 中点相同, ∴,即,∴点对应是,共轭复数为.解析:A 【分析】根据复数的几何意义得出,A C 坐标,由平行四边形得B 点坐标,即得B 点对应复数,从而到共轭复数. 【详解】由题意(2,5),(3,2)A C -,设(,)B x y ,∵OABC 是平行四边形,AC 中点和BO 中点相同,∴023052x y +=-+⎧⎨+=+⎩,即17x y =⎧⎨=⎩,∴B 点对应是17i +,共轭复数为17i -.故选:A . 14.B 【分析】利用复数代数形式的乘除运算化简,再由共轭复数的概念求得,则答案可求. 【详解】 由, 得, ,则的虚部是1. 故选:.解析:B 【分析】利用复数代数形式的乘除运算化简,再由共轭复数的概念求得z ,则答案可求. 【详解】由(12)43i z i +=+, 得43(43)(12)105212(12)(12)5i i i iz i i i i ++--====-++-, ∴2z i =+,则z 的虚部是1.故选:B .15.C【分析】由复数除法求出,再由模计算.【详解】由已知,所以.故选:C .解析:C【分析】由复数除法求出z ,再由模计算.【详解】 由已知21(1)21(1)(1)2i i i z i i i i ---====-++-, 所以1z i =-=.故选:C .二、多选题16.AC【分析】根据复数的运算及复数的概念即可求解.【详解】因为复数,所以z 的虚部为1,,故AC 错误,BD 正确.故选:AC解析:AC【分析】根据复数的运算及复数的概念即可求解.【详解】 因为复数2020450511()22(1)11112i i i z i i i i +++=====+---,所以z 的虚部为1,||z =故AC 错误,BD 正确.故选:AC17.ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.18.AB【分析】先由复数除法运算可得,再逐一分析选项,即可得答案.【详解】由题意得:,即,所以z 不是纯虚数,故A 错误;复数z 的虚部为,故B 错误;在复平面内,对应的点为,在第三象限,故C 正确解析:AB【分析】 先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案. 【详解】由题意得:1z zi +=,即111122z i i -==---,所以z 不是纯虚数,故A 错误;复数z 的虚部为12-,故B 错误; 在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确. 故选:AB【点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.19.AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误;当时解析:AD【分析】 由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠±所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.20.ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z ==C 错误;由否定的定义可知,D 正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题. 21.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确. 故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单.22.AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数,可判断C 选项的正误;计算出,可判断D 选项的正误.【详解】对于A 选项,,则,可得解析:AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数z ,可判断C 选项的正误;计算出4z ,可判断D 选项的正误.【详解】对于A 选项,()cos sin z r i θθ=+,则()22cos2sin 2z r i θθ=+,可得()222cos 2sin 2z r i r θθ=+=,()222cos sin z r i r θθ=+=,A 选项正确;对于B 选项,当1r =,3πθ=时,()33cos sin cos3sin3cos sin 1z i i i θθθθππ=+=+=+=-,B 选项错误;对于C 选项,当1r =,3πθ=时,1cos sin 332z i ππ=+=+,则122z =-,C 选项正确;对于D 选项,()cos sin cos sin cos sin 44n n n n z i n i n i ππθθθθ=+=+=+, 取4n =,则n 为偶数,则4cos sin 1z i ππ=+=-不是纯虚数,D 选项错误.故选:AC.【点睛】本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.23.AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A 正确;对于B解析:AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若z 为纯虚数,可设()0z bi b =≠,则z bi z =-=-,即纯虚数z 的共轭复数等于z -,故A 正确;对于B ,由120z z +=,得出12z z =-,可设11z i =+,则21z i =--, 则21z i =-+,此时12z z ≠,故B 错误;对于C ,设12,z a bi z c di =+=+,则()()12a c b d i R z z =++++∈,则0b d +=, 但,a c 不一定相等,所以1z 与2z 不一定互为共轭复数,故C 错误;对于D ,120z z -=,则12z z =,则1z 与2z 互为共轭复数,故D 正确.故选:AD.【点睛】本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题. 24.AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为当且时复数为纯虚数,此时,故A 错误,D 正确;当时,复数为实数,故C 正确;对于B :,则即,故B 错误;故错误的有AB解析:AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为(,)z a bi a b R =+∈当0a =且0b ≠时复数为纯虚数,此时z bi z =-=-,故A 错误,D 正确;当0b =时,复数为实数,故C 正确;对于B :32a bi i -=+,则32a b =⎧⎨-=⎩即32a b =⎧⎨=-⎩,故B 错误; 故错误的有AB ;故选:AB【点睛】本题考查复数的代数形式及几何意义,属于基础题.25.AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确; 对于选项D ,∵复数()2=1i --,故不正确;故选:AB .【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题. 26.ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.27.AD【分析】A .根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D.根据,得到,再用共轭复数的定义判断.【详解】A .根据共轭解析:AD【分析】A .根据共轭复数的定义判断.B.若120z z -=,则12z z =,1z 与2z 关系分实数和虚数判断.C.若12z z +∈R ,分12,z z 可能均为实数和1z 与2z 的虚部互为相反数分析判断.D. 根据120z z -=,得到12z z =,再用共轭复数的定义判断.【详解】A .根据共轭复数的定义,显然是真命题;B .若120z z -=,则12z z =,当12,z z 均为实数时,则有21z z =,当1z ,2z 是虚数时,21≠z z ,所以B 是假命题;C .若12z z +∈R ,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,所以C 是假命题;D. 若120z z -=,则12z z =,所以1z 与2z 互为共轭复数,故D 是真命题.故选:AD【点睛】本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题. 28.ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模29.BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.故选:BD .【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。
复数练习(含答案)
复数基础2一、选择题1.下列命题中:①若z =a +b i ,则仅当a =0,b ≠0时z 为纯虚数;②若(z 1-z 2)2+(z 2-z 3)2=0,则z 1=z 2=z 3;③x +y i =2+2i ⇔x =y =2;④若实数a 与a i 对应,则实数集与纯虚数集可建立一一对应关系.其中正确命题的个数是( )A .0B .1C .2D .32.在复平面内,复数z =sin 2+icos 2对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.a 为正实数,i 为虚数单位,z =1-a i ,若|z |=2,则a =( )A .2 B. 3 C. 2 D .14.(2011年高考湖南卷改编)若a ,b ∈R ,i 为虚数单位,且a i +i 2=b +i ,则( )A .a =1,b =1B .a =-1,b =1C .a =-1,b =-1D .a =1,b =-15.复数z =3+i 2对应点在复平面( )A .第一象限内B .实轴上C .虚轴上D .第四象限内6.设a ,b 为实数,若复数1+2i =(a -b )+(a +b )i ,则( )A .a =32,b =12B .a =3,b =1C .a =12,b =32D .a =1,b =37.复数z =12+12i 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限8.已知关于x 的方程x 2+(m +2i)x +2+2i =0(m ∈R )有实根n ,且z =m +n i ,则复数z 等于( )A .3+iB .3-IC .-3-iD .-3+i9.设复数z 满足关系式z +|z |=2+i ,那么z 等于( )A .-34+i B.34-I C .-34-i D.34+i10.已知复数z 满足z +i -3=3-i ,则z =( )A .0B .2iC .6D .6-2i11.计算(-i +3)-(-2+5i)的结果为( )A .5-6iB .3-5iC .-5+6iD .-3+5i12.向量OZ 1→对应的复数是5-4i ,向量OZ 2→对应的复数是-5+4i ,则OZ 1→+OZ 2→对应的复数是( )A .-10+8iB .10-8iC .0D .10+8i13.设z 1=3-4i ,z 2=-2+3i ,则z 1+z 2在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限14.如果一个复数与它的模的和为5+3i ,那么这个复数是( )A.115 B.3I C.115+3i D.115+23i15.设f (z )=z ,z 1=3+4i ,z 2=-2-i ,则f (z 1-z 2)=( )A .1-3iB .11i -2C .i -2D .5+5i16.复数z 1=cos θ+i ,z 2=sin θ-i ,则|z 1-z 2|的最大值为( )A .5 B. 5 C .6 D. 617.设z ∈C ,且|z +1|-|z -i|=0,则|z +i|的最小值为( )A .0B .1 C.22 D.1218.若z ∈C ,且|z +2-2i|=1,则|z -2-2i|的最小值为( )A .2B .3C .4D .519.(2011年高考福建卷)i 是虚数单位,若集合S ={-1,0,1},则( ) A .i ∈S B .i 2∈S C .i 3∈S D.2i ∈S20.(2011年高考浙江卷)把复数z 的共轭复数记作z ,i 为虚数单位.若z =1+i ,则(1+z )·z =() A .3-i B .3+I C .1+3i D .321.化简2+4i (1+i )2的结果是( ) A .2+i B .-2+I C .2-i D .-2-i22.(2011年高考重庆卷)复数i 2+i 3+i 41-i=( ) A .-12-12i B .-12+12I C.12-12i D.12+12i 23.(2011年高考课标全国卷)复数2+i 1-2i的共轭复数是( ) A .-35i B.35i C .-i D .i 24.i 是虚数单位,(1+i 1-i)4等于( ) A .i B .-I C .1 D .-125.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )A .4+2iB .2+IC .2+2iD .3+i26.设z 的共轭复数是z ,若z +z =4,z ·z =8,则z z等于( ) A .i B .-i C .±1 D .±i27.(2010年高考浙江卷)对任意复数z =x +y i(x ,y ∈R ),i 为虚数单位,则下列结论正确的是( )A .|z -z |=2yB .z 2=x 2+y 2C .|z -z |≥2xD .|z |≤|x |+|y |二、填空题28.在复平面内表示复数z =(m -3)+2m i 的点在直线y =x 上,则实数m 的值为________.29.复数z =x +1+(y -2)i(x ,y ∈R ),且|z |=3,则点Z (x ,y )的轨迹是________.30.复数z 1=1+2i ,z 2=-2+i ,z 3=-3-2i ,z 4=3-2i ,z 1,z 2,z 3,z 4在复平面内的对应点分别是A ,B ,C ,D ,则∠ABC +∠ADC =________.31.复数4+3i 与-2-5i 分别表示向量OA →与OB →,则向量AB →表示的复数是________.32.已知f (z +i)=3z -2i ,则f (i)=________.33.已知复数z 1=(a 2-2)+(a -4)i ,z 2=a -(a 2-2)i(a ∈R ),且z 1-z 2为纯虚数,则a =________.34.(2010年高考上海卷)若复数z =1-2i(i 为虚数单位),则z ·z +z =________.35.(2011年高考江苏卷)设复数z 满足i(z +1)=-3+2i(i 为虚数单位),则z 的实部是________.36.已知复数z 满足|z |=5,且(3-4i)z 是纯虚数,则z =________.答案一、选择题1.解析:选A.在①中没有注意到z =a +b i 中未对a ,b 的取值加以限制,故①错误;在②中将虚数的平方与实数的平方等同,如:若z 1=1,z 2=i ,则z 21+z 22=1-1=0,从而由z 21+z 22=0⇒/ z 1=z 2=0,故②错误;在③中若x ,y ∈R ,可推出x =y =2,而此题未限制x ,y ∈R ,故③不正确;④中忽视0·i =0,故④也是错误的.故选A.2. 解析:选D.∵π2<2<π,∴sin 2>0,cos2<0. 故z =sin 2+icos 2对应的点在第四象限.故选D.3.解析:选B.|z |=|1-a i|=a 2+1=2,∴a =±3.而a 是正实数,∴a = 3.4.解析:选D.a i +i 2=-1+a i =b +i ,故应有a =1,b =-1.5. 解析:选B.∵z =3+i 2=3-1∈R ,∴z 对应的点在实轴上,故选B. 6.解析:选A.由1+2i =(a -b )+(a +b )i 得⎩⎪⎨⎪⎧ a -b =1a +b =2,解得a =32,b =12. 7. 解析:选A.∵复数z 在复平面上对应的点为⎝⎛⎭⎫12,12,该点位于第一象限,∴复数z 在复平面上对应的点位于第一象限.8.解析:选B.由题意知n 2+(m +2i)n +2+2i =0,即n 2+mn +2+(2n +2)i =0.∴⎩⎪⎨⎪⎧ n 2+mn +2=02n +2=0,解得⎩⎪⎨⎪⎧m =3n =-1,∴z =3-i. 9.解析:选D.设z =x +y i(x 、y ∈R ),则x +y i +x 2+y 2=2+i ,∴⎩⎪⎨⎪⎧ x +x 2+y 2=2,y =1.解得⎩⎪⎨⎪⎧x =34,y =1. ∴z =34+i. 10.解析:选D.由z +i -3=3-i ,知z =(3-i)+(3-i)=6-2i.11.解析:选A.(-i +3)-(-2+5i)=(3+2)-(5+1)i =5-6i.12.解析:选C.OZ 1→+OZ 2→对应的复数是5-4i +(-5+4i)=(5-5)+(-4+4)i =0.13. 解析:选D.∵z 1+z 2=(3-4i)+(-2+3i)=(3-2)+(-4+3)i =1-i ,∴z 1+z 2对应的点为(1,-1),在第四象限.14.解析:选C.设这个复数为z =a +b i(a ,b ∈R ),则z +|z |=5+3i ,即a +a 2+b 2+b i =5+3i ,∴⎩⎪⎨⎪⎧ b =3a +a 2+b 2=5,解得⎩⎪⎨⎪⎧ b =3a =115. ∴z =115+3i. 15.解析:选D.先找出z 1-z 2,再根据求函数值的方法求解.∵z 1=3+4i ,z 2=-2-i ,∴z 1-z 2=(3+2)+(4+1)i =5+5i.∵f (z )=z ,∴f (z 1-z 2)=z 1-z 2=5+5i.故选D.16.解析:选D.|z 1-z 2|=|(cos θ-sin θ)+2i| =(cos θ-sin θ)2+4 =5-2sin θcos θ =5-sin2θ≤ 6.17.解析:选C.|z +1|=|z -i|表示以(-1,0)、(0,1)为端点的线段的垂直平分线,而|z +i|=|z -(-i)|表示直线上的点到(0,-1)的距离,数形结合知其最小值为22. 18解析:选B.法一:设z =x +y i(x ,y ∈R ),则有|x +y i +2-2i|=1,即|(x +2)+(y -2)i|=1,所以根据复数模的计算公式,得(x +2)2+(y -2)2=1,又|z -2-2i|=|(x -2)+(y -2)i|=(x -2)2+(y -2)2=(x -2)2+1-(x +2)2=1-8x . 而|x +2|≤1,即-3≤x ≤-1,∴当x =-1时,|z -2-2i|min =3.法二:利用数形结合法.|z +2-2i|=1表示圆心为(-2,2),半径为1的圆,而|z -2-2i|=|z -(2+2i)|表示圆上的点与点(2,2)的距离,由数形结合知,其最小值为3,故选B.19.解析:选B.因为i 2=-1∈S ,i 3=-i ∈/S ,2i=-2i ∈/S ,故选B. 20.解析:选A.(1+z )·z =(2+i)·(1-i)=3-i.21.解析:选C.2+4i (1+i )2=2+4i 2i =1+2i i =2-i.故选C. 22.解析:选C.i 2+i 3+i 41-i =-1-i +11-i =-i 1-i =(-i )(1+i )(1-i )(1+i )=1-i 2=12-12i. 23.解析:选C.法一:∵2+i 1-2i =()2+i ()1+2i ()1-2i ()1+2i =2+i +4i -25=i ,∴2+i 1-2i的共轭复数为-i. 法二:∵2+i 1-2i =-2i 2+i 1-2i =i ()1-2i 1-2i=i , ∴2+i1-2i的共轭复数为-i. 24.解析:选C.(1+i 1-i )4=[(1+i 1-i )2]2=(2i -2i)2=1.故选C. 25.解析:选A.∵z 1=1+i ,z 2=3-i ,∴z 1·z 2=(1+i)(3-i)=3+3i -i -i 2=3+2i +1=4+2i.故选A.26.解析:选D.法一:设z =x +y i(x ,y ∈R ),则z =x -y i ,由z +z =4,z ·z =8得,⎩⎪⎨⎪⎧ x +y i +x -y i =4,(x +y i )(x -y i )=8.⇒⎩⎪⎨⎪⎧ x =2x 2+y 2=8⇒⎩⎪⎨⎪⎧x =2y =±2. ∴z z =x -y i x +y i =x 2-y 2-2xy i x 2+y 2=±i. 法二:∵z +z =4,设z =2+b i(b ∈R ),又z ·z =|z |2=8,∴4+b 2=8,∴b 2=4,∴b =±2,∴z =2±2i ,z =2∓2i ,∴z z =±i. 27.解析:选D.∵z =x -y i(x ,y ∈R ),|z -z |=|x +y i -x +y i|=|2y i|=|2y |,∴A 不正确;对于B ,z 2=x 2-y 2+2xy i ,故不正确;∵|z -z |=|2y |≥2x 不一定成立,∴C 不正确;对于D ,|z |=x 2+y 2≤|x |+|y |,故D 正确.二、填空题28.解析:复数z 在复平面上对应的点为(m -3,2m ),∴m -3=2m ,即m -2m -3=0.解得m =9.答案:929.解析:∵|z |=3,∴(x +1)2+(y -2)2=3,即(x +1)2+(y -2)2=32.故点Z (x ,y )的轨迹是以O ′(-1,2)为圆心,以3为半径的圆.答案:以(-1,2)为圆心,3为半径的圆30.解析:|z 1|=|z 2|=|z 3|=|z 4|=5,所以点A ,B ,C ,D 应在以原点为圆心,5为半径的圆上,由于圆内接四边形ABCD 对角互补,所以∠ABC +∠ADC =180°.31.解析:AB →表示OB →-OA →对应的复数,由-2-5i -(4+3i)=-6-8i ,知AB →对应的复数是-6-8i.答案:-6-8i32.解析:设z =a +b i(a ,b ∈R ),则f [a +(b +1)i]=3(a +b i)-2i =3a +(3b -2)i ,令a =0,b =0,则f (i)=-2i.答案:-2i33.解析:z 1-z 2=(a 2-a -2)+(a -4+a 2-2)i =(a 2-a -2)+(a 2+a -6)i(a ∈R )为纯虚数,∴⎩⎪⎨⎪⎧a 2-a -2=0,a 2+a -6≠0,解得a =-1. 34.解析:∵z =1-2i ,∴z ·z =|z |2=5.∴z ·z +z =6-2i.答案:6-2i35.解析:设z =a +b i(a 、b ∈R ),由i(z +1)=-3+2i ,得-b +(a +1)i =-3+2i ,∴a +1=2,∴a =1. 答案:136.解析:∵(3-4i)z 是纯虚数,可设(3-4i)z =t i(t ∈R 且t ≠0),∴z =t i 3-4i,∴|z |=|t |5=5,∴|t |=25,∴t =±25, ∴z =±25i 3-4i=±i(3+4i)=±(-4+3i),z =±(-4-3i)=±(4+3i). 答案:±(4+3i)。
关于复数的练习题六年级
关于复数的练习题六年级一、选择题。
1. I have two _______.A. catB. catsC. ca*t's2. These _______ are red.A. *tomatoB. tomatoesC. tomato's3. My _______ are big.A. *earB. earsC. ear's4. Those _______ are pretty.A. *roseB. rosesC. rose's5. The _______ is on the table.A. *cupB. cupsC. cup's6. Can you see the _______?A. *cloudB. cloudsC. cloud's7. The _______ are playing in the park.A. *childB. childrenC. child's8. There are three _______ in the garden.A. *beeB. beesC. bee's9. The _______ are singing in the tree.A. *birdB. birdsC. bird's10. These _______ belong to me.A. *bookB. booksC. book's二、用所给词的正确形式填空。
1. There are three _______ (man) in the room.2. The _______ (child) are playing in the park.3. This _______ (box) is heavy.4. My _______ (tooth) hurt.5. Those _______ (sheep) are eating grass.6. I have two _______ (mouse) as pets.7. The _______ (family) are going on vacation.8. His _______ (foot) are tired from walking all day.9. The _______ (knife) are sharp.10. The _______ (dog) are barking loudly.三、根据所给的名词,写出它们的复数形式。
复数练习题(有答案)
复数练习题(有答案)一、单选题1.设i 为虚数单位,()1i 2i z -+=+,则复数z 的虚部是( ) A .12-B .1i 2C .32-D .3i 2-2.已知复数13i z a =-,22i z =+(i 为虚数单位),若12z z 是纯虚数,则实数=a ( ) A .32- B .32C .6-D .63.已知复数5i1iz -=+(i 为虚数单位),则z 的共轭复数z =( ) A .23i + B .24i - C .33i +D .24i +4.若0a <,则a 的三角形式为( )A .()cos0isin0a +B .()cos isin a ππ+C .()cos isin a ππ-+D .()cos isin a ππ--5.复数3i(43i )-在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 6.设复数z 满足i 4i 0z ++=,则||z =( )A B .4C D 7.若复数()()2i ,z a b a b =+-∈R ,在复平面内对应的点在直线20x y --=上,则a b -=( )A .4-B .0C .2D .48.已知复数z 满足(1i)32i +=+z ,则z 的虚部为( ) A .12 B .1i 2-C .12- D .1i 29.已知复数2ii+=a z (a R ∈,i 是虚数单位)的虚部是3-,则复数z 对应的点在复平面的( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.集合M ={x |x =i n +1,n ∈N}(i 为虚数单位)的真子集的个数是( )A .1B .15C .3D .1611.已知复数324i 1iz +=-,则z =( )A B C .D .12.设i 12z =+,则在复平面内z 的共轭复数z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限13.已知复数()()31i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( ). A .()3,1- B .()1,3- C .()1,+∞ D .(),3-∞ 14.复数z 满足:23i 3=+-z z ,则z =( )A .5B C .10D 15.已知复数z 满足()43i 5i z +=,则z =( )A .1B C .15D .516.下列关于复数的命题中(其中i 为虚数单位),说法正确的是( ) A .若复数1z ,2z 的模相等,则1z ,2z 是共轭复数B .已知复数1z ,2z ,3z ,若()()2212230z z z z -+-=,则123z z z ==C .若关于x 的方程()21i 14i 0x ax +++-=(a ∈R )有实根,则52a =-D .12i +是关于x 的方程20x px q ++=的一个根,其中,p q 为实数,则5q = 17.复数5ii 2iz -=-+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限18.向量a =(-2,1)所对应的复数是( )A .z =1+2iB .z =1-2iC .z =-1+2iD .z =-2+i19.设O 为原点,向量OA ,OB 对应的复数分别为2+3i ,-3-2i ,那么向量BA 对应的复数为( )A .-1+iB .1-iC .-5-5iD .5+5i20.已知m 为实数,则“1m =”是“复数()211i z m m =-++为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题21.已知复数()()211i z a a =-+-()a R ∈是纯虚数,则=a ___________.22.已知复数z i =,i 为虚数单位,则z =______23.若i(,)i+∈a b a b R 与3+4i 互为共轭复数,则a b -=___________. 24.若复数z 满足i 3i=iz -+,则z =________. 25.若复数()2(2)9i()z m m m R =++-∈是正实数,则实数m 的值为________.26.计算:()()12i 34i 2i-+=+_________.27.若()1i 1i z +=-,则z =_______28.设i 是虚数单位,且12w =-,则21w w ++=______. 29.设复数i 12z =+(i 是虚数单位),则在复平面内,复数2z 对应的点的坐标为________.30.已知2i +是关于x 的方程()20,R x ax b a b ++=∈的根,则b a -=________.31.若a ∈R ,且i2ia ++是纯虚数,则a =____. 32.若复数1z ,2z 满足112i z =-,234i z =+(i 是虚数单位),则12z z ⋅的虚部为___________.33.已知复数z 为纯虚数且满足1-3z =|z |+3i ,则z =________ 34.已知复数z 满足1z =,则22z i +-的最大值为______.35.已知复数2i -在复平面内对应的点为P ,复数z 满足|i |1z -=,则P 与z 对应的点Z 间的距离的最大值为________. 36.计算cos 40isin 40cos10isin10________.37.已知4cos isin 1212z ππ⎛⎫=+ ⎪⎝⎭,则1z 的辐角主值为________. 38.i 是虚数单位,则1i1i+-的值为__________.39.已知复数z 满足2i z +∈R ,4zz-是纯虚数,则z 的共轭复数z =______. 40.已知复数1i z =+,则2z z+=____________ 三、解答题41.已知复数z1i ,z 2=12-+ (1)求|z 1|及|z 2|并比较大小;(2)设C z ∈,满足条件|z 2|≤|z |≤|z 1|的点Z 的轨迹是什么图形?42.已知()122i z x =+-,()()2234i z y x =++-,其中,x y 均为实数,且12z z =,求,x y .43.已知复数()222159i z m m m =--+-,其中m R ∈.(1)若z 为实数,求m 的值; (2)若z 为纯虚数,求1iz+的虚部. 44.设z 是虚数,且1z zω=+满足12ω-<<. (1)求||z 的值及z 的实部的取值范围; (2)设11zu z-=+,求证:u 为纯虚数; (3)求2u ω-的最小值.45.设222215(6)i 4a a z a a a +-=--+-(R a ∈),试判断复数z 能否为纯虚数?并说明理由.【参考答案】一、单选题 1.C 2.A 3.A 4.C 5.B 6.A 7.B 8.A 9.D 10.B 11.B 12.D 13.A 14.D 15.A 16.D 17.C18.D 19.D 20.C 二、填空题 21.1- 22.1 23.1 2425.326.43i -##3i 4-+ 27.i 28.029.()34-,30.9 31.12-##0.5- 32.-2 33.i 34.1 35.1##1+3612i 37.2312π38.139.22i +##2i 2+ 40.三、解答题41.(1)12122,1,z z z z ==>(2)以O 为圆心,以1和2为半径的两圆之间的圆环(包含圆周) 【解析】 【分析】(1)根据复数模的计算公式可求得1||z ,2||z 的值;(2)根据复数几何意义可解决此问题. (1)解:(1)13i z =+,212z =-,1||2z ∴,2||1z =, ∴12z z >; (2)解:由21||||||z z z ≤≤,得1||2z ≤≤,根据复数几何意义可知复数z 对应的点到原点的距离, 所以|z |≥1表示|z |=1所表示的圆外部所有点组成的集合, |z |≤2表示|z |=2所表示的圆内部所有点组成的集合,所以复数z 对应的点Z 的轨迹是以原点O 为圆心,以1和2为半径的圆之间的部分(包括两边界). 42.21x y =⎧⎨=-⎩或11x y =-⎧⎨=-⎩【解析】 【分析】根据复数相等条件可构造方程组求得结果. 【详解】12z z =,23242y x x +=⎧∴⎨-=-⎩,解得:21x y =⎧⎨=-⎩或11x y =-⎧⎨=-⎩. 43.(1)3m =± (2)8 【解析】 【分析】(1)由实数定义可构造方程求得m ;(2)由纯虚数定义可求得m ,进而得到z ;由复数除法运算可化简得1iz+,由虚部定义可得结果. (1)由实数定义可知:290m -=,解得:3m =±; (2)由纯虚数定义知:22215090m m m ⎧--=⎨-≠⎩,解得:5m =,16i z ∴=;()()()()16i 1i 16i 8i 1i 88i 1i 1i 1i 1i z -∴===-=++++-,1iz∴+的虚部为8. 44.(1)||1z =,112⎛⎫- ⎪⎝⎭, (2)证明见解析 (3)1 【解析】 【分析】(1)根据复数的除法可得ω,根据其为实数可得221a b +=,从而z 的实部的取值范围;(2)根据复数的除法可得i 1bu a =-+,从而可证u 为纯虚数; (3)根据基本不等式可求最小值. (1)设i z a b =+,a b R ∈、,0b ≠, 则22221i i i a b a b a b a b a b a b ω⎛⎫⎛⎫=++=++- ⎪ ⎪+++⎝⎭⎝⎭, ∵12ω-<<,∴ω是实数,又0b ≠,∴221a b +=,即||1z =,∴2a ω=,122a ω-<=<,112a -<<,∴z 的实部的取值范围是112⎛⎫- ⎪⎝⎭,; (2)()222211i 12i i 11i 11z a b a b b b u z a b a a b ------====-++++++, ∵1,12a ⎛⎫∈- ⎪⎝⎭,0b ≠,∴u 为纯虚数;(3)()()22212122212131111b a u a a a a a a a a ω-⎡⎤-=+=-=-+=++-⎢⎥+++⎣⎦+,∵112a ⎛⎫∈- ⎪⎝⎭,,∴10a +>,故223431u ω-≥⨯=-=, 当111a a +=+,即0a =时,2u ω-取得最小值1. 45.不存在a 使复数z 为纯虚数,理由见解析 【解析】 【分析】先假设复数z 能为纯虚数,则可得260a a --=且2221504a a a +-≠-,然后求解,若a存在,则复数z能为纯虚数,否则不能【详解】假设复数z能为纯虚数,则222260215440a aa aaa⎧--=⎪+-⎪≠⎨-⎪-≠⎪⎩,所以325,3,2,2a aa a a a==-⎧⎨≠-≠≠≠-⎩或且且且,解得a∈∅,所以不存在a使复数z为纯虚数.。
(完整版)复数练习题
(完整版)复数练习题一、单选题 1.如果1i12z =-,那么在复平面内,复数z 所对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限2.已知复数2ii+=a z (a R ∈,i 是虚数单位)的虚部是3-,则复数z 对应的点在复平面的( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.设||(12i)34i z -=+,则z 的共轭复数对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.已知x ,R y ∈,i 为虚数单位,且()2i 2y y x ++=-,则x y +的值为( ) A .1 B .2C .3D .45.在复平面中,复数z 对应的点的坐标为()1,2,则()i z z -的对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.已知复数z 满足i 232i z z +=-(i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限7.若复数z 满足()13i 17i -=-z ,则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 8.已知复数z 满足(12i)43i z -=-(i 为虚数单位),则z =( )AB .5CD .2 9.复数z 满足:(2i)5z +=(i 是虚数单位),则复数z 的虚部为( ) A .2-B .2C .i -D .1- 10.下列命题正确的是( ) ①若复数z 满足2R z ∈,则R z ∈; ②若复数z 满足i R z∈,则z 是纯虚数; ③若复数1z ,2z 满足12=z z ,则12=±z z ;④若复数1z ,2z 满足2121z z z =且10z ≠,则12=z z .A .①③B .②④C .①④D .②③11.若复数z 对应的点在直线y =2x 上,且|z |z =( ) A .1+2i B .-1-2i C .±1±2iD .1+2i 或-1-2i12.已知i 是虚数单位,复数1z 、2z 在复平面内对应的点分别为()1,2-、()1,1-,则复数21z z 的共轭复数的虚部为( )A .15-B .15C .1i 5-D .1i 513.已知复数()()31i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( ). A .()3,1- B .()1,3- C .()1,+∞ D .(),3-∞ 14.复数z 满足:23i 3=+-z z ,则z =( ) A .5BC .10D15.已知34i z =+,则()i z z -=( ) A .1117i + B .1917i + C .1117i - D .1923i +16.若5i2iz =+,则||z =( ) A .2 BC.D .317.向量a =(-2,1)所对应的复数是( )A .z =1+2iB .z =1-2iC .z =-1+2iD .z =-2+i18.设O 为原点,向量OA ,OB 对应的复数分别为2+3i ,-3-2i ,那么向量BA 对应的复数为( )A .-1+iB .1-iC .-5-5iD .5+5i19.设a ,b ∈R ,i 为虚数单位,则“ab >0”是“复数a -b i 对应的点位于复平面上第二象限”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件20.设i 为虚数单位,()1i 2i z -+=+,则复数z 的虚部是( ) A .12-B .1i 2C .32-D .3i 2-二、填空题21.已知复数z 为纯虚数且满足1-3z =|z |+3i ,则z =________22.已知复数z 满足()1i 42i z -=+,则z =_________(用代数式表示). 23.设(3i)i 6i a a b +=-,其中a ,b 是实数,则i a b +=____________. 24.已知复数20202023i i z =+(i 为虚数单位),则z 在复平面内对应的点位于第________象限.25.已知i34i z =+,求|z |=___________ 26.若复数z 满足i 3i=iz -+,则z =________. 27.已知复数3i (2i)z =⋅-,则z 的虚部为__________. 28.若()1i 1i z +=-,则z =_______29.若复数31i 2iz a -=-为实数,则实数a 的值为_______.30.若复数()2i m m m -+为纯虚数,则实数m 的值为________.31.已知z =,则22022z z z ++⋅⋅⋅+=___________. 32.若复数2(1i)34iz +=+,则z =__________.33.已知复数2i -在复平面内对应的点为P ,复数z 满足|i |1z -=,则P 与z 对应的点Z 间的距离的最大值为________.34.若存在复数z 同时满足i 1z -=,33i z t -+=,则实数t 的取值范围是_______.35.甲、乙、丙、丁四人对复数z 的陈述如下(i 为虚数单位):甲:z z +=;乙:2z z -=;丙:26;:4z z z z z ⋅==丁,在甲、乙、丙、丁四人陈述中,有且只有两个人的陈述正确,则z =___________.36.设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则2zz-=________. 37.已知i 是虚数单位,则202220211()1+⎛⎫+= ⎪-⎝⎭i i i ___________.38.已知复数cos isin i z θθ=+(为虚数单位),则1z -的最大值为___________ 39.设复数()21(1)i m m -++为纯虚数,则实数m 的值为________.40.设12z i =-,则z =___________ . 三、解答题41.已知复数z满足||z =z 2的虚部为2. (1)求复数z ;(2)设22,,z z z z -在复平面上的对应点分别为A 、B 、C ,求△ABC 的面积. 42.已知复数z 和它的共轭复数z 满足232i z z +=+. (1)求z ;(2)若z 是关于x 的方程()20,x px q p q R ++=∈的一个根,求复数()4i zp q +-的模.43.已知复数()()()22232i R z m m m m m =--++-∈,. (1)若0z >,求m 的值; (2)若z 是纯虚数,求z z ⋅的值. 44.求数列{}n a :112n n na a a ++=-的周期. 45.判断下列命题的真假. (1)任何复数的模都是非负数; (2)x 轴是复平面的实轴,y 轴是虚轴;(3)若1z =,2z =,3z =42i z =-,则这些复数的对应点共圆; (4)cos isin θθ+,最小值为0.【参考答案】一、单选题 1.D 2.D 3.D 4.B 5.D 6.A 7.D 8.A 9.D 10.B 11.D 12.A14.D15.B16.B17.D18.D19.B20.C二、填空题21.i22.13i+##3i+1 23.24.四25.15##0.226 27.-2 28.i 29.2-30.1 31.032.825i 6 25 -33.1##1+ 34.[]4,635.236.-1+2i##2i-13738.239.140三、解答题41.(1)1iz=+或1iz=--【解析】 【分析】(1)设()i ,R z x y x y =+∈,根据已知条件列方程求得,x y ,由此求得z . (2)求得,,A B C 的坐标,从而求得三角形ABC 的面积. (1)设()i ,R z x y x y =+∈,222x y +=①,2222i z x y xy =-+的虚部为2,所以22,1xy xy ==②,由①②解得11x y =⎧⎨=⎩或11y x =-⎧⎨=-⎩. 所以1i z =+或1i z =--. (2)当1i z =+时,22i z =,21i z z -=-, 所以()()()1,1,0,2,1,1A B C -,2AC =,所以三角形ABC 的面积为11212⨯⨯=. 当1i z =--时,22i z =,213i z z -=--, 所以()()()1,1,0,2,1,3A B C ----,2AC =,所以三角形ABC 的面积为12112⨯⨯=.42.(1)12z i =+; (2)1. 【解析】 【分析】(1)设()i ,z a b a b R =+∈,根据复数的运算以及复数相等,即可求得结果; (2)将(1)中所求z 代入方程,根据复数相等求得,p q ,结合复数的运算,即可求得()4i zp q ++及其模长.(1)设()i ,z a b a b R =+∈,则i z a b =-,()()22i i 3i 32i z z a b a b a b +=++-=+=+,所以332a b =⎧⎨=⎩,即12a b =⎧⎨=⎩,所以i 12z =+.(2)将i 12z =+代入已知方程可得()()212i 12i 0p q ++++=, 整理可得()()24i 30p p q +++-=,所以24030p p q +=⎧⎨+-=⎩,解得25p q =-⎧⎨=⎩,所以()()()()()12i 2i 12i 5ii 4i 2i 2i 2i 5z p q +--+-====-+--+-+--,又i 1-=, 所以复数()4i zp q +-的模为1. 43.(1)2m =- (2)4或100 【解析】 【分析】(1)根据复数0z >,可知z 为实数,列出方程,解得答案;(2)根据z 是纯虚数,列出相应的方程或不等式,再结合共轭复数的概念以及复数的乘法运算,求得答案. (1)因为0z >,所以R z ∈,所以220m m +-=,所以2m =-或1m =. ①当2m =-时,50z =>,符合题意; ②当1m =时,40z =-<,舍去. 综上可知:2m =-. (2)因为z 是纯虚数,所以2223020m m m m ⎧--=⎨+-≠⎩,所以1m =-或3m =,所以2i z =-,或10i z =,所以2i 2i 4z z ⋅=-⨯=或10i (10i)100z z ⋅=⨯-=, 所以4z z ⋅=或100. 44.周期为6. 【解析】 【分析】根据通项公式,写出特征方程为210x x -+=,由方程根的情况求出数列{}n a 的周期. 【详解】 因为112n n na a a ++=-,所以特征方程为210x x -+=, 因为Δ14130=-⨯=-<,解得:m k ==所以2arg 36a mc a kc ππ-⎛⎫==⎪-⎝⎭, 所以函数()f x 的迭代周期为6T =. 所以数列{}n a 有周期6T =, 45.(1)真命题; (2)真命题; (3)真命题; (4)假命题; 【解析】 【分析】由复数模长公式判断(1),由复平面的定义判断(2),根据复数的模长判断(3),由模长计算公式求解cos isin θθ+,判断(4). (1)真命题,若()i ,z a b a b R =+∈,则0z =≥,故该命题为真命题; (2)真命题,由复平面的定义可知,x 轴是实轴,y 轴是虚轴,故该命题为真命题; (3)真命题,因为3124z z z z ===(4)假命题,cos isin 1θθ+==为定值,所以其最大最小值均为1,故该命题为假命题.。
数学复数练习题附答案
数学复数练习题附答案数学复数练习题附答案数学是一门抽象而又实用的学科,而复数是数学中一个非常重要的概念。
复数由一个实数部分和一个虚数部分组成,虚数部分以虚数单位i表示。
在实际应用中,复数常常用于描述电路中的交流电信号、量子力学中的波函数等。
为了帮助读者更好地理解和掌握复数的概念和运算规则,下面将提供一些复数练习题,每道题都附带答案和解析。
1. 计算下列复数的实部和虚部:a) 3 + 4ib) -2 - 5ic) 7i答案和解析:a) 实部为3,虚部为4b) 实部为-2,虚部为-5c) 实部为0,虚部为72. 计算下列复数的共轭复数:a) 2 + 3ib) -4 - 6ic) 5i答案和解析:a) 共轭复数为2 - 3ib) 共轭复数为-4 + 6ic) 共轭复数为-5i3. 将下列复数写成极坐标形式,并计算其模和辐角:a) 1 + ib) -3 - 3ic) 4i答案和解析:a) 极坐标形式为√2 * (cos(π/4) + isin(π/4)),模为√2,辐角为π/4b) 极坐标形式为3√2 * (cos(5π/4) + isin(5π/4)),模为3√2,辐角为5π/4c) 极坐标形式为4 * (cos(π/2) + isin(π/2)),模为4,辐角为π/24. 计算下列复数的乘积:a) (2 + 3i)(4 - i)b) (-3 + 2i)(1 + 5i)c) (2i)(3 - 4i)答案和解析:a) 乘积为(11 + 10i)b) 乘积为(-13 - 13i)c) 乘积为(8 + 6i)5. 计算下列复数的商:a) (3 + 2i)/(1 - i)b) (-4 - 3i)/(2 + 3i)c) (5i)/(2 - i)答案和解析:a) 商为(-1.25 + 2.25i)b) 商为(-1 - 2i)c) 商为(-5i)通过以上练习题,读者可以巩固对复数的实部、虚部、共轭复数、极坐标形式以及复数的乘法和除法运算的理解。
复数综合练习选择题20道
【3月5日】复数选择20题一、选择题(本大题共20小题,共100.0分)1.复平面内表示复数z=i(−2+i)的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.(1+i)(2+i)=()A. 1−iB. 1+3iC. 3+iD. 3+3i3.设i为虚数单位,m∈R,“复数m(m−1)+i是纯虚数”是“m=1”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件4.i为虚数单位,则(1+i1−i)2016=()A. −iB. −1C. iD. 15.复数z满足z(1+√3i)=|1+√3i|,则z等于()A. 1−√3iB. 1C. 12−√32i D. √32−12i6.i是虚数单位,则复数z=2ii−1在复平面内对应的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.(1+i)3(1−i)2=()A. 1+iB. 1−iC. −1+iD. −1−i8.设z=-12+√32i,则z2+z=()A. -1B. 0C. 1D. 29.复数z=(1−i)(4−i)1+i的共轭复数的虚部为()A. −4iB. −4C. 4iD. 410.在复平面内点P对应的复数z1=2+i,将点P绕坐标原点O逆时针旋转π6到点Q,则点Q对应的复数z2的虚部为()A. √3−12B. √32+1C. (√3−12)iD. (√32+1)i11.若复数z1=2+i,z2=cosα+isinα(α∈R),其中i是虚数单位,则|z1−z2|的最大值为()A. √5−1B. √5−12C. √5+1 D. √5+1212.已知复数z满足|z|=1,则|z−(4+3i)|的最大、最小值为()A. 5,3B. 6,4C. 7,5D. 6,513.复数z=i2018+(1+i1−i )2019(i是虚数单位)的共轭复数表示的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限14.已知z∈C,|z−2|=1,则|z+2+5i|的最大值和最小值分别是()A. √41+1和√41−1B. 3和1C. 5√2和√34D. √39和315.复数z满足|z−i|=|z+3i|,则|z|()A. 最小值为1,无最大值B. 最大值为1,无最小值C. 恒等于1D. 无最大值,也无最小值16.在下列命题中,正确命题的个数是()①两个复数的模不能比较大小;②复数z=i−1对应的点在第四象限;③若(z1−z2)2+(z2−z3)2=0,则z1=z2=z3.A. 0B. 1C. 2D. 317. 若复数z 满足2+zi =z −2i(i 为虚数单位),z −为z 的共轭复数,则|z −+1|=( )A. √5B. 2C. √3D. 3 18. 若i 是虚数单位,则复数2+3i1+i 的实部与虚部之积为( )A. −54 B. 54C. 54iD. −54i19. 在复平面内,复数z =11−i 对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限20. 设a ,b 为实数,若复数1+2ia+bi =1+i ,则( )A. a =1,b =3B. a =3,b =1C. a =12,b =32 D. a =32,b =12【3月5日】复数选择20题一、选择题(本大题共20小题,共100.0分)1.复平面内表示复数z=i(−2+i)的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.利用复数的运算法则、几何意义即可得出.【解答】解:z=i(−2+i)=−1−2i,对应的点(−1,−2)位于第三象限.故选C.2.(1+i)(2+i)=()A. 1−iB. 1+3iC. 3+iD. 3+3i【答案】B【解析】【分析】本题考查了复数的运算法则,属于基础题.【解答】解:原式=2−1+3i=1+3i.故选:B.3.设i为虚数单位,m∈R,“复数m(m−1)+i是纯虚数”是“m=1”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件【答案】B【解析】【分析】本题考查复数的基本概念,充分条件,必要条件,属于基础题.直接利用复数的基本概念以及充要条件判断即可.【解答】解:复数m(m−1)+i是纯虚数,则m=0或m=1,所以“复数m(m−1)+i是纯虚数”不是“m=1”的充分条件;当m=1时,该复数为i,是纯虚数,“复数m(m−1)+i是纯虚数”是“m=1”的必要条件,所以“复数m(m−1)+i是纯虚数”是“m=1”的必要不充分条件.故选B.)2016=()4.i为虚数单位,则(1+i1−iA. −iB. −1C. iD. 1【答案】D【解析】【分析】本题考查复数的四则运算和i的方幂性质,属基础题.利用复数的四则运算即可.【解答】解:因为1+i1−i =i ,所以(1+i1−i )2016=i 2016=i 4×504=i 4=1.故选D .5. 复数z 满足z(1+√3i)=|1+√3i|,则z 等于( )A. 1−√3iB. 1C. 12−√32i D. √32−12i 【答案】C【解析】【分析】本题考查复数的基本运算,复数的模,属于基本知识的考查. 通过复数的模以及复数的代数形式混合运算,化简求解即可. 【解答】解:复数z 满足z(1+√3i)=|1+√3i|=2,z =21+√3i =2(1−√3i)(1+√3i)(1−√3i)=12−√32i.故选:C .6. i 是虚数单位,则复数z =2ii−1在复平面内对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】解:∵z =2ii−1=2i(i+1)(i−1)(i+1)=1−i ,∴在复平面内对应的点为(1,−1), 故选:D .由题意分子分母同乘以1+i ,再进行化简求出实部和虚部即可. 本题考查了复数的除法运算,关键利用共轭复数对分母实数化. 7.(1+i)3(1−i)2=( )A. 1+iB. 1−iC. −1+iD. −1−i【答案】D【解析】【分析】由条件利用两个复数代数形式的乘除法,虚数单位i 的幂运算性质,计算求得结果. 本题主要考查两个复数代数形式的乘除法,虚数单位i 的幂运算性质,属于基础题. 【解答】 解:(1+i)3(1−i)2=2i(1+i)−2i=−(1+i)=−1−i .故选D .8. 设z =-12+√32i ,则z 2+z =( )A. -1B. 0C. 1D. 2【答案】A【解析】【分析】直接把z 代入z 2+z ,再利用复数代数形式的乘除运算化简得答案.本题考查了复数代数形式的乘除运算,是基础题. 【解答】解:由z =−12+√32i ,得z 2+z =z(z +1)=(−12+√32i)(12+√32i)=(√32i)2−(12)2=−1.故选:A .9. 复数z =(1−i)(4−i)1+i的共轭复数的虚部为( )A. −4iB. −4C. 4iD. 4【答案】D【解析】【分析】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.利用复数代数形式的乘除运算化简,求出z .得答案. 【解答】 解:∵z =(1−i)(4−i)1+i=(1−i)2(4−i)(1+i)(1−i)=−2i(4−i)2=−1−4i ,∴z =−1+4i , ∴复数z =(1−i)(4−i)1+i的共轭复数的虚部为4.故选:D .10. 在复平面内点P 对应的复数z 1=2+i ,将点P 绕坐标原点O 逆时针旋转π6到点Q ,则点Q 对应的复数z 2的虚部为( )A. √3−12B. √32+1 C. (√3−12)iD. (√32+1)i【答案】B【解析】解:设P 点对应的向量为OP ⃗⃗⃗⃗⃗ ,向量OP ⃗⃗⃗⃗⃗ 绕坐标原点O 逆时针旋转π6得到OQ ⃗⃗⃗⃗⃗⃗ 对应的复数为(2+i)(cos π6+isin π6) =(2+i)(√32+12i)=(√3−12)+(√32+1)i ,∴点Q对应的复数z2的虚部为√32+1.故选:B.由题意求得点Q对应的复数z2,则其虚部可求.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.11.若复数z1=2+i,z2=cosα+isinα(α∈R),其中i是虚数单位,则|z1−z2|的最大值为()A. √5−1B. √5−12C. √5+1 D. √5+12【答案】C【解析】解:∵z1=2+i,z2=cosα+isinα(α∈R),∴z2对应的点在以原点为圆心,以1为半径的圆上,z1=2+i对应的点为Z1(2,1).如图:则|z1−z2|的最大值为√5+1.故选:C.由已知画出图形,数形结合得答案.本题考查复数的代数表示法及其几何意义,考查数形结合的解题思想方法,是基础题.12.已知复数z满足|z|=1,则|z−(4+3i)|的最大、最小值为()A. 5,3B. 6,4C. 7,5D. 6,5【答案】B【解析】【分析】本题考查了复数几何意义、圆的方程、两点之间的距离公式,考查了推理能力与计算能力,属于基础题.利用复数的几何意义,圆的复数形式的方程即可得出答案.【解答】解:复数z满足|z|=1,点z表示以原点为圆心,1为半径的圆,则|z−(4+3i)||表示z点对应的复数与点(4,3)之间的距离,∴原点到点(4,3)的距离为:d=√42+32=5.∴|z−(4+3i)|的最大值为5+1=6,最小值为5−1=4.故选B.13.复数z=i2018+(1+i1−i )2019(i是虚数单位)的共轭复数表示的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】本题考查复数的四则运算、复数的代数表示及其几何意义、虚数单位i的幂运算的周期性、共轭复数,属于基础题.由复数的四则运算化简复数z,求出共轭复数,根据几何意义可得答案.【解答】解:z=i2018+(1+i1−i)2019=(−1)1009+[(1+i)2(1−i)(1+i)]2019=−1+i2019=−1+i2018×i=−1−i,∴z=−1+i表示的点在第二象限.故选B.14.已知z∈C,|z−2|=1,则|z+2+5i|的最大值和最小值分别是()A. √41+1和√41−1B. 3和1C. 5√2和√34D. √39和3【答案】A【解析】【分析】本题考查了复数求模及复数的几何意义,属于基础题.设z=x+yi(x,y∈R),由|z−2|=1可知点Z(x,y)的轨迹可看作以A(2,0)为圆心,1为半径的圆,则|z+2+5i|可看作点Z到点B(−2,−5)的距离,从而可得答案.【解答】解:设z=x+yi(x,y∈R),则|z−2|=|(x−2)+yi|=1,所以√(x−2)2+y2=1,即(x−2)2+y2=1,点Z(x,y)的轨迹可看作以A(2,0)为圆心,1为半径的圆,又|z+2+5i|=|(x+2)+(y+5)i|=√(x+2)2+(y+5)2,可看作点Z到点B(−2,−5)的距离,则距离的最大值为:|AB|+1=√41+1,距离的最小值为:|AB|−1=√41−1,即|z+2+5i|的最大值和最小值分别是√41+1和√41−1.故选A.15.复数z满足|z−i|=|z+3i|,则|z|()A. 最小值为1,无最大值B. 最大值为1,无最小值C. 恒等于1D. 无最大值,也无最小值【答案】A【解析】【分析】本题主要考查复数的代数表示及其几何意义以及复数的模,属于基础题.利用复平面坐标系即可解答.【解答】解:|z−i|=|z+3i|表示z在复平面上的点(a,b)到−i在复平面上的点A(0,−1)的距离和到3i在复平面上的点B(0,3)的距离相等,∴根据平面几何的知识可知,点(a,b)在AB的垂直平分线上,显然当点(a,b)为AB的中点(0,1)时,|z|最小为1,无最大值,16.在下列命题中,正确命题的个数是()①两个复数的模不能比较大小;②复数z=i−1对应的点在第四象限;③若(z1−z2)2+(z2−z3)2=0,则z1=z2=z3.A. 0B. 1C. 2D. 3【答案】A【解析】【分析】本题主要考查复数的概念,属于基础题.【解答】解:对于①,两个复数的模都是实数,可以比较大小,命题①错误;对于②,复数z=i−1对应的点的坐标为(−1,1),位于第二象限,命题②错误;对于③,若z1−z2=i,z2−z3=1,则(z1−z2)2+(z2−z3)2=0,命题③错误.所以正确命题的个数是0.故选A.17.若复数z满足2+zi=z−2i(i为虚数单位),z−为z的共轭复数,则|z−+1|=()A. √5B. 2C. √3D. 3【答案】A【解析】解:由2+zi=z−2i,得(1−i)z=2+2i,则z=2+2i1−i =2(1+i)2(1−i)(1+i)=2i,∴z−+1=1−2i,则|z−+1|=√5.故选:A.把已知等式变形,利用复数代数形式的乘除运算化简,结合复数模的公式求解.本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.18.若i是虚数单位,则复数2+3i1+i的实部与虚部之积为()A. −54B. 54C. 54i D. −54i【答案】B【解析】解:∵2+3i1+i =(2+3i)(1−i)(1+i)(1−i)=52+12i,∴复数2+3i1+i 的实部为52,虚部为12,∴复数2+3i1+i 的实部与虚部之积为54.故选:B.利用复数代数形式的乘除运算化简,分别求出实部与虚部作积得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础的计算题.19.在复平面内,复数z=11−i对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【解析】【分析】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题. 直接利用复数代数形式的乘除运算化简得答案. 【解答】解:∵z =11−i =1+i(1−i)(1+i)=12+12i ,∴复数z =11−i 对应的点的坐标为(12,12),位于第一象限. 故选A .20. 设a ,b 为实数,若复数1+2ia+bi =1+i ,则( )A. a =1,b =3B. a =3,b =1C. a =12,b =32D. a =32,b =12【答案】D【解析】【分析】本题考查了复数的运算法则、复数相等,考查了计算能力,属于基础题. 利用复数的运算法则、复数相等即可得出. 【解答】解:∵复数1+2ia+bi =1+i , ∴a +bi =1+2i 1+i =(1+2i)(1−i)(1+i)(1−i)=3+i 2,∴a =32,b =12.故选:D .。
复数与平面几何的应用问题的综合练习题
复数与平面几何的应用问题的综合练习题题目一:求解复数方程已知复数方程z^2-6z+13=0,求解z的值。
解析:设z=a+bi,其中a和b为实数。
将z代入方程中得到:(a+bi)^2-6(a+bi)+13=0展开并整理得:(a^2-b^2-6a+13)+(2ab-6b)i=0由于两个复数相等,实部和虚部都相等,所以可以得到以下两个方程组:1) a^2-b^2-6a+13=02) 2ab-6b=0解方程组1)可以得到:a^2-6a+(13-b^2)=0应用一元二次方程求解公式,可得:a=3±√(b^2-4(13-b^2))/2实部a的值依赖于b的值。
解方程组2)可以得到:2a-6=0解得a=3,与解方程组1)的a值相等。
综上所述,复数方程z^2-6z+13=0的解为:z=3±bi,其中实数部分a=3,虚数部分b为任意实数。
题目二:复数表示平面向量已知复数z=a+bi表示平面上的一个向量,其中a和b为实数,向量与x轴夹角为θ,则求解θ的值。
解析:由于复数z的实部a表示向量在x轴上的投影长度,虚部b表示向量在y轴上的投影长度。
根据三角函数的定义,可以得到以下关系:t anθ = b/a解方程得到:θ = arctan(b/a)综上所述,复数z=a+bi对应的向量与x轴夹角θ满足θ = arctan(b/a)。
题目三:复数表示平面上的变换已知平面上的一点P的坐标为复数z,经过平面上的一个旋转变换R,P的坐标变为w。
求解旋转变换R的中心坐标和旋转角度。
解析:假设旋转变换R的中心坐标为复数c,旋转角度为θ。
根据旋转变换的定义,可以得到以下关系:w = (z - c) * e^(iθ) + c展开并整理得:w = z * e^(iθ) - c * e^(iθ) + c根据复数的指数表示形式,即e^(ix) = cosx + isinx,上式可以进一步化简为:w = (a+bi) * (cosθ + isinθ) - (c+di) * (cosθ + isinθ) + c+diw = (a*cosθ - b*sinθ + c) + (b*cosθ + a*sinθ + d)i根据两个复数相等的实部和虚部相等的性质,可以得到以下方程组:1) a*cosθ - b*sinθ + c = a2) b*cosθ + a*sinθ + d = b解方程组可以求解出中心坐标c和旋转角度θ的值。
数学复数的练习题
数学复数的练习题一、选择题1. 下列哪个是虚数单位?A. iB. πC. eD. 02. 下列哪个数是虚数?A. 3B. -4C. 2 + 3iD. 5 - 7i3. 若z = 3 + 4i,则z的共轭复数是:A. 3 - 4iB. -3 + 4iC. -3 - 4iD. -3 + 44. 若z1 = 2 + 3i,z2 = -1 + 5i,则z1 + z2 的实部是:A. 1B. -3C. 2D. 65. 若z1 = 2 + 3i,z2 = -1 + 5i,则z1 - z2 的虚部是:A. 1B. -3C. 2D. 6二、填空题6. 若z = 2 + 3i,则z的共轭复数是_________。
7. 若z1 = 5 + 6i,z2 = 3 + 4i,则z1 × z2 = _________。
8. 若z = 2 + 3i,则|z| = _________。
9. 若z = 2 + 3i,则arg(z) = _________。
10. 若z = 2 + 3i,则z 的实部是 _________。
三、计算题11. 计算复数 2 + 3i 与 4 + 5i 的和。
12. 计算复数 2 + 3i 与 4 + 5i 的差。
13. 计算复数 2 + 3i 与 4 + 5i 的积。
14. 计算复数 2 + 3i 除以 4 + 5i 的商。
15. 计算复数 3 + 4i 的共轭复数的模。
四、应用题16. 一个复数的实部为5,虚部为-2,求该复数的共轭复数。
17. 某电路中的电压信号可以表示为V(t) = 6cos(3t + π/2),其中t为时间变量,单位为秒。
将该电压信号表示为复数形式。
18. 在复平面上,点A的坐标为(2,3),点B的坐标为(-1,4),分别计算AB的距离和倾斜角度。
以上为数学复数的练习题,希望能够帮助你巩固对复数概念和运算的理解。
完成练习题有助于提高解决数学问题的能力,欢迎继续学习和探索数学的奥妙。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复数综合练习题
一、 选择题(60分)
1、若22
(1)(32)x x x i -+++是纯虚数,则实数x 的值是( )
A 1
B 1-
C 1±
D 以上都不对
2、221(1)(4),.z m m m m i m R =++++-∈232.z i =-则1m =是12z z =的( )条件 A 充分不必要 B 必要不充分 C 充要 D 既不充分又不必要
3、若12,z z C ∈,则1212z z z z ⋅+⋅是( )
A 纯虚数
B 实数
C 虚数
D 无法确定
4、(),()n n f n i i n N -+
=+∈的值域中,元素的个数是( )
A 2
B 3
C 4
D 无数个
5、3()m i R +∈,则实数m 的值为( )
A ±±6、若x C ∈,则方程||13x i x =+-的解是( )
A 12+
B 124,1x x ==-
C 43i -+
D 12- 7、|34|2z i ++≤,则||z 的最大值为( )
A 3
B 7
C 9
D 5
8、已知
z =则501001z z ++的值为( ) A i B 1 C 2i + D 3
9、已知11x x +=,则199619961x x
+的值为( ) A 1- B 1 C i - D i
10、已知方程|2||2|z z a --+=表示等轴双曲线,则实数a 的值为( )
A ± B
11、复数集内方程25||60z z ++=的解的个数是( )
A 2
B 4
C 6
D 8
12、复数1cos sin ,(2)z i ααπαπ=++<<的模是( ) A 2cos 2α B 2cos 2α
- C 2sin 2α D 2tan 2α
-
二、填空题(16分)
13、34i +的平方根是 、 。
14、在复平面内,若复数z 满足|1|||z z i +=-,则z 所对应的点的集合构成的图形是 。
15、设122
ω=-+,则集合A={|()k k x x k Z ωω-=+∈}中元素的个数是 。
16、已知复数122,13z i z i =-=-,则复数
215
z i z + = 。
三、解答题 (写出必要的运算步骤) 17 (10分)在复平面上,设点A 、B 、C ,对应的复数分别为,1,42i i +。
过A 、B 、C 做平行四边形ABCD ,求此平行四边形的对角线BD 的长。
18、(10分)设,a b 为共轭复数,且2()3412a b abi i +-=- ,求,a b 的值。
19、(12分)已知复数z 满足|4||4|,z z i -=-且141z z z -+
-为实数,求z 。
20、(12分)已知,z ω为复数,(13)i z +⋅为纯虚数,2z i
ω=
+,且||ω= 求复数ω
复数综合练习题参考答案
答案:
一、A 、A 、B 、B 、B 、 C 、B 、A 、A 、A 、 A 、B
二、 13 2,2i i +-- 14 y x =-直线 15 2 16 i
三、简答题
17、由题知平行四边形三顶点坐标为(0,1),(1,0),(4,2)A B C ,设D 点的坐标为 (,)D x y 。
因为BA CD =u u u r u u u r ,得(1,1)(4,2)x y -=--,得41,2 1.x y -=-⎧⎨-=⎩得33x y =⎧⎨=⎩
,即(3,3)D 所以(2,3)BD =u u u r ,
则||BD =
18、设,,(,)a x yi b x yi x y R =+=-∈。
带入原方程得
222
43()412x x y i i -+=-,由复数相等的条件得22244,3()12.x x y ⎧=⎪⎨+=⎪⎩
解得1x y =⎧⎪⎨=⎪⎩
1x y =-⎧⎪⎨=⎪⎩.对应四组解略。
19、,(,)z x yi x y R =+∈,因为|4||4|,z z i -=-带入得x y =,所以,z x xi x R =+∈ 又因为141z z z -+-为实数,所以141411
z z z z z z --+=+--, 化简得,所以有0z z -=或2|1|13z -= 由0z z -=得0x =;由2
|1|13z -=得2,3x x =-=或。
所以0;22;3 3.
z z i z i ==--=+ (也可以直接用代数形式带入运算) 20、设,(,)z x yi x y R =+∈,则(13)i z +⋅=(3)(3)x y x y i -++为纯虚数,所以30x y =≠,
因
为||||2z i
ω==+,所
以||z ==;又3x y =。
解得15,5;15,5x y x y ===-=- 所以155(7)2i i i
ω+=±=±-+。
21、(一)使用19题的方法解得0z z -=
或||z =,然后解决。
(二)设,(,)z x yi x y R =+∈ 则1010z x yi z x yi +=+++2210()x yi x yi x y -=+++2222
1010(1)(1)x y i x y x y =++-++ 因为10z R z +
∈,所以2210(1)0y x y -=+。
所以22010y x y =+=或。
当0y =时,z x =,又1016z z <+
≤,所以x R +∈
,而106z z +≥>,所以在实数范围内无解。
当2210x y +=时,则102z z z z z z x z z ⋅+=+=+=。
由112632
x x <≤⇒<≤ 因为,x y 为正整数,所以x 的值为 1,或2,或3。
当1,3;x y ==±时
当2,)x y ==时舍;当3,1x y ==±时。
则133z i z i =±=±或,。
22本题主要考查复数相等的充要条件及指数方程,对数方程的解法.
∵ 222log 8(1log )x y i x y i ++-=-,∴22280log 1log x y x y
+⎧-=⎨=-⎩,∴32x y xy +=⎧⎨=⎩,
解得21x y =⎧⎨=⎩或12x y =⎧⎨=⎩
, ∴ z =2+i 或z =1+2i . 23(1)设实数根是a ,则0)2()(tan 2
=+-+-i x i a θ,即---2tan 2θa a 0)1(=+i a ,∵a 、R ∈θtan ,⎩⎨⎧=+=--;
01,02tan 2a a a θ
∴,1-=a 且1tan =θ,又20πθ<
<,∴1,4-==a πθ;。