人教版七年级数学下册第九单元测试题及答案9784

合集下载

【精选】人教版七年级下册数学第九章《不等式与不等式组》测试卷(含答案)

【精选】人教版七年级下册数学第九章《不等式与不等式组》测试卷(含答案)

【精选】人教版七年级下册数学第九章《不等式与不等式组》测试卷(含答案)一、选择题(每题3分,共30分)1.下列各式中,是一元一次不等式的是( )A.x2≥0B.2x-1C.2y≤8D.1x-3x>02.已知a,b,c,d是实数,若a>b,c=d,则( )A.a+c>b+dB.a+b>c+dC.a+c>b-dD.a+b>c-d3.下列说法中正确的是( )A.y=3是不等式y+4<5的解B.y=3是不等式3y≤11的解集C.不等式2y<7的解集是y=3D.y=2是不等式3y≥6的解4.[2023·安徽]在数轴上表示不等式x-12<0的解集,正确的是( )A. B.C. D.5.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围是( )A.-1<m<3B.1<m<3C.-3<m<1D.m>-16.(母题:教材P130习题T3)不等式组{2x>3x,x+4>2的整数解是( )A.0B.-1C.-2D.17.解不等式2x-12-5x+26-x≤-1,去分母,得( )A.3(2x-1)-5x+2-6x≤-6B.3(2x-1)-(5x+2)-6x≥-6C.3(2x-1)-(5x+2)-6x≤-6D.3(2x-1)-(5x+2)-x≤-18.已知关于x的不等式组{x-a≥b,2x-a≤2b+1的解集是3≤x≤5,则ba的值是( )A.-2B.-12C.-4D.29.春到人间,绿化争先.为增强师生的环境保护意识,提升学生的劳动实践能力,某学校开展了以“建绿色校园,树绿色理想”为主题的植树活动,决定用不超过4 200元购买甲、乙1 / 82 / 8两种树苗共100棵,已知甲种树苗每棵45元,乙种树苗每棵38元,则至少可以购买乙种树苗( )A.42棵B.43棵C.57棵D.58棵10.[2023·重庆八中期末](多选题)已知关于x 的不等式组{x -2(x -1)<3,2k +x 7≥x 有且只有两个整数解,则下列四个数中符合条件的整数k 的值有( )A.3B.4C.5D.6二、填空题(每题3分,共24分)11.(母题:教材P115练习T1)x 的12与5的差不小于3,用不等式可表示为 . 12.在2022卡塔尔世界杯期间,以吉祥物拉伊卜为主题元素的纪念品手办、毛绒公仔深得广大球迷喜爱.某官方授权网店销售的手办每个售价200元,毛绒公仔每个售价40元.小熙打算在该网店购买手办和毛绒公仔共10个送同学,总费用不超过1 500元,若设购买手办x 个,则可列不等式为 .13.不等式2x +3<-1的解集为 .14.[2023·清华附中期中]若关于x 的不等式组{2x -5<0,x -a >0有且仅有一个整数解x =2,则实数a 的取值范围是 .15.已知[x ]表示不超过x 的最大整数,例:[4.8]=4,[-0.8]=-1.现定义{x }=x -[x ],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}= .16.[2023·泸州]关于x ,y 的二元一次方程组{2x +3y =3+a ,x +2y =6的解满足x +y >2√2,写出a 的一个整数值为 .17.[2022·达州]关于x 的不等式组{-x +a <2,3x -12≤x +1恰有3个整数解,则a 的取值范围是 .18.为了响应国家低碳生活的号召,更多的市民放弃开车选择自行车出行,市场上的自行车销量也随之增加,某种品牌自行车专卖店抓住商机,搞促销活动对原进价为800元,标价为1 000元的某款自行车进行打折销售,若要保持利润率不低于5%,则这款自行车最多可打 折.。

人教版七年级下第9章不等式与不等式组单元测试题含答案

人教版七年级下第9章不等式与不等式组单元测试题含答案

第九章不等式与不等式组时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1 •篮球联赛中,每场比赛都要分出胜负,每队胜 1场得2分,负1场得1分•某队预计在2012~2013赛季全部32场比赛中最少得到48分,才有希望进入季后赛. 假设这个队在 将要举行的比赛中胜 x 场,要达到目标,x 应满足的关系式是( )A • 2x+(32-x )Z48B . 2x —(32-x )3 48C . 2x (32 -x ) _ 48D . 2x _ 48x+2v=1+m一2. 方程组丿中,若未知数x 、V 满足x + v a 0,贝V m 的取值范围是()2x 十 y = 3A . m -4B . m _ -4C . m : -4D . m _ -43.某市自来水公司按如下标准收取水费: 若每户每月用水不超过 5m 2,则每立方米收费1.5元;若每户每月用水超过 5m 2,则超过部分每立方米收费15元,那么她家这个月的用水量(吨数为整数)至少是(4. 把不等式x J 一0的解集在数轴上表示出来,则正确的是5. 已知a b ,下列式子不成立的是(7.甲、乙两人从相距24km 的A , B 两地沿着同一条公路相向而行,已知甲的速度是乙的速2元,小颖家某月的水费不少于A • 10m 2B • 9m 2C • 8m 2D • 6m 2A . a 1 b 1B . 3a 3bD .如果c ::: 0,那么-2x — 1 5x + 26. 解不等式 2 — 6 — x < — 1,去分母,得( A . 3(2x — 1) — 5x + 2 — 6x w — 6 B . 3(2x — 1)— (5x + 2) — 6x > - 6 C . 3(2x — 1) — (5x + 2) — 6x < — 6 D . 3(2x — 1) — (5x + 2) — x w — 1度的两倍,若要保证在2h以内相遇,则甲的速度应()A.小于8km/hB.大于8km/hC.小于4km/hD.大于4km/hx — m v 0,3x — 1 > 2 (x — 1)无解,则m 的取值范围是()A . m w — 1B . m v — 1C . — 1v m w 0D . — 1 < m v 0 9.把一些图书分给几名同学,如果每人分 3本,那么余8本;如果前面的同学每人分 5本,那么最后一人就分不到 3本.则这些图书有()A . 23本B . 24本C . 25本D . 26本 10.定义[x]为不超过x 的最大整数,如[3.6] = 3, [0.6] = 0, [ — 3.6] = - 4•对于任意实数x ,下 列式子中错误的是()若点A (x + 3, 2)在第二象限,则x 的取值范围是的所有x 的值是三、解答题(共66分) 19. (8分)解不等式(组): 3x— 1(1)2x — 1 > 2 ;&关于X 的不等式组A . [x] = x (x 为整数)B . 0<x — [x]<1C . [x + y]w [x] + [y]D . [n + x] = n + [x]( n 为整数)11 . 填空题(每小题3分, 共24分) 1不等式一2x + 3v 0的解集是12. 13.1时,式子3+ x 的值大于式子2x — 1的值.14. 不等式组 x w 3*2,_x — 1<2 — 2x 的整数解是15. 某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元. 已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了支.16. 不等式组x + 1> 0,1 a — 3x v 0的解集是x >— 1,则a 的取值范围是 17. 定义一种法则 “ ” 如下:a (a >b ), 'b(例如:1 2 = 2 •若(一2m — 5) 3= 3, 则m 的取值范围是18. 按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件2x + 5>3 (x — 1)①,丫 x + 7 |4X > 2 ②•1 320.(8分)x 取哪些整数值时,不等式 4(x + 1) >2x — 1与2x < 2— 2x 都成立?121. (8分)若不等式3(x + 1) — 1<4(x — 1) + 3的最小整数解是方程 2x — mx = 6的解,求 m 2— 2m — 11 的值.22. (10分 )已知关于x , y 的方程组 的解满足Q0, y>0 ,求实数a 的取值范围.5x + 2>3 (x — 1),1 32X W —2X + 2a 有三个整数解,求实数 a 的取值范围.24. (10分 )光伏发电惠民生,据衢州晚报载,某家庭投资 4万元资金建造屋顶光伏发电 站,遇到晴天平均每天可发电 30度,其他天气平均每天可发电 5度,已知某月(按30天计)共 发电550度.(1) 求这个月晴天的天数;f3x +2y = 5a + 17,2x — 3y = 12a — 623. (10分 )已知关于x 的不等式组(2) 已知该家庭每月平均用电量为150度,结合图中信息,若按每月发电550度计算,至少需要几年才能收回成本(不计其他费用,结果取整数)./言息连接:根据国家相关规? 定.凡是屋顶光伏发电站生产的电,家庭用电后剩余部分,可以0.4576/度卖给电力公司.同时可获得政府补贴』.52元/度・丿25. (12分)为解决中小学大班额问题,东营市各县区今年将扩建部分中小学,某县计划对A、B两类学校进行扩建,根据预算,扩建2所A类学校和3所B类学校共需资金7800万元,扩建3所A类学校和1所B类学校共需资金5400万元.(1) 扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2) 该县计划扩建A、B两类学校共10所,扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的扩建资金分别为每所300万元和500万元•请问共有哪几种扩建方案?答案AABBD CBADC11. x> 6 12.X V—3 13.>—8 14.- 1, 0115. 816. a w — 317. m > — 4418. 131 或 26或 5或 5 19.解:⑴去分母得2(2x — 1) >3x — 1,解得x > 1.(4分)⑵解不等式①得x v 8, (5分)解不等式②得x > 1.(6分)所以不等式组的解集为1 v x v 8.(8 分)4 (x + 1) > 2—1,20. 解:依题意有 a* <23(2分)解得—2」3< x < 1.(5分)••• x 取整数值,•••当x 为—2,— 1, 0和 1 时,不等式 4(x + 1)>2x — 1 与2 — 2 x 成立.(8分)21•解:解不等式3(x + 1) — 1<4(x — 1)+ 3,得x>3.(3分)它的最小整数解是x = 4.(4分)把x1 =4代入方程2X — mx = 6,得m =— 1, 43x + 2y = 5a + 17,22.解:解方程组2x — 3y = 12a — 6,3a + 3> 0,(5分)•/x > 0, y > 0, ••• ; — 2a >0, (8分)解得—1 v a v 2.(10分)5x + 2>3 (x — 1)①,1 32x < 8 2x + 2a ②.5 5 解不等式 ①,得x >—2,解不等式 ②,得x < 4+ a , •原不等式组的解集为—2v x < 4+ a.(8分)•••原不等式组有三个整数解, ••• 0< 4+ a v 1, • — 4< a v — 3.(10分)24. 解:⑴设这个月有x 天晴天,由题意得30x + 5(30 — x ) = 550, (3分)解得x = 16.(4分)答:这个月有16天晴天.(5分)⑵设需要y 年可以收回成本,由题意得 (550 — 150) (0.52 + 0.45) 12y > 40000, (8分)解得172y > 8291.(9分)r y 是整数,•••至少需要9年才能收回成本.(10分)25. 解:⑴设扩建一所A 类和一所B 类学校所需资金分别为 x 万元和y 万元,由题意得 2x + 3y = 7800 ,x = 1200, 解得"i3x + y = 5400, 解得 y = 1800.2(6分).• m — 2m —8.(8 分)x= 3a + 3, y = 4—2a.23.解:1(4分)答:扩建一所A类学校所需资金为1200万元,扩建一所B类学校所需资金为1800万元.(⑵设今年扩建A类学校a所,则扩建B类学校(10 —a)所,由题意得(1200—300) a+( 1800—500)( 10 —a) < 11800300a + 500 (10—a) > 4000解得3< a< 5.(10分)•/ a取整数,a= 3,4, 5•即共有3种方案:方案一:扩建A类学校3所,B类学校7所;方案二:扩建A类学校4所,B类学校6所;方案三:扩建A类学校5所,B类学校5所.(12分)。

人教版七年级数学下册第九章检测试题(附答案)

人教版七年级数学下册第九章检测试题(附答案)

人教版七年级数学下册第九章检测试题(附答案)一、单选题1.关于的不等式组有解,那么的取值范围为()A. B. C. D.2.若a>b,则下列不等式中变形正确的是()A. 3a<3bB. a> bC. -a-1>-b-1D.3.不等式3x>5x-6的正整数解是A. 0,1,2B. 1,2C. 1,2,3D. 0,1,2,34.不等式组的解集,在数轴上表示正确的是( )A. B.C. D.5.已知不等式2x+a<3x的解为x>1,则a的值为()A. 1B. 0C. ﹣1D. ﹣26.把不等式组的解集表示在数轴上,下列不符合题意的是()A. B.C. D.7.若a>b,则下列不等式成立的是( )A. a+1<b+1B. a-5<b-5C. -3a>-3bD. >8.甲、乙两人从相距24km的A、B两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度()A. 小于8km/hB. 大于8km/hC. 小于4km/hD. 大于4km/h9.甲从一个鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊买了两条鱼,平均每条b元,后来他又以每条的价格把鱼全部卖给了乙,结果发现赔了钱,原因是( )A. a>bB. a<bC. a=bD. 与a和b的大小无关10.某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为()A. 10B. 9C. 8D. 711.从﹣3,﹣1,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是()A. ﹣2B. ﹣3C. -D.12.若不等式有解,则实数最小值是()A. 1B. 2C. 4D. 6二、填空题13.不等式的解集为________.14.列一元一次不等式解应用题时,应注意抓住题中的关键词.用不等号表示下列关键词:不大于: ________,不少于: ________,不超过: ________,至多: ________,至少: ________.15.宝宇小区王先生准备装修新居,装修公司派来甲工程队完成此项工程.甲工程队单独完成此项工程需50天,由于工期过长,王先生要求装修公司再派一工程队与甲队共同工作,乙单独完成此项工程需30天.甲、乙工程队每天施工费分别为800元和1000元,王先生要求装修工程施工费用不能超过34000元,甲工程队至多参加工作________天.16.若,则________ (填“>”或“<”).17.不等式1﹣2x≥3的解是________.18.不等式组的解集为________.19.若数a使关于x的分式方程的解为非负数,且使关于y的不等式组的解集为,则符合条件的所有整数a的积为________20.对非负实数x“四舍五入”到个位的值记为(x).即当n为非负整数时,若n﹣≤x<n+ ,则(x)=n.如(0.46)=0,(3.67)=4.给出下列关于(x)的结论:①(1.493)=1;②(2x)=2(x);③若()=4,则实数x的取值范围是9≤x<11;④当x≥0,m为非负整数时,有(m+2013x)=m+(2013x);⑤(x+y)=(x)+(y);其中,正确的结论有________(填写所有正确的序号).三、计算题21.解不等式组:22.求不等式组的所有整数解.23.解不等式,并写出非负整数解.四、解答题24.解不等式组:,并把解集在数轴上表示出来.25.“六一”期间,各商场举行“六一欢乐购”的促销活动,其中甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场一次性购物超过100元,超过部分8折优惠;在乙商场一次性购物超过50元,超过部分9折优惠,顾客到那家商场购物花费少?26.某公司有甲种原料260kg,乙种原料270kg,计划用这两种原料生产A、B两种产品共40件.生产每件A种产品需甲种原料8kg,乙种原料5kg,可获利润900元;生产每件B种产品需甲种原料4kg,乙种原料9kg,可获利润1100元.设安排生产A种产品x件.(1)完成下表(2)安排生产A、B两种产品的件数有几种方案?试说明理由;(3)设生产这批40件产品共可获利润y元,将y表示为x的函数,并求出最大利润.27.某市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求到明年年底控制电动车拥有量不超过11.9万辆,如果每年底报废的电动车数量是上一年年底电动车拥有量的10%,且每年新增电动车数量相同,问:从今年年初起每年新增电动车数量最多是多少万辆?28.在车站开始检票时,有a(a>0)各旅客在候车室排队等候检票进站,检票开始后,仍有旅客继续前来排队等候检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的,若开放一个检票口,则需30min才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10min便可将排队等候检票的旅客全部检票完毕;现在要求在5min内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,问至少要同时开放几个检票口?答案一、单选题1. D2. D3. B4. B5. A6. A7. D8.B9. A 10. B 11.A 12. C二、填空题13.x<1 14. ≤;≥;≤;≤;≥ 15.20 16. > 17.x≤﹣1 18. 19. 40 20. ①③④三、计算题21. 解:由①得x 2由②得x ∴原不等式的解为2 ≤x<22. 解:解不等式①得:x>1,解不等式②得:x≤4,所以,不等式组的解集为1<x≤4,故不等式组的整数解为2,3,423. 解:去分母得:12x-2(x+2)≥6(2x-1),去括号得:12x-2x-4≥12x-6,移项合并同类项得:-2x≥-2,系数化为1:x≤1.∴x的非负整数解为1,0四、解答题24. 解:,解不等式①得:,解不等式②得:∴原不等式组的解集为-3<x≤1解集在数轴上表示为:25. 解:设购物为x元,(1)当x≤50时,在甲、乙都不享受优惠,因此到两商场购物花费一样。

人教版数学七年级下册第九章测试卷(含答案)

人教版数学七年级下册第九章测试卷(含答案)

初中数学人教版七年级下学期 第九章测试卷一、单选题(共6题;共12分)1. ( 2分 ) 下列不等式变形中不正确的是( )A. 由 a >b ,得 b <aB. 由 −a >−b ,得 a <bC. 由 −ax >a ,得 x >−1D. 由 −12x <y ,得 x >−2y 2. ( 2分 ) 若 a >b ,则下列不等式中成立的是( )A. a +2<b +2B. a -2<b -2C. 2a <2bD. -2a <-2b3. ( 2分 ) 如图 所示的不等式的解集是( )A. a >1B. a <1C. a≥1D. a≤14. ( 2分 ) 不等式 −3x >6 的解集是( )A. x >−2B. x <−2C. x >2D. x <25. ( 2分 ) 运行程序如图所示,规定:从“输入一个值x”到“结果是否>26”为一次程序操作,如果程序操作进行了2次后停止,那么满足条件的所有整数x 的和为( )A. 30B. 35C. 42D. 396. ( 2分 ) 关于x 的不等式组 {2x <3(x −3)+13x+24>x +a 有四个整数解,则a 的取值范围是( ) A. ﹣ 114 <a≤﹣ 52 B. ﹣ 114 ≤a <﹣ 52 C. ﹣ 114 ≤a≤﹣ 52 D. ﹣ 114 <a <﹣ 52 二、填空题(共4题;共4分)7. ( 1分 ) 若 x >y , (a −3)x <(a −3)y ,则 a 的取值范围为________.8. ( 1分 ) 如图,数轴上所表示的关于 x 的不等式是________.9. ( 1分 ) 某次知识竞赛共20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过160 分.设他答对了 x 道题,则根据题意可列不等式________.10. ( 1分 ) 出租车按分段累加的方法收费:3公里以内(含3公里)收5元;超过3公里且不超过10公里的部分每公里收2元;超过10公里的部分每公里收3元.每次坐车另加燃油附加费1元,不足1公里以1公里计算.若小明从学校坐出租车到家用了38元的钱,设小明家到学校的距离为x 公里,则x 的取值范围是________.三、计算题(共1题;共20分)11. ( 20分 ) 解不等式(组),并把解集表示在数轴上。

人教版数学七年级下册 第9章《不等式与不等式组》单元测试(含答案)

人教版数学七年级下册  第9章《不等式与不等式组》单元测试(含答案)

人教版数学七年级下册第9章《不等式与不等式组》单元测试一.选择题(共10小题,满分30分)1.下列各式中:①﹣5<7:②3y﹣6>0:③a=6:④2x﹣3y;⑤a≠2:⑥7y﹣6>y+2,不等式有()A.2个B.3个C.4个D.5个2.对不等式a>b进行变形,结果正确的是()A.a﹣b<0B.a﹣2>b﹣2C.2a<2b D.1﹣a>1﹣b 3.已知关于x的不等式组有解,则a的取值不可能是()A.0B.1C.2D.﹣24.若不等式组的解为x>﹣b,则下列各式正确的是()A.a≥b B.a≤b C.a>b D.a<b5.不等式5x﹣3≤2的解集是()A.x≤1B.x≤﹣1C.x≥﹣1D.x≥16.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.用不等式表示:“a的与b的和为正数”,正确的是()A.a+b>0B.C.a+b≥0D.8.关于x的不等式组有解,那么m的取值范围为()A.m≤﹣1B.m<﹣1C.m≥﹣1D.m>﹣19.P,Q,R,S四个小朋友玩跷跷板,结果如图所示,则他们的体重大小关系为()A.R<Q<P<S B.Q<R<P<S C.Q<R<S<P D.Q<P<R<S 10.如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于35”为一次运算.若运算进行了2次停止,则x的取值范围是()A.11<x≤19B.11<x<19C.11<x<19D.11≤x≤19二.填空题(共6小题,满分24分)11.如a>b,则﹣1﹣a﹣1﹣b.12.若(m﹣2)x2m+1﹣1>5是关于x的一元一次不等式,则该不等式的解集为.13.某童装店按每套88元的价格购进1000套童装,应缴纳的税费为销售额的10%,如果要获得不低于20000元的纯利润,则每套童装至少售价元.14.若关于x的不等式组有且只有五个整数解,则k的取值范围是.15.已知关于x,y的二一次方程组的解满足x+y<1,则a的取值范围.16.对于有理数m,我们规定[m]表示不大于m的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=﹣5,则整数x的取值是.三.解答题(共8小题,满分66分)17.解下列不等式(组):(1)4x﹣1<2x﹣3(2)18.若不等式3(x﹣2)+5<4(x﹣1)+6的最小整数解为方程2x﹣ax=3的解,求a的值.19.解不等式组.解:解不等式①,得.解不等式②,得.在同一数轴上表示两个不等式是解集如下:(在下面空白处画出图形)∴该不等式组的解集为.20.解不等式组:并把它的解集在数轴上表示出来.21.已知方程组的解x为非正数,y为负数.(1)求a的取值范围;(2)化简|a﹣3|+|a+2|;(3)在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解为x<1?22.现有1元和5角的硬币共15枚,这些硬币的总币值小于9.5元.根据此信息,小强、小刚两名同学分别列出不完整的不等式如下:小强:x+<9.5,小刚:0.5x+<9.5.(1)根据甲、乙两名同学所列的不等式,请你分别指出未知数x表示的意义;(2)在横线上补全小强、小刚两名同学所列的不等式:小强:x+<9.5,小刚:0.5x+<9.5;(3)任选其中一个不等式,求可能有几枚5角的硬币.(写出完整的解答过程)23.永州市在进行“六城同创”的过程中,决定购买A,B两种树对某路段进行绿化改造,若购买A种树2棵,B种树3棵,需要2700元;购买A种树4棵,B种树5棵,需要4800元.(1)求购买A,B两种树每棵各需多少元?(2)考虑到绿化效果,购进A种树不能少于48棵,且用于购买这两种树的资金不低于52500元.若购进这两种树共100棵.问有哪几种购买方案?24.感知:分子、分母都是整式,并且分母中含有未知数的不等式叫做分式不等式.小亮在解分式不等式>0时,是这样思考的:根据“两数相除,同号得正,异号得负”,原分式不等式可转化为下面两个不等式组:①或②解不等式组①,得x>3,解不等式组②,得x<﹣.所以原分式不等式的解集为x>3或x<﹣.探究:请你参考小亮思考问题的方法,解不等式<0.应用:不等式(x﹣3)(x+5)≤0的解集是.参考答案一.选择题(共10小题)1.【解答】解:数学表达式①﹣5<7;②3y﹣6>0;⑤a≠2;⑥7y﹣6>y+2是不等式,故选:C.2.【解答】解:∵a>b,∴a﹣b>0,∴选项A不符合题意;∵a>b,∴a﹣2>b﹣2,∴选项B符合题意;∵a>b,∴2a>2b,∴选项C不符合题意;∵a>b,∴﹣a<﹣b,∴1﹣a<1﹣b,∴选项D不符合题意.故选:B.3.【解答】解:∵关于x的不等式组有解,∴a<2,∵0<2,1<2,﹣2<2,∴a的取值可能是0、1或﹣2,不可能是2.故选:C.4.【解答】解:∵不等式组的解为x>﹣b,∴﹣a≤﹣b,整理得:a≥b,故选:A.5.【解答】解:移项得,5x≤2+3,合并同类项得,5x≤5,系数化为1得,x≤1.故选:A.6.【解答】解:由(1)得,x>﹣1,由(2)得,x≤2,故原不等式组的解集为:﹣1<x≤2.故选:D.7.【解答】解:用不等式表示:“a的与b的和为正数”为a+b>0,故选:A.8.【解答】解:,解不等式x﹣m<0,得:x<m,解不等式3x﹣1>2(x﹣1),得:x>﹣1,∵不等式组有解,∴m>﹣1.故选:D.9.【解答】解:依题意,得:,∴Q<R<P<S.故选:B.10.【解答】解:由题意得,解得:11<x≤19,故选:A.二.填空题(共6小题)11.【解答】解:∵a>b,∴﹣a<﹣b,∴﹣1﹣a<﹣1﹣b.故答案为:<.12.【解答】解:根据不等式是一元一次不等式可得:2m+1=1且m﹣2≠0,∴m=0∴原不等式化为:﹣2x﹣1>5解得x<﹣3.故答案为:x<﹣3.13.【解答】解:设每套童装的售价为x元,依题意,得:1000x﹣10%×1000x﹣88×1000≥20000,解得:x≥120.故答案为:120.14.【解答】解:解不等式2x﹣k>0得x>,解不等式x﹣2≤0,得:x≤2,∵不等式组有且只有5个整数解,∴﹣3≤<﹣2,解得﹣6≤k<﹣4,故答案为:﹣6≤k<﹣4.15.【解答】解:,①+②得,5(x+y)=3﹣2a,即x+y=(3﹣2a),∵x+y<1,∴(3﹣2a)<1,解得a>﹣1,故答案为a>﹣1.16.【解答】解:∵[m]表示不大于m的最大整数,∴﹣5≤<﹣4,解得:﹣17≤x<﹣14,∴整数x为﹣17,﹣16,﹣15,故答案为﹣17,﹣16,﹣15.三.解答题(共8小题)17.【解答】解:(1)移项合并得:2x<﹣2,解得:x<﹣1;(2),解不等式①得:x<﹣,解不等式②得:x≤﹣3,则不等式组的解集为x≤﹣3.18.【解答】解:解不等式3(x﹣2)+5<4(x﹣1)+6,去括号,得:3x﹣6+5<4x﹣4+6,移项,得3x﹣4x<﹣4+6+6﹣5,合并同类项,得﹣x<3,系数化成1得:x>﹣3.则最小的整数解是﹣2.把x=﹣2代入2x﹣ax=3得:﹣4+2a=3,解得:a=.19.【解答】解:.解:解不等式①,得x>﹣1,解不等式②,得x<﹣,在同一数轴上表示两个不等式是解集如下:所以该不等式组的解集是﹣1<x<﹣,故答案为:x>﹣1,x<﹣,﹣1<x<﹣.20.【解答】解:,解不等式①,可得x≥﹣1不等式②,可得x<5∴不等式组的解集为﹣1≤x<5在数轴上表示出来为:21.【解答】解:(1)∵①+②得:2x=﹣6+2a,x=﹣3+a,①﹣②得:2y=﹣8﹣4a,y=﹣4﹣2a,∵方程组的解x为非正数,y为负数,∴﹣3+a≤0且﹣4﹣2a<0,解得:﹣2<a≤3;(2)∵﹣2<a≤3,∴|a﹣3|+|a+2|=3﹣a+a+2=5;(3)2ax+x>2a+1,(2a+1)x>2a+1,∵不等式的解为x<1∴2a+1<0,∴a<﹣,∵﹣2<a≤3,∴a的值是﹣1,∴当a为﹣1时,不等式2ax+x>2a+1的解为x<1.22.【解答】解:(1)根据题意小强、小刚两名同学分别列出尚不完整的不等式如下:小强:x+0.5×(15﹣x)<9.5 小刚:0.5x+1×(15﹣x)<9.5小强:x表示小明有1元硬币的枚数;小刚:x表示小明有5角硬币的枚数.(2)由(1)知小强:x+0.5×(15﹣x)<9.5 小刚:0.5x+1×(15﹣x)<9.5故答案为:0.5×(15﹣x)、1×(15﹣x).(3)设小刚可能有5角的硬币x枚,根据题意得出:0.5x+(15﹣x)<9.5解得:x>11,∵x是自然数,∴x可取12,13、14、15,答:小刚可能有5角的硬币12枚,13枚,14枚,15枚.23.【解答】解:(1)设购买A种树每棵需要x元,B种树每棵需要y元,依题意,得:,解得:.答:购买A种树每棵需要450元,B种树每棵需要600元.(2)设购进A种树m棵,则购进B种树(100﹣m)棵,依题意,得:,解得:48≤m≤50.∵m为整数,∴m为48,49,50.当m=48时,100﹣m=100﹣48=52;当m=49时,100﹣m=100﹣49=51;当m=50时,100﹣m=100﹣50=50.答:有三种购买方案,第一种:A种树购买48棵,B种树购买52棵;第二种:A种树购买49棵,B种树购买51棵;第三种:A种树购买50棵,B种树购买50棵.24.【解答】解:探究:<0.根据“两数相除,同号得正,异号得负”,原分式不等式可转化为下面两个不等式组:①,或②,解不等式组①,得<x<2,解不等式组②得此不等式组无解.所以原分式不等式的解集为<x<2;应用:(x﹣3)(x+5)≤0,原不等式可化为不等式组:①或②,解不等式组①得:不等式组无解,解不等式组②得:﹣5≤x≤3,所以不等式(x﹣3)(x+5)≤0的解集是﹣5≤x≤3,故答案为:﹣5≤x≤3.。

人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案

人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案

人教版初中数学七年级下册第9章《不等式与不等式组》测试题(一)一、选择题:1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式23x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么12a+12t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥12a D .无法确定5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b6,若a<0关于x 的不等式ax+1>0的解集是( )A .x>1a B .x<1a C .x>-1a D .x<-1a7,不等式组31027x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米 C.8千米 D.15千米 10,在方程组2122x y mx y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示应是( )二、填空题11,不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b .12,满足2n-1>1-3n 的最小整数值是________.13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.14,满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数x 为__________.15,若|12x --5|=5-12x -,则x 的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4; (2)0.10.81120.63x x x ++-<-;(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,2111.32x x x x +≥+⎧⎪+-⎨>+⎪⎩20,代数式213 1--x的值不大于321x-的值,求x的范围21,方程组3,23x yx y a-=⎧⎨+=-⎩的解为负数,求a的范围.22,已知,x满足3351,11.4x xx+>-⎧⎪⎨+>-⎪⎩化简:52++-xx.23,已知│3a+5│+(a-2b+52)2=0,求关于x的不等式3ax-12(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组24563x y mx y m+=+⎧⎨-=+⎩的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案一、1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上12a得12a+t>12a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1a因此答案应选D.7,D.解:先求不等式组解集-13<x<72,则整数x=0,1,2,3共4个.8,D;9,C.10,D.解:2122x y m x y+=-⎧⎨+=⎩①+②,得3x+3y=3-m,∴x+y=33m-,∵x+y≥0,∴33m-≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、11,>、>、<;12,1.解:先求解集n>25,再利用数轴找到最小整数n=1.13,a<0,a=b 解析:ax+b<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-ab=-1,∴b=a.14,-2,-1,0,1 解析:先求不等式组解集-3<x≤1,故整数x=0,1,-1,-2.15,x≤11 解析:∵│a│=-a时a≤0,∴12x--5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)<x<4•×(134560-10),即12<x<15.18,x>2或x<1 解析:由已知可得10102020 x xx x->-<⎧⎧⎨⎨->-<⎩⎩或者.三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,x>2511.(2)0.10.81120.63x x x++-<-.解:811263x x x++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.(3)523(1)31722x xxx->+⎧⎪⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x≤4,∴不等式组的解集52<x ≤4. (4)6432211132x x x x+≥+⎧⎪+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的解集为x>1. 20,57≥x ;21,a<-3;22,7; 23,解:由已知可得535035520212a a ab b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113095209m m +⎧≥⎪⎪⎨-⎪≥⎪⎩解得-1311≤m ≤52,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程24563x y m x y m +=+⎧⎨-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解00x y ≥⎧⎨≥⎩的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.1. 将不等式组13x x ⎧⎨⎩≥≤的解集在数轴上表示出来,应是 ( )2. 下面给出的不等式组中①23x x >-⎧⎨<⎩②020x x >⎧⎨+>⎩③22124x x x ⎧>+⎪⎨+>⎪⎩④307x x +>⎧⎨<-⎩⑤101x y x +>⎧⎨-<⎩其中是一元一次不等式组的个数是( ) A.2个B.3个C.4个D.5个3. 不等式组24030x x ->⎧⎨->⎩,的解集为( )A.23x << B. 3x > C. 2x <D. 23x x ><-或4. 下列不等式中哪一个不是一元一次不等式( )A.3x >B.1y y -+>C.12x> D.21x >5. 下列关系式是不等式的是( )A.25x += B.2x + C.25x +>D.235+=6. 若使代数式312x -的值在1-和2之间,x 可以取的整数有( ) A.1个B.2个C.3个D.4个7. 不等式组2030x x -<⎧⎨->⎩的正整数解是( )A.0和1 B.2和3 C.1和3 D.1和2 8. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.19. 不等式211133x ax +-+>的解集是53x <,则a 应满足( ) A.5a > B.5a = C.5a >- D.5a =-10. a 是一个整数,比较a 与3a 的大小是( )C1DA3BA.3a a >B.3a a <C.3a a =D.无法确定二、填空题(每题3分,共30分) 11. 不等式(3)1a x ->的解集是13x a <-,则a 的取值范围 . 12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.13. 一个两位数,十位数字与个位数字的和为6,且这个两位数不大于42,则这样的两位数有 ______个. 14. 若a b >,则22____ac bc .15. 关于x 的方程32x k +=的解是非负数,则k 的取值范围是 . 16. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .17. 关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 .18. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .19. 不等式15x +<的正整数解是 .20. 不等式组⎩⎨⎧-<+<632a x a x 的解集是32+<a x ,则a 的取值 .三、解答题(21、22每小题8分,23、24第小题10分,共36分) 21. 解不等式5(1)33x x x +->+22. 解不等式组3(2)41214x x x x --⎧⎪⎨-<-⎪⎩≤23. 关于x ,y 的方程组322441x y k x y k +=+⎧⎨+=-⎩的解x ,y 满足x y >,求k 的取值范围.24.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数和学生人数分别是多少?25.喷灌是一种先进的田间灌水技术.雾化指标P是它的技术要素之一.当喷嘴的直径d(mm).喷头的工作压强为h(kPa)时.雾化指标P=100hd.如果树喷灌时要求3000≤P≤4000.若d=4mm.求h的范围.四、解答题(本题共2小题,每题12分,共24分)26.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包的单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?27.在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m和乙种板材120002m的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材问:这400间板房最多能安置多少灾民?参考答案:一、选择题:1. B2. B.3. A4. C.5. C.6. B7. D.8. D.9. B.10. D. 二、填空题:11. 3a <. 12. 450元. 13. 4个. 14. ≥. 15. 2k ≤. 16. 1m =.17. 3m <. 18. 无解. 19. 1,2,3. 20..a ≤ -9 三、解不等式(组):21. 2x >-. 22. 312x <≤ 23. 1k > 24.解:设宿舍间数为x ,学生人数为y. 由题意得⎪⎩⎪⎨⎧>--<--+=0)1(88)1(8204x y x y x y解得: 5 < x < 7∵x 是正整数 ∴ x = 6 故y=44 答:宿舍间数为6,学生人数为44 . 24.解:把d=4代入公式P=100h d 中得P=1004h,即P=25h ,又∵3000≤P≤4000,∴3000≤25h≤4000,120≤h≤160,故h 的范围为120~160(kPa )26. (1)随身听的单价为360元,书包单价为92元.(2)在超市A 购买更省钱. 27.(1)设安排x 人生产甲种板材,应安排80人生产甲种板材,60人生产乙种板材.(2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.解得300m ≥.又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名.。

最新人教版七年级数学下册第九章《不等式与不等式组》单元测试题及答案

最新人教版七年级数学下册第九章《不等式与不等式组》单元测试题及答案

人教版七年级下册数学第九章不等式与不等式组单元试题一、选择题(共10小题,每小题3分,共30分) 1.下列不等式变形正确的是( ) A .由a >b ,得ac >bc B .由a >b ,得a -2<b -2 C .由-12>-1,得-a2>-aD .由a >b ,得c -a <c -b2.若a >b ,则下列各式中一定成立的是( )A .a +2<b +2B .a -2<b -2C .a 2>b2D .-2a >-2b3.不等式组⎩⎨⎧x -2≥-1,3x >9的解集在数轴上可表示为( )4.不等式-12x +1>2的解集是( )A .x >-12B .x >-2C .x <-2D .x <-125.某商店老板销售一种商品,他要以不低于进价20%的利润才能出售,但为了获得更多的利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,商店老板让价的最大限度为( )A .82元B .100元C .120元D .160元6.如图,天平右盘中的每个砝码的质量为10 g ,则物体M 的质量m (g)的取值范围在数轴上可表示为( )7.甲、乙两人从相距24 km 的A ,B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度是( )A .小于8 km/hB .大于8 km/hC .小于4 km/hD .大于4 km/h8.小聪用100元钱去购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能买钢笔( )A .10支B .11支C .12支D .13支 9.如果不等式组⎩⎨⎧ x >a ,x <2恰有3个整数解,则a 的取值范围是( )A .a ≤-1B .a <-1C .-2≤a <-1D .-2<a ≤-110.不等式组⎩⎨⎧x +3>0,-x ≥-2的整数解有( )A .0个B .5个C .6个D .无数个 二、填空题(共5小题,每小题4分,共20分) 11.不等式2x +1>0的解集是 . 12.不等式x -5>4x -1的最大整数解是 . 13.若不等式组⎩⎨⎧1+x >a ,2x -4≤0有解,则a 的取值范围是 .14.当x 时,式子3x -5的值大于5x +3的值. 15.“x 的4倍与2的和是负数”用不等式表示为 . 三、解答题(共5小题,每小题10分,共50分) 16.解不等式组:⎩⎨⎧1-3x ≤5-x ,4-5x >-x ,并把解集在数轴上表示出来.17.阅读以下计算程序:(1)当x =1 000时,输出的值是多少?(2)问经过二次输入才能输出y 的值,求x 的取值范围.18.某书店在一次促销活动中规定:消费者消费满200元或超过200元就可以享受打折优惠,一名同学为班级买奖品,准备买6本影集和若干支钢笔,已知影集每本15元,钢笔每支8元,问他至少要买多少支钢笔才能享受打折优惠?19.若使二元一次方程组⎩⎨⎧3x -2y =m +2,2x +y =m -5中x 的值为正数,y 的值为负数,则m的取值范围是什么?20.某商店欲购进A,B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元.(1)求A,B两种商品每件的进价分别为多少元?(2)若该商店每销售1件A种商品可获利8元,每销售1件B种商品可获利6元,且商店将购进A,B共50件的商品全部售出后,要获得的利润不低于348元,问A种商品至少购进多少件?参考答案一、选择题(共10小题,每小题2分,共20分)1-5 DCDCC 6-10 CBCCB二、填空题(共5人教版七年级下册 第九章《不等式与不等式组》单元练习题(有答案)一.选择题(共10小题)1.数学表达式中:①57-<,②360y ->,③6a =,④2x x -,⑤2a ≠,⑥7652y y ->+中是不等式的有( ) A .2个B .3个C .4个D .5个2.若30x -<,则( ) A .240x -<B .240x +<C .27x >D .1830x ->3.下列说法正确的是( ) A .3x =-是不等式2x >-的一个解 B .1x =-是不等式2x >-的一个解C .不等式2x >-的解是3x =-D .不等式2x >-的解是1x =-4.下列式子中,是一元一次不等式的是( ) A .21x <B .30y ->C .1a b +=D .32x =5.已知m n >,则下列不等式中不正确的是( ) A .55m n >B .77m n +>+C .44m n -<-D .66m n -<-6.如果点P (3x +9,x ﹣4)在平面直角坐标系的第四象限内,那么x 的取值范围在数轴上可表示为( )A .B .C .D .7.关于x 、y 的二元一次方程组3234x y ax y a+=+⎧⎨+=-⎩的解满足2x y +>,则a 的取值范围为( ) A .2a <- B .2a >- C .2a < D .2a >8.满足不等式2x >的正整数是( ) A .2.5BC .2-D .59.关于x 的不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,则a 的取值范围是( )A .a <3B .2<a ≤3C .2≤a <3D .2<a <310.某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x 件,则根据题意,可列不等式为( ) A .3530.827x ⨯+⨯… B .3530.827x ⨯+⨯…C .3530.8(5)27x ⨯+⨯-…D .3530.8(5)27x ⨯+⨯-…二.填空题(共5小题)11.若22a b <,则a b .(填“>”或“=”或“<” )12.若点(1,)P m m -人教版七年级下册 第九章《不等式与不等式组》单元练习题(有答案)一.选择题(共10小题)1.数学表达式中:①57-<,②360y ->,③6a =,④2x x -,⑤2a ≠,⑥7652y y ->+中是不等式的有( ) A .2个B .3个C .4个D .5个2.若30x -<,则( ) A .240x -<B .240x +<C .27x >D .1830x ->3.下列说法正确的是( ) A .3x =-是不等式2x >-的一个解 B .1x =-是不等式2x >-的一个解C .不等式2x >-的解是3x =-D .不等式2x >-的解是1x =-4.下列式子中,是一元一次不等式的是( ) A .21x <B .30y ->C .1a b +=D .32x =5.已知m n >,则下列不等式中不正确的是( ) A .55m n >B .77m n +>+C .44m n -<-D .66m n -<-6.如果点P (3x +9,x ﹣4)在平面直角坐标系的第四象限内,那么x 的取值范围在数轴上可表示为( )A .B .C .D .7.关于x 、y 的二元一次方程组3234x y a x y a +=+⎧⎨+=-⎩的解满足2x y +>,则a 的取值范围为( )A .2a <-B .2a >-C .2a <D .2a >8.满足不等式2x >的正整数是( ) A .2.5BC .2-D .59.关于x 的不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,则a 的取值范围是( )A .a <3B .2<a ≤3C .2≤a <3D .2<a <310.某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x 件,则根据题意,可列不等式为( ) A .3530.827x ⨯+⨯… B .3530.827x ⨯+⨯…C .3530.8(5)27x ⨯+⨯-…D .3530.8(5)27x ⨯+⨯-…二.填空题(共5小题)11.若22a b <,则a b .(填“>”或“=”或“<” )12.若点(1,)P m m -。

人教版七年级数学下册《第9章 不等式与不等式组》单元测试卷及答案解析

人教版七年级数学下册《第9章 不等式与不等式组》单元测试卷及答案解析

人教新版七年级下册《第9章不等式与不等式组》单元测试(2)一、不等式(组)的基本概念1.(3分)下列各式中,是一元一次不等式的是()A.5+4>8B.2x﹣1C.2x≤5D.﹣3x≥02.(3分)下面给出的不等式组中①②③④⑤,其中是一元一次不等式组的个数是()A.2个B.3个C.4个D.5个3.(3分)下列不等式一定成立的是()A.a≥﹣a B.3a>a C.a D.a+1>a4.(3分)下列说法中正确的是()A.y=3是不等式y+4<5的解B.y=3是不等式3y<11的解集C.不等式3y<11的解集是y=3D.y=2是不等式3y≥6的解二、填空题(共2小题,每小题3分,满分6分)5.(3分)若(m+1)x|m|+2>0是关于x的一元一次不等式,则m=.6.(3分)若m<n<0,则的解集为.三、不等式(组)的解法7.(3分)下列选项中,同时适合不等式x+5<7和2x+2>0的数是()A.3B.﹣3C.﹣1D.18.(3分)不等式<1的正整数解为()A.1个B.3个C.4个D.5个9.(3分)不等式x﹣3≤3x+1的解集在数轴上表示如下,其中正确的是()A.B.C.D.10.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.四、解答题(共12小题,满分0分)11.解一元一次不等式:(1)5x+15>4x﹣13;(2)5(x+1)﹣3x>x+3;(3)解不等式x﹣,并把解集在数轴上表示出来.12.解不等式组:(1);(2);(3);(4).13.若代数式的值不大于代数式5k+1的值,求k的取值范围.14.求同时满足6x﹣1≥3x﹣3和<的整数解.15.已知关于x的不等式(1﹣a)x>2的解集为x<,则a的取值范围是.16.已知关于x,y的方程组(x>0,y<0)的解满足求a取值范围.17.已知关于x,y的方程组的解满足x+y>0,则a的取值.18.已知关于x的不等式组的解集为﹣3<x<2,求a、b的值19.如果关于x的不等式组无解,求a的取值范围.20.已知关于x的不等式组只有四个整数解,求a的取值范围.21.某校计划安排初三年级全体师生参观黄石矿博园,现有36座和48座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用48座客车,则能少租一辆,且有一辆车没有坐满,但超过了30人;已知36座客车每辆租金400元,48座客车每辆租金480元.(1)该校初三年级共有师生多少人参观黄石矿博园?(2)请你帮该校设计一种最省钱的租车方案.22.某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n元,售价每千克18元.(1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m,n的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克(x为整数),求有哪几种购买方案.(3)在(2)的条件下,求超市在获得的利润的最大值.人教新版七年级下册《第9章不等式与不等式组》单元测试(2)参考答案与试题解析一、不等式(组)的基本概念1.(3分)下列各式中,是一元一次不等式的是()A.5+4>8B.2x﹣1C.2x≤5D.﹣3x≥0【考点】一元一次不等式的定义.【分析】根据一元一次不等式的定义进行选择即可.【解答】解:A、不含有未知数,错误;B、不是不等式,错误;C、符合一元一次不等式的定义,正确;D、分母含有未知数,是分式,错误.故选:C.2.(3分)下面给出的不等式组中①②③④⑤,其中是一元一次不等式组的个数是()A.2个B.3个C.4个D.5个【考点】一元一次不等式组的定义.【分析】根据两个不等式中含有同一个未知数且未知数的次数是1次的,可得答案.【解答】解:①是一元一次不等式组,故①正确;②是一元一次不等式组,故②正确;③是一元二次不等式组,故③错误;④是一元一次不等式组,故④正确;⑤是二元一次不等式组,故⑤错误;故选:B.3.(3分)下列不等式一定成立的是()A.a≥﹣a B.3a>a C.a D.a+1>a【考点】不等式的性质.【分析】根据不等式的两边都加(或减去)同一个整式,不等号的方向不变,可得答案.【解答】解:A、a≤0时,a≤﹣a,故A错误;B、a≤0时,3a≤a,故B错误;C、a<﹣1时,a<,故C错误;D、1>0,1+a>a,故D正确;故选:D.4.(3分)下列说法中正确的是()A.y=3是不等式y+4<5的解B.y=3是不等式3y<11的解集C.不等式3y<11的解集是y=3D.y=2是不等式3y≥6的解【考点】解一元一次不等式.【分析】先解出不等式的解集,根据不等式的解的定义,就能得到使不等式成立的未知数的值,即可作出判断.【解答】解:A、不等式y+4<5的解集是y<1,则y=3不是不等式y+4<5的一个解;故本选项错误;B、不等式3y<11的解集是y<,则y=3是不等式3y<11的解,故本选项错误;C、不等式3y<11的解集是y<,故本选项错误;D、不等式3y≥6的解集是y≥2,则y=2不是不等式3y≥6的一个解;故本选项正确;故选:D.二、填空题(共2小题,每小题3分,满分6分)5.(3分)若(m+1)x|m|+2>0是关于x的一元一次不等式,则m=1.【考点】一元一次不等式的定义.【分析】根据一元一次不等式的定义可知m+1≠0,|m|=1,从而可求得m的值.【解答】解:∵(m+1)x|m|+2>0是关于x的一元一次不等式,∴m+1≠0,|m|=1.解得:m=1.故答案为:1.6.(3分)若m<n<0,则的解集为无解.【考点】解一元一次不等式组.【分析】确定2m,2n,﹣2n在数轴上的位置,并表示出x>2m,x>﹣2n,x<2n的解,即可求出不等式组的解集.【解答】解:∵m<n<0,∴x>2m,x>﹣2n,x<2n在数轴上表示为:.∴无解,故答案为:无解.三、不等式(组)的解法7.(3分)下列选项中,同时适合不等式x+5<7和2x+2>0的数是()A.3B.﹣3C.﹣1D.1【考点】解一元一次不等式组.【分析】不等式组成不等式组,解不等式组求得不等式组的解集即可得到结论.【解答】解:,由①得x<2,由②得x>﹣1,∴不等式组的解集为﹣1<x<2,故选:D.8.(3分)不等式<1的正整数解为()A.1个B.3个C.4个D.5个【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,然后找出符合题意的正整数解.【解答】解:解不等式得,x<4,则不等式<1的正整数解为1,2,3,共3个.故选:B.9.(3分)不等式x﹣3≤3x+1的解集在数轴上表示如下,其中正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】不等式移项,再两边同时除以2,即可求解.【解答】解:不等式得:x≥﹣2,其数轴上表示为:故选:B.10.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.【解答】解:,解得:.故不等式组无解.故选:D.四、解答题(共12小题,满分0分)11.解一元一次不等式:(1)5x+15>4x﹣13;(2)5(x+1)﹣3x>x+3;(3)解不等式x﹣,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)移项,得5x﹣4x>﹣13﹣15,合并同类项,得x>﹣28;(2)去括号,得5x+5﹣3x>x+3,移项,得5x﹣3x﹣x>3﹣5,合并同类项,得x>﹣2;(3)去分母,得6x﹣3x+2(x+1)<6+(x+8),去括号,得6x﹣3x+2x+2<6+x+8,移项,得6x﹣3x+2x﹣x<6+8﹣2,合并同类项,得4x<12,系数化为1,得x<3.将不等式的解集表示在数轴上如下:.12.解不等式组:(1);(2);(3);(4).【考点】解一元一次不等式组.【分析】(1)分别解出两个不等式组的解集,再根据“大小小大中间找”确定不等式组的解集即可;(2)分别解出两个不等式组的解集,再根据“同大取大”确定不等式组的解集即可;(3)分别解出两个不等式组的解集,再根据“大大小小找不到”确定不等式组的解集即可;(4)分别解出两个不等式组的解集,再根据“大小小大中间找”确定不等式组的解集即可.【解答】解:(1),解①得x>,解②得x≤2,故不等式组的解集为;(2),解①得x>2,解②得x>4,故不等式组的解集为x>4;(3),解①得x≤﹣5,解②得x>﹣3,故不等式组无解;(4),解①得x≤4,解②得x>,故不等式组的解集为.13.若代数式的值不大于代数式5k+1的值,求k的取值范围.【考点】解一元一次不等式.【分析】根据题意列出不等式,求出不等式的解集即可得到k的范围.【解答】解:根据题意得:≤5k+1,去分母得:3(2k+5)≤2(5k+1),去括号得:6k+15≤10k+2,移项合并得:4k≥13,解得:k≥.14.求同时满足6x﹣1≥3x﹣3和<的整数解.【考点】一元一次不等式的整数解;解一元一次不等式.【分析】分别解出不等式6x﹣1≥3x﹣3和<,然后即可求出符合条件的整数解.【解答】解:由不等6x﹣1≥3x﹣3,解得x≥﹣,由不等式<,解得x<1,则x需要满足﹣≤x<1,因此其整数x为0.15.已知关于x的不等式(1﹣a)x>2的解集为x<,则a的取值范围是a>1.【考点】解一元一次不等式.【分析】因为不等式的两边同时除以1﹣a,不等号的方向发生了改变,所以1﹣a<0,再根据不等式的基本性质便可求出不等式的解集.【解答】解:由题意可得1﹣a<0,移项得,﹣a<﹣1,化系数为1得,a>1.16.已知关于x,y的方程组(x>0,y<0)的解满足求a取值范围.【考点】解一元一次不等式组;二元一次方程组的解.【分析】先用含a的式子表示x与y,再结合x>0,y<0即可求解.【解答】解:,①+②得3x=3+6a,∴x=1+2a,由②得:y=6a﹣2x=6a﹣2(1+2a)=2a﹣2,∵x>0,y<0,∴.∴﹣1.17.已知关于x,y的方程组的解满足x+y>0,则a的取值.【考点】二元一次方程组的解.【分析】方程组两方程相加,变形后表示出x+y,代入已知不等式计算即可求出a的范围.【解答】解:,①+②得:4(x+y)=2+2a,即x+y=,代入x+y>0得:>0,解得:a>﹣1.18.已知关于x的不等式组的解集为﹣3<x<2,求a、b的值【考点】解一元一次不等式组.【分析】先解不等式组,再结合﹣3<x<2,即可求解.【解答】解:,由①得:x>a+2,由②得:x<b﹣2,∵﹣3<x<2,∴a+2=﹣3,b﹣2=2,∴a=﹣5,b=4,∴a=﹣5,b=4.19.如果关于x的不等式组无解,求a的取值范围.【考点】解一元一次不等式组.【分析】根据不等式组无解列出不等式计算即可得解.【解答】解:由题意得:a+2≥3a﹣2,解得a≤2.20.已知关于x的不等式组只有四个整数解,求a的取值范围.【考点】一元一次不等式组的整数解.【分析】首先解不等式组,即可确定不等式组的整数解,即可确定a的范围.【解答】解:不等式组整理得,∵不等式组有四个整数解,∴不等式组的整数解是:﹣2,﹣1,0,1.则a的取值范围是:﹣3<a≤﹣2.21.某校计划安排初三年级全体师生参观黄石矿博园,现有36座和48座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用48座客车,则能少租一辆,且有一辆车没有坐满,但超过了30人;已知36座客车每辆租金400元,48座客车每辆租金480元.(1)该校初三年级共有师生多少人参观黄石矿博园?(2)请你帮该校设计一种最省钱的租车方案.【考点】一元一次不等式组的应用;二元一次方程的应用.【分析】(1)设租36座的车x辆,则租48座的客车(x﹣1)辆.根据不等关系可列出一元一次不等式组,则可得出答案;(2)根据(1)中求得的人数,进一步计算三种方案的费用:①只租36座客车;②只租48座客车;③合租两种车.再进一步比较得到结论即可.【解答】解:(1)设租用36座客车x辆,根据题意,得:,解得:4<x<,∵x为整数,∴x=5,36x=180,答:该校初三年级共有师生180人参观黄石矿博园;(2)方案①:租36座车5辆的费用:5×400=2000(元).方案②:租48座车4辆的费用:4×480=1920(元);方案③∵=3…36,余下人数正好36座,可以得出:租48座车3辆和36座车1辆的总费用:3×480+1×400=1840(元).∵1840<1920<2000,∴方案③:租48座车3辆和36座车1辆最省钱.22.某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n元,售价每千克18元.(1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m,n的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克(x为整数),求有哪几种购买方案.(3)在(2)的条件下,求超市在获得的利润的最大值.【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)根据“该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元”,即可得出关于m,n的二元一次方程组,解之即可得出结论;(2)设购买甲种蔬菜x千克,则购买乙种蔬菜(100﹣x)千克,根据总价=单价×数量结合投入资金不少于1160元又不多于1168元,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为正整数即可得出各购买方案;(3)设超市获得的利润为y元,根据总利润=每千克的利润×销售数量可得出y关于x 的函数关系式,利用一次函数的性质可得出获得利润的最大值.【解答】解:(1)依题意,得:,解得:.答:m的值为10,n的值为14.(2)设购买甲种蔬菜x千克,则购买乙种蔬菜(100﹣x)千克,依题意,得:,解得:58≤x≤60.∵x为正整数,∴x=58,59,60,∴有3种购买方案,方案1:购买甲种蔬菜58千克,乙种蔬菜42千克;方案2:购买甲种蔬菜59千克,乙种蔬菜41千克;方案3:购买甲种蔬菜60千克,乙种蔬菜40千克.(3)设超市获得的利润为y元,则y=(16﹣10)x+(18﹣14)(100﹣x)=2x+400.∵k=2>0,∴y随x的增大而增大,∴当x=60时,y取得最大值,最大值为2×60+400=520.。

人教版七年级数学下册《第9章 不等式与不等式组》测试题(有答案)

人教版七年级数学下册《第9章 不等式与不等式组》测试题(有答案)

人教新版《第9章不等式与不等式组》单元测试题一.选择题1.“x为负数”的表达式是()A.x>0B.x<0C.x≥0D.x≤02.下列不等式组中无解的是()A.B.C.D.3.下列各项表示的是不等式的解集,其中错误的是()A.B.C.D.4.下列式子中,是一元一次不等式是()(1)x2+x<1,(2),(3)x﹣3>y+4,(4)2x+3<8.A.1个B.2个C.3个D.4个5.一次知识竞赛共有30道题,规定答对一道得4分,打错或不答得﹣1分,在这次竞赛中,小明获得优(90分或90分以上),则小明至少答对()道题.A.23B.24C.25D.266.下列说法中错误的是()A.m的2倍不小于n的,可表示为2m>B.x的与y的和是非负数,可表示为x+y≥0C.a是非负数,可表示为a≥0D.x是负数,可表示为x<07.下列不等式组中,是一元一次不等式组的是()A.B.C.D.8.若不等式组的整数解有5个,则a的取值范围()A.a<﹣3B.a>﹣4C.a>﹣3D.﹣4<a≤﹣3 9.下列命题错误的是()A.若a<b<0,则>B.若m﹣3n<0,则m<3nC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b10.已知y满足不等式﹣y>2+,化简|y+1|+|2y﹣1|的结果是()A.﹣3y B.3y C.y D.﹣y+2二.填空题11.同时满足2x﹣1<0和﹣3x<1的整数x为.12.如果代数式2x﹣的值大于x+的值,那么x.13.由2﹣a>0,得a>2;.14.已知线段AB=12cm,点P是线段AB的中点,点C在线段AB上,若AC 的长是xcm,且x满足6cm<x<12cm,则点C在点和之间.15.用不等式表示“x与3的和不小于x的2倍”为.16.已知一个球队共打了14场,恰好赢的场比平的场数和输的场数都要少,那么这个球队最多赢了场.17.写出一个解为x<5的不等式(要求x的系数不为1).18.某品牌袋装奶粉,袋上注有“净含量400g”“每百克中含有蛋白质≥18.9g”,那么这样的一袋奶粉中蛋白质的含量不少于g.19.写出一个不等式组,使它的解集为﹣1<x<2:.20.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m=.三.解答题21.在数轴上表示不等式﹣3≤x<6的解集和x的下列值:﹣4,﹣2,0,,7,并利用数轴说明x的这些数值中,哪些满足不等式﹣3≤x<6,哪些不满足?22.求不等式组的整数解.23.解下列不等式,并将解集在数轴上表示出来.(1)2(x﹣6)+4<3x﹣5;(2)﹣1≤.24.解下列不等式(组).(1)≤2x;(2).25.若不等式组无解,那么不等式组有没有解?若有解,请求出不等式组的解集;若没有请说明理由?26.a克糖水中有b克糖(a>b>0),则糖的质量与糖水的质量比为;若再加c克糖(c>0),则糖的质量与糖水的质量比为.生活常识告诉我们:加的糖完全溶解后,糖水会更甜,请根据所列式子及这个生活常识提炼一个不等式.27.某工厂组织旅游活动.如果租用了54座的客车若干辆,恰好坐满;如果租用72座的客车则可少租2辆,并且有1辆车剩余了一半以下的座位.已知租用54座的客车每辆2000元,租用72座客车每辆3000元,怎样租车合算?参考答案一.选择题1.解:负数即为小于0的数,∴可表达为x<0,故选:B.2.解:A、无解,本选项符合题意;B、解集为﹣5<x<﹣2,本选项不合题意;C、解集为﹣2<x<5,本选项不合题意;D、解集为﹣5<x<2,本选项不合题意.故选:A.3.解:A、数轴表示的不等式的解集为:x≤2,所以正确;B、数轴表示的不等式的解集为:x>1,所以正确;C、数轴表示的不等式的解集为:x≠0,所以正确;D、数轴表示的不等式的解集为:x<1,所以不正确.故选:D.4.解:(1)不等式x2+x<1的未知数的最高次数是2,所以它不是一元一次不等式;(2)是分式不等式,所以它不是一元一次不等式;(3)不等式x﹣3>y+4中含有两个未知数,所以它不是一元一次不等式;(4)不等式2x+3<8中只有一个未知数x,且x的次数是1,所以它是一元一次不等式;综上所述,以上式子中是一元一次不等式的只有(4).故选:A.5.解:设在这次竞赛中小明答对x道题.依题意可得:4x﹣(30﹣x)≥90,解得:x≥24,∴小明至少答对24道题.故选:B.6.解:A、m的2倍不小于n的,可表示为2m≥,故A错.B、x的与y的和是非负数,可表示为x+y≥0,故B正确.C、a是非负数,可表示为a≥0,故C正确.D、x是负数,可表示为x<0,故D正确.故选:A.7.解:A、含有2个未知数,不是一元一次不等式组,故本选项错误;B、含有分式,不是一元一次不等式组,故本选项错误;C、符合一元一次不等式组的定义,故本选项正确;D、最高次数是2,不是一元一次不等式组,故本选项错误.故选:C.8.解:解不等式①得:x≥a,解不等式②得:x<2,∵不等式组的整数解有5个,∴整数解为﹣3,﹣2,﹣1,0,1,∴﹣4<a<﹣3;∵当a=﹣4时,不等式组的解集为﹣4≤x<2,此时不等式组有6个整数解,舍去,当a=﹣3时,不等式组的解集为﹣3≤a<2,此时有5个整数解,符合要求,∴a的取值范围﹣4<a≤﹣3.故选:D.9.解:A、两个同号的分子相等的分数,分母大的反而小,故该选项正确;B、根据不等式的基本性质1,在不等式的两边同加上3n,不等号的方向不变,故该选项正确;C、当c2=0时,则不等式不成立,故该选项错误;D、根据已知的不等式,知c2>0,则根据不等式的基本性质2,不等号的方向不变,故该选项正确.故选:C.10.解:﹣y>2+,去分母得,3+3y﹣6y>12+4+2y,解得,y<﹣.所以y+1<0,2y﹣1<0,|y+1|+|2y﹣1|=﹣y﹣1﹣2y+1=﹣3y.故选:A.二.填空题11.解:由题意可得不等式组,由(1)得<,由(2)得x>﹣,其解集是﹣<x<,∴同时满足2x﹣1<0和﹣3x<1的整数x=0.12.解:∵代数式2x﹣的值大于x+的值,∴2x﹣>x+,解得x>.故答案为:>.13.解:∵2﹣a>0,得a<2,故此解法错误.故答案为:错误.14.解:∵线段AB=12cm,点P是线段AB的中点,∴AP=12÷2=6cm,∵点C在线段AB上,若AC的长是xcm,且x满足6cm<x<12cm,∴点C在点P和B之间.故答案为:P,B.15.解:x与3的和不小于x的2倍,即x+3≥2x.故答案为:x+3≥2x.16.解:设赢了x场,∵这一球队共打了14场,而且恰好赢的场数比平的场数和输的场数都要少,∴有x<,∴可知这个球队最多赢了4场.17.解:由题意可得:2x<10.故填:2x<10.18.解:由题意,得这样的一袋奶粉中蛋白质的含量不少于:18.9×400÷100=75.6(g).故答案为75.6.19.解:.答案不唯一.20.解:根据题意|m|﹣3=1,m+4≠0解得|m|=4,m≠﹣4所以m=4三.解答题21.解:根据上图可知:x的下列值:﹣2,0,满足不等式;x的下列值:﹣4,7不满足不等式.22.解:,解①得:x<3,解②得:x≥,则不等式组的解集是:3.则不等式组的整数解是:2.23.解:(1)2(x﹣6)+4<3x﹣5,去括号得,2x﹣12+4<3x﹣5,移项、合并同类项得,﹣x<3,解得,x>﹣3.将不等式的解集在数轴上表示如下:;(2)﹣1≤,去分母得,3x﹣6≤2(7﹣x),去括号得,3x﹣6≤14﹣2x,移项、合并同类项得,5x≤20,解得,x≤4.将不等式的解集在数轴上表示如下:.24.解:(1)≤2x,5x﹣1≤4x,5x﹣4x≤1,x≤1;(2),解不等式①得:x>﹣1,解不等式②得:x≤2,故不等式组的解集为﹣1<x≤2.25.解:由已知条件知﹣a≥a,得a≤0;所以a+1<1﹣a,故不等式组,有解,解集为a+1<x<1﹣a.当a=0时,无解.26.解:根据题意,得a克糖水中有b克糖,则糖的质量与糖水的质量比为;若再加c克糖,则糖的质量与糖水的质量比为;根据加的糖完全溶解后,糖水会更甜,得.27.解:设单独租用54座客车需x辆.根据题意列一元一次不等式组可得:,解得8<x<10,由于车辆数必须为整数,所以x=9,54×9=486(人),∵≈37(元),≈41,∴租用54座的客车越多越省钱,∴当租用9辆54座的客车时,正好坐满,而且最省钱.。

人教版七年级下册数学第九章《不等式与不等式组》单元练习题(含答案)

人教版七年级下册数学第九章《不等式与不等式组》单元练习题(含答案)

人教版七年级下册数学第九章《不等式与不等式组》单元练习题(含答案)一、单选题1.已知a b <,下列不等式变形中正确的是( )A .22a b ->-B .22a b >C .若a<b, 则-3a <-3bD .3131a b +>+ 2.(3分)不等式组的解集在数轴上表示为( )A .B .C .D .3.若a >b ,则下列不等式中成立的是( )A .ac >bcB .ac 2>bc 2C .|a|>|b|D .ac 2≥bc 24.若关于x 的不等式组27412x x x k +>+⎧⎨-<⎩的解集为x <3,则k 的取值范围为() A .k >1 B .k <1 C .k ≥1 D .k ≤15.不等式组10220x x +>⎧⎨-≤⎩的解集在数轴上表示为( )A .B .C .D .6.不等式2x+3<2的解集是( )A .2x<-1B .x<-2C .x<-12 D .x<127.不等式组31422x x x ->-⎧⎨+⎩的解集在数轴上表示正确的是( )A .B .C .D .8.不等式组的解集在数轴上表示如图所示,则该不等式组可能是( )A .31x x <-⎧⎨-⎩B .31x x <-⎧⎨≥-⎩ C .31x x >-⎧⎨-⎩ D .31x x >-⎧⎨≥-⎩9.若m n <,则下列各式中正确的是( )A .33m n +>+B .33m n ->-C .33m n ->-D .33m n > 10.(2分)若a >b ,则下列不等式变形正确的是() A .a+5<b+5 B .33baC .﹣4a >﹣4bD .3a ﹣2<3b ﹣211.若关于x 的不等式组526223()x x x x a +≥-⎧⎨+<+⎩恰好只有四个整数解,则a 取值范围是() A .-2<a <-53 B .-2≤a ≤-53 C .-2≤a <-53 D .-2<a ≤-5312.用数轴表示不等式45x >-的解集,正确的是( )A .B .C .D .二、填空题13.已知关于x 的不等式组16310x x a -≠⎧⎨->⎩无解,则a 的取值范围是_____.14.x 的12与5的和不大于3,用不等式表示为______________15.不等式组1020x x +≥⎧⎨->⎩的整数解是_____.16.不等式组2614x x <⎧⎨+-⎩的解集是_____.17.若不等式组34x x x a≤+⎧⎨<⎩只有三个整数解,则a 的取值范围是_________. 18.若x 的2倍与1的和大于x,则满足条件的x 的最小整数为___________19.某中学去年举办竞赛,颁发一二三等奖各若干名,获奖人数依次增加,各获奖学生获得的奖品价值依次减少(奖品单价都是整数元),其中有3人获得一等奖,每人获得的奖品价值34元,二等奖的奖品单价是5的倍数,获得三等奖的人数不超过10人,并且获得二三等奖的人数之和与二等奖奖品的单价相同.今年又举办了竞赛,获得一二三等奖的人数比去年分别增加了1人、2人、3人,购买对应奖品时发现单价分别上涨了6元、3元、2元.这样,今年购买奖品的总费用比去年增加了159元.那么去年购买奖品一共花了__________元.20.x 的一半与4的差不大于﹣2,根据题意可列不等式_____.三、解答题21.解不等式:,并把解集在数轴上表示出来.22.解不等式组20311434x x x -⎧<⎪⎪⎨⎪-≤-⎪⎩①②,并把解集在数轴上表示出来.23.先化简,再求值:2233111211x x x x x x --⎛⎫÷-+ ⎪-++-⎝⎭,其中x 是不等式组()5331131922x x x x ⎧->+⎪⎨-<-⎪⎩的整数解.24.某加工厂购进甲、乙两种原料,若甲原料的单价为1000元/千克,乙原料的单价为800元/千克.现该工厂预计用不多于1.8万元且不少于1.74万元的资金购进这两种原料共20千克.(l)若需购进甲原料x千克,请求出x的取值范围;(2)经加工后:甲原料加工的产品,利润率为40%;每一千克乙原料加工的产品售价为1280元.则应该怎样安排进货,才能使销售的利润最大?(3)在(2)的条件下,为了促销,公司决定每售出一千克乙原料加工的产品,返还顾客现金()0m m>元,而甲原料加工的产品售价不变,要使所有进货方案获利相同,求m的值25.某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元;(2)近期批发商有优惠活动,如图所示,如果超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具更省钱.26.某校学生社会实践小组开展调查,获取了本校食堂学生早餐的营养情况,如图是调查报告中的一部分,根据所得信息,解答下列问题.(1)早餐中所含脂肪的质量是______g .(2)若早餐中蛋白质和碳水化合物所占百分比的和不高于85%,求早餐中所含碳水化合物质量的最大值.27.对实数x ,y 定义一种新运算T ,规定T (x ,y )=2ax by x y++,(其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例如:T (0,1)=01201a b b ⨯+⨯=⨯+.已知T (2,-1)=-1,T (4,1)=1.(1)求a ,b 的值;(2)解方程:T (m ,2-2m )=14;(3)若关于m 的不等式组(2,54)4(,32)T m m T m m P -≤⎧⎨->⎩恰好有5个整数解,求实数p 的取值范围.28.已知关于x 的一元二次方程x 2﹣(2k+1)x+4(k ﹣12)=0. (1)判断这个一元二次方程的根的情况;(2)若等腰三角形的一边长为3,另两条边的长恰好是这个方程的两个根,求这个等腰三角形的周长及面积.29.长沙市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品2件,乙种纪念品3件,需要400元;若购进甲种纪念品3件,乙种纪念品5件,需要650元.(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共70件,其中乙种纪念品的数量不少于40件,考虑到资金周转,用于购买这70件纪念品的资金不能超过5750元,那么该商店共有几种进货方案?参考答案1.D2.A3.D4.C5.B6.C7.D8.B9.C10.B.11.D12.B13.a ≥514.2x +5≤3 15.﹣1、0、116.﹣5≤x <3.17.01a <≤18.019.25720.12x ﹣4≤﹣2. 21.x >3,23.13. 24.(1)7x 10≤≤;(2)购进甲原料7千克,乙原料13千克时,获得利润最大;(3)m 80=;25.(1)每件甲种玩具的进价是30元,每件乙种玩具的进价是27元;(2)见解析26.(1)50;(2)早餐中所含碳水化合物质量的最大值为325g27.(1)a =1,b =5;(2)m =-2;(3)1310p -≤<-.28.(1)该方程有两个实数根;或(2)等腰三角形的周长为7或8,面积为429.(1)购进甲种纪念品每件需50元,购进乙种纪念品每件需100元;(2)该商店共有6种进货方案。

人教版七年级下《第九章不等式与不等式组》单元测试卷含答案

人教版七年级下《第九章不等式与不等式组》单元测试卷含答案

第九章《不等式与不等式组》单元测试题(时间:90分钟 满分:100分)一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.下列不等式是一元一次不等式的是( )A. x +3<x +4B. x 2-2x -1<0C. 12+13>16D. 2(1-y)+y<4y +2 2.下列各不等式的变形中,正确的是( )A. 3x +6>10+2x ,变形得5x>4B. 1-16x -<213x +,变形得6-x -1<2(2x +1) C. x +7>3x -3,变形得2x<10D. 3x -2<1+4x ,变形得x<-33.不等式 的解集是( )A. B. C. D. 4.亮亮准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( )A. 30x-45≥300B. 30x+45≥300C. 30x-45≤300D. 30x+45≤3005.已知a <b ,则下列四个不等式中不正确...的是( ) A. a+4<b+4 B. a-4<b-4 C. 4a <4b D. -4a <-4b6.若 , ,则( )A. ,B. ,C. ,D. ,7.关于x 的不等式组,其解集在数轴上表示正确的是( )8.已知关于x 的不等式组恰有3个整数解,则a 的取值范围是( ) A. B. C. D.9.若某人要完成2.1千米的路程,并要在18分钟内到达,已知他每分钟走90米,若跑步每分钟可跑210米,问这人完成这段路程,至少要跑多少分钟?设要跑x 分钟,则列出的不等式为( )A. ()21090182100x x +-≥B. ()90210182100x x +-≤C. ()2109018 2.1x x +-≤D. ()2109018 2.1x x +->10.对于任何有理数a ,b ,c ,d ,规定| ac bd =ad -bc .若2| 1x - 21-<8,则x 的取值范围是( )A. x <3B. x >0C. x >-3D. -3<x <0二、填空题(每小题3分,共15分)11.不等式组的解集是______________。

人教版七年级数学下册《第9章 不等式与不等式组》测试卷及答案解析

人教版七年级数学下册《第9章 不等式与不等式组》测试卷及答案解析

人教新版七年级下册《第9章不等式与不等式组》单元测试(1)一、选择题(每小题0分)1.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块2.语句“x的与x的和不超过5”可以表示为()A.+x≤5B.+x≥5C.≤5D.+x=53.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙B.丙丁C.甲丙D.乙丁4.某种商品的进价为80元,标价为100元,后由于该商品积压,商店准备打折销售,要保证利润率不低于12.5%,该种商品最多可打()A.九折B.八折C.七折D.六折5.已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.6.如果x>2,那么下列四个式子中:①x2>2x,②xy>2y,③2x>x,④,正确的式子的个数共有()A.4个B.3个C.2个D.1个7.表为小洁打算在某电信公司购买一支MAT手机与搭配一个门号的两种方案.此公司每个月收取通话费与月租费的方式如下:若通话费超过月租费,只收通话费;若通话费不超过月租费,只收月租费.若小洁每个月的通话费均为x元,x为400到600之间的整数,则在不考虑其他费用并使用两年的情况下,x至少为多少才会使得选择乙方案的总花费比甲方案便宜?()甲方案乙方案门号的月租费(元)400600MAT手机价格(元)1500013000注意事项:以上方案两年内不可变更月租费A.500B.516C.517D.6008.如果关于x的方程x+2m﹣3=3x+7解为不大于2的非负数,那么()A.m=6B.m=5,6,7C.5<m<7D.5≤m≤7二、填空题(每小题0分)9.不等式﹣x+3<0的解集是.10.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗.为了避免亏本,售价至少应定为元/千克.11.下列说法中,正确的有个①﹣2x<8的解集是x>﹣4;②﹣4是2x<﹣8的解;③x<8的整数解有无数个;④不等式>﹣1的负整数解只有5个.12.在平面直角坐标系中,点P(m,m﹣2)在第一象限内,则m的取值范围是.13.不等式组的解集是.14.某童装店按每套88元的价格购进1000套童装,应缴纳的税费为销售额的10%,如果要获得不低于20000元的纯利润,则每套童装至少售价元.15.对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x <n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是.16.已知有理数x满足:,若|3﹣x|﹣|x+2|的最小值为a,最大值为b,则ab=.三、解答题17.用不等式表示下列数量的不等关系(1)x的与6的差大于2;(2)y的与4的和小于x(3)a的3倍与b的的差是非负数(4)x与5的和的30%不大于﹣2.18.解不等式组,并把它的解集表示在数轴上.19.福林制衣厂现有24名制作服装的工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作这种衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子数量相等,则应各安排多少人制作衬衫和裤子?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,若该厂要求每天获得利润2100元,则需要安排多少名工人制作衬衫?20.解不等式:x+>1﹣.21.解不等式组.22.1<|3x+8|≤3.23.解不等式组.24.解不等式:|x﹣2|≤2x﹣10.人教新版七年级下册《第9章不等式与不等式组》单元测试(1)参考答案与试题解析一、选择题(每小题0分)1.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块【考点】一元一次不等式的应用.【分析】根据题意设出未知数,列出相应的不等式,从而可以解答本题.【解答】解:设这批手表有x块,550×60+(x﹣60)×500>55000解得,x>104∴这批电话手表至少有105块,故选:C.2.语句“x的与x的和不超过5”可以表示为()A.+x≤5B.+x≥5C.≤5D.+x=5【考点】由实际问题抽象出一元一次不等式.【分析】x的即x,不超过5是小于或等于5的数,按语言叙述列出式子即可.【解答】解:“x的与x的和不超过5”用不等式表示为x+x≤5.故选:A.3.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙B.丙丁C.甲丙D.乙丁【考点】绝对值;数轴.【分析】根据有理数的加法法则判断两数的和、差及积的符号,用两个负数比较大小的方法判断.【解答】解:甲:由数轴有,0<a<3,b<﹣3,∴b﹣a<0,甲的说法正确,乙:∵0<a<3,b<﹣3,∴a+b<0乙的说法错误,丙:∵0<a<3,b<﹣3,∴|a|<|b|,丙的说法正确,丁:∵0<a<3,b<﹣3,∴<0,丁的说法错误.故选:C.4.某种商品的进价为80元,标价为100元,后由于该商品积压,商店准备打折销售,要保证利润率不低于12.5%,该种商品最多可打()A.九折B.八折C.七折D.六折【考点】一元一次不等式的应用.【分析】设该种商品打x折出售,根据利润=售价﹣进价结合利润率不低于12.5%,即可得出关于x的一元一次不等式,解之取其最大值即可得出结论.【解答】解:设该种商品打x折出售,依题意,得:100×﹣80≥80×12.5%,解得:x≥9.故选:A.5.已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组;点的坐标;关于x轴、y 轴对称的点的坐标.【分析】先得出点M关于x轴对称点的坐标为(1﹣2m,1﹣m),再由第一象限的点的横、纵坐标均为正可得出关于m的不等式,继而可得出m的范围,在数轴上表示出来即可.【解答】解:由题意得,点M关于x轴对称的点的坐标为:(1﹣2m,1﹣m),又∵M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,∴,解得:,在数轴上表示为:.故选:A.6.如果x>2,那么下列四个式子中:①x2>2x,②xy>2y,③2x>x,④,正确的式子的个数共有()A.4个B.3个C.2个D.1个【考点】不等式的性质.【分析】根据不等式性质依次判断即可【解答】解:∵x>2>0,∴x•x>2×x.∴①正确.∵x>2,当y<0时,xy<2y.∴②错误.∵x>2>0,∴2x﹣x=x>0,∴2x>x,∴③正确.∵x>2>0,∴﹣=<0,∴<.∴④正确.∴(1)①、③、④正确,故选:B.7.表为小洁打算在某电信公司购买一支MAT手机与搭配一个门号的两种方案.此公司每个月收取通话费与月租费的方式如下:若通话费超过月租费,只收通话费;若通话费不超过月租费,只收月租费.若小洁每个月的通话费均为x元,x为400到600之间的整数,则在不考虑其他费用并使用两年的情况下,x至少为多少才会使得选择乙方案的总花费比甲方案便宜?()甲方案乙方案门号的月租费(元)400600MAT手机价格(元)1500013000注意事项:以上方案两年内不可变更月租费A.500B.516C.517D.600【考点】一元一次不等式的应用;一次函数的应用.【分析】由x的取值范围,结合题意找出甲、乙两种方案下两年的总花费各是多少,再由乙方案比甲方案便宜得出关于x的一元一次不等式,解不等式即可得出结论.【解答】解:∵x为400到600之间的整数,∴若小洁选择甲方案,需以通话费计算,若小洁选择乙方案,需以月租费计算,甲方案使用两年总花费=24x+15000;乙方案使用两年总花费=24×600+13000=27400.由已知得:24x+15000>27400,解得:x>516,即x至少为517.故选:C.8.如果关于x的方程x+2m﹣3=3x+7解为不大于2的非负数,那么()A.m=6B.m=5,6,7C.5<m<7D.5≤m≤7【考点】一元一次方程的解;解一元一次不等式.【分析】由题意关于x的方程x+2m﹣3=3x+7解为不>2的非负数,说明方程的解0≤x ≤2,将方程移项、系数化为1,求出x的表达式,再根据0≤x≤2,从而求出m的范围.【解答】解:将方程x+2m﹣3=3x+7,移项得,2x=2m﹣3﹣7,∴x=m﹣5,∵0≤x≤2,∴0≤m﹣5≤2,解得5≤m≤7,故选:D.二、填空题(每小题0分)9.不等式﹣x+3<0的解集是x>6.【考点】解一元一次不等式.【分析】移项、系数化成1即可求解.【解答】解:移项,得﹣x<﹣3,系数化为1得x>6.故答案是:x>6.10.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗.为了避免亏本,售价至少应定为10元/千克.【考点】一元一次不等式的应用.【分析】设商家把售价应该定为每千克x元,因为销售中有5%的水果正常损耗,故每千克水果损耗后的价格为x(1﹣5%),根据题意列出不等式即可.【解答】解:设商家把售价应该定为每千克x元,根据题意得:x(1﹣5%)≥,解得,x≥10,故为避免亏本,商家把售价应该至少定为每千克10元.故答案为:10.11.下列说法中,正确的有3个①﹣2x<8的解集是x>﹣4;②﹣4是2x<﹣8的解;③x<8的整数解有无数个;④不等式>﹣1的负整数解只有5个.【考点】一元一次不等式的整数解;不等式的解集.【分析】根据解一元一次不等式及不等式的整数解、解的定义求解可得.【解答】解:①由﹣2x<8得x>﹣4,此结论正确;②当x=﹣4时,﹣2x=﹣8,此结论错误;③x<8的整数解有无数个,此结论正确;④不等式>﹣1的负整数解只有﹣5、﹣4、﹣3、﹣2、﹣1这5个,此结论正确;故答案为:3.12.在平面直角坐标系中,点P(m,m﹣2)在第一象限内,则m的取值范围是m>2.【考点】点的坐标;解一元一次不等式组.【分析】根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出m的范围.【解答】解:由第一象限点的坐标的特点可得:,解得:m>2.故答案为:m>2.13.不等式组的解集是﹣3<x≤1.【考点】解一元一次不等式组.【分析】分别解两个不等式得到x≤1和x>﹣3,然后利用大小小大中间找确定不等式组的解集.【解答】解:,解①得x≤1,解②得x>﹣3,所以不等式组的解集为﹣3<x≤1.故答案为﹣3<x≤1.14.某童装店按每套88元的价格购进1000套童装,应缴纳的税费为销售额的10%,如果要获得不低于20000元的纯利润,则每套童装至少售价120元.【考点】一元一次不等式的应用.【分析】设每套童装的售价为x元,根据利润=销售收入﹣税费﹣进货成本结合利润不低于20000元,即可得出关于x的一元一次不等式,解之取其最小值即可得出结论.【解答】解:设每套童装的售价为x元,依题意,得:1000x﹣10%×1000x﹣88×1000≥20000,解得:x≥120.故答案为:120.15.对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x <n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是13≤x<15.【考点】一元一次不等式组的应用.【分析】根据题意得到:6﹣0.5≤0.5x﹣1<6+0.5,据此求得x的取值范围.【解答】解:依题意得:6﹣0.5≤0.5x﹣1<6+0.5解得13≤x<15.故答案是:13≤x<15.16.已知有理数x满足:,若|3﹣x|﹣|x+2|的最小值为a,最大值为b,则ab=5.【考点】解一元一次不等式;绝对值.【分析】首先解不等式:,即可求得x的范围,即可根据x的范围去掉|3﹣x|﹣|x+2|中的绝对值符号,即可确定最大与最小值,从而求得.【解答】解:解不等式:不等式两边同时乘以6得:3(3x﹣1)﹣14≥6x﹣2(5+2x)去括号得:9x﹣3﹣14≥6x﹣10﹣4x移项得:9x﹣14﹣6x+4x≥3﹣10即7x≥7∴x≥1∴x+2>0,当1≤x≤3时,x+2>0,则|3﹣x|﹣|x+2|=3﹣x﹣(x+2)=﹣2x+1则最大值是﹣1,最小值是﹣5;当x>3时,x+2>0,则|3﹣x|﹣|x+2|=x﹣3﹣(x+2)=x﹣3﹣x﹣2=﹣5,是一定值.总之,a=﹣5,b=﹣1,∴ab=5故答案是:5.三、解答题17.用不等式表示下列数量的不等关系(1)x的与6的差大于2;(2)y的与4的和小于x(3)a的3倍与b的的差是非负数(4)x与5的和的30%不大于﹣2.【考点】由实际问题抽象出一元一次不等式.【分析】(1)首先表示x的与6的差为x﹣6,再表示大于可得x﹣6>2;(2)首先表示y的与4的和为y+4,再表示小于可得y+4<x;(3)首先表示a的3倍与b的的差为3a﹣b,再表示“是非负数”即可;(4)首先表示x与5的和的30%为30%(x+5),再表示“不大于”即可.【解答】解:(1)x﹣6>2;(2)y+4<x;(3)3a﹣b≥0;(4)30%(x+5)≤﹣2.18.解不等式组,并把它的解集表示在数轴上.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】对不等式3x﹣1>4移项系数化为1得x>,对不等式2x<x+2移项得x<2,再根据求不等式组解集的口诀:大小小大中间找,来求出不等式组的解集,并把它表示在数轴上.【解答】解:由3x﹣1>4移项得,3x>5,∴x>;由2x<x+2,移项整理得,x<2,∴不等式的解集为:<x<2.把它表示在数轴上如下图:19.福林制衣厂现有24名制作服装的工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作这种衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子数量相等,则应各安排多少人制作衬衫和裤子?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,若该厂要求每天获得利润2100元,则需要安排多少名工人制作衬衫?【考点】二元一次方程组的应用.【分析】设安排x人制作衬衫,安排y人制作裤子.由关键语句“现有24名制作服装的工人”和“每天制作的衬衫和裤子数量相等”,可得到等量关系.再另外分开设制作衬衫和裤子的人数为a,b求出未知数.【解答】解:设制作衬衫和裤子的人为x,y.可得方程组解得答:制作衬衫和裤子的人为15,9.(2)设安排a人制作衬衫,b人制作裤子,可获得要求的利润2100元.可列方程组解得所以必须安排18名工人制作衬衫.答:需要安排18名工人制作衬衫.20.解不等式:x+>1﹣.【考点】解一元一次不等式.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:去分母,得:8x+3(x+1)>8﹣4(x﹣5),去括号,得:8x+3x+3>8﹣4x+20,移项、合并同类项,得:15x>25,系数化为1,得:x>.21.解不等式组.【考点】解一元一次不等式组.【分析】不等式组整理后,分别求出两个不等式的解集,找出两解集的公共部分即可.【解答】解:原不等式组可写成,由①得:x<,由②得:x≥﹣,则不等式组的解集为﹣≤x<.22.1<|3x+8|≤3.【考点】绝对值.【分析】先去掉绝对值,分为两个不等式进行求解即可.【解答】解:∵1<|3x+8|≤3,∴1<3x+8≤3或﹣3≤3x+8<﹣1,当1<3x+8≤3时,解得:,当﹣3≤3x+8<﹣1时,解得:,综上,不等式的解集为:或.23.解不等式组.【考点】解一元一次不等式组.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集即可.【解答】解:解不等式①,得x为任意实数;解不等式②,得.∴原不等式组的解集为.24.解不等式:|x﹣2|≤2x﹣10.【考点】解一元一次不等式.【分析】去掉绝对值符号,转化成已学过的不等式(组)来解决.【解答】解:①当x<2时,原不等式变形为:,该不等式组无解;②当x≥2时,原不等式变形为:,解不等式组得:x≥8;综合①②可得,原不等式的解集为x≥8.。

人教版数学七年级下册第九章不等式与不等式组单元测试卷附答案

人教版数学七年级下册第九章不等式与不等式组单元测试卷附答案

人教版数学七年级下册第九章不等式与不等式组测试卷一、单选题(共10题;共20分)1.x=3是下列不等式()的一个解.A. x+1<0B. x+1<4C. x+1<3D. x+1<52.下列不等式求解的结果,正确的是()A. 不等式组的解集是B. 不等式组的解集是C. 不等式组无解D. 不等式组的解集是3.在数轴上表示-2≤x<1正确的是( )A. B.C. D.4.关于x的不等式的解集是,则m的值为()A. 1.B. 0.C. -1.D. -25.若m>n,则下列不等式正确的是()A. m-4<n-4B.C. 4m<4nD. -2m>-2n6.已知关于x、y的方程组,满足,则下列结论:① ;② 时,;③当时,关于x、y的方程组的解也是方程的解;④若,则,其中正确的有()A. 1个B. 2个C. 3个D. 4个7.若代数式4x-的值不大于代数式3x+5的值,则x的最大整数值是( )A. 4B. 6C. 7D. 88.如果关于x的不等式组的整数解仅有7,8,9,那么适合这个不等式组的整数a,b的有序数对(a,b)共有()A. 4对B. 6对C. 8对D. 9对9.某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打()A. 6折B. 7折C. 8折D. 9折10.运行程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作,若输入x 后程序操作仅进行了三次就停止,那么x 的取值范围是()A. B. C. D.二、填空题(共8题;共27分)11.如果关于的不等式的正整数解恰有2个,则的取值范围是________.12.“x与y的平方和大于8.”用不等式表示:________.13.若,当________时,;14.某校规定把期中考试成绩的40%与期末考试成绩的60%的和作为学生的总成绩.该校李红同学在期中考试中数学考了86分,她希望自己这学期数学总成绩不低于92分,她在期末考试中数学至少应得多少分?设她在期末考试中数学考了分,则可列不等式________.15.关于的不等式的解集为,写出一组满足条件的实数a,b 的值:a= ________,b= ________.16.如果不等式组的解集是,那么的值为________.17.按下面的程序计算,若开始输入的值为正整数:规定:程序运行到“判断结果是否大于10”为一次运算,例如当时,输出结果等于11,若经过2次运算就停止,则可以取的所有值是________.18.关于的方程组的解与满足条件,则的最大值是________.三、计算题(共1题;共10分)19.解下列不等式(1)4x-2+(2)四、解答题(共7题;共43分)20.解不等式组:并求该不等式组的非负整数解.21.解不等式,并把解集在数轴上表示出来.22.已知关于x,y的二元一次方程组的解满足,试求a的取值范围.23.某居民小区污水管道里积存污水严重,物业决定请工人清理.工人用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,若工人抽污水每小时的工钱是60元,那么抽完污水最少需要支付多少元?24.新冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂共同完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天,问至少应安排两个工厂共同工作多少天才能完成任务?25.北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?26.对x,y定义了一种新运算T,规定T(x,y)= (其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= ,已知T(1,﹣1)=﹣2,T(4,2)=1.(1)求a,b的值;(2)若关于m的不等式组恰好有3个整数解,求p的取值范围.答案解析部分一、单选题1.【答案】D2.【答案】C3.【答案】D4.【答案】B5.【答案】B6.【答案】C7.【答案】B8.【答案】D9.【答案】C10.【答案】C二、填空题11.【答案】4<m≤612.【答案】13.【答案】>314.【答案】15.【答案】2;16.【答案】117.【答案】2或3或418.【答案】5三、计算题19.【答案】(1)两边同时消去,得4x-2>3x+2,x>4.但是应注意到原不等式中x-5≠0,即x≠5.所以,在x>4中应去掉X=5.因此,原不等式的解集为x>4且x≠5.(2)解:两边同时乘以2x+3,去分母。

【精编】人教版七年级数学下册 第九章 不等式与不等式组 全章测试题含答案.doc

【精编】人教版七年级数学下册 第九章  不等式与不等式组 全章测试题含答案.doc

人教版七年级数学下册 第九章 不等式与不等式组 全章测试题一、选择题1.下列变形错误的是( )A .若a -c >b -c ,则a >bB .若12a <12b ,则a <bC .若-a -c >-b -c ,则a >bD .若-12a <-12b ,则a >b2.不等式x 2-x -13≤1的解集是( )A .x≤4B .x≥4C .x≤-1D .x≥-13.将不等式组⎩⎪⎨⎪⎧12x -1≤7-32x ,5x -2>3(x +1)的解集表示在数轴上,正确的是( )4.若关于x 的方程3(x +k)=x +6的解是非负数,则k 的取值范围是( )A .k≥2B .k >2C .k≤2D .k <25.若关于x 的一元一次不等式组⎩⎨⎧x -1<0,x -a >0无解,则a 的取值范围是( ) A .a≥1 B .a >1C .a≤-1D .a <-16.若不等式组⎩⎨⎧x -b <0,x +a >0的解集为2<x <3,则a ,b 的值分别为( ) A .-2,3 B .2,-3C .3,-2D .-3,27.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( )A .39B .36C .35D .348.某天然气公司在一些居民小区安装天然气管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数( )A .至少20户B .至多20户C .至少21户D .至多21户9.某种出租车的收费标准是:起步价7元(即行驶距离不超过3千米都收7元车费),超过3千米以后,超过部分每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共支付19元,设此人从甲地到乙地经过的路程是x 千米,那么x 的取值范围是( )A .1<x≤11B .7<x≤8C .8<x≤9D .7<x <8二、填空题10.已知x 2是非负数,用不等式表示____;已知x 的5倍与3的差大于10,且不大于20,用不等式组表示____________.11.若|x +1|=1+x 成立,则x 的取值范围是__________.12.若关于x ,y 的二元一次方程组⎩⎨⎧3x -2y =m +2,2x +y =m -5中x 的值为正数,y 的值为负数,则m 的取值范围为____________.13.在平面直角坐标系中,已知点A(7-2m ,5-m)在第二象限内,且m 为整数,则点A 的坐标为_________.14.一种药品的说明书上写着:“每日用量60~120 mg ,分4次服用”,则一次服用这种药品的用量x(mg)的范围是____________.15.按下列程序(如图),进行运算规定:程序运行到“判断结果是否大于244”为一次运算.若x =5,则运算进行______次才停止;若运算进行了5次才停止,则x 的取值范围是__________.16.为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序.若每一个路口安排4人,那么还剩下78人;若每一个路口安排8人,那么最后一个路口不足8人,但不少于4人.则这个中学共选派值勤学生_______人,共有______个交通路口安排值勤.三、解答题17.解下列不等式(组),并把解集在数轴上表示出来:(1)5x -13-x >1; (2)x 2-1≤7-x 3;(3)⎩⎨⎧4x +6>1-x ,3(x -1)≤x +5;(4)⎩⎨⎧2x +5≤3(x +2),1-2x 3+15>0.18.解不等式组⎩⎨⎧2x +3>3x ,x +33-x -16≥12,并求出它的整数解的和.19.阅读理解:解不等式(x +1)(x -3)>0.解:根据两数相乘,同号得正,原不等式可以转化为⎩⎨⎧x +1>0,x -3>0或⎩⎨⎧x +1<0,x -3<0.解不等式组⎩⎨⎧x +1>0,x -3>0得x >3; 解不等式组⎩⎨⎧x +1<0,x -3<0得x <-1. 所以原不等式的解集为x >3或x <-1.问题解决:根据以上材料,解不等式(x -2)(x +3)<0.20.某商场进了一批价值8万元的衣服,每件零售价为180元时,卖出了250件,但发现销售量不大,营业部决定每件降价40元,那么商场至少要再卖出多少件后才能收回成本?21.某小区前面有一块空地,现想建成一块面积大于48平方米,周长小于34米的长方形绿化草地,已知一边长为8米,设其邻边长为x 米,求x 的整数值.22. 为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,则学校最多可以购买多少个足球?23.某地区为筹备一项庆典,利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A ,B 两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆;搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆,且搭配一个A 种造型的成本是200元,搭配一个B 种造型的成本是300元,则有多少种搭配方案?这些方案中成本最低的是多少元?答案:1---9 CAACA ABCB10. x 2≥0 ⎩⎨⎧5x -3>105x -3≤2011. x≥-112. 83<m <1913. (-1,1)14. 15≤x ≤3015. 4 2<x ≤416. 158 2017. (1) 解:x >2,数轴略(2) 解:x ≤4,数轴略(3) 解:-1<x ≤4,数轴略(4) 解:-1≤x <45,数轴略18. 解:不等式组的解集为-4≤x <3∴这个不等式组的整数解为-4,-3,-2,-1,0,1,2其和为-4-3-2-1+0+1+2=-719. 解:由题意得⎩⎨⎧x -2>0,x +3<0或⎩⎨⎧x -2<0,x +3>0,解不等式组⎩⎨⎧x -2>0,x +3<0,不等式组无解; 解不等式组⎩⎨⎧x -2<0,x +3>0,解得-3<x <2,则原不等式的解集是-3<x <2 20. 解:设商场至少要再卖出x 件后才能收回成本由题意得180×250+(180-40)x ≥80000解得x ≥250即商场至少要再卖出250件后才能收回成本21. 解:根据题意得⎩⎨⎧8x >48,2(x +8)<34, 解得6<x <9又∵x 为整数∴x 的值为7或822. 解:(1)设足球的单价是x 元,篮球的单价是y 元,根据题意得⎩⎨⎧x +y =159,x =2y -9,解得⎩⎨⎧x =103,y =56,则足球的单价是103元,篮球的单价是56元 (2)设最多可以购买足球m 个,则购买篮球(20-m)个,根据题意得103m +56(20-m)≤1550,解得m ≤9747,∵m 为整数,∴m 最大取9,则学校最多可以购买9个足球23. 解:设搭配A 种造型x 个,则B 种造型为(50-x)个,依题意得⎩⎨⎧80x +50(50-x )≤3490,40x +90(50-x )≤2950,解得31≤x ≤33,∵x 是整数,∴x 可取31,32,33, ∴可设计三种搭配方案:①A 种的造型31个,B 种造型19个;②A 种造型32个,B 种造型18个;③A 种造型33个,B 种造型17个.由于B 种造型的成本高于A 种造型成本,所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为33×200+17×300=11700(元)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(第1题)

乙(40千克)甲
丙(50千克)
(第8题)
七年级数学第九章《不等式与不等式组》单元测试卷
一、选择题(每小题3分,共30分)
1、不等式的解集在数轴上表示如下,则其解集是()
A、x≥2
B、x>-2
C、x≥-2
D、x≤-2
2、若0<x<1,则x、x2、x3的大小关系是()
A、x<x2<x3
B、x<x3<x2
C、x3<x2<x
D、x2<x3<x
3、不等式0.5(8-x)>2的正整数解的个数是()
A、4
B、1
C、2
D、3
4、若a为实数,且a≠0,则下列各式中,一定成立的是()
A、a2+1>1
B、1-a2<0
C、1+
a
1>1 D、1-
a
1>1
5、如果不等式


⎧-
b
y
x

>2
无解,则b的取值范围是()
A、b>-2
B、b<-2
C、b≥-2
D、b≤-2
6、不等式组



+
+

-
-
8
3
2
1
)2
3(
3
x
x
x
<的整数解的个数为()
A、3
B、4
C、5
D、6
7、把不等式



-

-
3
6
4
2

x
x
的解集表示在数轴上,正确的是()
B、D、
8、如图是甲、乙、丙三人玩跷跷板的示意图(支点在中点处)则甲的体重x的取值范围
是()
A、x<40
B、x>50
C、40<x<50
D、40≤x≤50
9、若a<b,则ac>bc成立,那么c应该满足的条件是()
A、c>0
B、c<0
C、c≥0
D、c≤0
10、某人从鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均每条b元,后来他
又以每条
2
b
a+元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是()
A、a>b
B、a<b
C、a=b
D、与ab大小无关
二、填空题(每小题3分,共18分)
11、用不等式表示:x 的3倍大于4__________________________。

12、若a >b ,则a -3______b -3 -4a ______-4b (填“>”、“<”或“=”)。

13、当x ______时,代数式21
3-x -2x 的值是非负数。

14、不等式-3≤5-2x <3的正整数解是_________________。

15、某射击运动员在一次训练中,打靶10次的成绩为89环,已知前6次射击的成绩为50环,则他第七次射击时,击中的环数至少是______环。

16、某县出租车的计费规则是:2公里以内3元,超过2公里部分另按每公里1.2元收费,李立同学从家出发坐出租车到新华书店购书,下车时付车费9元,那么李立家距新华书店最少有______公里。

三、解下列等式(组),并将解集在数轴上表示出来。

(每题5分,共15分) 17、
21
-x +1≥x 18、⎩⎨⎧-++-1
48112x x x x >< 19、3≤3(7x -6)≤6 四、解答题(每题6分,共18分)
20、求不等式组 ⎪⎩

⎨⎧+≤-421
112x x x > 的整数解。

21、当a 在什么范围取值时,方程组 ⎩
⎨⎧--=+123232a y x a
y x >的解都是正数?
22、若a 、b 、c 是△ABC 的三边,且a 、b 满足关系式|a -3|+(b -4)=0,c 是不等式组⎪⎪⎩⎪
⎪⎨⎧++--21632433
x x x x <>
的最大整数解,求△ABC 的周长。

五、(第23题9分,第24题10分,共19分)
23、足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分。

一支足球队在某个赛季共需比赛14场,现已比赛了8场,输了一场,得17分,请问: (1)前8场比赛中,这支球队共胜了多少场? (2)这支球队打满14场,最高能得多少分?
(3)通过对比赛形势的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标,请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目标?
24、双蓉服装店老板到厂家购A 、B 两种型号的服装,若购A 种型号服装9件,B 种型号服装10件,需要1810元;若购进A 种型号服装12件,B 种型号服装8件,需要1880元。

(1)求A 、B 两种型号的服装每件分别为多少元?
(2)若销售一件A 型服装可获利18元,销售一件B 型服装可获利30元,根据市场需要,服装店老板决定:购进A 型服装的数量要比购进B 型服装的数量的2倍还多4件,且A 型服装最多可购进28件,
这样服装全部售出后可使总的获利不少于699元,问有几种进货方案?如何进货?
参考答案
一、1、C ;2、C ;3、D ;4、A ;5、D ;6、B ;7、A ;8、C ;9、B ;10、A 二、11、3x >4; 12、>,<;13、x ≤-1;14、2,3,4;15、9环;16、8。

三、17、 x ≤1;18、x <2;19、1≤x ≤2 四、20、6,7,8;21、a >
7
3
;22、3,4,4。

五、23、解:(1)设球队在前8场比赛中胜x 场,则平8-1-x =7-x 场,由题意得3x +(7-x )=17,解得x =5
(2)最后得分n 满足n ≤17+3×(14-8)=35。

(3)球队要想达到预期目标,必须在余下(14-8)场比赛中得到(29-17)=12分,显然,胜4场比赛可积12分,从而实现目标,而6场比赛胜3场可积9分,余下3场每场均得1分,同样可得12分实现目标,所以球队要想实现目标,至少胜3场。

24、解:(1)设A 种型号的服装每件x 元,B 种型号的服装每件y 元。

依题意得:⎩⎨⎧=+=+18808121810109y x y x 解
得:⎩
⎨⎧==10090y x
(2)设B 型服装购进m 件,则A 型服装购进(2m +4)件,依题意得:⎩⎨⎧≤+≥+2842699)42(18m m
解得:2
19
≤x ≤12。

因为m 为正整数,所以m =10、11、12,2m +4=24、26、28。

所以有三种进货方案:
第一种:B 型服装购进10件,A 型服装购进24件; 第二种:B 型服装购进11件,A 型服装购进26件;
第三种:B型服装购进12件,A型服装购进28件;。

相关文档
最新文档