中考数学试题分类----实数的运算

合集下载

2020年中考数学试题分类:实数的运算解答题解析

2020年中考数学试题分类:实数的运算解答题解析

2020年中考数学试题分类汇编:实数的运算解答题解析1.(2020北京)计算:11()|2|6sin 453-+--︒ 【解析】解:原式=5232233=-++2.(2020成都)(12分)(1)计算:212sin 60()|22-︒++;【解答】解:(1)原式2423=+- 423=++-- 3=;3.(2020河北)已知两个有理数:-9和5. (1)计算:(9)52-+; (2)若再添一个负整数m ,且-9,5与m 这三个数的平均数仍小于m ,求m 的值. 【答案】(1)-2;(2)1m =-. 【详解】(1)(9)52-+=422-=-; (2)依题意得(9)53m-++<m解得m >-2∴负整数m=-1.4.(2020江西)(1)计算:21(1|2|2-⎛⎫--+ ⎪⎝⎭【解析】 原式=2)21(121+- =341=+- 19.(202020(2)(3)π+---. 【详解】解:原式341=+-6=.5.(2020乐山)计算:022cos 60(2020)π--︒+-.解:原式=12212-⨯+=2. 6.(2020四川绵阳)(1)计算:125-3+2cos 608()22︒-⨯--【解析】本题考查数式综合运算。

熟练掌握绝对值的化简、二次根式、0指数、三角函数是解题的关键。

解:原式=113-5+25-22-122⨯⨯=3-5+5-2-1=0.7.(2020贵州黔西南)(12分)(1)计算(﹣2)2﹣||﹣2cos45°+(2020﹣π)0;【解答】解:(1)原式=421=41=5﹣2;8.计算:(2020无锡)(1)()22516-+-- 【详解】解:(1)原式=4+5-4=5; 9.(2020长沙)计算:()1131012cos 454-︒⎛⎫---++ ⎪⎝⎭解:()1131012cos 454-︒⎛⎫---++ ⎪⎝⎭=3114-++=710.(2020齐齐哈尔)((10分)(1)计算:sin30°(3)0+||【解答】解:(1)sin30°(3)0+||4﹣1=4;11.(2020重庆A 卷)在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”. 例如:14524÷=,14342÷=,所以14是“差一数”;19534÷=,但19361÷=,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由; (2)求大于300且小于400的所有“差一数”. 解:(1)∵49594÷=;493161÷=,∴49不是“差一数”, ∵745144÷=;743242÷=,∴74是“差一数”;(2)∵“差一数”这个数除以5余数为4, ∴“差一数”这个数的个位数字为4或9,∴大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、349、354、359、364、369、374、379、384、389、394、399, ∵“差一数”这个数除以3余数为2,∴“差一数”这个数的各位数字之和被3除余2,∴大于300且小于400的所有“差一数”为314、329、344、359、374、389.12.(2020上海)(10分)计算:(21)﹣2+|3|.【解答】解:原式=(33)2﹣4+3=32﹣4+3=0.13.(2020重庆B 卷)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数——“好数”.定义:对于三位自然数n ,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n 为“好数”. 例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除; 643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由. 解:(1)∵3,1,2都不为0,且3+1=4,4能被2整除,∴312是“好数”, ∵6,7,5都不为0,且6+7=12,12不能被5整除,∴675不是“好数”;(2)设十位数字为x ,个位数字为y ,则百位数字为(x+5).其中x ,y 都是正整数,且1≤x ≤4,1≤y ≤9.十位数字与个位数字的和为:2x+5. 当x=1时,2x+5=7,此时y=1或7,“好数”有:611,617 当x=2时,2x+5=9,此时y=1或3或9,“好数”有:721,723,729 当x=3时,2x+5=11,此时y=1,“好数”有:831 当x=4时,2x+5=13,此时y=1,“好数”有:941所以百位数字比十位数字大5的所有“好数”的个数是7.理由如上. 14.(2020新疆生产建设兵团)(6分)计算:(﹣1)2+||+(π﹣3)0.解:(﹣1)2+||+(π﹣3)011﹣2.15.(2020内蒙古呼和浩特)(10分)(1)计算:|1﹣3|﹣2×6+3-21﹣(32)﹣2;【解答】解:(1)原式=3-1-23+2+3-49=45; 16.(2020江苏连云港)(6分)计算2020131(1)()645--+-.【解答】解:原式1542=+-=.17.(2020江苏泰州)(3分)如图,点P 在反比例函数3y x=的图象上,且横坐标为1,过点P 作两条坐标轴的平行线,与反比例函数(0)ky k x=<的图象相交于点A 、B ,则直线AB 与x 轴所夹锐角的正切值为 3 .【解答】解:点P 在反比例函数3y x=的图象上,且横坐标为1,则点(1,3)P , 则点A 、B 的坐标分别为(1,)k ,1(3k ,3),设直线AB 的表达式为:y mx t =+,将点A 、B 的坐标代入上式得133k m t km t =+⎧⎪⎨=-+⎪⎩,解得3m =-,故直线AB 与x 轴所夹锐角的正切值为3,故答案为3.18.(2020四川遂宁)(7分)计算:2sin30°﹣|1|+(21)﹣2﹣(π﹣2020)0. 【解答】解:原式=22(1)+4﹣1=211+4﹣13.19.(2020湖南岳阳)(6分)(2020•岳阳)计算:(21)﹣1+2cos60°﹣(4﹣π)0+|﹣3 |. 【解答】解:原式=2+2×21- 1 +3 =2+1﹣1 +3 =2+3 .20.(2020广西南宁)(6分)计算:﹣(﹣1)+32÷(1﹣4)×2. 解:原式=1+9÷(﹣3)×2=1﹣3×2=1﹣6=﹣5. 21.(6分)(2020•玉林)计算:•(π﹣3.14)0﹣|1|+()2. 【解答】解:原式1﹣(1)+91+9=10.22.(5分)(2020•常德)计算:20+(31)﹣1•4tan45°.【解答】解:原式=1+3×2﹣4×1=1+6﹣4=3. 23.(10分)(2020•徐州)计算:(1)(﹣1)2020+|2|﹣()﹣1; 【解答】解:(1)原式=1+22=1;24.(2020贵州遵义)(1)sin30°﹣(π﹣3.14)0+()﹣2;解:(1)原式1+4=3;25.(2020山西)(10分)(1)计算:(﹣4)2×(﹣21)3﹣(﹣4+1). 解:(1)(﹣4)2×(﹣21)3﹣(﹣4+1)=16×(﹣81)+3=﹣2+3=1;26.(2020东莞)计算:03822cos 60(3.14)π---+--︒.解:原式122212=--+⨯-4=- 27.(2020四川自贡)(8分)计算:|﹣2|﹣(π)0+()﹣1.解:原式=2﹣1+(﹣6)=1+(﹣6)=﹣5.28.(2020四川自贡)(10分)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,代数式|x ﹣2|的几何意义是数轴上x 所对应的点与2所对应的点之间的距离:因为|x +1|=|x ﹣(﹣1)|,所以|x +1|的几何意义就是数轴上x 所对应的点与﹣1所对应的点之间的距离. (1)发现问题:代数式|x +1|+|x ﹣2|的最小值是多少?(2)探究问题:如图,点A 、B 、P 分别表示数﹣1、2、x ,AB =3.∵|x +1|+|x ﹣2|的几何意义是线段P A 与PB 的长度之和,∴当点P 在线段AB 上时,P A +PB =3,当点P 在点A 的左侧或点B 的右侧时,P A +PB >3.∴|x +1|+|x ﹣2|的最小值是3. (3)解决问题:①|x ﹣4|+|x +2|的最小值是 6 ;②利用上述思想方法解不等式:|x +3|+|x ﹣1|>4;③当a 为何值时,代数式|x +a |+|x ﹣3|的最小值是2.【解答】解:(1)发现问题:代数式|x +1|+|x ﹣2|的最小值是多少? (2)探究问题:如图,点A 、B 、P 分别表示数﹣1、2、x ,AB =3.∵|x +1|+|x ﹣2|的几何意义是线段P A 与PB 的长度之和,∴当点P 在线段AB 上时,P A +PB =3,当点P 在点A 的左侧或点B 的右侧时,P A +PB >3.∴|x +1|+|x ﹣2|的最小值是3. (3)解决问题:①|x ﹣4|+|x +2|的最小值是6; 故答案为:6;②如图所示,满足|x +3|+|x ﹣1|>4的x 范围为x <﹣3或x >1;③当a 为﹣1或﹣5时,代数式|x +a |+|x ﹣3|的最小值是2. 29.(2020青海)(5分)计算:(31)﹣1+|1﹣3tan45°|+(π﹣3.14)0﹣327. 解:原式=3+|1﹣3|+1﹣3=3+3-1+1-3=3. 30.(2020四川眉山)(8分)计算:(2﹣2)0+(﹣21)﹣2+2sin45°﹣8. 解:原式=1+4+2×22﹣22=5+2﹣22=5﹣2. 31.(2020•怀化)计算:2﹣2﹣2cos45°+|2|.解:原式.32.(2020浙江温州)(10分)(1)计算:|﹣2|+()0﹣(﹣1).【解答】解:(1)原式=2﹣2+1+1 =2;33.(2020海南)(12分)计算:(1)|﹣8|×2﹣1﹣16+(﹣1)2020;(2)(a +2)(a ﹣2)﹣a (a +1).解:(1)|﹣8|×2﹣1﹣16+(﹣1)2020,=8×21﹣4+1, =4﹣4+1,=1;(2)(a +2)(a ﹣2)﹣a (a +1), =a 2﹣4﹣a 2﹣a , =﹣4﹣a .34.(2020•株洲)计算:(41)﹣1+|﹣1|tan60°.【解答】解:原式=4+1=4+1﹣3 =2.35.(2020甘肃定西)计算:0(23)(23)tan 60(23)π+--︒解:原式4331=-=3.。

中考数学专题复习《实数的运算》测试卷-附带答案

中考数学专题复习《实数的运算》测试卷-附带答案

中考数学专题复习《实数的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法中正确的是()A.√25的值是±5B.两个无理数的和仍是无理数C.-3没有立方根.D.√a2−b2是最简二次根式.2.实数m,n在数轴上的对应点的位置如图所示,下列结论中正确的是()A.|m|<|n|B.m+n>0C.m−n<0D.mn>0 3.计算:|−2|+3sin30°−2−1−(2022−π)0等于()A.-2B.−12C.2D.04.观察下列各式:√1+112+122=1+11×2√1+122+132=1+12×3√1+132+142=1+13×4…请利用你所发现的规律计算√1+112+122+√1+122+132+√1+132+142+⋯⋯+√1+192+1102其结果为()A.8910B.9910C.989D.8895.估计√2(√23−√2)的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间.6.秦兵马俑的发现被誉为“世界第八大奇迹” 兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比为√5−12下列各数中最接近于√5−12的是()A.25B.12C.35D.347.若x为实数在“(√3+1)◯ x”的“◯”中添上一种运算符号(在“+-× ÷”中选择)后其运算的结果为有理数则不可能是()A.√3−1B.1−√3C.3√3D.1+√38.计算sin60°⋅tan30°−sin45°⋅cos30°的结果是()A.−12+√62B.√32+12C.−√32+12D.12−√649.下列运算正确的是()A .√3+√2=√5B .|3.14−π|=π−3.14C .a 2⋅a 3=a 6D .(a −1)2=a 2−2a −110.今年“十一”期间 广州部分公园举行游园活动 据统计 天河公园早晨6时30分有2人进入公园 接下来的第一个30分钟内有4人进去1人出来 第二个30分钟内有8人进去2人出来 第三个30分钟内有16人进去3人出来 第四个30分钟内有32人进去4人出来.按照这种规律进行下去 到上午11时30分公园内的人数是( )A .211−47B .212−57C .213−68D .214−80二 填空题11.(√3−1.732)0+(−14)−2= .12.【中考变形】已知a =(12)−1+(−√3)0,b =(√3+√2)(√3−√2) 则√a +b = .13.计算:|−5|+(3−π)0−6×3−1+√3−1−2sin60°= 。

中考数学专题-实数的有关概念与计算-(解析版)

中考数学专题-实数的有关概念与计算-(解析版)

实数的有关概念与计算姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·安徽中考真题)9-的绝对值是()A.9B.9-C.19D.19-【答案】A【分析】利用绝对值的定义直接得出结果即可【详解】解:9-的绝对值是:9故选:A【点睛】本题考查绝对值的定义,正确理解定义是关键,熟记负数的绝对值是它的相反数是重点2.(2021·浙江金华市·中考真题)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%【答案】B【分析】设原件为x元,根据调价方案逐一计算后,比较大小判断即可.【详解】设原件为x元,∵先打九五折,再打九五折,∵调价后的价格为0.95x×0.95=0.9025x元,∵先提价50%,再打六折,∵调价后的价格为1.5x×0.6=0.90x元,∵先提价30%,再降价30%,∵调价后的价格为1.3x×0.7=0.91x元,∵先提价25%,再降价25%,∵调价后的价格为1.25x×0.75=0.9375x元,∵0.90x<0.9025x<0.91x<0.9375x故选B【点睛】本题考查了代数式,打折,有理数大小比较,准确列出符合题意的代数式,并能进行有理数大小的比较是解题的关键.3.(2021·山东泰安市·中考真题)下列各数:4-, 2.8-,0,4-,其中比3-小的数是( ) A .4-B .4-C .0D . 2.8-【答案】A【分析】根据正数比负数大,正数比0大,负数比0小,两个负数中,绝对值大的反而小解答即可.【详解】解:∵∵﹣4∵=4,4>3>2.8,∵﹣4<﹣3<﹣2.8<0<∵﹣4∵,∵比﹣3小的数为﹣4,故选:A .【点睛】本题考查有理数大小比较,熟知有理数的比较大小的法则是解答的关键.4.(2021·四川南充市·中考真题)数轴上表示数m 和2m +的点到原点的距离相等,则m 为( ) A .2-B .2C .1D .1- 【答案】D【分析】由数轴上表示数m 和2m +的点到原点的距离相等且2m m +>,可得m 和2m +互为相反数,由此即可求得m 的值.【详解】∵数轴上表示数m 和2m +的点到原点的距离相等,2m m +>,∵m 和2m +互为相反数,∵m +2m +=0,解得m =-1.故选D .【点睛】本题考查了数轴上的点到原点的距离,根据题意确定出m 和2m +互为相反数是解决问题的关键. 5.(2021·四川凉山彝族自治州·中考真题)下列数轴表示正确的是( )A .B .C .D . 【答案】D【分析】数轴的三要素:原点、正方向、单位长度,据此判断.【详解】解:A 、不符合数轴右边的数总比左边的数大的特点,故表示错误;B 、不符合数轴右边的数总比左边的数大的特点,故表示错误;C 、没有原点,故表示错误;D 、符合数轴的定定义,故表示正确;故选D .【点睛】本题考查了数轴的概念:规定了原点、正方向和单位长度的直线叫做数轴,注意数轴的三要素缺一不可.6.(2021·四川泸州市·中考真题)2021的相反数是( )A .2021-B .2021C .12021- D .12021【答案】A【分析】直接利用相反数的定义得出答案.【详解】解:2021的相反数是:-2021.故选:A .【点睛】此题主要考查了相反数,正确掌握相关定义是解题关键.7.(2021·四川乐山市·中考真题)如果规定收入为正,那么支出为负,收入2元记作2+,支出5元记作( ).A .5元B .5-元C .3-元D .7元【答案】B【分析】结合题意,根据正负数的性质分析,即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B .【点睛】本题考查了正数和负数的知识;解题的关键是熟练掌握正负数的性质,从而完成求解. 8.(2021·浙江中考真题)实数2-的绝对值是( )A .2-B .2C .12 D .12-【答案】B【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:实数-2的绝对值是2,故选:B .【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.9.(2021·江苏连云港市·中考真题)3-相反数是( )A .13B .3-C .13-D .3【答案】D【分析】根据相反数的意义,只有符号不同的两个数称为相反数.【详解】解:3-的相反数是3.故选:D .【点睛】本题考查了相反数的意义.只有符号不同的两个数为相反数,0的相反数是0.10.(2021·甘肃武威市·中考真题)中国疫苗撑起全球抗疫“生命线”!中国外交部数据显示,截止2021年3月底,我国已无偿向80个国家和3个国际组织提供疫苗援助.预计2022年中国新冠疫苗产能有望达到50亿剂,约占全球产能的一半,必将为全球抗疫作出重大贡献.数据“50亿”用科学记数法表示为( ) A .8510⨯B .9510⨯C .10510⨯D .85010⨯【答案】B【分析】结合科学计数法的表示方法即可求解.【详解】解:50亿即5000000000,故用科学计数法表示为9510⨯,故答案是:B .【点睛】本题考察科学计数法的表示方法,难度不大,属于基础题。

江苏省宿迁市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)

江苏省宿迁市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)

江苏省宿迁市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.实数的运算(共1小题)1.(2023•宿迁)计算:.二.分式的化简求值(共1小题)2.(2023•宿迁)先化简,再求值:,其中.三.二次函数的应用(共1小题)3.(2023•宿迁)某商场销售A、B两种商品,每件进价均为20元.调查发现,如果售出A 种20件,B种10件,销售总额为840元;如果售出A种10件,B种15件,销售总额为660元.(1)求A、B两种商品的销售单价;(2)经市场调研,A种商品按原售价销售,可售出40件,原售价每降价1元,销售量可增加10件;B种商品的售价不变,A种商品售价不低于B种商品售价.设A种商品降价m元,如果A、B两种商品销售量相同,求m取何值时,商场销售A、B两种商品可获得总利润最大?最大利润是多少?四.二次函数综合题(共3小题)4.(2023•宿迁)规定:若函数y1的图象与函数y2的图象有三个不同的公共点,则称这两个函数互为“兄弟函数”,其公共点称为“兄弟点”.(1)下列三个函数①y=x+1;②;③y=﹣x2+1,其中与二次函数y=2x2﹣4x﹣3互为“兄弟函数”的是 (填写序号);(2)若函数与互为“兄弟函数”,x=1是其中一个“兄弟点”的横坐标.①求实数a的值;②直接写出另外两个“兄弟点”的横坐标是 、 ;(3)若函数y1=|x﹣m|(m为常数)与互为“兄弟函数”,三个“兄弟点”的横坐标分别为x1、x2、x3,且x1<x2<x3,求的取值范围.5.(2022•宿迁)如图,二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,顶点为C,连接OC、AC,若点B是线段OA上一动点,连接BC,将△ABC沿BC折叠后,点A落在点A′的位置,线段A′C与x轴交于点D,且点D与O、A点不重合.(1)求二次函数的表达式;(2)①求证:△OCD∽△A′BD;②求的最小值;(3)当S△OCD=8S△A'BD时,求直线A′B与二次函数的交点横坐标.6.(2021•宿迁)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y 轴交于点C.连接AC,BC,点P在抛物线上运动.(1)求抛物线的表达式;(2)如图①,若点P在第四象限,点Q在PA的延长线上,当∠CAQ=∠CBA+45°时,求点P的坐标;(3)如图②,若点P在第一象限,直线AP交BC于点F,过点P作x轴的垂线交BC 于点H,当△PFH为等腰三角形时,求线段PH的长.五.三角形综合题(共1小题)7.(2023•宿迁)【问题背景】由光的反射定律知:反射角等于入射角(如图①,即∠CEF=∠AEF).小军测量某建筑物高度的方法如下:在地面点E处平放一面镜子,经调整自己位置后,在点D处恰好通过镜子看到建筑物AB的顶端A.经测得,小军的眼睛离地面的距离CD=1.7m,BE=20m,DE=2m,求建筑物AB的高度;【活动探究】观察小军的操作后,小明提出了一个测量广告牌高度的做法(如图②):他让小军站在点D处不动,将镜子移动至E1处,小军恰好通过镜子看到广告牌顶端G,测出DE1=2m;再将镜子移动至E2处,恰好通过镜子看到广告牌的底端A,测出DE2=3.4m.经测得,小军的眼睛离地面距离CD=1.7m,BD=10m,求这个广告牌AG的高度;【应用拓展】小军和小明讨论后,发现用此方法也可测量出斜坡上信号塔AB的高度.他们给出了如下测量步骤(如图③):①让小军站在斜坡的底端D处不动(小军眼睛离地面距离CD=1.7m),小明通过移动镜子(镜子平放在坡面上)位置至E处,让小军恰好能看到塔顶B;②测出DE=2.8m;③测出坡长AD=17m;④测出坡比为8:15(即).通过他们给出的方案,请你算出信号塔AB的高度(结果保留整数).六.四边形综合题(共1小题)8.(2021•宿迁)已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.(1)如图①,连接BG、CF,求的值;(2)当正方形AEFG旋转至图②位置时,连接CF、BE,分别取CF、BE的中点M、N,连接MN、试探究:MN与BE的关系,并说明理由;(3)连接BE、BF,分别取BE、BF的中点N、Q,连接QN,AE=6,请直接写出线段QN 扫过的面积.七.直线与圆的位置关系(共1小题)9.(2022•宿迁)如图,在△ABC中,∠ABC=45°,AB=AC,以AB为直径的⊙O与边BC 交于点D.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)若AB=4,求图中阴影部分的面积.八.切线的判定与性质(共1小题)10.(2023•宿迁)(1)如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,点E在AC上,连接DE、DB, .求证: ;从①DE与⊙O相切;②DE⊥AC中选择一个作为已知条件,余下的一个作为结论,将题目补充完整(填写序号),并完成证明过程;(2)在(1)的前提下,若AB=6,∠BAD=30°,求阴影部分的面积.九.圆的综合题(共1小题)11.(2022•宿迁)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B、C、D、M均为格点.【操作探究】在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段AB、CD,相交于点P并给出部分说理过程,请你补充完整:解:在网格中取格点E,构建两个直角三角形,分别是△ABC和△CDE.在Rt△ABC中,tan∠BAC=,在Rt△CDE中, ,所以tan∠BAC=tan∠DCE.所以∠BAC=∠DCE.因为∠ACP+∠DCE=∠ACB=90°,所以∠ACP+∠BAC=90°,所以∠APC=90°,即AB⊥CD.【拓展应用】(1)如图②是以格点O为圆心,AB为直径的圆,请你只用无刻度的直尺,在上找出一点P,使=,写出作法,并给出证明;(2)如图③是以格点O为圆心的圆,请你只用无刻度的直尺,在弦AB上找出一点P.使AM2=AP•AB,写出作法,不用证明.一十.解直角三角形的应用-仰角俯角问题(共1小题)12.(2021•宿迁)一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到1米,参考数据:≈1.414,≈1.732).一十一.列表法与树状图法(共1小题)13.(2021•宿迁)即将举行的2022年杭州亚运会吉祥物“宸宸”、“琮琮”、“莲莲”,将三张正面分别印有以上3个吉祥物图案的卡片(卡片的形状、大小、质地都相同)背面朝上、洗匀.(1)若从中任意抽取1张,抽得卡片上的图案恰好为“莲莲”的概率是 .(2)若先从中任意抽取1张,记录后放回,洗匀,再从中任意抽取1张,求两次抽取的卡片图案相同的概率.(请用树状图或列表的方法求解)江苏省宿迁市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.实数的运算(共1小题)1.(2023•宿迁)计算:.【答案】0.【解答】解:原式=,=0.二.分式的化简求值(共1小题)2.(2023•宿迁)先化简,再求值:,其中.【答案】x﹣1;.【解答】解:===x﹣1,当时,原式=.三.二次函数的应用(共1小题)3.(2023•宿迁)某商场销售A、B两种商品,每件进价均为20元.调查发现,如果售出A 种20件,B种10件,销售总额为840元;如果售出A种10件,B种15件,销售总额为660元.(1)求A、B两种商品的销售单价;(2)经市场调研,A种商品按原售价销售,可售出40件,原售价每降价1元,销售量可增加10件;B种商品的售价不变,A种商品售价不低于B种商品售价.设A种商品降价m元,如果A、B两种商品销售量相同,求m取何值时,商场销售A、B两种商品可获得总利润最大?最大利润是多少?【答案】(1)A种商品的销售单价为30元,B种商品的销售单价为24元;(2)m取5时,商场销售A、B两种商品可获得总利润最大,最大利润是810元.【解答】解:(1)设A种商品的销售单价为a元,B种商品的销售单价为b元,由题意可得:,解得,答:(2)设利润为w元,由题意可得:w=(30﹣m﹣20)(40+10m)+(24﹣20)(40+10m)=﹣10(m﹣5)2+810,∵A种商品售价不低于B种商品售价,∴30﹣m≥24,解得m≤6,∴当m=5时,w取得最大值,此时w=810,答:m取5时,商场销售A、B两种商品可获得总利润最大,最大利润是810元.四.二次函数综合题(共3小题)4.(2023•宿迁)规定:若函数y1的图象与函数y2的图象有三个不同的公共点,则称这两个函数互为“兄弟函数”,其公共点称为“兄弟点”.(1)下列三个函数①y=x+1;②;③y=﹣x2+1,其中与二次函数y=2x2﹣4x﹣3互为“兄弟函数”的是 ② (填写序号);(2)若函数与互为“兄弟函数”,x=1是其中一个“兄弟点”的横坐标.①求实数a的值;②直接写出另外两个“兄弟点”的横坐标是 、 ;(3)若函数y1=|x﹣m|(m为常数)与互为“兄弟函数”,三个“兄弟点”的横坐标分别为x1、x2、x3,且x1<x2<x3,求的取值范围.【答案】(1)②;(2)①2;②,;(3)>16.【解答】解:(1)如图:由图可知,与二次函数y=2x2﹣4x﹣3有3个交点的是y=﹣,∴与二次函数y=2x2﹣4x﹣3互为“兄弟函数”的是②,故答案为:②;(2)①把x=1代入得y=﹣1,把x=1,y=﹣1代入函数得,a=2;②∵2x2﹣5x+2=﹣,∴2x3﹣5x2+2x+1=0,∴2x3﹣2x2﹣2x2+2x﹣x2+1=0,∴(2x3﹣2x2)﹣(2x2﹣2x)﹣(x2﹣1)=0,∴2x2(x﹣1)﹣2x(x﹣1)﹣(x+1)(x﹣1)=0,∴(x﹣1)(2x2﹣2x﹣x﹣1)=0,∴2x2﹣3x﹣1=0,∴x=或x=.故答案为:,.(3)x1满足方程﹣x+m=﹣,即﹣mx1=2,x2,x3满足方程x﹣m=﹣,即x2,x3是方程x2﹣mx+2=0的两个根,∴Δ=m2﹣8>0,即m2>8,x2+x3=m,∴=(m﹣2x1)2=m2﹣4mx1+4=m2+4(﹣mx1)=m2+8>16.5.(2022•宿迁)如图,二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,顶点为C,连接OC、AC,若点B是线段OA上一动点,连接BC,将△ABC沿BC折叠后,点A落在点A′的位置,线段A′C与x轴交于点D,且点D与O、A点不重合.(1)求二次函数的表达式;(2)①求证:△OCD∽△A′BD;②求的最小值;(3)当S△OCD=8S△A'BD时,求直线A′B与二次函数的交点横坐标.【答案】(1)y=x2﹣2x;(2)①证明见解答;②;(3).【解答】(1)解:∵二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,∴二次函数的解析式为:y=(x﹣0)(x﹣4)=x2﹣2x;(2)①证明:如图1,由翻折得:∠OAC=∠A',由对称得:OC=AC,∴∠AOC=∠OAC,∴∠COA=∠A',∵∠A'DB=∠ODC,∴△OCD∽△A′BD;②解:∵△OCD∽△A′BD,∴=,∵AB=A'B,∴=,∴的最小值就是的最小值,y=x2﹣2x=(x﹣2)2﹣2,∴C(2,﹣2),∴OC=2,∴当CD⊥OA时,CD最小,的值最小,当CD=2时,的最小值为=;(3)解法一:∵S△OCD=8S△A'BD,∴S△OCD:S△A'BD=8,∵△OCD∽△A′BD,∴=()2=8,∴=2,∵OC=2,∴A'B=AB=1,∴BF=2﹣1=1,如图2,连接AA',过点A'作A'G⊥OA于G,延长CB交AA'于H,设抛物线的对称轴与x 轴交于点F,由翻折得:AA'⊥CH,∵∠AHB=∠BFC=90°,∠ABH=∠CBD,∴∠BCF=∠BAH,tan∠BCF=tan∠GAA',∴==,设A'G=a,则AG=2a,BG=2a﹣1,在Rt△A'GB中,由勾股定理得:BG2+A'G2=A'B2,∴a2+(2a﹣1)2=12,∴a1=0(舍),a2=,∴BG=2a﹣1=﹣1=,∵A'G∥OQ,∴△A'GB∽△QOB,∴=,即=,∴OQ=4,∴Q(0,4),设直线A'B的解析式为:y=kx+m,∴,解得:,∴直线A'B的解析式为:y=﹣x+4,∴﹣x+4=x2﹣2x,3x2﹣4x﹣24=0,解得:x=,∴直线A′B与二次函数的交点横坐标是.(3)解法二:如图3,过点M作MH⊥OA于H,∵△OCD∽△A′BD,∴===2,∵OC=2,∴A'B=AB=1,设BD=t,则CD=2t,∴A'D=2﹣2t,OD=2A'D=8﹣8t,∵OB=OD+BD=4﹣1=3,∴8﹣8t+t=3,∴t=,∴A'D=2﹣=,∵A'B=AB,∠A'=∠OAC,∠A'BD=∠ABN,∴△A'BD≌△ABM(ASA),∴AM=A'D=,∵△AHM是等腰直角三角形,∴AH=MH=,∴M(,﹣),易得BM的解析式为:y=﹣x+4,∴﹣x+4=x2﹣2x,解得:3x2﹣4x﹣24=0,解得:x=,∴直线A′B与二次函数的交点横坐标是.6.(2021•宿迁)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y 轴交于点C.连接AC,BC,点P在抛物线上运动.(1)求抛物线的表达式;(2)如图①,若点P在第四象限,点Q在PA的延长线上,当∠CAQ=∠CBA+45°时,求点P的坐标;(3)如图②,若点P在第一象限,直线AP交BC于点F,过点P作x轴的垂线交BC 于点H,当△PFH为等腰三角形时,求线段PH的长.【答案】(1)y=;(2)P的坐标是(6,﹣7);(3)当FP=FH时,PH=;当PF=PH时,PH=;当HF=HP时,PH=;【解答】解:(1)∵A(﹣1,0),B(4,0)是抛物线y=﹣x2+bx+c与x轴的两个交点,且二次项系数a=,∴根据抛物线的两点式知,y=.(2)根据抛物线表达式可求C(0,2),即OC=2.∴==2,∵∠AOC=∠COB=90°,∴△AOC∽△COB,∴∠ACO=∠CBO,∴∠QAB=∠QAC+∠CAO=∠CBA+45°+∠CAO=∠ACO+∠CAO+45°=135°,∴∠BAP=180°﹣∠QAB=45°,设P(m,n),且过点P作PD⊥x轴于D,则△ADP是等腰直角三角形,∴AD=PD,即m+1=﹣n①,又∵P在抛物线上,∴②,联立①②两式,解得m=6(﹣1舍去),此时n=﹣7,∴点P的坐标是(6,﹣7).(3)设PH与x轴的交点为Q1,P(a,),则H(a,),PH=,若FP=FH,则∠FPH=∠FHP=∠BHQ1=∠BCO,∴tan∠APQ1=tan∠BCO=2,∴AQ1=2PQ1,即a+1=2(),解得a=3(﹣1舍去),此时PH=.若PF=PH,过点F作FM⊥y轴于点M,∴∠PFH=∠PHF,∵∠CFA=∠PFH,∠Q1HB=∠PHF,∴∠CFA=∠Q1HB,又∵∠ACF=∠BQ1H=90°,∴△ACF∽△BQ1H,∴CF=AC=,在Rt△CMF中,MF=1,CM=,F(1,),∴AF:,将上式和抛物线解析式联立并解得x=(﹣1舍去),此时PH=.若HF=HP,过点C作CE∥AB交AP于点E(见上图),∵∠CAF+∠CFA=90°,∠PAQ+∠HPF=90°,∠CFA=∠HFP=∠HPF,∴∠CAF=∠PAQ1,即AP平分∠CAB,∴CE=CA=,∴E(,2),∴AE:,联立抛物线解析式,解得x=5﹣(﹣1舍去).此时PH=.∴当FP=FH时,PH=;当PF=PH时,PH=;当HF=HP时,PH=;五.三角形综合题(共1小题)7.(2023•宿迁)【问题背景】由光的反射定律知:反射角等于入射角(如图①,即∠CEF=∠AEF).小军测量某建筑物高度的方法如下:在地面点E处平放一面镜子,经调整自己位置后,在点D处恰好通过镜子看到建筑物AB的顶端A.经测得,小军的眼睛离地面的距离CD=1.7m,BE=20m,DE=2m,求建筑物AB的高度;【活动探究】观察小军的操作后,小明提出了一个测量广告牌高度的做法(如图②):他让小军站在点D处不动,将镜子移动至E1处,小军恰好通过镜子看到广告牌顶端G,测出DE1=2m;再将镜子移动至E2处,恰好通过镜子看到广告牌的底端A,测出DE2=3.4m.经测得,小军的眼睛离地面距离CD=1.7m,BD=10m,求这个广告牌AG的高度;【应用拓展】小军和小明讨论后,发现用此方法也可测量出斜坡上信号塔AB的高度.他们给出了如下测量步骤(如图③):①让小军站在斜坡的底端D处不动(小军眼睛离地面距离CD=1.7m),小明通过移动镜子(镜子平放在坡面上)位置至E处,让小军恰好能看到塔顶B;②测出DE=2.8m;③测出坡长AD=17m;④测出坡比为8:15(即).通过他们给出的方案,请你算出信号塔AB的高度(结果保留整数).【答案】【问题背景】17m;【活动探究】3.5m;【应用拓展】信号塔AB的高度约为20m.【解答】解:【问题背景】由题意得:AB⊥BD,CD⊥BD,EF⊥BD,∴∠ABE=∠CDE=∠FEB=∠FED=90°,∵∠CEF=∠AEF,∴∠FEB﹣∠AEF=∠FED﹣∠CEF,即∠AEB=∠CED,∴△AEB∽△CED,∴=,∴AB===17(m),答:建筑物AB的高度为17m;【活动探究】如图②,过点E1作E1F⊥BD,过点E2作E2H⊥BD,由题意得:GB⊥BD,CD⊥BD,∴∠GBE1=∠CDE1=∠ABE2=∠CDE2=∠FE1B=∠FE1D=∠HE2B=∠HE2D=90°,∵∠CE2H=∠AE2H,∠CE1F=∠GE1F,∴∠FE1B﹣∠GE1F=∠FE1D﹣∠CE1F,∠HE2B﹣∠AE2H=∠HE2D﹣∠CE2H,即∠GE1B=∠CE1D,∠AE2B=∠CE2D,∴△GE1B∽△CE1D,△AE2B∽△CE2D,∴=,=,∴BE1=BD﹣DE1=10﹣2=8(m),BE2=BD﹣DE2=10﹣3.4=6.6(m),∴GB===6.8(m),AB===3.3(m),∴AG=GB﹣AB=6.8﹣3.3=3.5(m),答:这个广告牌AG的高度为3.5m;【应用拓展】如图,过点B作BM⊥AD于点M,过点C作CN⊥AD于点N,由题意得:BG⊥DG,CD⊥DG,∴∠AGD=∠CDG=∠BMA=∠CND=90°,∵∠BAM=∠GAD,∴90°﹣∠BAM=90°﹣∠GAD,即∠ABM=∠ADG,∵∠ADG+∠DAG=90°,∠ADG+∠CDN=90°,∴∠CDN=∠DAG,∴90°﹣∠CDN=90°﹣∠DAG,即∠DCN=∠ADG,∴∠DCN=∠ADG=∠ABM,∴△DCN∽△ABM,∴=,由题意得:AE=AD﹣DE=17﹣2.8=14.2(m),∵tan∠ADG=,∴tan∠DCN==,tan∠ABM==,设DN=am,AM=bm,则CN=,BM=,∵CN2+DN2=CD2,∴()2+a2=1.72,解得:a=0.8(m)(负值已舍去),∴EN=DE﹣DN=2.8﹣0.8=2(m),CN==1.5(m),∴=,∴AB=,同【问题背景】得:△BME∽△CNE,∴=,∴=,解得:b=(m),∴AB=×≈20(m),答:信号塔AB的高度约为20m.六.四边形综合题(共1小题)8.(2021•宿迁)已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.(1)如图①,连接BG、CF,求的值;(2)当正方形AEFG旋转至图②位置时,连接CF、BE,分别取CF、BE的中点M、N,连接MN、试探究:MN与BE的关系,并说明理由;(3)连接BE、BF,分别取BE、BF的中点N、Q,连接QN,AE=6,请直接写出线段QN 扫过的面积.【答案】(1)=;(2)BE=2MN,MN⊥BE,理由见解析过程;(3)9π.【解答】解:(1)如图①,连接AF,AC,∵四边形ABCD和四边形AEFG都是正方形,∴AC=AB,AF=AG,∠CAB=∠GAF=45°,∠BAD=90°,∴∠CAF=∠BAG,,∴△CAF∽△BAG,∴=;(2)BE=2MN,MN⊥BE,理由如下:如图②,连接ME,过点C作CH∥EF,交直线ME于H,连接BH,设CF 与AD交点为P,CF与AG交点为R,∵CH∥EF,∴∠FCH=∠CFE,∵点M是CF的中点,∴CM=MF,又∵∠CMH=∠FME,∴△CMH≌△FME(ASA),∴CH=EF,ME=HM,∴AE=CH,∵CH∥EF,AG∥EF,∴CH∥AG,∴∠HCF=∠CRA,∵AD∥BC,∴∠BCF=∠APR,∴∠BCH=∠BCF+∠HCF=∠APR+∠ARC,∵∠DAG+∠APR+∠ARC=180°,∠BAE+∠DAG=180°,∴∠BAE=∠BCH,又∵BC=AB,CH=AE,∴△BCH≌△BAE(SAS),∴BH=BE,∠CBH=∠ABE,∴∠HBE=∠CBA=90°,∵MH=ME,点N是BE中点,∴BH=2MN,MN∥BH,∴BE=2MN,MN⊥BE;(3)如图③,取AB中点O,连接ON,OQ,AF,∵AE=6,∴AF=6,∵点N是BE的中点,点Q是BF的中点,点O是AB的中点,∴OQ=AF=3,ON=AE=3,∴点Q在以点O为圆心,3为半径的圆上运动,点N在以点O为圆心,3为半径的圆上运动,∴线段QN扫过的面积=π×(3)2﹣π×32=9π.七.直线与圆的位置关系(共1小题)9.(2022•宿迁)如图,在△ABC中,∠ABC=45°,AB=AC,以AB为直径的⊙O与边BC 交于点D.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)若AB=4,求图中阴影部分的面积.【答案】(1)直线AC与⊙O相切,理由见解答;(2)6﹣π.【解答】解:(1)直线AC与⊙O相切,理由如下:∵∠ABC=45°,AB=AC,∴∠ABC=∠C=45°,∴∠BAC=180°﹣2×45°=90°,∴BA⊥AC,∵AB是⊙O的直径,∴直线AC与⊙O相切;(2)连接OD,AD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=45°,∴△ABD是等腰直角三角形,∠AOD=90°,∵AO=OB,AB=4,∴S△ABD=•AB•OD=×4×2=4,∴图中阴影部分的面积=S△ABC﹣S△BOD﹣S扇形OAD=×4×4﹣×4﹣=8﹣2﹣π=6﹣π.八.切线的判定与性质(共1小题)10.(2023•宿迁)(1)如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,点E在AC上,连接DE、DB, ①(答案不唯一) .求证: ②(答案不唯一) ;从①DE与⊙O相切;②DE⊥AC中选择一个作为已知条件,余下的一个作为结论,将题目补充完整(填写序号),并完成证明过程;(2)在(1)的前提下,若AB=6,∠BAD=30°,求阴影部分的面积.【答案】(1)①(答案不唯一);②(答案不唯一);证明过程见解答;(2)阴影部分的面积为.【解答】解:(1)若选择:①作为条件,②作为结论,如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,点E在AC上,连接DE、DB,DE与⊙O相切,求证:DE⊥AC,证明:连接OD,∵DE与⊙O相切于点D,∴∠ODE=90°,∵AD平分∠BAC,∴∠EAD=∠DAB,∵OA=OD,∴∠DAB=∠ADO,∴∠EAD=∠ADO,∴AE∥DO,∴∠AED=180°﹣∠ODE=90°,∴DE⊥AC;若选择:②作为条件,①作为结论,如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,点E在AC上,连接DE、DB,DE⊥AC,求证:DE与⊙O相切,证明:连接OD,∵DE⊥AC,∴∠AED=90°,AD平分∠BAC,∴∠EAD=∠DAB,∵OA=OD,∴∠DAB=∠ADO,∴∠EAD=∠ADO,∴AE∥DO,∴∠ODE=180°﹣∠AED=90°,∵OD是⊙O的半径,∴DE与⊙O相切;故答案为:①(答案不唯一);②(答案不唯一);(2)连接OF,DF,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=6,∠BAD=30°,∴BD=AB=3,AD=BD=3,∵AD平分∠BAC,∴∠EAD=∠DAB=30°,在Rt△AED中,DE=AD=,AE=DE=,∵∠EAD=∠DAB=30°,∴∠DOB=2∠DAB=60°,∠DOF=2∠EAD=60°,∵OD=OF,∴△DOF都是等边三角形,∴∠ODF=60°,∴∠DOB=∠ODF=60°,∴DF∥AB,∴△ADF的面积=△ODF的面积,∴阴影部分的面积=△AED的面积﹣扇形DOF的面积=AE•DE﹣=××﹣=﹣=,∴阴影部分的面积为.九.圆的综合题(共1小题)11.(2022•宿迁)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B、C、D、M均为格点.【操作探究】在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段AB、CD,相交于点P并给出部分说理过程,请你补充完整:解:在网格中取格点E,构建两个直角三角形,分别是△ABC和△CDE.在Rt△ABC中,tan∠BAC=,在Rt△CDE中, tan∠DCE= ,所以tan∠BAC=tan∠DCE.所以∠BAC=∠DCE.因为∠ACP+∠DCE=∠ACB=90°,所以∠ACP+∠BAC=90°,所以∠APC=90°,即AB⊥CD.【拓展应用】(1)如图②是以格点O为圆心,AB为直径的圆,请你只用无刻度的直尺,在上找出一点P,使=,写出作法,并给出证明;(2)如图③是以格点O为圆心的圆,请你只用无刻度的直尺,在弦AB上找出一点P.使AM2=AP•AB,写出作法,不用证明.【答案】【操作探究】tan∠DCE=;【拓展应用】(1)见解析部分;(2)见解析部分.【解答】解:【操作探究】在网格中取格点E,构建两个直角三角形,分别是△ABC和△CDE.在Rt△ABC中,tan∠BAC=,在Rt△CDE中,tan∠DCE=,所以tan∠BAC=tan∠DCE.所以∠BAC=∠DCE.因为∠ACP+∠DCE=∠ACB=90°,所以∠ACP+∠BAC=90°,所以∠APC=90°,即AB⊥CD.故答案为:tan∠DCE=;【拓展应用】(1)如图②中,点P即为所求.作法:取格点T,连接AT交⊙O于点P,点P即为所求;证明:由作图可知,OM⊥AP,OM是半径,∴=;(2)如图③中,点P即为所求.作法:取格点J,K,连接JK交AB于点P,点P即为所求.一十.解直角三角形的应用-仰角俯角问题(共1小题)12.(2021•宿迁)一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到1米,参考数据:≈1.414,≈1.732).【答案】约为14米.【解答】解:过A作AC⊥PQ,交PQ的延长线于C,如图所示:设AC=x米,由题意得:PQ=5米,∠APC=30°,∠BQC=45°,在Rt△APC中,tan∠APC==tan30°=,∴PC=AC=x(米),在Rt△BCQ中,tan∠BQC==tan45°=1,∴QC=BC=AC+AB=(x+3)米,∵PC﹣QC=PQ=5米,∴x﹣(x+3)=5,解得:x=4(+1),∴BC=4(+1)+3=4+7≈14(米),答:无人机飞行的高度约为14米.一十一.列表法与树状图法(共1小题)13.(2021•宿迁)即将举行的2022年杭州亚运会吉祥物“宸宸”、“琮琮”、“莲莲”,将三张正面分别印有以上3个吉祥物图案的卡片(卡片的形状、大小、质地都相同)背面朝上、洗匀.(1)若从中任意抽取1张,抽得卡片上的图案恰好为“莲莲”的概率是 .(2)若先从中任意抽取1张,记录后放回,洗匀,再从中任意抽取1张,求两次抽取的卡片图案相同的概率.(请用树状图或列表的方法求解)【答案】见试题解答内容【解答】解:(1)从中任意抽取1张,抽得卡片上的图案恰好为“莲莲”的概率是,故答案为:;(2)把吉祥物“宸宸”、“琮琮”、“莲莲”三张卡片分别记为A、B、C,画树状图如图:共有9种等可能的结果,两次抽取的卡片图案相同的结果有3种,∴两次抽取的卡片图案相同的概率为=.。

2023中考数学----实数的运算知识回顾及专项练习题(含答案解析)

2023中考数学----实数的运算知识回顾及专项练习题(含答案解析)

知识回顾2023中考数学----实数的运算知识回顾及专项练习题(含答案解析)1. 实数的运算法则:先乘方,再乘除,最后加减。

有括号的先算括号,先算小括号,再算中括号,最后算大括号。

2. 绝对值的运算:()()⎩⎨⎧≤−≥=00a a a a a ,常考形式:()小大−=−b a 。

3. 根式的化简运算:①利用二次根式的乘除法逆运算化简。

乘除法:ab b a =⋅;b aba =; ②a a =2;③a a =33。

③分母有理化。

即()()b a ba ba b a b a ba −=±=± 1。

④二次根式的加减法:()m b a m b m ±=±。

4. 0次幂、负整数指数幂以及﹣1的奇偶次幂的运算:①()010≠=a a ;②n n a a 1=−;③11−=−n ;④()()()⎩⎨⎧−=−是奇数是偶数n n n111。

5. 特殊角的锐角三角函数值计算:专题练习1.(2022•内蒙古)计算:(﹣21)﹣1+2cos30°+(3﹣π)0﹣38−. 【分析】直接利用负整数指数幂的性质、特殊角的三角函数值、零指数幂的性质、立方根的性质分别化简,再计算得出答案. 【解答】解:原式=﹣2+2×+1+2=﹣2++1+2=+1.2.(2022•菏泽)计算:(21)﹣1+4cos45°﹣8+(2022﹣π)0. 【分析】直接利用负整数指数幂的性质以及特殊角的三角函数值、零指数幂的性质、二次根式的性质分特殊角30°45°60°a sin2122 23 a cos23 22 21a tan33 13别化简,进而合并得出答案. 【解答】解:原式=2+4×﹣2+1=2+2﹣2+1=3.3.(2022•郴州)计算:(﹣1)2022﹣2cos30°+|1﹣3|+(31)﹣1. 【分析】先化简各式,然后再进行计算即可解答. 【解答】解:(﹣1)2022﹣2cos30°+|1﹣|+()﹣1=1﹣2×+﹣1+3=1﹣+﹣1+3=3.4.(2022•深圳)(π﹣1)0﹣9+2cos45°+(51)﹣1. 【分析】利用零指数幂,特殊三角函数及负整数指数幂计算即可. 【解答】解:原式=1﹣3+×+5=3+1=4.5.(2022•沈阳)计算:12﹣3tan30°+(21)﹣2+|3﹣2|. 【分析】先计算开方运算、特殊三角函数值、负整数指数幂的运算及绝对值的运算,再合并即可. 【解答】解:原式=2﹣3×+4+2﹣=2﹣+4+2﹣=6.6.(2022•广安)计算:(36﹣1)0+|3﹣2|+2cos30°﹣(31)﹣1. 【分析】先计算零指数幂和负整数指数幂、去绝对值符号、代入三角函数值,再计算乘法,继而计算加减即可.【解答】解:原式=1+2﹣+2×﹣3=1+2﹣+﹣3=0.7.(2022•贺州)计算:()23−+|﹣2|+(5﹣1)0﹣tan45°.【分析】利用零指数幂和特殊角的三角函数值进行化简,可求解. 【解答】解:+|﹣2|+(﹣1)0﹣tan45°=3+2+1﹣1 =5.8.(2022•广元)计算:2sin60°﹣|3﹣2|+(π﹣10)0﹣12+(﹣21)﹣2. 【分析】根据特殊角的三角函数值,绝对值,零指数幂,二次根式的化简,负整数指数幂计算即可. 【解答】解:原式=2×+﹣2+1﹣2+=+﹣2+1﹣2+4=3.9.(2022•娄底)计算:(2022﹣π)0+(21)﹣1+|1﹣3|﹣2sin60°. 【分析】先计算零次幂、负整数指数幂,再化简绝对值、代入特殊角的三角函数值算乘法,最后算加减. 【解答】解:原式=1+2+﹣1﹣2×=1+2+﹣1﹣=2.10.(2022•新疆)计算:(﹣2)2+|﹣3|﹣25+(3﹣3)0.【分析】直接利用零指数幂的性质以及绝对值的性质、二次根式的性质分别化简,进而得出答案. 【解答】解:原式=4+﹣5+1=.11.(2022•怀化)计算:(3.14﹣π)0+|2﹣1|+(21)﹣1﹣8. 【分析】根据零指数幂,绝对值,负整数指数幂,二次根式的化简计算即可. 【解答】解:原式=1+﹣1+2﹣2=2﹣.12.(2022•北京)计算:(π﹣1)0+4sin45°﹣8+|﹣3|.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、二次根式的性质、绝对值的性质分别化简,进而合并得出答案. 【解答】解:原式=1+4×﹣2+3=1+2﹣2+3=4.13.(2022•泸州)计算:(3)0+2﹣1+2cos45°﹣|﹣21|. 【分析】根据实数的运算法则,绝对值,零指数幂,负整数指数幂,特殊角的三角函数值直接计算即可. 【解答】解:原式=1++×﹣=1++1﹣ =1+1 =2.14.(2022•德阳)计算:12+(3.14﹣π)0﹣3tan60°+|1﹣3|+(﹣2)﹣2. 【分析】利用零指数幂,负整数指数幂,特殊角的三角函数值,即可解决问题. 【解答】解:原式=2+1﹣3×+﹣1+=2+1﹣3+﹣1+=.15.(2022•遂宁)计算:tan30°+|1﹣33|+(π﹣33)0﹣(31)﹣1+16.【分析】根据特殊角的三角函数值、去绝对值的方法、零指数幂、负整数指数幂和算术平方根可以解答本题.【解答】解:tan30°+|1﹣|+(π﹣)0﹣()﹣1+=+1﹣+1﹣3+47。

2020年中考数学试题分类:实数的运算填空题解析

2020年中考数学试题分类:实数的运算填空题解析

2020年中考数学试题分类汇编之一实数的运算填空题解析1.(2020小的整数 . 【解析】14942<<<,可得2或3均可,故答案不唯一,2或3都对2.(2020安徽)(51= 2 .【解答】解:原式312=-=.故答案为:2.3.(2020= * .4.(2020福建)计算:8-=__________.【答案】85.(2020福建)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100+米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为_________米.【答案】10907-【详解】解:∵高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100+米, ∴“海斗一号”下潜至最大深度10907米处,可记为-10907,6.(2020陕西)计算:(2+ 3)(2﹣3)= 1 .【分析】先利用平方差公式展开得到原式=22﹣(3)2,再利用二次根式的性质化简,然后进行减法运算.【解答】解:原式=22﹣(3)2=4﹣3=1.7.(2020哈尔滨)(3分)将数4790000用科学记数法表示为 64.7910⨯ .【解答】解:64790000 4.7910=⨯,故答案为:64.7910⨯.8.(2020哈尔滨)(3的结果是【解答】解:原式==.故答案为:.9.(2020天津)计算1)+的结果等于_______.答案:610.(2020==,则ab =_________.【答案】6【详解】-==∴a=3,b=2 ∴ab =6故答案为:6.11.(2020河南)请写出一个大于1且小于2的无理数: .(答案不唯一).12.(2020乐山)用“>”或“<”符号填空:7-______9-.【答案】>13.(2020南京)(2分)写出一个负数,使这个数的绝对值小于3: (答案不唯一) . 答案为:-2(答案不唯一).14.(2020湖北黄冈)计算:= ▲ .【答案】﹣2.15.(2020山东青岛)计算的结果是___.解:2=4-. 故答案为4.16.(2020南京)(2分)纳秒()ns 是非常小的时间单位,9110ns s -=.北斗全球导航系统的授时精度优于20ns .用科学记数法表示20ns 是 8210-⨯ s .17.(2020南京)(2的结果是 3. 18.(2020无锡)2019年我市地区生产总值逼近12000亿元,用科学记数法表示12000 是__________.【答案】41.210⨯19.(2020齐齐哈尔)((3分)2020年初新冠肺炎疫情发生以来,近4000000名城乡社区工作者奋战在中国大地的疫情防控一线.将数据4000000用科学记数法表示为 4×106 . 解:将数据4000000用科学记数法表示为4×106,20.(2020湖北武汉)计算2(3)-的结果是_______.【答案】321.(2020重庆A 卷)计算:0(1)|2|π-+-=__________.【答案】322.(2020重庆B 卷)计算: = . 答案3.14.(2020重庆B 卷)经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人,请把数94000000用科学记数法表示为 .答案9.4×107. 23.(2020四川南充)(4分)计算:|1|+20= .解:原式1+1. 故答案为:. 24.(2020甘肃定西)如果盈利100元记作+100元,那么亏损50元记作_________元. 答案:-5025.(2020辽宁抚顺)(3分)截至2020年3月底,我国已建成5G 基站198000个,将数据198000用科学记数法表示为 1.98×105 .26.(2020黑龙江牡丹江)(3分)新冠肺炎疫情期间,全国各地约42000名医护人员驰援湖北.请将数42000用科学记数法表示为 44.210⨯ .答案为:44.210⨯.27.(2020江苏连云港)(3分)我市某天的最高气温是4C ︒,最低气温是1C ︒-,则这天的日温差是 5 C ︒.解:4(1)415--=+=.故答案为:5.28.(2020江苏连云港)(3分)“我的连云港” APP 是全市统一的城市综合移动应用服务端.一年来,实名注册用户超过1600000人.数据“1 600 000”用科学记数法表示为 61.610⨯ . 解:数据“1600000”用科学记数法表示为61.610⨯, 故答案为:61.610⨯.29.(2020黑龙江龙东)(3分)5G 信号的传播速度为300000000/m s ,将数据300000000用科学记数法表示为 8310⨯ .解:8300000000310=⨯.故答案为:8310⨯.30.(2020江苏泰州)(3分)9的平方根等于 3± .解:2(3)9±=,9∴的平方根是3±.故答案为:3±.31.(2020江苏泰州)(3分)据新华社2020年5月17日消息,全国各地和军队约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学记数法表示为 44.2610⨯ . 解:将42600用科学记数法表示为44.2610⨯,故答案为:44.2610⨯.32.(2020四川遂宁)(4分)下列各数3.1415926,,1.212212221…,71,2﹣π,﹣2020,中,无理数的个数有 3 个.解:在所列实数中,无理数有1.212212221…,2﹣π,这3个,故答案为:3. 33.(2020广西南宁)(3分)计算:12﹣3= 3 .解:12-3=23﹣3=3. 故答案为:3.34.(3分)(2020•玉林)计算:0﹣(﹣6)= 6 .解:原式=0+6=6.故答案为:6.35.(3分)(2020•常德)计算: 3 .解:原式2=3.故答案为:3.36.(3分)(2020•徐州)7的平方根是±.解:7的平方根是±.故答案为:±.37.(3分)(2020•徐州)原子很小,1个氧原子的直径大约为0.000000000148m,将0.000000000148用科学记数法表示为 1.48×10﹣10.解:0.000000000148=1.48×10﹣10.故答案为:1.48×10﹣10.38.(2020贵州遵义)(4分)计算:的结果是.解:2.39.(3分)(2020•荆门)计算:tan45°+(﹣2020)0﹣()﹣1=.解:原式=21+1故答案为:.40.(3分)(2020•烟台)5G是第五代移动通信技术,其网络下载速度可以达到每秒1300000KB 以上,正常下载一部高清电影约需1秒.将1300000用科学记数法表示为 1.3×106.解:将数据1300000用科学记数法可表示为:1.3×106.故答案为:1.3×106.41.(2020山西)(3分)计算:(3+2)2﹣24=5.解:原式=3+26+2﹣26=5.的相反数是_________.42.(2020东莞)3答案:343.(2020四川自贡)(4分)与2最接近的自然数是2.解:∵3.54,∴1.52<2,∴与2最接近的自然数是2.故答案为:2.44.(2020青海)(4分)(﹣3+8)的相反数是﹣5;16的平方根是±2.45.(2020青海)(2分)岁末年初,一场突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,全国人民团结一心、众志成城,取得了抗击疫情的阶段性胜利;据科学研究表明,新型冠状病毒颗粒的最大直径为125纳米;125纳米用科学记数法表示为 1.25×10﹣7米.(1纳米=10﹣9米)46.(2020山东滨州)(5在实数范围内有意义,则x的取值范围为x.547.(2020云南)(3分)中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为﹣8吨.48.(2020浙江宁波)(5分)实数8的立方根是2.。

中考数学专题复习1实数的运算(原卷版)

中考数学专题复习1实数的运算(原卷版)

实数的运算复习考点攻略考点01 有理数1.整数和分数统称为有理数。

(有限小数与无限循环小数都是有理数。

)2.正整数、0、负整数统称为整数。

正分数、负分数统称分数。

3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

4.正数和负数表示相反意义的量。

【注意】0既不是正数,也不是负数。

【例1】.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升【例2】已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克收2元。

圆圆在该快递公司寄一件8千克的物品,需要付费( )。

A.17元B.19元C.21元D.23元考点02 数轴1.数轴的三要素:原点、正方向、单位长度。

数轴是一条直线。

2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

【例3】如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C 表示的数是()A.﹣0.5B.﹣1.5C.0D.0.5考点03 相反数、绝对值和倒数1.在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:a。

2.一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩3. 乘积为1的两个数互为倒数。

正数的倒数为正数,负数的倒数为负数,0没 有倒数。

倒数是本身的只有1和-1。

4. 倒数性质:(1)若a 与b 互为倒数,则a·b=1;反之,若a·b=1,则a 与b 互为倒数。

(2)若a 与b 互为负倒数,则a·b=-1;反之,若a·b= -1则a 与b 互为倒数。

专题01 实数的概念及运算(共50题)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题01 实数的概念及运算(共50题)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题01实数的概念及运算(50题)一、单选题1.(2023·四川德阳·统考中考真题)下列各数中,是无理数的是()A .2023-B .2023C .0D .12023【答案】B【分析】根据无理数的定义判断即可.【详解】解:0,2023-,12023为有理数,2023为无理数.故选:B .【点睛】本题考查了无理数的概念即无限不循环小数为无理数,掌握其概念是解题的关键.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001……,等有这样规律的数.2.(2023·山东·统考中考真题)实数10 1.53π-,,,中无理数是()A .πB .0C .13-D .1.5【答案】A【分析】根据无理数的概念求解.【详解】解:实数1,0,,1.53π-中,π是无理数,而10,,1.53-是有理数;故选A .【点睛】本题主要考查无理数,熟练掌握无理数的概念是解题的关键.3.(2023·贵州·统考中考真题)5的绝对值是()A .5±B .5C .5-D .5【答案】B【分析】正数的绝对值是它本身,由此可解.【详解】解:5的绝对值是5,故选B .【点睛】本题考查绝对值,解题的关键是掌握正数的绝对值是它本身.4.(2023·湖北荆州·统考中考真题)在实数1-,3,12,3.14中,无理数是()A .1-B .3C .12D .3.14【答案】B∴2023的值介于40与45之间.故选D .【点睛】本题主要考查了估算无理数的大小,正确估算无理数的取值范围是解题关键.8.(2023·湖南·统考中考真题)下列各数中,是无理数的是()A .17B .πC .1-D .0【答案】B【分析】根据无理数的定义解答即可.【详解】解:A .17是分数,属于有理数,故本选项不符合题意;B .π是无限不循环小数是无理数,故本选项符合题意;C .1-是整数,属于有理数,故本选项不符合题意;D .0是整数,属于有理数,故本选项不符合题意.故选:B .【点睛】本题考查的是无理数,熟知无限不循环小数叫做无理数是解题的关键.9.(2023·湖南·统考中考真题)2023的倒数是()A .2023-B .2023C .12023D .12023-【答案】C【分析】直接利用倒数的定义,即若两个不为零的数的积为1,则这两个数互为倒数,即可一一判定.【详解】解:2023的倒数为12023.故选C .【点睛】此题主要考查了倒数的定义,熟练掌握和运用倒数的求法是解决本题的关键.10.(2023·浙江杭州·统考中考真题)22(2)2-+=()A .0B .2C .4D .8【答案】D【分析】先计算乘方,再计算加法即可求解.【详解】解:22(2)2448-+=+=,故选:D .【点睛】本题考查有理数度混合运算,熟练掌握有理数乘方运算法则是解题的关键.11.(2023·湖南常德·统考中考真题)下面算法正确的是()【答案】A【分析】根据相反数的定义直接求解.【详解】解:10的相反数是-10.故选:A.【点睛】本题主要考查了相反数的定义,熟练掌握相反数的定义是解答本题的关键.15.(2023·宁夏·统考中考真题) 23-的绝对值是()A.32-B.32C.23D.23-【答案】C【分析】根据绝对值的性质解答即可.【详解】22 33 -=,故选:C.【点睛】本题考查了绝对值,掌握绝对值的性质是解答本题的关键.16.(2023·山东东营·统考中考真题)2-的相反数是()A.2B.2-C.12D.12-【答案】A【分析】利用相反数的定义判断即可.【详解】解:2-的相反数是2故选:A.【点睛】此题考查了相反数的定义,熟练掌握相反数的定义是解本题的关键.17.(2023·湖南常德·统考中考真题)实数3的相反数是()A.3B.13C.13-D.3-【答案】D【分析】根据相反数的定义进行判断即可.【详解】解:实数3的相反数3-,故D正确.故选:D.【点睛】本题考查了相反数的定义,熟练掌握知识点,只有符号不同的两个数互为相反数,是解题关键.18.(2023·湖南张家界·统考中考真题)12023的相反数是()【点睛】本题考查了绝对值,解题的关键在于熟练掌握绝对值的性质,负数的绝对值等于这个负数的相反数.22.(2023·湖北恩施·统考中考真题)如图,数轴上点A 所表示的数的相反数是()A .9B .19-C .19D .9-【答案】D【分析】先根据数轴得到A 表示的数,再求其相反数即可.【详解】解:由数轴可知,点A 表示的数是9,相反数为9-,故选:D .【点睛】本题考查数轴和相反数,掌握相反数的定义是解题的关键.23.(2023·内蒙古通辽·统考中考真题)2023的相反数是()A .12023B .2023-C .2023D .12023-【答案】B【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:2023的相反数是2023-,故选:B .【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.24.(2023·四川雅安·统考中考真题)在0,12,3-,2四个数中,负数是()A .0B .12C .3-D .2【答案】C【分析】根据负数的定义∶比0小的数叫做负数,即可得出答案.【详解】解:0既不是正数也不是负数,3-是负数,12和2是正数,故选:C .【点睛】本题考查了正数和负数,掌握在正数前面加负号是负数是解题的关键.25.(2023·吉林长春·统考中考真题)实数a 、b 、c 、d 伍数轴上对应点位置如图所示,这四个数中绝对值最小的是()A .aB .b【答案】B【分析】根据绝对值的意义即可判断出绝对值最小的数【详解】解:由图可知,3a >,01b <<,比较四个数的绝对值排除a 和d ,根据绝对值的意义观察图形可知,c 离原点的距离大于<b c ∴A .点P B .点Q 【答案】B【分析】根据先估算7的大小,看它介于哪两个整数之间,从而得解.【详解】解:∵479<<∴479<<,即273<<,∴数轴上表示实数7的点可能是Q ,故选:B .【点睛】本题考查无理数的大小估算,推出7介于哪两个整数之间是解题的关键.28.(2023·山东临沂·统考中考真题)在实数, , a b c 中,若0,0a b b c c a +=->->,则下列结论:①|a |>|b |,②0a >,③0b <,④0c <,正确的个数有()A .1个B .2个C .3个D .4个【答案】A【分析】根据相反数的性质即可判断①,根据已知条件得出b c a >>,即可判断②③,根据=-b a ,代入已知条件得出0c <,即可判断④,即可求解.【详解】解:∵0a b +=∴a b =,故①错误,∵0,0a b b c c a +=->->∴b c a >>,又0a b +=∴0,0a b <>,故②③错误,∵0a b +=∴=-b a∵0b c c a ->->∴a c c a -->-∴c c->∴0c <,故④正确或借助数轴,如图所示,故选:A .【点睛】本题考查了不等式的性质,实数的大小比较,借助数轴比较是解题的关键.29.(2023·山东·统考中考真题)面积为9的正方形,其边长等于()∴23更接近5,∴23在4.5和5之间,故选:C .【点睛】此题主要考查了无理数的大小估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.32.(2023·湖北宜昌·统考中考真题)下列运算正确的个数是().①|2023|2023=;②20231︒=;③1203232120-=;④220232023=.A .4B .3C .2D .1【答案】A【分析】根据()()()0000a a a a a a ⎧>⎪==⎨⎪-<⎩,()010a a =≠,()10pp a a a -=≠、2a a =,进行逐一计算即可.【详解】解:①20230> ,20232023∴=,故此项正确;②20230≠ ,∴20231︒=,故此项正确;③1203232120-=,此项正确;④2202320232023==,故此项正确;∴正确的个数是4个.故选:A .【点睛】本题考查了实数的运算,掌握相关的公式是解题的关键.33.(2023·内蒙古赤峰·统考中考真题)化简()20--的结果是()A .120-B .20C .120D .20-【答案】B【分析】()20--表示20-的相反数,据此解答即可.【详解】解:()2020--=,故选:B【点睛】此题考查了相反数,熟练掌握相反数的定义是解题的关键.A.a B.b【答案】C【分析】根据数轴可直接进行求解.【详解】解:由数轴可知点C离原点最近,所以在∴()20230320a b a b c ⎧-=⎪⎪--=⎨⎪-=⎪⎩,∴0230320a b a b c ⎧-=⎪--=⎨⎪-=⎩解得3332a b c ⎧=⎪=⎨⎪=⎩,∴222+=a b c ,且a b =,∴ABC 为等腰直角三角形,故选:D .【点睛】本题考查了非负性和勾股定理逆定理的知识,求解的关键是熟练掌握非负数的和为0,每一个非负数均为0,和勾股定理逆定理.37.(2023·山东·统考中考真题)实数a ,b ,c 在数轴上对应点的位置如图所示,下列式子正确的是()A .()0c b a -<B .()0b c a -<C .()0a b c ->D .()0a cb +>【答案】C【分析】根据数轴可得,0a b c <<<,再根据0a b c <<<逐项判定即可.【详解】由数轴可知0a b c <<<,∴()0c b a ->,故A 选项错误;∴()0b c a ->,故B 选项错误;∴()0a b c ->,故C 选项正确;∴()0a c b +<,故D 选项错误;故选:C .【点睛】本题考查实数与数轴,根据0a b c <<<进行判断是解题关键.38.(2023·浙江杭州·统考中考真题)已知数轴上的点,A B 分别表示数,a b ,其中10a -<<,01b <<.若a b c ⨯=,数c 在数轴上用点C 表示,则点,,A B C 在数轴上的位置可能是()A .B .C .D .【答案】B【分析】先由10a -<<,01b <<,a b c ⨯=,根据不等式性质得出0a c <<,再分别判定即可.【详解】解:∵10a -<<,01b <<,∴0a ab <<∵a b c ⨯=∴0a c <<A 、01bc <<<,故此选项不符合题意;B 、0a c <<,故此选项符合题意;C 、1c >,故此选项不符合题意;D 、1c <-,故此选项不符合题意;故选:B .【点睛】本题考查用数轴上的点表示数,不等式性质,由10a -<<,01b <<,a b c ⨯=得出0a c <<是解题的关键.二、填空题【答案】5m /5米【分析】由正方形的边长是其面积的算术平方根可得答案.【详解】解:一块面积为25m 的正方形桌布,其边长为5m ,故答案为:5m【点睛】本题考查的是算术平方根的含义,理解题意,利用算术平方根的含义表示正方形的边长是解本题的关键.41.(2023·湖北黄冈·统考中考真题)计算;()02113⎛⎫-+=⎪⎝⎭.【答案】2【分析】1-的偶数次方为1,任何不等于0的数的零次幂都等于1,由此可解.【详解】解:()02111123⎛⎫-+=+= ⎪⎝⎭,故答案为:2.【点睛】本题考查有理数的乘方、零次幂,解题的关键是掌握:1-的偶数次方为1,奇数次方为1-;任何不等于0的数的零次幂都等于1.42.(2023·四川巴中·统考中考真题)在210,,π,23⎛⎫--- ⎪⎝⎭四个数中,最小的实数是.【答案】π-【分析】先计算出21319-=⎛⎫ ⎪⎝⎭,再根据比较实数的大小法则即可.【详解】解:21319-=⎛⎫ ⎪⎝⎭,π 3.14-≈-,故21π203⎛⎫-<-<<- ⎪⎝⎭,故答案为:π-.【点睛】本题考查了平方的定义及比较实数的大小法则,熟练运用比较实数的大小法则是解题的关键.43.(2023·内蒙古·统考中考真题)若,a b 为两个连续整数,且3a b <<,则a b +=.【答案】3【详解】解: 0.5-,2-,3三个数中,只有3是正数,∴3最大.0.50.5-= ,22-=,0.5<2∴,0.5>-2∴-.2∴-最小.故答案为:2-.【点睛】本题考查了有理数比较大小,解题的关键在于熟练掌握有理数比较大小的方法:正数始终大于负数;两个负数比较,绝对值大的反而小.47.(2023·湖北荆州·统考中考真题)若21(3)0a b -+-=,则a b +=.【答案】2【分析】根据绝对值的非负性,平方的非负性求得,a b 的值进而求得a b +的算术平方根即可求解.【详解】解:∵21(3)0a b -+-=,∴10,30a b -=-=,解得:1,3a b ==,∴132a b +=+=,故答案为:2.【点睛】本题考查了求一个数的算术平方根,熟练掌握绝对值的非负性,平方的非负性求得,a b 的值是解题的关键.48.(2023·湖南·统考中考真题)已知实数a ,b 满足()2210a b -++=,则b a =.【答案】12【分析】由非负数的性质可得20a -=且10b +=,求解a ,b 的值,再代入计算即可.【详解】解:∵()2210a b -++=,∴20a -=且10b +=,解得:2a =,1b =-;∴1122b a -==;故答案为:12.①按键的结果为②按键的结果为③按键的结果为④按键的结果为以上说法正确的序号是.①按键的结果为②按键的结果为③按键的结果为④按键的结果为2132102⎛⎫-⨯= ⎪⎝⎭;故④不正确,不符合题意;综上:正确的有①③.故答案为:①③.【点睛】本题主要考查了科学计算器是使用,解题的关键是熟练掌握和了解科学计算器各个按键的含义.。

湖南省岳阳市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类

湖南省岳阳市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类

湖南省岳阳市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.实数的运算(共2小题)1.(2021•岳阳)计算:(﹣1)2021+|﹣2|+4sin30°﹣(﹣π)0.2.(2023•岳阳)计算:22﹣tan60°+|﹣1|﹣(3﹣π)0.二.代数式求值(共1小题)3.(2022•岳阳)已知a2﹣2a+1=0,求代数式a(a﹣4)+(a+1)(a﹣1)+1的值.三.分式方程的应用(共2小题)4.(2023•岳阳)水碧万物生,岳阳龙虾好.小龙虾产业已经成为岳阳乡村振兴的“闪亮名片”.已知翠翠家去年龙虾的总产量是4800kg,今年龙虾的总产量是6000kg,且去年与今年的养殖面积相同,平均亩产量去年比今年少60kg,求今年龙虾的平均亩产量.5.(2021•岳阳)星期天,小明与妈妈到离家16km的洞庭湖博物馆参观.小明从家骑自行车先走,1h后妈妈开车从家出发,沿相同路线前往博物馆,结果他们同时到达.已知妈妈开车的平均速度是小明骑自行车平均速度的4倍,求妈妈开车的平均速度.四.解一元一次不等式组(共1小题)6.(2023•岳阳)解不等式组:.五.反比例函数与一次函数的交点问题(共3小题)7.(2023•岳阳)如图,反比例函数y=(k为常数,k≠0)与正比例函数y=mx(m为常数,m≠0)的图象交于A(1,2),B两点.(1)求反比例函数和正比例函数的表达式;(2)若y轴上有一点C(0,n),△ABC的面积为4,求点C的坐标.8.(2022•岳阳)如图,反比例函数y=(k≠0)与正比例函数y=mx(m≠0)的图象交于点A(﹣1,2)和点B,点C是点A关于y轴的对称点,连接AC,BC.(1)求该反比例函数的解析式;(2)求△ABC的面积;(3)请结合函数图象,直接写出不等式<mx的解集.9.(2021•岳阳)如图,已知反比例函数y=(k≠0)与正比例函数y=2x的图象交于A (1,m),B两点.(1)求该反比例函数的表达式;(2)若点C在x轴上,且△BOC的面积为3,求点C的坐标.六.矩形的判定(共1小题)10.(2023•岳阳)如图,点M 在▱ABCD 的边AD 上,BM =CM ,请从以下三个选项中①∠1=∠2;②AM =DM ;③∠3=∠4,选择一个合适的选项作为已知条件,使▱ABCD 为矩形.(1)你添加的条件是 (填序号);(2)添加条件后,请证明▱ABCD 为矩形.七.特殊角的三角函数值(共1小题)11.(2022•岳阳)计算:|﹣3|﹣2tan45°+(﹣1)2022﹣(﹣π)0.八.扇形统计图(共1小题)12.(2021•岳阳)国务院教育督导委员会办公室印发的《关于组织责任督学进行“五项管理”督导的通知》指出,要加强中小学生作业、睡眠、手机、读物、体质管理.某校数学社团成员采用随机抽样的方法,抽取了八年级部分学生,对他们一周内平均每天的睡眠时间t (单位:h )进行了调查,将数据整理后得到下列不完整的统计图表:组别睡眠时间分组频数频率At <640.08B6≤t <780.16C7≤t <810a D8≤t <9210.42Et ≥9b 0.14请根据图表信息回答下列问题:(1)频数分布表中,a = ,b = ;(2)扇形统计图中,C 组所在扇形的圆心角的度数是  °;(3)请估算该校600名八年级学生中睡眠不足7小时的人数;(4)研究表明,初中生每天睡眠时长低于7小时,会严重影响学习效率.请你根据以上调查统计结果,向学校提出一条合理化的建议.九.列表法与树状图法(共1小题)13.(2022•岳阳)守护好一江碧水,打造长江最美岸线.江豚,麋鹿,天鹅已成为岳阳“吉祥三宝”的新名片.某校生物兴趣小组设计了3张环保宣传卡片,正面图案如图所示,它们除此之外完全相同.(1)将这3张卡片背面朝上,洗匀,从中随机抽取一张,则抽取的卡片正面图案恰好是“麋鹿”的概率为 ;(2)将这3张卡片背面朝上,洗匀,从中随机抽取一张,不放回,再从剩余的两张卡片中随机抽取一张,请用列表或画树状图的方法,求抽取的卡片正面图案恰好是“江豚”和“天鹅”的概率.湖南省岳阳市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.实数的运算(共2小题)1.(2021•岳阳)计算:(﹣1)2021+|﹣2|+4sin30°﹣(﹣π)0.【答案】2.【解答】解:原式=﹣1+2+4×﹣1=﹣1+2+2﹣1=2.2.(2023•岳阳)计算:22﹣tan60°+|﹣1|﹣(3﹣π)0.【答案】2.【解答】解:22﹣tan60°+|﹣1|﹣(3﹣π)0.=4﹣+﹣1﹣1=2.二.代数式求值(共1小题)3.(2022•岳阳)已知a2﹣2a+1=0,求代数式a(a﹣4)+(a+1)(a﹣1)+1的值.【答案】﹣2.【解答】解:a(a﹣4)+(a+1)(a﹣1)+1=a2﹣4a+a2﹣1+1=2a2﹣4a=2(a2﹣2a),∵a2﹣2a+1=0,∴a2﹣2a=﹣1,∴原式=2×(﹣1)=﹣2.三.分式方程的应用(共2小题)4.(2023•岳阳)水碧万物生,岳阳龙虾好.小龙虾产业已经成为岳阳乡村振兴的“闪亮名片”.已知翠翠家去年龙虾的总产量是4800kg,今年龙虾的总产量是6000kg,且去年与今年的养殖面积相同,平均亩产量去年比今年少60kg,求今年龙虾的平均亩产量.【答案】300kg.【解答】解:设今年龙虾的平均亩产量为xkg,则去年龙虾的平均亩产量为(x﹣60)kg,根据题意得:=,解得:x=300,经检验,x=300是所列方程的解,且符合题意.答:今年龙虾的平均亩产量为300kg.5.(2021•岳阳)星期天,小明与妈妈到离家16km的洞庭湖博物馆参观.小明从家骑自行车先走,1h后妈妈开车从家出发,沿相同路线前往博物馆,结果他们同时到达.已知妈妈开车的平均速度是小明骑自行车平均速度的4倍,求妈妈开车的平均速度.【答案】见试题解答内容【解答】解:设小明骑自行车的平均速度为xkm/h,则妈妈开车的平均速度为4xkm/h,依题意得:﹣=1,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴4x=48.答:妈妈开车的平均速度为48km/h.四.解一元一次不等式组(共1小题)6.(2023•岳阳)解不等式组:.【答案】2<x<4.【解答】解:,解不等式①得:x>2,解不等式②得:x<4,故不等式组的解集为:2<x<4.五.反比例函数与一次函数的交点问题(共3小题)7.(2023•岳阳)如图,反比例函数y=(k为常数,k≠0)与正比例函数y=mx(m为常数,m≠0)的图象交于A(1,2),B两点.(1)求反比例函数和正比例函数的表达式;(2)若y轴上有一点C(0,n),△ABC的面积为4,求点C的坐标.【答案】(1),y=2x;(2)(0,4)或(0,﹣4).【解答】解:(1)将点A(1,2)代入,得:k=2,∴反比例函数的解析式为:,将点A(1,2)代入y=mx,得:m=2,∴正比例函数的解析式为:y=2x.(2)解方程组,得:,,∴点B的坐标为(﹣1,﹣2),过点A,B分别作y轴的垂线,垂足分别为E,F,∵A(1,2),B(﹣1,﹣2),C(0,n),∴AE=BF=1,OC=|n|,∵S△ABC=S△AOC+S△BOC=4,∴,即:|n|×1+|n×1=8,∴|n|=4,∴n=±4,∴点C的坐标为(0,4)或(0,﹣4).8.(2022•岳阳)如图,反比例函数y=(k≠0)与正比例函数y=mx(m≠0)的图象交于点A(﹣1,2)和点B,点C是点A关于y轴的对称点,连接AC,BC.(1)求该反比例函数的解析式;(2)求△ABC的面积;(3)请结合函数图象,直接写出不等式<mx的解集.【答案】(1)反比例函数的解析式为y=﹣;(2)4;(3)x<﹣1或0<x<1.【解答】解:(1)把点A(﹣1,2)代入y=(k≠0)得:2=,∴k=﹣2,∴反比例函数的解析式为y=﹣;(2)∵反比例函数y=(k≠0)与正比例函数y=mx(m≠0)的图象交于点A(﹣1,2)和点B,∴B(1,﹣2),∵点C是点A关于y轴的对称点,∴C(1,2),∴AC=2,∴S△ABC==4.(3)根据图象得:不等式<mx的解集为x<﹣1或0<x<1.9.(2021•岳阳)如图,已知反比例函数y=(k≠0)与正比例函数y=2x的图象交于A (1,m),B两点.(1)求该反比例函数的表达式;(2)若点C在x轴上,且△BOC的面积为3,求点C的坐标.【答案】(1)y=;(2)点C的坐标为(3,0)或(﹣3,0).【解答】解:(1)把A(1,m)代入y=2x中,得m=2,∴点A的坐标为(1,2),把点A(1,2)代入y=中,得k=2,∴反比例函数的解析式为y=;(2)过点B作BD垂直与x轴,垂足为D,设点C的坐标为(a,0),∵点A与点B关于原点对称,∴点B的坐标为(﹣1,﹣2),∴BD=|﹣2|=2,OC=|a|,S△BOC==,解得:a=3或a=﹣3,∴点C的坐标为(3,0)或(﹣3,0).六.矩形的判定(共1小题)10.(2023•岳阳)如图,点M在▱ABCD的边AD上,BM=CM,请从以下三个选项中①∠1=∠2;②AM=DM;③∠3=∠4,选择一个合适的选项作为已知条件,使▱ABCD为矩形.(1)你添加的条件是 ①② (填序号);(2)添加条件后,请证明▱ABCD为矩形.【答案】(1)①②;(2)见解析.【解答】(1)解:①当∠1=∠2时,▱ABCD为矩形;②当AM=DM时,▱ABCD为矩形,故答案为:①②;(2)证明:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴∠A+∠D=180°,在△ABM和DCM中,,∴△ABM≌DCM(SAS),∴∠A=∠D,∴∠A=∠D=90°,∴▱ABCD为矩形,方法二:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠A+∠D=180°,∵BM=CM,∴∠3=∠4,∵∠1=∠2,∴∠ABC=∠DCB,∵∠ABC+∠DCB=180°,∴∠ABC=90°,∴▱ABCD为矩形.七.特殊角的三角函数值(共1小题)11.(2022•岳阳)计算:|﹣3|﹣2tan45°+(﹣1)2022﹣(﹣π)0.【答案】1.【解答】解:|﹣3|﹣2tan45°+(﹣1)2022﹣(﹣π)0=3﹣2×1+1﹣1=3﹣2+1﹣1=1.八.扇形统计图(共1小题)12.(2021•岳阳)国务院教育督导委员会办公室印发的《关于组织责任督学进行“五项管理”督导的通知》指出,要加强中小学生作业、睡眠、手机、读物、体质管理.某校数学社团成员采用随机抽样的方法,抽取了八年级部分学生,对他们一周内平均每天的睡眠时间t(单位:h)进行了调查,将数据整理后得到下列不完整的统计图表:组别睡眠时间分组频数频率A t<640.08B6≤t<780.16C7≤t<810aD8≤t<9210.42E t≥9b0.14请根据图表信息回答下列问题:(1)频数分布表中,a= 0.2 ,b= 7 ;(2)扇形统计图中,C组所在扇形的圆心角的度数是 72 °;(3)请估算该校600名八年级学生中睡眠不足7小时的人数;(4)研究表明,初中生每天睡眠时长低于7小时,会严重影响学习效率.请你根据以上调查统计结果,向学校提出一条合理化的建议.【答案】(1)0.2,7;(2)72;(3)估计该校600名八年级学生中睡眠不足7小时的人数有144人;(4)学校应要求学生按时入睡,保证睡眠时间.【解答】解:(1)本次调查的同学共有:8÷0.16=50(人),a=10÷50=0.2,b=50﹣4﹣8﹣10﹣21=7,故答案为:0.2,7;(2)扇形统计图中C组所在扇形的圆心角的大小是:360°×=72°,故答案为:72;(3)600×=144(人),答:估计该校600名八年级学生中睡眠不足7小时的人数有144人;(4)学校应要求学生按时入睡,保证睡眠时间.九.列表法与树状图法(共1小题)13.(2022•岳阳)守护好一江碧水,打造长江最美岸线.江豚,麋鹿,天鹅已成为岳阳“吉祥三宝”的新名片.某校生物兴趣小组设计了3张环保宣传卡片,正面图案如图所示,它们除此之外完全相同.(1)将这3张卡片背面朝上,洗匀,从中随机抽取一张,则抽取的卡片正面图案恰好是“麋鹿”的概率为 ;(2)将这3张卡片背面朝上,洗匀,从中随机抽取一张,不放回,再从剩余的两张卡片中随机抽取一张,请用列表或画树状图的方法,求抽取的卡片正面图案恰好是“江豚”和“天鹅”的概率.【答案】(1);(2).【解答】解:(1)将这3张卡片背面朝上,洗匀,从中随机抽取一张,则抽取的卡片正面图案恰好是“麋鹿”的概率为,故答案为:;(2)将江豚,麋鹿,天鹅三张卡片分别记作①、②、③,列表如下:①②③①(②,①)(③,①)②(①,②)(③,②)③(①,③)(②,③)由表知,共有6种等可能结果,其中抽取的卡片正面图案恰好是“江豚”和“天鹅”的有2种结果,所以抽取的卡片正面图案恰好是“江豚”和“天鹅”的概率为=.。

中考数学模拟试题分类汇编实数的运算

中考数学模拟试题分类汇编实数的运算

实数的运算一、选择题 1、(2012年江西南昌十五校联考)计算3×(-2) 的结果是( )A .5B .-5C .6D .-6答案:D2、(2012年上海黄浦二模)计算()23-的结果是( )A .6;B .6-;C .9;D .9-; 答案:C3、下列运算结果正确的是( )A.6332a a a =⋅B.623)(a a -=-C.66a a a =÷D.632125)5(a a -=- 答案:D4、-2的绝对值等于 ( )A .2B . 1 2C .-2D .- 12答案:A7、对于非零的两个实数a 、b ,规定11a b b a⊕=-.若1(1)1x ⊕+=则x 的值为( ) A. 23 B. 1 C. 21- D. 21答案:C8、(2012山东省德州二模)估算224+的值( )A .在5和6之间B .在6和7之间C .在7和8之间D .在8和9之间 答案:B 9、(2012山东省德州二模) 如图,是一个简单的数值运算程序.当输入x 的值为-4,则输出的数值为_________答案:10 10、(2012山东省德州一模)下列计算中,正确的是 ( )(A )145=- (B )a a =2 (C )4= (D )236=答案:C11、(2012的结果是( ) 12、(2012江西高安) 在 3.14,,0.101001中,无理数的个数是( )输出 第2题图A .2B .3C .4D .5答案:A13.(2012年宿迁模拟)估计58的立方根的大小在 ( )A. 2与3之间B.3与4之间C. 4与5之间D. 5与6之间 14.(西城区2012初三一模).计算:2=( )A .-1B .-3C .3D .5答案:A15、(2012年4月韶山市初三质量检测)下列运算正确的是( )A .326a a a ⋅=B .336()x x =C .5510x x x +=D .5233()()ab ab a b -÷-=-答案:D16、(2012年中考数学新编及改编题试卷)化简:322)3(x x -的结果是( ) (A )53x - (B )518x (C )56x - (D )518x - 答案:C17、(2012年北京市顺义区一诊考试)下列运算正确的是( )A .22423a a a +=B .2242a a a -=C .22422a a a =D .2222a a a ÷= 答案:C18、(2012年北京市延庆县一诊考试)下列运算中正确的是( ) A .a 3a 2=a 6 B .(a 3)4= a 719、[河南开封2012年中招第一次模拟]按下面程序计算:输入x =-3,则输出的答案是 。

中考数学试卷题目分类汇总

中考数学试卷题目分类汇总

一、选择题1. 数与代数- 实数的运算- 代数式的化简- 分式的运算- 根据方程求未知数- 解不等式及不等式组- 函数的性质与应用2. 几何与图形- 直线、射线、线段的概念及性质- 角的概念及性质- 平行线、相交线、垂直线的判定- 四边形、多边形的概念及性质- 圆的概念及性质- 三角形的概念及性质,如三角形全等、相似3. 统计与概率- 数据的收集、整理、描述- 平均数、中位数、众数的计算- 概率的基本概念及计算- 事件的相互关系及概率的运算二、填空题1. 数与代数- 实数的性质及运算- 代数式的化简及求值 - 分式的化简及运算- 根据方程求未知数- 解不等式及不等式组2. 几何与图形- 几何图形的性质及判定 - 几何图形的变换- 几何问题的解决方法 - 圆的相关计算3. 统计与概率- 数据的描述及分析- 概率的计算与应用三、解答题1. 数与代数- 复杂方程的求解- 函数问题及实际应用 - 代数问题的综合应用 - 函数与几何的结合问题2. 几何与图形- 几何图形的证明- 几何问题的解决方法 - 几何图形的应用- 几何问题的综合应用3. 统计与概率- 统计数据的分析及处理- 概率的计算与应用- 统计与概率的实际问题四、实验题1. 数与代数- 使用计算器进行计算- 利用计算机软件进行数据处理2. 几何与图形- 利用计算机软件绘制几何图形- 利用计算机软件进行几何问题的探究3. 统计与概率- 利用计算机软件进行数据分析- 利用计算机软件进行概率问题的探究五、应用题1. 数与代数- 生活、生产、科技等领域的实际问题 - 经济、金融、物理等领域的实际问题2. 几何与图形- 建筑设计、城市规划等领域的实际问题 - 物理实验、天文观测等领域的实际问题3. 统计与概率- 社会调查、市场分析等领域的实际问题- 医学研究、生物统计等领域的实际问题总结:中考数学试卷题目分类汇总涵盖了数与代数、几何与图形、统计与概率三个主要模块,旨在考查学生对数学知识的掌握程度、应用能力及创新思维。

福建省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)

福建省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)

福建省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.实数的运算(共2小题)1.(2023•福建)计算:﹣20+|﹣1|.2.(2021•福建)计算:.二.分式的化简求值(共2小题)3.(2023•福建)先化简,再求值:(1﹣)÷,其中x=﹣1.4.(2022•福建)先化简,再求值:(1+)÷,其中a=+1.三.零指数幂(共1小题)5.(2022•福建)计算:+|﹣1|﹣20220.四.二元一次方程组的应用(共1小题)6.(2022•福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.五.解一元一次不等式组(共2小题)7.(2023•福建)解不等式组:.8.(2021•福建)解不等式组:.六.一次函数的应用(共1小题)9.(2021•福建)某公司经营某种农产品,零售一箱该农产品的利润是70元,批发一箱该农产品的利润是40元.(1)已知该公司某月卖出100箱这种农产品共获利润4600元,问:该公司当月零售、批发这种农产品的箱数分别是多少?(2)经营性质规定,该公司零售的数量不能多于总数量的30%.现该公司要经营1000箱这种农产品,问:应如何规划零售和批发的数量,才能使总利润最大?最大总利润是多少?七.全等三角形的判定与性质(共3小题)10.(2022•福建)如图,点B,F,C,E在同一条直线上,BF=EC,AB=DE,∠B=∠E.求证:∠A=∠D.11.(2021•福建)如图,在△ABC中,D是边BC上的点,DE⊥AC,DF⊥AB,垂足分别为E,F,且DE=DF,CE=BF.求证:∠B=∠C.12.(2023•福建)如图,OA=OC,OB=OD,∠AOD=∠COB.求证:AB=CD.八.切线的性质(共1小题)13.(2023•福建)如图,已知△ABC内接于⊙O,CO的延长线交AB于点D,交⊙O于点E,交⊙O的切线AF于点F,且AF∥BC.(1)求证:AO∥BE;(2)求证:AO平分∠BAC.九.弧长的计算(共1小题)14.(2022•福建)如图,△ABC内接于⊙O,AD∥BC交⊙O于点D,DF∥AB交BC于点E,交⊙O于点F,连接AF,CF.(1)求证:AC=AF;(2)若⊙O的半径为3,∠CAF=30°,求的长(结果保留π).一十.作图—复杂作图(共1小题)15.(2021•福建)如图,已知线段MN=a,AR⊥AK,垂足为A.(1)求作四边形ABCD,使得点B,D分别在射线AK,AR上,且AB=BC=a,∠ABC =60°,CD∥AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)设P,Q分别为(1)中四边形ABCD的边AB,CD的中点,求证:直线AD,BC,PQ相交于同一点.一十一.解直角三角形(共1小题)16.(2022•福建)如图,BD是矩形ABCD的对角线.(1)求作⊙A,使得⊙A与BD相切(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,设BD与⊙A相切于点E,CF⊥BD,垂足为F.若直线CF与⊙A 相切于点G,求tan∠ADB的值.一十二.列表法与树状图法(共1小题)17.(2021•福建)“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马A1,B1,C1,田忌也有上、中、下三匹马A2,B2,C2,且这六匹马在比赛中的胜负可用不等式表示如下:A1>A2>B1>B2>C1>C2(注:A>B表示A 马与B马比赛,A马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,即借助对阵(C2A1,A2B1,B2C1)获得了整场比赛的胜利,创造了以弱胜强的经典案例.假设齐王事先不打探田忌的“出马”情况,试回答以下问题:(1)如果田忌事先只打探到齐王首局将出“上马”,他首局应出哪种马才可能获得整场比赛的胜利?并求其获胜的概率;(2)如果田忌事先无法打探到齐王各局的“出马”情况,他是否必败无疑?若是,请说明理由;若不是,请列出田忌获得整场比赛胜利的所有对阵情况,并求其获胜的概率.福建省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.实数的运算(共2小题)1.(2023•福建)计算:﹣20+|﹣1|.【答案】3.【解答】解:原式=3﹣1+1=2+1=3.2.(2021•福建)计算:.【答案】.【解答】解:原式=2+3﹣﹣3=.二.分式的化简求值(共2小题)3.(2023•福建)先化简,再求值:(1﹣)÷,其中x=﹣1.【答案】.【解答】解:原式=•=﹣•=﹣,当时,原式==.4.(2022•福建)先化简,再求值:(1+)÷,其中a=+1.【答案】,.【解答】解:原式=÷=•=,当a=+1时,原式==.三.零指数幂(共1小题)5.(2022•福建)计算:+|﹣1|﹣20220.【答案】.【解答】解:原式=2+﹣1﹣1=.四.二元一次方程组的应用(共1小题)6.(2022•福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.【答案】见试题解答内容【解答】解:(1)设购买绿萝x盆,吊兰y盆,依题意得:,解得:.∵8×2=16,16<38,∴符合题意.答:购买绿萝38盆,吊兰8盆.(2)设购买绿萝m盆,则购买吊兰(46﹣m)盆,依题意得:m≥2(46﹣m),解得:m≥.设购买两种绿植的总费用为w元,则w=9m+6(46﹣m)=3m+276,∵3>0,∴w随m的增大而增大,又∵m≥,且m为整数,∴当m=31时,w取得最小值,最小值=3×31+276=369.答:购买两种绿植总费用的最小值为369元.五.解一元一次不等式组(共2小题)7.(2023•福建)解不等式组:.【答案】﹣3≤x<1.【解答】解:解不等式①,得x<1.解不等式②,得x≥﹣3.所以原不等式组的解集为﹣3≤x<1.8.(2021•福建)解不等式组:.【答案】1≤x<3.【解答】解:解不等式①,得:x≥1,解不等式②,得:x<3,则不等式组的解集为1≤x<3.六.一次函数的应用(共1小题)9.(2021•福建)某公司经营某种农产品,零售一箱该农产品的利润是70元,批发一箱该农产品的利润是40元.(1)已知该公司某月卖出100箱这种农产品共获利润4600元,问:该公司当月零售、批发这种农产品的箱数分别是多少?(2)经营性质规定,该公司零售的数量不能多于总数量的30%.现该公司要经营1000箱这种农产品,问:应如何规划零售和批发的数量,才能使总利润最大?最大总利润是多少?【答案】(1)该公司当月零售这种农产品20箱,批发这种农产品80箱;(2)该公司零售、批发这种农产品的箱数分别是300箱,700箱时,获得最大利润为49000元.【解答】解:(1)设该公司当月零售这种农产品x箱,则批发这种农产品(100﹣x)箱,依题意得70x+40(100﹣x)=4600,解得:x=20,100﹣20=80(箱),答:该公司当月零售这种农产品20箱,批发这种农产品80箱;(2)设该公司当月零售这种农产品m箱,则批发这种农产品(1000﹣m)箱,依题意得0<m≤1000×30%,解得0<m≤300,设该公司获得利润为y元,依题意得y=70m+40(1000﹣m),即y=30m+40000,∵30>0,y随着m的增大而增大,∴当m=300时,y取最大值,此时y=30×300+40000=49000(元),∴批发这种农产品的数量为1000﹣m=700(箱),答:该公司零售、批发这种农产品的箱数分别是300箱,700箱时,获得最大利润为49000元.七.全等三角形的判定与性质(共3小题)10.(2022•福建)如图,点B,F,C,E在同一条直线上,BF=EC,AB=DE,∠B=∠E.求证:∠A=∠D.【答案】证明见解答过程.【解答】证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠A=∠D.11.(2021•福建)如图,在△ABC中,D是边BC上的点,DE⊥AC,DF⊥AB,垂足分别为E,F,且DE=DF,CE=BF.求证:∠B=∠C.【答案】见试题解答内容【解答】证明:∵DE⊥AC,DF⊥AB,∴∠BFD=∠CED=90°,在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),∴∠B=∠C.12.(2023•福建)如图,OA=OC,OB=OD,∠AOD=∠COB.求证:AB=CD.【答案】见解析.【解答】证明:∵∠AOD=∠COB,∴∠AOD﹣∠BOD=∠COB﹣∠BOD,即∠AOB=∠COD.在△AOB和△COD中,,∴△AOB≌△COD(SAS),∴AB=CD.八.切线的性质(共1小题)13.(2023•福建)如图,已知△ABC内接于⊙O,CO的延长线交AB于点D,交⊙O于点E,交⊙O的切线AF于点F,且AF∥BC.(1)求证:AO∥BE;(2)求证:AO平分∠BAC.【答案】(1)见解析;(2)见解析.【解答】证明:(1)∵AF是⊙O的切线,∴AF⊥OA,即∠OAF=90°,∵CE是⊙O的直径,∴∠CBE=90°,∴∠OAF=∠CBE,∵AF∥BC,∴∠BAF=∠ABC,∴∠OAF﹣∠BAF=∠CBE﹣∠ABC,即∠OAB=∠ABE,∴AO∥BE;(2)∵∠ABE与∠ACE都是所对的圆周角,∴∠ABE=∠ACE,∵OA=OC,∴∠ACE=∠OAC,∴∠ABE=∠OAC,由(1)知,∠OAB=∠ABE,∴∠OAB=∠OAC,∴AO平分∠BAC.九.弧长的计算(共1小题)14.(2022•福建)如图,△ABC内接于⊙O,AD∥BC交⊙O于点D,DF∥AB交BC于点E,交⊙O于点F,连接AF,CF.(1)求证:AC=AF;(2)若⊙O的半径为3,∠CAF=30°,求的长(结果保留π).【答案】(1)证明过程见解析;(2).【解答】证明:(1)∵AD∥BC,DF∥AB,∴四边形ABED为平行四边形,∴∠B=∠D,∵∠AFC=∠B,∠ACF=∠D,∴∠AFC=∠ACF,∴AC=AF.(2)连接AO,CO,如图,由(1)得∠AFC=∠ACF,∵∠AFC==75°,∴∠AOC=2∠AFC=150°,∴的长l==.一十.作图—复杂作图(共1小题)15.(2021•福建)如图,已知线段MN=a,AR⊥AK,垂足为A.(1)求作四边形ABCD,使得点B,D分别在射线AK,AR上,且AB=BC=a,∠ABC =60°,CD∥AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)设P,Q分别为(1)中四边形ABCD的边AB,CD的中点,求证:直线AD,BC,PQ相交于同一点.【答案】见解答.【解答】(1)解:如图,四边形ABCD为所作;(2)证明:设PQ交AD于G,BC交AD于G′,∵DQ∥AP,∴=,∵DC∥AB,∴=,∵P,Q分别为边AB,CD的中点,∴DC=2DQ,AB=2AP,∴===,∴=,∴点G与点G′重合,∴直线AD,BC,PQ相交于同一点.一十一.解直角三角形(共1小题)16.(2022•福建)如图,BD是矩形ABCD的对角线.(1)求作⊙A,使得⊙A与BD相切(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,设BD与⊙A相切于点E,CF⊥BD,垂足为F.若直线CF与⊙A 相切于点G,求tan∠ADB的值.【答案】(1)作图见解答过程;(2).【解答】解:(1)根据题意作图如下:(2)设∠ADB=α,⊙A的半径为r,∵BD与⊙A相切于点E,CF与⊙A相切于点G,∴AE⊥BD,AG⊥CG,即∠AEF=∠AGF=90°,∵CF⊥BD,∴∠EFG=90°,∴四边形AEFG是矩形,又AE=AG=r,∴四边形AEFG是正方形,∴EF=AE=r,在Rt△AEB和Rt△DAB中,∠BAE+∠ABD=90°,∠ADB+∠ABD=90°,∴∠BAE=∠ADB=α,在Rt△ABE中,tan∠BAE=,∴BE=r•tanα,∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,又∠AEB=∠CFD=90°,∴△ABE≌△CDF,∴BE=DF=r•tanα,∴DE=DF+EF=r•tanα+r,在Rt△ADE中,tan∠ADE=,即DE•tanα=AE,∴(r•tanα+r)•tanα=r,即tan2α+tanα﹣1=0,∵tanα>0,∴tanα=,即tan∠ADB的值为.一十二.列表法与树状图法(共1小题)17.(2021•福建)“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马A1,B1,C1,田忌也有上、中、下三匹马A2,B2,C2,且这六匹马在比赛中的胜负可用不等式表示如下:A1>A2>B1>B2>C1>C2(注:A>B表示A 马与B马比赛,A马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,即借助对阵(C2A1,A2B1,B2C1)获得了整场比赛的胜利,创造了以弱胜强的经典案例.假设齐王事先不打探田忌的“出马”情况,试回答以下问题:(1)如果田忌事先只打探到齐王首局将出“上马”,他首局应出哪种马才可能获得整场比赛的胜利?并求其获胜的概率;(2)如果田忌事先无法打探到齐王各局的“出马”情况,他是否必败无疑?若是,请说明理由;若不是,请列出田忌获得整场比赛胜利的所有对阵情况,并求其获胜的概率.【答案】(1)田忌首局出“下马”才可能获得胜利,概率P=.(2)见上述解题过程.P=.【解答】解:(1)田忌首局应出“下马”才可能获胜,此时,比赛所有可能的对阵为:(A1C2,B1A2,C1B2),(A1C2,C1B2,B1A2),(A1C2,B1B2,C1A2),(A1C2,C1A2,B1B2),共四种,其中获胜的有两场,故此田忌获胜的概率为P=.(2)不是.当齐王的出马顺序为A1,B1,C1时,田忌获胜的对阵是:(A1C2,B1A2,C1B2),当齐王的出马顺序为A1,C1,B1时,田忌获胜的对阵是:(A1C2,C1B2,B1A2),当齐王的出马顺序为B1,A1,C1时,田忌获胜的对阵是:(B1A2,A1C2,C1B2),当齐王的出马顺序为B1,C1,A1时,田忌获胜的对阵是:(B1A2,C1B2,A1C2),当齐王的出马顺序为C1,A1,B1时,田忌获胜的对阵是:(C1B2,A1C2,B1A2),当齐王的出马顺序为C1,B1,A1时,田忌获胜的对阵是:(C1B2,B1A2,A1C2),综上所述,田忌获胜的对阵有6种,不论齐王的出马顺序如何,也都有相应的6种可能对阵,所以田忌获胜的概率为P=.。

湖南省株洲市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

湖南省株洲市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

湖南省株洲市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.实数的运算(共1小题)1.(2023•株洲)计算:.二.一次函数的应用(共1小题)2.(2023•株洲)某花店每天购进16支某种花,然后出售,如果当天售不完,那么剩下的这种花进行作废处理.该花店记录了10天该种花的日需求量(n为正整数,单位:支),统计如下表:日需求量n131415161718天数112411(1)求该花店在这10天中出现该种花作废处理情形的天数;(2)当n<16时,日利润y(单位:元)关于n的函数表达式为:y=10n﹣80;当n≥16时,日利润为80元.①当n=14时,问该花店这天的利润为多少元?②求该花店这10天中日利润为70元的日需求量的频率.三.反比例函数图象上点的坐标特征(共1小题)3.(2023•株洲)如图所示,在平面直角坐标系Oxy中,四边形OABC为正方形,其中点A、C分别在x轴负半轴,y轴负半轴上,点B在第三象限内,点A(t,0),点P(1,2)在函数的图象上.(1)求k的值;(2)连接BP、CP,记△BCP的面积为S,设T=2S﹣2t2,求T的最大值.四.反比例函数与一次函数的交点问题(共1小题)4.(2021•株洲)如图所示,在平面直角坐标系xOy中,一次函数y=2x的图象l与函数y=(k>0,x>0)的图象(记为Γ)交于点A,过点A作AB⊥y轴于点B,且AB=1,点C在线段OB上(不含端点),且OC=t,过点C作直线l1∥x轴,交l于点D,交图象Γ于点E.(1)求k的值,并且用含t的式子表示点D的横坐标;(2)连接OE、BE、AE,记△OBE、△ADE的面积分别为S1、S2,设U=S1﹣S2,求U的最大值.五.二次函数综合题(共3小题)5.(2023•株洲)已知二次函数y=ax2+bx+c(a>0).(1)若a=1,c=﹣1,且该二次函数的图象过点(2,0),求b的值;(2)如图所示,在平面直角坐标系Oxy中,该二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<0<x2,点D在⊙O上且在第二象限内,点E在x轴正半轴上,连接DE,且线段DE交y轴正半轴于点F,.①求证:.②当点E在线段OB上,且BE=1.⊙O的半径长为线段OA的长度的2倍,若4ac=﹣a2﹣b2,求2a+b的值.6.(2021•株洲)已知二次函数y=ax2+bx+c(a>0).(1)若a=,b=c=﹣2,求方程ax2+bx+c=0的根的判别式的值;(2)如图所示,该二次函数的图象与x轴交于点A(x1,0)、B(x2,0),且x1<0<x2,与y轴的负半轴交于点C,点D在线段OC上,连接AC、BD,满足∠ACO=∠ABD,﹣+c=x1.①求证:△AOC≌△DOB;②连接BC,过点D作DE⊥BC于点E,点F(0,x1﹣x2)在y轴的负半轴上,连接AF,且∠ACO=∠CAF+∠CBD,求的值.7.(2022•株洲)已知二次函数y=ax2+bx+c(a>0).(1)若a=1,b=3,且该二次函数的图象过点(1,1),求c的值;(2)如图所示,在平面直角坐标系xOy中,该二次函数的图象与x轴相交于不同的两点A(x1,0)、B(x2,0),其中x1<0<x2、|x1|>|x2|,且该二次函数的图象的顶点在矩形ABFE 的边EF上,其对称轴与x轴、BE分别交于点M、N,BE与y轴相交于点P,且满足tan∠ABE=.①求关于x的一元二次方程ax2+bx+c=0的根的判别式的值;②若NP=2BP,令T=c,求T的最小值.阅读材料:十六世纪的法国数学家弗朗索瓦•韦达发现了一元二次方程的根与系数之间的关系,可表述为“当判别式Δ≥0时,关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根x1、x2有如下关系:x1+x2=,x1x2=”.此关系通常被称为“韦达定理”.六.平行四边形的判定与性质(共1小题)8.(2023•株洲)如图所示,在△ABC中,点D、E分别为AB、AC的中点,点H在线段CE 上,连接BH,点G、F分别为BH、CH的中点.(1)求证:四边形DEFG为平行四边形;(2)DG⊥BH,BD=3,EF=2,求线段BG的长度.七.圆的综合题(共1小题)9.(2021•株洲)如图所示,AB是⊙O的直径,点C、D是⊙O上不同的两点,直线BD交线段OC于点E、交过点C的直线CF于点F,若OC=3CE,且9(EF2﹣CF2)=OC2.(1)求证:直线CF是⊙O的切线;(2)连接OD、AD、AC、DC,若∠COD=2∠BOC.①求证:△ACD∽△OBE;②过点E作EG∥AB,交线段AC于点G,点M为线段AC的中点,若AD=4,求线段MG的长度.八.解直角三角形的应用(共1小题)10.(2021•株洲)将一物体(视为边长为米的正方形ABCD)从地面PQ上挪到货车车厢内.如图所示,刚开始点B与斜面EF上的点E重合,先将该物体绕点B(E)按逆时针方向旋转至正方形A1BC1D1的位置,再将其沿EF方向平移至正方形A2B2C2D2的位置(此时点B2与点G重合),最后将物体移到车厢平台面MG上.已知MG∥PQ,∠FBP=30°,过点F作FH⊥MG于点H,FH=米,EF=4米.(1)求线段FG的长度;(2)求在此过程中点A运动至点A2所经过的路程.九.解直角三角形的应用-方向角问题(共1小题)11.(2023•株洲)如图所示,在某交叉路口,一货车在道路①上点A处等候“绿灯”,一辆车从被山峰POQ遮挡的道路②的点B处由南向北行驶.已知∠POQ=30°,BC∥OQ,OC⊥OQ,AO⊥OP,线段AO的延长线交直线BC于点D.(1)求∠COD的大小;(2)若在点B处测得点O在北偏西α方向上,其中,OD=12米.问该轿车至少行驶多少米才能发现点A处的货车?(当该轿车行驶至点D处时,正好发现点A 处的货车)一十.加权平均数(共1小题)12.(2022•株洲)某校组织了一次“校徽设计”竞赛活动,邀请5名老师作为专业评委,50名学生代表参与民主测评,且民主测评的结果无弃权票.某作品的评比数据统计如下:专业评委给分(单位:分)①88②87③94④91⑤90(专业评委给分统计表)记“专业评委给分”的平均数为.(1)求该作品在民主测评中得到“不赞成”的票数;(2)对于该作品,问的值是多少?(3)记“民主测评得分”为,“综合得分”为S,若规定:①=“赞成”的票数×3分+“不赞成”的票数×(﹣1)分;②S=0.7+0.3.求该作品的“综合得分”S的值.湖南省株洲市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.实数的运算(共1小题)1.(2023•株洲)计算:.【答案】2.【解答】解:原式==1+1=2.二.一次函数的应用(共1小题)2.(2023•株洲)某花店每天购进16支某种花,然后出售,如果当天售不完,那么剩下的这种花进行作废处理.该花店记录了10天该种花的日需求量(n为正整数,单位:支),统计如下表:日需求量n131415161718天数112411(1)求该花店在这10天中出现该种花作废处理情形的天数;(2)当n<16时,日利润y(单位:元)关于n的函数表达式为:y=10n﹣80;当n≥16时,日利润为80元.①当n=14时,问该花店这天的利润为多少元?②求该花店这10天中日利润为70元的日需求量的频率.【答案】(1)花店在这10天中出现该种花作废处理情形的天数为4天;(2)①当n=14时,该花店这天的利润为60元;②该花店这10天中日利润为70元的日需求量的频率为.【解答】解:(1)1+1+2=4,答:花店在这10天中出现该种花作废处理情形的天数为4天;(2)①当n=14时,y=10n﹣80=10×14﹣80=60,答:当n=14时,该花店这天的利润为60元;②当n<16时,70=10n﹣80,解得:n=15,当n=15时,有2天,∴=.答:该花店这10天中日利润为70元的日需求量的频率为.三.反比例函数图象上点的坐标特征(共1小题)3.(2023•株洲)如图所示,在平面直角坐标系Oxy中,四边形OABC为正方形,其中点A、C分别在x轴负半轴,y轴负半轴上,点B在第三象限内,点A(t,0),点P(1,2)在函数的图象上.(1)求k的值;(2)连接BP、CP,记△BCP的面积为S,设T=2S﹣2t2,求T的最大值.【答案】(1)k=2;(2)T mx=1.【解答】解:(1)∵点P(1,2)在函数的图象上,∴2=,∴k=2,即k的值为2;(2)∵点A(t,0)在x轴负半轴上,∴OA=﹣t,∵四边形OABC为正方形,∴OC=BC=OA=﹣t,BC∥x轴,∴△BCP的面积为S=×(﹣t)×(2﹣t)=t2﹣t,∴T=2S﹣2t2=2(t2﹣t)﹣2t2=﹣t2﹣2t=﹣(t+1)2+1,∵﹣1<0,∴抛物线开口向下,∴当t=﹣1时,T有最大值,T的最大值是1.四.反比例函数与一次函数的交点问题(共1小题)4.(2021•株洲)如图所示,在平面直角坐标系xOy中,一次函数y=2x的图象l与函数y=(k>0,x>0)的图象(记为Γ)交于点A,过点A作AB⊥y轴于点B,且AB=1,点C在线段OB上(不含端点),且OC=t,过点C作直线l1∥x轴,交l于点D,交图象Γ于点E.(1)求k的值,并且用含t的式子表示点D的横坐标;(2)连接OE、BE、AE,记△OBE、△ADE的面积分别为S1、S2,设U=S1﹣S2,求U 的最大值.【答案】(1)k=2,点D的横坐标为t;(2).【解答】解:(1)∵AB⊥y轴,且AB=1,∴点A的横坐标为1,∵点A在直线y=2x上,∴y=2×1=2,∴点A(1,2),∴B(0,2),∵点A在函数y=上,∴k=1×2=2,∵OC=t,∴C(0,t),∵CE∥x轴,∴点D的纵坐标为t,∵点D在直线y=2x上,t=2x,∴x=t,∴点D的横坐标为t;(2)由(1)知,k=2,∴反比例函数的解析式为y=,由(1)知,CE∥x轴,∴C(0,t),∴点E的纵坐标为t,∵点E在反比例函数y=的图象上,∴x=,∴E(,t),∴CE=,∵B(0,2),∴OB=2.∴S1=S△OBE=OB•CE=×2×=由(1)知,A(1,2),D(t,t),∴DE=﹣t,∵CE∥x轴,∴S2=S△ADE=DE(y A﹣y D)=(﹣t)(2﹣t)=t2﹣t+﹣1,∴U=S1﹣S2=﹣(t2﹣t+﹣1)=﹣t2+t+1=﹣(t﹣1)2+,∵点C在线段OB上(不含端点),∴0<t<2,∴当t=1时,U最大=.五.二次函数综合题(共3小题)5.(2023•株洲)已知二次函数y=ax2+bx+c(a>0).(1)若a=1,c=﹣1,且该二次函数的图象过点(2,0),求b的值;(2)如图所示,在平面直角坐标系Oxy中,该二次函数的图象与x轴交于点A(x1,0),B (x2,0),且x1<0<x2,点D在⊙O上且在第二象限内,点E在x轴正半轴上,连接DE,且线段DE交y轴正半轴于点F,.①求证:.②当点E在线段OB上,且BE=1.⊙O的半径长为线段OA的长度的2倍,若4ac=﹣a2﹣b2,求2a+b的值.【答案】(1);(2)①见解析;②0.【解答】(1)解:∵a=1,c=﹣1,∴二次函数解析式为y=x2+bx﹣1,∵该二次函数的图象过点(2,0),∴4+2b﹣1=0,解得:b=﹣;(2)①证明:∵∠DOF=∠DEO,∠ODF=∠EDO,∴△DOF∽△DEO,∴,∴=,∵,∴;②解∵该二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<0<x2,∴OA=﹣x1,OB=x2,∵BE=1.∴OE=x2﹣1,∵⊙O的半径长为线段OA的长度的2倍,∴OD=﹣2x1,∵,∴,∴3x1+x2﹣1=0,即x2=1﹣3x1①,∵该二次函数的图象与x轴交于点A(x1,0),B(x2,0),∴x1,x2是方程ax2+bx+c=0的两个根,∴,∵4ac=﹣a2﹣b2,a≠0,∴,即4(x1x2)+1+(x1+x2)2=0②①代入②,即,即,整理得﹣8(x1)2=﹣2,∴,解得:(正值舍去),∴,∴抛物线的对称轴为直线,∴b=﹣2a,∴2a+b=0.6.(2021•株洲)已知二次函数y=ax2+bx+c(a>0).(1)若a=,b=c=﹣2,求方程ax2+bx+c=0的根的判别式的值;(2)如图所示,该二次函数的图象与x轴交于点A(x1,0)、B(x2,0),且x1<0<x2,与y轴的负半轴交于点C,点D在线段OC上,连接AC、BD,满足∠ACO=∠ABD,﹣+c=x1.①求证:△AOC≌△DOB;②连接BC,过点D作DE⊥BC于点E,点F(0,x1﹣x2)在y轴的负半轴上,连接AF,且∠ACO=∠CAF+∠CBD,求的值.【答案】(1)8;(2)①见解答;②2.【解答】解:(1)当a=,b=c=﹣2时,Δ=b2﹣4ac=(﹣2)2﹣4××(﹣2)=8;(2)①设ax2+bx+c=0,则x1+x2=﹣,x1x2=,则+x1=﹣x2=c,即x2=﹣c=OC,x1=÷x2=﹣,∵OB=x2=CO,∠ACO=∠ABD,∠COA=∠BOD=90°,∴△AOC≌△DOB(ASA);②∵∠OCA=∠CAF+∠CFA,∠ACO=∠CAF+∠CBD,∴∠CBD=∠AFO,∵OB=OC,故∠OCB=45°,∵CD=OC﹣OD=OC﹣OA=﹣c﹣,则DE=CD=﹣(c+)=CE,则BE=BC﹣CE=OB﹣CE=﹣c+(﹣c+),则tan∠CBD===,而tan∠AFO====tan∠CBD=,解得ca=﹣2或ca=1,又∵抛物线开口向上,与y轴交于负半轴,∴a>0,c<0,∴ac<0,即ca=1(舍去),而==﹣ac=2,故的值为2.7.(2022•株洲)已知二次函数y=ax2+bx+c(a>0).(1)若a=1,b=3,且该二次函数的图象过点(1,1),求c的值;(2)如图所示,在平面直角坐标系xOy中,该二次函数的图象与x轴相交于不同的两点A(x1,0)、B(x2,0),其中x1<0<x2、|x1|>|x2|,且该二次函数的图象的顶点在矩形ABFE 的边EF上,其对称轴与x轴、BE分别交于点M、N,BE与y轴相交于点P,且满足tan ∠ABE=.①求关于x的一元二次方程ax2+bx+c=0的根的判别式的值;②若NP=2BP,令T=c,求T的最小值.阅读材料:十六世纪的法国数学家弗朗索瓦•韦达发现了一元二次方程的根与系数之间的关系,可表述为“当判别式Δ≥0时,关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根x1、x2有如下关系:x1+x2=,x1x2=”.此关系通常被称为“韦达定理”.【答案】(1)c=﹣3;(2)①9;②﹣4.【解答】解:(1)当a=1,b=3时,y=x2+3x+c,把x=1,y=1代入得,1=1+3+c,∴c=﹣3;(2)①方法(一)由ax2+bx+c=0得,x1=,x2=,∴AB=x2﹣x1=,∵抛物线的顶点坐标为:(﹣,),∴AE=,OM=,∵∠BAE=90°,∴tan∠ABE==,∴=,∴b2﹣4ac=9;(方法二)由ax2+bx+c=0得,∵x1+x2=,x1x2=,∴|x1﹣x2|===,下面过程相同;②∵b2﹣4ac=9,∴x2=,∵OP∥MN,∴,∴:=2,∴b=2,∴22﹣4ac=9,∴c=﹣,∴T=c=﹣=﹣=(﹣2)2﹣4,∴当=2时,T最小=﹣4,即a=时,T最小=﹣4.六.平行四边形的判定与性质(共1小题)8.(2023•株洲)如图所示,在△ABC中,点D、E分别为AB、AC的中点,点H在线段CE 上,连接BH,点G、F分别为BH、CH的中点.(1)求证:四边形DEFG为平行四边形;(2)DG⊥BH,BD=3,EF=2,求线段BG的长度.【答案】(1)证明见解析;(2).【解答】(1)证明:∵点D、E分别为AB、AC的中点,点G、F分别为BH、CH的中点,∴DE是△ABC的中位线,GF是△HBC的中位线,∴DE∥BC,DE=BC,GF∥BC,GF=BC,∴DE∥GF,DE=GF,∴四边形DEFG为平行四边形;(2)解:∵四边形DEFG为平行四边形,∴DG=EF=2,∵DG⊥BH,∴∠DGB=90°,∴BG===,即线段BG的长度为.七.圆的综合题(共1小题)9.(2021•株洲)如图所示,AB是⊙O的直径,点C、D是⊙O上不同的两点,直线BD交线段OC于点E、交过点C的直线CF于点F,若OC=3CE,且9(EF2﹣CF2)=OC2.(1)求证:直线CF是⊙O的切线;(2)连接OD、AD、AC、DC,若∠COD=2∠BOC.①求证:△ACD∽△OBE;②过点E作EG∥AB,交线段AC于点G,点M为线段AC的中点,若AD=4,求线段MG 的长度.【答案】(1)证明见解析部分.(2)①证明见解析部分.②1.【解答】(1)证明:∵9(EF2﹣CF2)=OC2,OC=3CE,∴9(EF2﹣CF2)=9EC2,∴EF2=EC2+CF2,∴∠ECF=90°,∴OC⊥CF,∴直线CF是⊙O的切线.(2)①证明:∵∠COD=2∠DAC,∠COD=2∠BOC,∴∠DAC=∠EOB,∵∠DCA=∠EBO,∴△ACD∽△OBE.②解:∵OB=OC,OC=3EC,∴OB:OE=3:2,∵△ACD∽△OBE,∴=,∴==,∵AD=4,∴AC=6,∵M是AC的中点,∴CM=MA=3,∵EG∥OA,∴==,∴CG=2,∴MG=CM﹣CG=3﹣2=1,即线段MG的长度为1.八.解直角三角形的应用(共1小题)10.(2021•株洲)将一物体(视为边长为米的正方形ABCD)从地面PQ上挪到货车车厢内.如图所示,刚开始点B与斜面EF上的点E重合,先将该物体绕点B(E)按逆时针方向旋转至正方形A1BC1D1的位置,再将其沿EF方向平移至正方形A2B2C2D2的位置(此时点B2与点G重合),最后将物体移到车厢平台面MG上.已知MG∥PQ,∠FBP=30°,过点F作FH⊥MG于点H,FH=米,EF=4米.(1)求线段FG的长度;(2)求在此过程中点A运动至点A2所经过的路程.【答案】(1)米.(2)4米.【解答】解:(1)∵GM∥PA,∴∠FGH=∠FBP=30°,∵FH⊥GM,∴∠FHG=90°,∴FG=2FH=(米).(2)∵EF=4米,FG=米.∴EG=EF﹣FG=4﹣=(米),∵∠ABA1=180°﹣90°﹣30°=60°,BA=米,∴点A运动至点A2所经过的路程=+=4(米).九.解直角三角形的应用-方向角问题(共1小题)11.(2023•株洲)如图所示,在某交叉路口,一货车在道路①上点A处等候“绿灯”,一辆车从被山峰POQ遮挡的道路②的点B处由南向北行驶.已知∠POQ=30°,BC∥OQ,OC⊥OQ,AO⊥OP,线段AO的延长线交直线BC于点D.(1)求∠COD的大小;(2)若在点B处测得点O在北偏西α方向上,其中,OD=12米.问该轿车至少行驶多少米才能发现点A处的货车?(当该轿车行驶至点D处时,正好发现点A 处的货车)【答案】(1)30°;(2)24米.【解答】解:(1)∵AO⊥OP,∴∠POD=90°,∵∠POQ=30°,∴∠DOQ=∠POD﹣∠POQ=90°﹣30°=60°,∵OC⊥OQ,∴∠COQ=90°,∴∠COD=∠COQ﹣∠DOQ=90°﹣60°=30°,即∠COD的大小为30°;(2)∵BC∥OQ,∴∠BCO=180°﹣∠COQ=90°,在Rt△COD中,∠COD=30°,OD=12米,∴(米),∴==6(米),∵tan,∴BC=(米),∴BD=BC﹣CD=30﹣6=24(米),即轿车至少行驶24米才能发现点A处的货车.一十.加权平均数(共1小题)12.(2022•株洲)某校组织了一次“校徽设计”竞赛活动,邀请5名老师作为专业评委,50名学生代表参与民主测评,且民主测评的结果无弃权票.某作品的评比数据统计如下:专业评委给分(单位:分)①88②87③94④91⑤90(专业评委给分统计表)记“专业评委给分”的平均数为.(1)求该作品在民主测评中得到“不赞成”的票数;(2)对于该作品,问的值是多少?(3)记“民主测评得分”为,“综合得分”为S,若规定:①=“赞成”的票数×3分+“不赞成”的票数×(﹣1)分;②S=0.7+0.3.求该作品的“综合得分”S的值.【答案】(1)该作品在民主测评中得到“不赞成”的票是10张;(2)的值是90分;(3)该作品的“综合得分”S的值为96分.【解答】解:(1)该作品在民主测评中得到“不赞成”的票数:50﹣40=10(张),答:该作品在民主测评中得到“不赞成”的票是10张;(2)=(88+87+94+91+90)÷5=90(分);答:的值是90分;(3)①=40×3+10×(﹣1)=110(分);②∵S=0.7+0.3=0.7×90+0.3×110=96(分).答:该作品的“综合得分”S的值为96分.。

实数计算题

实数计算题

实数计算题
在数学中,实数是指包括有理数和无理数在内的所有数的集合。

实数计算题是在实数范围内进行的计算题目。

目录
1.加法运算
2.减法运算
3.乘法运算
4.除法运算
5.乘方运算
6.开方运算
7.绝对值运算
8.小结
加法运算
实数的加法运算是指将两个实数相加得到一个实数的过程。

例如,计算3.14 + 2.718可以得到5.858。

减法运算
实数的减法运算是指将两个实数相减得到一个实数的过程。

例如,计算5.0 - 2.0可以得到3.0。

乘法运算
实数的乘法运算是指将两个实数相乘得到一个实数的过程。

例如,计算2.5 * 4可以得到10.0。

除法运算
实数的除法运算是指将一个实数除以另一个实数得到一个实数的过程。

例如,计算10.0 / 2.0可以得到5.0。

乘方运算
实数的乘方运算是指将一个实数提高到另一个实数次幂的运算。

例如,计算2的立方可以得到8。

开方运算
实数的开方运算是指将一个实数开平方得到一个实数的过程。

例如,计算16的平方根可以得到4。

绝对值运算
实数的绝对值运算是指将一个实数去掉符号得到一个非负实数的过程。

例如,计算|-5|可以得到5。

小结
通过本文档,我们了解了实数的加法、减法、乘法、除法、乘方、开方和绝对值等运算。

这些运算是数学中常见的实数计算题型,掌握了这些运算,有助于我们在日常生活和学习中快速准确地进行实数的计算。

全国各地数学中考试题分类汇编实数的运算含答案

全国各地数学中考试题分类汇编实数的运算含答案

实数的运算一、选择题1.2010江苏盐城20100的值是 A .2010 B .0 C .1 D .-1答案C2.2010山东威海计算()201020092211-⨯⎪⎭⎫⎝⎛-的结果是A .-2B .-1C .2D .3答案B3.2010台湾计算 | 135 || 61167 | 之值为何 A 37 B 31 C 34 D311; 答案A4.2010台湾计算1061023104之值为何A 108 B 109 C 1010 D 1012; 答案A5.2010台湾下列四个选项中的数列,A 5,5,5,5,5B 1,4,925C5,25,35,45,55 D 1,22,33,44,55 ;答案D6.2010台湾图五数在线的A 、B 、C 三点所表示的数分别为 a 、b 、c ;根据图中各点位置,判断下列各式何者 正确 A a 1b 1>0 B b 1c 1>0 C a 1b 1<0 D b 1c 1<0 ;答案D7.2010浙江杭州 计算 – 12 + – 13 =A.– 2B. – 1C. 0D. 2 答案C8.2010 浙江义乌28 cm 接近于 ▲ A .珠穆朗玛峰的高度 B .三层楼的高度 C .姚明的身高 D .一张纸的厚度答案C9.2010 福建德化2-的3倍是A 、 6-B 、1C 、6D 、5- 答案AA B C O a bc 0 1 1 图五10.2010 山东济南某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高 A .-10℃ B .-6℃ C .6℃ D .10℃ 答案D11.2010 东济南下列各式中,运算正确的是A=B.+=C .632a a a ÷=D .325()a a =答案A12.2010山东临沂计算()21-的值等于 A -1 B1 C -2 D2 答案B13.2010 河北计算3×-2 的结果是A .5B .-5C .6D .-6答案D14.2010 河北下列计算中,正确的是A .020=B .2a a a =+C3=±D .623)(a a =答案D15.2010 山东省德州下列计算正确的是 A020= B331-=-3==答案C16.2010江苏宿迁3)2(-等于A .-6B .6C .-8D .8 答案C17.2010 山东莱芜如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是A .0>abB .0>-b aC .0>+b aD .0||||>-b a答案D1 0 -1 a b B A 第5题图18.2010江西 计算 -2- 6的结果是A .-8B . 8C . -4D . 4 答案A19.2010年贵州毕节有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为 A .8人 B .9人 C .10人 D .11人答案B.20.2010湖北荆门()()2012321-+-+⎪⎭⎫⎝⎛--π的值为A .-1B .-3C . 1D . 0答案C21.2010 四川成都3x 表示A 3xB x x x ++C x x x ⋅⋅D 3x + 答案C22.2010湖北荆州温度从-2°C 上升3°C 后是A .1°CB . -1°C C .3°CD .5°C 答案A23.2010湖北荆州下面计算中正确的是 A .532=+ B .()111=--C . ()2010201055=- D . x 32x •=x 6答案C24.2010湖北荆州在电子显微镜下测得一个圆球体细胞的直径是5×105-cm.,3102⨯个这样的细胞排成的细胞链的长是A .cm 210- B .cm 110- C .cm 310- D .cm 410- 答案B25.2010湖北省咸宁下列运算正确的是 A .263-=- B .24±=C .532a a a =⋅D .3252a a a +=答案C26.2010江苏淮安观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯()1343452343⨯=⨯⨯-⨯⨯……计算:3×1×2+2×3+3×4+…+99×100=A .97×98×99B .98×99×100C .99×100×101D .100×101×102 答案C27.2010湖南怀化下列运算结果等于1的是 A .)3()3(-+- B .)3()3(--- C .)3(3-⨯-D .)3()3(-÷-答案D28.2010山东泰安如图,数轴上A 、B 两点对应的实数分别为,a b ,则下列结论不正确的是 A 、0a b +> B 、0ab < C 、0a b -< D 、0a b ->1-1答案D29.2010云南红河哈尼族彝族自治州下列计算正确的是A .-1-1=1 B.-32=-6 C.π0=1 D.-26÷-23=-22 答案C30.2010云南楚雄下列计算正确的是A .a 2·a 3=a 6B .6÷2=3C .21-2=-2 D . -a 32=-a 6 答案B31. 2010湖北随州下列运算正确的是A .1331-÷= B a = C .3.14 3.14ππ-=- D .326211()24a b a b =答案D32. 2010四川乐山计算-2×3的结果是A -6 B6 C -5 D5答案A33. 2010黑龙江哈尔滨某年哈尔滨市一月份的平均气温为-18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高 A16℃ B20℃ C -16℃ D .-20℃ 答案B34. 2010 福建三明如果□,1)23(=-⨯则□内应填的实数是A .23-B .32-C .23 D .32 答案B35. 2010湖北襄樊某市2010年元旦这天的最高气温是8℃,最低气温是-2℃,则这天的最高气温比最低气温高A .10℃B .-10℃C .6℃D .-6℃答案A36. 2010 湖北孝感2010)1(-的值是A .1B .—1C .2010D .—2010答案A37.2010 山东淄博下列结论中不能由0=+b a 得到的是A ab a -=2B b a =C 0=a ,0=bD 22b a = 答案C38.2010 山东淄博如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为A6 B3 C200623 D10033231003⨯+答案B39.2010云南玉溪 的结果是)(计算12010)21(1:.1--- A. 1 B. -1D. 2答案B40.2010 甘肃()=-21A .1B .-1C .2D .-2答案A41.2010 山东荷泽2010年元月19日,山东省气象局预报我市元月20日的最高气温是4℃,最低气温是-6℃,那么我市元月20日的最大温差是 A .10℃ B .6℃ C .4℃ D .2℃答案A42.2010青海西宁 计算)3(21-⨯--的结果等于A.5B.5-C.7D.7-第11题答案A43.2010广西梧州用0,1,2,3,4,5,6,7,8这9个数字组成若干个一位数或两位数每个数字都只用一次,然后把所得的数相加,它们的和不可能是 A .36 B .117 C .115 D .153 答案44.2010广东深圳观察下列算式,用你所发现的规律得出20102的末位数字是 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…A .2B .4C .6D .8 答案B45.2010湖北宜昌冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高 ;A.26℃B.14℃C.-26℃D.-14℃ 答案A46.2010湖北宜昌如图,数轴上A,B 两点分别对应实数a,b,则下列结论正确的是 ; A. |a|>|b| B. a+b>0 C. ab<0 D. |b|=bAB10-1-2b a答案C47.2010吉林如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是答案C48.2010广东湛江观察下列算式:,65613,21873,7293,2433,813,273,93,1387654321========,通过观察,用你所发现的规律确定20023的个位数字是.9 C 答案B49.2010广东清远计算:0-12= A.12 B. -2 C.-12D. 2 答案C 二、填空题1.2010山东烟台计算-2sin60°+π-12=_____________________;答案+12.2010 福建晋江计算:.______32=-答案913.2010江苏无锡一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了 ▲.注:销售利润率=售价—进价÷进价答案40%4.2010 山东莱已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…, 观察上面的计算过程,寻找规律并计算=610C .答案2105. 10.2010江西按照下图所示的操作步骤,若输入x 的值为-2,则给出的值为 .答案76.2010湖北武汉计算:sin30︒= ,-3a 22= ,= .答案12,9a 4,5 7.2010四川 巴中符号“f ”表示一种运算,它对一些数的运算结果如下:1f 1=0,f 2 = 1,f 3=2,f 4= 3,…… 21111()()()()23452,3,4,5ff ff ====……利用以上规律计算:1(2010)()2010ff -=答案18.2010浙江湖州“五.一”期间,某服装商店举行促销活动,全部商品八折销售.一件标价为10°元的 运动服,打折后的售价应是 元. 答案80.9.2010江苏常州计算:12-+= ,2-= ,(2)--= ,34()a = ; 答案1,2,-2,a1210.2010湖南怀化计算102)7(-++π=_______.答案23 11.2010 山东滨州计算-22·-10-13-1= . 答案112.2010湖北荆门观察下列计算:211211-=⨯ 3121321-=⨯ 4131431-=⨯ 5141541-=⨯ … … 从计算结果中找规律,利用规律计算+⨯+⨯+⨯+⨯541431321211…=⨯+201020091 ; 答案2010200913.2010河南计算:21-+(-2)= . 答案514.2010黑龙江哈尔滨某种衬衫每件的标价为150元,如果每件以八折即按标价的80%出售,那么这种衬衫每件的实际售价应为元 ; 答案12015.2010 福建三明计算:2122|21|-+--= ; 答案-316.2010 江苏镇江计算:—3+2= ; —3×2= .答案—1,—617.2010 甘肃观察:1234111111113243546a a a a =-=-=-=-,,,,…,则n a = n=1,2,3,…. 答案211+-n n 18.2010 重庆江津先观察下列等式:111122=-⨯ 1112323=-⨯ 1113434=-⨯ …… 则计算111111223344556++++=⨯⨯⨯⨯⨯ .答案5619.2010 重庆江津我们定义a b c dad bc =-,例如2345=2×5-3×4=10-12=-2.若x 、y 均为整数,且满足1<14x y <3,则x y +的值是_________.答案3±20.2010 福建泉州南安计算:=-0)2010(.答案121.2010 山东荷泽刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对b ,a 进入其中时,会得到一个新的实数:a 2+b -1,例如把3,-2放入其中,就会得到32+-2-1=6.现将实数对-2,-3放入其中,得到实数是 . 答案022.2010 广西钦州市根据如图所示的计算程序,若输入的值x =-1,则输出的值 y = _ ▲_ .答案223.2010 广西钦州市计算 -2 +3的结果是_▲_; 答案124.2010青海西宁 2010的相反数是 ;4-1= . 答案-2010,125.2010鄂尔多斯“五一”期间,某服装商店举行促销活动,全部商品八折销售,小华购买一件为140元的运动服,打折后他比按原价购买节省了 元;答案28 26.2010广西南宁古希腊数学家把数 ,21,15,10,6,3,1叫做三角数,它有一定的规律性.若把一个三角形数记为1a ,第二个三角形数记为 ,2a ,第n 个三角形数记为n a ,计算12a a -,,,3423a a a a --,由此推算,=-99100a a ,=100a .答案100,505027.2010云南昭通计算:-30+1=_______________. 答案228.2010贵州遵义如图,在宽为30m,长为40m 的矩形地面上修建两条宽都是1m 的道路,余下部分种植花草,那么,种植花草的面积为 m 2.答案113129.2010贵州遵义小明玩一种挪动珠子的游戏,每次挪动珠子的颗数与对应所得的分数如下表:x 为负数第9题输入x输出yy=x -5 y=x 2 +1x 为正数当对应所得分数为132分时,则挪动的珠子数 颗; 答案1230.2010广东佛山在算式1-︱-2口3︱中的口里,填入运算符号 ,使得算式的值最小在符号+,-,×,÷中选择一个. 答案×31.2010辽宁沈阳计算:=-⨯0)3(218 ; 答案12-32.2010福建省南平计算:20=_______. 答案:133.2010贵州铜仁定义运算“”的运算法则为:xy =xy -1,则234=__ __. 答案1934.2010广东湛江计算:2010-π0 -1= . 答案:0 .35.2010湖南娄底计算:-20100 +|-1|=_________ 答案236.2010内蒙赤峰北京市从2010年7月1日起开始上调最低工资标准,由原来的每月800元上调至960元,则这次上 调的百分比是____________. 答案20%37.2010内蒙赤峰观察式子:),7151(21751),5131(21531),311(21311-=⨯-=⨯-=⨯……. 由此计算:+⨯+⨯+⨯751531311…=⨯+201120091_____________.答案20111005 三、解答题1.2010江苏苏州计算:01243⎛⎫-+- ⎪⎝⎭.答案2.2010江苏南通1203(4)(π3)2|5|-+---- 答案解:原式=16+1-8-5=4.3.2010江苏盐城1 30cos )31(31-+--答案1解:原式=3+3-错误! ……………………………………………………3分 =6-错误! ………………………………………………………………4分4.2010山东济宁计算:084sin 45(3)4-︒+-π+-答案解:原式2224142=-⨯++ ································································· 4分 5= ··························································································· 5分5.2010山东济宁观察下面的变形规律:211⨯=1-12; 321⨯=12-31;431⨯=31-41;…… 解答下面的问题: 1若n 为正整数,请你猜想)1(1+n n = ;2证明你猜想的结论; 3求和:211⨯+321⨯+431⨯+…+201020091⨯. 答案 1111n n -+ ···································································································· 1分 2证明:n 1-11+n =)1(1++n n n -)1(+n n n =1(1)n nn n +-+=)1(1+n n . ······················· 3分3原式=1-12+12-31+31-41+…+20091-20101=12009120102010-=. ····································································· 5分 6.2010四川凉山计算:1201002(60)(1)|28|(301)21cos tan -÷-+--⨯--; 答案7.2010四川眉山计算:1021()(52)18(2)23---答案解:原式=313242-+ ……………………4分 =22 ………………………………6分8.2010浙江嘉兴1计算:0)2(2+-;答案10)2(2+-12+=3=. …4分9.2010浙江绍兴1计算: |2-|o 2o 12sin30(3)(tan 45)-+--+; 答案解:1 原式= 2+1-3+1=1.10.2010 浙江省温州本题l0分1计算:()121320108-⎪⎭⎫⎝⎛--+.答案11.2010 浙江台州市1计算:)1()2010(40---+; 答案1解:原式=2+1+1 =412.2010 浙江义乌1计算:14tan 45⎪-° 答案解:1原式=1+2-1=213.2010 重庆计算:102010)51()5(97)1(-+-⨯+---π. 答案解:原式51371+⨯+-= 2=.14.2010重庆市潼南县 6分计算:π-0-|-3|+121-⎪⎭⎫⎝⎛--12010.答案解:原式=1-3+2-1 = -115.2010 福建德化15分计算: |-2|-2-错误!0+2)21(-- ;答案解:原式=412+-=516.2010 福建晋江8分计算:()0220103134-÷---. 答案 解:原式13194-÷-=1394-⨯-=24-=17.2010湖南长沙计算1023tan 30(2010)π-+--答案解:102tan 30(2010)π---1123=+- 1112=+- 12= 18.2010江苏宿迁本题满分8分计算:01)2(3)31(5---+--π.答案解:原式=5-3+3-1 =4 19.2010浙江金华本题6分计算:4cos30°.答案解:原式﹦1+33-32﹦1+3.20.2010 四川南充计算:()228cos303-+︒--.答案解:原式=42832+⨯⨯-=43+ =1.21.2010 山东济南计算:12-4cos30°-3+210答案原式=23-4×23-3+1 = -122.2010 浙江衢州计算:012sin 302+--︒. 答案解:原式=111222++- =3 23.2010江苏泰州计算:112)21(30tan 3)21(01+-+︒---;答案原式=3231233--⨯++=23123--++=13-+. 24.2010福建福州 计算:|-3|+-10-错误! 答案原式=3+1-3=125.2010江苏无锡111|1|()2---+2(-3) 答案原式= 9—1+2=1026.2010湖南邵阳计算:113-⎛⎫⎪⎝⎭-5×15+38答案113-⎛⎫⎪⎝⎭-5×15+38=3-1+2=4.27.2010年上海计算:12131427(31)()231-+--++ .答案解:12131427(31)()231-+--++.=342322(31)+--+-. =3.28.2010安徽芜湖1计算:12010× 错误!-3+sin58°- 错误!0+|错误!-4cos600| 答案29.2010甘肃兰州本小题满分4分60tan 2-—0)14.3(-π+2)21(--1221+答案本题满分10分1本小题满分4分 解:原式=34132++-- ……………………………………………2分=3332++- ………………………………………………………3分 =5 …………………………………………………………………………4分 30.2010重庆綦江县计算:()()1312222π-⎛⎫---++- ⎪⎝⎭. 答案原式=2-1+2-8=-5 31. 2010四川宜宾1计算:错误!+10+– 错误!–1 – 错误!–2sin45°答案错误!+10+– 错误!–1 – 错误!–2sin45°=1+-3+2-2-2=-4. 32. 2010 江苏连云港本题满分8分计算:1-22+3×-2 - 错误! -2;答案33. 2010 广东珠海计算:92|21|)3(12-+---- 答案解:原式=6321219=-+-34. 2010四川 巴中计算:01118(21)2sin 454----︒-()答案原式=4222123-⨯-- 35.2010浙江湖州计算:201004(1)tan 45+--..答案原式=4+1-1=4.36. 2010江苏常州计算120433--- 答案37. 2010江苏淮安11913---; 答案1原式=3+1-3=1.38. 2010 湖南株洲1计算:()22tan 452010-+︒+答案原式=411++6=40. 2010 四川成都计算:()121126.330tan 6-⎪⎭⎫⎝⎛+--+︒π.答案1解:原式=3612323⨯+-=3 41. 2010广东中山计算:001)2(60cos 2)21(4π-+-+-.答案解:原式=121222+⨯-+ =442.2010广东中山阅读下列材料:)210321(3121⨯⨯-⨯⨯=⨯,)321432(3132⨯⨯-⨯⨯=⨯,)432543(3143⨯⨯-⨯⨯=⨯,由以上三个等式相加,可得.2054331433221=⨯⨯⨯=⨯+⨯+⨯读完以上材料,请你计算下列各题:11110433221⨯++⨯+⨯+⨯ 写出过程; 2)1(433221+⨯++⨯+⨯+⨯n n = ; 3987543432321⨯⨯++⨯⨯+⨯⨯+⨯⨯ = . 答案解:11110433221⨯⨯+⨯+⨯=)210321(31⨯⨯-⨯⨯+)321432(31⨯⨯-⨯⨯+…+)11109121110(31⨯⨯-⨯⨯=12111031⨯⨯⨯ =440. 2)2)(1(31++n n n 3987543432321⨯⨯++⨯⨯+⨯⨯+⨯⨯ =)32104321(41⨯⨯⨯-⨯⨯⨯+)43215432(41⨯⨯⨯-⨯⨯⨯ +…+)987610987(41⨯⨯⨯-⨯⨯⨯=1098741⨯⨯⨯⨯ =126043. 2010湖南常德如图3,一个数表有7行7列,设ij a 表示第i 行第j 列上的数其中i=1,2,3,…,7,j=1,2,3,…,7. 例如:第5行第3列上的数537a =. 则123225253()()a a a a -+-= ; 2此数表中的四个数,,,np nk mp mk a a a a 满足()()np nk mk mp a a a a -+-= .答案10 2044. 2010湖南常德计算:03111()(2)()|2|23--+-++- 答案解:原式= 1-8+3+2= -245. 2010湖南郴州计算:118122sin 60tan 602.答案 解:原式=+12246. 2010湖北荆州计算:()21182010---+答案解:原式=()12122--+=12122+-+ =22+47. 2010江苏扬州1计算:-12+tan 60°-π+20100答案1原式=131-+ =348. 2010湖北恩施自治州计算:2+()()()121212010-++--313⨯-答案解:原式=2+1+1-1 =31 2 3 4 3 2 1 2 3 4 5 4 3 2 3 4 5 6 5 4 3 4 5 6 7 6 5 4 5 6 7 8 7 6 5 6 7 8 9 8 7 6 7 8 9 10 9 8 7 图349. 2010北京计算:+--012010)31|-43|-tan60° 答案解:原式=3-1+43-3=2+33 . 50. 2010江苏徐州192120101+--)(; 答案解原式=1-2+3=251. 2010云南昆明计算:1021()320104-----+ 答案解:原式 = 4312---+ = 6-52. 2010四川内江已知a =错误!-1,b =2cos45°+1,c =2010-π0,d =|1-错误!|.1请化简这四个数;2根据化简结果,列式表示这四个数中“有理数的和”与“无理数的积”的差,然后计算结果. 答案解:1a =错误!-1=3,b =2cos45°+1=2×错误!+1=错误!+1,c =2010-π0=1,d =|1-错误!|=错误!-12∵a ,c 为有理数,b ,d 为无理数,∴a +c -bd =3+1-错误!+1 错误!-1 =4-2-1 =3.53.2010四川内江已知非负数a ,b ,c 满足条件a +b =7,c -a =5,设S =a +b +c 的最大值为m ,最小值为n ,则m -n = . 答案754.2010广东东莞计算:01)2(60cos 2)21(4π-++︒--.答案原式=2+2-2×21+1=4-1+1=455.2010广东东莞阅读下列材料:1×2=311×2×3-0×1×2, 2×3=312×3×4-1×2×3,3×4=313×4×5-2×3×4,由以上三个等式相加,可得 1×2+2×3+3×4=31×3×4×5=20.读完以上材料,请你计算下各题:⑴1×2+2×3+3×4+…+10×11写出过程; ⑵1×2+2×3+3×4+…+n ×n +1= ;⑶1×2×3+2×3×4+3×4×5+…+7×8×9= .答案⑴1×2+2×3+3×4+…+10×11=31×1×2×3-0×1×2+2×3×4-1×2×3…+10×11×12-9×10×11 =31×10×11×12 =440⑵1×2+2×3+3×4+…+n ×n +1 =31×1×2×3-0×1×2+2×3×4-1×2×3+… +)1()1()2()1(+⨯⨯--+⨯+⨯n n n n n n =)2()1((31+⨯+⨯n n n ⑶1×2×3+2×3×4+3×4×5+…+7×8×9=41×1×2×3×4-0×1×2×3×4+2×3×4×5-1×2×3×4+…+7×8×9×10-6×7×8×9=41×7×8×9×10 =126056.2010 四川绵阳1计算:π-20100 +sin60︒-1-︱tan30︒-3︱+38. 答案1原式= 1 +|333|)23(1---+ 2 = 3 +33232-= 3 +332332-= 3. 57.2010 江苏镇江1|;4|)60(cos )5(02-+-答案原式415+-==858.2010 广东汕头计算:()01260cos 2)21(4π-+︒--+-.答案原式1212)2(2+⨯--+= 110+-= 0=.59.2010 广东汕头阅读下列材料:1×2 =311×2×3-0×1×2,2×3 =312×3×4-1×2×3, 3×4 = 313×4×5-2×3×4,由以上三个等式相加,可得 1×2+2×3+3×4=31×3×4×5 = 20. 读完以上材料,请你计算下列各题:(1) 1×2+2×3+3×4+···+10×11写出过程; (2) 1×2+2×3+3×4+···+n ×n +1 = _________;(3) 1×2×3+2×3×4+3×4×5+···+7×8×9 = _________. 答案解:1∵1×2 =311×2×3-0×1×2, 2×3 = 312×3×4-1×2×3,3×4 = 313×4×5-2×3×4,… 10×11 =3110×11×12-9×10×11, ∴1×2+2×3+3×4+···+10×11=31×10×11×12=440.2)2)(1(31++n n n . 31260.60.2010四川 泸州 计算:-12010+3--1答案-12010+3--1 =1+3-4+12-1=1+3-4+2=261.2010 湖南湘潭计算:2o(1)(3)2cos 60-+π-- 答案解:原式=21211⨯-+ =162.2010广西桂林计算:101()2)3---4cos30°+答案解:原式=314--=31--=26.2010湖北十堰计算:30(2)|5|2)2sin 30-+--+︒答案原式=-8 + 5-1+ 2×错误!=-3.63.2010 广西玉林、防城港计算:10122-⎛⎫⨯- ⎪⎝⎭答案原式=2=2 64.2010 重庆江津计算:120114520104-⎛⎫-+︒+ ⎪⎝⎭答案解:原式141=-++……………每个知识点1分4分 1411=-+++ 5=9.2010 福建泉州南安计算: 43)85(41)1(12+⨯--÷--. 答案解:原式=231)3(41+⨯--⨯………………5分 =214++…………… ……………7分=7……………………………… … 9分65.2010 四川自贡计算π-2°+31-1-27cos30° 答案-1266.2010 山东荷泽计算:12-4sin 60°+4-π0答案⑴原式=123432+⨯-=1 67.2010宁夏回族自治区计算:011( 3.14)()12π--+--. 答案解:原式=)12()2(231---++ =122231+--+=2268.2010 广西钦州市计算:42(1)3cos 45--+答案解:1原式 =1+19=1+19-1 =1969.2010青海西宁计算:4401425.0)14.3()21(⨯+---π 答案.解:原式=2-1+4)441(⨯ = 2-1+1 = 2 70.2010鄂尔多斯计算:0132)2()31(272-⨯--+--π 答案1计算:0132)2()31(272-⨯--+--π 解:原式=-4-3-3=-1071.2010广西南宁计算:1)2(60tan 3)2010()1(-+︒-︒-+--π 答案解:1)2(60tan 3)2010()1(-+︒-︒-+--π213311+⨯-+= 4分 2132+-= 5分 21-= 72.2010年山西计算:.)23(45sin 2)21(91 -+--+- 答案解:原式1222)2(3+⨯--+= .11123=+--= 73.2010广东茂名计算:1022)2010()2(4--+---.答案解:原式=21144-+-···················4分 =21.···························7分 ① ②74.2010贵州遵义计算:∣-22∣-8-2-1+3-20 答案解:原式=1222212--+………………………………………4分 =12…………………………………………………………6分 20.2010广东深圳计算:302)1(821)14.3(45sin 2)31(-++-+︒--π 答案原式=1922122192-++⨯-= 75.2010广西柳州计算:-23+2010-30-tan45答案解:原式=-8+1-1 =-876.2010辽宁本溪计算:20183()(2010)4sin 453π-+⨯----︒. 答案77.2010 福建莆田计算:23|32|23-+- 答案78.2010广西河池计算:(()2032212sin 60+--+ 答案解:原式=234123-++ =5 79.2010年福建省泉州计算:01|3|(3)8242π--+--+⨯.答案解:原式=2144813⨯+-+ ……………………………………………7分=224+- …………………………………………………………8分 =4 ……………………………………………………………… 9分80.2010贵州铜仁 -20100+│12sin60°答案解:原式=11-2=081.2010广东肇庆计算:10330tan ·3)8(--︒+- 答案解:原式=1+3133·3-=1+3131-=1 82.2010云南曲靖计算:10)31()1()2(9---+--答案解:原式=3+2+1-3 =383.2010四川广安计算:001||(4)sin 302π-+-+.答案001||(4)sin 302π-+-+ =12211321++-+- =12-84.2010四川达州计算:20100(1)1)--.答案解: 原式=1-1 =0.85.2010福建清远计算:∣-1∣-sin30°+12--10. 答案:原式=1-12+12-1=0.86.2010内蒙呼和浩特计算:101(2010)2cos6022π-⎛⎫--+︒ ⎪⎝⎭.答案解:原式=1-2+1-2 2 =287.2010内蒙赤峰计算:02)23(22)21(45sin 42--+----o答案解:原式=12242242-+-⨯- =-3 88.2010湖北黄石计算:2-32+3+()20101-()02π--121-⎪⎭⎫ ⎝⎛ 答案。

江苏省扬州市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类

江苏省扬州市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类

江苏省扬州市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.实数的运算(共1小题)1.(2021•扬州)计算或化简:(1)(﹣)0+|﹣3|+tan60°.(2)(a+b)÷(+).二.分式的化简求值(共1小题)2.(2022•扬州)计算:(1)2cos45°+(π﹣)0﹣;(2)(+1)÷.三.分式方程的应用(共1小题)3.(2022•扬州)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?四.解一元一次不等式组(共1小题)4.(2023•扬州)解不等式组并把它的解集在数轴上表示出来.五.一元一次不等式组的整数解(共1小题)5.(2022•扬州)解不等式组并求出它的所有整数解的和.六.平行四边形的判定与性质(共2小题)6.(2023•扬州)如图,点E、F、G、H分别是平行四边形ABCD各边的中点,连接AF、CE 相交于点M,连接AG、CH相交于点N.(1)求证:四边形AMCN是平行四边形;(2)若▱AMCN的面积为4,求▱ABCD的面积.7.(2021•扬州)如图,在△ABC中,∠BAC的角平分线交BC于点D,DE∥AB,DF∥AC.(1)试判断四边形AFDE的形状,并说明理由;(2)若∠BAC=90°,且AD=2,求四边形AFDE的面积.七.直线与圆的位置关系(共1小题)8.(2023•扬州)如图,在△ABC中,∠ACB=90°,点D是AB上一点,且∠BCD=∠A,点O在BC上,以点O为圆心的圆经过C、D两点.(1)试判断直线AB与⊙O的位置关系,并说明理由;(2)若sin B=,⊙O的半径为3,求AC的长.八.扇形面积的计算(共1小题)9.(2021•扬州)如图,四边形ABCD中,AD∥BC,∠BAD=90°,CB=CD,连接BD,以点B为圆心,BA长为半径作⊙B,交BD于点E.(1)试判断CD与⊙B的位置关系,并说明理由;(2)若AB=2,∠BCD=60°,求图中阴影部分的面积.九.总体、个体、样本、样本容量(共1小题)10.(2022•扬州)某校初一年级有600名男生,为增强体质,拟在初一男生中开展引体向上达标测试活动.为制定合格标准,开展如下调查统计活动.(1)A 调查组从初一体育社团中随机抽取20名男生进行引体向上测试,B 调查组从初一所有男生中随机抽取20名男生进行引体向上测试,其中 (填“A ”或“B ”)调查组收集的测试成绩数据能较好地反映该校初一男生引体向上的水平状况;(2)根据合理的调查方式收集到的测试成绩数据记录如下:成绩/个23457131415人数/人11185121这组测试成绩的平均数为 个,中位数为 个;(3)若以(2)中测试成绩的中位数作为该校初一男生引体向上的合格标准,请估计该校初一有多少名男生不能达到合格标准.一十.扇形统计图(共1小题)11.(2021•扬州)为推进扬州市“青少年茁壮成长工程”,某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:抽样调查各类喜欢程度人数统计表喜欢程度人数A .非常喜欢50人B .比较喜欢m 人C.无所谓n人D.不喜欢16人根据以上信息,回答下列问题:(1)本次调查的样本容量是 ;(2)扇形统计图中表示A程度的扇形圆心角为 °,统计表中m= ;(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).一十一.列表法与树状图法(共2小题)12.(2023•扬州)扬州是个好地方,有着丰富的旅游资源.某天甲、乙两人来扬州旅游,两人分别从A、B、C三个景点中随机选择一个景点游览.(1)甲选择A景点的概率为 ;(2)请用画树状图或列表的方法,求甲、乙两人中至少有一人选择C景点的概率.13.(2021•扬州)一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙2人等可能地坐到①、②、③中的2个座位上.(1)甲坐在①号座位的概率是 ;(2)用画树状图或列表的方法,求甲与乙相邻而坐的概率.江苏省扬州市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.实数的运算(共1小题)1.(2021•扬州)计算或化简:(1)(﹣)0+|﹣3|+tan60°.(2)(a+b)÷(+).【答案】(1)4;(2)ab.【解答】解:(1)原式==4;(2)原式===ab.二.分式的化简求值(共1小题)2.(2022•扬州)计算:(1)2cos45°+(π﹣)0﹣;(2)(+1)÷.【答案】(1)1﹣;(2).【解答】解:(1)原式=2×+1﹣2=+1﹣2=1﹣;(2)原式=(+)•=•=.三.分式方程的应用(共1小题)3.(2022•扬州)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?【答案】每个小组有学生10名.【解答】解:设每个小组有学生x名,由题意得:,解得:x=10,当x=10时,12x≠0,∴x=10是分式方程的根,答:每个小组有学生10名.四.解一元一次不等式组(共1小题)4.(2023•扬州)解不等式组并把它的解集在数轴上表示出来.【答案】﹣1<x≤2,解集在数轴上表示见解答.【解答】解:,解不等式①得:x>﹣1,解不等式②得:x≤2,∴原不等式组的解集为:﹣1<x≤2,∴该不等式组的解集在数轴上表示如图所示:五.一元一次不等式组的整数解(共1小题)5.(2022•扬州)解不等式组并求出它的所有整数解的和.【答案】﹣2≤x<4,3.【解答】解:,解不等式①,得:x≥﹣2,解不等式②,得:x<4,∴原不等式组的解集是﹣2≤x<4,∴该不等式组的整数解是﹣2,﹣1,0,1,2,3,∵﹣2+(﹣1)+0+1+2+3=3,∴该不等式组所有整数解的和是3.六.平行四边形的判定与性质(共2小题)6.(2023•扬州)如图,点E、F、G、H分别是平行四边形ABCD各边的中点,连接AF、CE 相交于点M,连接AG、CH相交于点N.(1)求证:四边形AMCN是平行四边形;(2)若▱AMCN的面积为4,求▱ABCD的面积.【答案】(1)见解析过程;(2)12.【解答】解:(1)∵点E、F、G、H分别是平行四边形ABCD各边的中点,∴AH∥CF,AH=CF,∴四边形AFCH是平行四边形,∴AM∥CN,同理可得,四边形AECG是平行四边形,∴AN∥CM,∴四边形AMCN是平行四边形;(2)如图所示,连接AC,∵H,G分别是AD,CD的中点,∴点N是△ACD的重心,∴CN=2HN,∴S△ACN=S△ACH,又∵CH是△ACD的中线,∴S△ACN=S△ACD,又∵AC是平行四边形AMCN和平行四边形ABCD的对角线,∴S平行四边形AMCN=S平行四边形ABCD,又∵▱AMCN的面积为4,∴▱ABCD的面积为12.7.(2021•扬州)如图,在△ABC中,∠BAC的角平分线交BC于点D,DE∥AB,DF∥AC.(1)试判断四边形AFDE的形状,并说明理由;(2)若∠BAC=90°,且AD=2,求四边形AFDE的面积.【答案】见试题解答内容【解答】解:(1)四边形AFDE是菱形,理由是:∵DE∥AB,DF∥AC,∴四边形AFDE是平行四边形,∵AD平分∠BAC,∴∠FAD=∠EAD,∵DE∥AB,∴∠EDA=∠FAD,∴∠EDA=∠EAD,∴AE=DE,∴平行四边形AFDE是菱形;(2)∵∠BAC=90°,∴四边形AFDE是正方形,∵AD=,∴AF=DF=DE=AE==2,∴四边形AFDE的面积为2×2=4.七.直线与圆的位置关系(共1小题)8.(2023•扬州)如图,在△ABC中,∠ACB=90°,点D是AB上一点,且∠BCD=∠A,点O在BC上,以点O为圆心的圆经过C、D两点.(1)试判断直线AB与⊙O的位置关系,并说明理由;(2)若sin B=,⊙O的半径为3,求AC的长.【答案】(1)直线AB与⊙O相切,理由见解析;(2)6.【解答】解:(1)直线AB与⊙O相切,理由:连接OD,∵OC=OD,∴∠OCD=∠ODC,∴∠DOB=∠OCD+∠ODC=2∠BCD,∴,∵∠BCD=∠A,∴∠BCD=∠A,∵∠ACB=90°,∴∠A+∠B=90°,∴∠BOD+∠B=90°,∴∠BDO=90°,∵OD是⊙O的半径,∴直线AB与⊙O相切;(2)∵sin B==,OD=3,∴OB=5,∴BC=OB+OC=8,在Rt△ACB中,sin B==,∴设AC=3x,AB=5x,∴BC==4x=8,∴x=2,∴AC=3x=6.八.扇形面积的计算(共1小题)9.(2021•扬州)如图,四边形ABCD中,AD∥BC,∠BAD=90°,CB=CD,连接BD,以点B为圆心,BA长为半径作⊙B,交BD于点E.(1)试判断CD与⊙B的位置关系,并说明理由;(2)若AB=2,∠BCD=60°,求图中阴影部分的面积.【答案】见试题解答内容【解答】解:(1)过点B作BF⊥CD,垂足为F,∵AD∥BC,∴∠ADB=∠CBD,∵CB=CD,∴∠CBD=∠CDB,∴∠ADB=∠CDB.在△ABD和△FBD中,,∴△ABD≌△FBD(AAS),∴BF=BA,则点F在圆B上,∴CD与⊙B相切;(2)∵∠BCD=60°,CB=CD,∴△BCD是等边三角形,∴∠CBD=60°∵BF⊥CD,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=,∴AD=DF=AB·tan30°=2,∴阴影部分的面积=S△ABD﹣S扇形ABE==.九.总体、个体、样本、样本容量(共1小题)10.(2022•扬州)某校初一年级有600名男生,为增强体质,拟在初一男生中开展引体向上达标测试活动.为制定合格标准,开展如下调查统计活动.(1)A调查组从初一体育社团中随机抽取20名男生进行引体向上测试,B调查组从初一所有男生中随机抽取20名男生进行引体向上测试,其中 B (填“A”或“B”)调查组收集的测试成绩数据能较好地反映该校初一男生引体向上的水平状况;(2)根据合理的调查方式收集到的测试成绩数据记录如下:成绩/个23457131415人数/人11185121这组测试成绩的平均数为 7 个,中位数为 5 个;(3)若以(2)中测试成绩的中位数作为该校初一男生引体向上的合格标准,请估计该校初一有多少名男生不能达到合格标准.【答案】(1)B;(2)7,5;(3)90(人).【解答】解:(1)从初一所有男生中随机抽取20名男生进行引体向上测试,收集的测试成绩数据能较好地反映该校初一男生引体向上的水平状况,故答案为:B;(2)这组测试成绩的平均数为:(2×1+3×1+4×1+5×8+7×5+13×1+14×2+15×1)=7(个),中位数为:5(个),故答案为:7,5;(3)600×=90(人),答:校初一大约有90名男生不能达到合格标准.一十.扇形统计图(共1小题)11.(2021•扬州)为推进扬州市“青少年茁壮成长工程”,某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:抽样调查各类喜欢程度人数统计表喜欢程度人数A .非常喜欢50人B .比较喜欢m 人C .无所谓n 人D .不喜欢16人根据以上信息,回答下列问题:(1)本次调查的样本容量是 200 ;(2)扇形统计图中表示A 程度的扇形圆心角为 90 °,统计表中m = 94 ;(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).【答案】见试题解答内容【解答】解:(1)16÷8%=200,则样本容量是200;故答案为:200.(2)×360°=90°,则表示A 程度的扇形圆心角为90°;200×(1﹣8%﹣20%﹣×100%)=94,则m =94;故答案为:90;94.(3)=1440(名),∴该校2000名学生中大约有1440名学生喜欢“每日健身操”活动.一十一.列表法与树状图法(共2小题)12.(2023•扬州)扬州是个好地方,有着丰富的旅游资源.某天甲、乙两人来扬州旅游,两人分别从A、B、C三个景点中随机选择一个景点游览.(1)甲选择A景点的概率为 ;(2)请用画树状图或列表的方法,求甲、乙两人中至少有一人选择C景点的概率.【答案】(1);(2)甲、乙两人中至少有一人选择C景点的概率是.【解答】解:(1)甲选择A景点的概率为,故答案为:;(2)根据题意画树状图如下:∵共有9种等可能的情况,其中甲、乙两人中至少有一人选择C景点的情况有5种,∴甲、乙两人中至少有一人选择C景点的概率是.13.(2021•扬州)一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙2人等可能地坐到①、②、③中的2个座位上.(1)甲坐在①号座位的概率是 ;(2)用画树状图或列表的方法,求甲与乙相邻而坐的概率.【答案】见试题解答内容【解答】解:(1)∵丙坐了一张座位,∴甲坐在①号座位的概率是;(2)画树状图如图:共有6种等可能的结果,甲与乙两人恰好相邻而坐的结果有4种,∴甲与乙相邻而坐的概率为.。

黑龙江省大庆市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)

黑龙江省大庆市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)

黑龙江省大庆市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.实数的运算(共2小题)1.(2023•大庆)计算:|1﹣|﹣2cos45°+()﹣1.2.(2021•大庆)计算|﹣2|+2sin45°﹣(﹣1)2.二.因式分解的应用(共1小题)3.(2021•大庆)先因式分解,再计算求值:2x3﹣8x,其中x=3.三.分式的化简求值(共2小题)4.(2022•大庆)先化简,再求值:(﹣a)÷.其中a=2b,b≠0.5.(2023•大庆)先化简,再求值:,其中x=1.四.零指数幂(共1小题)6.(2022•大庆)计算:|﹣2|×(3﹣π)0+.五.解分式方程(共1小题)7.(2021•大庆)解方程:+=4.六.分式方程的应用(共2小题)8.(2023•大庆)为营造良好体育运动氛围,某学校用800元购买了一批足球,又用1560元加购了第二批足球,且所购数量是第一批购买数量的2倍,但单价降了2元,请问该学校两批共购买了多少个足球?9.(2022•大庆)某工厂生产某种零件,由于技术上的改进,现在平均每天比原计划多生产20个零件,现在生产800个零件所需时间与原计划生产600个零件所需时间相同.求现在平均每天生产多少个零件?七.一次函数的应用(共1小题)10.(2021•大庆)如图①是甲,乙两个圆柱形水槽的横截面示意图,乙槽中有一圆柱形实心铁块立放其中(圆柱形实心铁块的下底面完全落在乙槽底面上),现将甲槽中的水匀速注入乙槽,甲,乙两个水槽中水的深度y(cm)与注水时间x(min)之间的关系如图②所示,根据图象解答下列问题:(1)图②中折线EDC表示 槽中水的深度与注水时间之间的关系;线段AB表示 槽中水的深度与注水时间之间的关系;铁块的高度为 cm.(2)注水多长时间,甲、乙两个水槽中水的深度相同?(请写出必要的计算过程)八.等腰三角形的性质(共1小题)11.(2023•大庆)某建筑物的窗户如图所示,上半部分△ABC是等腰三角形,AB=AC,AF:BF=3:4,点G、H、F分别是边AB、AC、BC的中点;下半部分四边形BCDE是矩形,BE∥IJ∥MN∥CD,制造窗户框的材料总长为16米(图中所有黑线的长度和),设BF=x米,BE=y米.(1)求y与x之间的函数关系式,并求出自变量x的取值范围;(2)当x为多少时,窗户透过的光线最多(窗户的面积最大),并计算窗户的最大面积.九.翻折变换(折叠问题)(共1小题)12.(2021•大庆)如图,在平行四边形ABCD中,AB=3,点E为线段AB的三等分点(靠近点A),点F为线段CD的三等分点(靠近点C),且CE⊥AB.将△BCE沿CE对折,BC边与AD边交于点G,且DC=DG.(1)证明:四边形AECF为矩形;(2)求四边形AECG的面积.一十.解直角三角形的应用-仰角俯角问题(共1小题)13.(2022•大庆)如图,为了修建跨江大桥,需要利用数学方法测量江的宽度AB.飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CD 为1000m,且点D,A,B在同一水平直线上,试求这条江的宽度AB(结果精确到1m,参考数据:≈1.4142,≈1.7321).一十一.解直角三角形的应用-方向角问题(共1小题)14.(2021•大庆)小明在A点测得C点在A点的北偏西75°方向,并由A点向南偏西45°方向行走到达B点测得C点在B点的北偏西45°方向,继续向正西方向行走2km后到达D点,测得C点在D点的北偏东22.5°方向,求A,C两点之间的距离.(结果保留0.1km.参考数据≈1.732)一十二.扇形统计图(共1小题)15.(2022•大庆)中华文化源远流长,中华诗词寓意深广,为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩不低于50分.为了更好地了解本次海选比赛的成绩分布情况.随机选取其中200名学生的海选比赛成绩(总分100分)作为样本进行整理,得到海选成绩统计表与扇形统计图如下:抽取的200名学生成绩统计表组别海选成绩人数A组50≤x<6010B组60≤x<7030C组70≤x<8040D组80≤x<90aE组90≤x≤10070请根据所给信息解答下列问题:(1)填空:①a= ,②b= ,③θ= 度;(2)若把统计表每组中各个成绩用这组数据的中间值代替(例如:A组数据中间值为55分),请估计被选取的200名学生成绩的平均数;(3)规定海选成绩不低于90分记为“优秀”,请估计该校参加这次海选比赛的2000名学生中成绩“优秀”的有多少人?黑龙江省大庆市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.实数的运算(共2小题)1.(2023•大庆)计算:|1﹣|﹣2cos45°+()﹣1.【答案】1.【解答】解:|1﹣|﹣2cos45°+()﹣1=﹣1﹣2×+2=﹣1﹣+2=1.2.(2021•大庆)计算|﹣2|+2sin45°﹣(﹣1)2.【答案】见试题解答内容【解答】解:原式=2﹣+2×﹣1=2﹣+﹣1=1.二.因式分解的应用(共1小题)3.(2021•大庆)先因式分解,再计算求值:2x3﹣8x,其中x=3.【答案】见试题解答内容【解答】解:原式=2x(x2﹣4)=2x(x+2)(x﹣2)当x=3时,原式=2×3×(3+2)×(3﹣2)=2×3×5×1=30.三.分式的化简求值(共2小题)4.(2022•大庆)先化简,再求值:(﹣a)÷.其中a=2b,b≠0.【答案】,原式=.【解答】解:(﹣a)÷=•=•=,当a=2b时,原式===.5.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.四.零指数幂(共1小题)6.(2022•大庆)计算:|﹣2|×(3﹣π)0+.【答案】﹣.【解答】解:|﹣2|×(3﹣π)0+=(2﹣)×1+(﹣2)=2﹣﹣2=﹣.五.解分式方程(共1小题)7.(2021•大庆)解方程:+=4.【答案】见试题解答内容【解答】解:给分式方程两边同时乘以2x﹣3,得x﹣5=4(2x﹣3),解得x=1,检验:把x=1代入2x﹣3≠0,所以x=1是原分式方程的解.六.分式方程的应用(共2小题)8.(2023•大庆)为营造良好体育运动氛围,某学校用800元购买了一批足球,又用1560元加购了第二批足球,且所购数量是第一批购买数量的2倍,但单价降了2元,请问该学校两批共购买了多少个足球?【答案】见试题解答内容【解答】解:设第一批足球单价为x元,则第二批足球的单价为(x﹣2)元,由题意得:×2=,解得:x=80,经检验,x=80是原方程的解,且符合题意,则x﹣2=78,+=30,答:该学校两批共购买了30个足球.9.(2022•大庆)某工厂生产某种零件,由于技术上的改进,现在平均每天比原计划多生产20个零件,现在生产800个零件所需时间与原计划生产600个零件所需时间相同.求现在平均每天生产多少个零件?【答案】现在平均每天生产80个零件.【解答】解:设现在平均每天生产x个零件,根据题意得:=,解得x=80,经检验,x=80是原方程的解,且符合题意,∴x=80,答:现在平均每天生产80个零件.七.一次函数的应用(共1小题)10.(2021•大庆)如图①是甲,乙两个圆柱形水槽的横截面示意图,乙槽中有一圆柱形实心铁块立放其中(圆柱形实心铁块的下底面完全落在乙槽底面上),现将甲槽中的水匀速注入乙槽,甲,乙两个水槽中水的深度y(cm)与注水时间x(min)之间的关系如图②所示,根据图象解答下列问题:(1)图②中折线EDC表示 乙 槽中水的深度与注水时间之间的关系;线段AB表示 甲 槽中水的深度与注水时间之间的关系;铁块的高度为 16 cm.(2)注水多长时间,甲、乙两个水槽中水的深度相同?(请写出必要的计算过程)【答案】见试题解答内容【解答】解:(1)由题意可知,乙槽在注入水的过程中,由于有圆柱铁块在内,所以水的高度出现变化,∴EDC表示的是乙槽的水深与注水时间的关系;∵甲槽的水是匀速外倒,∴线段AB表示甲槽水深与注水时间的关系;折线EDC中,在D点表示乙槽水深16cm,也就是铁块的高度16cm;故答案为:乙,甲,16;(2)由图象可知,两个水槽深度相同时,线段ED与线段AB相交,设AB的解析式为y=kx+b,将点(0,14),(7,0)代入,得解得,,∴y=﹣2x+14;设ED的解析式为y=mx+n,将点(0,4),(4,16)代入,得,解得,∴y=3x+4;联立方程组,∴,∴注水2分钟,甲、乙两个水槽的水深度相同.八.等腰三角形的性质(共1小题)11.(2023•大庆)某建筑物的窗户如图所示,上半部分△ABC是等腰三角形,AB=AC,AF:BF=3:4,点G、H、F分别是边AB、AC、BC的中点;下半部分四边形BCDE是矩形,BE∥IJ∥MN∥CD,制造窗户框的材料总长为16米(图中所有黑线的长度和),设BF=x米,BE=y米.(1)求y与x之间的函数关系式,并求出自变量x的取值范围;(2)当x为多少时,窗户透过的光线最多(窗户的面积最大),并计算窗户的最大面积.【答案】(1);;(2)米时,窗户透过的光线最多,窗户的最大面积为平方米.【解答】解:(1)∵△ABC是等腰三角形,F是BC的中点,∴BF=CF,AF⊥BC,AB=AC,∵BF=x米,∴CF=x米,BC=2BF=2x米,∵AF:BF=3:4,∴米,在Rt△AFB中,由勾股定理得米,∴米,∵点G、H分别是边AB、AC的中点,∠AFB=∠AFC=90°,∴米,米,∵四边形BCDE是矩形,∴ED=BC=2x米,BE=CD=y米,∵BE∥IJ∥MN∥CD,∴BE=IJ=MN=CD=y米,∵制造窗户框的材料总长为16米,∴AB+AC+FG+FH+AF+BC+ED+BE+IJ+MN+CD=16米,∴,整理得;由题意得,解得;(2)∵,,设窗户的面积为W平方米,则W=S△ABC+S矩形BCDE===,∵,∴W有最大值,当米时,W最大,最大值为平方米.九.翻折变换(折叠问题)(共1小题)12.(2021•大庆)如图,在平行四边形ABCD中,AB=3,点E为线段AB的三等分点(靠近点A),点F为线段CD的三等分点(靠近点C),且CE⊥AB.将△BCE沿CE对折,BC 边与AD边交于点G,且DC=DG.(1)证明:四边形AECF为矩形;(2)求四边形AECG的面积.【答案】(1)见解析;(2).【解答】(1)证明:∵ABCD是平行四边形,∴AB∥CD,AB=CD,∵点E为线段AB的三等分点(靠近点A),∴AE=AB,∵点F为线段CD的三等分点(靠近点C),∴CF=CD,∴AE=CF,又∵AE∥CF,∴四边形AECF为平行四边形,∵CE⊥AB,∴四边形AECF为矩形;(2)∵AB=3,∴AE=CF=1,BE=2,∵将△BCE沿CE对折得到△ECB',∴B'E=BE=2,∴AB'=1,∵DC=DG=3,∴∠DGC=∠DCG,∵BB'∥CD,∴∠DCG=∠B',∴∠B'=∠B'GA,∴AB'=AG=1,∴DA=BC=B'C=4,∵AB'∥CD,∴=,∴=,∴B'G=1,∴△AGB'是等边三角形,在Rt△BCE中,BC=4,BE=2,∴EC=2,∴S四边形AECG=S△EB'C﹣S△AB'G=﹣=.一十.解直角三角形的应用-仰角俯角问题(共1小题)13.(2022•大庆)如图,为了修建跨江大桥,需要利用数学方法测量江的宽度AB.飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CD 为1000m,且点D,A,B在同一水平直线上,试求这条江的宽度AB(结果精确到1m,参考数据:≈1.4142,≈1.7321).【答案】见试题解答内容【解答】解:由题意得:∠CAD=45°,∠CBD=30°,在Rt△ACD中,CD=1000m,∴AD==1000(m),在Rt△BCD中,BD===1000(m),∴AB=BD﹣AD=1000﹣1000≈732(m),∴这条江的宽度AB约为732m.一十一.解直角三角形的应用-方向角问题(共1小题)14.(2021•大庆)小明在A点测得C点在A点的北偏西75°方向,并由A点向南偏西45°方向行走到达B点测得C点在B点的北偏西45°方向,继续向正西方向行走2km后到达D点,测得C点在D点的北偏东22.5°方向,求A,C两点之间的距离.(结果保留0.1km.参考数据≈1.732)【答案】2.3km.【解答】解:过点A作AM∥BD,过B点作BM⊥BD,AM与BM交于点M,∵在A点测得C点在A点的北偏西75°方向,∴∠NAC=75°,∴∠CAM=15°,∵由A点向南偏西45°方向行走到达B点,∴∠MAB=45°,∴∠MBA=45°,∵C点在B点的北偏西45°方向,∴∠CBM=45°,∴∠CBA=90°,∠CBD=45°,∵C点在D点的北偏东22.5°方向,∴∠PDC=22.5°,∴∠BDC=67.5°,∴∠DCB=180°﹣67.5°﹣45°=67.5°,∴BD=BC,由题可得DB=2km,∴BC=2km,在Rt△ABC中,∠CAB=15°+45°=60°,BC=2,∴AC =≈2.3km ,∴A ,C 两点之间的距离是2.3km .一十二.扇形统计图(共1小题)15.(2022•大庆)中华文化源远流长,中华诗词寓意深广,为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩不低于50分.为了更好地了解本次海选比赛的成绩分布情况.随机选取其中200名学生的海选比赛成绩(总分100分)作为样本进行整理,得到海选成绩统计表与扇形统计图如下:抽取的200名学生成绩统计表组别海选成绩人数A 组50≤x <6010B 组60≤x <7030C 组70≤x <8040D 组80≤x <90a E 组90≤x ≤70100请根据所给信息解答下列问题:(1)填空:①a= 50 ,②b= 15 ,③θ= 72 度;(2)若把统计表每组中各个成绩用这组数据的中间值代替(例如:A组数据中间值为55分),请估计被选取的200名学生成绩的平均数;(3)规定海选成绩不低于90分记为“优秀”,请估计该校参加这次海选比赛的2000名学生中成绩“优秀”的有多少人?【答案】见试题解答内容【解答】解:(1)a=200﹣10﹣30﹣40﹣70=50,b%=×100%=15%,θ=360°×=72°,故答案为:50,15,72;(2)=82(分),即估计被选取的200名学生成绩的平均数是82分;(3)2000×=700(人),即估计该校参加这次海选比赛的2000名学生中成绩“优秀”的有700人.。

2021年中考数学真题分类汇编--数与式:实数的运算及比较大小(学生版)

2021年中考数学真题分类汇编--数与式:实数的运算及比较大小(学生版)

中考真题分类汇编(数与式)----实数的运算及大小比较一、选择题1.(2021•湖南省常德市)阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即,那么称m为广义勾股数.则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是()A. ②④B. ①②④C. ①②D. ①④2.(2021•湖南省邵阳市)如图,若数轴上两点M,N所对应的实数分别为m,n,则m+n的值可能是()A.2B.1C.﹣1D.﹣23.(2021•长沙市)下列四个实数中,最大的数是()A. 3-B. 1-C. πD. 44.(2021•江苏省南京市)北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00,小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间()A. 10:00B. 12:00C. 15:00D. 18:005.(2021•山东省泰安市)下列各数:﹣4,﹣2.8,0,|﹣4|,其中比﹣3小的数是()A.﹣4B.|﹣4|C.0D.﹣2.86.(2021•陕西省)计算:3×(﹣2)=()A.1B.﹣1C.6D.﹣67.(2021•河北省)若取1.442,计算﹣3﹣98的结果是()A.﹣100B.﹣144.2C.144.2D.﹣0.014428.(2021•四川省南充市)数轴上表示数m和m+2的点到原点的距离相等,则m为()A.﹣2B.2C.1D.﹣19.(2021•天津市)17值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间10. (2021•浙江省湖州市)已知a ,b 是两个连续整数,a <3﹣1<b ,则a ,b 分别是 A .﹣2,﹣1 B .﹣1,0 C .0,1 D .1,2 11. (2021•浙江省台州)大小在2和5之间的整数有( ) A. 0个B. 1个C. 2个D. 3个12. (2021•北京市)实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a >﹣2B .|a |>bC .a +b >0D .b ﹣a <013. (2021•北京市)已知432=1849,442=1936,452=2025,462=2116.若n 为整数且n <<n +1,则n 的值为( ) A .43B .44C .45D .4614. (2021•内蒙古包头市)下列运算结果中,绝对值最大的是( ) A. 1(4)+-B. 4(1)-C. 1(5)--D.415.(2021•四川省凉山州) 81的平方根是( )A. 3±B. 3C. 9±D. 916.(2021•贵州省贵阳市)如图,已知数轴上A ,B 两点表示的数分别是a ,b ,则计算|b |﹣|a |正确的是( )A .b ﹣aB .a ﹣bC .a +bD .﹣a ﹣b17.(2021•绥化市)定义一种新的运算:如果0a ≠.则有2||a b a ab b -=++-▲,那么1()22-▲的值是( ) 二.填空题1. (2021·安徽省)计算:04(1)+-=______.2. (2021•怀化市)比较大小:(填写“>”或“<”或“=”).3. (2021•湖南省邵阳市)16的算术平方根是 .4. (2021•江苏省扬州)计算:2220212020-=__________.5. (2021•山东省临沂市)比较大小:25(选填“>”、“=”、“<”).6.(2021•湖北省宜昌市)用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km 气温的变化量为﹣6℃,攀登2km 后,气温下降 ℃.7. (2021•湖北省荆州市)已知:a =()﹣1+(﹣)0,b =(+)(﹣),则= .8. (2021•湖北省荆门市)计算:|1﹣|+()﹣1+2cos45°+(﹣1)0= .9. (2021•重庆市A )计算:031_______.10. (2021•内蒙古包头市)一个正数a 的两个平方根是21b -和4b +,则a b +的立方根为_______. 三、解答题1. (2021•甘肃省定西市)计算:(2021﹣π)0+()﹣1﹣2cos45°.2. (2021•湖北省黄冈市)计算:0.3. (2021•怀化市)计算:.4. (2021•江苏省连云港)计算:23862+--.5. (2021•江苏省扬州)计算:01|33|tan603⎛⎫-+-+︒ ⎪⎝⎭;6. (2021•江西省)计算:(﹣1)2﹣(π﹣2021)0+|﹣|;7. (2021•陕西省)计算:(﹣)0+|1﹣|﹣.8. (2021•山西省中考)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭9. (2021•山东省临沂市)计算|﹣|+(﹣)2﹣(+)2.10. (2021•四川省成都市)计算:+(1+π)0﹣2cos45°+|1﹣|.11. (2021•遂宁市)计算:()101tan 60233122-⎛⎫-+︒--+-- ⎪⎝⎭π12. 2021•浙江省金华市)计算:(﹣1)2021+﹣4sin45°+|﹣2|.13. (2021•浙江省台州)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量; (2)求小华从输液开始到结束所需的时间.14. (2021•浙江省温州市)计算:4×(﹣3)+|﹣8|﹣.15. (2021•江苏省盐城市)如图,点A 是数轴上表示实数a 的点. (1)用直尺和圆规在数轴上作出表示实数的的点P ;(保留作图痕迹,不写作法)(2)利用数轴比较和a 的大小,并说明理由.16. (2021•湖北省十堰市)11233-⎛⎫︒+-- ⎪⎝⎭.17. (2021•湖南省张家界市)计算:860cos 222)1(2021+--+-︒18. (2021•广西贺州市)()04123π-+-︒.。

上海市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类

上海市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类

上海市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.实数的运算(共2小题)1.(2023•上海)计算:+﹣()﹣2+|﹣3|.2.(2021•上海)计算:9+|1﹣|﹣2﹣1×.二.分数指数幂(共1小题)3.(2022•上海)计算:|﹣|﹣+﹣.三.高次方程(共1小题)4.(2021•上海)解方程组:.四.解一元一次不等式组(共2小题)5.(2022•上海)解关于x的不等式组:.6.(2023•上海)解不等式组:.五.反比例函数图象上点的坐标特征(共1小题)7.(2022•上海)一个一次函数的截距为﹣1,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC的值.六.二次函数图象与几何变换(共1小题)8.(2023•上海)在平面直角坐标系xOy中,已知直线y=x+6与x轴交于点A,y轴交于点B,点C在线段AB上,以点C为顶点的抛物线M:y=ax2+bx+c经过点B.(1)求点A,B的坐标;(2)求b,c的值;(3)平移抛物线M至N,点C,B分别平移至点P,D,联结CD,且CD∥x轴,如果点P在x轴上,且新抛物线过点B,求抛物线N的函数解析式.七.圆的综合题(共1小题)9.(2021•上海)如图,在圆O中,弦AB等于弦CD,且相交于点P,其中E、F为AB、CD 中点.(1)证明:OP⊥EF;(2)连接AF、AC、CE,若AF∥OP,证明:四边形AFEC为矩形.八.扇形统计图(共1小题)10.(2021•上海)现在5G手机非常流行,某公司第一季度总共生产80万部5G手机,三个月生产情况如图.(1)求三月份生产了多少部手机?(2)5G手机速度很快,比4G下载速度每秒多95MB,下载一部1000MB的电影,5G比4G要快190秒,求5G手机的下载速度.上海市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.实数的运算(共2小题)1.(2023•上海)计算:+﹣()﹣2+|﹣3|.【答案】﹣6.【解答】解:原式=2+﹣9+3﹣=2+﹣2﹣9+3﹣=﹣6.2.(2021•上海)计算:9+|1﹣|﹣2﹣1×.【答案】2.【解答】解:+|1﹣|﹣2﹣1×=3=2=2.二.分数指数幂(共1小题)3.(2022•上海)计算:|﹣|﹣+﹣.【答案】1.【解答】解:|﹣|﹣+﹣===1﹣.三.高次方程(共1小题)4.(2021•上海)解方程组:.【答案】.【解答】解:,由①得:y=3﹣x,把y=3﹣x代入②,得:x2﹣4(3﹣x)2=0,化简得:(x﹣2)(x﹣6)=0,解得:x1=2,x2=6.把x1=2,x2=6依次代入y=3﹣x得:y1=1,y2=﹣3,∴原方程组的解为.四.解一元一次不等式组(共2小题)5.(2022•上海)解关于x的不等式组:.【答案】不等式组的解集为:﹣2<x<﹣1.【解答】解:,由①得,3x﹣x>﹣4,2x>﹣4,解得x>﹣2,由②得,4+x>3x+6,x﹣3x>6﹣4,﹣2x>2,解得x<﹣1,所以不等式组的解集为:﹣2<x<﹣1.6.(2023•上海)解不等式组:.【答案】3<x<.【解答】解:,解不等式①,得x>3,解不等式②,得x<,所以不等式组的解集是3<x<.五.反比例函数图象上点的坐标特征(共1小题)7.(2022•上海)一个一次函数的截距为﹣1,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC的值.【答案】(1)y=2x﹣1;(2).【解答】解:(1)设一次函数的解析式为:y=kx﹣1,∴2k﹣1=3,解得:k=2,一次函数的解析式为:y=2x﹣1.(2)∵点A,B在某个反比例函数上,点B横坐标为6,∴B(6,1),∴C(6,3),∴△ABC是直角三角形,且BC=2,AC=4,根据勾股定理得:AB=2,∴cos∠ABC===.六.二次函数图象与几何变换(共1小题)8.(2023•上海)在平面直角坐标系xOy中,已知直线y=x+6与x轴交于点A,y轴交于点B,点C在线段AB上,以点C为顶点的抛物线M:y=ax2+bx+c经过点B.(1)求点A,B的坐标;(2)求b,c的值;(3)平移抛物线M至N,点C,B分别平移至点P,D,联结CD,且CD∥x轴,如果点P在x轴上,且新抛物线过点B,求抛物线N的函数解析式.【答案】(1)A(﹣8,0);(2),c=6;(3)抛物线N的函数解析式为:或.【解答】解:(1)在中,令x=0得:y=6,∴B(0,6),令y=0得:x=﹣8,∴A(﹣8,0);(2)设,设抛物线的解析式为:,∵抛物线M经过点B,∴将B(0,6)代入得:,∵m≠0,∴,即,将代入y=a(x﹣m)2+3m+6,整理得:,∴,c=6;(3)如图:∵CD∥x轴,点P在x轴上,∴设P(p,0),,∵点C,B分别平移至点P,D,∴点B,点C向下平移的距离相同,∴,解得:m=﹣4,由(2)知,∴,∴抛物线N的函数解析式为:,将B(0,6)代入可得:,∴抛物线N的函数解析式为:或.七.圆的综合题(共1小题)9.(2021•上海)如图,在圆O中,弦AB等于弦CD,且相交于点P,其中E、F为AB、CD 中点.(1)证明:OP⊥EF;(2)连接AF、AC、CE,若AF∥OP,证明:四边形AFEC为矩形.【答案】(1)(2)证明见解析部分.【解答】(1)证明:连接OP,EF,OE,OF,OB=OD.∵AE=EB,CF=FD,AB=CD,∴OE⊥AB,OF⊥CD,BE=DF,∴∠OEB=∠OFD=90°,∵OB=OD,∴Rt△OEB≌Rt△OFD(HL),∴OE=OF,∵∠OEP=∠OFP=90°,OP=OP,∴Rt△OPE≌Rt△OPF(HL),∴PE=PF,∵OE=OF,∴OP⊥EF.(2)证明:连接AC,设EF交OP于J.∵AB=CD,AE=EB,CF=DF,∴AE=CF,BE=DF,∵PE=PF,∴PA=PC,∵PE=PF,OE=OF,∴OP垂直平分线段EF,∴EJ=JF,∵OP∥AF,∴EP=PA,∴PC=PF,PA=PE,∴四边形AFEC是平行四边形,∵EA=CF,∴四边形AFEC是矩形.八.扇形统计图(共1小题)10.(2021•上海)现在5G手机非常流行,某公司第一季度总共生产80万部5G手机,三个月生产情况如图.(1)求三月份生产了多少部手机?(2)5G手机速度很快,比4G下载速度每秒多95MB,下载一部1000MB的电影,5G 比4G要快190秒,求5G手机的下载速度.【答案】(1)三月份生产了36万部手机;(2)5G手机的下载速度是每秒100MB.【解答】解:(1)80×(1﹣30%﹣25%)=36(万部),答:三月份生产了36万部手机;(2)设5G手机的下载速度是每秒xMB.则4G手机的下载速度是每秒(x﹣95)MB.+190=,解得:x1=100,x2=﹣5(不合题意,舍去),经检验,x1=100是原方程的解,答:5G手机的下载速度是每秒100MB.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学分类汇编--实数的运算一、选择题1.(2010江苏盐城)20100的值是A .2010B .0C .1D .-1 2.(2010山东威海)计算()201020092211-⨯⎪⎭⎫⎝⎛-的结果是A .-2B .-1C .2D .33.(2010台湾)计算 | -1-(-35) |-| -611-67| 之值为何? (A) -37 (B) -31 (C) 34 (D) 311。

4.(2010台湾)计算106⨯(102)3÷104之值为何?(A) 108 (B) 109 (C) 1010 (D) 1012。

5.(2010台湾)(A) 5,5,5,5,5 (B) 1,9,16,25(C) 5,25,35,45,55 (D) 1,22,33,44,55 。

6.(2010台湾)图(五)数在线的A 、B 、C 三点所表示的数分别为a 、b 、c 。

根据图中各点位 置,判断下列各式何者正确?(A) (a -1)(b -1)>0 (B) (b -1)(c -1)>0(C) (a +1)(b +1)<0 (D) (b +1)(c +1)<0 。

8.(2010 浙江义乌)28 cm 接近于( ▲ )A .珠穆朗玛峰的高度B .三层楼的高度C .姚明的身高D .一张纸的厚度 9.(2010 福建德化)2-的3倍是( ) A 、 6- B 、1 C、6 D 、5-10.(2010 山东济南)某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高A .-10℃ B.-6℃ C.6℃ D.10℃11.(2010 东济南)下列各式中,运算正确的是A =B .=C .632a a a ÷= D .325()a a =14.(2010 河北)下列计算中,正确的是A .020=B .2a a a =+C3=±D .623)(a a=15.(2010山东省德州)下列计算正确的是 (A)020=(B)331-=- 3= =A B C O a bc 0 -1 1 图(五)16.(2010江苏宿迁)3)2(-等于A .-6B .6C .-8D .817.(2010 山东莱芜)如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是A .0>abB .0>-b aC .0>+b aD .0||||>-b a19.(2010年贵州毕节)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( ) A .8人 B .9人 C .10人 D .11人20.(2010湖北荆门)()()2012321-+-+⎪⎭⎫ ⎝⎛--π的值为( )A .-1B .-3C . 1D . 021.(2010 四川成都)3x 表示( )(A )3x (B )x x x ++ (C )x x x ⋅⋅ (D )3x + 22.(2010湖北荆州)温度从-2°C 上升3°C 后是A .1°CB . -1°C C .3°CD .5°C 23.(2010湖北荆州)下面计算中正确的是 A .532=+ B .()111=-- C . ()2010201055=- D . x 32x ∙=x 624.(2010湖北荆州)在电子显微镜下测得一个圆球体细胞的直径是5×105-cm.,3102⨯个这样的细胞排成的细胞链的长是A .cm 210-B .cm 110-C .cm 310-D .cm 410- 25.(2010湖北省咸宁)下列运算正确的是A .263-=- B .24±= C .532a a a =⋅ D .3252a a a+= 26.(2010江苏淮安)观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ ……计算:3×(1×2+2×3+3×4+…+99×100)=A .97×98×99B .98×99×100C .99×100×101D .100×101×102 28.(2010山东泰安)如图,数轴上A 、B 两点对应的实数分别为,a b ,则下列结论不正确的是( )A 、0a b +>B 、0ab <C 、0a b -<D 、0a b ->1 0 -1 a b B A (第5题图)29.(2010云南红河哈尼族彝族自治州)下列计算正确的是A .(-1)-1=1 B.(-3)2=-6 C.π0=1 D.(-2)6÷(-2)3=(-2)230.(2010云南楚雄)下列计算正确的是( )A .a 2·a 3=a 6B .6÷2=3C .(21)-2=-2 D . (-a 3)2=-a 631. (2010湖北随州)下列运算正确的是( )A .1331-÷= Ba = C .3.14 3.14ππ-=- D .326211()24a b a b = 32. (2010四川乐山)计算(-2)×3的结果是( )(A)-6 (B)6 (C)-5 (D)533. (2010黑龙江哈尔滨)某年哈尔滨市一月份的平均气温为-18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高( ) (A )16℃ (B )20℃ (C )-16℃ (D ).-20℃ 34. (2010 福建三明)如果□,1)23(=-⨯则□内应填的实数是 ( )A .23-B .32-C .23 D .32 35. (2010湖北襄樊)某市2010年元旦这天的最高气温是8℃,最低气温是-2℃,则这天的最高气温比最低气温高( )A .10℃B .-10℃C .6℃D .-6℃ 36. (2010 湖北孝感)2010)1(-的值是 ( )A .1B .—1C .2010D .—201037.(2010 山东淄博)下列结论中不能由0=+b a 得到的是(A )ab a -=2(B )b a =(C )0=a ,0=b (D )22b a =38.(2010 山东淄博)如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为(A )6 (B )3 (C )200623 (D )10033231003⨯+39.(2010云南玉溪) 的结果是)(计算12010)21(1:.1---(第11题)A. 1B. -1C.0D. 241.(2010 山东荷泽)2010年元月19日,山东省气象局预报我市元月20日的最高气温是4℃,最低气温是-6℃,那么我市元月20日的最大温差是A .10℃B .6℃C .4℃D .2℃ 42.(2010青海西宁) 计算)3(21-⨯--的结果等于A.5B.5-C.7D.7- 43.(2010广西梧州)用0,1,2,3,4,5,6,7,8这9个数字组成若干个一位数或两位数(每个数字都只用一次),然后把所得的数相加,它们的和不可能是( ) A .36 B .117 C .115 D .153 44.(2010广东深圳)观察下列算式,用你所发现的规律得出20102的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…A .2B .4C .6D .8 45.(2010湖北宜昌)冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高( )。

A.26℃B.14℃C.-26℃D.-14℃ 46.(2010湖北宜昌)如图,数轴上A,B 两点分别对应实数a ,b ,则下列结论正确的是( )。

A. |a|>|b|B. a+b>0C. ab<0D. |b|=b47.(2010吉林)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是( )48.(2010广东湛江)观察下列算式:,65613,21873,7293,2433,813,273,93,1387654321========,通过观察,用你所发现的规律确定20023的个位数字是( )A.3B.9C.7D.149.(2010广东清远)计算:0-12=( ) A. 12 B. -2 C.-12 D. 250.(2010广西百色)计算:23-=( )A. 1-B. 1C. 5D. 9 二、填空题1.(2010山东烟台)计算-2sin60°+(π-1)2=_____________________。

2.(2010 福建晋江)计算:.______32=-3.(2010江苏无锡)一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了 ▲ .【注:销售利润率=(售价—进价)÷进价】4.(2010 山东莱)已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…, 观察上面的计算过程,寻找规律并计算=610C .5.( 10.(2010江西)按照下图所示的操作步骤,若输入x 的值为-2,则给出的值 为 .6.(2010湖北武汉)计算:sin30︒= ,(-3a 2)2= ,= .7.(2010四川 巴中)符号“f ”表示一种运算,它对一些数的运算结果如下: (1)f (1)=0,f (2) = 1,f (3)=2,f (4)= 3,…… (2)1111()()()()23452,3,4,5f f ff ====……利用以上规律计算:1(2010)()2010ff -=8.(2010浙江湖州)“五.一”期间,某服装商店举行促销活动,全部商品八折销售.一件 标价为100元的 运动服,打折后的售价应是 元. 9.(2010江苏常州)计算:12-+= ,2-= ,(2)--= ,34()a = 。

10.(2010湖南怀化)计算102)7(-++π=_______.11.(2010 山东滨州)计算(-2)2·(-1)0-(13)-1= .12.(2010湖北荆门)观察下列计算:211211-=⨯ 3121321-=⨯ 4131431-=⨯ 5141541-=⨯ … … 从计算结果中找规律,利用规律计算 +⨯+⨯+⨯+⨯541431321211…=⨯+201020091 。

相关文档
最新文档