浙江省杭州市西湖区2016届九年级(上)期末数学试卷(解析版)
浙教版2015-2016学年度九年级上学期期末数学试卷及答案
2015-2016学年度九年级上学期期末数学试卷一、选择题(共12小题,每小题4分,满分48分)1.若x:y=6:5,则下列等式中不正确的是( )A.B.C.D.2.二次函数y=x2﹣2x﹣2与坐标轴的交点个数是( )A.0个B.1个C.2个D.3个3.如图,在平行四边形ABCD中,E为CD上一点,DE:CE=2:3,连结AE,BD交于点F,则S△DEF:S△ADF:S△ABF等于( )A.2:3:5 B.4:9:25 C.4:10:25 D.2:5:254.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是( )A.B.C.D.5.如图,一根5m长的绳子,一端拴在互相垂直的围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是( )A.πm2B.πm2C.πm2D.πm26.二次函数y=ax2﹣2x﹣3(a<0)的图象一定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限.7.在下列命题中,正确的是( )A.三点确定一个圆B.圆的内接等边三角形只有一个C.一个三角形有且只有一个外接圆D.一个四边形一定有外接圆8.二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论:(1)c<0;(2)b>0;(3)4a+2b+c>0;(4)(a+c)2<b2.其中不正确的有( )A.1个B.2个C.3个D.4个9.某块面积为4000m2的多边形草坪,在嘉兴市政建设规划设计图纸上的面积为250cm2,这块草坪某条边的长度是40m,则它在设计图纸上的长度是( )A.4cm B.5cm C.10cm D.40cm10.抛物线y=﹣(x﹣2)2+1经过平移后与抛物线y=﹣(x+1)2﹣2重合,那么平移的方法可以是( )A.向左平移3个单位再向下平移3个单位B.向左平移3个单位再向上平移3个单位C.向右平移3个单位再向下平移3个单位D.向右平移3个单位再向上平移3个单位11.如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是( )A.B.C.D.12.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC 与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A 与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是( )A.B.C.D.二、填空题(共6小题,每小题4分,满分24分)13.已知弦AB把圆周分成1:5的两部分,则弦AB所对的圆心角的度数为__________.14.如图,将弧AC沿弦AC折叠交直径AB于圆心O,则弧AC=__________度.15.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣2x﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为__________.16.如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x 的值为__________.17.如图,A、D、E是⊙O上的三个点,且∠AOD=120°,B、C是弦AD上两点,BC=,△BCE是等边三角形.若设AB=x,CD=y,则y与x的函数关系式是__________.18.如图,在Rt△ABC中,∠ABC=90°,BA=BC,点D是AB的中点,连结CD,过点B 作BG⊥CD,分别交CD、CA于点E,F,与过点A且垂直于AB的直线相交于点G,连结DF.给出以下四个结论:①;②FG=FB;③AF=;④S△ABC=5S△BDF,其中正确结论的序号是__________.三、解答题(共8小题,满分78分)19.计算:(+1)()﹣(﹣2014)0+2sin45°.20.如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°.(1)求证:△ABD∽△DCE;(2)若BD=3,CE=2,求△ABC的边长.21.如图,AB和CD是同一地面上的两座相距39米的楼房,在楼AB的楼顶A点测得楼CD的楼顶C的仰角为45°,楼底D的俯角为30°.求楼CD的高(结果保留根号).22.如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,视为无效,重新转动一次转盘),此过程称为一次操作.请用树状图或列表法,求事件“两次操作,第一次操作得到的数与第二次操作得到的数的绝对值相等”发生的概率.23.在学习圆与正多边形时,马露、高静两位同学设计了一个画圆内接正三角形的方法:(1)如图,作直径AD;(2)作半径OD的垂直平分线,交⊙O于B,C两点;(3)联结AB、AC、BC,那么△ABC为所求的三角形.请你判断两位同学的作法是否正确,如果正确,请你按照两位同学设计的画法,画出△ABC,然后给出△ABC是等边三角形的证明过程;如果不正确,请说明理由.24.如图1,在四边形ABCD的AB边上任取一点E(点E不与点A、点B重合,分别连接ED,EC,可以把四边形ABCD分成3个三角形.如果其中有2个三角形相似,我们就把点E叫做四边形ABCD的AB边上的相似点;如果这3个三角形都相似,我们就把点E 叫做四边形ABCD的AB边上的强相似点.(1)若图1中,∠A=∠B=∠DEC=50°,证明点E是四边形ABCD的AB边上的相似点.(2)①如图2,画出矩形ABCD的AB边上的一个强相似点.(要求:画图工具不限,不写画法,保留画图痕迹或有必要的说明)②对于任意的一个矩形,是否一定存在强相似点?如果一定存在,请说明理由;如果不一定存在,请举出反例.(3)如图3,在四边形ABCD中,AD∥BC,AD<BC,∠B=90°,点E是四边形ABCD 的AB边上的一个强相似点,判断AE与BE的数量关系并说明理由.25.某蔬菜经销商到蔬菜种植基地采购一种蔬菜,经销商一次性采购蔬菜的采购单价y(元/千克)与采购量x(千克)之间的函数关系图象如图中折线AB﹣﹣BC﹣﹣CD所示(不包括端点A).(1)当100<x<200时,直接写y与x之间的函数关系式:__________.(2)蔬菜的种植成本为2元/千克,某经销商一次性采购蔬菜的采购量不超过200千克,当采购量是多少时,蔬菜种植基地获利最大,最大利润是多少元?(3)在(2)的条件下,求经销商一次性采购的蔬菜是多少千克时,蔬菜种植基地能获得418元的利润?26.在平面直角坐标系xOy中,一块含60°角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(﹣1,0).(1)请直接写出点B、C的坐标:B__________、C__________;并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E 放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(1)中的抛物线交于点M.①设AE=x,当x为何值时,△OCE∽△OBC;②在①的条件下探究:抛物线的对称轴上是否存在点P使△PEM是等腰三角形?若存在,请写出点P的坐标;若不存在,请说明理由.一、选择题(共12小题,每小题4分,满分48分)1.若x:y=6:5,则下列等式中不正确的是( )A.B.C.D.考点:比例的性质.分析:根据比例设x=6k,y=5k,然后分别代入对各选项进行计算即可判断.解答:解:∵x:y=6:5,∴设x=6k,y=5k,A、==,故本选项错误;B、==,故本选项错误;C、==6,故本选项错误;D、==﹣5,故本选项正确.故选D.点评:本题考查了比例的性质,利用“设k”法表示出x、y可以使计算更加简便.2.二次函数y=x2﹣2x﹣2与坐标轴的交点个数是( )A.0个B.1个C.2个D.3个考点:抛物线与x轴的交点.分析:先计算根的判别式的值,然后根据b2﹣4ac决定抛物线与x轴的交点个数进行判断.解答:解:∵△=(﹣2)2﹣4×1×(﹣2)=12>0,∴二次函数y=x2﹣2x﹣2与x轴有2个交点,与y轴有一个交点.∴二次函数y=x2﹣2x﹣2与坐标轴的交点个数是3个.故选D.点评:本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2﹣4ac决定抛物线与x轴的交点个数;△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.3.如图,在平行四边形ABCD中,E为CD上一点,DE:CE=2:3,连结AE,BD交于点F,则S△DEF:S△ADF:S△ABF等于( )A.2:3:5 B.4:9:25 C.4:10:25 D.2:5:25考点:相似三角形的判定与性质;平行四边形的性质.分析:根据平行四边形性质得出DC=AB,DC∥AB,求出DE:AB=2:5,推出△DEF∽△BAF,求出=()2=,==,根据等高的三角形的面积之比等于对应边之比求出===,即可得出答案.解答:解:∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∵DE:CE=2:3,∴DE:AB=2:5,∵DC∥AB,∴△DEF∽△BAF,∴=()2=,==,∴===(等高的三角形的面积之比等于对应边之比),∴S△DEF:S△ADF:S△ABF等于4:10:25,故选C.点评:本题考查了平行四边形的性质和相似三角形的判定和性质的应用,注意:相似三角形的面积之比等于相似比的平方.4.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是( )A.B.C.D.考点:列表法与树状图法.分析:列举出所有情况,看卡片上的数字之和为奇数的情况数占总情况数的多少即可.解答:解:1 2 3 41 3 4 52 3 5 63 4 5 74 5 6 7由列表可知:共有3×4=12种可能,卡片上的数字之和为奇数的有8种.所以卡片上的数字之和为奇数的概率是.故选C.点评:本题考查求随机事件概率的方法.注意:任意取两张,相当于取出不放回.用到的知识点为:概率=所求情况数与总情况数之比.5.如图,一根5m长的绳子,一端拴在互相垂直的围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是( )A.πm2B.πm2C.πm2D.πm2考点:扇形面积的计算.专题:压轴题.分析:小羊A在草地上的最大活动区域是一个扇形+一个小扇形的面积.解答:解:大扇形的圆心角是90度,半径是5,所以面积==m2;小扇形的圆心角是180°﹣120°=60°,半径是1m,则面积==(m2),则小羊A在草地上的最大活动区域面积=+=(m2).故选D.点评:本题的关键是从图中找到小羊的活动区域是由哪几个图形组成的,然后分别计算即可.6.二次函数y=ax2﹣2x﹣3(a<0)的图象一定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限.考点:二次函数的性质.分析:先根据题意判断出二次函数的对称轴方程,再令x=0求出y的值,进而可得出结论.解答:解:∵二次函数y=ax2﹣2x﹣3(a<0)的对称轴为直线x=﹣=﹣=<0,∴其顶点坐标在第二或三象限,∵当x=0时,y=﹣3,∴抛物线一定经过第四象限,∴此函数的图象一定不经过第一象限.故选A.点评:本题考查的是二次函数的性质,熟知二次函数的对称轴方程是解答此题的关键.7.在下列命题中,正确的是( )A.三点确定一个圆B.圆的内接等边三角形只有一个C.一个三角形有且只有一个外接圆D.一个四边形一定有外接圆考点:命题与定理.分析:利用确定圆的条件、圆内接三角形的定义、外接圆的定义分别判断后即可确定正确的选项.解答:解:A、不在同一直线上的三点确定一个圆,故错误;B、圆内接等边三角形有无数个,故错误;C、一个三角形有且只有一个外接圆,正确;D、并不是所有的四边形一定有外接圆,故错误,故选C.点评:本题考查了命题与定理的知识,解题的关键是了解确定圆的条件、圆内接三角形的定义、外接圆的定义等知识,难度不大.8.二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论:(1)c<0;(2)b>0;(3)4a+2b+c>0;(4)(a+c)2<b2.其中不正确的有( )A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点得出c的值,然后根据图象经过的点的情况进行推理,进而对所得结论进行判断.解答:解:抛物线的开口向上,则a>0;对称轴为x=﹣=1,即b=﹣2a,故b<0,故(2)错误;抛物线交y轴于负半轴,则c<0,故(1)正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c<0,故(3)错误;把x=1代入y=ax2+bx+c得:y=a+b+c<0,把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c<0,则(a+b+c)(a﹣b+c)>0,故(4)错误;不正确的是(2)(3)(4);故选C.点评:本题考查二次函数图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=4a+2b+c,然后根据图象判断其值.9.某块面积为4000m2的多边形草坪,在嘉兴市政建设规划设计图纸上的面积为250cm2,这块草坪某条边的长度是40m,则它在设计图纸上的长度是( )A.4cm B.5cm C.10cm D.40cm考点:相似多边形的性质.分析:首先设这块草坪在设计图纸上的长度是xcm,根据题意可得这两个图形相似,根据相似图形的面积比等于相似比的平方,可列方程=()2,解此方程即可求得答案,注意统一单位.解答:解:设这块草坪在设计图纸上的长度是xcm,4000m22,40m=4000cm,根据题意得:=()2,解得:x=10,即这块草坪在设计图纸上的长度是10cm.故选C.点评:此题考查了相似图形的性质.此题难度不大,注意相似图形的面积比等于相似比的平方的应用与方程思想的应用.10.抛物线y=﹣(x﹣2)2+1经过平移后与抛物线y=﹣(x+1)2﹣2重合,那么平移的方法可以是( )A.向左平移3个单位再向下平移3个单位B.向左平移3个单位再向上平移3个单位C.向右平移3个单位再向下平移3个单位D.向右平移3个单位再向上平移3个单位考点:二次函数图象与几何变换.分析:根据平移前后的抛物线的顶点坐标确定平移方法即可得解.解答:解:∵抛物线y=﹣(x﹣2)2+1的顶点坐标为(2,1),抛物线y=﹣(x+1)2﹣2的顶点坐标为(﹣1,﹣2),∴顶点由(2,1)到(﹣1,﹣2)需要向左平移3个单位再向下平移3个单位.故选A.点评:本题考查了二次函数图象与几何变换,此类题目,利用顶点的变化确定抛物线解析式更简便.11.如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是( )A.B.C.D.考点:锐角三角函数的定义.专题:网格型.分析:认真读图,在以∠AOB的O为顶点的直角三角形里求tan∠AOB的值.解答:解:由图可得tan∠AOB=.故选B.点评:本题考查了锐角三角函数的概念:在直角三角形中,正切等于对边比邻边.12.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC 与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A 与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是( )A.B.C.D.考点:动点问题的函数图象.专题:几何图形问题;压轴题.分析:此题可分为两段求解,即C从D点运动到E点和A从D点运动到E点,列出面积随动点变化的函数关系式即可.解答:解:设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y∴当C从D点运动到E点时,即0≤x≤2时,y==.当A从D点运动到E点时,即2<x≤4时,y==∴y与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.故选:A.点评:本题考查的动点变化过程中面积的变化关系,重点是列出函数关系式,但需注意自变量的取值范围.二、填空题(共6小题,每小题4分,满分24分)13.已知弦AB把圆周分成1:5的两部分,则弦AB所对的圆心角的度数为60°.考点:圆心角、弧、弦的关系.专题:计算题.分析:由于弦AB把圆周分成1:5的两部分,根据圆心角、弧、弦的关系得到弦AB所对的圆心角为周角的.解答:解:∵弦AB把圆周分成1:5的两部分,∴弦AB所对的圆心角的度数=×360°=60°.故答案为60°.点评:本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.14.如图,将弧AC沿弦AC折叠交直径AB于圆心O,则弧AC=120度.考点:翻折变换(折叠问题);等边三角形的判定与性质;圆心角、弧、弦的关系.分析:过O点作OD⊥AC交AC于D,交弧AC于E,连结OC,BC.根据垂径定理可得OD=OE,AD=CD,根据三角形中位线定理可得OD=BC,再根据等边三角形的判定和性质,以及邻补角的定义即可求解.解答:解:过O点作OD⊥AC交AC于D,交弧AC于E,连结OC,BC.∴OD=OE,AD=CD,∵AB是直径,∴∠ACB=90°,OD=BC,又∵OC=OB,∴△OBC是等边三角形,∴∠BOC=60°,∴∠AOC=180°﹣60°=120°,即弧AC=120度.故答案为:120.点评:考查了翻折变换(折叠问题),垂径定理,三角形中位线定理,等边三角形的判定和性质,以及邻补角的定义,综合性较强,难度中等.15.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣2x﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为3+.考点:二次函数综合题.分析:连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.解答:解:连接AC,BC,∵抛物线的解析式为y=x2﹣2x﹣3,∴点D的坐标为(0,﹣3),∴OD的长为3,设y=0,则0=x2﹣2x﹣3,解得:x=﹣1或3,∴A(﹣1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AO?BO=3,∴CO=,∴CD=CO+OD=3+,故答案为:3+.点评:本题是二次函数综合题型,主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理,读懂题目信息,理解“果圆”的定义是解题的关键.16.如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x 的值为7.考点:相似三角形的判定与性质;正方形的性质.分析:根据已知条件可以推出△CEF∽△OME∽△PFN然后把它们的直角边用含x的表达式表示出来,利用对应边的比相等,即可推出x的值答题解答:解:如图∵在Rt△ABC中∠C=90°,放置边长分别3,4,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF,∵EF=x,MO=3,PN=4,∴OE=x﹣3,PF=x﹣4,∴(x﹣3):4=3:(x﹣4),∴(x﹣3)(x﹣4)=12,∴x1=0(不符合题意,舍去),x2=7.故答案为:7.点评:本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x的表达式表示出对应边.17.如图,A、D、E是⊙O上的三个点,且∠AOD=120°,B、C是弦AD上两点,BC=,△BCE是等边三角形.若设AB=x,CD=y,则y与x的函数关系式是y=.考点:相似三角形的判定与性质;等边三角形的性质;圆周角定理.专题:计算题.分析:由圆周角定理得出∠AED=120°,得出∠EAD+∠EDC=60°,由等边三角形的性质得出∠BEC=∠EBC=∠ECB=60°,BE=CE=BC=,得出∠ABE=∠ECD=120°,证出∠AEB=∠EDC,证明△ABE∽△ECD,得出对应边成比例,即可得出结果.解答:解:连接AE、DE,如图所示:∵∠AOD=120°,∴360°﹣120°=240°,∴∠AED=×240°=120°,∴∠EAD+∠EDC=60°,∵△BCE是等边三角形,∴∠BEC=∠EBC=∠ECB=60°,BE=CE=BC=,∴∠ABE=∠ECD=120°,∠EAD+∠AEB=60°,∴∠AEB=∠EDC,∴△ABE∽△ECD,∴,即,∴y=.故答案为:y=.点评:本题考查了圆周角定理、等边三角形的性质、相似三角形的判定与性质;熟练掌握圆周角定理和等边三角形的性质,并能进行推理论证与计算是解决问题的关键.18.如图,在Rt△ABC中,∠ABC=90°,BA=BC,点D是AB的中点,连结CD,过点B 作BG⊥CD,分别交CD、CA于点E,F,与过点A且垂直于AB的直线相交于点G,连结DF.给出以下四个结论:①;②FG=FB;③AF=;④S△ABC=5S△BDF,其中正确结论的序号是①②③.考点:相似三角形的判定与性质;等腰直角三角形.分析:根据同角的余角相等求出∠ABG=∠BCD,然后利用“角边角”证明△ABC和△BCD 全等,根据全等三角形对应边相等可得AG=BD,然后求出AG=BC,再求出△AFG和△CFB相似,根据相似三角形对应边成比例可得=,从而判断出①正确;由AG=BC,所以FG=FB,故②正确;根据相似三角形对应边成比例求出=,再根据等腰直角三角形的性质可得AC=AB,然后整理即可得到AF=AB,判断出③正确;过点F作MF⊥AB于M,根据三角形的面积整理即可判断出④错误.解答:解:∵∠ABC=90°,BG⊥CD,∴∠ABG+∠CBG=90°,∠BCD+∠CBG=90°,∴∠ABG=∠BCD,在△ABC和△BCD中,,∴△ABG≌△BCD(ASA),∴AG=BD,∵点D是AB的中点,∴BD=AB,∴AG=BC,在Rt△ABC中,∠ABC=90°,∴AB⊥BC,∵AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴,∵BA=BC,∴,故①正确;∵△AFG∽△CFB,∴,∴FG=FB,故②正确;∵△AFG∽△CFB,∴,∴AF=AC,∵AC=AB,∴AF=AB,故③正确;过点F作MF⊥AB于M,则FM∥CB,∴,∵,∴====,故④错误.故答案为:①②③.点评:本题考查了相似三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形的性质,熟练掌握相似三角形的判定方法和相似三角形对应边成比例的性质是解题的关键.三、解答题(共8小题,满分78分)19.计算:(+1)()﹣(﹣2014)0+2sin45°.考点:二次根式的混合运算;零指数幂;特殊角的三角函数值.分析:分别进行二次根式的乘法、零指数幂、特殊角的三角函数值等运算,然后合并.解答:解:原式=6﹣1﹣1+2=6.点评:本题考查了二次根式的混合运算,涉及了二次根式的乘法、零指数幂、特殊角的三角函数值等知识,属于基础题.20.如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°.(1)求证:△ABD∽△DCE;(2)若BD=3,CE=2,求△ABC的边长.考点:相似三角形的判定与性质;等边三角形的性质.分析:(1)由∠ADE=60°,可证得△ABD∽△DCE;(2)可用等边三角形的边长表示出DC的长,进而根据相似三角形的对应边成比例,求得△ABC的边长.解答:(1)证明:∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAD+∠ADB=120°∵∠ADE=60°,∴∠ADB+∠EDC=120°,∴∠DAB=∠EDC,又∵∠B=∠C=60°,∴△ABD∽△DCE;(2)解:∵△ABD∽△DCE,∴,∵BD=3,CE=2,∴;解得AB=9.点评:此题主要考查了等边三角形的性质和相似三角形的判定和性质,能够证得△ABD∽△DCE是解答此题的关键.21.如图,AB和CD是同一地面上的两座相距39米的楼房,在楼AB的楼顶A点测得楼CD的楼顶C的仰角为45°,楼底D的俯角为30°.求楼CD的高(结果保留根号).考点:解直角三角形的应用-仰角俯角问题.分析:在题中两个直角三角形中,知道已知角和其邻边,只需根据正切值求出对边后相加即可.解答:解:延长过点A的水平线交CD于点E,则有AE⊥CD,四边形ABDE是矩形,AE=BD=39米.∵∠CAE=45°,∴△AEC是等腰直角三角形,∴CE=AE=39米.在Rt△AED中,tan∠EAD=,∴ED=39×tan30°=13米,∴CD=CE+ED=(39+13)米.答:楼CD的高是(39+13)米.点评:本题考查的是解直角三角形的应用﹣仰角俯角问题,涉及到特殊角的三角函数值及等腰三角形的判定,熟知以上知识是解答此题的关键.22.如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,视为无效,重新转动一次转盘),此过程称为一次操作.请用树状图或列表法,求事件“两次操作,第一次操作得到的数与第二次操作得到的数的绝对值相等”发生的概率.考点:列表法与树状图法.分析:根据题意,用列表法列举出所有情况,看所求的情况与总情况的比值即可得答案.解答:解:画树状图如下:所有可能出现的结果共有9种,其中满足条件的结果有5种.所以P(所指的两数的绝对值相等)=.点评:考查了列表法与树状图法求概率的知识,树状图法适用于两步或两部以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.在学习圆与正多边形时,马露、高静两位同学设计了一个画圆内接正三角形的方法:(1)如图,作直径AD;(2)作半径OD的垂直平分线,交⊙O于B,C两点;(3)联结AB、AC、BC,那么△ABC为所求的三角形.请你判断两位同学的作法是否正确,如果正确,请你按照两位同学设计的画法,画出△ABC,然后给出△ABC是等边三角形的证明过程;如果不正确,请说明理由.考点:正多边形和圆;垂径定理.分析:利用锐角三角函数关系得出∠BOE=60°,进而得出∠COE=∠BOE=60°,再利用圆心角定理得出答案.解答:解:两位同学的方法正确.连BO、CO,∵BC垂直平分OD,∴直角△OEB中.cos∠BOE==,∠BOE=60°,由垂径定理得∠COE=∠BOE=60°,由于AD为直径,∴∠AOB=∠AOC=120°,∴AB=BC=CA,即△ABC为等边三角形.点评:此题主要考查了垂径定理以及圆心角定理和等边三角形的判定等知识,得出∠AOB=∠AOC=120°是解题关键.24.如图1,在四边形ABCD的AB边上任取一点E(点E不与点A、点B重合,分别连接ED,EC,可以把四边形ABCD分成3个三角形.如果其中有2个三角形相似,我们就把点E叫做四边形ABCD的AB边上的相似点;如果这3个三角形都相似,我们就把点E 叫做四边形ABCD的AB边上的强相似点.(1)若图1中,∠A=∠B=∠DEC=50°,证明点E是四边形ABCD的AB边上的相似点.(2)①如图2,画出矩形ABCD的AB边上的一个强相似点.(要求:画图工具不限,不写画法,保留画图痕迹或有必要的说明)②对于任意的一个矩形,是否一定存在强相似点?如果一定存在,请说明理由;如果不一定存在,请举出反例.(3)如图3,在四边形ABCD中,AD∥BC,AD<BC,∠B=90°,点E是四边形ABCD 的AB边上的一个强相似点,判断AE与BE的数量关系并说明理由.考点:相似形综合题.分析:(1)要证明点E是四边形ABCD的AB边上的相似点,只要证明有一组三角形相似就行,很容易证明△ADE∽△EBC,所以问题得解;(2)①以CD为直径画弧,取该弧与AB的一个交点即为所求.②不一定存在强相似点,如正方形;(3)因为点E是梯形ABCD的AB边上的一个强相似点,所以就有相似三角形出现,根据相似三角形的对应线段成比例,可以判断出AE和BE的数量关系,从而可求出解.解答:解:(1)理由:∵∠A=50°,∴∠ADE+∠DEA=130°,∵∠DEC=50°,∴∠BEC+∠DEA=130°,∴∠ADE=∠BEC,∵∠A=∠B,∴△ADE∽△BEC,∴点E是四边形ABCD的AB边上的相似点;(2)①以CD为直径画弧,取该弧与AB的一个交点即为所求,如图2所示:连接FC,DF,∵CD为直径,∴∠DFC=90°,∵CD∥AB,∴∠DCF=∠CFB,∵∠B=90°,∴△DFC∽△CBF,同理可得出:△DFC∽△FAD,②对于任意的一个矩形,不一定存在强相似点,如正方形.(3)第一种情况:∠A=∠B=∠DEC=90°,∠ADE=∠BEC=∠EDC,即△ADE∽△BEC∽△EDC,∵点E是梯形ABCD的边AB上的强相似点,∴△ADE,△BEC以及△CDE是两两相似的,∵△ADE是直角三角形,∴△DEC也是直角三角形,当∠DEC=90°时,①∠CDE=∠DEA,∴DC∥AE,这与四边形ABCD是梯形相矛盾,不成立;②∠CDE=∠EDA,∵∠ECD+∠EDC=90°,∠ADE+∠AED=90°,∴∠AED=∠ECD,∵∠AED+∠BEC=90°,∠BEC+∠BCE=90°,∴∠AED=∠BCE,∴∠AED=∠BCE=∠ECD,∴DE平分∠ADC,同理可得,CE平分∠DCB,如图3,过E作EF⊥DC,∵AE⊥AD,BE⊥BC,DE平分∠ADC,CE平分∠DCB,∴AE=FE,BE=FE,∴AE=BE,第二种情况:∠A=∠B=∠EDC=90°,∠ADE=∠BCE=∠DCE,即△ADE∽△BEC∽△DCE.所以∠AED=∠BEC=∠DEC=60°,说明AE=DE,BE=CE,DE=CE,所以AE=BE.综上,AE=BE或AE=BE.点评:本题考查了相似三角形的判定和性质、矩形的性质、梯形的性质以及理解相似点和强相似点的概念,掌握强相似点的概念、正确运用相关的判定定理和性质定理是解题的关键,注意分情况讨论思想的正确运用.。
(完整)浙教版九年级数学上册期末试卷及答案,推荐文档
. F九年级数学(上)期末模拟试卷一、选择题(本大题共 10 小题,每小题 4 分,共 40分.在每小题给出的四个选项中,只有 一项是符合题目要求的.请将答案填写在题后括号内)1. 如果□+2=0,那么“□”内应填的实数是()11 A .-2 B .-C .D . 2222. 在 Rt ⊿ABC 中,若各边的长度同时都扩大 2 倍,则锐角 A 的正弦值与余弦值的情况( )A. 都扩大 2 倍B .都缩小 2 倍C .都不变D .正弦值扩大 2 倍, 余弦值缩小 2 倍3. 路程 s 与时间 t 的大致图象如下左图所示,则速度 v 与时间 t 的大致图象为()tA.B .C .D .4. 小明与两位同学进行乒乓球比赛,用“手心、手背”游戏确定出场顺序. 设每人每次出手心、手背的可能性相同. 若有一人与另外两人不同,则此人最后出场.三人同时出手一次, 小明最后出场比赛的概率为( ) 1 1 1 1 A.B .C .D .2345AED5. 如图, 在ABCD 中, AB=10, AD=6, E 是 AD 的中点, 在 AB•上取一点 F,• 使 △CBF ∽△CDE, 则 BF 的长是( ) A.5 B.8.2 C.6.4 D.1.8 6. 从 1 到 9 这九个自然数中任取一个,是 2 的倍数或是 3 的倍数的概率为( )1 22 5 BCA.B .C .D .99397. 如图,小正方形的边长均为 l ,则下列图中的三角形(阴影部分)与△ABC 相似的是()A B C D8. 如图,己知△ABC ,任取一点 O ,连 AO ,BO ,CO ,并取它们的中点D ,E ,F ,得△DEF ,则下列说法正确的个数是( )①△ABC 与△DEF 是位似图形; ②△ABC 与△DEF 是相似图形; ③△ABC 与△DEF 的周长比为 1:2;④△ABC 与△DEF 的面积比为 4:1A .1B .2C .3D .49. 已知二次函数 y = ax 2 + bx + c 的图象过点 A (1,2),B (3,2),C (5,7).若点 M (-2,y 1),N ((-1,y 2),K (8,y 3)也在二次函数 y = ax 2 + bx + c 的图象上,则下列结论正确的是()A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2so310.在一次1500 米比赛中,有如下的判断: 甲说: 丙第一 , 我第三; 乙说: 我第一, 丁第四; 丙说: 丁第二,我第三.结果是每人的两句话中都只说对了一句,则可判断第一名是()A. 甲B .乙C .丙D .丁二、填空题(本大题共 6 小题,每小题 5 分,共 30 分,请将答案填在横线上)11. 己知平顶屋面 (截面为等腰三角形) 的宽度l 和坡顶的设计倾角(如图),则设计高度 h 为.(第 11 题图) (第 14 题图) (第 15 题图)12. 有一个直角梯形零件 ABCD , AB ∥CD ,斜腰 AD 的长为10cm , ∠D = 120 ,则该零件另一腰 BC 的长是 cm .(结果不取近似值)13. 在一张复印出来的纸上,一个等腰三角形的底边长由原图中的 3 cm 变成了 6 cm ,则腰长由原图中的2 cm 变成了cm .14. 二次函数 y = ax 2 + bx + c 和一次函数 y = mx + n 的图象如图所示,则 ax 2 + bx + c ≤ mx + n时, x 的取值范围是 . 15. 如图,四边形 ABCD 是长方形,以 BC 为直径的半圆与 AD 边只有一个交点,且 AB =x ,则阴影部分的面积为 .16. 有一个 Rt △ABC ,∠A= 90︒ ,∠B= 60︒ ,AB=1,将它放在平面直角坐标系中,使斜边 BC 在 x 轴上,直角顶点 A 在反比例函数 y=上,则点 C 的坐标为.x三、解答题(本大题共 8 小题,共 80 分,解答应写出文字说明、证明过程或演算过程) 17.(本题满分 8 分)在圣诞节,小明自己动手用纸板制作圆锥形的圣诞老人帽.圆锥帽底面直径为 18 cm ,母线长为 36cm ,请你计算制作一个这样的圆锥帽需用纸板的面积(精确到个位).18.(本题满分8 分)九(1)班将竞选出正、副班长各 1 名,现有甲、乙两位男生和丙、丁两位女生参加竞选.请用列表或画树状图的方法求出两位女生同时当选正、副班长的概率.19.(本题满分8 分)课堂上,师生一起探究知,可以用己知半径的球去测量圆柱形管子的内径.小明回家后把半径为5 cm 的小皮球置于保温杯口上,经过思考找到了测量方法,并画出了草图(如图).请你根据图中的数据,帮助小明计算出保温杯的内径.20.(本题满分8 分)在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度(单位:kg/m3)是体积v (单位:m3)的反比例函数,它的图象如图所示.(1)求与v 之间的函数关系式并写出自变量v 的取值范围;(2)求当v 10m3 时气体的密度.21.(本题满分10 分)如图,在菱形ABCD 中,点E 在CD 上,连结AE 并延长与BC 的延长线交于点F.(1)写出图中所有的相似三角形(不需证明);(2)若菱形ABCD 的边长为6,DE:AB=3:5,试求CF 的长.22.(本题满分12 分)如图,AB 是⊙O 的直径,点P 是⊙O 上的动点(P 与A,B 不重合),连结AP,PB,过点O 分别作OE⊥AP 于E,OF⊥BP 于F.(1)若AB=12,当点P 在⊙O 上运动时,线段EF 的长会不会改变.若会改变,请说明理由;若不会改变,请求出EF 的长;(2)若AP=BP,求证四边形OEPF 是正方形.AOE BFP23.(本题满分 12 分)3 课堂上,周老师出示了以下问题,小明、小聪分别在黑板上进行了板演,请你也解答这个问题: 在一张长方形 ABCD 纸片中,AD =25cm, AB =20cm. 现将这张纸片按如下列图示方式折叠,分别求折痕的长.(1) 如图 1, 折痕为 AE;(2) 如图 2, P ,Q 分别为 AB ,CD 的中点,折痕为 AE; (3) 如图 3, 折痕为 EF .24.(本题满分 14 分)如图,△ABC 中,A C =BC ,∠A =30°,AB = 2. 现将一块三角板中 30°角的顶点 D 放在 AB 边上移动,使这个 30°角的两边分别与△ABC 的边 AC ,BC 相交于点E, F ,连结 DE ,DF ,EF ,且使 DE 始终与 AB 垂直.设 AD x ,△DEF 的面积为 y .(1) 画出符合条件的图形,写出与△ADE 一定相似的三角形(不包括此三角板),并说明理由; (2) 问 EF 与 AB 可能平行吗?若能,请求出此时 AD 的长;若不能,请说明理由;(3) 求出 y 与 x 之间的函数关系式,并写出自变量 x 的取值范围.当 x 为何值时, y 有最大值?最大值是为多少?.CAB3 参考答案一、选择题(本大题共 10 小题,每小题 4 分,共 40 分)1.A 2.C 3.A 4.C 5.D6.C 7.B 8.C 9.B 10.B二、填空题(本大题共 6 小题,每小题 5 分,共 30 分)l11.tan2 12. 5 13. 4 14. -2 ≤x ≤ 11 2 1 7 7 1 15.x16. (,0),(,0),(-,0),(-,0)4 2 2 2 2三、解答题(本大题共8 小题,共80 分)17.(本题满分8 分)解:S =rl .................................................................................................. 2分= 9 ⨯36=324≈1018cm2. ..................................................................................... 6 分18.(本题满分8 分)解:树状图分析如下:………………………………………………………4 分2 1由树状图可知,两位女生当选正、副班长的概率是=................................................ 4分12 6(列表方法求解略)19.(本题满分8 分)解:连OD, ∵ EG=8, OG=3, ................................................. 3 分∴ GD=4, ................................................................. 3 分故保温杯的内径为8 cm........................................................................................................... 2分20.(本题满分8 分)解:(1)=10(v > 0) . ............................................................................................................. 4 分v(2)当v =10m3时,=1kg/m3 . ......................................................................................... 4分21.(本题满分10 分)解:(1)△ECF∽△ABF,△ECF∽△EDA,△ABF∽△EDA................................................. 3 分(2)∵ DE:AB=3:5,∴ DE:EC=3:2,....................................................................... 2分2 23 3 ∵ △ECF ∽△EDA , ∴CF = CE AD DE, ............................................................................ 2 分 2∴ CF = ⨯ 6= 4 . ..........................................................................................................3 分322.(本题满分 12 分)解:(1)EF 的长不会改变. ........................................................................................................... 2 分∵ OE ⊥AP 于 E ,OF ⊥BP 于 F ,∴ AE=EP ,BF=FP , .......................................................................................................... 2 分1∴ EF =AB = 6 ......................................................................................................... 2 分2(2)∵AP=BP ,又∵OE ⊥AP 于 E ,OF ⊥BP 于 F ,∴ OE=OF , ..............................................................................................................................3 分∵ AB 是⊙O 的直径,∴∠P=90°, .................................................................................... 1 分∴ OEPF 是正方形. ................................................................................................................ 2 分 1 BP , OF = 1AP , ∵ AP=BP ,∴ OE=OF 证明)(或者用OE =2 223.(本题满分 12 分)解:(1)∵ 由折叠可知△ABE 为等腰直角三角形,∴ A E =AB =20 cm . ...................................................................................... 3 分(2) ∵ 由折叠可知,AG =AB ,∠GAE =∠BAE ,∵ 点 P 为 AB 的中点, 1∴ AP = AB , 21 ∴ AP = AG ,2在 Rt △APG 中,得∠GAP =60°,∴ ∠EAB =30°, ................................................. 2 分 2 40 在 Rt △EAB 中, AE =AB =cm . ......................................................... 2 分33(3)过点 E 作 EH ⊥AD 于点 H ,连 BF ,由折叠可知 DE =BE ,656 33 41 3 3 6 38 33 3 3∵ AF =FG ,DF =AB ,GD =AB , ∴ △ABF ≌△GDF , 又 ∵ ∠GDF =∠CDE ,GD =CD , ∴ Rt △GDF ≌Rt △CDE , ∴ DF =DE =BE ,在 Rt △DCE 中 , DC 2+CE 2=DE 2,∵ CB =25, CD =20,202 + CE 2=(25-CE )2,∴ CE =4.5,BE =25-4.5=20.5,HF =20.5-4.5=16, .......................................... 2 分 在 Rt △EHF 中,∵ EH 2 + HF 2=FE 2, 202 + 162=FE 2,∴ EF == 4 cm . ........................................................................................ 3 分24.(本题满分 14 分)解:(1)图形举例:图形正确得 2 分.△ADE ∽△BFD ,∵ DE ⊥AB ,∠EDF=30°, ∴∠FDB=60°,∵ ∠A=∠B ,∠AED=∠FDB , ........................................................................................ 1 分 ∴ △ADE ∽△BFD . ................................................................................................................ 1 分(2) EF 可以平行于 AB , ................................. 1 分x此时,在直角△ADE 中,DE=,x 在直角△DEF 中,EF=, ............................... 1 分3x在直角△DBF 中, ∵ BD= 2- x , ∴DF=-, ...................................... 1 分2而 DF=2EF , ∴x 2x -=,2 3∴ x =. ......................................................................................................................... 2 分7(3) y = 1x (2 - x ) ,即 y = -3 x 2 + 1 x , 2 3 24 4 3 ≤ x ≤ ,…………………………………………………………………………3 分当 x =时, y 最大=. .................................................................................................2 分83“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
2016~2017学年浙江杭州西湖区初三上学期期末数学试卷(解析)
∠A = α
BC = m
教师版
答案版
∴ , BC sin α =
AB
∴ , m AB = sin α
故选A.
编辑
8. 下列语句中,正确的是( ).
①三个点确定一个圆.②同弧或等弧所对的圆周角相等.③平分弦的直径垂直于弦,并且平分弦所对的弧.④圆内接平行四
边形一定是矩形.
A. ①②
B. ②③
C. ②④
故选A.
编辑
D. −4
D. 2 y = −x − 2
3. 小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质 量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为( ).
A. 5
18
B. 1
3
C. 2
15
D. 1
15
答案 B
解析
=
, 1 x
2
当 时, , x = 2
1 y= ×2=1
2
11 ∴点C 在线段OA上,
12/ ∵AB,C D都垂直于x轴,且C D = 、 1 AB = 3,
18/ ∴ , △OC D ∽ △OAB
0 2
2 ∴ , S△OCD
CD
1
=(
)=
m S△OAB
AB
9
.co 则△OCD与四边形ABDC 的面积比为1 : 8 ,
A. −− 2√10
B. 12
C. −− 2√10 + 10
D. 或 −− 12 2√10 + 10
答案 D
解析
∵ , , , , ∠A = ∠A AD = EC BD = 10 AE = 4
浙江省九年级(上)数学试卷(解析版含答案)
2015-2016学年浙江省九年级(上)重点试卷一、仔细选一选1.二次函数y=2(x+1)2﹣5的图象的顶点坐标为( )A.(﹣1,﹣5)B.(﹣1,5)C.(1,﹣5)D.(1,5)2.已知二次函数y=(a+2)x2有最大值,则有( )A.a<0 B.a>0 C.a<﹣2 D.a>﹣23.抛物线y=a(x+5)(x﹣7)(a≠0)的对称轴是直线( )A.x=﹣1 B.x=﹣2 C.x=1 D.x=24.二次函数y=﹣x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,x1<x2<1,y1与y2的大小关系是( )A.y1≤y2B.y1<y2C.y1≥y2D.y1>y25.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为( )A.B.3 C.2D.46.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,连接AE,∠E=36°,则∠ADC的度数是( )A.44°B.54°C.72°D.53°7.如图,AB是⊙O的直径,弦CD⊥AB于点E,G是上任意一点,连结AD,G D.=50°,则∠AGD=( )A.50°B.55°C.65°D.75°8.有下列说法:①圆中最长的弦是直径;②平分弦的直径垂直于弦;③任意三点确定一个圆;④圆的两条平行弦所夹的弧相等;⑤三角形的外心是三边中垂线的交点,其中错误的个数有( ) A.1个B.2个C.3个D.4个9.二次函数y=ax2+x+a2﹣1的图象可能是( )A.B.C.D.10.抛物线y=ax2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a的取值范围是( ) A.≤a≤1 B.≤a≤2 C.≤a≤1 D.≤a≤2 二、填空题(本大题有6小题,每小题4分,共24分)11.将抛物线y=x2+x向下平移2个单位,所得抛物线的表达式是__________.12.某三角形三边长分别为3cm,4cm,5cm,则此三角形外接圆的面积为__________cm2.13.将△OAB绕着点O逆时针连续旋转两次得到△OA″B″,每次旋转的角度都是50°,若∠B″OA=120°,则∠AOB=__________°.14.如图,已知⊙O的直径CD垂直于弦AB,∠ACD=22.5°,若CD=6cm,则AB的长为__________cm.15.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…﹣1 0 1 2 3 …y…10 5 2 1 2 …则当y<5时,x的取值范围是__________.16.如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(﹣1,2)和(1,0),且与y轴相交于负半轴,给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1;⑤3a+2b <﹣1.其中正确结论的序号是__________.三、解答题17.计算:|﹣4|﹣(﹣1)0﹣(﹣)﹣2+.20.如图,点C是上的点,CD⊥OA于D,CE⊥OB于E,若CD=CE,求证:点C是的中点.21.如图,小明在一次高尔夫球争霸赛中从山坡上的点O打出一球向球洞A飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大铅垂高度12m时,球移动的水平距离为9m.已知山坡OA与水平方向OC的夹角为30°,O,A两点相距8m.(1)求出点A的坐标;(2)求抛物线解析式.并判断小明这一杆能否把高尔夫球从点O直接打入球洞A?请说明理由.22.如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.23.我校九年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果以10元/千克的价格销售,那么每天可售出200千克.小强:如果以12元/千克的价格销售,那么每天可获取利润600元.小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.(1)求y(千克)与x(元)(x>0)的函数关系式;(2)当销售单价为何值时,该超市销售这种水果每天获取的利润达到525元?[利润=销售量×(销售单价﹣进价)](3)一段时间后,发现这种水果每天的销售量均不低于225千克.则此时该超市销售这种水果每天获取的利润最大值是多少?24.如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D的坐标;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标.2015-2016学年浙江九年级(上)一、仔细选一选1.二次函数y=2(x+1)2﹣5的图象的顶点坐标为( )A.(﹣1,﹣5)B.(﹣1,5)C.(1,﹣5)D.(1,5)【分析】直接利用顶点式的特点写出顶点坐标.【解答】解:因为y=2(x+1)2﹣5是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣1,﹣5).故选A.【点评】主要考查了求抛物线的顶点坐标的方法.2.已知二次函数y=(a+2)x2有最大值,则有( )A.a<0 B.a>0 C.a<﹣2 D.a>﹣2【分析】本题考查二次函数的性质:当二次项系数小于0时会取得最大值.【解答】解:因为二次函数y=(a+2)x2有最大值,所以a+2<0,解得a<﹣2.故选C.【点评】考查二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.3.抛物线y=a(x+5)(x﹣7)(a≠0)的对称轴是直线( )A.x=﹣1 B.x=﹣2 C.x=1 D.x=2【分析】根据函数解析式,可得图象与x轴的交点,根据图象与x轴的交点的中点在对称轴上,可得答案.【解答】解:y=a(x+5)(x﹣7)(a≠0)与x轴的交点是(﹣5,0),(7,0),(﹣5,0),(7,0)的中点是(1,0),y=a(x+5)(x﹣7)(a≠0)的对称轴是直线x=1,故选:C.【点评】本题考查了二次函数的性质,利用图象与x轴的交点的中点在对称轴上是解题关键.4.二次函数y=﹣x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,x1<x2<1,y1与y2的大小关系是( )A.y1≤y2B.y1<y2C.y1≥y2 D.y1>y2【分析】对于二次函数y=﹣x2+bx+c,根据a<0,抛物线开口向下,在x<1的分支上y随x 的增大而增大,故y1<y2.【解答】解:∵a<0,x1<x2<1,∴y随x的增大而增大,∴y1<y2.故选:B.【点评】此题主要考查了二次函数图象上点的坐标特征,本题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数y=ax2+bx+c(a≠0)的图象性质.5.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为( )A.B.3 C.2D.4【分析】如图,首先证得OA⊥BC;然后由圆周角定理推知∠C=30°,通过解直角△ACD可以求得CD的长度.则BC=2C D.【解答】解:如图,设AO与BC交于点D.∵∠AOB=60°,,∴∠C=∠AOB=30°,又∵AB=AC,∴=∴AD⊥BC,∴BD=CD,∴在直角△ACD中,CD=AC•cos30°=2×=,∴BC=2CD=2.故选:C.【点评】本题考查了解直角三角形,圆周角定理等知识点.推知△OAB是等边三角形是解题的难点,证得AD⊥BC是解题的关键.6.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,连接AE,∠E=36°,则∠ADC的度数是( )A.44°B.54°C.72°D.53°【分析】首先根据直径所对的圆周角为直角得到∠BAE=90°,然后利用四边形ABCD是平行四边形,∠E=36°,得到∠BEA=∠DAE=36°,从而得到∠BAD=126°,求得到∠ADC=54°.【解答】解:∵BE是直径,∴∠BAE=90°,∵四边形ABCD是平行四边形,∠E=36°,∴∠BEA=∠DAE=36°,∴∠BAD=126°,∴∠ADC=54°,故选:B.【点评】本题考查了圆周角定理及平行四边形的性质,解题的关键是认真审题,发现图形中的圆周角.7.如图,AB是⊙O的直径,弦CD⊥AB于点E,G是上任意一点,连结AD,G D.=50°,则∠AGD=( )A.50°B.55°C.65°D.75°【分析】首先连接OC,BD,由=50°,根据弧与圆心角的关系,可求得∠BOC的度数,又由弦CD⊥AB,由垂径定理可得=,则可求得∠BAD的度数,又由AB是⊙O的直径,根据直径所对的圆周角是直角,可求得∠B的度数,然后由圆周角定理,求得答案.【解答】解:连接OC,BD,∵=50°,∴∠BOC=50°,∵弦CD⊥AB,∴=,∴∠BAD=∠BOC=25°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠B=90°﹣∠BAD=65°,∴∠AGD=∠B=65°.故选C.【点评】此题考查了圆周角定理、垂径定理以及弧与圆心角的关系.注意准确作出辅助线是解此题的关键.8.有下列说法:①圆中最长的弦是直径;②平分弦的直径垂直于弦;③任意三点确定一个圆;④圆的两条平行弦所夹的弧相等;⑤三角形的外心是三边中垂线的交点,其中错误的个数有( ) A.1个B.2个C.3个D.4个【分析】利用圆的有关定义及性质分别判断后即可确定正确的选项.【解答】解:①圆中最长的弦是直径,正确;②平分弦(不是直径)的直径垂直于弦,故错误;③不在同一直线上的三点确定一个圆,故错误;④圆的两条平行弦所夹的弧相等,正确;⑤三角形的外心是三边中垂线的交点,正确,故选B.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.二次函数y=ax2+x+a2﹣1的图象可能是( )A.B.C.D.【分析】将二次函数y=ax2+x+a2﹣1结合各选项中给出的图象,根据性质进行判断,选出符合的选项.【解答】解:A、假设函数图象正确,则a=±1,又开口向上,a=1,但对称轴为直线x=,与图象不符;B、假设函数图象正确,则a<0,对称轴x=>0,与图象不符;C、假设函数图象正确,则a=±1,又开口向上,a=1,对称轴x=<0,符合;D、该图象的对称轴为y轴,与函数不符.故选C.【点评】本题考查了二次函数的图象及其性质,正确掌握才能灵活运用.10.抛物线y=ax2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a的取值范围是( ) A.≤a≤1 B.≤a≤2 C.≤a≤1 D.≤a≤2【分析】此题主要考数形结合,画出图形找出范围,问题就好解决了.【解答】解:由右图知:A(1,2),B(2,1),再根据抛物线的性质,|a|越大开口越小,把A点代入y=ax2得a=2,把B点代入y=ax2得a=,则a的范围介于这两点之间,故≤a≤2.故选D.二、填空题(本大题有6小题,每小题4分,共24分)11.将抛物线y=x2+x向下平移2个单位,所得抛物线的表达式是y=x2+x﹣2.【分析】根据向下平移,纵坐标要减去2,即可得到答案.【解答】解:∵抛物线y=x2+x向下平移2个单位,∴抛物线的解析式为y=x2+x﹣2,故答案为y=x2+x﹣2.12.某三角形三边长分别为3cm,4cm,5cm,则此三角形外接圆的面积为cm2.【分析】由某三角形三边长分别为3cm,4cm,5cm,可判定此三角形是直角三角形,即可求得此三角形外接圆的半径,继而求得答案.【解答】解:∵三角形三边长分别为3cm,4cm,5cm,∴此三角形是直角三角形,且斜边长为5cm,∴此三角形外接圆的直径长为5cm,即半径长为cm,∴此三角形外接圆的面积为:cm2.故答案为:.13.将△OAB绕着点O逆时针连续旋转两次得到△OA″B″,每次旋转的角度都是50°,若∠B″OA=120°,则∠AOB=20°°.【分析】根据旋转的性质得∠BOB′=∠B″OB′=50°,然后利用∠AOB=∠B″OA﹣∠B″OB进行计算即可.【解答】解:∵每次旋转的角度都是50°,∴∠BOB′=∠B″OB′=50°,∴∠B″OB=100°,∵∠B″OA=120°,∴∠AOB=∠B″OA﹣∠B″OB=120°﹣100°=20°,故答案为20.14.如图,已知⊙O的直径CD垂直于弦AB,∠ACD=22.5°,若CD=6cm,则AB的长为3cm.【专题】计算题.【分析】连结OA,如图,由OA=OC得到∠OCA=∠CAO=22.5°,则利用三角形外角性质可得∠AOD=45°,接着根据垂径定理得到AE=BE,且可判断△OAE为等腰直角三角形,然后根据等腰直角三角形的性质可得AE=OA=,所以AB=2AE=3cm.【解答】解:连结OA,如图,∵OA=OC,∴∠OCA=∠CAO=22.5°,∴∠AOD=45°,∵CD⊥AB,∴AE=BE,△OAE为等腰直角三角形,而CD=6,∴OA=3,∴AE=OA=,∴AB=2AE=3(cm).故答案为3.15.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…﹣1 0 1 2 3 …y…10 5 2 1 2 …则当y<5时,x的取值范围是0<x<4.【分析】根据表格数据,利用二次函数的对称性判断出x=4时,y=5,然后写出y<5时,x 的取值范围即可.【解答】解:由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故答案为:0<x<4.16.如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(﹣1,2)和(1,0),且与y轴相交于负半轴,给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1;⑤3a+2b<﹣1.其中正确结论的序号是②③④.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:由抛物线的开口方向向上可推出a>0;因为对称轴在y轴右侧,对称轴为x=﹣>0,又∵a>0,∴b<0;∵抛物线与y轴的交点在y轴的负半轴上,∴c<0,故abc>0,∴①错误;∵由图象可知:对称轴x=﹣<1,a>0,∴﹣b<2a,∴2a+b>0,∴②正确;∵由题意可知:当x=﹣1时,y=2,∴a﹣b+c=2,当x=1时,y=0,∴a+b+c=0.a﹣b+c=2与a+b+c=0相加得2a+2c=2,即a+c=1,③正确;④∵a+c=1,c<0,∴a>1,④正确;∵当x=﹣1时,y=2,∴a﹣b+c=2,当x=1时,y=0,∴a+b+c=0.a﹣b+c=2与a+b+c=0相减得2b=﹣2,即b=﹣1,∵a>1,∴a+b>0,∵2a+b>0,∴3a+2b>0,⑤错误故答案为:②③④.【点评】本题考查了二次函数图象与系数的关系的知识:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.三、解答题17.计算:|﹣4|﹣(﹣1)0﹣(﹣)﹣2+.【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用立方根定义计算即可得到结果.【解答】解:原式=4﹣1﹣4﹣2 =﹣3.18.如图,已知二次函数y=﹣+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.【分析】(1)二次函数图象经过A(2,0)、B(0,﹣6)两点,两点代入y=﹣+bx+c,算出b和c,即可得解析式.(2)先求出对称轴方程,写出C点的坐标,计算出AC,然后由面积公式计算值.【解答】解:(1)把A(2,0)、B(0,﹣6)代入y=﹣+bx+c,得:解得,∴这个二次函数的解析式为y=﹣+4x﹣6.(2)∵该抛物线对称轴为直线x=﹣=4,∴点C的坐标为(4,0),∴AC=OC﹣OA=4﹣2=2,∴S△ABC=×AC×OB=×2×6=6.19.如图,在⊙O中,弦AB垂直平分半径O C.(1)求∠C的度数;(2)若弦AB的长为10,求⊙O的直径.【分析】(1)由已知条件得出OD=OC=OB,证出∠OBD=30°,得出∠BOC=60°,证出△OBC 是等边三角形,即可得出结果;(2)设⊙O的半径为r,由垂径定理得出BD=AB=5,由勾股定理得出方程,解方程求出半径,即可得出直径.【解答】解:(1)∵弦AB垂直平分半径O C.∴∠BOD=90°,OD=OC=OB,∴∠OBD=30°,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴∠C=60°;(2)设⊙O的半径为r,∵AB垂直平分半径OC,AB=10,∴BD=AB=5,在Rt△BOD中,OA2=OD2+BD2,即r2=52+()2,解得:r=,∴⊙O的直径为.20.如图,点C是上的点,CD⊥OA于D,CE⊥OB于E,若CD=CE,求证:点C是的中点.【分析】先利用角平分线的性质定理得到OC平分∠AOB,则∠AOC=∠BOC,然后根据圆心角、弧、弦的关系即可得到结论.【解答】证明:连结OC,如图,∵CD⊥OA于D,CE⊥OB于E,CD=CE,∴OC平分∠AOB,∴∠AOC=∠BOC,∴=,即点C是的中点.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了角平分线的性质.21.如图,小明在一次高尔夫球争霸赛中从山坡上的点O打出一球向球洞A飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大铅垂高度12m时,球移动的水平距离为9m.已知山坡OA与水平方向OC的夹角为30°,O,A两点相距8m.(1)求出点A的坐标;(2)求抛物线解析式.并判断小明这一杆能否把高尔夫球从点O直接打入球洞A?请说明理由.【分析】(1)已知OA与水平方向OC的夹角为30°,OA=8米,解直角三角形可求点A 的坐标;(2)把点A的横坐标x=12代入抛物线解析式,看函数值与点A的纵坐标是否相符.【解答】解:(1)在Rt△AOC中,∵∠AOC=30°,OA=8,∴AC=OA•sin30°=8×=4,OC=OA•cos30°=8×=12.∴点A的坐标为(12,4),(2))∵顶点B的坐标是(9,12),∴设抛物线的解析式为y=a(x﹣9)2+12,∵点O的坐标是(0,0)∴把点O的坐标代入得:0=a(0﹣9)2+12,解得a=﹣,∴抛物线的解析式为y=﹣(x﹣9)2+12即y=﹣x2+x;∵当x=12时,y=≠4,∴小明这一杆不能把高尔夫球从O点直接打入球洞A点.22.如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.【分析】(1)根据旋转的性质得CD′=CD=2,在Rt△CED′中,CD′=2,CE=1,则∠CD′E=30°,然后根据平行线的性质即可得到∠α=30°;(2)由G为BC中点可得CG=CE,根据旋转的性质得∠D′CE′=∠DCE=90°,CE=CE′CE,则∠GCD′=∠DCE′=90°+α,然后根据“SAS”可判断△GCD′≌△E′CD,则GD′=E′D;(3)根据正方形的性质得CB=CD,而CD=CD′,则△BCD′与△DCD′为腰相等的两等腰三角形,当两顶角相等时它们全等,当△BCD′与△DCD′为钝角三角形时,可计算出α=135°,当△BCD′与△DCD′为锐角三角形时,可计算得到α=315°.【解答】(1)解:∵长方形CEFD绕点C顺时针旋转至CE′F′D′,∴CD′=CD=2,在Rt△CED′中,CD′=2,CE=1,∴∠CD′E=30°,∵CD∥EF,∴∠α=30°;(2)证明:∵G为BC中点,∴CG=1,∴CG=CE,∵长方形CEFD绕点C顺时针旋转至CE′F′D′,∴∠D′CE′=∠DCE=90°,CE=CE′=CG,∴∠GCD′=∠DCE′=90°+α,在△GCD′和△E′CD中,∴△GCD′≌△E′CD(SAS),∴GD′=E′D;(3)解:能.理由如下:∵四边形ABCD为正方形,∴CB=CD,∵CD′=CD′,∴△BCD′与△DCD′为腰相等的两等腰三角形,当∠BCD′=∠DCD′时,△BCD′≌△DCD′,当△BCD′与△DCD′为钝角三角形时,则旋转角α==135°,当△BCD′与△DCD′为锐角三角形时,∠BCD′=∠DCD′=∠BCD=45°则α=360°﹣=315°,即旋转角a的值为135°或315°时,△BCD′与△DCD′全等.23.我校九年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果以10元/千克的价格销售,那么每天可售出200千克.小强:如果以12元/千克的价格销售,那么每天可获取利润600元.小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.(1)求y(千克)与x(元)(x>0)的函数关系式;(2)当销售单价为何值时,该超市销售这种水果每天获取的利润达到525元?[利润=销售量×(销售单价﹣进价)](3)一段时间后,发现这种水果每天的销售量均不低于225千克.则此时该超市销售这种水果每天获取的利润最大值是多少?(2)利润=销售量×(销售单价﹣进价),进而得出一元二次方程的求出即可;(3)利用(2)中关系,得出R与x的函数关系,进而求出最值即可.【解答】解:(1)设y=kx+b,则以12元/千克的价格销售,销售量为:千克,,解得:,故y(千克)与x(元)(x>0)的函数关系式为:y=﹣25x+450;(2)设利润为R元,则R=(x﹣8)y即R=(x﹣8)(﹣25x+450)当R=525时,﹣25(x2﹣26x+144)=525,∴整理得:﹣25(x﹣11)(x﹣15)=0,解得:x1=11,x2=15,∴当销售单价11元或15元时,该超市销售这种水果每天获取的利润达到525元;(3)由题意得:y=﹣25x+450≥225,所以x≤9,而R=﹣25(x﹣13)2+625,即x=9时,利润最大,最大利润为:R=﹣25(9﹣13)2+625=225(元).答:此时该超市销售这种水果每天获取的最大利润是225元.24.如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D的坐标;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标.【分析】(1)①利用待定系数法求抛物线的解析式;利用勾股定理的逆定理证明∠ACB=90°,由圆周角定理得AB为圆的直径,再由垂径定理知点C、D关于AB对称,由此得出点D的坐标;②求出△BDM面积的表达式,再利用二次函数的性质求出最值.解答中提供了两种解法,请分析研究;(2)根据抛物线与x轴的交点坐标、根与系数的关系、相似三角形求解.【解答】解:(1)∵抛物线y=ax2+bx+c过点A(﹣2,0),B(8,0),C(0,﹣4),∴,解得,∴抛物线的解析式为:y=x2﹣x﹣4;∵OA=2,OB=8,OC=4,∴AB=10.如答图1,连接AC、B C.由勾股定理得:AC=,BC=.∵AC2+BC2=AB2=100,∴∠ACB=90°,∴AB为圆的直径.由垂径定理可知,点C、D关于直径AB对称,∴D(0,4).(2)解法一:设直线BD的解析式为y=kx+b,∵B(8,0),D(0,4),∴,解得,∴直线BD解析式为:y=﹣x+4.设M(x,x2﹣x﹣4),如答图2﹣1,过点M作ME∥y轴,交BD于点E,则E(x,﹣x+4).∴ME=(﹣x+4)﹣(x2﹣x﹣4)=﹣x2+x+8.∴S△BDM=S△MED+S△MEB=ME(x E﹣x D)+ME(x B﹣x E)=ME(x B﹣x D)=4ME,∴S△BDM=4(﹣x2+x+8)=﹣x2+4x+32=﹣(x﹣2)2+36.∴当x=2时,△BDM的面积有最大值为36;解法二:如答图2﹣2,过M作MN⊥y轴于点N.设M(m,m2﹣m﹣4),∵S△OBD=OB•OD==16,=(MN+OB)•ONS梯形OBMN=(m+8)[﹣(m2﹣m﹣4)]=﹣m(m2﹣m﹣4)﹣4(m2﹣m﹣4),S△MND=MN•DN=m[4﹣(m2﹣m﹣4)]=2m﹣m(m2﹣m﹣4),∴S△BDM=S△OBD+S﹣S△MND梯形OBMN=16﹣m(m2﹣m﹣4)﹣4(m2﹣m﹣4)﹣2m+m(m2﹣m﹣4)=16﹣4(m2﹣m﹣4)﹣2m=﹣m2+4m+32=﹣(m﹣2)2+36;∴当m=2时,△BDM的面积有最大值为36.(3)如答图3,连接AD、B C.由圆周角定理得:∠ADO=∠CBO,∠DAO=∠BCO,∴△AOD∽△COB,∴=,设A(x1,0),B(x2,0),∵已知抛物线y=x2+bx+c(c<0),∵OC=﹣c,x1x2=c,∴=,∴OD==1,∴无论b,c取何值,点D均为定点,该定点坐标D(0,1).【点评】本题考查了待定系数法求解析式,直角三角形的判定及性质,图形面积计算,三角形相似的判定和性质,二次函数的系数与x轴的交点的关系等.。
浙教版2015-2016学年度九年级上学期期末数学试卷及答案
2015-2016学年度九年级上学期期末数学试卷一、选择题(共12小题,每小题4分,满分48分) 1.若x : y=6 : 5,则下列等式中不正确的是 () A 二」B ・」一_C >y 5y5K_y22 .二次函数y=x - 2x - 2与坐标轴的交点个数是 () A. 0个B. 1个C. 2个4.从标有1,2, 3, 4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是 A .二B.丄C.2D. 33 2345.如图,一根5m 长的绳子,一端拴在互相垂直的围墙墙角的柱子上,另一端拴着一只小 羊A (羊只能在草地上活动),那么小羊 A 在草地上的最大活动区域面积是()26. 二次函数 y=ax - 2x - 3 (a v 0)的图象一定不经过 () A.第一象限B.第二象限C.第三象ABCD 中,E 为CD 上一点,DE CE=2: 3,连结 AE, BD 交于点 F ,3.如图,在平行四边形 A . 2: 3: 5B. 4: 9 : 25C. 4 : 10 : 25D. 2 : 5 : 25D. 3个A .17 122nmB. 17] 2--- n mD. 77 122 nmD.第四象限.2限7. 在下列命题中,正确的是()A. 三点确定一个圆B. 圆的内接等边三角形只有一个C. 一个三角形有且只有一个外接圆D. —个四边形一定有外接圆2&二次函数y=ax +bx+c (0)的图象如图,下列结论:(1) c v 0;(2)b>0;(3)4a+2b+c>0;2 2(4)(a+c) v b .C. 3个D. 4个9 9 9. 某块面积为4000m的多边形草坪,在嘉兴市政建设规划设计图纸上的面积为250cm,这块草坪某条边的长度是40m,则它在设计图纸上的长度是()210. 抛物线y= -(x - 2)+1经过平移后与抛物线可以是()A. 向左平移3个单位再向下平移3个单位B. 向左平移3个单位再向上平移3个单位C. 向右平移3个单位再向下平移3个单位D. 向右平移3个单位再向上平移3个单位2y= -(x+1)- 2重合,那么平移的方法11.如图,将/ AOB放置在5X5的正方形网格中,贝U tan / AOB的值是()D ‘:;131312. 如图,等腰Rt△ ABC(/ACB=90 )的直角边与正方形DEFG勺边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让厶ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,A ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,贝U()C.13. ________________________________________________________________________ 已知弦AB 把圆周分成1: 5的两部分,则弦 AB 所对的圆心角的度数为 _______________________15•如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆” •已知点 A 、BC D 分别是“果圆”与坐标轴的交点,抛物线的解析式为 y=x 2 - 2x - 3, AB 为半圆的直径,,放置边长分别 3, 4, x 的三个正方形,则x二、填空题(共 6小题,每小题 满分 24分)度.AB 于圆心0,则弧AC= 16.如图,在直角三角形 ABC 中(/C=90 ) 的值为 _____________ .17.如图,A D E是OO上的三个点,且/ AOD=120 , B、C是弦AD上两点,BC= △ BCE 是等边三角形.若设AB=x, CD=y,则y与x的函数关系式是_________________ .18.如图,在Rt△ ABC中,/ ABC=90 , BA=BC点D是AB的中点,连结CD过点B作BGL CD 分别交CD CA于点E, F,与过点A且垂直于AB的直线相交于点G,连结DF.给出以下四FB;③;④S △ABC=5S^BDF,其中正确结论的序号是3三、解答题(共8小题,满分78 分)19•计算:(一>1)(品…2014)°+2_ 】s in45 20 .如图,在等边厶ABC中,D为BC边上一点,E 为AC边上一点,且/ ADE=60 .(1)求证:△ ABB A DCE(2 )若BD=3 CE=2,求厶ABC的边长.21. 如图,AB和CD是同一地面上的两座相距39米的楼房,在楼AB的楼顶A点测得楼CD 的楼顶C 的仰角为45°,楼底D的俯角为30°.求楼CD的高(结果保留根号).22. 如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,视为无效,重新转动一次转盘) ,此过程称为一次操作•请用树状图或列表法,求事件“两次操作,第一次操作得到的数与第二次操作得到的数的绝对值相等”发生的概率.23. 在学习圆与正多边形时,马露、高静两位同学设计了一个画圆内接正三角形的方法:(1)如图,作直径AD;(2)作半径0D的垂直平分线,交OO 于B, C两点;(3)联结AB AC BC,那么△ ABC为所求的三角形.请你判断两位同学的作法是否正确,如果正确,请你按照两位同学设计的画法,画出△ ABC然后给出厶ABC是等边三角形的证明过程;如果不正确,请说明理由.24. 如图1 ,在四边形ABCD勺AB边上任取一点 E (点E不与点A、点B重合,分别连接ED, EC可以把四边形ABCD分成3个三角形.如果其中有2个三角形相似,我们就把点E叫做四边形ABCD的AB边上的相似点;如果这3个三角形都相似,我们就把点E叫做四边形ABCD 的AB 边上的强相似点.(1)若图1中,/ A=Z B=Z DEC=50,证明点E是四边形ABCD勺AB边上的相似点.(2)①如图2,画出矩形ABCD的AB边上的一个强相似点.(要求:画图工具不限,不写画法,保留画图痕迹或有必要的说明)②对于任意的一个矩形,是否一定存在强相似点?如果一定存在,请说明理由;如果不一定存在,请举出反例.(3)如图3,在四边形ABCD中, AD// BC AD< BC, / B=90,点E是四边形ABCD勺AB 边上的一个强相似点,判断AE与BE的数量关系并说明理由.25. 某蔬菜经销商到蔬菜种植基地采购一种蔬菜,经销商一次性采购蔬菜的采购单价 y (元/千克)与采购量x (千克)之间的函数关系图象如图中折线 AB-- BC-- CD 所示(不包括 端点A ). (1 )当100v x v 200时,直接写y 与x 之间的函数关系式:__________. (2) 蔬菜的种植成本为 2元/千克,某经销商一次性采购蔬菜的采购量不超过 200千克, 当采购量是多少时,蔬菜种植基地获利最大,最大利润是多少元?(3) 在(2)的条件下,求经销商一次性采购的蔬菜是多少千克时,蔬菜种植基地能获得 418元的利润?64元•「千克).4 B.. ______________ D ■ 1■10023 x (刍)26.在平面直角坐标系 xOy 中,一块含60°角的三角板作如图摆放,斜边 AB 在x 轴上,直角顶点C 在y 轴正半轴上,已知点(1) 请直接写出点 B 、C 的坐标: 抛物线解析式;(2) 现有与上述三角板完全一样的三角板 DEF (其中/ EDF=90,/ DEF=60 ),把顶点E 放在线段AB 上(点E 是不与A B 两点重合的动点),并使ED 所在直线经过点 C.此时,EF 所在直线与(1)中的抛物线交于点 M.①设AE=x,当x 为何值时,△ OC OA OBC②在①的条件下探究: 抛物线的对称轴上是否存在点 P 使厶PEM 是等腰三角形?若存在, 请写出点P 的坐标;若不存在,请说明理由.、选择题(共12小题,每小题4分,满分48 分) 1.若 x : y=6: 5,则下列等式中不正确的是 ();并求经过 A B 、C 三点的A .11B .』D. 7 -5 —y 5y □K - yy _ K考点: 比例的性质.分析: 根据比例设 x=6k , y=5k ,然后分别代入对各选项进行计算即可判断.解答:解:•• x : y=6 : 5,•••设x=6k , y=5k ,A 、厂上「,-丄=」,故本选项错误;y 1 5k | 5B *i=-,故本选项错误;y5kC ■'一 6k =6,故本选项错误;耳一 y&氐 - 5kD 片 一 =-5,故本选项正确y _史5k - 6k故选D.点评:本题考查了比例的性质,利用“设k ”法表示出x 、y 可以使计算更加简便.22 .二次函数y=x - 2x - 2与坐标轴的交点个数是 () A. 0个B . 1个C. 2个D. 3个考点:抛物线与x 轴的交点.分析:先计算根的判别式的值,然后根据b 2- 4ac 决定抛物线与x 轴的交点个数进行判断.解答: 解:•••△ = (- 2) - 4X 1X (- 2) =12> 0, •••二次函数 y=x 2- 2x - 2与x 轴有2个交点,与 y 轴有一个交点.2•••二次函数y=x - 2x - 2与坐标轴的交点个数是 3个. 故选D._ ____________________________________________ 2点评:本题考查了抛物线与 x 轴的交点:求二次函数 y=ax +bx+c (a , b , c 是常数,0) 与x 轴的交点坐标,令y=0,即ax +bx+c=0 ,解关于x 的一元二次方程即可求得交点横坐标. 二次函数y=ax +bx+c (a , b , c 是常数,a *0)的交点与一元二次方程ax +bx+c=0根之间的关系:△ =b - 4ac 决定抛物线与x 轴的交点个数;△ =b - 4ac > 0时,抛物线与x 轴有2个 2 2交点;△ =b - 4ac=0时,抛物线与x 轴有1个交点;△ =b - 4ac v 0时,抛物线与x 轴没有 交占 八、、♦ 3.如图,在平行四边形 ABCD 中, E 为CD 上一点,DE CE=2: 3,连结AE, BD 交于点F , 贝V S A DEF : S A ADF S A ABF 等于()相似三角形的判定与性质;平行四边形的性质.根据平行四边形性质得出 DC=AB DC// AB 求出 DE AB=2: 5,推出△ DEF^A BAF ,二,根据等高的三角形的面积之比等于对应边之比求出5解答: 解::•四边形 ABCD 是平行四边形, ••• DC=AB DC// AB •/ DE CE=2 3, • DE AB=2: 5, •••DC/ AB • △ DEF^A BAF .%DEF =SAAEF• S A DEF : S AADF : S A ABF 等于 4: 10: 25, 故选C.点评:本题考查了平行四边形的性质和相似三角形的判定和性质的应用,注意:相似三角 形的面积之比等于相似比的平方.4•从标有1, 2, 3, 4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是()A .1 B . 2C. ZD. 332[3 4考点: 列表法与树状图法.分析: 列举出所有情况,看 卡片上的数字之和为奇数的情况数占总情况数的多少即可解答:解12 3 4134 52 3 5634574 5 6 7由列表可知:共有 3X 4=12种可能,卡片上的数字之和为奇数的有 8种.C. 4: 10: 25D. 2: 5: 25考点: 分析: ^ADEF . =1一4 S AADF AT5 10(等高的三角形的面积之比等于对应边之比),9: 25所以卡片上的数字之和为奇数的概率是12~3故选C.点评:本题考查求随机事件概率的方法•注意:任意取两张,相当于取出不放回•用到的 知识点为:概率=所求情况数与总情况数之比. 5.如图,一根5m 长的绳子,一端拴在互相垂直的围墙墙角的柱子上,另一端拴着一只小 羊A (羊只能在草地上活动),那么小羊 A 在草地上的最大活动区域面积是()A. IJ m2B . 订nm 2C. 2J m 2D. ^nm 2126] 412考点:扇形面积的计算. 专题:压轴题.分析:小羊A 在草地上的最大活动区域是一个扇形 +—个小扇形的面积.解答: 解:大扇形的圆心角是 90度,半径是5, 所以面积='= 后;3604小扇形的圆心角是 180°- 120° =60°,半径是 1m, 则面积=如=兀(卅),360 &点评:本题的关键是从图中找到小羊的活动区域是由哪几个图形组成的,然后分别计算即 可.26. 二次函数 y=ax - 2x - 3 (a v 0)的图象一定不经过 () A .第一象限B .第二象限C.第三象限D.第四象限.考点:二次函数的性质.分析:先根据题意判断出二次函数的对称轴方程,再令x=0求出y 的值,进而可得出结论.解答: 解:’••二次函数 y=ax 2- 2x - 3 (a v 0)的对称轴为直线 x=-——=-<0,2a 2a a则小羊A 在草地上的最大活动区域面积7T + 77 6L2兀4_ 2 n (m ).•••其顶点坐标在第二或三象限,■/当x=0 时,y= - 3,•抛物线一定经过第四象限,•••此函数的图象一定不经过第一象限.故选A.点评:本题考查的是二次函数的性质,熟知二次函数的对称轴方程是解答此题的关键.7. 在下列命题中,正确的是()A. 三点确定一个圆B. 圆的内接等边三角形只有一个C. 一个三角形有且只有一个外接圆D. —个四边形一定有外接圆考点:命题与定理.分析:利用确定圆的条件、圆内接三角形的定义、外接圆的定义分别判断后即可确定正确的选项. 解答:解:A、不在同一直线上的三点确定一个圆,故错误;B圆内接等边三角形有无数个,故错误;C 一个三角形有且只有一个外接圆,正确;D并不是所有的四边形一定有外接圆,故错误,故选C.点评:本题考查了命题与定理的知识,解题的关键是了解确定圆的条件、圆内接三角形的定义、外接圆的定义等知识,难度不大.2&二次函数y=ax +bx+c (0)的图象如图,下列结论:(1) c v 0;(2)b>0;(3)4a+2b+c>0;2 2(4)(a+c) v b .其中不正确的有()A. 1个B. 2个C. 3个D. 4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点得出c的值,然后根据图象经过的点的情况进行推理,进而对所得结论进行判断.解答:解:抛物线的开口向上,则a> 0;对称轴为x= -=1,即b=-2a ,故b v 0,故(2)错误;2a抛物线交y 轴于负半轴,则c v 0,故(1)正确;把 x=2 代入 y=ax +bx+c 得:y=4a+2b+c v 0,故(3)错误;把 x=1 代入 y=ax +bx+c 得: y=a+b+c v 0,把 x= - 1 代入 y=ax +bx+c 得: y=a - b+c v 0, 则(a+b+c ) (a - b+c )> 0,故(4)错误; 不正确的是(2) ( 3) (4); 故选C.点评:本题考查二次函数图象与二次函数系数之间的关系,二次函数与方程之间的转换, 根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如: y=a+b+c , y=4a+2b+c ,然后根据图象判断其值.9.某块面积为4000m ?的多边形草坪,在嘉兴市政建设规划设计图纸上的面积为 250cm 2,这块草坪某条边的长度是 40m,则它在设计图纸上的长度是 ()解得:x=10,即这块草坪在设计图纸上的长度是 10cm.故选C.点评:此题考查了相似图形的性质.此题难度不大,注意相似图形的面积比等于相似比的 平方的应用与方程思想的应用.10. 抛物线y= -( x - 2) 2+1经过平移后与抛物线 y= -(x+1) 2 -2重合,那么平移的方法 可以是()A. 向左平移3个单位再向下平移 3个单位B. 向左平移3个单位再向上平移 3个单位C. 向右平移3个单位再向下平移 3个单位D. 向右平移3个单位再向上平移 3个单位 考点:二次函数图象与几何变换.分析:根据平移前后的抛物线的顶点坐标确定平移方法即可得解.解答: 解:•••抛物线y=-( x - 2) 2+1的顶点坐标为(2, 1),抛物线y= -( x+1) 2- 2 的顶点坐标为(-1,- 2),•••顶点由(2, 1)至到 (- 1 , - 2)需要向左平移 3个单位再向下平移 3个单位. 故选A.A . 4cmB . 5cm C. 10cm D. 40cm考点:相似多边形的性质.分析:首先设这块草坪在设计图纸上的长度是 似图形的面积比等于相似比的平方,可列方程 答案,注意统一单位.解答:解:根据题意得: 设这块草坪在设计图纸上的长度是40000000-xcm ,根据题意可得这两个图形相似,根据相=(')2,解此方程即可求得250x2 2xcm, 4000m =40000000m , 40m=4000cm250 2点评:本题考查了二次函数图象与几何变换,此类题目,利用顶点的变化确定抛物线解析式更简便.11. 如图,将/ AOB放置在5X5的正方形网格中,贝U tan / AOB的值是(C 2価13考点:锐角三角函数的定义.专题:网格型.分析:认真读图,在以/ AOB的O为顶点的直角三角形里求解答:解:由图可得tan / AOB士 .故选B .点评:本题考查了锐角三角函数的概念:在直角三角形中,正12 .如图,等腰Rt△ ABC(/ACB=90 )的直角边与正方形DEFG勺边长均为2,且AC与DE 在同一直线上,开始时点C与点D重合,让厶ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,A ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,贝U考点:动点问题的函数图象.专题:几何图形问题;压轴题.tan / AOB 的值.切等于对边比邻边.分析:此题可分为两段求解,即C从D点运动到E点和A从D点运动到E点,列出面积随动点变化的函数关系式即可.解答:解:设CD的长为x, △ ABC与正方形DEFG重合部分(图中阴影部分)的面积为当C从D点运动到E点时,即O W X W2时,y=+敦2乂2 —+ (2—“ 乂〔2-H)=当A从D点运动到E点时,即2V x<4时,】=-y -ly+-•••y与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应. 故选:A.点评:本题考查的动点变化过程中面积的变化关系,重点是列出函数关系式,但需注意自变量的取值范围.二、填空题(共6小题,每小题4分,满分24分)13.已知弦AB把圆周分成1: 5的两部分,则弦AB所对的圆心角的度数为60考点:圆心角、弧、弦的关系.专题:计算题.分析:由于弦AB把圆周分成1 : 5的两部分,根据圆心角、弧、弦的关系得到弦AB所对的圆心角为周角的丄.6解答:解:•••弦AB把圆周分成1 : 5的两部分,•••弦AB所对的圆心角的度数= X 360° =60°.11-5故答案为60°.点评:本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.考点:翻折变换(折叠问题);等边三角形的判定与性质;圆心角、弧、弦的关系.y=- ' I_- - ■:,AB于圆心O,则弧AC=120度.分析:过0点作OD L AC交AC于D,交弧AC于E,连结OC BC.根据垂径定理可得OD=OE2AD=CD根据三角形中位线定理可得OD』BC,再根据等边三角形的判定和性质,以及邻补2角的定义即可求解.解答:解:过O点作ODLAC交AC于D,交弧AC于E,连结OC BC.•••OD=OE AD=CD2•/ AB是直径,•••/ ACB=90 , OD^BC2又••• OC=OB•••△ OBC是等边三角形,•••/ BOC=60 ,•••/ AOC=180 - 60° =120°,即弧AC=120度.点评:考查了翻折变换(折叠问题),垂径定理,三角形中位线定理,等边三角形的判定和性质,以及邻补角的定义,综合性较强,难度中等.15•如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆” •已知点 C D分别是“果圆”与坐标轴的交点,抛物线的解析式为CD的长为31.;.考点:二次函数综合题.分析:连接AC, BC,有抛物线的解析式可求出A, B, C的坐标,进而求出AO BO DO的长, 在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.解答:解:连接AC, BC•••抛物线的解析式为y=x2- 2x - 3 ,••点D的坐标为(0, - 3),• OD的长为3 ,2A B2y=x - 2x - 3, AB为半圆的直径,设y=0,贝U 0=x - 2x - 3 ,解得:x= - 1或3,••• A (- 1, 0), B ( 3, 0)••• AO=1 BO=3•/ AB为半圆的直径,•••/ ACB=90 ,•••COL AB• CO=AC? BO=3• CO=二• CD=CO+OD=3+】,点评:本题是二次函数综合题型,主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理,读懂题目信息,理解“果圆”的定义是解题的关键.16. 如图,在直角三角形ABC中(/C=9C° ),放置边长分别3, 4 , x的三个正方形,则x 的值为乙考点:相似三角形的判定与性质;正方形的性质.分析:根据已知条件可以推出厶CE MA OME PFN然后把它们的直角边用含x的表达式表示出来,禾U用对应边的比相等,即可推出x的值答题解答:解:如图••在Rt△ ABC中/C=9C°,放置边长分别3, 4, x的三个正方形,•△CEF MA OM MA PFN• 0E PN=OM PF,•/ EF=x, MO=3 PN=4,• 0E=—3, PF=x- 4,••( x - 3): 4=3: (x - 4),•( x- 3) ( x-4) =12,•x1=0 (不符合题意,舍去),X2=7 .故答案为:7.点评:本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x 的表达式表示出对应边.17. 如图,A D E是OO上的三个点,且/ AOD=120 , B、C是弦AD上两点,BC= ';, △ BCE 是等边三角形.若设AB=x, CD=y,则y与x的函数关系式是y』.考点:相似三角形的判定与性质;等边三角形的性质;圆周角定理.专题:计算题.分析:由圆周角定理得出/ AED=120,得出/ EAD k EDC=60,由等边三角形的性质得出/ BEC M EBC M ECB=60 , BE=CE=BC^5,得出/ ABE2 ECD=120,证出/ AEB2 EDC 证明△ ABE^A ECD得出对应边成比例,即可得出结果.解答:解:连接AE、DE如图所示:•••/ AOD=120 ,••• 360°—120° =240°,•••/ AED—X 240°=120°,1•••/ EAD M EDC=60 ,•••△ BCE是等边三角形,•M BEC M EBC M ECB=60 , BE=CE=BC^,•M ABE M ECD=120,/ EAD M AEB=60 ,•M AEB M EDC•△ABE^A ECD•丄即亠丄,V3 y故答案为:.点评:本题考查了圆周角定理、等边三角形的性质、相似三角形的判定与性质;熟练掌握 圆周角定理和等边三角形的性质,并能进行推理论证与计算是解决问题的关键.18. 如图,在Rt △ ABC 中,/ ABC=90 , BA=BC 点D 是AB 的中点,连结CD 过点B 作BGL CD 分别交CD CA 于点E , F ,与过点A 且垂直于AB 的直线相交于点 G,连结DF .给出以下四考点:相似三角形的判定与性质;等腰直角三角形.分析:根据同角的余角相等求出/ ABG M BCD 然后利用“角边角”证明△ ABC 和厶BCD 全 等,根据全等三角形对应边相等可得AG=BD 然后求出AG=BC,再求出△ AFG 和厶CFB 相似,2根据相似三角形对应边成比例可得越卫,从而判断出①正确;由 AG=BC,所以FG=FB,AB FB2 2故②正确;根据相似三角形对应边成比例求出差』,再根据等腰直角三角形的性质可得FC 2AC= TAB,然后整理即可得到 AF= :AB,判断出③正确;过点 F 作MFL AB 于M 根据三角3形的面积整理即可判断出④错误. 解答: 解:I/ ABC=90 , BGLCD•••/ ABG / CBG=90 , / BCD / CBG=90 ,•••/ ABG / BCD在厶ABC 和厶BCD 中,ZABG=ZBCD AB=BC,• △ ABG^A BCD( ASA ,• AG=BD•••点D 是AB 的中点, • BD=AB,2[;④S △AB (=5S A BDF ,其中正确结论的序号是①②③.③AF=[」••• AG匚BC,2在Rt△ ABC中,/ ABC=90 ,• AB丄BC•/ AGL AB• AG/ BC•△AF3A CFB•丄西节,•/ BA=BC•丄故①正确;•/△AF3A CFB「厂I「一:,• FG二FB ,2故②正确;•/△AF3A CFB..-CF'AC_2•AF J AC,3•/ AC= [AB• AF= ::AB故③正确;过点F作MF L AB于Ml,贝U FM/ CB AC~BC_3..BD 1•T -,.MBDF S A AB |B D'FII专AB=BD「F1=:L壬,故④错误.点评:本题考查了相似三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形 的性质,熟练掌握相似三角形的判定方法和相似三角形对应边成比例的性质是解题的关键. 三、解答题(共8小题,满分78分)19•计算:(-.+ 1) (- 1)-(- 2014) °+2_ [sin45 ° .考点:二次根式的混合运算;零指数幕;特殊角的三角函数值.分析:分别进行二次根式的乘法、零指数幕、特殊角的三角函数值等运算,然后合并. 解答:解:原式=6 - 1 - 1+2=6.点评:本题考查了二次根式的混合运算,涉及了二次根式的乘法、零指数幕、特殊角的三 角函数值等知识,属于基础题.20 .如图,在等边厶ABC 中,D 为BC 边上一点,E 为AC 边上一点,且/ ADE=60 . (1) 求证:△ ABB A DCE(2 )若BD=3 CE=2,求厶ABC 的边长.考点:相似三角形的判定与性质;等边三角形的性质. 分析:(1)由/ADE=60,可证得厶ABD^A DCE (2 )可用等边三角形的边长表示出 DC 的长,进而根据相似三角形的对应边成比例,求得△ ABC 的边长.解答: (1)证明:•••△ ABC 是等边三角形, •••/ B=Z C=60 , •••/ BAD / ADB=120 •••/ ADE=60 , •••/ ADB / EDC=120 , •••/ DAB / EDC 又•••/ B=/ C=60,故答案为:①②③.• △ ABD^A DCE(2)解:•••△ ABD^ DCE解得AB=9.点评:此题主要考查了等边三角形的性质和相似三角形的判定和性质,能够证得△ ABBA DCE是解答此题的关键.21. 如图,AB和CD是同一地面上的两座相距39米的楼房,在楼AB的楼顶A点测得楼CD 的楼顶C 的仰角为45°,楼底D的俯角为30°.求楼CD的高(结果保留根号).考点:解直角三角形的应用-仰角俯角问题.分析:在题中两个直角三角形中,知道已知角和其邻边,只需根据正切值求出对边后相加即可.解答:解:延长过点A的水平线交CD于点E,则有AE! CD四边形ABDE是矩形,AE=BD=39 米. •••/ CAE=45 ,•••△ AEC是等腰直角三角形,••• CE=AE=39米.在Rt△ AED 中,tan / EAD」,AE• ED=39< tan30 ° =13 ■米,• CD=CE+ED= 39+13 I ;)米.答:楼CD的高是(39+13 J;)米.B D点评:本题考查的是解直角三角形的应用-仰角俯角问题,涉及到特殊角的三角函数值及等腰三角形的判定,熟知以上知识是解答此题的关键.22. 如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,视为无效,重新转动一次转盘),此过程称为一次操作•请用树状图或列表法,求事件“两次操作,第一次操作得到的数与第二次操作得到的数的绝对值相等”发生的概率.考点:列表法与树状图法.分析:根据题意,用列表法列举出所有情况,看所求的情况与总情况的比值即可得答案. 解答:解:画树状图如下:-1 0 1 -1 0 1 4 C 1所有可能出现的结果共有9种,其中满足条件的结果有5种. 所以P (所指的两数的绝对值相等) 丄.g点评:考查了列表法与树状图法求概率的知识,树状图法适用于两步或两部以上完成的事件•用到的知识点为:概率=所求情况数与总情况数之比.23. 在学习圆与正多边形时,马露、高静两位同学设计了一个画圆内接正三角形的方法:(1)如图,作直径AD;(2)作半径0D的垂直平分线,交OO 于B, C两点;(3)联结AB AC BC,那么△ ABC为所求的三角形.请你判断两位同学的作法是否正确,如果正确,请你按照两位同学设计的画法,画出△ ABC然后给出厶ABC是等边三角形的证明过程;如果不正确,请说明理由.考点:正多边形和圆;垂径定理.分析:利用锐角三角函数关系得出/ BOE=60,进而得出/ COE M BOE=60,再利用圆心角定理得出答案.解答:解:两位同学的方法正确.连BO CO•/ BC垂直平分OD•••直角△ OEB 中.cos / BOE鼻匚,OR 3/ BOE=60,由垂径定理得/ COE M BOE=60 ,由于AD为直径,•••/ AOB M AOC=120 ,••• AB=BC=CA即厶ABC为等边三角形.点评:此题主要考查了垂径定理以及圆心角定理和等边三角形的判定等知识,得出 / AOB MAOC=120是解题关键.24. 如图1 ,在四边形ABCD勺AB边上任取一点 E (点E不与点A、点B重合,分别连接ED, EC可以把四边形ABCD分成3个三角形.如果其中有2个三角形相似,我们就把点E叫做四边形ABCD的AB边上的相似点;如果这3个三角形都相似,我们就把点E叫做四边形ABCD 的AB 边上的强相似点.(1)若图1中,/ A=Z B=Z DEC=50,证明点E是四边形ABCD的AB边上的相似点.(2)①如图2,画出矩形ABCD的AB边上的一个强相似点.(要求:画图工具不限,不写画法,保留画图痕迹或有必要的说明)②对于任意的一个矩形,是否一定存在强相似点?如果一定存在,请说明理由;如果不一定存在,请举出反例.(3)如图3,在四边形ABCD中, AD// BC AD< BC, / B=90°,点E是四边形ABCD勺AB 边上的一个强相似点,判断AE与BE的数量关系并说明理由.考点:相似形综合题.分析:(1)要证明点E是四边形ABCD勺AB边上的相似点,只要证明有一组三角形相似就行,很容易证明△ AD0A EBC所以问题得解;(2)①以CD为直径画弧,取该弧与AB的一个交点即为所求•②不一定存在强相似点,如正方形;(3)因为点E是梯形ABCD的AB边上的一个强相似点,所以就有相似三角形出现,根据相似三角形的对应线段成比例,可以判断出AE和BE的数量关系,从而可求出解.解答:解:(1)理由:•••/ A=50°,•••/ ADE f DEA=130 ,•••/ DEC=50 ,•••/ BEC f DEA=130 ,•••/ ADE M BEC•••/ A=M B,•△AD0A BEC•••点E是四边形ABCD的AB边上的相似点;(2)①以CD为直径画弧,取该弧与AB的一个交点即为所求, 如图2所示:连接FC, DF, •/ CD为直径,•/ DFC=90 ,•/ CD// AB•••/ DCF M CFB•••/ B=90° ,•••△ DFSA CBF同理可得出:△ DFC^^ FAD②对于任意的一个矩形,不一定存在强相似点,如正方形.(3)第一种情况:/ A=M B=M DEC=90 , M ADE M BEC M EDC 即厶AD0A BEC^A EDC •••点E是梯形ABCD勺边AB上的强相似点,•△ ADE △ BEC以及△ CDE是两两相似的,•••△ ADE是直角三角形,•△ DEC也是直角三角形,当/ DEC=90 时,①/ CDE M DEA• DC/ AE这与四边形ABCD是梯形相矛盾,不成立;②/ CDE M EDA•••/ ECD M EDC=90 , M ADE M AED=90 ,•M AED M ECD•••M AED-M BEC=90 , M BEC-M BCE=90 ,•M AED M BCE•M AED M BCE M ECD• DE平分M ADC同理可得, CE平分M DCB如图3,过E作EF±DC•/ AE! AD BE! BC DE平分M ADC CE平分M DCB• AE=FE BE=FE• AE=BE第二种情况:M A=M B=M EDC=90 , M ADE M BCE M DCE即厶AD0A BEC^A DCE所以M AED M BEC M DEC=60 , 说明AE=^DE, BE^CE DE^CE2 2 1 所以AE丄BE.2综上,AE=BE或AE^BE2。
2015-2016年浙教版九年级上数学期末测试题附答案解析
期末测试题(本试卷满分120分,时间:120分钟)一、选择题(每小题3分,共36分)1.若29ab=,则a bb+=()A.119B.79C.911D.79-2.(2014·四川泸州中考)一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为()A.9 cmB.12 cmC.15 cmD.18 cm3.如图,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且,则∠()A.100°B.110°C.120°D.135°第4题图4.(2015·浙江宁波中考)如图,用一个半径为30 cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()A.5 cmB.10 cmC.20 cmD.5π cm5.(2014·四川宜宾中考)一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率是()A. 19B.13C.12D.236.(2014·天津中考)如图,在□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF∶FC等于()A.3∶2B.3∶1C.1∶1D.1∶27.如图,△ABC的三个顶点都在⊙O上,∠BAC的平分线交BC于点D,交⊙O于点E,则与△ABD 相似的三角形有()A.3个B.2个C.1个D.0个8.(2015·浙江金华中考)如图,正方形ABCD 和正△AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则的值是( ) A.B.C.D.2第8题图9.如图,一只蚂蚁从点出发,沿着扇形的边缘匀速爬行一周,设蚂蚁的运动时间为,蚂蚁绕一圈到点的距离..为,则关于的函数图象大致为( )10.(陕西中考)如图,是两个半圆的直径,∠ACP =30°,若,则 PQ 的值为( ) A. B. C.a 3D.a 3211.(2014·哈尔滨中考)将抛物线y =-2x 2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为( ) A.y =-2(x +1)2-1 B.y =-2(x +1)2+3 C.y =-2(x -1)2+1 D.y =-2(x -1)2+312. (2015·宁波中考)如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的处,称为第1次操作,折痕DE 到BC 的距离记为;还原纸片后,再将△ADE 沿着过AD 中点的直线折叠,使点A 落在DE 边上的处,称为第2次操作,折痕到BC 的距离记为;按上述方法不断操作下去……经过第2015次操作后得到的折痕到BC的距离记为,若=1,则的值为( )A. B. C.1- D.2-第12题图二、填空题(每小题3分,共30分)13.若,则yx yx +-=_____________. 14(2015·兰州中考)已知△ABC 的边BC =4 cm ,⊙O 是其外接圆,且半径也为 4 cm ,则∠A 的度数是 .15.(2014·山东烟台中考)在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是14,那么袋子中共有球_________个. 16.如图是二次函数2y ax bx c =++图象的一部分,图象过点A (3,0),且对称轴为直线1x =,给出下列四个结论:①;②0bc <;③20a b +=;④0a b c ++=,其中正确结论的序号是___________.(把你认为正确的序号都写上)17.如图,四边形ABCD 中,AB ∥DC ,AB ⊥BC ,AB =2 cm ,CD =4 cm .以BC 上一点O 为圆心的圆经过A 、D 两点,且∠AOD =90°,则圆心O 到弦AD 的距离是 cm. 18.(2014·山东烟台中考)如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为4,则阴影部分的面积等于 .19.(江苏中考)如图,四边形为正方形,图(1)是以AB 为直径画半圆,阴影部分面积记为,图(2)是以O 为圆心,OA 长为半径画弧,阴影部分面积记为,则的大小关系为_________. 20.将一副三角板按如图所示叠放,则△AOB 与△DOC 的面积之比等于_________.4cm,一只蚂蚁由A点出发绕侧面一周后21.如图所示的圆锥底面半径OA=2 cm,高PO=2回到A点处,则它爬行的最短路程为________.22.(2014·山东潍坊中考)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,第22题图则建筑物的高是米.三、解答题(共54分)23.(6分)一段圆弧形公路弯道,圆弧的半径为2 km,弯道所对圆心角为10°,一辆汽车从此弯道上驶过,用时20 s,弯道有一块限速警示牌,限速为40 km/h,问这辆汽车经过弯道时有没有超速?(π取3)24.(6分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D.求证:(1)D是BC的中点;(2)△BEC∽△ADC.25.(6分)已知二次函数的图象经过点A(2,-3),B(-1,0).(1)求二次函数的解析式;(2)观察函数图象,要使该二次函数的图象与轴只有一个交点,应把图象沿轴向上平移几个单位?26.(7分)已知抛物线的部分图象如图所示.(1)求的值;(2)分别求出抛物线的对称轴和的最大值;(3)写出当时,的取值范围.27.(7分)如图,在△ABC中,AC=8 cm,BC=16 cm,点P从点A出发,沿着AC边向点C以1 cm/s的速度运动,点Q从点C出发,沿着CB边向点B以2 cm/s的速度运动,如果P与Q同时出发,经过几秒△PQC和△ABC相似?28.(6分)(2014·武汉中考)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率.(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.29.(6分)(2015·浙江金华中考)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.(1)求证:DE=AB.(2)以D为圆心,DE为半径作圆弧交AD于点G.若BF=FC=1,试求EG的长.30.(10分)(2015·浙江金华中考)如图,抛物线+c(a≠0)与y轴交于点A,与x轴交于B,C两点(点C在x轴正半轴上),△ABC为等腰直角三角形,且面积为4.现将抛物线沿BA方向平移,平移后的抛物线经过点C时,与x轴的另一交点为E,其顶点为F,对称轴与x轴的交点为H.(1)求a,c的值.(2)连接OF,试判断△OEF是否为等腰三角形,并说明理由.(3)现将一足够大的三角板的直角顶点Q放在射线AF或射线HF上,一直角边始终过点E,另一直角边与y轴相交于点P,是否存在这样的点Q,使以点P,Q,E为顶点的三角形与△POE全等?若存在,求出点Q的坐标;若不存在,请说明理由.图①图②期末测试题参考答案一、选择题1.A 解析:22,,99aa bb=∴=2111199=.9b b ba bb b b++∴==2.B 解析:设圆锥的母线长为l,∴180180·l=2×π×6,∴l=2×π×6×180180=12(cm).3.C 解析: ∵,∴,∴弦三等分半圆,∴弦、、对的圆心角均为60°,∴∠=.4. B解析:扇形的半径R=30 cm,面积S=300πcm2.根据S扇形=12lR可得扇形的弧长l=260030SRπ=20π(cm).根据题意,得2πr=20π,∴r=10 cm.5. B 解析:因为袋子中装有6个黑球和3个白球,所以摸到白球的概率是363=13.6.D 解析:∵ AD ∥BC ,∴ DEF BCF ∠=∠,EDF CBF ∠=∠, ∴ △DEF ∽△BCF ,∴EF EDCF BC =. 又∵AD BC =,∴12ED BC =,∴ EF ︰FC =1︰2.7.B 解析: 由∠BAE =∠EAC , ∠ABC =∠AEC ,得△ABD ∽△AEC ; 由∠BAE =∠BCE ,∠ABC =∠AEC ,得△ABD ∽△CED .共两个.8.C 解析:如图所示,连结OC ,OF ,OD ,∵ 四边形ABCD 是正方形,△AEF 是正三角形,∴AB =,,BC CD DA AE EF AF ∴,AE AB AF AD∴,,BEFD BCBECDFD 即,EC CF ∴ OC ⊥EF .设垂足为点M .∵ 四边形ABCD 是正方形,△AEF 是正三角形,∴ ∠COD =90°,∠COF =60°.∵ OC =OD ,∴ ∠OCD =45°,∴ MH =MC .在Rt △OMF 中,设OM =a ,则OF =2a ,∴ MC =a ,MF ==a .又∵ OC ⊥EF ,∴ GH =2MH =2a ,EF =2MF =2a , ∴ ==,故选C.第8题答图9.C解析:蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行,在开始时经过OA 这一段,蚂蚁到O 点的距离随运动时间t 的增大而增大;到弧AB 这一段,蚂蚁到O 点的距离s 不变,走另一条半径时,s 随t 的增大而减小,故选C .10.C 解析:如图,连接AP 、BQ .∵ AC ,BC 是两个半圆的直径,∠ACP =30°,∴ ∠APC =∠BQC =90°.设,在Rt △BCQ 中,同理,在Rt △APC 中,,则,故选C .11.D解析:根据抛物线的平移规律:上加下减,左加右减,平移只改变其顶点.抛物线y =-2x 2+1平移以后的解析式为y =-2(x -1)2+1+2=-2(x -1)2+3,故选D.12. D 解析:如图,连接AA 1,由已知可得DE 是△ABC 的中位线,∴ AA 1=2h 1=2,点A 与D 1E 1的距离为12,∴ h 2=2-12;点A 到D 2E 2的距离为,∴ h 3=2-2,h 4=2-3,…,h 2 015=2-第12题答图2 014=2-201412 .二、填空题13.31-解析:设,∴3122-=+-=+-kk k k y x y x .14. 30︒或150︒解析:由已知条件得到△OBC 是等边三角形,所以∠BOC =60︒,当点A 在优弧BC 上时,30A ∠=︒,当点A 在劣弧BC 上时,150A ∠=︒. 15.12解析:设袋中共有球x 个,∵有3个白球,且摸出白球的概率是14,∴31=4x ,解得x =12. 16.①③ 解析:因为图象与轴有两个交点,所以, ①正确;由图象可知开口向下,对称轴在轴右侧,且与轴的交点在轴上方,所以,所以, ②不正确;由图象的对称轴为,所以,即,故, ③正确;由于当时,对应的值大于0,即,所以④不正确.所以正确的有①③. 17. 解析:如图,过点O 作OF ⊥AD ,已知∠B =∠C =90°, ∠AOD =90°,所以.又,所以.在△ABO 和△OCD 中,所以△≌△.所以=.根据勾股定理得.因为△AOD 是等腰直角三角形,所以,即圆心O 到弦AD 的距离是.18.163π解析:如图,连接OC 、OD 、OE ,OC 交BD 于点M ,OE 交DF 于点N ,过点O 作OZ ⊥CD 于点Z ,∵ 六边形ABCDEF 是正六边形,∴ BC =CD =DE =EF ,∠BOC =∠COD =∠DOE =∠EOF =60°. 由垂径定理得OC ⊥BD ,OE ⊥DF ,BM =DM ,FN =DN . ∵ 在Rt △BMO 中,OB =4,∠BOM =60°, ∴ ∠OBM =30°∴ OM = 2.由勾股定理得BM=23,∴BD=2BM=43,∴△BDO的面积是12·BD·OM=12×43×2=43,同理△FDO的面积是43.∵∠COD=60°,OC=OD=4,∴△COD是等边三角形.∴∠OCD=∠ODC=60°. ∴∠COZ=∠DOZ=30°.∴CZ=DZ=2.由勾股定理得OZ=23.同理可得∠DOE=60°,∴S弓形CD=S弓形DE.S弓形CD=S扇形COD-S△COD=2604360-12×4×23=83-43.∴S 阴影=43+43+2(83-43)=163π.19.解析:设正方形OBCA的边长是1,则,∴,,故.20.1︰3 解析:∵∠ABC=90°,∠DCB=90°,∴AB∥CD,∴△AOB∽△COD.又∵AB︰CD=BC︰CD=1︰,∴△AOB与△DOC的面积之比等于1︰3.21.36cm解析:圆锥的侧面展开图如图所示,设∠,由OA=2 cm,高PO=24cm,得P A=6 cm,弧AA′=4cm,则,解得.作,由,得∠.又cm,所以cm,∴所以cm.22.54 解析:∵△ABG∽△CDG,∴CD∶AB=DG∶BG.∵CD=DG=2,∴AB=BG.又△EFH∽△ABH,∴EF∶AB=FH∶BH.∵EF=2,FH=4,∴BH=2AB,∴BH=2BG=2GH.∵GH=DH-DG=DF+FH-DG=52+4-2=54,∴AB=BG=GH=54.三、解答题23. 解:∵,∴汽车的速度为(km/h),∵ 60 km/h>40 km/h,∴这辆汽车经过弯道时超速.24.证明:(1)因为AB为⊙O的直径,所以∠ADB=90°,即AD⊥BC.又因为AB=AC,所以D是BC的中点.(2)因为AB为⊙O的直径,所以∠AEB=90°.因为∠ADB=90°,所以∠ADB=∠AEB.又∠C=∠C,所以△BEC∽△ADC.25.解:(1)将点A(2,-3),B(-1,0)分别代入函数解析式,得解得所以二次函数解析式为322--=x x y .(2)由二次函数的顶点坐标公式,得顶点坐标为,作出函数图象如图所示,可知要使该二次函数的图象与轴只有一个交点,应把图象沿轴向上平移4个单位. 26. 解:(1)由图象知此二次函数过点(1,0),(0,3), 将点的坐标代入函数解析式,得解得(2)由(1)得函数解析式为,即为,所以抛物线的对称轴为的最大值为4.(3)当时,由,解得,即函数图象与轴的交点坐标为(),(1,0).所以当时,的取值范围为.27.解:设经过t s △PQC 和△ABC 相似,由题意可知P A =t cm ,则CQ =2t cm. (1)若PQ ∥AB ,则△PQC ∽△ABC ,∴CB CQ CA CP =,∴ 16288tt =-,解得4=t .(2)若B CPQ ∠=∠,则△PQC ∽△BAC ,∴CA CQ CB CP =,∴ 82168t t =-,解得58=t .答: 经过4 s 或58s △PQC 和△ABC 相似.28.分析:(1)①先将两种颜色的球进行标号,然后列表或画树状图得出所有等可能的结果数,找出第一次摸到绿球,第二次摸到红球的结果数,根据概率计算公式求出其概率;②找出两次摸到的球中有1个绿球和1个红球的结果数,根据概率计算公式求出其概率.(2)分别用R 1,R 2表示2个红球,G 1,G 2表示2个绿球,列表如下:从表格中可以看出所有等可能的结果数为12,其中两次摸球中有1个绿球和1个红球的结果为8种,根据概率计算公式求出其概率为82=123. 解:(1)分别用R 1,R 2表示2个红球,G 1,G 2表示2个绿球,列表如下:由上表可知,有放回地摸2个球共有16种等可能结果.①∵其中第一次摸到绿球,第二次摸到红球的结果有4种,∴第一次摸到绿球,第二次摸到红球的概率P= 41= 164.②∵其中两次摸到的球中有1个绿球和1个红球的结果有8种,∴两次摸到的球中有1个绿球和1个红球的概率P=81= 162.(2)2 3 .29. (1)证明:∵DE⊥AF,∴∠AED=90°.又∵四边形ABCD是矩形,∴AD∥BC,∠B=90°.∴∠DAE=∠AFB,∠AED=∠B=90°.又∵AF=AD,∴△ADE≌△F AB(AAS),∴DE=AB.(2)解:∵BF=FC=1,∴AD=BC=BF+FC=2.又∵△ADE≌△F AB,∴AE=BF=1,∴在Rt△ADE中,AE=AD,∴∠ADE=30°.又∵DE===,∴EG的长===π.30.解:(1)∵△ABC为等腰直角三角形,∴OA=BC.又∵△ABC的面积=BC×OA=4,即=4,∴OA=2,∴A(0,2),B(-2,0),C(2,0),∴c=2,∴抛物线的函数表达式为+2.把C(2,0)代入+2中得4a+2=0,解得a=-,∴a=-,c=2.(2)△OEF是等腰三角形.理由如下:图③如图③,设直线AB的函数表达式为y=kx+b,把A(0,2),B(-2,0)代入y=kx+b中得,k=1,b=2,∴直线AB的函数表达式为y=x+2.又∵平移后的抛物线顶点F在直线BA上,∴设顶点F的坐标为(m,m+2),∴平移后的抛物线的函数表达式为y=-+m+2。
2016~2017学年浙江杭州下城区初三上学期期末数学试卷(解析)
目录选择题填空题解答题选择题j i ao s h i.i zh ik an g.co m2018/12/111.A. B. C. D.答 案解 析己知,则实数的值为( ).B因为,可得:.3:x =6:12x 4612243:x =6:12x =62.A.该事件是必然事件 B.该事件是不可能事件C.该事件是不确定事件D.该事件发生的可能性很大答 案解 析对于事件“从车间生产的个(其中有个是次品)产品中任意抽一个,所抽取的产品是次品”,下列对于该事件的描述正确的是( ).C对于事件“从车间生产的个(其中有个是次品)产品中任意抽一个,所抽取的产品是次品”,是不确定事件.100210023.A.B.C.D.答 案解 析在中,,,,则的值为( ).B∵,,,∴.Rt △ABC ∠C =90∘AC =3AB =5cos A 453534334−−√34∠C =90∘AC =3AB =5cos A ==AC AB 354.A.点在⊙内 B.点不一定在⊙外C.点在⊙上D.点在⊙外答 案解 析矩形的边,,以为圆心,为半径作⊙,则点与⊙的位置关系为( ).D由勾股定理,得,∵,点在⊙外边.ABCD AB =3cm AD =4cm A 4cm A C A C A C A C A C A AC ===5(cm)A +D D 2C 2−−−−−−−−−−√+3242−−−−−−√AC >r C A 5.A. B.C. D.答 案解 析将抛物线先向右平移个单位,再向下平移个单位,则平移后的抛物线解析式为( ).A抛物线可化,y =+4x +3x 232y =−3(x −1)2y =+x +1x 2y =+4(x −3)+1x 2y =+4(x +3)+1(x +3)2y =+4x +3x 2y =−1(x +2)2学生版 教师版 答案版编辑目录选择题填空题解答题jiaoshi.izhikang.com218/12/11jiaoshi.izhikang.com218/12/11将抛物线先向右平移个单位,再向下平移个单位,则平移后的抛物线解析式为,即.y=+4x+3x232y=−1−2(x+2−3)2y=−3(x−1)26.A. B. C. D.答 案解 析取张扑克牌,其中张“方块”,张“梅花”,张“红桃”,从中任抽一张,是“方块”或“红桃”的概率是( ).A∵共有张扑克牌,其中张“方块”,张“梅花”,张“红桃”,∴方块”和“红桃”共有张,∴从中任抽一张,是“方块”或“红桃”的概率是.156364535254151563612=1215457.A. B. C. D.答 案解 析如图,在矩形中,,分别为,与的中点,且矩形矩形,的值为( ).C∵矩形矩形,∴.设,,则.∴,故,即,则,则.ABCD E F AD BC ABCD∽AEFB ADAB2532√3√ABCD∽AEFB=ADABABAEAD=x AB=y AE=x12=xyyx12=y212x2=2x2y2x=y2√==ADABxy2√8.A. B. C. D.答 案解 析如图,在中,,以为直径的⊙分别交,于点,,连结,,则下列线段的比值中,一定与的比值相等的是( ).B连接,∵是⊙的直径,∴.∵,∴.∵,∴,△ABC AB=AC AB O BC AC D E EB DECE:BCDE:AE BD:AB AE:AB CD:BEADAB O∠ADB=∠AEB=90∘AB=AC∠BAD=∠CAD=DE⌢DE⌢∠CBE=∠CAD学生版教师版答案版编辑目录选择题填空题解答题填空题j i ao sh i.i zh ik an g.c om2018/12/11∴,∴,∴.∠CBE =∠BAD △CBE ∽△BAD =CE BC BDAB9.A. B. C. D.答 案解 析如果二次函数在的一定取值范围内有最大值(或最小值)为,满足条件的的取值范围可以是( ).D∵,当时,得出或,∴在自变量的取值范围内,当时,有最小值.y =−6x +8x 2x 3x −1⩽x ⩽51⩽x ⩽6−2⩽x ⩽4−1⩽x ⩽1y =−6x +8=−1x 2(x −3)2y =3x =15−1⩽x ⩽1x =1310.A.①②B.②③C.①③D.①②③答 案解 析在探究“抛物线与轴交于、两点(在的左边),过点且与轴成角的直线,与抛物线交于点”的图形性质时,小慧在得出“在第一象限存在一点,第四象限存在一点满足条件”这一正确结论后,还由此得出下列结论:①的横坐标为,的纵坐标为.②.③过点、作轴的垂线,垂足分别为、,则,则其中正确的为( ).A由题意,,由,解得:或,∵,∴.由,解得:或,∴,故①正确.∴,,∴,故②正确.∵,故③错误.y =−2x −3x 2x A B A B A x 45∘CC 1C 2C 14C 2−3sin ∠A =C 1C 2334−−√34C 1C 2x D 1D 2△B ∽△B C 1D 1C 2D 2A (−1,0)B (3,0){y =x +1y =−2x −3x 2{x =4y =5{x =−1y =0A (−1,0)(4,5)C 1{y =−x −1y =−2x −3x 2{x =2y =−3{x =−1y =0(2,−3)C 2A =3C 22√=2C 1C 217−−√sin ∠A ===C 1C 2AC 2C 1C 232√217−−√334−−√34≠C 1D 1B D 1C 2D 2B D 211.答 案解 析已知线段,,则线段,的比例中项为 .根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.设它们的比例中项是,则,,(线段是正数,负值舍去),故填.a =4cmb =9cm a b cm 6x =4×9x 2x =±6612.答 案解 析在中,,,,分别是,和的对边,如果,,则 .∵,∴.∵,∴.Rt △ABC ∠C =Rt∠a b c ∠A ∠B ∠C a =3sin A =13c =9∠C =Rt∠sin A ==a c 13a =3c =9学生版教师版答案版编辑目录选择题填空题解答题j i ao s h i .i zh ik an g.co m2018/12/11113.答 案解 析据有关统计表明,名流感病人中有人患的是甲流,则当时,从中任意抽取一名流感患者,结果患的是甲流的概率约是 .∵名流感病人中有人患的是甲流,∴从中任意抽取一名流感患者,结果患的是甲流的概率约是.500040004550004000=400050004514.答 案解 析如图,正五边形内接于⊙,则 .如图,连接、,∵五边形是正五边形,∴,∴.ABCDE O ∠ABD =72∘AO DO ABCDE ∠AOD =×360=14425∘∘∠ABD =∠AOD =×144=721212∘∘15.1.2.答 案解 析二次函数的图象如图所示,则的值为 .的取值范围为 .∵抛物线的对称轴为直线,∴,即.∵当时,,即①,当时,,即②,将代入①、②得:,,又∵,∴.y =a +bx +c (a ≠0)x 2b a ca−2−8<<−3cax =1x =−=1b 2a=−2ba x =−2y >04a −2b +c >0x =−1y <0a −b +c <0b =−2a c >−8a c <−3a a 0−8<<−3ca学生版 教师版 答案版编辑目录选择题填空题解答题解答题j i ao shi .izh i k an g.c om2018/12/11j i ao sh i.i zh i ka ng .c om2018/12/1116.答 案解 析如图,在中,,在边上取点使,连结,以为一边作交边于点,如果,则 .作于,如图所示:∵,∴,.∵,∴,∴,∴.∵,∴,∴.∵,,∴.在和中,,∴≌,∴,,∴.∵,,∴,∴,即.解得:,∴.作于,则,∴.△ABC AB =AC =10BC D BD =6AD AD ∠ADE =∠B AC Esin B =35cos ∠AED =10−−√10AM ⊥BC M AB =AC =10∠B =∠C BM =CM sin B ==AM AB 35AM =AB =×10=63535BM ===8A −A B 2M 2−−−−−−−−−−√−10262−−−−−−−√BC =2BM =16BD =6CD =BC −BD =10CD =AB =AC ∠ADC =∠B +∠BAD =∠ADE +∠CDE ∠ADE =∠B ∠BAD =∠CDE △CDE △BAD ⎧⎩⎨∠BAD =∠CDEAB =CD∠B =∠C △CDE △BAD (ASA)CE =BD =6DE =DA AE =AC −CE =4∠ADE =∠B =∠C ∠DAE =∠CAD △ADE ∽△ACD =AD AC AE AD =AD 104ADAD =210−−√DE =210−−√DM ⊥AE N AN =EN =AE =212cos ∠AED ===EN DE 2210−−√10−−√1017.答 案解 析如图,直线,直线依次交、、于、、三点,直线依次交、、于、、三点,若,,求的长..∵,直线依次交、、于、、三点,直线依次交、、于、、三点,∴.∵,,∴.////l 1l 2l 3AC l 1l 2l 3A B C DF l 1l 2l 3DD E F =AB AC 47DE =2EF EF =1.5////l 1l 2l 3AC l 1l 2l 3A B C DF l 1l 2l 3DD E F =AB AC DEDF =AB AC 47DE =2=472DF 学生版教师版答案版编辑目录选择题填空题解答题j i ao s h i.i zh ik an g .c om2018/12/11解得:,∴.DF =3.5EF =DF −DE =3.5−2=1.518.答 案解 析如图,弧的半径为,的弦心距为为,求弓形的面积..∵弧的半径为,的弦心距为为,∴,,∴,,∴.AB R 20m AB OC 10m =π−100S 弓形40033√AB R 20m AB OC 10m ∠AOC =60∘AC =103√==S 扇形AOB 120π×202360400π3=×AB ×OC =×20×10=100S △AOB 12123√3√=−=π−100S 弓形S 扇形AOB S △AOB 40033√19.(1)把一个红球随即投放,问:小明恰好放对的概率是多少.答 案解 析(2)若小明同学把一个黄球和一个白球任意投放(可以同时放入同一个布袋),求两个球都放对的概率(请列表或画出树状图).答 案解 析为了分类收集,要把地上散落的红球、黄球、白球,按相同颜色放入三个外观相同的不同布袋中,现已按要求收集了部分球在这三个布袋中..∵要把红球、黄球、白球,按相同颜色放入三个外观相同的不同布袋中,∴把一个红球随即投放小明恰好放对的概率.概率.列表得: 由列表可知所有可能结果有种,其中两个球都放对的情况数有种,所以其概率.13=13=13A B C A A A A BBBB62==261320.(1)求出此二次函数图象的对称轴及其与轴的交点坐标.答 案解 析(2)若直线经过、两点,求当二次函数图象落在直线下方时,的取值范围.答 案已知二次函数图象经过,,三点.对称轴为,与轴的另一个交点为. 由题意,关于对称轴对称,∴抛物线的对称轴为,根据对称性抛物线与轴的另一个交点为.当时,或,y =a +bx +c (a ≠0)x 2A (2,0)B (0,c )D (−2,c )x x =−1x (−4,0)B (0,c )D (−2,c )x =−1x (−4,0)l A D l x c >0x <−2x >2学生版教师版答案版编辑目录选择题填空题解答题j i ao sh i .i zh ik an g.co m2018/12/112/11解 析当时,.由图象可知,当时,如图中,当二次函数图象落在直线下方时,或,当时,如图中,当二次函数图象落在直线下方时,.c <0−2<x <2c >01l x <−2x >2c <02l −2<x <221.(1)请在所给图形基础上画出符合要求的其中一个草图,并在图中找出相似三角形后说明理由.答 案解 析(2)在()的条件下,求出长.答 案解 析如图,在中,,,,作等腰三角形,使,且点和位于异侧,连结交于点.画图见解析.如图所示,等腰三角形即为所求.图中,,理由:∵中,,,而,∴,∴,∴.长为或或.①如图所示,当时,过作于,∵,,∴,.△ABC ∠B =90∘∠A =60∘AB =1△ACD ∠CAD =30∘D B AC BD AC O △ACD △AOD ∽△COB △ABC ∠ABC =90∘∠BAC =60∘∠CAD =30∘∠ABC +∠BAD =180∘AD //BC △AOD ∽△COB 1AO AO 458−43√43AD =CD D DE ⊥AC E AD =CD ∠CAD =30∘AE =AC 12AD =2DE 学生版 教师版答案版编辑目录选择题填空题解答题jiaoshi.izhikang.com218/12jiaoshi.izhikang.com218/12/11∵中,,,,∴,,∴,∴中,,.∵,∴,即,解得.②如图所示,当时,根据可得,,即,解得.③如图所示,当时,过作,则四边形是矩形,即,∵,∴.根据可得,,即,解得.综上所述,长为或或.△ABC∠ABC=90∘∠BAC=60∘AB=1AC=2AB=2BC=3√AE=1Rt△AED DE=3√3AD=2DE=233√△AOD∽△COB=AOCOADCB=AO2−AO233√3√AO=45AD=AC=2△AOD∽△COB=AOCOADCB=AO2−AO23√AO=8−43√AC=CD C CE⊥ADABCE AE=BC=3√AC=CDAD=2AE=23√△AOD∽△COB=AOCOADCB=AO2−AO23√3√AO=43AO458−43√4322.(1)求出抛物线的函数解析式.答 案解 析某校足球队在一次训练中,一球员从高米的球门正前方米处将球射向球门,球射向球门的路线呈抛物线,当球飞行的水平距离为米时,球达到最高点,此时球离地面米,建立如图所示的平面直角坐标系.抛物线解析式为.设抛物线的解析式为,将点代入,得:,2.4m63y=−+3112(x−6)2y=a+3(x−6)2(0,0)36a+3=0学生版教师版答案版编辑目录选择题填空题解答题j i ao s h i.i zh ik an g .c om2018/12/11(2)当时,试判断足球能否射入球门,并说明理由.答 案解 析(3)球员射门时,若满足,球不越过球门,求的最小值及的最大值.答 案解 析解得:,∴抛物线解析式为. 足球能射入球门.当即时,,∵,∴足球能射入球门. 的最小值为,的最大值为.当时,,解得:或.当时,,解得:或,∴,即的最小值为,的最大值为.a =−112y =−+3112(x −6)2m =10m =10x =10y =−+3=112(10−6)2530<<2.453>m >t 2t 1t 1t 2t 16+65√5t 212y =0−+3=0112(x −6)2x =0x =12y =2.4−+3=2.4112(x −6)2x =6+65√5x =6−65√56+<x <1265√5t 16+65√5t 21223.(1) 若,求弦的长.答 案解 析(2)若是上任意一动点,请找出图中和相等的角(不在原图中添加线段或字母),并说明理由.答 案解 析如图,是⊙的直径,且,弦于点,是一动点,连结,,,..如图中,连接、.∵是直径,∴.∵,∴,.∵,∴,∴,∴..∵垂直平分,∴,∴.∵,AB O AB =10CD ⊥AB E G AD AG GD BC BE =2CD CD =81AC BC AB ∠ACB =90∘AB ⊥BC EC =ED ∠AEC =∠CEB =90∘AE ⋅EB =EC ⋅ED E =8×2=16C 2EC =4CD =2EC =8G AC ⌢∠G ∠ADC =∠AGD AB CD AC =AD ∠ACD =∠ADC ∠AGC =∠ACD 学生版 教师版答案版编辑j i ao sh i .i zh ik an g.co 如图中,满足条件的点有四个,如图所示.2G。
浙江省杭州市西湖区2017届九年级(上)期末数学试卷(解析版)
2016-2017学年浙江省杭州市西湖区九年级(上)期末数学试卷一、选择题1.已知线段a=2,b=8,则a,b 的比例中项线段为()A.16 B.±4 C.4 D.﹣42.将抛物线y=﹣x2向左平移2个单位后,得到的抛物线的解析式是()A.y=﹣(x+2)2B.y=﹣x2+2 C.y=﹣(x﹣2)2D.y=﹣x2﹣23.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.4.如图,正五边形ABCDE内接于⊙O,则∠ABD的度数为()A.36°B.72°C.108° D.144°5.若(﹣1,y1),(﹣2,y2),(﹣4,y3)在抛物线y=﹣2x2﹣8x+m上,则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y2<y3<y16.如图,AB,CD都垂直于x轴,垂足分别为B,D,若A(6,3),C(2,1),则△OCD与四边形ABDC的面积比为()A.1:2 B.1:3 C.1:4 D.1:87.己知在Rt△ABC中,∠C=90°,∠A=α,BC=m,那么AB的长为()A.B.mcosαC.msinαD.8.下列语句中,正确的是()①三个点确定一个圆;②同弧或等弧所对的圆周角相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接平行四边形一定是矩形.A.①②B.②③C.②④D.④9.如图,A、B、C三点在圆上,在△ABC中,∠ABC=70°,∠ACB=30°,D是弧BAC的中点,连结DB,DC,则∠DBC的度数为()A.70°B.50°C.45°D.30°10.在△ABC中,点D在AB上,点E在AC上,且△ADE与△ABC相似,AD=EC,BD=10,AE=4,则AB的长为()A.B.12 C.2+10 D.12或2+10二、填空题11.己知tanα=,则锐角α是.12.如图,在2×2的正方形网格中四个小正方形的顶点叫格点,已经取定格点A和B,在余下的格点中任取一点C,使△ABC为直角三角形的概率是.13.已知A,B,C为⊙O上顺次三点且∠AOC=150°,那么∠ABC的度数是.14.若x=2t﹣5,y=10﹣t,S=xy,则当t=时,S的最大值为.15.如图,D是⊙O弦BC的中点,A是弧BC上一点,OA与BC交于点E,若AO=8,BC=12,EO=BE,则线段OD=,BE=.16.在Rt△ABC中,∠ACB=90°,cosB=,把这个直角三角形绕顶点C旋转后得到Rt△FEC,其中点E正好落在AB上,EF与AC相交于点D,那么=,=.三、解答题17.求函数y=2(x﹣1)(x+2)图象的对称轴以及图象与x轴的交点坐标.18.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,求下列时间发生的概率:(1)摸出1个红球,1个白球(2)摸出2个红球(要求用列表或画树状图的方法求概率)19.已知:如图,在△ABC中,AB=AC=13,BC=24,点P、D分别在边BC、AC 上,AP2=AD•AB,(1)求证:△ADP∽△APC;(2)求∠APD的正弦值.20.如图,已知线段AB,AC(1)作⊙O使得线段AB,AC为⊙O的两条弦(要求尺规作图,保留作图痕迹)(2)在(1)中的⊙O上找出点D,使得点D到A、B两点的距离相等(3)在(2)中,若AB=8,⊙O的半径为5,求△ABD的面积.21.某农场拟建两间矩形种牛饲养室,饲养室的一面靠现有墙(墙长>50m),中间用一道墙隔开(如图),己知计划中的建筑材料可建围墙的总长为50m,设两饲养室合计长x(m),总占地面积为y(m2)(1)求y关于x的函数表达式和自变量的取值范围;(2)若要使两间饲养室占地总面积达到200m2,则各道墙的长度为多少?占地总面积有可能达到210m2吗?22.如图,在⊙O中,弦AC,BD相交于点M,且∠A=∠B(1)求证:AC=BD;(2)若OA=4,∠A=30°,当AC⊥BD时,求:①弧CD的长;②图中阴影部分面积.23.在平面直角坐标系xOy中,已知点A在x轴正半轴上,OA=8,点E在坐标平面内,且AE=12,∠EAO=60°(1)求点E的坐标以及过点O,A,E三点的抛物线表达式;(2)点F(t,0)在x轴上运动,直线FC与直线AE关于某条垂直于x轴的直线对称,且相交于点G,设△GEF的面积为S,当0≤t≤8时,请写出S关于t的函数表达式并求S的最大值.2016-2017学年浙江省杭州市西湖区九年级(上)期末数学试卷参考答案与试题解析一、选择题1.已知线段a=2,b=8,则a,b 的比例中项线段为()A.16 B.±4 C.4 D.﹣4【考点】S2:比例线段.【分析】设a,b 的比例中项线段为x,则由=得x2=ab=2×8,解之可得答案.【解答】解:设a,b 的比例中项线段为x,则由=得x2=ab=2×8,解得:x=4或x=﹣4<0(舍去),故选:C.2.将抛物线y=﹣x2向左平移2个单位后,得到的抛物线的解析式是()A.y=﹣(x+2)2B.y=﹣x2+2 C.y=﹣(x﹣2)2D.y=﹣x2﹣2【考点】H6:二次函数图象与几何变换.【分析】易得原抛物线的顶点和平移后新抛物线的顶点,根据平移不改变二次项的系数用顶点式可得所求抛物线.【解答】解:∵原抛物线的顶点为(0,0),∴新抛物线的顶点为(﹣2,0),设新抛物线的解析式为y=﹣(x﹣h)2+k,∴新抛物线解析式为y=﹣(x+2)2,故选A.3.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.【考点】X4:概率公式;VC:条形统计图.【分析】先利用条形统计图得到绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,然后根据概率公式求解.【解答】解:根据统计图得绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,所以小明抽到红色糖果的概率==.故选B.4.如图,正五边形ABCDE内接于⊙O,则∠ABD的度数为()A.36°B.72°C.108° D.144°【考点】MM:正多边形和圆;L3:多边形内角与外角.【分析】根据多边形内角和定理、正五边形的性质求出∠ABC、CD=CB,根据等腰三角形的性质求出∠CBD,计算即可.【解答】解:∵五边形ABCDE为正五边形,∴∠ABC=∠C==108°,∵CD=CB,∴∠CBD==36°,∴∠ABD=∠ABC ﹣∠CBD=72°,故选B .5.若(﹣1,y 1),(﹣2,y 2),(﹣4,y 3)在抛物线y=﹣2x 2﹣8x +m 上,则( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 2<y 3<y 1【考点】H5:二次函数图象上点的坐标特征.【分析】根据抛物线y=﹣2x 2﹣8x +m 上,可以求得该函数的对称轴,从而可以得到该函数的各点对应的函数值的大小,本题得以解决.【解答】解:∵抛物线y=﹣2x 2﹣8x +m ,∴该抛物线的对称轴是直线x=,∴当x <﹣4时,y 随x 的增大而增大,当x >﹣4时,y 随x 的增大而减小,当x=﹣4时取得最大值,∵(﹣1,y 1),(﹣2,y 2),(﹣4,y 3)在抛物线y=﹣2x 2﹣8x +m 上, ∴y 1<y 2<y 3,故选A .6.如图,AB ,CD 都垂直于x 轴,垂足分别为B ,D ,若A (6,3),C (2,1), 则△OCD 与四边形ABDC 的面积比为( )A .1:2B .1:3C .1:4D .1:8【考点】S9:相似三角形的判定与性质;D5:坐标与图形性质.【分析】先求得线段OA 所在直线的解析式,从而可判断点C 在直线OA 上,根据△OCD ∽△OAB 得=()2=,继而可得答案.【解答】解:设OA 所在直线为y=kx ,将点A (6,3)代入得:3=6k ,解得:k=,∴OA所在直线解析式为y=x,当x=2时,y=×2=1,∴点C在线段OA上,∵AB,CD都垂直于x轴,且CD=1、AB=3,∴△OCD∽△OAB,∴=()2=,则△OCD与四边形ABDC的面积比为1:8,故选:D.7.己知在Rt△ABC中,∠C=90°,∠A=α,BC=m,那么AB的长为()A.B.mcosαC.msinαD.【考点】T1:锐角三角函数的定义.【分析】根据三角函数的定义进行选择即可.【解答】解:∵∠C=90°,∠A=α,BC=m,∴sinα=,∴AB=,故选A.8.下列语句中,正确的是()①三个点确定一个圆;②同弧或等弧所对的圆周角相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接平行四边形一定是矩形.A.①②B.②③C.②④D.④【考点】M5:圆周角定理;L5:平行四边形的性质;LB:矩形的性质;M2:垂径定理.【分析】根据圆的确定对①进行判断;根据圆周角定理对②进行判断;根据垂径定理对③进行判断;根据圆内四边形的性质和矩形的判定方法对④进行判断.【解答】解:①当三点在同一条直线上时,就不能确定一个圆了,故此结论错误;②同弧或等弧所对的圆周角相等,故此结论正确;③当弦为直径时就不一定垂直了,故此结论错误;④根据平行四边形的对角相等和圆内接四边形的对角互补,可得圆的内接四边形的两组对角都是直角,故此结论正确;故选:C.9.如图,A、B、C三点在圆上,在△ABC中,∠ABC=70°,∠ACB=30°,D是弧BAC的中点,连结DB,DC,则∠DBC的度数为()A.70°B.50°C.45°D.30°【考点】M5:圆周角定理;K7:三角形内角和定理;M4:圆心角、弧、弦的关系.【分析】根据三角形内角和定理求出∠A,根据圆周角定理求出∠D,求出∠DBC=∠DCB,根据三角形内角和定理求出即可.【解答】解:∵在△ABC中,∠ABC=70°,∠ACB=30°,∴∠A=180°﹣∠ABC﹣∠ACB=80°,∴∠D=∠A=80°,∵D是弧BAC的中点,∴=,∴∠DBC=∠DCB,∴∠DBC==50°,故选B.10.在△ABC中,点D在AB上,点E在AC上,且△ADE与△ABC相似,AD=EC,BD=10,AE=4,则AB的长为()A.B.12 C.2+10 D.12或2+10【考点】S7:相似三角形的性质.【分析】由∠A是公共角,可知:当=时,△ADE∽△ABC,当=时,△ADE∽△ACB,又由AD=EC,BD=10,AE=4,即可求得AB的长.【解答】解:∵∠A=∠A,AD=EC,BD=10,AE=4,∴若=时,△ADE∽△ABC,即=,解得:AD=2,则AB=AD+DB=2+10;若=时,△ADE∽△ACB,即=,解得:AD=2,则AB=AD+DB=2+10=12,∴AB的长为12或2+10.故选D.二、填空题11.己知tanα=,则锐角α是60°.【考点】T5:特殊角的三角函数值.【分析】根据特殊角的三角函数可得锐角α的度数.【解答】解:∵tanα=,∴锐角α是60°.故答案为:60°.12.如图,在2×2的正方形网格中四个小正方形的顶点叫格点,已经取定格点A和B,在余下的格点中任取一点C,使△ABC为直角三角形的概率是.【考点】X4:概率公式;KQ:勾股定理;KS:勾股定理的逆定理.【分析】由取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的有4种情况,直接利用概率公式求解即可求得答案.【解答】解:∵取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的有4种情况,∴使△ABC为直角三角形的概率是:.故答案为:.13.已知A,B,C为⊙O上顺次三点且∠AOC=150°,那么∠ABC的度数是75°或105°.【考点】M5:圆周角定理.【分析】由于点B的位置不能确定,故应分两种情况进行讨论.【解答】解:当A、B、C三点如图1所示时,连接AB、BC,∵∠AOC与∠ABC是同弧所对的圆心角与圆周角,∴∠ABC=∠AOC=×150°=75°;当A、B、C三点如图2所示时,连接AB、BC,作对的圆周角∠ADC,∵∵∠AOC与∠ADC是同弧所对的圆心角与圆周角,∴∠ADC=∠AOC=×150°=75°,∵四边形ABCD是⊙O的内接四边形,∴∠ABC=180°﹣∠ADC=180°﹣75°=105°.故答案为:75°或105°.14.若x=2t﹣5,y=10﹣t,S=xy,则当t=时,S的最大值为.【考点】H7:二次函数的最值.【分析】根据题意列出S关于t的函数解析式,并配方成顶点式,结合二次函数的性质即可得出最值.【解答】解:∵S=xy=(2t﹣5)(10﹣t)=﹣2t2+25t﹣50=﹣2(t﹣)2+,∴当t=时,S的最大值为,故答案为:,.15.如图,D是⊙O弦BC的中点,A是弧BC上一点,OA与BC交于点E,若AO=8,BC=12,EO=BE,则线段OD=2,BE=4.【考点】M2:垂径定理.【分析】连接OB,先根据垂径定理得出OD⊥BC,BD=BC,在Rt△BOD中,根据勾股定理即可得出结论;在Rt△EOD中,设BE=x,则OE=x,ED=6﹣x,再根据勾股定理即可得出结论.【解答】解:(1)连接OB.∵OD过圆心,且D是弦BC中点,∴OD⊥BC,BD=BC,在Rt△BOD中,OD2+BD2=BO2.∵BO=AO=8,BD=6.∴OD=2;在Rt△EOD中,OD2+ED2=EO2.设BE=x,则OE=x,ED=6﹣x.(2)2+(6﹣x)2=(x)2,解得x1=﹣16(舍),x2=4.∴ED=2,∴BE=BD﹣ED=6﹣2=4.故答案是:2;4.16.在Rt△ABC中,∠ACB=90°,cosB=,把这个直角三角形绕顶点C旋转后得到Rt△FEC,其中点E正好落在AB上,EF与AC相交于点D,那么=,=.【考点】R2:旋转的性质;T7:解直角三角形.【分析】过C作CG⊥AB于G,根据已知条件设BC=2,AB=3,由勾股定理得AC=,由射影定理得CB2=BG•AB,得到BG=,由旋转的性质得CE=BC=2,FC═AC=,∠F=∠A,根据勾股定理得到EG===,根据根于是矩形的性质得到BE=,根据相似三角形的性质即可得到结论.【解答】解:过C作CG⊥AB于G,∵cosB=,设BC=2,AB=3,由勾股定理得AC=,由射影定理得CB2=BG•AB,∴BG=,由旋转的性质得CE=BC=2,FC═AC=,∠F=∠A,∴EG===,BG=EG,∴BE=,∴AE=3﹣,==,∵∠FDC=∠ADE,∴△ADF∽△FDC,∴===,故答案为:,.三、解答题17.求函数y=2(x﹣1)(x+2)图象的对称轴以及图象与x轴的交点坐标.【考点】HA:抛物线与x轴的交点.【分析】令y=0代入函数解析式中即可求出函数与x轴的两个交点坐标,由于抛物线的图象是对称的,所以根据抛物线与x轴的两交点即可求出对称轴.【解答】解:令y=0代入y=2(x﹣1)(x+2),∴x=1或x=﹣2∴y=2(x﹣1)(x+2)与x轴的两个交点为(1,0)和(﹣2,0)∴对称轴方程为x==﹣18.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,求下列时间发生的概率:(1)摸出1个红球,1个白球(2)摸出2个红球(要求用列表或画树状图的方法求概率)【考点】X6:列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸出一个红球,1个白球的情况,再利用概率公式求解即可求得答案;(2)根据(1)可求得摸出两个红球的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:∵共有16种等可能的结果,摸出一个红球,1个白球的有6种情况,∴P(摸出1个红球,1个白球)==;(2)根据(1)画出的树状图可得:摸出两个红球的有9种情况,则P(摸出2个红球)=.19.已知:如图,在△ABC中,AB=AC=13,BC=24,点P、D分别在边BC、AC 上,AP2=AD•AB,(1)求证:△ADP∽△APC;(2)求∠APD的正弦值.【考点】S9:相似三角形的判定与性质;KH:等腰三角形的性质;T7:解直角三角形.【分析】(1)由AP2=AD•AB,AB=AC,可证得△ADP∽△APC;(2)由相似三角形的性质得到∠APD=∠ACB=∠ABC,作AE⊥BC于E,根据等腰三角形的性质可求得AE,由三角函数的定义可得结论,【解答】(1)证明:∵AP2=AD•AB,AB=AC,∴AP2=AD•AC,,∵∠PAD=∠CAP,∴△ADP∽△APC,(2)解:∵△ADP∽△APC,∴∠APD=∠ACB,作AE⊥BC于E,如图所示:∵AB=AC,∴CE=×24=12,∴AE==5,∴sin∠APD=sin∠ACB=,20.如图,已知线段AB,AC(1)作⊙O使得线段AB,AC为⊙O的两条弦(要求尺规作图,保留作图痕迹)(2)在(1)中的⊙O上找出点D,使得点D到A、B两点的距离相等(3)在(2)中,若AB=8,⊙O的半径为5,求△ABD的面积.【考点】N3:作图—复杂作图;KG:线段垂直平分线的性质;M2:垂径定理.【分析】(1)根据弦的垂直平分线经过圆心,先作出两条弦的中垂线,其交点即为圆心;(2)根据垂直平分线上任意一点,到线段两端点的距离相等,即可得出点D;(3)根据垂径定理以及勾股定理,即可得出△ABD的AB边长的高,进而得出△ABD的面积.【解答】解:(1)如图所示,⊙O即为所求;(2)如图所示,点D1,D2即为所求;(3)如图所示,连接AO,则AO=5,∵AB⊥D1D2,AB=8,∴AE=4,∴Rt△AOE中,OE=3,∴D1E=5﹣3=2,D2E=5+3=8,∴△ABD1的面积=×8×2=8,△ABD2的面积=×8×8=32,故△ABD的面积为8或32.21.某农场拟建两间矩形种牛饲养室,饲养室的一面靠现有墙(墙长>50m),中间用一道墙隔开(如图),己知计划中的建筑材料可建围墙的总长为50m,设两饲养室合计长x(m),总占地面积为y(m2)(1)求y关于x的函数表达式和自变量的取值范围;(2)若要使两间饲养室占地总面积达到200m2,则各道墙的长度为多少?占地总面积有可能达到210m2吗?【考点】HE:二次函数的应用;AD:一元二次方程的应用.【分析】(1)根据题意用含x的代数式表示出饲养室的宽,由矩形的面积=长×宽计算即可;(2)由(1)可知y是x的二次函数,根据二次函数的性质分析即可.【解答】解:(1)∵围墙的总长为50米,2间饲养室合计长x米,∴饲养室的宽=米,∴总占地面积为y=x•=﹣x2+x,(0<x<50);(2)当两间饲养室占地总面积达到200平方米时,则﹣x2+x=200,解得:x=20或30;答:各道墙长分别为20米、10米或30米、10米;当占地面积达到210平方米时,则﹣x2+x=210,方程的△<0,所以此方程无解,所以占地面积不可能达到210平方米;22.如图,在⊙O中,弦AC,BD相交于点M,且∠A=∠B(1)求证:AC=BD;(2)若OA=4,∠A=30°,当AC⊥BD时,求:①弧CD的长;②图中阴影部分面积.【考点】MO:扇形面积的计算;MN:弧长的计算.【分析】(1)延长AO交⊙O于点F,连接CF,延长BO交⊙O于点E,连接DE,根据圆周角定理得出∠EDB=∠FCA=90°,故可得出△DEB≌△CFA,由此得出结论;(2)延长AO交⊙O于点F,连接CF,延长BO交⊙O于点E,连接DE,CD,OD,OC,求出∠COA的度数,再由三角形外角的性质得出∠EOA的度数,由弧长公式即可得出结论;(3)过O作OG⊥AC于G,OH⊥BD于H,连接OM,根据垂径定理得到AG=AC,BH=BD,推出四边形OGMH是正方形,根据正方形的性质得到GM=HM=OG=OH,得到AM=BM,解直角三角形得到AM=BM=2+2,根据全等三角形的性质得到∠B=∠A=30°,求得∠AOB=150°,于是得到结.【解答】(1)证明:延长AO交⊙O于点F,连接CF,延长BO交⊙O于点E,连接DE,∵BE,AF是⊙O的直径,∴∠EDB=∠FCA=90°.在△DEB与△CFA中,∵,∴△DEB≌△CFA(AAS),∴AC=BD;解:(2)延长AO交⊙O于点F,连接CF,延长BO交⊙O于点E,连接DE,CD,OD,OC,∵∠A=30°,OA=OC,∴∠COA=180°﹣30°﹣30°=120°.∵∠A=∠B=30°,AC⊥BD,∴∠EOA+∠A=60°,∴∠EOA=30°,∴∠DOE=60°,∴∠COD=30°,∴l==π;(3)过O 作OG ⊥AC 于G ,OH ⊥BD 于H ,连接OM ,则AG=AC ,BH=BD , ∵AC=BD ,∴OG=OH ,AG=BH , ∴四边形OGMH 是正方形, ∴GM=HM=OG=OH , ∴AM=BM , ∵OA=4,∠A=30°,∴AG=2,GM=HM=OG=OH=2,∴AM=BM=2+2,在Rt △AGO 与Rt △BHO 中,∴Rt △AGO ≌Rt △BHO , ∴∠B=∠A=30°, ∴∠AOG=∠BOH=60°, ∴∠AOB=150°,∴S 阴影=S 扇形+S △AOM +S △BOM =+2×(2+2)×2=+4+4.23.在平面直角坐标系xOy中,已知点A在x轴正半轴上,OA=8,点E在坐标平面内,且AE=12,∠EAO=60°(1)求点E的坐标以及过点O,A,E三点的抛物线表达式;(2)点F(t,0)在x轴上运动,直线FC与直线AE关于某条垂直于x轴的直线对称,且相交于点G,设△GEF的面积为S,当0≤t≤8时,请写出S关于t的函数表达式并求S的最大值.【考点】HF:二次函数综合题.【分析】(1)分为点E在x轴的上方和下方两种情况求得点E的坐标,设出抛物线的解析式为y=ax2+bx+c,将点A、E、O的坐标代入抛物线的解析式求解即可;(2)当点E在x轴的上方时,可求得AE的解析式为y=﹣x+8.设直线CF的解析式为y=x+b,将点F的坐标代入可求得b的值,得到CF的解析式,然后再求得点G的坐标,依据△FEG的面积=△FFA的面积﹣△GFA的面积可得到△FEG的面积与t的关系式,当点E′在x轴下方时△E′FC的面积=△EFC的面积,故此可得到S与t的关系式,然后利用配方法可求得S的最大值.【解答】解:(1)如图1所示:当点E在x轴上方时,过点E作EB⊥x轴,垂足为B.∵∠OAE=60°,AE=12,∴BA=6,BE=6.∴点E的坐标为(2,6).设抛物线的解析式为y=ax2+bx+c+c=0,将点A和点E的坐标代入得:,解得:a=﹣,b=4.∴抛物线的解析式为y=﹣x 2+4x .当点E 位于x 轴的下方时,点E 的坐标与(2,6)关于x 轴对称,∴点E 的坐标为(2,﹣6).此时抛物线的解析式为y=x 2﹣4x .综上所述点E 的坐标为(2,6)或(2,﹣6),抛物线的解析式为y=﹣x 2+4x或y=x 2﹣4x . (2)当点E 在x 轴的上方时,如图2所示:设直线AE 的解析式为y=kx +b ,将点A 和点E 的坐标代入得:, 解得:k=﹣,b=8.∴直线AE 的解析式为y=﹣x +8. ∵直线CF 与直线AE 关于垂直于x 轴的直线对称,∴设直线CF 的解析式为y=x +b ,将点F 的坐标代入得: t +b=0,解得:b=t .∴直线CF 的解析式为y=x ﹣t .将y=x ﹣t 与y=﹣x +8联立,解得:x=t +4,y=﹣t +4.∴G (t +4,﹣ t +4).∴△FEG 的面积=△FFA 的面积﹣△GFA 的面积=(8﹣t )×6﹣(8﹣t )×(﹣t +4)=×(8﹣t )(t +2).整理得:△FEG 的面积=t 2+2+16. 当点E′位于x 轴下方时,△E′FC 与△EFC 关于x 轴对称,三角形E′FC 的面积=△EFC的面积.∴S=t2+2+16.配方得:S=﹣(t﹣2)2+18.∴t=2时,S有最大值,最大值为18.。
浙教版九年级数学上学期期末试题(含答案)
1浙教版九年级上学期期末数学试题及答案一、单选题1.若,则的值是()A .2B .3C .D . 【答案】C【分析】比例的基本性质:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项,根据两内项之积等于两外项之积可得答案.【详解】解:∵3x =2y ,∴x :y =2:3,故选:C .【点睛】此题主要考查了比例的性质,关键是掌握两内项之积等于两外项之积.2.“抛一枚均匀硬币,落地后正面朝上”这一事件是( )A .必然事件B .随机事件C .确定事件D .不可能事件【答案】B【详解】随机事件.根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.故选B.3.如图所示,A ,B ,C 是上的三点,若,则的度数为()A .23°B .26°C .29°D .32°【答案】C【分析】根据同弧所对的圆周角等于圆心角的一半,即可得到答案.【详解】解:∵∠AOB =58°,∴∠ACB =29°,故选C .【点睛】本题考查圆周角定理的运用,解题的关键是根据同弧所对的圆周角等于圆心角的一半解答.4.抛物线与y 轴交点的坐标是()A .(0,3)B .(3,0)C .(1,0)D .(0,1) 【答案】A【分析】将代入抛物线,求得即可.【详解】解:将代入抛物线得,,即与y 轴交点的坐标是,故选:A【点睛】此题考查了二次函数与坐标轴的交点,解题的关键掌握与与y 轴交点,横坐标为0.5.如图,在矩形中,,.若以点B 为圆心,以4cm 长为半径作OB ,则下列选项中的32x y =:x y 2332O 58O ∠=︒C∠243y x x =-+0x =y 0x =243y x x =-+3y =(0,3)ABCD 3cm AB =4cm AD =各点在外的是()A .点AB .点BC .点CD .点D【答案】D【分析】根据勾股定理求出BD 的长,进而得出点A ,C ,D 与⊙B 的位置关系.【详解】解:连接BD ,在矩形ABCD 中,AB =3,AD =4,∵∠B =90°,∴BD 5,∵AB =3<4,BD =5>4,BC =4,∴点D 在⊙B 外,点C 在⊙B 上,点A 在⊙B 内.故选:D .【点睛】此题主要考查了点与圆的位置关系,矩形的性质,勾股定理,解决本题的关键是掌握点与圆的位置关系:设⊙O 的半径为r ,点P 到圆心的距离OP =d ,则有:①如果点P 在圆外,那么d >r ;②如果点P 在圆上,那么d =r ;③如果点P 在圆内,那么d <r .反之也成立.6.二次函数的图象如图所示,则该函数在所给自变量的取值范围内,函数值y 的取值范围是()A .B .C .D .【答案】C【分析】先根据二次函数是顶点式,开口向上,可求出二次函数的最小值,然后结合函数图像求出最大值即可得到答案.【详解】解:∵二次函数的解析式为,1>0, ∴当时,二次函数有最小值, ∵由函数图像可知,二次函数的最大值为3,∴当时,, 故选C .【点睛】本题主要考查了二次函数图像的性质,解题的关键在于能够利用数形结合的思想进行求解.B ==23324y x ⎛⎫=-+ ⎪⎝⎭()13x ≤≤1y ≥13y ≤≤334y ≤≤03≤≤y 23324y x ⎛⎫=-+ ⎪⎝⎭()13x ≤≤32x =3413x ≤≤334y ≤≤37.从分别标有号数1到10的10张除标号外完全一样的卡片中,随意抽取一张,其号数为3的倍数的概率是()A .B .C .D . 【答案】C【分析】用3的倍数的个数除以数的总数即为所求的概率.【详解】解:∵1到10的数字中是3的倍数的有3,6,9共3个,∴卡片上的数字是3的倍数的概率是. 故选:C .【点睛】本题考查概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.8.如图,D 是等边△ABC 外接圆上的点,且∠CAD =20°,则∠ACD 的度数为( )A .20°B .30°C .40°D .45°【答案】C【分析】根据圆内接四边形的性质得到∠D=180°-∠B=120°,根据三角形内角和定理计算即可.【详解】∴∠B =60°,∵四边形ABCD 是圆内接四边形,∴∠D =180°−∠B =120°,∴∠ACD =180°−∠DAC −∠D =40°,故选C.9.如图,抛物线y =﹣(x+m )2+5交x 轴于点A ,B ,将该抛物线向右平移3个单位后,与原抛物线交于点C ,则点C 的纵坐标为()A .B .C .3D . 【答案】B【分析】将抛物线y =﹣(x+m )2+5向右平移3个单位后得到y =﹣(x+m ﹣3)2+5,然后联立组成方程组求解即可.【详解】解:将抛物线y =﹣(x+m )2+5向右平移3个单位后得到y =﹣(x+m ﹣3)2+5,根据题意得:, 解得:, 71012310110310AC 5211413422()5{(3)5y x m y x m =-++=-+-+32{114x m y =-=∴交点C 的坐标为(,), 故选:B .【点睛】考查了抛物线与坐标轴的交点坐标等知识,解题的关键是了解抛物线平移规律,并利用平移规律确定平移后的函数的解析式.10.如图,在面积为144的正方形ABCD 中放两个正方形BMON 和正方形DEFG ,重合的小正方形OPFQ 的面积为4,若点A ,O ,G 在同一直线上,则阴影部分面积为()A .36B .40C .44D .48【答案】D【分析】先求出AB =12,OQ =2,设正方形BMON 的边长为x ,则AN =12-x ,NO =x ,QG =12-x ,然后证明△ANO ∽△OQG ,得到,即,求出x =8,由此即可求解. 【详解】解:∵正方形ABCD 的面积为144,正方形OPFQ 的面积为4,∴AB =12,OQ =2,设正方形BMON 的边长为x ,则AN =12-x ,NO =x ,QG =12-x ,∵四边形BMON 和四边形OPFQ 都是正方形,∴∠ANO =∠BNO =∠OQF =∠OQG =∠POQ =90°,∴AN ∥OQ ,∴∠NAO =∠QOG ,∴△ANO ∽△OQG ,∴,即, 解得:或(舍去),∴BN =8,∴EF =12-x +2=6,∴阴影部分面积=144-82-62+4=48,故选D .【点睛】本题主要考查了正方形的性质,相似三角形的性质与判定,平行线的性质与判定,解题的关键在于能够熟练掌握相似三角形的性质与判定条件.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题 a 、b 的比例中项,且a =4,b =9,则x =_____.32m -114=AN NO OQ QG12=212x x x--=AN NO OQ QG 12=212x x x--8x =18x =5【答案】6【分析】根据已知线段a =4,b =9,线段x 是a ,b 的比例中项,列出等式,利用两内项之积等于两外项之积即可得出答案.【详解】解:∵线段x 是线段a 、b 的比例中项,且a =4,b =9,∴=, ∴x 2=ab =4×9=36,∴x =±6(负值舍去).故答案为:6.【点睛】本题考查了成比例线段,理解比例的性质是解题的关键.12.若二次函数的图象经过点,则的值为______________.【答案】10【分析】直接把点代入到二次函数解析式中求解即可.【详解】解:∵二次函数的图象经过点,∴,故答案为:10.【点睛】本题考查了求二次函数的函数值,解题的关键在于能够熟练掌握二次函数的函数值的求解方法.13.已知圆中40°圆心角所对的弧长为3π,则这个圆的周长_____.【答案】27π.【分析】圆周角等于360°,先求得圆周角与40°的圆心角之间的倍数关系,再乘以40°的圆心角所对的弧长.【详解】解:×3π=27π, 故这个圆的周长是27π,故答案为:27π.【点睛】主要考查了圆的周长与弧长之间的关系.14.如图,在中,E 为CD 上一点,连结BE 并延长交AD 延长线于点F .如果,那么____________.【答案】4【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的面积比等于相似比的平方就可得到答案.【详解】解:如图,∵四边形ABCD 是平行四边形,∴DC ∥AB ,CD =AB .∴△DFE ∽△AFB ,∴. ∵DE :EC =2:3,∴DE :DC =DE :AB =2:5,∴ a x x b23y x x =+()2,P a a ()2,P a 23y x x =+()2,P a 22324610a =+⨯=+=36040ABCD □:2:3DE EC =:DEF ABF S S =△△2()DEF ABF S DE S AB=:425DEF ABF S S =:△△故答案为:4:25或. 【点睛】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.15.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中剩余的编号为1~7的小正方形中任意一个涂黑,则所得图案是一个轴对称图形的概率是_________.【答案】. 【详解】试题分析:将图中剩余的编号为1-7的小正方形中任意一个涂黑共7种情况,其中涂黑3,4,7,1,6有5种情况可使所得图案是一个轴对称图形(如图),故其概率是.考点:1.轴对称图形;2.几何概率.16.如图,半圆的直径,将半圆绕点B 顺时针旋转45°得到半圆,与AB 交于点P ,那么AP 的长为_____________.【答案】【分析】连接,由题意可得,,为直径,可得,可得为等腰直角三角形,即可求解.【详解】解:连接,如下图:由题意可得,,∵为直径, 4255757O 10AB =O O '10-A P '45A BP '∠=︒A B '90A PB '∠=︒A BP 'A P '45A BP '∠=︒A B '7∴,∴为等腰直角三角形,,由勾股定理得,,解得故答案为:【点睛】此题考查了圆周角定理,等腰直角三角形的判定与性质,勾股定理以及旋转的性质,解题的关键是掌握并灵活运用相关性质进行求解.17.如图,一张扇形纸片OAB ,,,将这张扇形纸片折叠,使点A 与点O 重合,折痕为CD ,则图中未重叠部分(即阴影部分)的面积为__________.【答案】【分析】根据阴影部分的面积等于S 扇形OBD 面积减去S 弓形OD 面积计算即可.【详解】解:由折叠可知,S 弓形AD=S 弓形OD ,DA =DO ,∵OA=OD ,∴AD =OD =OA ,∴△AOD 为等边三角形,∴∠AOD =60°,∠DOB =60°,∵AD =OD =OA =6,∴CD=,∴S 弓形AD =S 扇形ADO ﹣S △ADO 6π﹣, ∴S 弓形OD =6π﹣,阴影部分的面积=S 扇形BDO ﹣S 弓形OD (6π﹣ 故答案为:【点睛】本题考查了扇形面积与等边三角形的性质,熟练运用扇形公式是解题的关键.18.如图,AB 是半圆O 的直径,D 是半圆O 上一点,C 是的中点,连结AC 交BD 于点E ,连结AD ,若BE =4DE ,CE =6,则AB 的长为_____.【答案】【分析】90A PB '∠=︒A BP 'A P PB '=222A P A B ''=BP A P '==AP AB BP =-=10-120AOB ∠=︒6OA =260613602π⋅=-⨯2606360π⋅=-BD如图,连接OC 交BD 于K .设DE =k .BE =4k ,则DK =BK =2.5k ,EK =1.5k ,由AD ∥CK ,推出AE :EC =DE :EK ,可得AE =4,由△ECK ∽△EBC ,推出EC 2=EK•EB ,求出k 即可解决问题.【详解】解:如图,连接OC 交BD 于K .∵,∴OC ⊥BD ,∵BE =4DE ,∴可以假设DE =k .BE =4k ,则DK =BK =2.5k ,EK =1.5k ,∵AB 是直径,∴∠ADK =∠DKC =∠ACB =90°,∴AD ∥CK ,∴AE :EC =DE :EK ,∴AE :6=k :1.5k ,∴AE =4,∵△ECK ∽△EBC ,∴EC 2=EK•EB ,∴36=1.5k×4k ,∵k >0,∴k,∴BC=,∴AB=故答案为:.【点睛】本题考查相似三角形的判定和性质,垂径定理,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.三、解答题1、1、2,乙同学口袋中也有三张卡片,分别写着数字 1、2、2,两人各自从自己的口袋中随机摸出一张卡片,若两人摸出的卡片上的数字之和为偶数,则甲胜;否则乙胜.求甲胜的概率.【答案】. 【分析】先列出表格,从而可得两人摸出的卡片上的数字之和的所有可能结果,再找出两人摸出的卡片上的数字之和为偶数的结果,然后利用概率公式进行计算即可得.【详解】解:由题意,所有可能的结果列表如下:CD BC =36499由表可知,一共有9种等可能结果,其中,两人摸出的卡片上的数字之和为偶数的结果有4种,则甲胜的概率为, 答:甲胜的概率是. 【点睛】本题考查了利用列举法求概率,正确利用表格列出所有可能的结果是解题关键.20.如图,在的正方形网格中,网线的交点称为格点,点,,都是格点.已知每个小正方形的边长为1.(1)画出的外接圆,并直接写出的半径是多少.(2)连结,在网络中画出一个格点,使得是直角三角形,且点在上.【答案】(1;(2)作图见解析【分析】(1)作AB 和BC 的垂直平分线,交点即为点O 的位置,在网格中应用勾股定理即可求得半径;(2)只能是或,直接利用网格作图即可.【详解】解:(1)作AB 和BC 的垂直平分线,交点即为点O ,如图:,;(2)当是直角三角形时,且点在上,只能是或,利用网格作图如下:49P =4966⨯A B C ABC O O AC P PAC △P O 90PAC ∠=︒90PCA ∠=︒=PAC △P O 90PAC ∠=︒90PCA ∠=︒.【点睛】本题考查尺规作图、确定圆的条件,掌握三角形外接圆圆心是三边线段垂直平分线的交点是解题的关键. 21.如图,在矩形ABCD 中,点E 、F 分别在边AD 、DC 上,△ABE ∽△DEF ,AB=6,AE=9,DE=2,求EF 的长.【分析】利用相似三角形的对应边成比例,求出DF 的长度,在直角三角形DEF 中,利用勾股定理求出斜边EF 长【详解】解:∵△ABE ∽△DEF ,∴ , ∴DF=3在矩形ABCD 中,∠D=90°. ∴在Rt △DEF 中,22.如图,AB 是的直径,弦于点M ,连结CO ,CB .(1)若,,求CD 的长度;(2)若平分,求证:.【答案】(1)8;(2)证明见详解【分析】(1)根据垂径定理得出CM =DM ,再由已知条件得出圆的半径为5,在Rt △OCM 中,由勾股定理得出CM 即可,从而得出CD ;(2)过点O 作ON ⊥BC ,垂足为N ,由角平分线的性质得出OM =ON ,从而得出CB =CD .【详解】解:(1)∵AB 是⊙O 的直径,弦CD ⊥AB ,∴CM =DM ,∵AM =2,BM =8,∴AB =10,∴OA =OC =5,在Rt △OCM 中,OM 2+CM 2=OC 2, AB AE DE DF692AB AE DE ===,,69=2DF∴EF DE =O CD AB ⊥2AM =8BM =CO DCB ∠CD CB =11∴CM 4,∴CD =8;(2)过点O 作ON ⊥BC ,垂足为N ,∵CO 平分∠DCB ,∴OM =ON ,∵CO =CO∴Rt △COM ≌Rt △CON∴CM =CN∴CB =CD .【点睛】本题考查了垂径定理,圆周角定理以及勾股定理,掌握定理的内容并熟练地运用是解题的关键.23.我市绿色和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外贸商李经理按市场价格10元/千克在我市收购了2000千克香菇存放入冷库中.请根据李经理提供的预测信息(如下图)帮李经理解决以下问题:(1)若存放天后,将这批香菇一次性出售,设这批香菇的销售总金额.....为元,试写出与之间的函数表达式;(销售总金额=销售单价×销售量)(2)将这批香菇仔放多少天后出售可获得最大利润..?最大利润是多少?【答案】(1)(1≤x ≤110,且x 为整数);(2)这批香菇存放100天后出售可获得最大利润,最大利润是30000元.【分析】(1)根据等量关系“销售总金额=(市场价格+0.5×存放天数)×(原购入量6×存放天数)”列出函数关系式; (2)根据等量关系“利润=销售总金额收购成本各种费用”列出函数关系式并求最大值.【详解】解:(1)由题意y 与x 之间的函数关系式为:y =(10+0.5x )(2000-6x )=3x 2+940x +20000(1≤x ≤110,且x 为整数);(2)设利润为w ,由题意得w =3x 2+940x +2000010×2000340x=3(x 100)2+30000∵a =3<0,∴抛物线开口方向向下,∴x =100时,w 最大=30000,∴李经理将这批香菇存放100天后出售可获得最大利润,最大利润是30000元.【点睛】此题主要考查了二次函数的应用以及二次函数的最值求法,根据函数关系式求出以及最值公式求出是解题关键. 24.如图直角坐标系中,O 为坐标原点,抛物线y=﹣x 2+6x+3交y 轴于点A ,过A 作AB ∥x 轴,交抛物线于点B ,连结OB .点P 为抛物线上AB 上方的一个点,连结PA ,作PQ ⊥AB 垂足为H ,交OB 于点Q .(1)求AB 的长;(2)当∠APQ=∠B 时,求点P 的坐标;(3)当△APH 面积是四边形AOQH 面积的2倍时,求点P 的坐标.=x y yx 2394020000y x x =-++----------【答案】(1)AB=6;(2)P (4,11);(3)P (4,11)或P (3,12).【分析】(1)先求得点A (0,3),令,解得x=0或6,故点B (6,3),即可求解;(2)证明△ABO ~△HPA ,则,即可求解; (3)当△APH 的面积是四边形AOQH 的面积的2倍时,则2(AO+HQ )=PH ,即可求解.【详解】解:(1)对于,令x=0,则y=3,故点A (0,3),令,解得x=0或6,故点B (6,3),故AB=6;(2)设P (,),∵∠APQ=∠B ,∠AHP=∠OAB=90°,∴△ABO ~△HPA ,故, ∴, 解得m=4.∴P (4,11);(3)当△APH 的面积是四边形AOQH 的面积的2倍时,则2(AO+HQ )=PH ,∵HQ ∥OA ,∴,即, ∴HQ=, ∴, 解得:m 1=4,m 2=3,∴P (4,11)或P (3,12).【点睛】本题考查了二次函数的性质,相似三角形的判定和性质,平行线分线段成比例定理,图形的面积计算等,解题的关键是灵活运用所学知识解决问题.2633y x x =-++=HP AH AB AO=263y x x =-++2633y x x =-++=m 263m m -++HP AH AB AO =2663m m m -+=HQ BH AO AB =636HQ m -=62m -262362m m m -⎛⎫+=-+ ⎪⎝⎭。
浙教版2015-2016学年度九年级上学期期末数学试卷及答案
2015-2016学年度九年级上学期期末数学试卷一、选择题(共12小题,每小题4分,满分48分)1.若x:y=6:5,则下列等式中不正确的是( )A.B.C.D.2.二次函数y=x2﹣2x﹣2与坐标轴的交点个数是( )A.0个B.1个C.2个D.3个3.如图,在平行四边形ABCD中,E为CD上一点,DE:CE=2:3,连结AE,BD交于点F,则S△DEF:S△ADF:S△ABF等于( )A.2:3:5 B.4:9:25 C.4:10:25 D.2:5:254.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是( ) A.B.C.D.5.如图,一根5m长的绳子,一端拴在互相垂直的围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是( )A.πm2B.πm2C.πm2D.πm26.二次函数y=ax2﹣2x﹣3(a<0)的图象一定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限.7.在下列命题中,正确的是( )A.三点确定一个圆B.圆的内接等边三角形只有一个C.一个三角形有且只有一个外接圆D.一个四边形一定有外接圆8.二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论:(1)c<0;(2)b>0;(3)4a+2b+c>0;(4)(a+c)2<b2.其中不正确的有( )A.1个B.2个C.3个D.4个9.某块面积为4000m2的多边形草坪,在嘉兴市政建设规划设计图纸上的面积为250cm2,这块草坪某条边的长度是40m,则它在设计图纸上的长度是( )A.4cm B.5cm C.10cm D.40cm10.抛物线y=﹣(x﹣2)2+1经过平移后与抛物线y=﹣(x+1)2﹣2重合,那么平移的方法可以是( ) A.向左平移3个单位再向下平移3个单位B.向左平移3个单位再向上平移3个单位C.向右平移3个单位再向下平移3个单位D.向右平移3个单位再向上平移3个单位11.如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是( )A.B.C.D.12.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD 的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是( )A.B.C.D.二、填空题(共6小题,每小题4分,满分24分)13.已知弦AB把圆周分成1:5的两部分,则弦AB所对的圆心角的度数为__________.14.如图,将弧AC沿弦AC折叠交直径AB于圆心O,则弧AC=__________度.15.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣2x﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为__________.16.如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为__________.17.如图,A、D、E是⊙O上的三个点,且∠AOD=120°,B、C是弦AD上两点,BC=,△BCE是等边三角形.若设AB=x,CD=y,则y与x的函数关系式是__________.18.如图,在Rt△ABC中,∠ABC=90°,BA=BC,点D是AB的中点,连结CD,过点B作BG⊥CD,分别交CD、CA于点E,F,与过点A且垂直于AB的直线相交于点G,连结DF.给出以下四个结论:①;②FG=FB;③AF=;④S△ABC=5S△BDF,其中正确结论的序号是__________.三、解答题(共8小题,满分78分)19.计算:(+1)()﹣(﹣2014)0+2sin45°.20.如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°.(1)求证:△ABD∽△DCE;(2)若BD=3,CE=2,求△ABC的边长.21.如图,AB和CD是同一地面上的两座相距39米的楼房,在楼AB的楼顶A点测得楼CD的楼顶C 的仰角为45°,楼底D的俯角为30°.求楼CD的高(结果保留根号).22.如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,视为无效,重新转动一次转盘),此过程称为一次操作.请用树状图或列表法,求事件“两次操作,第一次操作得到的数与第二次操作得到的数的绝对值相等”发生的概率.23.在学习圆与正多边形时,马露、高静两位同学设计了一个画圆内接正三角形的方法:(1)如图,作直径AD;(2)作半径OD的垂直平分线,交⊙O于B,C两点;(3)联结AB、AC、BC,那么△ABC为所求的三角形.请你判断两位同学的作法是否正确,如果正确,请你按照两位同学设计的画法,画出△ABC,然后给出△ABC是等边三角形的证明过程;如果不正确,请说明理由.24.如图1,在四边形ABCD的AB边上任取一点E(点E不与点A、点B重合,分别连接ED,EC,可以把四边形ABCD分成3个三角形.如果其中有2个三角形相似,我们就把点E叫做四边形ABCD 的AB边上的相似点;如果这3个三角形都相似,我们就把点E叫做四边形ABCD的AB边上的强相似点.(1)若图1中,∠A=∠B=∠DEC=50°,证明点E是四边形ABCD的AB边上的相似点.(2)①如图2,画出矩形ABCD的AB边上的一个强相似点.(要求:画图工具不限,不写画法,保留画图痕迹或有必要的说明)②对于任意的一个矩形,是否一定存在强相似点?如果一定存在,请说明理由;如果不一定存在,请举出反例.(3)如图3,在四边形ABCD中,AD∥BC,AD<BC,∠B=90°,点E是四边形ABCD的AB边上的一个强相似点,判断AE与BE的数量关系并说明理由.25.某蔬菜经销商到蔬菜种植基地采购一种蔬菜,经销商一次性采购蔬菜的采购单价y(元/千克)与采购量x(千克)之间的函数关系图象如图中折线AB﹣﹣BC﹣﹣CD所示(不包括端点A).(1)当100<x<200时,直接写y与x之间的函数关系式:__________.(2)蔬菜的种植成本为2元/千克,某经销商一次性采购蔬菜的采购量不超过200千克,当采购量是多少时,蔬菜种植基地获利最大,最大利润是多少元?(3)在(2)的条件下,求经销商一次性采购的蔬菜是多少千克时,蔬菜种植基地能获得418元的利润?26.在平面直角坐标系xOy中,一块含60°角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(﹣1,0).(1)请直接写出点B、C的坐标:B__________、C__________;并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB 上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(1)中的抛物线交于点M.①设AE=x,当x为何值时,△OCE∽△OBC;②在①的条件下探究:抛物线的对称轴上是否存在点P使△PEM是等腰三角形?若存在,请写出点P 的坐标;若不存在,请说明理由.一、选择题(共12小题,每小题4分,满分48分)1.若x:y=6:5,则下列等式中不正确的是( )A.B.C.D.考点:比例的性质.分析:根据比例设x=6k,y=5k,然后分别代入对各选项进行计算即可判断.解答:解:∵x:y=6:5,∴设x=6k,y=5k,A、==,故本选项错误;B、==,故本选项错误;C、==6,故本选项错误;D、==﹣5,故本选项正确.故选D.点评:本题考查了比例的性质,利用“设k”法表示出x、y可以使计算更加简便.2.二次函数y=x2﹣2x﹣2与坐标轴的交点个数是( )A.0个B.1个C.2个D.3个考点:抛物线与x轴的交点.分析:先计算根的判别式的值,然后根据b2﹣4ac决定抛物线与x轴的交点个数进行判断.解答:解:∵△=(﹣2)2﹣4×1×(﹣2)=12>0,∴二次函数y=x2﹣2x﹣2与x轴有2个交点,与y轴有一个交点.∴二次函数y=x2﹣2x﹣2与坐标轴的交点个数是3个.故选D.点评:本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.二次函数y=ax2+bx+c (a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2﹣4ac决定抛物线与x轴的交点个数;△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.3.如图,在平行四边形ABCD中,E为CD上一点,DE:CE=2:3,连结AE,BD交于点F,则S△DEF:S△ADF:S△ABF等于( )A.2:3:5 B.4:9:25 C.4:10:25 D.2:5:25考点:相似三角形的判定与性质;平行四边形的性质.分析:根据平行四边形性质得出DC=AB,DC∥AB,求出DE:AB=2:5,推出△DEF∽△BAF,求出=()2=,==,根据等高的三角形的面积之比等于对应边之比求出===,即可得出答案.解答:解:∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∵DE:CE=2:3,∴DE:AB=2:5,∵DC∥AB,∴△DEF∽△BAF,∴=()2=,==,∴===(等高的三角形的面积之比等于对应边之比),∴S△DEF:S△ADF:S△ABF等于4:10:25,故选C.点评:本题考查了平行四边形的性质和相似三角形的判定和性质的应用,注意:相似三角形的面积之比等于相似比的平方.4.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是( ) A.B.C.D.考点:列表法与树状图法.分析:列举出所有情况,看卡片上的数字之和为奇数的情况数占总情况数的多少即可.解答:解:1 2 3 41 3 4 52 3 5 63 4 5 74 5 6 7由列表可知:共有3×4=12种可能,卡片上的数字之和为奇数的有8种.所以卡片上的数字之和为奇数的概率是.故选C.点评:本题考查求随机事件概率的方法.注意:任意取两张,相当于取出不放回.用到的知识点为:概率=所求情况数与总情况数之比.5.如图,一根5m长的绳子,一端拴在互相垂直的围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是( )A.πm2B.πm2C.πm2D.πm2考点:扇形面积的计算.专题:压轴题.分析:小羊A在草地上的最大活动区域是一个扇形+一个小扇形的面积.解答:解:大扇形的圆心角是90度,半径是5,所以面积==m2;小扇形的圆心角是180°﹣120°=60°,半径是1m,则面积==(m2),则小羊A在草地上的最大活动区域面积=+=(m2).故选D.点评:本题的关键是从图中找到小羊的活动区域是由哪几个图形组成的,然后分别计算即可.6.二次函数y=ax2﹣2x﹣3(a<0)的图象一定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限.考点:二次函数的性质.分析:先根据题意判断出二次函数的对称轴方程,再令x=0求出y的值,进而可得出结论.解答:解:∵二次函数y=ax2﹣2x﹣3(a<0)的对称轴为直线x=﹣=﹣=<0,∴其顶点坐标在第二或三象限,∵当x=0时,y=﹣3,∴抛物线一定经过第四象限,∴此函数的图象一定不经过第一象限.故选A.点评:本题考查的是二次函数的性质,熟知二次函数的对称轴方程是解答此题的关键.7.在下列命题中,正确的是( )A.三点确定一个圆B.圆的内接等边三角形只有一个C.一个三角形有且只有一个外接圆D.一个四边形一定有外接圆考点:命题与定理.分析:利用确定圆的条件、圆内接三角形的定义、外接圆的定义分别判断后即可确定正确的选项.解答:解:A、不在同一直线上的三点确定一个圆,故错误;B、圆内接等边三角形有无数个,故错误;C、一个三角形有且只有一个外接圆,正确;D、并不是所有的四边形一定有外接圆,故错误,故选C.点评:本题考查了命题与定理的知识,解题的关键是了解确定圆的条件、圆内接三角形的定义、外接圆的定义等知识,难度不大.8.二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论:(1)c<0;(2)b>0;(3)4a+2b+c>0;(4)(a+c)2<b2.其中不正确的有( )A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点得出c的值,然后根据图象经过的点的情况进行推理,进而对所得结论进行判断.解答:解:抛物线的开口向上,则a>0;对称轴为x=﹣=1,即b=﹣2a,故b<0,故(2)错误;抛物线交y轴于负半轴,则c<0,故(1)正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c<0,故(3)错误;把x=1代入y=ax2+bx+c得:y=a+b+c<0,把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c<0,则(a+b+c)(a﹣b+c)>0,故(4)错误;不正确的是(2)(3)(4);故选C.点评:本题考查二次函数图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=4a+2b+c,然后根据图象判断其值.9.某块面积为4000m2的多边形草坪,在嘉兴市政建设规划设计图纸上的面积为250cm2,这块草坪某条边的长度是40m,则它在设计图纸上的长度是( )A.4cm B.5cm C.10cm D.40cm考点:相似多边形的性质.分析:首先设这块草坪在设计图纸上的长度是xcm,根据题意可得这两个图形相似,根据相似图形的面积比等于相似比的平方,可列方程=()2,解此方程即可求得答案,注意统一单位.解答:解:设这块草坪在设计图纸上的长度是xcm,4000m2=40000000m2,40m=4000cm,根据题意得:=()2,解得:x=10,即这块草坪在设计图纸上的长度是10cm.故选C.点评:此题考查了相似图形的性质.此题难度不大,注意相似图形的面积比等于相似比的平方的应用与方程思想的应用.10.抛物线y=﹣(x﹣2)2+1经过平移后与抛物线y=﹣(x+1)2﹣2重合,那么平移的方法可以是( ) A.向左平移3个单位再向下平移3个单位B.向左平移3个单位再向上平移3个单位C.向右平移3个单位再向下平移3个单位D.向右平移3个单位再向上平移3个单位考点:二次函数图象与几何变换.分析:根据平移前后的抛物线的顶点坐标确定平移方法即可得解.解答:解:∵抛物线y=﹣(x﹣2)2+1的顶点坐标为(2,1),抛物线y=﹣(x+1)2﹣2的顶点坐标为(﹣1,﹣2),∴顶点由(2,1)到(﹣1,﹣2)需要向左平移3个单位再向下平移3个单位.故选A.点评:本题考查了二次函数图象与几何变换,此类题目,利用顶点的变化确定抛物线解析式更简便.11.如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是( )A.B.C.D.考点:锐角三角函数的定义.专题:网格型.分析:认真读图,在以∠AOB的O为顶点的直角三角形里求tan∠AOB的值.解答:解:由图可得tan∠AOB=.故选B.点评:本题考查了锐角三角函数的概念:在直角三角形中,正切等于对边比邻边.12.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD 的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是( )A.B.C.D.考点:动点问题的函数图象.专题:几何图形问题;压轴题.分析:此题可分为两段求解,即C从D点运动到E点和A从D点运动到E点,列出面积随动点变化的函数关系式即可.解答:解:设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y∴当C从D点运动到E点时,即0≤x≤2时,y==.当A从D点运动到E点时,即2<x≤4时,y==∴y与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.故选:A.点评:本题考查的动点变化过程中面积的变化关系,重点是列出函数关系式,但需注意自变量的取值范围.二、填空题(共6小题,每小题4分,满分24分)13.已知弦AB把圆周分成1:5的两部分,则弦AB所对的圆心角的度数为60°.考点:圆心角、弧、弦的关系.专题:计算题.分析:由于弦AB把圆周分成1:5的两部分,根据圆心角、弧、弦的关系得到弦AB所对的圆心角为周角的.解答:解:∵弦AB把圆周分成1:5的两部分,∴弦AB所对的圆心角的度数=×360°=60°.故答案为60°.点评:本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.14.如图,将弧AC沿弦AC折叠交直径AB于圆心O,则弧AC=120度.考点:翻折变换(折叠问题);等边三角形的判定与性质;圆心角、弧、弦的关系.分析:过O点作OD⊥AC交AC于D,交弧AC于E,连结OC,BC.根据垂径定理可得OD=OE,AD=CD,根据三角形中位线定理可得OD=BC,再根据等边三角形的判定和性质,以及邻补角的定义即可求解.解答:解:过O点作OD⊥AC交AC于D,交弧AC于E,连结OC,BC.∴OD=OE,AD=CD,∵AB是直径,∴∠ACB=90°,OD=BC,又∵OC=OB,∴△OBC是等边三角形,∴∠BOC=60°,∴∠AOC=180°﹣60°=120°,即弧AC=120度.故答案为:120.点评:考查了翻折变换(折叠问题),垂径定理,三角形中位线定理,等边三角形的判定和性质,以及邻补角的定义,综合性较强,难度中等.15.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣2x﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为3+.考点:二次函数综合题.分析:连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.解答:解:连接AC,BC,∵抛物线的解析式为y=x2﹣2x﹣3,∴点D的坐标为(0,﹣3),∴OD的长为3,设y=0,则0=x2﹣2x﹣3,解得:x=﹣1或3,∴A(﹣1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AO•BO=3,∴CO=,∴CD=CO+OD=3+,故答案为:3+.点评:本题是二次函数综合题型,主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理,读懂题目信息,理解“果圆”的定义是解题的关键.16.如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为7.考点:相似三角形的判定与性质;正方形的性质.分析:根据已知条件可以推出△CEF∽△OME∽△PFN然后把它们的直角边用含x的表达式表示出来,利用对应边的比相等,即可推出x的值答题解答:解:如图∵在Rt△ABC中∠C=90°,放置边长分别3,4,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF,∵EF=x,MO=3,PN=4,∴OE=x﹣3,PF=x﹣4,∴(x﹣3):4=3:(x﹣4),∴(x﹣3)(x﹣4)=12,∴x1=0(不符合题意,舍去),x2=7.故答案为:7.点评:本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x 的表达式表示出对应边.17.如图,A、D、E是⊙O上的三个点,且∠AOD=120°,B、C是弦AD上两点,BC=,△BCE是等边三角形.若设AB=x,CD=y,则y与x的函数关系式是y=.考点:相似三角形的判定与性质;等边三角形的性质;圆周角定理.专题:计算题.分析:由圆周角定理得出∠AED=120°,得出∠EAD+∠EDC=60°,由等边三角形的性质得出∠BEC=∠EBC=∠ECB=60°,BE=CE=BC=,得出∠ABE=∠ECD=120°,证出∠AEB=∠EDC,证明△ABE∽△ECD,得出对应边成比例,即可得出结果.解答:解:连接AE、DE,如图所示:∵∠AOD=120°,∴360°﹣120°=240°,∴∠AED=×240°=120°,∴∠EAD+∠EDC=60°,∵△BCE是等边三角形,∴∠BEC=∠EBC=∠ECB=60°,BE=CE=BC=,∴∠ABE=∠ECD=120°,∠EAD+∠AEB=60°,∴∠AEB=∠EDC,∴△ABE∽△ECD,∴,即,∴y=.故答案为:y=.点评:本题考查了圆周角定理、等边三角形的性质、相似三角形的判定与性质;熟练掌握圆周角定理和等边三角形的性质,并能进行推理论证与计算是解决问题的关键.18.如图,在Rt△ABC中,∠ABC=90°,BA=BC,点D是AB的中点,连结CD,过点B作BG⊥CD,分别交CD、CA于点E,F,与过点A且垂直于AB的直线相交于点G,连结DF.给出以下四个结论:①;②FG=FB;③AF=;④S△ABC=5S△BDF,其中正确结论的序号是①②③.考点:相似三角形的判定与性质;等腰直角三角形.分析:根据同角的余角相等求出∠ABG=∠BCD,然后利用“角边角”证明△ABC和△BCD全等,根据全等三角形对应边相等可得AG=BD,然后求出AG=BC,再求出△AFG和△CFB相似,根据相似三角形对应边成比例可得=,从而判断出①正确;由AG=BC,所以FG=FB,故②正确;根据相似三角形对应边成比例求出=,再根据等腰直角三角形的性质可得AC=AB,然后整理即可得到AF=AB,判断出③正确;过点F作MF⊥AB于M,根据三角形的面积整理即可判断出④错误.解答:解:∵∠ABC=90°,BG⊥CD,∴∠ABG+∠CBG=90°,∠BCD+∠CBG=90°,∴∠ABG=∠BCD,在△ABC和△BCD中,,∴△ABG≌△BCD(ASA),∴AG=BD,∵点D是AB的中点,∴BD=AB,∴AG=BC,在Rt△ABC中,∠ABC=90°,∴AB⊥BC,∵AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴,∵BA=BC,∴,故①正确;∵△AFG∽△CFB,∴,∴FG=FB,故②正确;∵△AFG∽△CFB,∴,∴AF=AC,∵AC=AB,∴AF=AB,故③正确;过点F作MF⊥AB于M,则FM∥CB,∴,∵,∴====,故④错误.故答案为:①②③.点评:本题考查了相似三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形的性质,熟练掌握相似三角形的判定方法和相似三角形对应边成比例的性质是解题的关键.三、解答题(共8小题,满分78分)19.计算:(+1)()﹣(﹣2014)0+2sin45°.考点:二次根式的混合运算;零指数幂;特殊角的三角函数值.分析:分别进行二次根式的乘法、零指数幂、特殊角的三角函数值等运算,然后合并.解答:解:原式=6﹣1﹣1+2=6.点评:本题考查了二次根式的混合运算,涉及了二次根式的乘法、零指数幂、特殊角的三角函数值等知识,属于基础题.20.如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°.(1)求证:△ABD∽△DCE;(2)若BD=3,CE=2,求△ABC的边长.考点:相似三角形的判定与性质;等边三角形的性质.分析:(1)由∠ADE=60°,可证得△ABD∽△DCE;(2)可用等边三角形的边长表示出DC的长,进而根据相似三角形的对应边成比例,求得△ABC的边长.解答:(1)证明:∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAD+∠ADB=120°∵∠ADE=60°,∴∠ADB+∠EDC=120°,∴∠DAB=∠EDC,又∵∠B=∠C=60°,∴△ABD∽△DCE;(2)解:∵△ABD∽△DCE,∴,∵BD=3,CE=2,∴;解得AB=9.点评:此题主要考查了等边三角形的性质和相似三角形的判定和性质,能够证得△ABD∽△DCE是解答此题的关键.21.如图,AB和CD是同一地面上的两座相距39米的楼房,在楼AB的楼顶A点测得楼CD的楼顶C 的仰角为45°,楼底D的俯角为30°.求楼CD的高(结果保留根号).考点:解直角三角形的应用-仰角俯角问题.分析:在题中两个直角三角形中,知道已知角和其邻边,只需根据正切值求出对边后相加即可.解答:解:延长过点A的水平线交CD于点E,则有AE⊥CD,四边形ABDE是矩形,AE=BD=39米.∵∠CAE=45°,∴△AEC是等腰直角三角形,∴CE=AE=39米.在Rt△AED中,tan∠EAD=,∴ED=39×tan30°=13米,∴CD=CE+ED=(39+13)米.答:楼CD的高是(39+13)米.点评:本题考查的是解直角三角形的应用﹣仰角俯角问题,涉及到特殊角的三角函数值及等腰三角形的判定,熟知以上知识是解答此题的关键.22.如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,视为无效,重新转动一次转盘),此过程称为一次操作.请用树状图或列表法,求事件“两次操作,第一次操作得到的数与第二次操作得到的数的绝对值相等”发生的概率.考点:列表法与树状图法.分析:根据题意,用列表法列举出所有情况,看所求的情况与总情况的比值即可得答案.解答:解:画树状图如下:所有可能出现的结果共有9种,其中满足条件的结果有5种.所以P(所指的两数的绝对值相等)=.点评:考查了列表法与树状图法求概率的知识,树状图法适用于两步或两部以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.在学习圆与正多边形时,马露、高静两位同学设计了一个画圆内接正三角形的方法:(1)如图,作直径AD;(2)作半径OD的垂直平分线,交⊙O于B,C两点;(3)联结AB、AC、BC,那么△ABC为所求的三角形.请你判断两位同学的作法是否正确,如果正确,请你按照两位同学设计的画法,画出△ABC,然后给出△ABC是等边三角形的证明过程;如果不正确,请说明理由.考点:正多边形和圆;垂径定理.分析:利用锐角三角函数关系得出∠BOE=60°,进而得出∠COE=∠BOE=60°,再利用圆心角定理得出答案.解答:解:两位同学的方法正确.连BO、CO,∵BC垂直平分OD,∴直角△OEB中.cos∠BOE==,∠BOE=60°,由垂径定理得∠COE=∠BOE=60°,由于AD为直径,∴∠AOB=∠AOC=120°,∴AB=BC=CA,即△ABC为等边三角形.点评:此题主要考查了垂径定理以及圆心角定理和等边三角形的判定等知识,得出∠AOB=∠AOC=120°是解题关键.24.如图1,在四边形ABCD的AB边上任取一点E(点E不与点A、点B重合,分别连接ED,EC,可以把四边形ABCD分成3个三角形.如果其中有2个三角形相似,我们就把点E叫做四边形ABCD 的AB边上的相似点;如果这3个三角形都相似,我们就把点E叫做四边形ABCD的AB边上的强相似点.(1)若图1中,∠A=∠B=∠DEC=50°,证明点E是四边形ABCD的AB边上的相似点.(2)①如图2,画出矩形ABCD的AB边上的一个强相似点.(要求:画图工具不限,不写画法,保留画图痕迹或有必要的说明)②对于任意的一个矩形,是否一定存在强相似点?如果一定存在,请说明理由;如果不一定存在,请举出反例.(3)如图3,在四边形ABCD中,AD∥BC,AD<BC,∠B=90°,点E是四边形ABCD的AB边上的一个强相似点,判断AE与BE的数量关系并说明理由.考点:相似形综合题.分析:(1)要证明点E是四边形ABCD的AB边上的相似点,只要证明有一组三角形相似就行,很容易证明△ADE∽△EBC,所以问题得解;(2)①以CD为直径画弧,取该弧与AB的一个交点即为所求.②不一定存在强相似点,如正方形;(3)因为点E是梯形ABCD的AB边上的一个强相似点,所以就有相似三角形出现,根据相似三角形的对应线段成比例,可以判断出AE和BE的数量关系,从而可求出解.解答:解:(1)理由:∵∠A=50°,∴∠ADE+∠DEA=130°,∵∠DEC=50°,∴∠BEC+∠DEA=130°,∴∠ADE=∠BEC,∵∠A=∠B,∴△ADE∽△BEC,∴点E是四边形ABCD的AB边上的相似点;(2)①以CD为直径画弧,取该弧与AB的一个交点即为所求,如图2所示:连接FC,DF,∵CD为直径,∴∠DFC=90°,∵CD∥AB,∴∠DCF=∠CFB,∵∠B=90°,∴△DFC∽△CBF,同理可得出:△DFC∽△FAD,②对于任意的一个矩形,不一定存在强相似点,如正方形.(3)第一种情况:∠A=∠B=∠DEC=90°,∠ADE=∠BEC=∠EDC,即△ADE∽△BEC∽△EDC,∵点E是梯形ABCD的边AB上的强相似点,∴△ADE,△BEC以及△CDE是两两相似的,∵△ADE是直角三角形,∴△DEC也是直角三角形,当∠DEC=90°时,①∠CDE=∠DEA,∴DC∥AE,这与四边形ABCD是梯形相矛盾,不成立;②∠CDE=∠EDA,∵∠ECD+∠EDC=90°,∠ADE+∠AED=90°,∴∠AED=∠ECD,∵∠AED+∠BEC=90°,∠BEC+∠BCE=90°,∴∠AED=∠BCE,∴∠AED=∠BCE=∠ECD,∴DE平分∠ADC,同理可得,CE平分∠DCB,如图3,过E作EF⊥DC,∵AE⊥AD,BE⊥BC,DE平分∠ADC,CE平分∠DCB,∴AE=FE,BE=FE,∴AE=BE,第二种情况:∠A=∠B=∠EDC=90°,∠ADE=∠BCE=∠DCE,即△ADE∽△BEC∽△DCE.所以∠AED=∠BEC=∠DEC=60°,说明AE=DE,BE=CE,DE=CE,所以AE=BE.。
【5套打包】杭州市初三九年级数学上期末考试测试题(解析版)
九年级(上)数学期末考试题(答案)一.选择题(共10小题,满分30分,每小题3分)1.若关于x的一元二次方程(a+1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.±1D.02.不解方程,判别方程2x2﹣3x=3的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.有一个实数根D.无实数根3.若圆锥的侧面展开图是个半圆,则该圆锥的侧面积与全面积之比为()A.B.C.D.4.如图,在△ABC中,∠BAC=90°,AB=AC=4,以点C为中心,把△ABC逆时针旋转45°,得到△A′B′C,则图中阴影部分的面积为()A.2B.2πC.4D.4π5.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为4,则a的值为()A.﹣2B.4C.4或3D.﹣2或36.如图,AB为⊙O的直径,弦CD⊥AB,连结OD,AC,若∠CAO=70°,则∠BOD的度数为()A.110°B.140°C.145°D.150°7.如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上.矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为()A.:1B.2:C.2:1D.29:148.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=30°,则∠E的度数为()A.45°B.50°C.55°D.60°9.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c =0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m <n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b 10.如图,以线段AB为边分别作直角三角形ABC和等边三角形ABD,其中∠ACB=90°.连接CD,当CD的长度最大时,此时∠CAB的大小是()A.75°B.45°C.30°D.15°二.填空题(共6小题,满分18分,每小题3分)11.若x2﹣9=0,则x=.12.将抛物线y=x2+2x向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的表达式为;13.x1,x2是方程x2+2x﹣3=0的两个根,则代数式x12+3x1+x2=.14.如图,在等腰△ABC中,AB=AC,∠B=30°.以点B为旋转中心,旋转30°,点A、C分别落在点A'、C'处,直线AC、A'C'交于点D,那么的值为.15.如图,PA、PB分别切⊙O于点A、B,若∠P=70°,点C为⊙O上任一动点,则∠C 的大小为°.16.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为.三.解答题(共8小题,满分72分)17.解方程:(1)x2+4x=﹣3(2)a2+3a+1=0(用公式法)18.如图,在△ACB中,AC=AB,∠CAB=90°,∠CDA=45°,CD=3,AD=4,求BD 的长.19.已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且x12+x22=11,求m的值.20.某同学报名参加学校秋季运动会,有以下5个项目可供选择:径赛项目:100m、200m、1000m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用T1、T2表示).(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P为;(2)该同学从5个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率P1,利用列表法或树状图加以说明;(3)该同学从5个项目中任选两个,则两个项目都是径赛项目的概率P2为.21.如图,圆形靠在墙角的截面图,A、B分别为⊙O的切点,BC⊥AC,点P在上以2°/s的速度由A点向点B运动(A、B点除外),连接AP、BP、BA.(1)当∠PBA=28°,求∠OAP的度数;(2)若点P不在AO的延长线上,请写出∠OAP与∠PBA之间的关系;(3)当点P运动几秒时,△APB为等腰三角形.22.如图,一次函数y1=kx+b的图象与反比例函数的图象交于点A(﹣2,﹣5),C (5,n),交y轴于点B,交x轴于点D.(1)求反比例函数和一次函数y1=kx+b的表达式;(2)连接OA,OC,求△AOC的面积;(3)根据图象,直接写出y1>y2时x的取值范围.23.某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?24.如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.2018-2019学年湖北省鄂州市梁子湖区沼山镇中学九年级(上)期末数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】把x=0代入方程(a+1)x2+x+a2﹣1=0得a2﹣1=0,然后解关于a的方程后利用一元二次方程的定义确定满足条件的a的值.【解答】解:把x=0代入方程(a+1)x2+x+a2﹣1=0得a2﹣1=0,解得a1=1,a2=﹣1,而a+1≠0,所以a=1.故选:A.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.2.【分析】先把方程化为一般式得到2x2﹣3x﹣3=0,再计算△=(﹣3)2﹣4×2×(﹣3)=18+24>0,然后根据△的意义判断方程根的情况.【解答】解:方程整理得2x2﹣3x﹣3=0,∵△=(﹣3)2﹣4×2×(﹣3)=18+24>0,∴方程有两个不相等的实数根.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.【分析】首先设出圆锥的底面半径及母线长,根据侧面展开图是个半圆确定二者之间的关系,从而表示出侧面积及全面积后求出比值即可.【解答】解:设这个圆锥的底面半径为r,母线长为l,则2πr=πl,∴l=2r,∴侧面积为πl2=π×(2r)2=2πr2,全面积为:πr2+2πr2=3πr2,∴该圆锥的侧面积与全面积之比为:2πr2:3πr2=,故选:B.【点评】本题考查了圆锥的计算及几何体的展开图的知识,解题的关键是能够设出圆锥的底面半径、母线并根据侧面展开图是个半圆确定二者之间的关系.4.【分析】根据阴影部分的面积是(扇形CBB'的面积﹣△CA'B'的面积)+(△ABC的面积﹣扇形CAA'的面积),代入数值解答即可.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC=4,∴BC=,∠ACB=∠A'CB'=45°,∴阴影部分的面积==2π,故选:B.【点评】本题考查了扇形面积公式的应用,注意:圆心角为n°,半径为r的扇形的面积为S=.5.【分析】利用二次函数图象上点的坐标特征找出当y=4时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:当y=4时,有x2﹣2x+1=4,解得:x1=﹣1,x2=3.∵当a≤x≤a+1时,函数有最小值4,∴a=3或a+1=﹣1,∴a=3或a=﹣2,故选:D.【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=4时x的值是解题的关键.6.【分析】根据题意求出∠C的度数,根据圆周角定理求出∠AOD的度数,根据邻补角的概念求出答案.【解答】解:∵CD⊥AB,∠CAO=70°,∴∠C=20°,∴∠AOD=40°,∴∠BOD=140°,故选:B.【点评】本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.7.【分析】首先根据反比例函数y2=的解析式可得到S△ODB =S△OAC=×3=,再由阴影部分面积为6可得到S矩形PDOC=9,从而得到图象C1的函数关系式为y=,再算出△EOF的面积,可以得到△AOC与△EOF的面积比,然后证明△EOF∽△AOC,根据对应边之比等于面积比的平方可得到EF:AC的值.【解答】解:∵A、B反比例函数y2=的图象上,∴S△ODB =S△OAC=×3=,∵P在反比例函数y1=的图象上,∴S矩形PDOC=k1=6++=9,∴图象C1的函数关系式为y=,∵E点在图象C1上,∴S△EOF=×9=,∴==3,∵AC⊥x轴,EF⊥x轴,∴AC∥EF,∴△EOF∽△AOC,∴=,故选:A.【点评】此题主要考查了反比例函数系数k的几何意义,以及相似三角形的性质,关键是掌握在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|;在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.8.【分析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE 的度数,根据三角形外角的性质即可得出结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵=,∠BAC=30°,∴∠DCE=∠BAC=30°,∴∠E=∠ADC﹣∠DCE=75°﹣30°=45°.故选:A.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.9.【分析】由m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根可得出二次函数y=(x﹣a)(x﹣b)﹣1的图象与x轴交于点(m,0)、(n,0),将y=(x﹣a)(x﹣b)﹣1的图象往上平移一个单位可得二次函数y=(x﹣a)(x﹣b)的图象,画出两函数图象,观察函数图象即可得出a、b、m、n的大小关系.【解答】解:∵m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,∴二次函数y=(x﹣a)(x﹣b)﹣1的图象与x轴交于点(m,0)、(n,0),∴将y=(x﹣a)(x﹣b)﹣1的图象往上平移一个单位可得二次函数y=(x﹣a)(x﹣b)的图象,二次函数y=(x﹣a)(x﹣b)的图象与x轴交于点(a,0)、(b,0).画出两函数图象,观察函数图象可知:m<a<b<n.故选:A.【点评】本题考查了抛物线与x轴的交点,画出两函数图象,利用数形结合解决问题是解题的关键.10.【分析】利用圆周角定理结合点到直线的距离得出C′在半圆的中点时,此时当CD的长度最大,进而得出答案.【解答】解:如图所示:∵AB长一定,∴只有C点距离AB距离最大,则CD的长度最大,∴只有C点在C′位置,即C′在半圆的中点时,此时当CD的长度最大,故此时AC′=BC′,∴∠C′AB的大小是45°.故选:B.【点评】此题主要考查了圆周角定理以及点到直线的距离,得出C点位置是解题关键.二.填空题(共6小题,满分18分,每小题3分)11.【分析】直接利用开平方法解方程得出答案.【解答】解:∵x2﹣9=0,∴x2=9,∴x=±3.故答案为:±3.【点评】此题主要考查了直接开平方法解方程,正确开平方运算是解题关键.12.【分析】先把y=x2+2x配成顶点式,再利用顶点式写出平移后的抛物线的解析式.【解答】解:y=x2+2x=(x+1)2﹣1,此抛物线的顶点坐标为(﹣1,﹣1),把点(﹣1,﹣1)向左平移2个单位长度,再向下平移3个单位长度后所得对应点的坐标为(﹣3,﹣4),所以平移后得到的抛物线的解析式为y=(x+3)2﹣4.故答案为:y=(x+3)2﹣4.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.【分析】先根据根与系数的关系得到x1+x2=﹣2,再利用x1是方程x2+2x﹣3=0的根得到x12+2x1﹣3=0,即x12+2x1=3,则x12+3x1+x2=x12+2x1+x1+x2,然后利用整体代入得方法计算.【解答】解:∵x1,x2是方程x2+2x﹣3=0的两个根,∴x12+2x1﹣3=0,即x12+2x1=3,x1+x2=﹣2,则x12+3x1+x2=x12+2x1+x1+x2=3﹣2=1,故答案为:1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程解的定义.14.【分析】作AH⊥BC于H,如图,设AH=1,计算出AB=2,BH=,则BC=2,分类讨论:当△ABC绕点B顺时针旋转30°得到△A′BC′,如图1,利用旋转的性质得∠ABA′=∠CBC′=30°,BC′=BC=2,∠C=∠C′=30°,则∠BEC′=90°,再计算出BE=BC′=,AE=2﹣,接着利用∠DAB=60°得到AD=2AE=2(2﹣),于是可计算出的值;当△ABC绕点B逆时针旋转30°得到△A′BC′,如图2,证明∠ADC′=∠C′得到AD=AC′=2﹣2,然后计算的值.【解答】解:作AH⊥BC于H,如图,设AH=1,∵AB=AC,∴BH=CH,在Rt△ABH中,∵∠ABC=30°,∴AB=2AH=2,BH=AH=,∴BC=2,当△ABC绕点B顺时针旋转30°得到△A′BC′,如图1,A′C′交AB于E,∴∠ABA′=∠CBC′=30°,BC′=BC=2,∠C=∠C′=30°,∵∠ABC′=60°,∴∠BEC′=90°,在Rt△BC′E中,BE=BC′=,∴AE=2﹣,∵∠DAB=∠ABC+∠C=60°,∴AD=2AE=2(2﹣),∴==2﹣;当△ABC绕点B逆时针旋转30°得到△A′BC′,如图2,∴∠ABA′=∠CBC′=30°,BC′=BC=2,∠C=∠C′=30°,∵∠CBC′=60°,∴∠ADC′=30°,∵∠ADC′=∠C′,∴AD=AC′=BC′﹣AB=2﹣2,∴==﹣1,综上所述,的值为﹣1或2﹣.故答案为﹣1或2﹣.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质和含30度的直角三角形三边的关系.15.【分析】首先连接OA,OB,由PA、PB分别切⊙O于点A、B,根据切线的性质可得:OA⊥PA,OB⊥PB,然后由四边形的内角和等于360°,求得∠AOB的度数,又由圆周角定理,即可求得答案.【解答】解:连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PBO=360°﹣90°﹣70°﹣90°=110°,∴∠C=∠AOB=55°.同理可得:当点C在上时,∠C=180°﹣55°=125°.故答案为:55或125.【点评】此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.【分析】由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x<h时,y随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故答案为﹣1或5.【点评】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.三.解答题(共8小题,满分72分)17.【分析】(1)用配方法或者移项后用因式分解法都比较简便;(2)先确定二次项系数、一次项系数及常数项,再计算△,代入求根公式即可.【解答】解:(1)x2+4x+3=0,(x+1)(x+3)=0,(x+1)=0,(x+3)=0,解得:x1=﹣1,x2=﹣3.(2)a2+3a+1=0,△=32﹣4×1×1=9﹣4=5>0,∴x===,∴x1=,x2=.【点评】本题考查了一元二次方程的解法及公式法.可根据题目特点灵活选择(1)的解法.18.【分析】把△ADB绕点A顺时针旋转90°,得到△ACE,连接DE.证明△ACE≌△ABD,把BD转化到CE.而后在Rt△DCE中利用勾股定理求得CE长.【解答】解:把△ADB绕点A顺时针旋转90°,得到△ACE,连接DE.根据旋转性质可知AC=AB,AD=AE,∠BAC=∠DAE=90°,DE=4.∴∠EAC=∠DAB.∴△ACE≌△ABD(SAS).∴BD=CE.∵∠EDA=45°,∠ADC=45°,∴∠CDE=90°.在Rt△DCE中,利用勾股定理可得CE=.【点评】本题主要考查了旋转的性质、全等三角形的判定和性质以及勾股定理.正确作出辅助线是解题的关键.19.【分析】(1)由关于x的一元二次方程x2+3x﹣m=0有实数根,即可得判别式△≥0,即可得不等式32+4m≥0,继而求得答案;(2)由根与系数的关系,即可得x1+x2=﹣3、x1x2=﹣m,又由x12+x22=(x1+x2)2﹣2x1•x2=11,即可得方程:(﹣3)2+2m=11,解此方程即可求得答案.【解答】解:(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.【点评】此题考查了一元二次方程根的判别式与根与系数的关系.此题难度不大,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.20.【分析】(1)直接根据概率公式求解;(2)先画树状图展示所有20种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P2.【解答】解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;(2)画树状图为:共有20种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为12,所以一个径赛项目和一个田赛项目的概率P1==;(3)两个项目都是径赛项目的结果数为6,所以两个项目都是径赛项目的概率P2==.故答案为,.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B 的概率.21.【分析】(1)根据圆周角定理可知∠PBA=∠POA,求出∠POA,再利用等腰三角形的性质即可解决问题;(2)分∠PBA是锐角或钝角两种情形讨论求解即可;(3)分三种情形求解即可;【解答】解:(1)连接OP,∵∠PBA=∠POA=28°,∴∠POA=56°,∵OP=OA,∴∠POA=56°,∴∠OAP=(180°﹣56°)=62°.(2)当∠PBA<90°时,∠OAP=(180°﹣2∠PBA)=90°﹣∠PBA.当∠PBA>90°时,∠OAP=∠PBA﹣90°.(3)当AB为腰时,当AB=AP时,点P的运动弧的度数是90度,故时间t==45,当AB=BP时,点P的运动弧的度数是180度,时间t==90,当AB为底时,即PB=AP时,点P的运动弧的度数是135度,故时间t==67.5.综上所述,当点P运动45s或90s或67.5s秒时,△APB为等腰三角形.【点评】本题考查切线的性质、等腰三角形的性质和判定、圆周角定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.22.【分析】(1)把A的坐标代入反比例函数的解析式求出m,把C的坐标代入反比例函数解析式求出n,把A、C的坐标代入一次函数的解析式得出方程组,求出方程组的解即可;(2)求出一次函数与x轴的交点坐标,的OD值,根据三角形的面积公式求出即可;(3)结合图象和A、C的坐标即可求出答案.【解答】(1)解:∵把A(﹣2,﹣5)代入代入得:m=10,∴y2=,∵把C(5,n)代入得:n=2,∴C(5,2),∵把A、C的坐标代入y1=kx+b得:,解得:k=1,b=﹣3,∴y1=x﹣3,答:反比例函数的表达式是y2=,一次函数的表达式是y1=x﹣3;(2)解:∵把y=0代入y1=x﹣3得:x=3,∴D(3,0),OD=3,∴S △AOC =S △DOC +S △AOD ,=×3×2+×3×|﹣5|=10.5,答:△AOC 的面积是10.5;(3)解:根据图象和A 、C 的坐标得出y 1>y 2时x 的取值范围是:﹣2<x <0或x >5.【点评】本题考查了用待定系数法求一次函数与二次函数的解析式,一次函数与反比例函数图象上点的坐标特征,三角形的面积,一次函数与反比例函数的交点问题的应用,主要考查学生运用性质进行计算的能力,题目具有一定的代表性,是一道比较好的题目. 23.【分析】(1)根据“总利润=单件利润×销售量”列出函数解析式,由“确保盈利”可得x 的取值范围.(2)将所得函数解析式配方成顶点式可得最大值.【解答】解:(1)根据题意得y =(70﹣x ﹣50)(300+20x )=﹣20x 2+100x +6000, ∵70﹣x ﹣50>0,且x ≥0,∴0≤x <20;(2)∵y =﹣20x 2+100x +6000=﹣20(x ﹣)2+6125,∴当x =时,y 取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.【点评】本题主要考查二次函数的应用,解题的关键是根据题意确定相等关系,并据此列出函数解析式.24.【分析】(1)将A (﹣1,0)、B (3,0)代入二次函数y =ax 2+bx ﹣3a 求得a 、b 的值即可确定二次函数的解析式;(2)分别求得线段BC 、CD 、BD 的长,利用勾股定理的逆定理进行判定即可;(3)分以CD 为底和以CD 为腰两种情况讨论.运用两点间距离公式建立起P 点横坐标和纵坐标之间的关系,再结合抛物线解析式即可求解.【解答】解:(1)∵二次函数y =ax 2+bx ﹣3a 经过点A (﹣1,0)、C (0,3), ∴根据题意,得,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4得,D点坐标为(1,4),∴CD==,BC==3,BD==2,∵CD2+BC2=()2+(3)2=20,BD2=(2)2=20,∴CD2+BC2=BD2,∴△BCD是直角三角形;(3)存在.y=﹣x2+2x+3对称轴为直线x=1.①若以CD为底边,则P1D=P1C,设P1点坐标为(x,y),根据勾股定理可得P1C2=x2+(3﹣y)2,P1D2=(x﹣1)2+(4﹣y)2,因此x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x.又P1点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1,应舍去,∴x=,∴y=4﹣x=,即点P1坐标为(,).②若以CD为一腰,∵点P2在对称轴右侧的抛物线上,由抛物线对称性知,点P2与点C关于直线x=1对称,此时点P2坐标为(2,3).∴符合条件的点P坐标为(,)或(2,3).【点评】考查了二次函数综合题,此题是一道典型的“存在性问题”,结合二次函数图象和等腰三角形、直角梯形的性质,考查了它们存在的条件,有一定的开放性.最新人教版数学九年级上册期末考试试题(含答案)一、选择题(本大共12个小题,每小题4分共48分)在每个小题的下面,都始出了代号为A,B,C,D的四个答案,其中只有一个是正确的)1.3的相反数是()A.3B.C.﹣3D.﹣2.下列图形中一定是轴对称图形的是()A.直角三角形B.四边形C.平行四边形D.矩形3.为调查某中学学生对社会主义核心价值观的了解程度,某课外活动小组进行了抽样调查,以下样本最具有代表性的是()A.初三年级的学生B.全校女生C.每班学号尾号为5的学生D.在篮球场打篮球的学生4.把正方形按如图所示的规律拼图案,其中第①个图案中有1个正方形,第②个图案中有5个正方形,第③个图案中有9个正方形…按此规律排列下去,则第⑧个图案中正方形的个数为()A.25B.29C.33D.375.有两个相似的三角形,已知其中一个三角形的最长边为12cm,面积为18cm2,而另一个三角形的最长边为16m,则另一个三角形的面积是()cm2A.22B.24C.30D.326.下列命题正确的是()A.平行四边形的对角线一定相等B.三角形任意一条边上的高线、中线和角平分线三线合一C.三角形的中位线平行于第三边并且等于它的一半D.三角形的两边之和小于第三边7.估计(3+)÷的值应在()A.8和9之间B.9和10之间C.10和11之间D.11和12之间8.按照如图的程序计算:如果输入y的值是正整数,输出结果是94,则满足条件的y值有()A.4B.3C.2D.19.如图,AB是⊙O的直径,点C在⊙O上,且不与A、B两点重合,过点C的切线交AB 的延长线于点D,连接AC,BC,若∠ABC=53°,则∠D的度数是()A.16°B.18°C.26.5°D.37.5°10.在距离大足城区的1.5公里的北山之上,有一处密如峰房的石窟造像点,今被称为北山石窟.北山石窟造像在两宋时期达到鼎盛,逐渐都成了以北山佛湾为中心,环绕营盘坡、佛耳岩,观音坡、多宝塔等多处造像点的大型石窟群.多宝塔,也称为“白塔”“北塔”,于岩石之上,为八角形阁式砖塔,外观可辨十二级,其内有八层楼阁,可沿着塔心内的梯道逐级而上,元且期间,小华和妈妈到大足北山游玩,小华站在坡度为l=1:2的山坡上的B点观看风景,恰好看到对面的多宝培,测得眼睛A看到塔顶C的仰角为30°,接着小华又向下走了10米,刚好到达坡底E,这时看到塔顶C的仰角为45°,若AB =1.5米,则多宝塔的高度CD约为()(精确到0.1米,参考数据≈1.732)A.51.0米B.52.5米C.27.3米D.28.8米11.如图,在平面直角坐标中,菱形ABCO的顶点O在坐标原点,且与反比例函数y=的图象相交于A(m,3),C两点,已知点B(2,2),则k的值为()A.6B.﹣6C.6D.﹣612.若关于x的不等式组的解集为x>3,且关于x的分式方程﹣=1的解为非正数,则所有符合条件的整数的a和为()A.11B.14C.17D.20二、填空题(本大服共6个小题,每小题4分,共24分)请将每小题的答案直按填在等卡中对应的13.计算,2﹣2+|﹣3|+(2﹣π)0=.14.如图,在矩形ABCD中,连接AC,以点B为圆心,BA为半径画弧,交BC于点E,已知BE=3,BC=3,则图中阴影部分的面积为(结果保留π).15.从﹣2,﹣1,3这三个数中随机抽取两个数分别记为x,y,把点M的坐标记为(x,y),若点N为(0,3),则在平面直角坐标系内直线MN经过过四象限的概率为.16.如图,在边长为7的正方形ABCD中,E为BC上一点,连接AE,将△ABE沿EF折叠;使点A恰好落在CD上的A′处,若A′D=2,求B′E=.17.大课间到了,小明和小欢两人打算从教室匀速跑到600米外的操场做课间操,刚出发时小明就发现鞋带松了,停下来系鞋带,小欢则直接前往操场,小明系好鞋带后立即沿同一路开始追赶小欢,小明在途中追上小欢后继续前行,小明到达操场时课间操还没有开始,于是小明站在操场等待,小欢继续前往操场,设小明和小欢两人想距s(米),小欢行走的时间为t(分钟),s关于t的函数的部分图象如图所示,当两人第三次相距60米时,小明离操场还有米.18.某公司推出一款新产品,通过市场调研后,按三种颜色受欢迎的程度分别对A颜色、B 颜色、C颜色的产品在成本的基础上分别加价40%,50%,60%出售(三种颜色产品的成本一样),经过一个季度的经营后,发现C颜色产品的销量占总销量的40%,三种颜色产品的总利润率为51.5%,第二个季度,公司决定对A产品进行升级,升级后A产品的成本提高了25%,其销量提高了60%,利润率为原来的两倍;B产品的销量提高到与升级后的A产品的销量一样,C产品的销量比第一季度提高了50%,则第二个季度的总利润率为.三、解答题(本大题2个小题,每小题8分,共16分)解答时每小题必写出必要的演算过程和推理步骤,请将解答过程书写在答题卡中对应的位置上19.如图,AB∥EF,AD平分∠BAC,且∠C=45°,∠CDE=125°,求∠ADF的度数.20.由于世界人口增长、水污染以及水资源浪费等原因,全世界面临着淡水资源不足的问题,我国是世界上严重缺水的国家之一,人均占水量仅为2400m3左右,我国已被联合国列为13个贫水国家之一,合理利用水资源是人类可持续发展的当务之急,而节约用水是水资源合理利用的关键所在,是最快捷、最有效、最可行的维护水资源可持续利用的途径之一,为了调查居民的用水情况,有关部门对某小区的20户居民的月用水量进行了调查,数据如下:(单位:t)6.78.77.311.47.0 6.911.79.710.09.77.38.410.68.77.28.710.59.38.48.7整理数据按如下分段整理样本数据并补至表格:(表1)分析数据,补全下列表格中的统计量;(表2)得出结论:(1)表中的a=,b=,c=,d=.(2)若用表1中的数据制作一个扇形统计图,则9.0≤x<10.5所示的扇形圆心角的度数为度.(3)如果该小区有住户400户,请根据样本估计用水量在6.0≤x<9.0的居民有多少户?四、解答题(本大题5个小题,每小题10分,共50分)解答时每小题必写出必要的演算过程和推理步骤,画出必要的图形,(包括辅助线),请将解答过程书写在答题卡中对应的位置上21.计算:(1)(a+b)(a﹣2b)﹣(a﹣b)2(2)÷(﹣x﹣2)22.如图,在平面直角坐标系中,直线AB:y=kx﹣6(k≠0)与x轴,y轴分别交于A,B 两点,点C(1,m)在线AB上,且tan∠ABO=,把点B向上平移8个单位,再向左平移1个单位得到点D.(1)求直线CD的解析式;(2)作点A关于y轴的对称点E,将直线DB沿x轴方向平移与直线CD相交于点F,连接AF、EF,当△AEF的面积不小于21时,求F点横坐标的取值范围.23.2018年11月重庆潮童时装周在重庆渝北举了八场秀,云集了八大国内外潮童品牌,不仅为大家带来了一场品牌走秀盛会,更让人们将目光转移到了00后、10后童模群体身上,开启服装新秀潮流,某大型商场抓住这次商机购进A、B两款新童装共1000件进行试销售,其中每件A款童装进价160元,每件B款童装进价200元,若该商场本次以每件A 款童装按进价加价17元,每件B款童装按进价加价15%进行销售,全部销售完,共获利24800元.(1)求购进A、B两款童装各多少件?(2)元且期间该商场又购进A、B两款童装若干件并展开了降价促销活动,在促销期间,该商场将每件A款童装按进价提高(m+10)%进行销售,每件B款童装装按售价降低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年浙江省杭州市西湖区九年级(上)期末数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案..1.二次函数y=3x2﹣1图象的顶点坐标是()A.(0,﹣1)B.(1,0) C.(﹣1,0)D.(0,1)2.如图,点A,B,C是⊙O上的三点,且AB=4,BC=3,∠ABC=90°,则⊙O的直径为()A.5 B.6 C.8 D.103.如图,△ABC中,DE∥BC,若AD:DB=2:3,则下列结论中正确的()A.=B.=C.=D.=4.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是()A.B.C.D.5.从2种不同款式的衬衣和2种不同款式的裙子中分别取一件衬衣和一条裙子搭配,有()种可能.A.1 B.2 C.3 D.46.如图,某人站在楼顶观测对面的笔直的旗杆AB.已知观测点C到旗杆的距离CE=8m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,则旗杆AB的髙度是()m.A.8+24 B.8+8 C.24+8D.8+87.如图,已知△ABC与△BDE都是等边三角形,点D在边AC上(不与A、C重合),DE与AB 相交于点F,则图中有()对相似三角形.A.2 B.3 C.4 D.58.若抛物线y=ax2+2ax+4(a<0)上有A(﹣,y1),B(﹣,y2),C(,y3)三点,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y3<y19.如图,△ABC是⊙O的内接正三角形,弦EF经过BC边的中点D,且EF∥AB,若AB=8,则DE的长为()A. +1 B.2﹣2 C.2﹣2 D. +110.在△ABC中,已知AC=5,且+﹣=0,则BC+AB=()A.6 B.7 C.8 D.9二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案.11.任意写出一个偶数和一个奇数,两数之和是奇数的概率是,两数之和是偶数的概率是.12.两个数4+与4﹣的比例中项是.13.若二次函数的图象经过点(﹣2,0),且在x轴上截得的线段长为4,那么这个二次函数图象顶点的横坐标为.14.如图,水库堤坝的横断面是梯形,测得BC长为30m,CD长为20m,斜坡AB的坡比为1:3,斜坡CD的坡比为1:2,则坝底的宽AD为m.15.在△ABC中,AB=5,BC=6,B为锐角且cosB=,则sinC=.16.己知抛物线y=x2+2mx﹣n与x轴没有交点,则m+n的取值范围是.三、全面答一答(本题有7个小题,共66分)解答应写出必要的文字说明、证明过程或推理步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.平面上有3个点的坐标:A(0,﹣3),B(3,0),C(﹣1,﹣4).(1)在A,B,C三个点中任取一个点,这个点既在直线y1=x﹣3上又在抛物线上y2=x2﹣2x﹣3上的概率是多少?(2)从A,B,C三个点中任取两个点,求两点都落在抛物线y2=x2﹣2x﹣3上的概率.18.如图,BM是⊙O的直径,四边形ABMN是矩形,D是⊙O上的点,DC⊥AN,与AN交于点C,己知AC=15,⊙O的半径为30,求的长.19.如图,⊙P的圆心为P(﹣2,1),半径为2,直线MN过点M(2,3),N(4,1).(1)请你在图中作出⊙P关于y轴对称的⊙P′(不要求写作法);(2)请判断(1)中⊙P′与直线MN的位置关系,并说明理由.20.如图,一张正方形纸板的边长为2cm,将它剪去4个全等的直角三角形(图中阴影部分).设AE=BF=CG=DH=xcm,四边形EFGH的面积为ycm2,(1)求y关于x的函数表达式和自变量x的取值范围;(2)求四边形EFGH的面积为3cm2时的x值;(3)四边形EFGH的面积可以为1.5cm2吗?请说明理由.21.如图,在△ABC中,∠ACB=90°,AC=BC,M是边AC的中点,CH⊥BM于H.(1)试求sin∠MCH的值;(2)问△MCH与△MBC是否相似?请说明理由;(3)连结AH,求证:∠AHM=45°.22.如图,点A,B,C,D,E在⊙O上,AB⊥CB于点B,tanD=3,BC=2,H为CE延长线上一点,且AH=,CH=5.(1)求证:AH是⊙O的切线;(2)若点D是弧CE的中点,且AD交CE于点F,求证:HF=HA;(3)在(2)的条件下,求EF的长.23.已知二次函数y=x2+2(m+l)x﹣m+1.以下四个结论:①不论m取何值,图象始终过点(,2);②当﹣3<m<0时,抛物线与x轴没有交点:③当x>﹣m﹣2时,y随x的增大而增大;④当m=﹣时,抛物线的顶点达到最高位置.请你分别判断四个结论的真假,并给出理由.2015-2016学年浙江省杭州市西湖区九年级(上)期末数学试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案..1.二次函数y=3x2﹣1图象的顶点坐标是()A.(0,﹣1)B.(1,0) C.(﹣1,0)D.(0,1)【考点】二次函数的性质.【分析】根据二次函数顶点式解析式写出顶点坐标即可.【解答】解:二次函数y=3x2﹣1的图象的顶点坐标是(0,﹣1).故选A.【点评】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.2.如图,点A,B,C是⊙O上的三点,且AB=4,BC=3,∠ABC=90°,则⊙O的直径为()A.5 B.6 C.8 D.10【考点】圆周角定理;勾股定理.【分析】由点A,B,C是⊙O上的三点,∠ABC=90°,根据90°的圆周角对的弦是直径,可得AC 是直径,然后由勾股定理求得答案.【解答】解:∵∠ABC=90°,∴AC是直径,∵AB=4,BC=3,∴AC==5,即⊙O的直径为5.故选A.【点评】此题考查了圆周角定理以及勾股定理.注意得到AC是直径是解此题的关键.3.如图,△ABC中,DE∥BC,若AD:DB=2:3,则下列结论中正确的()A.=B.=C.=D.=【考点】平行线分线段成比例.【分析】运用平行线分线段成比例定理对各个选项进行判断即可.【解答】解:∵AD:DB=2:3,∴=,∵DE∥BC,∴==,A错误,B正确;==,C错误;==,D错误.故选:B.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.4.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是()A.B.C.D.【考点】锐角三角函数的定义;直角三角形斜边上的中线.【专题】计算题.【分析】在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,则斜边AB=2CD=4,则即可求得sinB的值.【解答】解:在Rt△ABC中,CD是斜边AB上的中线,CD=2,∴AB=2CD=4.∴sinB=.故选C.【点评】本题主要运用了直角三角形的性质(斜边上的中线等于斜边的一半),并考查了正弦函数的定义.5.从2种不同款式的衬衣和2种不同款式的裙子中分别取一件衬衣和一条裙子搭配,有()种可能.A.1 B.2 C.3 D.4【考点】列表法与树状图法.【专题】计算题.【分析】用2种不同款式的衬衣用A、B表示,2种不同款式的裙子用a、b表示,然后画树状图可展示所有4种等可能的结果数.【解答】解:用2种不同款式的衬衣用A、B表示,2种不同款式的裙子用a、b表示,画树状图为:共有4种等可能的结果数.故选D.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.6.如图,某人站在楼顶观测对面的笔直的旗杆AB.已知观测点C到旗杆的距离CE=8m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,则旗杆AB的髙度是()m.A.8+24 B.8+8 C.24+8D.8+8【考点】解直角三角形的应用-仰角俯角问题.【分析】利用∠ECA的正切值可求得AE;利用∠ECB的正切值可求得BE,有AB=AE+BE.【解答】解:在△EBC中,有BE=EC×tan45°=8m,在△AEC中,有AE=EC×tan30°=8m,∴AB=8+8(m).故选D.【点评】本题考查了解直角三角形的应用﹣﹣﹣俯角、仰角问题,要求学生能借助其关系构造直角三角形并解直角三角形.7.如图,已知△ABC与△BDE都是等边三角形,点D在边AC上(不与A、C重合),DE与AB 相交于点F,则图中有()对相似三角形.A.2 B.3 C.4 D.5【考点】相似三角形的判定;等边三角形的性质.【分析】只要求写出相似的三角形,不必写出求证过程,根据相似三角形的判定定理,两个等边三角形的三个角分别相等,可推出△ABC∽△EDB,根据对应角相等推出△BDC∽△EFB∽△AFD.【解答】解:图中的相似三角形是△ABC∽△EDB,△BDC∽△EFB,△BDC∽△AFD,△BDC∽△AFD.故选:C.【点评】本题主要考查相似三角形的判定定理及有关性质的运用,关键在于根据图中两个等边三角形,找出相关的相等关系,然后结合已知条件,证明结论.8.若抛物线y=ax2+2ax+4(a<0)上有A(﹣,y1),B(﹣,y2),C(,y3)三点,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y3<y1【考点】二次函数图象上点的坐标特征.【专题】探究型.【分析】根据抛物线y=ax2+2ax+4(a<0)可知该抛物线开口向下,可以求得抛物线的对称轴,又因为抛物线具有对称性,从而可以解答本题.【解答】解:∵抛物线y=ax2+2ax+4(a<0),∴对称轴为:x=,∴当x<﹣1时,y随x的增大而增大,当x>﹣1时,y随x的增大而减小,∵A(﹣,y1),B(﹣,y2),C(,y3)在抛物线上,,∴y3<y1<y2,故选C.【点评】本题考查二次函数图象上点的坐标特征,解题的关键是明确二次函数的性质,二次函数具有对称性,在对称轴的两侧它的单调性不一样.9.如图,△ABC是⊙O的内接正三角形,弦EF经过BC边的中点D,且EF∥AB,若AB=8,则DE的长为()A. +1 B.2﹣2 C.2﹣2 D. +1【考点】垂径定理;等边三角形的性质;含30度角的直角三角形;勾股定理.【分析】由相交弦定理可得ED•DF=BD•DC=16,EG•FG=AG•GC=16,DG=,由此可得结果.【解答】解:∵△ABC是⊙O的内接正三角形,弦EF经过BC边的中点D,且EF∥AB,AB=8,由相交弦定理可得ED•DF=BD•DC=16,EG•FG=AG•GC=16,DG=,∴DE•(4+FG)=16,FG•(4+DE)=16,∴DE=FG=2﹣2,故选B.【点评】本题考查了线段长的求法,利用相交弦定理是解答此题的关键.10.在△ABC中,已知AC=5,且+﹣=0,则BC+AB=()A.6 B.7 C.8 D.9【考点】解直角三角形.【分析】做出三角形的三个内角的平分线,相交于O,过O作三边的垂线,最后用三角函数即可.【解答】解:如图:作∠ABC,∠BCA,∠CAB的平分线相交于点O,过O作OD⊥BC,OE⊥AC,OF⊥AB,设AF=m,BF=n,OD=OE=OF=r,∴AE=m.BD=n,∵AC=5,∴CE=CD=5﹣m,在RT△AOF中,tan∠BAO=,∴,同理:,,∵+﹣=0,∴,∴n=1,∴AB+BC=m+n+n+5﹣m=2n+5=7,故选B【点评】此题是解直角三角形,主要考查了三角形的角平分线的意义,三角函数,解本题的关键是构造直角三角形.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案.11.任意写出一个偶数和一个奇数,两数之和是奇数的概率是1,两数之和是偶数的概率是0.【考点】列表法与树状图法.【专题】计算题.【分析】利用不可能事件的概率为0,必然事件的概率为1求解.【解答】解:一个奇数与一个偶数的和为奇数,所以任意写出一个偶数和一个奇数,两数之和是奇数的概率是1,两数之和是偶数的概率为0.故答案为1,0.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了确定事件的概率.12.两个数4+与4﹣的比例中项是±.【考点】比例线段.【分析】设它们的比例中项是x,根据比例的基本性质得出x2=(4+)(4﹣),再进行计算即可.【解答】解:设它们的比例中项是x,则x2=(4+)(4﹣),解得x=±.故答案为±.【点评】本题考查了比例线段,理解比例中项的概念:当比例式中的两个内项相同时,即叫比例中项.根据比例的基本性质进行计算.13.若二次函数的图象经过点(﹣2,0),且在x轴上截得的线段长为4,那么这个二次函数图象顶点的横坐标为﹣4或0.【考点】抛物线与x轴的交点.【专题】数形结合.【分析】由于二次函数的图象与x轴的一个交点坐标为(﹣2,0),且在x轴上截得的线段长为4,则可确定二次函数的图象与x轴的另一个交点坐标为(﹣6,0)或(2,0),然后根据抛物线与x 轴的两交点关于抛物线的对称轴对称,则可得到抛物线的对称轴方程,从而得到这个二次函数图象顶点的横坐标.【解答】解:∵二次函数的图象与x轴的一个交点坐标为(﹣2,0),且在x轴上截得的线段长为4,∴二次函数的图象与x轴的另一个交点坐标为(﹣6,0)或(2,0),当二次函数的图象与x轴的两个交点为(﹣6,0)和(﹣2,0),则二次函数图象的对称轴为直线x=﹣4,当二次函数的图象与x轴的两个交点为(﹣2,0)和(2,0),则二次函数图象的对称轴为直线x=0,即这个二次函数图象顶点的横坐标为﹣4或0.故答案为﹣4或0.【点评】本题考查了抛物线与x轴的交点:由二次函数的交点式y=a(x﹣x1)(x﹣x2)(a,b,c 是常数,a≠0)可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).14.如图,水库堤坝的横断面是梯形,测得BC长为30m,CD长为20m,斜坡AB的坡比为1:3,斜坡CD的坡比为1:2,则坝底的宽AD为130m.【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于E,CF⊥AD于F,根据坡度的概念分别求出AE、DF,结合图形计算即可.【解答】解:作BE⊥AD于E,CF⊥AD于F,∵斜坡CD的坡比为1:2,即=,∴DF=2CF,又CD=20m,∴CF=20m,DF=40m,由题意得,四边形BEFC是矩形,∴BE=CF=20m,EF=BC=30m,∵斜坡AB的坡比为1:3,∴=,即AE=3BE=60m,∴AD=AE+EF+DF=130m,故答案为:130m.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键,掌握矩形的判定和性质的应用.15.在△ABC中,AB=5,BC=6,B为锐角且cosB=,则sinC=.【考点】解直角三角形.【专题】推理填空题.【分析】作AD⊥BC于点D,根据在△ABC中,AB=5,BC=6,B为锐角且cosB=,可以求得BD、AD、CD、AC的值,从而可以求得sinC的值.【解答】解:如下图所示:作AD⊥BC于点D,∵在△ABC中,AB=5,BC=6,B为锐角且cosB=,cosB=,∴BD=4,∴CD=BC﹣BD=6﹣4=2,AD=,∴AC=,∴sinC==,故答案为:.【点评】本题考查解直角三角形,解题的关键是明确题意,作出合适的辅助线,画出相应的图形,找出所求问题需要的条件.16.己知抛物线y=x2+2mx﹣n与x轴没有交点,则m+n的取值范围是<.【考点】抛物线与x轴的交点.【专题】计算题.【分析】由抛物线y=x2+2mx﹣n与x轴没有交点,得到a=1>0,推出函数值y>0,得到n<0,求出抛物线的对称轴x=﹣=﹣,于是得到y=x2+2mx﹣n=﹣m﹣n=﹣(m+n)>0,即可得到结论.【解答】解:∵抛物线y=x2+2mx﹣n与x轴没有交点,∵a=1>0,∴函数值y>0,∴﹣n>0,∴n<0,∵抛物线的对称轴x=﹣=﹣,∴y=x2+2mx﹣n=﹣m﹣n=﹣(m+n)>0,∴m+n<.故答案为:<.【点评】本题考查了抛物线与x轴的交点问题,注:当抛物线y=ax2+bx+c与轴有两个交点时,一元二次方程ax2+bx+c=0有两个不等的实数根即△>0;当抛物线y=ax2+bx+c与轴有一个交点时,一元二次方程ax2+bx+c=0有两个相等的实数根即△=0;当抛物线y=ax2+bx+c与轴无交点时,一元二次方程ax2+bx+c=0无实数根即△<0.三、全面答一答(本题有7个小题,共66分)解答应写出必要的文字说明、证明过程或推理步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.平面上有3个点的坐标:A(0,﹣3),B(3,0),C(﹣1,﹣4).(1)在A,B,C三个点中任取一个点,这个点既在直线y1=x﹣3上又在抛物线上y2=x2﹣2x﹣3上的概率是多少?(2)从A,B,C三个点中任取两个点,求两点都落在抛物线y2=x2﹣2x﹣3上的概率.【考点】列表法与树状图法;一次函数图象上点的坐标特征;二次函数图象上点的坐标特征;概率公式.【专题】计算题.【分析】(1)先根据一次函数图象上点的坐标特征和二次函数图象上点的坐标特征可判断A、B、C都在直线上,A、B两点在抛物线上,C点不在抛物线上,然后根据概率公式求解;(2)先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线y2=x2﹣2x﹣3上的结果数,然后根据概率公式求解.【解答】解:(1)当x=0时,y1=x﹣3=﹣3,y2=x2﹣2x﹣3=﹣3,则A点在直线和抛物线上;当x=3时,y1=x﹣3=0,y2=x2﹣2x﹣3=0,则B点在直线和抛物线上;当x=﹣1时,y1=x﹣3=﹣4,y2=x2﹣2x﹣3=0,则C点在直线上,不在抛物线上,所以在A,B,C三个点中任取一个点,这个点既在直线y1=x﹣3上又在抛物线上y2=x2﹣2x﹣3上的概率=;(2)画树状图为:共有6种等可能的结果数,其中两点都落在抛物线y2=x2﹣2x﹣3上的结果数为2,所以两点都落在抛物线y2=x2﹣2x﹣3上的概率==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了一次函数图象上点的坐标特征和二次函数图象上点的坐标特征.18.如图,BM是⊙O的直径,四边形ABMN是矩形,D是⊙O上的点,DC⊥AN,与AN交于点C,己知AC=15,⊙O的半径为30,求的长.【考点】弧长的计算;含30度角的直角三角形;矩形的性质.【分析】利用矩形的性质以及锐角三角形函数关系,得出cos∠EOD的值进而求出∠EOD的度数,再利用弧长公式求出即可.【解答】解:连接OD,BD,延长DC交BM于点E,∵BM是⊙O的直径,四边形ABMN是矩形,D是⊙O上一点,DC⊥AN,∴DE⊥BO,∵AC=15cm,∴BE=EO=15cm,∵DO=30cm,∴cos∠EOD==,∴∠EOD=60°,∴=(cm).【点评】本题考查了直角三角形的性质,弧长的计算、矩形的性质等知识,熟练掌握基本知识得出∠EOD的度数是解题关键.19.如图,⊙P的圆心为P(﹣2,1),半径为2,直线MN过点M(2,3),N(4,1).(1)请你在图中作出⊙P关于y轴对称的⊙P′(不要求写作法);(2)请判断(1)中⊙P′与直线MN的位置关系,并说明理由.【考点】作图—复杂作图;直线与圆的位置关系.【分析】(1)结合圆的半径利用P点关于y轴对称得出P′的坐标,进而得出答案;(2)根据M,N,P′的坐标得出P′到直线MN的距离,进而得出答案.【解答】解:(1)如图所示:⊙P′即为所求;(2)直线MN与⊙P′相交,理由:过点P′作P′B⊥MN于点B,∵M(2,3),N(4,1),P′(2,1),∴P′M=P′N=2,∴△MP′N是等腰直角三角形,∴P′B=1,∵⊙P′的半径为2,∴直线MN与⊙P′相交.【点评】此题主要考查了复杂作图以及直线与圆的位置关系,正确得出⊙P′的位置是解题关键.20.如图,一张正方形纸板的边长为2cm,将它剪去4个全等的直角三角形(图中阴影部分).设AE=BF=CG=DH=xcm,四边形EFGH的面积为ycm2,(1)求y关于x的函数表达式和自变量x的取值范围;(2)求四边形EFGH的面积为3cm2时的x值;(3)四边形EFGH的面积可以为1.5cm2吗?请说明理由.【考点】二次函数的应用;一元二次方程的应用.【专题】几何图形问题.【分析】(1)先证出四边形EFGH为正方形,用未知数x表示其任一边长,根据正方形面积公式即可解决问题;(2)代入y值,解一元二次方程即可;(3)将面积y=2x2﹣4x+4改写成完全平方的形式,可得知y≥2,故不能为cm2.【解答】解:(1)∵在正方形纸上剪去4个全等的直角三角形,∴∠AHE=∠DGH,∠DGH+∠DHG=90°,HG=HE,∵∠EHG=180°﹣∠AHE﹣∠DHG,∴∠EHG=90°,四边形EFGH为正方形,在△AEH中,AE=x,AH=BE=AB﹣AE=2﹣x,∠A=90°,∴HE2=AE2+AH2=x2+(2﹣x)2=2x2﹣4x+4,正方形EFGH的面积y=HE2=2x2﹣4x+4,∵AE,AH不能为负,∴0≤x≤2,故y关于x的函数表达式为:y=2x2﹣4x+4,自变量x的取值范围[0,2].(2)将y=3代入y=2x2﹣4x+4中,整理得:2x2﹣4x+1=0,解得:x1=1+,x2=1﹣,故四边形EFGH的面积为3cm2时的x的值为1+或1﹣.(3)四边形EFGH的面积为:y=2x2﹣4x+4=2(x﹣1)2+2,(0≤x≤2),∵(x﹣1)2≥0,∴y≥2,四边形EFGH的面积不能为1.5cm2.【点评】本题考查二次函数的应用,解题的关键是找准数量关系,对于第三问,只要将关系式转化成完全平方的形式,即可看出结论.21.如图,在△ABC中,∠ACB=90°,AC=BC,M是边AC的中点,CH⊥BM于H.(1)试求sin∠MCH的值;(2)问△MCH与△MBC是否相似?请说明理由;(3)连结AH,求证:∠AHM=45°.【考点】相似形综合题.【分析】(1)设AC=BC=2a,由M是边AC的中点得出CM=AM=a,根据勾股定理求出BM的长,再由∠CMH+∠MCH=90°,∠CMH+∠MBC=90°可得出∠MCH=∠MBC,进而可得出结论;(2)根据CH⊥BM于H,∠ACB=90°可得出∠MCB=∠MHC=90°,由∠BMC是公共角即可得出结论;(3)由(2)可知,△MCH∽△MBC,故=,再由CM=AM可知=,根据∠AMH为公共角可得出△AMH∽△BMA,故可得出结论.【解答】(1)解:设AC=BC=2a,∵M是边AC的中点,∴CM=AM=a,∴BM===a.∵∠ACB=90°,CH⊥BM于H,∴∠CMH+∠MCH=90°,∠CMH+∠MBC=90°,∴∠MCH=∠MBC,∴sin∠MCH=sin∠MBC===;(2)解:△MCH∽△MBC.理由:∵CH⊥BM于H,∴∠MHC=90°.∵∠ACB=90°,∴∠MCB=∠MHC=90°.∵∠BMC是公共角,∴△MCH∽△MBC;(3)证明:∵在△ABC中,∠ACB=90°,AC=BC,∴∠BAM=45°.∵由(2)知,△MCH∽△MBC,∴=.∵M是边AC的中点,∴CM=AM,∴=.∵∠AMH为公共角,∴△AMH∽△BMA,∴∠AHM=∠BAM=45°.【点评】本题考查的是相似形综合题,涉及到相似三角形的判定与性质、等腰直角三角形的性质、勾股定理等知识,在解答此题时要注意等腰直角三角形两个锐角是45°,此题难度适中.22.如图,点A,B,C,D,E在⊙O上,AB⊥CB于点B,tanD=3,BC=2,H为CE延长线上一点,且AH=,CH=5.(1)求证:AH是⊙O的切线;(2)若点D是弧CE的中点,且AD交CE于点F,求证:HF=HA;(3)在(2)的条件下,求EF的长.【考点】圆的综合题.【分析】(1)连接AC.由AB⊥BC可知AC是圆O的直径,由同弧所对的圆周角相等可知∠C=∠D,于是得到tanC=3,故此可知AB=6,在Rt△ABC中,由勾股定理得:AC2=40,从而可得到AC2+AH2=CH2,由勾股定理的逆定理可知AC⊥AH,故此可知AH是圆O的切线;(2)连接DE、BE.由弦切角定理可知∠ABD=∠HAD,由D是的中点,可证明∠CED=∠EBD,由同弧所对的圆周角相等可知∠ABE=∠ADE,结合三角形的外角的性质可证明:∠HAF=∠AFH,故此AH=HF;(3)由切割线定理可求得EH=,由(2)可知AF=FH=,从而得到EF=FH﹣EH=.【解答】解:(1)如图1所示:连接AC.∵AB⊥CB,∴AC是圆O的直径.∵∠C=∠D,∴tanC=3.∴AB=3BC=3×2=6.在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=40.又∵AH2=10,CH2=50,∴AC2+AH2=CH2.∴△ACH为直角三角形.∴AC⊥AH.∴AH是圆O的切线.(2)如图2所示:连接DE、BE.∵AH是圆O的切线,∴∠ABD=∠HAD.∵D是的中点,∴.∴∠CED=∠EBD.又∵∠ABE=∠ADE,∴∠ABE+∠EBD=∠ADE+∠CED.∴∠ABD=∠AFE.∴∠HAF=∠AFH.∴AH=HF.(3)由切割线定理可知:AH2=EH•CH,即()2=5EH.解得:EH=.∵由(2)可知AF=FH=.∴EF=FH﹣EH=.【点评】本题主要考查的是圆的综合应用,解答本题主要应用了切线的判定定理、弦切角定理、切割线定理、圆周角定理以及勾股定理和勾股定理的逆定理、三角形的外角的性质,掌握本题的辅助线的作法是解题的关键.23.已知二次函数y=x2+2(m+l)x﹣m+1.以下四个结论:①不论m取何值,图象始终过点(,2);②当﹣3<m<0时,抛物线与x轴没有交点:③当x>﹣m﹣2时,y随x的增大而增大;④当m=﹣时,抛物线的顶点达到最高位置.请你分别判断四个结论的真假,并给出理由.【考点】二次函数的性质.【分析】①把二次函数y=x2+2(m+l)x﹣m+1转化成y═(x+1)2﹣(2x﹣1)m,令x=,y=,判断出①;②令y=x2+2(m+l)x﹣m+1=0,求出根的判别式△在﹣3<m<0时小于0,判断②;③求出抛物线的对称轴,即可判断③;④根据顶点坐标式求出抛物线的顶点,然后根据顶点纵坐标判断④.【解答】解:①二次函数y=x2+2(m+l)x﹣m+1=(x+1)2﹣(2x﹣1)m,当x=时,y=,故可知抛物线总经过点(,2),故①正确,②令y=x2+2(m+l)x﹣m+1=0,求△=4(m+1)2+4m﹣4=4m2+12m,当﹣3<m<0时,4m2+12m<0,抛物线与x轴没有交点,故②正确,③抛物线开口向上,对称轴x=﹣=﹣m﹣1,所以当x>﹣m﹣1时,y随x的增大而增大,故③错误,④y=x2+2(m+l)x﹣m+1=(x+m+1)2﹣m2﹣3m,抛物线的顶点坐标为(﹣m﹣1,﹣m2﹣3m),因为顶点的纵坐标y=﹣m2﹣3m=﹣(m+)2+,所以当m=﹣时,抛物线的顶点达到最高位置.故④正确,正确的结论有①②④.【点评】本题主要考查二次函数的性质,解答本题的关键是熟练掌握抛物线的图象以及二次函数的性质,此题难度一般.。