3年高考(新课标)高考数学一轮复习 10.2二项式定理

合集下载

中职高考数学一轮复习讲练测专题10-2 二项式定理(练)(含详解)

中职高考数学一轮复习讲练测专题10-2  二项式定理(练)(含详解)

专题10.2 二项式定理1.(x -1x )5的展开式中含x 3项的二项式系数为( )A .-10B .10C .-5D .52.二项式(x 2+2x )10的展开式中的常数项是( )A .第10项B .第9项C .第8项D .第7项3.在(1-2x )6的展开式中,x 2的系数为__ __.(用数字作答)4.设二项式(x -13x)5的展开式中常数项为A ,则A =__ __. 5.若(2x -3x )n +3的展开式中共有15项,则自然数n 的值为( )A .11B .12C .13D .146.二项式(x 3-2x 2)5的展开式中的常数项为( )A .80B .-80C .40D .-407.C 0n ·2n +C 1n ·2n -1+…+C k n ·2n -k +…+C n n 等于( )A .2nB .2n -1C .3nD .18.(1+2x )5的展开式的第3项的系数为__ __,第3项的二项式系数为__ __.9.在⎝⎛⎭⎫x -12x 5的展开式中,x 2的系数为__ __.10.二项式(x -1)n 的奇数项二项式系数和是64,则n 等于( )A .5B .6C .7D .811. (2-x )8展开式中不含x 4项的系数的和为( )A .-1B .0C .1D .212. 在(2x -3x )n (n ∈N *)的展开式中,所有的二项式系数之和为32,则所有系数之和为() A .32 B .-32C .0D .113. 在(a +b )10二项展开式中与第3项二项式系数相同的项是( )A .第8项B .第7项C .第9项D .第10项1.⎝⎛⎭⎫x 2+2x 5的展开式中x 4的系数为( ) A .10B .20C .40D .802.若二项式(x -2x)n 的展开式中第5项是常数项,则自然数n 的值可能为( ) A .6B .10C .12D .153.(12x -2y )5的展开式中x 2y 3的系数是( ) A .-20B .-5C .5D .204.(1-x )(1+x )5展开式中x 项的系数是( )A .4 B .6C .8D .125.在⎝⎛⎭⎪⎫2x 2-13x 8的展开式中,求: (1)第5项的二项式系数及第5项的系数;(2)倒数第3项.6.若(x -4x)n 的展开式中各项系数的和为81,则该展开式中的常数项为__ __. 7.在二项式(2x -3y )9的展开式中,求:(1)二项式系数之和;(2)各项系数之和;(3)所有奇数项系数之和;(4)系数绝对值的和.8.已知(x -2x2)n (n ∈N *)的展开式中第五项的系数与第三项的系数的比是10∶1. (1)求展开式中各项系数的和;(2)求展开式中含x 32的项. 9. 已知(2x -1)4=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4,则a 2=( B )A .18B .24C .36D .5610. 设(3x -1)8=a 8x 8+a 7x 7+…+a 1x +a 0,则(1)a 8+a 7+…+a 1=__ _;(2)a 8+a 6+a 4+a 2+a 0=__ __.1.(2020年河北对口) 13.设=( )A.0B.-1C.1D.220-12.(2019年河北对口)二项式1221(2)x x -的展开式中,常数项等于( )A 、48122CB 、 48122C -C 、 66122CD 、66122C -3.(2018年河北对口) 13、设2018220180122018(21)x a a x a x a x -=++++=( )A 、0B 、 1C 、-1D 、201821-4.(2017年河北对口) 13.二项式2017(34)x -的展开式中,各项系数的和为( )A .1-B .1C .20172D .201775.(2016年河北对口) 13.已知15的第k 项为常数项,则k 为( )A .6B .7C . 8D .96. (2015年河北对口) 13.设1851x x 展开式的第n 项为常数项,则n 的值为()A.3B.4C.5D.67. (2014年河北对口)14.102⎪⎭⎫⎝⎛-x x 的展开式中,常数项等于( ).A.55102CB. ()45102-CC.46102CD.()55102-C8. (2013年河北对口) 15. 在10)32(x -的展开式中,x 10的系数是( ).A. -53B. 1C. 53D. 1029. (2012年河北对口) 27.二项式6)21(x -展开式中4x 的系数是 .专题10.2 二项式定理1.(x -1x)5的展开式中含x 3项的二项式系数为( D ) A .-10B .10C .-5D .5[解析] T r +1=C r 5·x 5-r (-1x)r =(-1)r C r 5·x 5-2r , 令5-2r =3,则r =1.∴x 3项的二项式系数为C 15=5.2.二项式(x 2+2x)10的展开式中的常数项是( B ) A .第10项 B .第9项C .第8项D .第7项[解析] 通项T r +1=C r 10·(x 2)10-r ·(2x )r =2r ·C r 10·x 20-5r 2 ,令20-5r 2=0得r =8,∴常数项为第9项. 3.在(1-2x )6的展开式中,x 2的系数为__60__.(用数字作答)[解析] (1-2x )6的展开式的通项T r +1=C r 6(-2)r x r ,当r =2时,T 3=C 26(-2)2x 2=60x 2,所以x 2的系数为60.4.设二项式(x -13x )5的展开式中常数项为A ,则A =__-10__.[解析] T r +1=C r 5x 5-r 2(-1)r ·x -r 3 ,令5-r 2-r 3=0得r =3,所以A =C 35(-1)3=-10. 5.若(2x -3x )n+3的展开式中共有15项,则自然数n 的值为( A ) A .11B .12C .13D .14[解析] 因为(2x -3x )n +3的展开式中共n +4项,所以n +4=15,即n =11,故选A .6.二项式(x 3-2x2)5的展开式中的常数项为( B ) A .80B .-80C .40D .-40[解析] 二项式(x 3-2x 2)5的展开式的通项为T r +1=C r 5(x 3)5-r (-2x 2)r =(-1)r ·2r C r 5x 15-5r ,令15-5r =0,解得r =3,所以常数项为T 4=(-1)3×23×C 35=-80,故选B .7.C 0n ·2n +C 1n ·2n -1+…+C k n ·2n -k +…+C n n等于( C ) A .2nB .2n -1C .3nD .1[解析] 原式=(2+1)n =3n .8.(1+2x )5的展开式的第3项的系数为__40__,第3项的二项式系数为__10__.[解析] ∵T 3=C 25(2x )2=C 2522x 2=40x 2,∴第3项的系数为40,第3项的二项式系数为C 25=10.9.在⎝⎛⎭⎫x -12x 5的展开式中,x 2的系数为__52__. [解析] ⎝⎛⎭⎫x -12x 5的展开式的通项为T r +1=C r 5x 5-r ⎝⎛⎭⎫-12r ·x -r 2=⎝⎛⎭⎫-12r C r 5x 5-3r 2.令5-3r 2=2,解得r =2.故展开式中x 2的系数为⎝⎛⎭⎫-122C 25=52. 10.二项式(x -1)n 的奇数项二项式系数和是64,则n 等于( C )A .5B .6C .7D .8 [解析] 二项式(a +b )n 的展开式中,奇数项的二项式系数和等于偶数项的二项式系数和,∴2n -1=64,∴n =7.故选C .11. (2-x )8展开式中不含x 4项的系数的和为( B )A .-1B .0C .1D .2 [解析] (2-x )8展开式的通项T r +1=C r 8·28-r ·(-x )r =C r 8·28-r ·(-1)r ·x r 2 .由r 2=4得r =8. ∴展开式中x 4项的系数为 C 88=1.又∵(2-x )8展开式中各项系数和为(2-1)8=1,∴展开式中不含x 4项的系数的和为0.12. 在(2x-3x )n (n ∈N *)的展开式中,所有的二项式系数之和为32,则所有系数之和为( D ) A .32B .-32C .0D .1[解析] 由题意得2n =32,得n =5.令x =1,得展开式所有项的系数之和为(2-1)5=1.故选D .13. 在(a +b )10二项展开式中与第3项二项式系数相同的项是( C )A .第8项B .第7项C .第9项D .第10项[解析] 由二项式展开式的性质与首末等距离的两项的二项式系数相等.1.⎝⎛⎭⎫x 2+2x 5的展开式中x 4的系数为( C ) A .10 B .20C .40D .80[解析] ⎝⎛⎭⎫x 2+2x 5的展开式的通项公式为T r +1=C r 5·(x 2)5-r ·⎝⎛⎭⎫2x r =C r 5·2r ·x 10-3r ,令10-3r =4,得r =2.故展开式中x 4的系数为C 25·22=40.故选C .2.若二项式(x -2x)n 的展开式中第5项是常数项,则自然数n 的值可能为( C ) A .6B .10C .12D .15[解析] ∵T 5=C 4n (x )n -4·(-2x )4=24·C 4n x n -122是常数项,∴n -122=0,∴n =12. 3.(12x -2y )5的展开式中x 2y 3的系数是( A ) A .-20B .-5C .5D .20[解析] 展开式的通项公式为T r +1=C r 5(12x )5-r ·(-2y )r =(12)5-r ·(-2)r C r 5x 5-r y r . 当r =3时为T 4=(12)2(-2)3C 35x 2y 3=-20x 2y 3,故选A . 4.(1-x )(1+x )5展开式中x 项的系数是( A )A .4B .6C .8D .12[解析] (1-x )(1+x )5展开式中x 项的系数:二项式(1+x )5由通项公式T r +1=C r 5x r .当(1-x )提供常数项时:r =1,此时x 项的系数是C 15=5, 当(1-x )提供一个x 时:r =0,此时x 项的系数是-1×C 05=-1, 合并可得(1-x )(1+x )5展开式中x 项的系数为4.故选A .5.在⎝⎛⎭⎪⎫2x 2-13x 8的展开式中,求: (1)第5项的二项式系数及第5项的系数;(2)倒数第3项.[解析] (1)∵T 5=C 48·(2x 2)8-4·⎝ ⎛⎭⎪⎫13x 4=C 48·24·x 203, ∴第5项的二项式系数是C 48=70,第5项的系数是C 48·24=1 120.(2)展开式中的倒数第3项即为第7项,T 7=C 68·(2x 2)8-6·⎝⎛⎭⎪⎫-13x 6=112x 2.6.若(x -4x)n 的展开式中各项系数的和为81,则该展开式中的常数项为__96__. [解析] 在(x -4x)n 中,令x =1可得,其展开式中各项系数和为(-3)n ,结合题意可得(-3)n =81,解得n =4.∴(x -4x )n 的展开式的通项公式为:T r +1=C r 4x 4-r (-4x)r =(-4)r ·C r 4·x 4-2r , 令4-2r =0,解得r =2.∴常数项为C 24×(-4)2=96.故答案为96.7.在二项式(2x -3y )9的展开式中,求:(1)二项式系数之和;(2)各项系数之和;(3)所有奇数项系数之和;(4)系数绝对值的和.[解析] 设(2x -3y )9=a 0x 9+a 1x 8y +a 2x 7y 2+…+a 9y 9.(1)二项式系数之和为C 09+C 19+C 29+…+C 99=29.(2)各项系数之和为a 0+a 1+a 2+…+a 9,令x =1,y =1,∴a 0+a 1+a 2+…+a 9=(2-3)9=-1.(3)由(2)知a 0+a 1+a 2+…+a 9=-1,令x =1,y =-1,可得:a 0-a 1+a 2-…-a 9=59,将两式相加除以2可得:a 0+a 2+a 4+a 6+a 8=59-12,即为所有奇数项系数之和. 8.已知(x -2x 2)n (n ∈N *)的展开式中第五项的系数与第三项的系数的比是10∶1. (1)求展开式中各项系数的和;(2)求展开式中含x 32的项. [解析] 由题意知,第五项系数为C 4n (-2)4,第三项的系数为C 2n (-2)2,则有C 4n (-2)4C 2n (-2)2=101,化简得n 2-5n -24=0,解得n =8或n =-3(舍去).(1)令x =1得各项系数的和为(1-2)8=1.(2)通项公式T r +1=C r 8(x )8-r (-2x 2)r =C r 8(-2)r x 8-r 2-2r ,令8-r 2-2r =32,得r =1, 故展开式中含x 32的项为T 2=-16x 32. 9. 已知(2x -1)4=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4,则a 2=( B )A .18B .24C .36D .56[解析] 对于等式(2x -1)4=[(2x -2)+1]4=[1+(2x -2)]4 =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4.a 2=C 24·22=24.故选B .10. 设(3x -1)8=a 8x 8+a 7x 7+…+a 1x +a 0,则(1)a 8+a 7+…+a 1=__255__;(2)a 8+a 6+a 4+a 2+a 0=__32_896__.[解析] 令x =0,得a 0=1.(1)令x =1得(3-1)8=a 8+a 7+…+a 1+a 0,①∴a 8+a 7+…+a 2+a 1=28-a 0=256-1=255.(2)令x =-1得(-3-1)8=a 8-a 7+a 6-…-a 1+a 0.②①+②得28+48=2(a 8+a 6+a 4+a 2+a 0),∴a 8+a 6+a 4+a 2+a 0=12(28+48)=32 896. 1.(2020年河北对口) 13.设=( )A.0B.-1C.1D.220-1【答案】C2.(2019年河北对口)二项式1221(2)x x -的展开式中,常数项等于( ) A 、48122C B 、 48122C - C 、 66122C D 、66122C -【答案】A3.(2018年河北对口) 13、设2018220180122018(21)x a a x a x a x -=++++=( ) A 、0 B 、 1 C 、-1 D 、201821-【答案】A4.(2017年河北对口) 13.二项式2017(34)x -的展开式中,各项系数的和为( )A .1-B .1C .20172D .20177【答案】A5.(2016年河北对口) 13.已知15的第k 项为常数项,则k 为( )A .6B .7C . 8D .9【答案】B6. (2015年河北对口) 13.设1851x x 展开式的第n 项为常数项,则n 的值为() A.3 B.4C.5D.6 【答案】B7. (2014年河北对口)14.102⎪⎭⎫ ⎝⎛-x x 的展开式中,常数项等于( ).A.55102CB. ()45102-CC.46102C D.()55102-C【答案】D8. (2013年河北对口) 15. 在10)32(x -的展开式中,x 10的系数是( ).A. -53B. 1C. 53D. 102【答案】C9. (2012年河北对口) 27.二项式6)21(x -展开式中4x 的系数是 .【答案】240。

高考数学理一轮复习 10-3二项式定理及其应用精品课件

高考数学理一轮复习 10-3二项式定理及其应用精品课件

1 n 备选例题 1 在二项式( x- ) 的展开 3 2 x 式中,前三项系数的绝对值成等差数列.求: (1)展开式的常数项; (2)展开式中各项系数的和. 3
1 n 解: 由条件“二项式( x- ) 的展开式中, 3 2 x 前三项系数的绝对值成等差数列”可求出 n 的值. 1 n 3 ∵( x- ) 展开式的前三项系数的绝对值 3 2 x n(n-1) 1 为 1,2n, 8 , n(n-1) 1 ∴2×2n=1+ 8 ,∴n2-9n+8=0, ∴n=8 或 n=1(舍去). 3
[解] (1)令 x=0,则 a0=-1; 令 x = 1 ,则 a7 + a6 +…+ a1 + a0 = 27 = 128① ∴a7+a6+…+a1=129. (2)令 x=-1, 则-a7+a6-a5+a4-a3+a2-a1+a0=(- 4)7② ①-② 由 2 得: 1 a7+a5+a3+a1=2[128-(-4)7]=8 256. ①+② (3)由 2 得: 1 a6+a4+a2+a0=2[128+(-4)7]=-8 128.
[规律总结]
本题是先求二项式的指数,再求与通项
有关的其他问题.一般地,解此类问题可以分两步完成:第 一步是根据所给出的条件 ( 特定项 )和通项公式,建立方程来 确定指数(求解时要注意二项式系数中n和r均为非负整数,且
n≥r的隐含条件);第二步是根据所求的指数,再求所求解的
项.此外,解本题时,为减少计算中的错误,宜把根式化为 分数指数幂.
第三节
二项式定理及其应用
知识自主· 梳理
掌握二项式定理和二项展开式的性质 最新考纲 ,并能用它们计算和证明一些简单的 问题.
1.运用二项式定理的通项公式求指定 项或与系数有关的问题; 高考热点 2.赋值法、转化与化归思想等在二项 展开式中的应用问题.

新高考2023版高考数学一轮总复习第10章第3讲二项式定理课件

新高考2023版高考数学一轮总复习第10章第3讲二项式定理课件

Tk+1=Ck4xk(k=0,1,2,3,4), 故(1+2x2)(1+x)4 的展开式中 x3 的系数为 C34+2C14=12.故选 A.
(3)(x2+x+y)5=[(x2+x)+y]5, 含 y2 的项为 T3=C25(x2+x)3·y2. 其中(x2+x)3 中含 x5 的项为 C13x4·x=C13x5. 所以 x5y2 的系数为 C25C13=30.故选 C. 另解:由乘法法则知 5 个因式中两个选 y 项,两个选 x2 项,一个选 x 项乘即可,∴x5y2 的系数为 C25C13=30.
1.二项式定理中,通项公式 Tk+1=Cknan-kbk 是展开式的第 k+1 项, 不是第 k 项.
2.(1)二项式系数与展开式中项的系数是两个不同的概念,在 Tk+1 =Cknan-kbk 中,Ckn是该项的二项式系数,该项的系数还与 a,b 有关.
(2)二项式系数的最值和增减性与指数 n 的奇偶性有关.当 n 为偶数 时,中间一项的二项式系数最大;当 n 为奇数时,中间两项的二项式系 数相等,且同时取得最大值.
第十章
计数原理、概率、随机变量及其分布
第三讲 二项式定理
知识梳理·双基自测 考点突破·互动探究 名师讲坛·素养提升
知识梳理·双基自测
知识点一 二项式定理
(a+b)n=C0nan+C1nan-1b+…+Cknan-kbk+…+Cnnbn(n∈N+).
这个公式叫做二项式定理,右边的多项式叫做(a+b)n 的二项展开式,
又(1-2x)5(1+3x)4 的展开式中按 x 升幂排列的第 3 项即展开式中 x2 项,
C05(-2x)0·C24(3x)2+C15(-2x)·C14(3x)+C25(-2x)2·C04(3x)0=-26x2.

高考数学一轮总复习 第十章 10.3 二项式定理

高考数学一轮总复习 第十章  10.3 二项式定理

跟踪训练 3 (1)(2018·泉州模拟)1-90C110+902C210-903C310+
+…+9010C1100除以 88 的余数是
A.-1
√B.1
C.-87
D.87
解析 1-90C110+902C210-903C310+…+(-1)k90kCk10+…+9 8910=(88+1)10=8810+C110889+…+C91088+1, ∵前10项均能被88整除,∴余数是1.
令 4-2k=2+2k=3,解得 k=2, 故展开式中 x3y3 的系数为(-1)2C24=6.
2 题型分类 深度剖析
PART TWO
多维探究
题型一 二项展开式
命题点1 求指定项(或系数)
例1 (1)(2017·全国Ⅰ) 1+x12 (1+x)6的展开式中x2的系数为
A.15
B.20
思维升华
(1)“赋值法”普遍适用于恒等式,对形如(ax+b)n,(ax2+
c∈R)的式子求其展开式的各项系数之和,常用赋值法.
(2)若f(x)=a0+a1x+a2x2+…+anxn,则f(x)展开式中各项系数
数项系数之和为a0+a2+a4+…=
f1+f-1, 偶数项系数 2
a5+…=
f1-f-1
(3)若 x2-1xn 的展开式中含x的项为第6项,设(1-3x)n=a0+a 则a1+a2+…+an的值为_2_5_5_. 解析 x2-1xn 展开式的第 k+1 项为 Tk+1=Ckn(x2)n-k·-1xk
=Ckn(-1)kx2n-3k, 当k=5时,2n-3k=1,∴n=8. 对(1-3x)8=a0+a1x+a2x2+…+a8x8, 令x=1,得a0+a1+…+a8=28=256.

专题10-2 二项式定理-2023年高考数学一轮复习热点题型(全国通用)(解析版)

专题10-2 二项式定理-2023年高考数学一轮复习热点题型(全国通用)(解析版)

【详解】 x 2 10 的展开式中,通项公式: Tr1 C1r0 x10r 2 r ,
令 10−r=7,解得 r=3.
∴x7 的系数为 C130 2 3 = 8C170 ,
故选:C.
2..
1 2
x
2
y
5
的展开式中
x2
y3
的系数为_____.
【答案】-20 分析:首先利用二项展开式的通项公式写出该二项展开式的通项,之后令相应的幂指数与题中所给的项的
k
1 项 Tk1
Ckn
x3 nk
x3 k Ckn x3n6k
令 3n 6k 0 则 n 2k ( k Z )
所以 n 为偶数。故选:A
【题型四】给通项求参数
【典例分析】
已知
ax
b x
6
的展开式中
x
3 2
项的系数为
160,则当
a
0

b
0
时,
a
b
的最小值为(

A.4
B. 2 2
C.2
D. 2
当 r 3 时, T4 253C53x53 y 3 40x2 y3 ,此时只需乘以第一个因式 x 2 y 中的 x 即可,得到 40x3 y3 ;
当 r 2 时,T3 252 C52 x52 y 2 80x3 y2 ,此时只需乘以第一个因式 x 2 y 中的 2 y 即可,得到 160x3 y3 ;
故选:D.
3. x 2 y 2x y 5 的展开式中的 x3 y3 系数为(

A. 200
B. 120
C.120
D.200
【答案】A
【分析】由题意首先确定 (2x y)5 展开式的通项公式,再采用分类讨论法即可确定 x3 y3 的系数.

高考数学一轮复习---二项式定理知识点与题型复习

高考数学一轮复习---二项式定理知识点与题型复习

二项式定理知识点与题型复习一、基础知识1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*)(2)通项公式:T k+1=C k n a n-k b k,它表示第k+1项;(3)二项式系数:二项展开式中各项的系数为C0n,C1n,…,C n n.2.二项式系数的性质注:(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n.二项式系数与项的系数的区别二项式系数是指C0n,C1n,…,C n n,它只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.如(a+bx)n的二项展开式中,第k+1项的二项式系数是C k n,而该项的系数是C k n a n-k b k.当然,在某些二项展开式中,各项的系数与二项式系数是相等的.二、考点解析考点一二项展开式中特定项或系数问题考法(一)求解形如(a+b)n(n∈N*)的展开式中与特定项相关的量例1、(1)522⎪⎭⎫⎝⎛+xx的展开式中x4的系数为()A.10B.20C.40D.80(2)若(2x-a)5的二项展开式中x3的系数为720,则a=________.(3)已知5⎪⎭⎫⎝⎛+xax的展开式中x5的系数为A,x2的系数为B,若A+B=11,则a=________.[解题技法]求形如(a+b)n(n∈N*)的展开式中与特定项相关的量(常数项、参数值、特定项等)的步骤第一步,利用二项式定理写出二项展开式的通项公式T r+1=C r n a n-r b r,常把字母和系数分离开来(注意符号不要出错);第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出r;第三步,把r代入通项公式中,即可求出T r+1,有时还需要先求n,再求r,才能求出T r+1或者其他量.考法(二)求解形如(a+b)m(c+d)n(m,n∈N*)的展开式中与特定项相关的量例2、(1)(1-x)6(1+x)4的展开式中x的系数是()A.-4B.-3C.3D.4(2)已知(x-1)(ax+1)6的展开式中含x2项的系数为0,则正实数a=________.[解题技法]求形如(a+b)m(c+d)n(m,n∈N*)的展开式中与特定项相关的量的步骤第一步,根据二项式定理把(a+b)m与(c+d)n分别展开,并写出其通项公式;第二步,根据特定项的次数,分析特定项可由(a+b)m与(c+d)n的展开式中的哪些项相乘得到;第三步,把相乘后的项合并即可得到所求特定项或相关量.考法(三)求形如(a+b+c)n(n∈N*)的展开式中与特定项相关的量例3、(1)(x2+x+y)5的展开式中x5y2的系数为()A.10B.20C.30D.60(2)将344⎪⎭⎫⎝⎛-+xx展开后,常数项是________.[解题技法]求形如(a+b+c)n(n∈N*)的展开式中与特定项相关的量的步骤第一步,把三项的和a+b+c看成是(a+b)与c两项的和;第二步,根据二项式定理写出[(a +b )+c ]n 的展开式的通项;第三步,对特定项的次数进行分析,弄清特定项是由(a +b )n -r 的展开式中的哪些项和c r 相乘得到的; 第四步,把相乘后的项合并即可得到所求特定项或相关量. 跟踪训练1.在(1-x 3)(2+x )6的展开式中,x 5的系数是________.(用数字作答)3.5212⎪⎭⎫⎝⎛++x x (x >0)的展开式中的常数项为________.考点二 二项式系数的性质及各项系数和[典例精析](1)若531⎪⎪⎭⎫ ⎝⎛+x x 的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( ) A.63x B.4x C.4x 6x D.4x或4x 6x(2)若nx x ⎪⎭⎫ ⎝⎛-12的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n的值为________.(3)若(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.[解题技法] 1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如: (1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可. (2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项展开式各项系数和、奇数项系数和与偶数项系数和的求法 若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中 (1)各项系数之和为f (1).(2)奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2.(3)偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.跟踪训练1.已知(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则|a0|+|a1|+…+|a5|=()A.1B.243C.121D.1222.若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且(a0+a2+…+a8)2-(a1+a3+…+a9)2=39,则实数m的值为________.3.已知(1+3x)n的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为____.考点三二项展开式的应用例、设a∈Z,且0≤a<13,若512 018+a能被13整除,则a=()A.0B.1C.11D.12[解题技法]利用二项式定理解决整除问题的思路(1)要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.因此,一般要将被除式化为含相关除式的二项式,然后再展开.(2)用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开.但要注意两点:①余数的范围,a=cr+b,其中余数b∈[0,r),r是除数,若利用二项式定理展开变形后,切记余数不能为负;②二项式定理的逆用.跟踪训练]1.使得多项式81x4+108x3+54x2+12x+1能被5整除的最小自然数x为()A.1B.2C.3D.4课后作业1.3422⎪⎪⎭⎫ ⎝⎛+x x 的展开式中的常数项为( ) A.-32 B.32 C.6 D.-6 2.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,则a 2+a 4a 1+a 3的值为( )A.-6160B.-122121C.-34D.-901213.若二项式72⎪⎭⎫ ⎝⎛+x a x 的展开式的各项系数之和为-1,则含x 2项的系数为( )A.560B.-560C.280D.-2804.已知(1+x )n 的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( ) A.29 B.210 C.211 D.2125.二项式9221⎪⎭⎫⎝⎛-x x 的展开式中,除常数项外,各项系数的和为( )A.-671B.671C.672D.673 6.在(1-x )5(2x +1)的展开式中,含x 4项的系数为( )A.-5B.-15C.-25D.257.若(x 2-a )101⎪⎭⎫ ⎝⎛+x x 的展开式中x 6的系数为30,则a 等于( )A.13B.12C.1D.2 8.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为( ) A.1或3 B.-3 C.1 D.1或-3 9.(2x -1)6的展开式中,二项式系数最大的项的系数是________.(用数字作答)10.9⎪⎭⎫ ⎝⎛+x a x 的展开式中x 3的系数为-84,则展开式的各项系数之和为________.11.511⎪⎭⎫ ⎝⎛++x x 展开式中的常数项为________.12.已知nx x ⎪⎪⎭⎫ ⎝⎛+41的展开式中,前三项的系数成等差数列. (1)求n ;(2)求展开式中的有理项;(3)求展开式中系数最大的项.。

高考数学一轮复习(十三)二项式定理

高考数学一轮复习(十三)二项式定理

高中数学一轮复习(十三) 二项式定理1.二项式定理:011()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈ ,2.基本概念:①二项式展开式:右边的多项式叫做()n a b +的二项展开式。

②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =⋅⋅⋅.③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。

用1r n r r r nT C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()n b a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =,···1k k n nC C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++= , 变形式1221r n n n n n n C C C C +++++=- 。

高考数学一轮复习二项式定理

高考数学一轮复习二项式定理

高考一轮复习--二项式定理二、高考考点1、对二项式定理的掌握与应用:以二项展开式(或多项展开式)中某一项(或某一项的系数)的问题为主打试题;2、对二项展开式的性质的掌握与应用:二项展开式中二项式系数的和与各项系数的和;组合多项式的求和等问题。

三、知识要点1、定义,这一公式表示的定理叫做二项式定理,其中(1)公式右边的多项式叫做的二项展开式;上述二项展开式中各项的系数叫做二项式系数,第r+1项叫做二项展开式的通项,用表示;(2)叫做二项展开式的通项公式。

2.认知(1)二项展开式的特点与功能(Ⅰ)二项展开式的特点①项数:二项展开式共n+1(二项式的指数+1)项;②指数:二项展开式各项的第一字母a依次降幂(其幂指数等于相应二项式系数的下标与上标的差),第二字母b依次升幂(其幂指数等于二项式系数的上标),并且每一项中两个字母的系数之和均等于二项式的指数n;③系数:各项的二项式系数下标等于二项式指数;上标等于该项的项数减去1(或等于第二字母b的幂指数;(Ⅱ)二项展开式的功能注意到二项展开式的各项均含有不同的组合数,若赋予a,b不同的取值,则二项式展开式演变成一个组合恒等式。

因此,揭示二项式定理的恒等式为组合恒等式的“母函数”,它是解决组合多项式问题的原始依据。

又注意到在的二项展开式中,若将各项中组合数以外的因子视为这一组合数的系数,则易见展开式中各组合数的系数依次成等比数列。

因此,解决组合数的系数依次成等比数列的求值或证明问题,二项式公式也是不可或缺的理论依据。

(2)二项式系数的性质(Ⅰ)对称性:在二项展开式中,与首末两项“等距离”的两项的二项式系数相等。

(Ⅱ)单调性:二项式系数(数列)在前半部分逐渐增大,在后半部分逐渐减小,在中间(项)取得最大值。

其中,当n 为偶数时,二项展开式中间一项的二项式系数 最大;当n 为奇数时,二项展开式中间两项的二项式系数 ,相等,且最大。

(Ⅲ)组合总数公式:即二项展开式中各项的二项式系数之和等于(Ⅳ)“一分为二”的考察:二项展开式中各奇数项的二项式系数之和等于各偶数项的二项式系数之和,即四、典型例题例1、 已知二项式 展开式中,末三项的系数依次成等差数列,求此展开式中所有的有理项。

二项式定理讲义 高三数学一轮复习

二项式定理讲义 高三数学一轮复习

高三讲义:二项式定理【知识园地】1、二项式定理:设n 是正整数,等式()nb a +=___________________________________ 称为二项式定理.相关概念:(1)上述等式右端称为二项展开式, 一共有__________项;(2)各项的系数C (0,1,,)rn r n =称为_____________;(3)通常用1+r T 表示展开式中的第________项,即1+r T =____________),1,2,1,0(n n r -=1+r T 称为()nb a +展开式的通项,________是第r+1项的二项式系数.2、二项式系数的性质(1) 对称性: 011C C ,C C ,n n n n n n -==, 即C C rn r n n -=.(2) 在二项式定理中, 令a b ==____, 则二项式系数和为:=+++n n n n n C C C C 210_____; 偶数项二项式系数和等于奇数项二项式系数和:=+++ 420n n n C C C =+++ 531n n n C C C ____(3)若二项式的幂指数n 是偶数, 则___________的二项式系数最大; 若是奇数, 则___________的二项式系数相等, 并且最大;3、各项系数和:【例】()n x 12+的各项系数和为_____________【例题讲解】例1、(1)求51⎪⎭⎫ ⎝⎛+x x 的二项展开式,并求第4项(2)求(x 2﹣)4的二项展开式考点一、求展开式某一项的系数例2、(1)求()623x -的二项展开式中3x 的系数(2)求92⎪⎭⎫ ⎝⎛-x x 的二项展开式中3x 的系数(3)已知二项式(52x x,则展开式中3x 的系数为________(用数字作答).(4)在(1﹣x )5(1+x 3)的展开式中,x 3的系数为 .(结果用数值表示)考点二、求展开式的常数项 例3、(1)求61⎪⎭⎫ ⎝⎛-x x 二项展开式中的第3项、常数项(2)在262()x x +的二项展开式中,常数项等于 .(3)求展开式中常数项为______________考点三、二项式系数和、系数和例3、(1)在912x x ⎛⎫ ⎪⎝⎭的展开式中,各项系数之和为________. (2)若nx x ⎪⎭⎫ ⎝⎛+321展开式的各项系数之和为256,则n=_________考点四、系数最大值例3、求()1531x +的二项式展开中,系数最大的项 变式:()1531x -例4、已知对任何给定的实数x ,都有 求值:(1)100210a a a a ++++(2)99531a a a a ++++(3)求1a 的值()()()()100100221010011121-++-+-+=+x a x a x a a x【回家作业】1. 在(1+x )6的二项展开式中,x 2项的系数为 (结果用数值表示).2.在8(21)x +的二项式展开式中,2x 项的系数是 .3.(1﹣2x )5的展开式中x 3的项的系数是 (用数字表示)4.(x 2+)5的展开式中x 4的系数为5. 二项式(3x ﹣1)11的二项展开式中第3项的二项式系数为 .6.若62a x x ⎛⎫+ ⎪⎝⎭的二项展开式中的常数项为160-,则实数a =___________. 7.二项式()6的展开式的常数项为 . 8.若23(2)n a b +的二项展开式中有一项为412ma b ,则m = .9. 若272314012314(1)x a a x a x a x a x -=+++++,则58a a += _ .10.设(x ﹣1)(x +1)5=a 0+a 1x +a 2x 2+a 3x 3+…+a 6x 6,则a 3= (结果用数值表示)11. 若在n x x ⎪⎭⎫ ⎝⎛+1的二项展开式中,二项式系数之和为64 (1)求n 的值;(2)求展开式中的常数项.12.(5分)“n =4”是“(x +)n 的二项展开式中存在常数项”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件13、设(62)n x -的展开式中, 各项系数之和为256, 则展开式中二项式系数最大项是第( )项.A. 2B. 3C. 4D. 514、(1)求()721x +的二项展开式中系数最大的项 (2)求()721x -二项展开式中系数最大的项(提示:先求系数绝对值最大)15、(1)在52⎪⎭⎫ ⎝⎛-x a x 的二项式展开式中,若x 的系数是-10,求实数a 的值; (2)求92⎪⎭⎫ ⎝⎛-x x 的二项展开式中3x 的二项式系数与系数; (3)在()2021x -的二项展开式中,如果第r 4项和第2+r 项的二项式系数相等,求此展开式的第4r 项.。

中职高考数学一轮复习讲练测专题10-2 二项式定理(讲)解析版

中职高考数学一轮复习讲练测专题10-2  二项式定理(讲)解析版

专题10.2 二项式定理【考纲要求】会用二项式定理解决与二项展开式有关的简 单问题【考向预测】1. 求二项展开式的第n 项.2. 求二项展开式中的特定项.3. 已知二项展开式的某项,求特定项的系数.4. 二项式系数的最大值.【知识清单】1. 二项式定理(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n nb n (n ∈N +). 这个公式叫做二项式定理,右边的多项式叫做(a +b )n 的二项展开式,其中的系数C k n (k=0,1,2,…,n )叫做__二项式系数__,式中的__C k n a n -k b k__叫做二项展开式的__通项__,用T k +1表示,即通项为展开式的第__k +1__项:T k +1=__C k n an -k b k __. 2.二项展开式形式上的特点(1)项数为__n +1__.(2)各项的次数和都等于二项式的幂指数n ,即a 与b 的指数的和为__n __.(3)字母a 按__降幂__排列,从第一项开始,次数由n 逐项减小1直到零;字母b 按__升幂__排列,从第一项起,次数由零逐项增加1直到n . 3.二项式系数的性质(1)0≤k ≤n 时,C k n 与C n -k n 的关系是__C k n =C n -kn __.(2)二项式系数先增后减,中间项最大.当n 为偶数时,第n2+1项的二项式系数最大;当n 为奇数时,第n +12项和n +32项的二项式系数最大.(3)各二项式系数的和:C 0n +C 1n +C 2n +…+C n n =__2n __,C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n+…=__2n -1__.重要结论1.二项式定理中,通项公式T k +1=C k n an -k b k是展开式的第k +1项,不是第k 项. 2.(1)二项式系数与展开式中项的系数是两个不同的概念,在T k +1=C k n a n -k b k 中,C k n 是该项的二项式系数,该项的系数还与a ,b 有关.(2)二项式系数的最值和增减性与指数n 的奇偶性有关.当n 为偶数时,中间一项的二项式系数最大;当n 为奇数时,中间两项的二项式系数相等,且同时取得最大值.【考点分类剖析】考点一 二次展开式的通项公式的应用例1. (x 2+2x )5的展开式中x 4的系数为( C )A .10B .20C .40D .80[解析]T r +1=C r 5(x 2)5-r ⎝⎛⎭⎫2x r =C r 52r x 10-3r , 当10-3r =4时,解得r =2,则x 4的系数为C 25×22=40,选C .例2 (1) ⎝⎛⎭⎫ax -1x 6的展开式中的常数项为160,则a 的值为( A ) A .-2 B .2 C .-4D .4(2)已知二项式⎝⎛⎭⎫2x -1x n的展开式中第2项与第3项的二项式系数之比是2∶5,则x 3的系数为__240__.[解析] (1)⎝⎛⎭⎫ax -1x 6的展开式的通项为T r +1=C r 6(ax )6-r ·⎝⎛⎭⎫-1x r =(-1)r C r 6a 6-rx 6-2r,由题意得-C 36a 3=160,解得a =-2,故选A .(2)由题意得:C 1n ∶C 2n =2∶5,解得n =6.所以T r +1=C r n (2x )n -r ⎝⎛⎭⎫-1x r=C r 626-r(-1)r x 6-32r, 令6-32r =3,解得:r =2.所以x 3的系数为C 2626-2(-1)2=240. 【变式探究】1. 二项式⎝⎛⎭⎪⎫3x +12x 8的展开式的常数项是__7__.2.设n 为正整数,⎝⎛⎭⎫x -2x 3n 的展开式中仅有第5项的二项式系数最大,则展开式中的常数项为( B )A .-112B .112C .-60D .60[解析] 1.T r +1=C r 8(3x )8-r · ⎝⎛⎭⎫12x r =12r C r 8x 8-4r3,由8-4r =0得r =2,故常数项为T 3=122C 28=7. 2.依题意得,n =8,所以展开式的通项T r +1=C r 8x 8-r ·⎝⎛⎭⎫-2x 3r =C r 8x 8-4r (-2)r ,令8-4r =0,解得r =2,所以展开式中的常数项为 T3=C28(-2)2=112. 考点二 二项式系数的性质与各项系数的和例1.已知二项式⎝⎛⎭⎫2x +1x n 的展开式中,二项式系数之和等于64,则展开式中常数项等于( A )A .240B .120C .48D .36[解析]∵二项式⎝⎛⎭⎫2x +1x n 的展开式中, 二项式系数之和等于2n=64,则n =6,故展开式的通项公式为T r +1=C r 6·26-r ·x 6-3r2,令6-3r 2=0,求得r =2,∴常数项为C 26·24=240.故选A .例2.设(2-3x )100=a 0+a 1x +a 2x 2+…+a 100x 100,求下列各式的值. (1)a 0;(2)a 1+a 2+…+a 100; (3)a 1+a 3+a 5+…+a 99;[解析] (1)由(2-3x )100展开式中的常数项为C 0100·2100,即a 0=2100(或令x =0,则展开式可化为a 0=2100).(2)令x =1,可得a 0+a 1+a 2+…+a 100=(2-3)100,① ∴a 1+a 2+…+a 100=(2-3)100-2100. (3)令x =-1,可得a 0-a 1+a 2-a 3+…+a 100=(2+3)100,② 与①联立相减可得a 1+a 3+…+a 99=(2-3)100-(2+3)1002.【方法归纳】赋值法的应用(1)形如(ax +b )n (a 、b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1), 奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.【变式探究】1. 已知(x 3+ax )n 的展开式中各项的二项式系数之和为32,且各项系数和为243,则展开式中x 7的系数为( C )A .20B .30C .40D .50[解析]因为(x 3+ax )n 的展开式中各项的二项式系数之和为32,则2n =32,解得n =5,所以二项式为(x 3+ax )5.因为⎝⎛⎭⎫x 3+a x 5展开式各项系数和为243,令x =1,代入可得(1+a )5=243=35,解得a =2,所以二项式展开式的通项为T r +1=C r 5(x 3)5-r ·⎝⎛⎭⎫2x r=2r ·C r 5x 15-4r ,所以当展开式为x 7时,即x 15-4r=x 7,解得r =2,则展开式的系数为22·C 25=4×10=40.故选C .2. 已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7. 求:(1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6; [解析] 令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1① 令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37② (1)∵a 0=C 07=1,∴a 1+a 2+a 3+…+a 7=-2. (2)由(①-②)÷2,得a 1+a 3+a 5+a 7=-1-372=-1 094.(3)由(①+②)÷2,得a 0+a 2+a 4+a 6=-1+372=1 093.。

2023版高考数学一轮总复习10-2二项式定理课件

2023版高考数学一轮总复习10-2二项式定理课件

解析 (1)n=6时,(1+2x)6的展开式中有7项,中间一项的二项式系数最大,此
项为C36 (2x)3=160x3.又Tr+1=C6r (2x)r=2rC6r xr,设第k+1项的系数最大,则
CC66kk
2k 2k
Ck 1 6
Ck 1 6
2k 2k
1, 1 ,
解得
11 3
≤k≤
14 3
,∴k=4,即第5项系数最大,第5项为
C64
(2x)4
=240x4.
所以二项式系数最大的项是第4项,为160x3,系数最大的项是第5项,为240x
4.
(2)令x=0,得a0=1,记f(x)=(1+2x)n=a0+a1x+a2x2+…+anxn(n≥6,n为偶数), 则f(1)=3n=a0+a1+a2+…+an, f(-1)=(-1)n=a0-a1+a2-a3+…-an-1+an,
所以a0+a2+a4+…+an= f (1) f (1) = 3n (1)n = 3n 1 ,
2
2
2
所以a2+a4+…+an=
3n
2
1
-1=
3n
2
1
.
专题十 计数原理
10.2 二项式定理
1.二项式定理
考点 二项式定理
1)公式(a+b)n=
C0n
an+
C1n
an-1b1+…+
Ckn
an-kbk+…+
C
n n

数学一轮复习讲义第10章§10-3二项式定理2023年新高考

数学一轮复习讲义第10章§10-3二项式定理2023年新高考

§10.3 二项式定理考试要求 能用多项式运算法则和计数原理证明二项式定理,会用二项式定理解决与二项展开式有关的简单问题.知识梳理1.二项式定理二项式定理(a +b )n =C 0n a n +C 1n a n -1b 1+…+C k n a n -k b k +…+C n b n (n ∈N *)二项展开式的通项T k +1=C k n a n -k b k ,它表示展开式的第k +1项二项式系数C k n(k =0,1,…,n )2.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等.(2)增减性与最大值:当n 是偶数时,中间的一项2C n n 取得最大值;当n 是奇数时,中间的两项12C n n -与12C n n +相等,且同时取得最大值.(3)各二项式系数的和:(a +b )n 的展开式的各二项式系数的和等于2n .常用结论1.两个常用公式(1)C 0n +C 1n +C 2n +…+C n =2n .(2)C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.2.二项展开式的三个重要特征(1)字母a 的指数按降幂排列由n 到0.(2)字母b 的指数按升幂排列由0到n .(3)每一项字母a 的指数与字母b 的指数的和等于n .思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)C k na n -kb k 是(a +b )n 的展开式的第k 项.( × )(2)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( √ )(3)二项展开式中,系数最大的项为中间一项或中间两项.( × )(4)(a +b )n 的展开式中,某项的系数与该项的二项式系数不同.( × )教材改编题1.(x -1)10的展开式的第6项的系数是( )A .C 610B .-C 610C .C 510D .-C 510答案 D解析 T 6=C 510x 5(-1)5,所以第6项的系数是-C 510.2.(多选)已知(a +b )n 的展开式中第5项的二项式系数最大,则n 的值可以为( )A .7B .8C .9D .10答案 ABC解析 ∵(a +b )n 的展开式中第5项的二项式系数C 4n 最大,∴n =7或n =8或n =9.3.在(1-2x )10的展开式中,各项系数的和是________.答案 1解析 令x =1可得各项系数的和为(1-2)10=1.题型一 通项公式的应用命题点1 形如(a +b )n (n ∈N *)的展开式的特定项例1 (1)(2022·烟台模拟)(1-2x )8展开式中x 项的系数为( )A .28B .-28C .112D .-112答案 C解析 (1-2x )8展开式的通项公式为T k +1=C k 8(-2x )k =28(-2)C k k kx .要求x 项的系数,只需k 2=1,解得k =2,所以x 项系数为(-2)2C 28=4×8×72×1=112.(2)(2022·德州模拟)若n ∈Z ,且3≤n ≤6,则(x +1x 3)n 的展开式中的常数项为______.答案 4解析 (x +1x 3)n 的通项公式为T k +1=C k n x n -k (1x 3)k =C k n x n -4k ,因为3≤n ≤6,令n -4k =0,解得n =4,k =1,所以(x +1x 3)n 的展开式中的常数项为4.命题点2 形如(a +b )m (c +d )n (m ,n ∈N *)的展开式问题例2 (1)(2022·泰安模拟)(x 3-2)(x +1x )6的展开式中x 6的系数为( )A .6 B .10 C .13 D .15答案 C解析 由于(x +1x )6的展开式的通项为T k +1=36-26C k kx ,令6-3k 2=3,求得k =2;令6-3k 2=6,求得k =0,故(x 3-2)(x +1x )6的展开式中x 6的系数为C 26-2C 06=15-2=13.(2)(2022·合肥模拟)二项式(2-x a )(1-2x )4的展开式中x 3项的系数是-70,则实数a 的值为( )A .-2B .2C .-4D .4答案 D解析 因为(2-x a )(1-2x )4=2×(1-2x )4-x a×(1-2x )4,(1-2x )4的展开式的通项公式为T k +1=C k 4(-2x )k =(-2)k C k 4x k ,k =0,1,2,3,4,所以2×(1-2x )4展开式中x 3项的系数是2×(-2)3C 34=-64,x a×(1-2x )4展开式中x 3项的系数是1a ×(-2)2C 24=24a ,所以-64-24a=-70,解得a =4.教师备选1.(2022·菏泽模拟)已知正整数n ≥7,若(x -1x )(1-x )n 的展开式中不含x 5的项,则n 的值为( )A .7B .8C .9D .10答案 D 解析 (1-x )n 的二项展开式中第k +1项为T k +1=C k n(-1)k x k ,又因为(x -1x )(1-x )n =x (1-x )n -1x(1-x )n 的展开式不含x 5的项,所以x C 4n (-1)4x 4-1xC 6n (-1)6x 6=0,C 4n x 5-C 6n x 5=0,即C 4n =C 6n ,所以n =10.2.(2022·烟台模拟)在(x 2+2x +y )5的展开式中,x 5y 2的系数为( )A .60B .30C .15D .12答案 A解析 由(x 2+2x +y )5=[(x 2+2x )+y ]5,由通项公式可得T k +1=C k 5(x 2+2x )5-k y k ,∵要求x 5y 2的系数,故k =2,此时(x 2+2x )3=x 3·(x +2)3,其对应x 5的系数为C 1321=6.∴x 5y 2的系数为C 25×6=60.思维升华 (1)求二项展开式中的特定项,一般是化简通项后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k +1,代回通项即可.(2)对于几个多项式积的展开式中的特定项问题,一般都可以根据因式连乘的规律,结合组合思想求解,但要注意适当地运用分类方法,以免重复或遗漏.跟踪训练1 (1)(2021·北京)(x 3-1x )4的展开式中常数项为________.答案 -4解析 (x 3-1x )4的展开式的通项T k +1=C k 4(x 3)4-k ·(-1x )k =(-1)k C k 4x 12-4k ,令k =3得常数项为T 4=(-1)3C 34=-4.(2)(2022·攀枝花模拟)(1-1x 2)(1+2x )5的展开式中,含x 3的项的系数是( )A .-112B .-48C .48D .112答案 C解析 由(1-1x 2)(1+2x )5=(1+2x )5-1x 2(1+2x )5,(1+2x )5展开式的通项公式为T k +1=C k 5(2x )k =2k C k 5x k ,其中k =0,1,2,3,4,5,(1+2x )5展开式中含x 3项的系数为23C 35=80,1x 2(1+2x )5展开式中含x 3项的系数为25C 5=32,所以(1-1x 2)(1+2x )5的展开式中,含x 3的项的系数为80-32=48.题型二 二项式系数与项的系数的问题命题点1 二项式系数和与系数和例3 (1)(多选)(2022·十堰调研)在(3x -1x )n 的展开式中,各项系数和与二项式系数和之和为128,则( )A .二项式系数和为64B .各项系数和为64C .常数项为-135D .常数项为135答案 ABD解析 在(3x -1x )n 的展开式中,各项系数和与二项式系数和之和为128,令x =1,得各项系数和为2n ,二项式系数和为2n ,则2×2n =128,得n =6,即二项式系数和为64,各项系数和也为64,故A ,B 正确;(3x -1x )6展开式的通项为T k +1=C k 6·(3x )6-k ·(-1x)k =36-626C (-1)3k kk k x -⋅⋅,令6-32k =0,得k =4,因此展开式中的常数项为T 5=C 46·(-1)4·32=135.故D 正确.(2)已知多项式(1-2x )+(1+x +x 2)3=a 0+a 1x +a 2x 2+…+a 6x 6,则a 1=______,a 2+a 3+a 4+a 5+a 6=______.答案 1 23解析 根据题意,令x =1,则(1-2)+(1+1+1)3=a 0+a 1+a 2+…+a 6=26,令x =0,a 0=1+1=2,由于(1-2x )+(1+x +x 2)3=a 0+a 1x +a 2x 2+…+a 6x 6,a 1为展开式中x 项的系数,考虑一次项系数a 1=-2+C 13C 2×12=1,所以a 2+a 3+a 4+a 5+a 6=26-1-2=23.命题点2 系数与二项式系数的最值问题例4 (y -2x 2)6的展开式中二项式系数最大的项为第________项,系数最大的项为________.答案 4 240x -8y 2解析 因为(y -2x2)6的展开式中二项式系数的最大值为C 36,所以二项式系数最大的项为第4项.因为(y -2x 2)6的展开式的通项为T k +1=C k 6·y 6-k (-2x 2)k =C k 6·(-2)k x -2k y 6-k ,所以展开式中系数最大的项为奇数项.展开式中第1,3,5,7项的系数分别为C 06·(-2)0,C 26·(-2)2,C 46·(-2)4,C 6·(-2)6,即1,60,240,64,所以展开式中系数最大的项为240x -8y 2.教师备选1.(多选)已知(1-2x )2 022=a 0+a 1x +a 2x 2+…+a 2 022x 2 022,下列命题中正确的是( )A .展开式中所有项的二项式系数的和为22 022B .展开式中所有奇次项系数的和为32 022-12C .展开式中所有偶次项系数的和为32 022+12D.a 12+a 222+a 323+…+a 2 02222 022=-1答案 ACD解析 选项A ,由二项式知,C 02 022+C 12 022+…+C 2 022=(1+1)2 022=22 022,A 正确;当x =1时,有a 0+a 1+a 2+…+a 2 022=1,当x =-1时,有a 0-a 1+a 2-a 3+…-a 2 021+a 2 022=32 022,选项B ,由上可得a 1+a 3+a 5+…+a 2 021=1-32 0222,B 错误;选项C ,由上可得a 0+a 2+a 4+…+a 2 022=32 022+12,C 正确;选项D ,令x =12可得a 0+a 12+a 222+a 323+…+a 2 02222 022=0,又a 0=1,所以a 12+a 222+a 323+…+a 2 02222 022=-1,D 正确.2.(多选)已知(x -3)8=a 0+a 1(x -2)+a 2(x -2)2+…+a 8(x -2)8,则下列结论正确的有( )A .a 0=1B .a 6=-28C.a 12+a 222+…+a 828=-255256D .a 0+a 2+a 4+a 6+a 8=128答案 ACD解析 对于A ,取x =2,得a 0=1,A 正确;对于B ,(x -3)8=[-1+(x -2)]8展开式中第7项为C 68(-1)2(x -2)6=28(x -2)6,即a 6=28,B 不正确;对于C ,取x =52,得a 0+a 12+a 222+…+a 828=(52-3)8=1256,则a12+a222+…+a828=1256-a0=-255256,C正确;对于D,取x=3,得a0+a1+a2+a3+…+a7+a8=0,取x=1,得a0-a1+a2-a3+…-a7+a8=(-2)8=256,两式相加得2(a0+a2+a4+a6+a8)=256,即a0+a2+a4+a6+a8=128,D正确.思维升华 赋值法的应用一般地,对于多项式(a+bx)n=a0+a1x+a2x2+…+a n x n,令g(x)=(a+bx)n,则(a+bx)n的展开式中各项的系数和为g(1),(a+bx)n的展开式中奇数项的系数和为12[g(1)+g(-1)],(a+bx)n的展开式中偶数项的系数和为12[g(1)-g(-1)].跟踪训练2 (1)已知(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则|a0|+|a1|+…+|a5|等于( )A.1 B.243C.121 D.122答案 B解析 令x=1,得a5+a4+a3+a2+a1+a0=1,①令x=-1,得-a5+a4-a3+a2-a1+a0=-243,②①+②,得2(a4+a2+a0)=-242,即a4+a2+a0=-121.①-②,得2(a5+a3+a1)=244,即a5+a3+a1=122.所以|a0|+|a1|+…+|a5|=122+121=243.(2)(多选)(2022·济南模拟)在(2x-x)6的展开式中,下列说法正确的是( )A.常数项为160B.第4项的二项式系数最大C.第3项的系数最大D.所有项的系数和为64答案 BC解析 展开式的通项为T k+1=C k6·(2x)6-k·(-x)k=26-k(-1)k·C k6x2k-6,由2k-6=0,得k=3,所以常数项为23(-1)3C36=-160,A错误;展开式共有7项,所以第4项二项式系数最大,B正确;第3项的系数最大,C正确;令x=1,得(2x-x)6=1,所有项的系数和为1,D 错误.题型三 二项式定理的综合应用例5 (1)设a∈Z,且0≤a≤13,若512 021+a能被13整除,则a等于( )A.0 B.1 C.11 D.12答案 B解析 因为a∈Z,且0≤a≤13,所以512 021+a=(52-1)2 021+a,2 02152-C2 021+a,=C02 021522 021-C12 021522 020+C22 021522 019-…+C2 020因为512 021+a能被13整除,结合选项,所以-C2 021+a=-1+a能被13整除,所以a=1.(2)利用二项式定理计算1.056,则其结果精确到0.01的近似值是( )A.1.23 B.1.24C.1.33 D.1.34答案 D解析 1.056=(1+0.05)6=C06+C16×0.05+C26×0.052+C36×0.053+…+C6×0.056=1+0.3+0.037 5+0.002 5+…+0.056≈1.34.教师备选已知n为满足S=n+C127+C227+C327+…+C27(n≥3)能被9整除的正数n的最小值,则(x-1x)n 的展开式中,系数最大的项为( )A.第6项B.第7项C.第11项D.第6项和第7项答案 B解析 S=n+C127+C227+C327+…+C27=n+(1+1)27-C027=(9-1)9+n-1=9(98-C1997+…+C89)+n-2,∵n≥3,∴S能被9整除的正数n的最小值是n-2=9,∴n=11.∴(x-1x)11的展开式中的通项公式为T k+1=C k11x11-k(-1x)k=(-1)k C k11x11-2k,只考虑k为偶数的情况,由T5=C411x3,T7=C611x-1,T9=C811x-5,可知系数最大的项为第7项.思维升华 二项式定理应用的题型及解法(1)在证明整除问题或求余数问题时要进行合理的变形,使被除式(数)展开后的每一项都含有除式的因式.(2)二项式定理的一个重要用途是做近似计算:当n不很大,|x|比较小时,(1+x)n≈1+nx.跟踪训练3 (1)设n为奇数,那么11n+C1n·11n-1+C2n·11n-2+…+C n-1n·11-1除以13的余数是( )A.-3 B.2C.10 D.11答案 C解析 11n+C1n·11n-1+C2n·11n-2+…+C n-1n·11-1=C0n·11n+C1n·11n-1+C2n·11n-2+…+C n-1n·11+C n-2=(11+1)n-2=12n-2=(13-1)n-2=C0n·13n-C1n·13n-1+…+(-1)n-1·C n-1n·13+(-1)n·C n-2,因为n为奇数,则上式=C0n·13n-C1n·13n-1+…+(-1)n-1·C n-1n·13-3=[C0n·13n-C1n·13n-1+…+(-1)n-1·C n-1n·13-13]+10,所以11n+C1n·11n-1+C2n·11n-2+…+C n-1n·11-1除以13的余数是10.(2)0.996的计算结果精确到0.001的近似值是( )A.0.940 B.0.941C.0.942 D.0.943答案 B解析 (0.99)6=(1-0.01)6=C06×1-C16×0.01+C26×0.012-C36×0.013+…+C6×0.016=1-0.06+0.001 5-0.000 02+…+0.016≈0.941.课时精练1.(2022·济南模拟)(x +1x)6的展开式中,含x 4项的系数为( )A .4B .6C .10D .15答案 B 解析 (x +1x)6的展开式通项为T k +1=C k 6·x 6-k ·(1x)k =C k 6·x 6-2k ,令6-2k =4,解得k =1,因此,展开式中含x 4项的系数为C 16=6.2.(2022·武汉部分重点中学联考)在(x 2-1x)n 的展开式中,只有第7项的二项式系数最大,则展开式常数项是( )A.552B .-552C .-28 D .28答案 B解析 展开式中,只有第7项的二项式系数最大,可得展开式有13项,所以n =12,展开式的通项为T k +1=C k 12(x 2)12-k ·(-1x)k=12-412-3121C (-1) 2kk k k x⎛⎫⎪⎝⎭,若为常数项,则12-43k =0,所以k =9 ,得常数项为T 10=C 912(-1)9(12)12-9=-2208=-552.3.(2022·邯郸模拟)(x 2-x )(1+x )6的展开式中x 3项的系数为( )A .-9 B .9C .-21D .21答案 A解析 展开式中x3项的系数为C16-C26=-9.4.(2022·芜湖质检)已知(x-m)(x+2)5=a0+a1x+a2x2+…+a6x6,其中m为常数,若a4=30,则a0等于( )A.-32 B.32C.64 D.-64答案 A解析 由多项式乘法知,第一个因式中x乘以(x+2)5展开式中的x3项得一个x4项,第一个因式中的常数-m乘以(x+2)5展开式中的x4项得另一个x4项,两项合并同类项得系数即为a4,所以a4=C25×22-m×C15×2=30,解得m=1,再令x=0,得a0=-25=-32.5.(2022·大连模拟)(ax-y)(x+y)4的展开式中x3y2的系数为-2,则实数a的值为( )A.-13B.-1 C.1 D.13答案 D解析 化简得(ax-y)(x+y)4=ax·(x+y)4-y·(x+y)4,∵(x+y)4的展开式的通项公式T k+1=C k4x4-k y k,当k=2时,ax·(x+y)4的展开式中x3y2的系数为C24a=6a,当k=1时,-y·(x+y)4的展开式中x3y2的系数为-C14=-4,综上,(ax-y)(x+y)4的展开式中x3y2的系数为6a-4=-2,∴a=1 3 .6.已知在(2x-1)n的二项展开式中,奇次项系数的和比偶次项系数的和小38,则C1n+C2n+C 3n+…+C n的值为( )A.28B.28-1C.27D.27-1答案 B解析 设(2x-1)n=a0+a1x+a2x2+…+a n x n,且奇次项的系数和为A,偶次项的系数和为B.则A=a1+a3+a5+…,B=a0+a2+a4+a6+….由已知得,B-A=38,令x=-1,得a0-a1+a2-a3+…+a n(-1)n=(-3)n,即(a0+a2+a4+a6+…)-(a1+a3+a5+a7+…)=(-3)n,即B-A=(-3)n,∴(-3)n=38=(-3)8,∴n=8,由二项式系数性质可得C1n+C2n+C3n+…+C n=2n-C0n=28-1.7.(多选)(2022·邯郸模拟)已知(5x-3x)n的展开式中,二项式系数之和为64,下列说法正确的是( )A.2,n,10成等差数列B.各项系数之和为64C.展开式中二项式系数最大的项是第3项D.展开式中第5项为常数项答案 ABD解析 由(5x-3x)n的二项式系数之和为2n=64,得n=6,得2,6,10成等差数列,A正确;令x=1,(5x-3x)6=26=64,则(5x-3x)6的各项系数之和为64,B正确;(5x-3x)6的展开式共有7项,则二项式系数最大的项是第4项,C不正确;(5x-3x)6的展开式中的第5项为C46(5x)2(-3x)4=15×25×81为常数项,D正确.8.(多选)(2022·烟台模拟)已知(2-3x)6=a0+a1x+a2x2+…+a6x6,则下列选项正确的是( ) A.a3=-360B.(a0+a2+a4+a6)2-(a1+a3+a5)2=1C.a1+a2+…+a6=(2-3)6D.展开式中系数最大的为a2答案 BD解析 (2-3x)6的展开式通项为T k+1=C k6·26-k·(-3x)k=C k6·(-3)k·26-k·x k,对于A,令k=3,则a3=C36×23×(-3)3=-4803,A错误;对于B,令x=1,则a0+a1+…+a6=(2-3)6;令x=-1,则a0-a1+a2-…+a6=(2+3)6,∴(a0+a2+a4+a6)2-(a1+a3+a5)2=(a0+a1+a2+…+a6)(a0-a1+a2-…+a6)=[(2-3)×(2+3)]6=1,B正确;对于C,令x=0,得a0=26,∴a1+a2+…+a6=(2-3)6-26,C错误;对于D,∵a0,a2,a4,a6为正数,a1,a3,a5为负数,又a0=26=64,a2=C26×24×3=720,a4=C46×22×32=540,a6=33=27,∴展开式中系数最大的为a2,D正确.9.(2021·天津)在(2x3+1x)6的展开式中,x6的系数是________.答案 160解析 (2x3+1x)6的展开式的通项为T k+1=C k6(2x3)6-k·(1x)k=26-k C k6·x18-4k,令18-4k=6,解得k=3,所以x6的系数是23C36=160.10.(2022·济宁模拟)已知(x-2x)n的展开式中各项的二项式系数的和为128,则这个展开式中x3项的系数是________.答案 84解析 依题意,2n=128,解得n=7,(x-2x)7的展开式的通项为T k+1=C k7x7-k·(-2x)k=(-2)k C k7x7-2k(k∈N,k≤7),由7-2k=3得k=2,所以所求展开式中x3项的系数是(-2)2C27=4×7×62×1=84.11.(2022·温州模拟)若(x +2x)n 的展开式中共有7项,则常数项为________(用数字作答).答案 240解析 因为(x +2x)n 的展开式中共有7项,所以n +1=7,可得n =6,所以(x +2x)6展开式的通项为T k +1=1626C 2k k kkxx--=3626C 2k k kx-令6-32k =0,可得k =4,所以常数项为C 4624=15×16=240.12.(2021·浙江)已知多项式(x -1)3+(x +1)4=x 4+a 1x 3+a 2x 2+a 3x +a 4,则a 1=________,a 2+a 3+a 4=________.答案 5 10解析 (x -1)3展开式的通项T r +1=C r 3x 3-r ·(-1)r ,(x +1)4展开式的通项T k +1=C k 4x 4-k ,则a 1=C 03+C 14=1+4=5;a 2=C 13(-1)1+C 24=3;a 3=C 23(-1)2+C 34=7;a 4=C 3(-1)3+C 4=0.所以a 2+a 3+a 4=3+7+0=10.13.已知n 为正整数,若1.1510∈[n ,n +1),则n 的值为( )A .2 B .3 C .4 D .5答案 C解析 因为1.155=(1+320)5=C 05·(320)0+C 15·(320)1+C 25·(320)2+C 35·(320)3+C 45·(320)4+C 5·(320)5=1+34+940+27800+(5×320+9400)(320)3=2+7800+309400×(320)3,而2<2+7800+309400×(320)3<2+7800+278 000<2+7800+308 000=2+180<2.1,所以2<1.155<2.1,因此4<1.1510<4.41,又n 为正整数,1.1510∈[n ,n +1),所以n =4.14.(2022·浙江Z20名校联盟联考)设(x -1)(2+x )3=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 1=________,2a 2+3a 3+4a 4=________.答案 -4 31解析 因为x ·C 03·23·x 0-C 13·22·x 1=-4x ,所以a 1=-4,对所给等式,两边对x 求导,可得(2+x )3+3(x -1)(2+x )2=a 1+2a 2x +3a 3x 2+4a 4x 3,令x =1,得27=a 1+2a 2+3a 3+4a 4,所以2a 2+3a 3+4a 4=31.15.已知S n 是数列{a n }的前n 项和,若(1-2x )2 022=b 0+b 1x +b 2x 2+…+b 2 022x 2 022,数列{a n }的首项a 1=b 12+b 222+…+b 2 02222 022,a n +1=S n ·S n +1,则S 2 022等于( )A .-12 022B.12 022C .2 022 D .-2 022答案 A解析 令x =12,得(1-2×12)2 022=b 0+b 12+b 222+…+b2 02222 022=0.又因为b 0=1,所以a 1=b 12+b 222+…+b 2 02222 022=-1.由a n +1=S n S n +1=S n +1-S n ,得S n +1-S n S n S n +1=1S n -1S n +1=1,所以1S n +1-1S n =-1,所以数列{1S n}是首项为1S1=-1,公差为-1的等差数列,所以1Sn =-1+(n -1)·(-1)=-n ,n n所以S2 022=-12 022.16.(多选)(2022·南京模拟)已知n∈N*,n≥2,p,q>0,p+q=1,设f(k)=C k2n p k q2n-k,其中k∈N,k≤2n,则( )A.2n∑k=0f(k)=1 B.2n∑k=0k f(k)=2npqC.若np=4,则f(k)≤f(8) D.n∑k=0f(2k)<12<n∑k=1f(2k-1)答案 AC解析 2n∑k=0f(k)=2n∑k=0C k2n p k q2n-k=(q+p)2n=1,A正确;k C k2n=k(2n)!k!(2n-k)!=2n×(2n-1)!(k-1)![(2n-1)-(k-1)]!=2n C k-12n-1,所以2n∑k=0k f(k)=2n∑k=1k C k2n p k q2n-k=2n∑k=12n C k-12n-1p k q2n-k=2npq2n∑k=1C k-12n-1p k-1q2n-1-k=2np 2n-1∑k=0C k2n-1p k q2n-1-k=2np(q+p)2n-1=2np≠2npq(除非p=0),B错;设f(m)是f(k)中最大项,Error!即Error!注意到C m2nC m-12n=(2n)!m!(2n-m)!(2n)!(m-1)!(2n-m+1)!mC m2n C m+12n =m+12n-m,又np=4,不等式组可解为8-q≤m≤8+p,所以m=8,所以f(k)≤f(8),C正确;例如n=2时,p=13,q=23,n∑k=0f(2k)=(13)4+6(13)2(23)2+(23)4=4181,n∑k=1f(2k-1)=4081,D错误.。

高三一轮复习二项式定理

高三一轮复习二项式定理

∴C38a3=7,∴a=12.
(3)a=∫π20(sin2x2-12)dx=∫π20(1-c2os x-12)dx
=∫π20(-co2s x)dx=-12.此时二项式的展开式的通项为 Tr+1=
Cr9(-12x)9-r(-
1 x
)r=Cr9(-12
)9-r·(-
1)rx9-2r,令
9-2r=1,r
2.二项式系数的性质
1.( x+x22)n 展开式中只有第 6 项的二项式系数最大,则 n
等于( C )
A.6
B.8
C.10
D.12
2.(2013·高考江西卷)x2-x235展开式中的常数项为( C )
A.80
B.-80
C.40
D.-40
3.(2013·高考课标全国卷Ⅱ)已知(1+ax)(1+x)5 的展开式中
所以 T4=C36x3(-2)3=-160x3,所以 x3 项的系数为-160.
本部分内容讲解结束
按ESC键退出全屏播放
2.若(x-1)4=a0+a1x+a2x2+a3x3+a4x4,则a0+a2+a4的值为( )
A.9
B.8
C.7
D.6
解析:令x=1,则a0+a1+a2+a3+a4=0, 令x=-1,则a0-a1+a2-a3+a4=16,故a0+a2+a4=8。 答案:B
高三一轮复习二项式定理
1.二项式定理 (1)试写出二项式定理的展开式. 提示:(a+b)n=C0nan+C1nan-1b+…+Crnan-rbr+…+Cnnbn (n∈N*)
(2)其通项公式是什么?二项式系数是什么?
提示:Tr+1=Crnan-rbr,表示第 r+1 项;Crn(r=0,1,…,n)

核按钮(新课标)高考数学一轮复习第十章计数原理、概率、随机变量及其分布10.3二项式定理课件理

核按钮(新课标)高考数学一轮复习第十章计数原理、概率、随机变量及其分布10.3二项式定理课件理

+a3+a5+…+a2n-1)2=(a0+a2+a4+…+a2n-a1-a3-a5
-…-a2n-1)(a0+a2+a4+…+a2n+a1+a3+a5+…+a2n-1)
=f(-1)·f(1)=
22-12n·
22+12n=-122n=14
n
Hale Waihona Puke .故填14n.第十八页,共30页。
类型三 系数最大项问题
已知(3 x+x2)2n 的展开式的二项式系数和比(3x-1)n 的展开式的 二项式系数和大 992.
第十六页,共30页。
(1)(2015·合肥质检)若 x-3xn展开式的各项
系数的绝对值之和为 1 024,则展开式中 x 的一次项的系数为 ____________.
解:Tr+1=Crn( x)n-r-3xr=(-3)r·Crnxn-23r,
由题意知展开式的各项系数绝对值之和为 Cn0+|(-3)1C1n|+(-3)2C2n+…+|(-3)nCnn|=1 024, 故(1+3)n=1 024,解得 n=5,令5-23r=1,解得 r=1, 所以展开式中 x 的一次项的系数为(-3)1C15=-15. 故填-15.
D.29
解:∵(1+x)n 的展开式中第 4 项与第 8 项的二项式系数相等, ∴C3n=C7n,得 n=10,奇数项的二项式系数和与偶数项的二项式 系数和相等,即 C0n+C2n+C4n+…=C1n+C3n+C5n+…=2n-1.
∴二项式(1+x)10 中奇数项的二项式系数和为 29.故选 D.
第七页,共30页。
第十四页,共30页。
类型二 展开式的系数和问题
已知(1-2x)7=a0+a1x+a2x2+…+a7x7. 求:(1)a1+a2+…+a7; (2)a1+a3+a5+a7; (3)a0+a2+a4+a6;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【3年高考】(新课标)2016版高考数学一轮复习 10.2二项式定理
A组2012—2014年高考·基础题组
1.(2014四川,2,5分)在x(1+x)6的展开式中,含x3项的系数为( )
A.30
B.20
C.15
D.10
2.(2013江西,5,5分)展开式中的常数项为( )
A.80
B.-80
C.40
D.-40
3.(2012重庆,4,5分)的展开式中常数项为( )
A. B. C. D.105
4.(2014课标Ⅱ,13,5分)(x+a)10的展开式中,x7的系数为15,则a= .(用数字填写答案)
5.(2012福建,11,4分)(a+x)4的展开式中x3的系数等于8,则实数a= .
6.(2013四川,11,5分)二项式(x+y)5的展开式中,含x2y3的项的系数是.(用数字作答)
7.(2013浙江,11,4分)设二项式的展开式中常数项为A,则A= .
8.(2013安徽,11,5分)若的展开式中x4的系数为7,则实数a= .
9.(2014大纲全国,13,5分)的展开式中x2y2的系数为.(用数字作答)
B组2012—2014年高考·提升题组
1.(2014浙江,5,5分)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则
f(3,0)+f(2,1)+f(1,2)+f(0,3)=( )
A.45
B.60
C.120
D.210
2.(2013课标全国Ⅱ,5,5分)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=( )
A.-4
B.-3
C.-2
D.-1
3.(2013陕西,8,5分)设函数f(x)=则当x>0时, f[f(x)]表达式的展开式中常数项为( )
A.-20
B.20
C.-15
D.15
4.(2012安徽,7,5分)(x2+2)的展开式的常数项是( )
A.-3
B.-2
C.2
D.3
5.(2012湖北,5,5分)设a∈Z,且0≤a<13,若512 012+a能被13整除,则a=( )
A.0
B.1
C.11
D.12
6.(2014课标Ⅰ,13,5分)(x-y)(x+y)8的展开式中x2y7的系数为.(用数字填写答案)
7.(2012大纲全国,15,5分)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为.
8.(2012浙江,14,4分)若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…,a5为实数,则a3= .
9.(2014安徽,13,5分)设a≠0,n是大于1的自然数,的展开式为a0+a1x+a2x2+…+a n x n.若点
A i(i,a i)(i=0,1,2)的位置如图所示,则a= .
10.(2014山东,14,5分)若的展开式中x3项的系数为20,则a2+b2的最小值为.
A组2012—2014年高考·基础题组
1.C 在(1+x)6的展开式中,含x2的项为T3=·x2=15x2,故在x(1+x)6的展开式中,含x3的项的系数为15.
2.C 此二项展开式的通项为T r+1=(x2)5-r·(-1)r2r x-3r=·(-1)r·2r·x10-5r.因为10-5r=0,所以r=2,所以常数项为T3=·22=40,选C.
3.B T r+1=()8-r=x4-r,令4-r=0,得r=4,故展开式的第5项为常数项,又T5=·=,故选B.
4.答案
解析T r+1=x10-r a r,令10-r=7,得r=3,
∴a3=15,即a3=15,∴a3=,∴a=.
5.答案 2
解析T 3+1=a1x3=4ax3,∴4a=8,
∴a=2.
6.答案10
解析二项展开式的通项T k+1=x5-k y k,令k=3,则T4=x2y3=10x2y3,故应填10.
7.答案-10
解析展开式通项为T r+1=·()5-r·=(-1)r.
令-r=0,得r=3.
当r=3时,T4=(-1)3=-10.故A=-10.
8.答案
解析通项公式为T r+1=x8-r·=a r·,
令8-r=4,得r=3.
故·a3=7,解得a=.
9.答案70
解析T r+1=··=(-1)r···,令得r=4.
所以展开式中x2y2的系数为(-1)4·=70.
B组2012—2014年高考·提升题组
1.C 在(1+x)6的展开式中,x m的系数为,在(1+y)4的展开式中,y n的系数为,故f(m,n)=·.从而f(3,0)==20, f(2,1)=·=60, f(1,2)=·=36, f(0,3)==4,故选C.
2.D 由二项式定理得(1+x)5的展开式的通项为T r+1=·x r,所以当r=2时,(1+ax)(1+x)5的展开式中x2的系数为,当r=1时,x2的系数为·a,所以+·a=5,a=-1,故选D.
3.A x>0时, f(x)=-<0,故f[f(x)]=,其展开式的通项公式为T r+1=·(-)6-r·=(-1)6-r··()6-2r,由6-2r=0得r=3,故常数项为(-1)3·=-20.
4.D 由题意知展开式的常数项为2×(-1)5+×(-1)4=-2+5=3,故选D.
5.D 512 012+a=(52-1)2 012+a=522 012+×522 011×(-1)+…+×52×(-1)2 011+(-1)2 012+a能被13整除,只需(-1)2 012+a=1+a能被13整除即可.∵0≤a<13,∴a=12,故选D.
6.答案-20
解析由二项展开式公式可知,含x2y7的项可表示为x·xy7-y·x2y6,故(x-y)(x+y)8的展开式中x2y7的系数为-=-=8-28=-20.
7.答案56
解析由=得n=8,T r+1=x8-r·=x8-2r,令8-2r=-2,解得r=5,故所求系数为==56.
8.答案10
解析由于f(x)=x5=[(1+x)-1]5,所以a 3=(-1)2=10.
9.答案 3
解析根据题意知a 0=1,a1=3,a2=4,
结合二项式定理得即
解得a=3.
10.答案 2
解析T r+1=(ax2)6-r=a6-r b r x12-3r,
令12-3r=3,则r=3.∴a3b3=20,即ab=1.
∴a2+b2≥2ab=2,即a2+b2的最小值为2.。

相关文档
最新文档