数学分析教案(华东师大版)第十三章函数列与函数项级数

合集下载

(NEW)华东师范大学数学系《数学分析》(第4版)(下册)笔记和课后习题(含考研真题)详解

(NEW)华东师范大学数学系《数学分析》(第4版)(下册)笔记和课后习题(含考研真题)详解

目 录第12章 数项级数12.1 复习笔记12.2 课后习题详解12.3 名校考研真题详解第13章 函数列与函数项级数13.1 复习笔记13.2 课后习题详解13.3 名校考研真题详解第14章 幂级数14.1 复习笔记14.2 课后习题详解14.3 名校考研真题详解第15章 傅里叶级数15.1 复习笔记15.2 课后习题详解15.3 名校考研真题详解第16章 多元函数的极限与连续16.1 复习笔记16.2 课后习题详解16.3 名校考研真题详解第17章 多元函数微分学17.1 复习笔记17.2 课后习题详解17.3 名校考研真题详解第18章 隐函数定理及其应用18.1 复习笔记18.2 课后习题详解18.3 名校考研真题详解第19章 含参量积分19.1 复习笔记19.2 课后习题详解19.3 名校考研真题详解第20章 曲线积分20.1 复习笔记20.2 课后习题详解20.3 名校考研真题详解第21章 重积分21.1 复习笔记21.2 课后习题详解21.3 名校考研真题详解第22章 曲面积分22.1 复习笔记22.2 课后习题详解22.3 名校考研真题详解第23章 向量函数微分学23.1 复习笔记23.2 课后习题详解23.3 名校考研真题详解第12章 数项级数12.1 复习笔记一、级数的收敛性1.相关定义(1)给定一个数列{u n},对它的各项依次用“+”号连接起来的表达式u1+u2+…u n+… (12-1)称为常数项无穷级数或数项级数(也常简称级数),其中u n称为数项级数(12-1)的通项或一般项.数项级数(12-1)也常写作或简单写作∑u n.(2)数项级数(12-1)的前n项之和,记为 (12-2)称它为数项级数(12-1)的第n个部分和,也简称部分和.(3)若数项级数(12-1)的部分和数列{S}收敛于S(即),则称数项级数(12-1)收敛,称S为数项级数(12-1)的和,记作或S=∑u n.若{S n}是发散数列,则称数项级数(12-1)发散.2.重要定理。

函数项级数和函数列的区别

函数项级数和函数列的区别

函数项级数和函数列的区别函数项级数和函数列是数学中的两种重要概念,它们在数学分析和数值计算中有着广泛的应用。

虽然它们都涉及到无穷项的求和,但在定义和性质上有一些不同之处。

我们来看函数项级数。

函数项级数是指一系列函数按照一定的顺序进行求和的过程。

具体地说,给定一个函数项序列{an(x)},其中an(x)表示第n个函数项,函数项级数可以写成S(x) = a1(x) + a2(x) + a3(x) + ...的形式。

在函数项级数中,每一项都是一个函数,而求和的结果也是一个函数。

函数项级数的求和可以通过逐项求和的方式进行,即对每个函数项分别求和,并将结果相加得到函数项级数的和。

函数项级数的收敛性和性质可以通过一系列定理进行研究和判断。

与函数项级数相比,函数列是一系列函数按照一定的顺序排列的序列。

给定一个函数列{fn(x)},其中fn(x)表示第n个函数,我们可以将函数列写成f1(x), f2(x), f3(x), ...的形式。

函数列的性质和收敛性可以通过逐点收敛和一致收敛来刻画。

逐点收敛是指对于每个x值,函数列在该点处的极限存在,而一致收敛是指函数列在整个定义域上的极限存在且收敛速度足够快。

从定义上看,函数项级数和函数列有一些相似之处。

它们都是一系列函数按照一定的顺序排列的序列。

然而,它们的主要区别在于求和的方式和求和的结果。

函数项级数的求和结果是一个函数,而函数列的求和结果是一个极限值。

此外,函数项级数的求和是逐项进行的,而函数列的求和是对整个函数列进行的。

在应用上,函数项级数和函数列都有着重要的作用。

函数项级数在数学分析中常用于研究函数的性质和逼近问题,如泰勒级数和傅里叶级数。

函数列在数值计算中常用于逼近函数的值和求解方程,如插值方法和迭代法。

函数项级数和函数列是数学中的两个重要概念。

它们在定义和性质上有所不同,但在应用上具有相似之处。

函数项级数和函数列在数学分析和数值计算中有着广泛的应用,对于理解和研究函数的性质和逼近问题具有重要意义。

数学分析教学大纲

数学分析教学大纲

《数学分析》教学大纲第一部分说明一、本课程的目的、任务。

本课程是数学与应用数学和信息与计算科学两个专业的一门主要基础课,通过本课程的教学,一方面为后续课程,如:实变函数、复变函数、泛函分析,微分方程、微分方程的数值解、微分几何、概率论、理论力学等课程及有关的选修课等提供必要的基础知识,另一方面为培养学生的独立工作能力提供必要的训练,为学生进一步深造以及指导中学数学的教学打下良好基础。

本课程的任务是使学生获得有关函数、极限、函数的连续性、一元函数微积分、多元函数微积分、级数理论及其应用等方面的基本概念、基本理论与基本方法,从而能用更高的观点深入理解和分析处理中学数学教材的能力和解决实际问题的能力。

并通过大量习题的训练,培养学生的运算技能和对数学问题的思维、论证能力。

二、本课程的教学要求。

通过本课程的学习,使学生掌握极限理论、级数理论、微分理论及积分理论的基本概念和基本理论,熟练的掌握本课程所要求的基本计算方法和能力,基本的推理论证能力,抽象思维能力,逻辑思维能力,增强运用数学手段解决实际问题的能力。

教学重点:准确掌握极限、连续、微分和积分的概念、性质及计算;熟练掌握微分理论、积分理论和级数理论中的基本定理(实数完备性定理、中值定理、微积分基本定理、函数项级数的收敛理论、隐函数定理、曲面及曲线的积分定理);正确地应用这些基本定理解决数学、物理及其他方面的实际问题。

教学难点:主要集中在极限论和级数论的内容中。

训练设计方案:(1)布置课后作业注重锻炼学生的解题能力,适当布置思考题培养学生分析问题的能力和创新能力。

(2)指定问题课后讨论。

自学指导方案:(1)对下节课所讲内容作课前预习;(2)对部分章节的了解性的内容提出问题让学生自学并课上讨论;(3)指定课外参考书让学生阅读或让学生上网查阅相关资料加深对课程理解。

与其它课程的联系:为后续课程常微分方程,概率论与数理统计,偏微分方程,复变函数,计算方法,实变函数与泛函分析等提供理论基础和工具。

数学分析PPT课件第四版华东师大研制 第13章 函数列与函数项级数

数学分析PPT课件第四版华东师大研制  第13章 函数列与函数项级数

定理13.1 (函数列一致收敛的柯西准则) 函数列 { fn } 在数集 D上一致收敛的充要条件是: 对任给正数 ,
总存在正数N, 使当 n, m N , 对一切 x D, 都有
| fn( x) fm ( x) | .
(4)
证 必要性 设 fn( x) f ( x) (n ), x D,即对
1,
x 1.
证 任给 0 (不妨设 1), 当 0 | x | 1 时, 由于
| fn( x) f ( x) || xn |,
只要取 N ( , x) ln , 当 n N ( , x) 时,就有
ln | x |
| fn( x) f ( x) || x |n| x |N .
前页 后页 返回
3
f3
像如图13-3 所示.
2
f2
1
f1
图13 3
f (x)
O 11 1 1 64 3 2
1
x
于是(8)在[0, 1]上的极限函数为 f ( x) 0. 又由于
sup
x[0, 1]
fn(x)
f (x)
fn
1 2n
n
(n ),
所以函数列 (8) 在 [0, 1] 上不一致收敛.
前页 后页 返回
(7)
xD
因为对一切 x D, 总有
| fn( x) f ( x) | sup | fn( x) f ( x) | .
xD
前页 后页 返回
故由 (7) 式得 fn( x) f ( x) , 于是 fn 在 D 上
一致收敛于 f .
注 柯西准则的特点是不需要知道极限函数是什么,
只是根据函数列本身的特性来判断函数列是否一致

《数学分析》教案(华师大版)《数学分析》教案(华师大版)

《数学分析》教案(华师大版)《数学分析》教案(华师大版)

数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸。

数学分析13.2一致收敛函数列与函数项级数的性质

数学分析13.2一致收敛函数列与函数项级数的性质

第十三章 函数列与函数项级数 2 一致收敛函数列与函数项级数的性质定理13.8:设函数列{f n }在(x,x 0)∪(x 0,b)上一致收敛于f(x),且对每个n ,x n lim →f n (x)=a n ,则∞→n lim a n 和0x n lim →f(x)均存在且相等.证:∀ε>0,∵{f n }一致收敛于f(x),∴∃N>0,当n>N 和任意自然数p , 对一切x ∈(x,x 0)∪(x 0,b)有,|f n (x)-f n+p (x)|< ε,∴|a n -a n+p |=0x n lim →|f n (x)-f n+p (x)|≤ε,∴{a n }是收敛数列. 设∞→n lim a n =A ,则∀ε>0,∃N>0,当n>N 时,对一切x ∈(x,x 0)∪(x 0,b)同时有, |f n (x)-f(x)|<3ε和|a n -A|<3ε. 特别取n=N+1,有|f N+1(x)-f(x)|<3ε和|a N+1-A|<3ε. 又0xn lim →f N+1(x)=a N+1,∴∃δ>0, 当0<|x-x 0|<δ时,|f N+1(x)-a N+1|<3ε,从而当x 满足0<|x-x 0|<δ时,有 |f(x)-A|≤|f N+1(x)-f(x)|+|f N+1(x)-a N+1|+|a N+1-A|<3ε+3ε+3ε=ε, 即0xn lim →f(x)=A ,得证!注:定理13.8指出:∞→→n x n lim lim 0f n (x)=0xn n lim lim →∞→f n (x).定理13.9:(连续性)若函数列{f n }在区间I 上一致收敛,且每一项都连续,则其极限函数f 在I 上也连续.证:设x 0为I 上任一点,∵0xn lim →f n (x)=f n (x 0),由定理13.8知, 0x n lim →f(x)存在,且0x n lim →f(x)=∞→n lim f n (x 0)=f(x 0),∴f(x)在I 上连续.注:定理13.9指出:各项为连续函数的函数列在区间I 上其极限函数不连续,则此函数列在区间I 上不一致收敛. 如: 函数列{x n }各项在(-1,1]上都连续,但其极限函数f(x)=⎩⎨⎧=< 1x 11|x |0,,在x=1时不连续,所以{x n }在(-1,1]上不一致收敛.推论:若连续函数列{f n }在区间I 上内闭一致收敛于f ,则f 在I 上连续.定理13.10:(可积性)若函数列{f n }在[a,b]上一致收敛,且每一项都连续,则⎰∞→b an lim f n (x)dx=⎰∞→ban n (x )f lim dx.证:设f 是{f n }在[a,b]上的极限函数. 由定理13.9,f 在[a,b]上连续, ∴f n (n=1,2,…)与f 在[a,b]上都可积. ∵在[a,b]上f n (x)⇉f(x) (n →∞), ∴∀ε>0,∃N>0,当n>N 时,对一切x ∈[a,b]都有|f n (x)-f(x)|<ε. 根据定积分的性质,当n>N 时,有⎰⎰-baban f(x)dx (x)dx f =f(x))dx (x)(f ban -⎰≤dx f(x )(x )f ban ⎰-≤ε(b-a).∴⎰∞→ban n(x )f lim dx=⎰ba f(x )dx =⎰∞→ba n lim f n (x)dx. 得证!例1:举例说明当{f n (x)}收敛于f(x)时,一致收敛性是极限运算与积分运算交换的充分条件,但不是必要条件.解:如f n (x)=⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<≤<≤ 1x n 10,n 1x n 21x ,2na -a 2n21x 0 ,x 2na n n n , n=1,2,…. 其图像如图:{f n (x)}是[0,1]上的连续函数列,且∀x ∈[0,1],∞→n lim f n (x)=0=f(x). 又Dx sup ∈|f n (x)-f(x)|=a n ,∴{f n (x)}在[0,1]上一致收敛于0的充要条件是:∞→n lim a n =0.∵⎰10n (x )f dx=2na n,∴⎰10n (x )f dx →⎰10f(x )dx=0的充要条件是:2n a lim n n∞→=0. 当a n ≡1时,{f n (x)}在[0,1]上不一致收敛于f(x),但定理13.10仍成立. 而当a n =n 时,{f n (x)}不一致收敛于f(x), 且⎰10n (x )f dx ≡21不一致收敛于⎰10f(x )dx=0.定理13.11:(可微性)设{f n }为定义在[a,b]上的函数列,若x 0∈[a,b]为{f n }的收敛点,{f n }的每一项在[a,b]上有连续的导数,且{f ’n }在[a,b]上一致收敛,则())x (f lim dx d n n ∞→=⎪⎭⎫⎝⎛∞→)x (f dx d limn n . 证:设)x (f lim 0n n ∞→=A ,f ’n ⇉g (n →∞), x ∈[a,b],则对任一x ∈[a,b],总有f n (x)=f n (x 0)+⎰'x x n 0(t)f dt. 两边对n →∞取极限得:)x (f lim n n ∞→=A+⎰xx 0g(t)dt ,又)x (f lim n n ∞→=f(x),∴f(x)=A+⎰xx 0g(t)dt. 两边微分得证!推论:设函数列{f n }定义在区间I 上的,若x 0∈I 为{f n }的收敛点,且{f ’n }在I 上内闭一致收敛,则f 在I 上可导,且f ’(x)=())x (f lim n n '∞→.例2:举例一致收敛性是极限运算与求导运算交换的充分条件,但不是必要条件. 解:如函数列f n (x)=2n 1 ln(1+n 2x 2)及f ’n (x)=22x n 1nx+, n=1,2,… 在[0,1]上都收敛于0,即∞→n lim f n (x)=∞→n lim f ’n (x)=0,∴在[0,1]上,∞→n lim f ’n (x)=(∞→n lim f n (x))’成立.又由][0,1x ∞n max lim ∈+→|f ’n (x)-f ’(x)|=nx 2nx lim∞n +→=21, 知 导函数列{f ’n (x)}在[0,1]上不一致收敛. 但对任意δ>0,有,1][δx sup ∈|f ’n (x)-f ’(x)|=22,1] [δx x n 1nx sup+∈≤22δn 1n+→0 (n →∞), ∴{f ’n }在(0,1]上内闭一致收敛. ∴在(0,1]上,∞→n lim f ’n (x)=(∞→n lim f n (x))’成立.定理13.12:(连续性)若函数项级数∑(x)u n 在区间[a,b]上一致收敛,且每一项都连续,则其和函数在[a,b]上也连续. 即有:∑⎪⎭⎫ ⎝⎛→(x)u lim nx n 0=()∑→(x)u lim n x n 0. 证:设x 0为[a,b]上任意一点,∑(x)u n 在区间[a,b]上一致收敛于S(x). 则∀ε>0,∃N>0,当n>N 时,对一切x ∈[a,b],有|S(x)-S n (x)|<3ε, |S n (x 0)-S(x 0)|<3ε, 又u n (x)在[a,b] 上连续(n=1,2,……), ∴对取定的n>N ,S n (x)在[a,b]上连续,∴对上述的ε,∃δ>0, 当x ∈[a,b],且|x-x 0|<δ时,|S n (x)-S n (x 0)|<3ε ,∴当x ∈[a,b]时,|S(x)-S(x 0)|=|S(x)-S n (x)+S n (x)-S n (x 0)+S n (x 0)-S(x 0)| ≤|S(x)-S n (x)|+|S n (x)-S n (x 0)|+|S n (x 0)-S(x 0)|<ε. 即S(x)在x 0连续, 从而在[a,b]上连续. 得证!定理13.13:(逐项求积) 若函数项级数∑(x)u n 在区间[a,b]上一致收敛,且每一项都连续,则∑⎰ba n (x )u dx =⎰∑ba n (x )u dx.定理13.14:(逐项求导) 若函数项级数∑(x)u n 在每一项都有连续的导函数,x 0∈[a,b]为∑(x)u n 的收敛点,且∑'(x)u n 在[a,b]上一致收敛,则∑⎪⎭⎫ ⎝⎛(x )u dx d n =()∑(x)u dxdn . 证:设∑'(x)u n 在[a,b]上一致收敛于S *(x),∵u ’n (x)在[a,b]上连续, 由定理13.12知,S *(x)在[a,b]上连续. 又由定理13.13知,∀x ∈[a,b], 有⎰xa *(t)S dt=⎰∑'ba n (t)u dt=∑⎰'xa n (t)u dt =∑(x)u n -∑(a)u n =S(x)-S(a). 等式两端对x 求导得:S ’(x)=S *(x)=∑'(x)u n ,得证!例3:设u n (x)=3n1ln(1+n 2x 2), n=1,2,…. 证明:函数项级数∑(x)u n 在[0,1]上一致收敛,并讨论其和函数在[0,1]上的连续性、可积性与可微性. 证:对每个n ,易见u n (x)在[0,1]上递增,且当t ≥1时,有ln(1+t 2)<t , ∴u n (x)≤u n (1)=3n 1ln(1+n 2)<3n 1·n=2n1, n=1,2,… 又∑2n1收敛,∴∑(x)u n 在[0,1]上一致收敛. 由每一个u n (x)在[0,1]上连续,知其和函数在[0,1]上的连续且可积.又u ’n (x)=)x n 1(n x2n 2232+=)x n 1(n 2x 22+≤)x n 1(n 2nx 222+≤2n 1, n=1,2,…知 ∑'(x)u n在[0,1]上一致收敛. ∴其和函数在[0,1]上可微.例4:证明:函数ζ(x)=∑∞=1n x n 1在(1,+∞)上有连续的各阶导函数. 证:记u n (x)=x n 1, u n (k)(x)=(ln n 1)k x n 1=(-1)k x knn ln , k=1,2,…. 对任意x ∈[a,b]⊂(1,+∞),有|u n (k)(x)|=xkn nln≤a k nnln , k=1,2,….由∞→n lim 1)/2-(a k n n ln =0知,当n 充分大时,有1)/2-(a k n nln <1,从而 xk n n ln =1)/2-(a k 1)/2(a n n ln n 1⋅+<1)/2(a n 1+, 又∑+1)/2(a n 1收敛, ∴∑∞=1n (k )n (x )u 在[a,b]上一致收敛,从而∑∞=1n (k )n (x)u 在(1,+∞)上内闭一致收敛. ∴ζ(x)在(1,+∞)上有连续的各阶导函数,且ζ (k)(x)=(-1)k xkn nln, k=1,2,….习题1、讨论下列函数列在所定义的区间上:a. {f n }与{f ’n }的一致收敛性;b. {f n }是否有定理13.9~11的条件与结论.(1)f n (x)=nx n2x ++, x ∈[0,b];(2)f n (x)=x-n x n , x ∈[0,1];(3)f n (x)=nx 2-nx e, x ∈[0,1].解:(1)记∞n lim +→f n (x)=nx n2x lim∞n +++→=1=f(x); b][0,x sup ∈|f n (x)-f(x)|=nx xsupb][0,x +∈→0 (n →∞),∴{f n }在[0,b]上一致收敛性;记∞n lim +→f ’n (x)=2∞n n)(x nlim++→=g(x); b][0,x sup ∈|f ’n (x)-g(x)|=2b][0,x n)(x nsup+∈→0 (n →∞),∴{f ’n }在[0,b]上一致收敛性. 又∵f n (x)=nx n2x ++和f ’n (x)=2n)(x n +, n=1,2,… 在[0,b]上都连续, ∴{f n }有定理13.9~11的条件与结论.(2)记∞n lim +→f n (x)=⎪⎪⎭⎫ ⎝⎛+→n x -x lim n ∞n =x=f(x); [0,1]x sup ∈|f n (x)-f(x)|=n x sup n[0,1]x ∈→0 (n →∞),∴{f n }在[0,1]上一致收敛性;记g(x)=∞n lim +→f ’n (x)=∞n lim +→(1-x n-1)=⎩⎨⎧<≤=1x 01,1 x 0,;∵{f ’n (x)}各项在[0,1]上连续,而g(x)在[0,1]不连续, ∴{f ’n }在[0,1]上不一致收敛性.又f n (x)=x-nx n, n=1,2,… 在[0,1]上都连续,∴{f n }有定理13.9~10的条件与结论,但不具有13.11的条件. 又f ’(x)=x ’=1≠∞n lim +→f ’n (x),∴{f n }也不具有13.11的条件.(3)记∞n lim +→f n (x)=2-nx ∞n nx e lim +→=0=f(x); [0,1]x sup ∈|f n (x)-f(x)|=2-nx [0,1]x nxe sup ∈=n ·2)1/2n n(e n21-=1/2e 2n →∞ (n →∞),∴{f n }在[0,1]上不一致收敛性;记g(x)=∞n lim +→f ’n (x)=2-nx ∞n ne lim +→(1-2nx 2)=⎩⎨⎧=∞+≤<0x ,1x 0 0,;∵{f ’n (x)}各项在[0,1]上连续,而g(x)在[0,1]不连续,∴{f ’n }在[0,1]上不一致收敛性. 从而{f n }不具有定理13.9~11的条件. ∵f(x)=0在[0,1]上连续,∴{f n }有定理13.9的结论.∵⎰+→10nx -∞n 2nx e lim dx=⎰+→10nx -∞n 2e 21lim d(nx 2)=⎪⎭⎫ ⎝⎛-+→n ∞n e 2121lim =21≠⎰+→10n ∞n )x (f lim dx=0. 又{f ’n (x)}在x=0不收敛;∴{f n }不具有定理13.10~11的结论.2、证明:若函数列{f n }在[a,b]上满足定理13.11的条件,则{f n }在[a,b]上一致收敛.证:设f ’n (x)⇉g(x) (n →∞), x ∈[a,b],则∀ε>0,∃N 1>0,当n>N 1时, 对一切t ∈[a,b],有|f ’n (t)-g(t)|<)a b (2ε-; 又f n (x)点x 0收敛,∴对上述的ε>0,∃N 2>0,当n>N 2时,有|f n (x 0)-f(x 0)|<2ε. ∵对任意x,x 0∈[a,b]有f n (x)=f n (x 0)+⎰'xx n 0(t)f dt ,∴f(x)=∞→n lim f n (x)=f(x 0)+⎰xx 0g(t)dt. 取N=max{N 1,N 2},则当n>N 时,有∴|f n (x)-f(x)|=|f n (x 0)-f(x 0)+[]⎰'xx ng(t)-(t)f dt | ≤|f n (x 0)-f(x 0)|+|⎰'xx ng(t)-(t)f dt |<ε. 得证.3、设S(x)=∑∞=1n 21-n nx , x ∈[-1,1],计算积分⎰x 0S(t)dt .解:∵21-n n x ≤2n 1, x ∈[-1,1],由M 判别法知∑∞=1n 21-n n x 在[-1,1]上一致收敛.又21-n n x (n=1,2,…)在[-1,1]上连续,∴⎰x 0S(t)dt =∑⎰∞=1n x 021-n dt n t =∑∞=1n 3nnx .4、S(x)=∑∞=1n nn cosnx , x ∈R ,计算积分⎰x0S(t)dt .解:∵nn cosnx ≤nn 1, x ∈R ,由M 判别法知∑∞=1n nn cosnx 在R 上一致收敛.又nn cosnx (n=1,2,…)在R 上连续,∴⎰x0S(t)dt =∑⎰∞=1n xdt nn cosnt =∑∞=1n 2nnsinnx .5、S(x)=∑∞=1n nx -ne , x>0,计算积分⎰ln3ln2S(t)dt .解:由(ne -nx )’=-n 2e -nx <0,知ne -nx 单调减,∴对任何x ∈[ln2,ln3],有 ne -nx ≤ne-nln2=n 2n . 又由n n 2n =2n n→21<1 (n →∞),知∑n 2n收敛.∴∑∞=1n nx -ne 在[ln2,ln3]上一致收敛. 又ne -nx (n=1,2,…)在[ln2,ln3]上连续,∴⎰ln3ln2S(t)dt =∑⎰∞=1n ln3ln2nt-dt ne =∑∞=⎪⎭⎫⎝⎛-1n n n3121=21.6、证明:函数f(x)=∑3n nxsin 在R 上连续,且有连续的导函数. 证:∵3n nx sin ≤3n 1, x ∈R ,由M 判别法知∑3nnxsin 在R 上一致收敛. 又3nnxsin (n=1,2,…)在R 上连续,∴f(x)在R 上连续. ∵|(3n nx sin )’|=|2n cosnx |≤2n 1,由M 判别法知∑2n cosnx在R 上一致收敛.又2ncosnx(n=1,2,…)在R 上连续,∴f(x)在R 上有连续的导函数.7、证明:定义在[0,2π]上的函数项级数∑∞=0n n cosnx r (0<r<1)满足定理13.13条件,且⎰∑⎪⎭⎫⎝⎛∞=2π0n n dt cosnx r =2π. 证: ∵|r n cosnx|≤r n (0<r<1), x ∈[0,2π],又∑ r n (0<r<1)收敛, 由M 判别法知∑∞=0n n cosnx r 在[0,2π]上一致收敛.又r ncosnx 在[0,2π]上连续,∴∑∞=0n n cosnx r (0<r<1)满足定理13.13条件,且⎰∑⎪⎭⎫ ⎝⎛∞=2π0n n dx cosnx r =∑⎰∞=0n 2π0ncosnx dx r . 又⎰2π0dx =2π,⎰2π0cosnx dx =0(n=1,2…)∴⎰∑⎪⎭⎫⎝⎛∞=2π00n n dt cosnx r =2π.8、讨论下列函数列在所定义区间上的一致收敛性及极限函数的连续性、可微性和可积性:(1)f n (x)=x 2-nx e ,n=1,2,…, x ∈[-L,L]; (2)f n (x)=1nx nx+, n=1,2,…, I. x ∈[0,+∞);II. x ∈[a,+∞) (a>0). 解:(1)∵∞n lim +→f n (x)=0=f(x), x ∈[-L,L],且L][-L,x sup ∈|f n (x)-f(x)|=L][-L,x sup ∈| x 2-nx e |≤2ne1→0 (n →∞),∴{f n (x)}在[-L,L]上一致收敛于0,且其极限函数f(x)=0在[-L,L]上连续可积可微. 又f n (x)=x 2-nx e ,n=1,2,…在[-L,L]上连续,∴()⎰+→LL -n ∞n dx (x )f lim =⎪⎭⎫ ⎝⎛⎰+→LL -n ∞n (x)dx f lim . ∵f ’n (x)=2-nx e(1-2nx 2), 且(x)f lim n ∞n '+→=⎩⎨⎧=≠≤≤ 0x 10x L x L -0,,且, ∴[(x)f lim n ∞n +→]’≠(x)f lim n ∞n '+→.(2)∵f(x)=∞n lim +→f n (x)=1=⎩⎨⎧+∞<≤<=x a 010x 0,,,且)[a,x sup +∞∈|f n (x)-f(x)|=1nx 1-sup)[a,x ++∞∈=1na 1+→0 (n →∞), ∴{f n (x)}在[a,+∞) (a>0)上一致收敛于1,在[0,+∞)上内闭一致收敛. ∴其极限函数不在[0,+∞)上连续可积可微;但在[a,+∞) (a>0)上其极限函数f(x)=1连续可微,但不可积.9、证明:函数S(x)=∑xn 1在(1,+∞)上连续,且有连续的各阶导数. 证:∀x ∈(1,+∞),取1<p<x ,则0<x n 1≤p n1,由M 判别法,知 ∑x n 1在[p,+∞)上一致收敛,在(1,+∞)上内闭一致收敛. 又x n 1在(1,+∞)上连续,∴S(x)在(1,+∞)上连续. 又)k (x n 1⎪⎭⎫ ⎝⎛=x k kn n ln )1(-, k=1,2,…在(1,+∞)上连续. ∀x ∈(1,+∞),取1<p<x ,使x k kn n ln )1(-≤p k n n ln . 固定k ,取q>p>1, 由p k n n ln /q n 1=q -p k n n ln →0 (n →∞),及∑q n1收敛,知∑p k n n ln 收敛, ∴∑-x k kn n ln )1(在[p,+∞)上一致收敛,在(1,+∞)上内闭一致收敛. ∴S (k)(x)=∑⎪⎭⎫ ⎝⎛)k (x n 1=∑-x k kn n ln )1( 在(1,+∞)上连续. 得证!10、设f 在(-∞,+∞)上有任何阶导数,记F n =f (n), 且在任何有限区间内F n ⇉φ (n →∞),试证:φ(x)=ce x (c 为常数). 证:由条件可知φ’(x)=[∞n lim +→f (n)(x)]’=∞n lim +→[f (n)(x)]’ =∞n lim +→f (n+1)(x)=φ(x). 即有φ(x )(x )φ'=1,两边取积分得:⎰'φ(x )(x )φdx =⎰dx +C ,即⎰φ(x )1d φ(x) =x+c 1, ∴ln φ(x)=x+c 1,即φ(x)=1c x e +=1c e e x =ce x (其中c=1c e 为常数).。

数学分析13.1一致收敛性

数学分析13.1一致收敛性

第十三章 函数列与函数项级数1 一致收敛性一、函数列及其一致收敛性概念:设f 1,f 2,…,f n ,…是一列定义在同一数集E 上的函数,称为定义在E 上的函数列,也可以简单地写作{f n }或f n , n=1,2,…. 设x 0∈E ,以x 0代入函数列可得数列:f 1(x 0),f 2(x 0),…,f n (x 0),…. 若该数列收敛,则称对应的函数列在点x 0收敛,x 0称为该函数列的收敛点. 若数列发散,则称函数列在点x 0发散. 若函数列在数集D ⊂E 上每一点都收敛,则称该函数列在数集D 上收敛. 这时D 上每一点x 都有数列{f n (x)}的一个极限值与之相对应,由这个对应法则所确定的D 上的函数,称为原函数的极限函数. 若把此极限函数记作f ,则有∞n lim +→f n (x)=f(x), x ∈D ,或f n (x)→f(x) (n →∞), x ∈D.使函数列{f n }收敛的全体收敛点集合,称为函数列{f n }的收敛域.函数列极限的ε-N 定义:对每一个固定的x ∈D ,任给正数ε, 恒存在正数N(ε,x),使得当n>N 时,总有|f n (x)-f(x)|< ε.例1:设f n (x)=x n , n=1,2,…为定义在R 上的函数列,证明它的收敛域是(-1,1]且有极限函数f(x)=⎩⎨⎧=<1x 11|x |0,,.证:任给正数ε<1, 当|x|<1时,∵|f n (x)-f(x)|=|x|n , ∴只要取N(ε,x)=|x |ln ln ε,当n>N 时,就有|f n (x)-f(x)|< ε.当x=0或x=1时,对任何正整数n ,都有|f n (x)-f(x)|=0< ε. ∴f n (x)在(-1,1]上收敛,且有极限函数f(x) =⎩⎨⎧=<1x 11|x |0,,.又当|x|>1时,有|x|n →∞ (n →∞),当x=-1时,对应的数列为: -1,1,-1,1…发散. ∴函数列{x n }在(-1,1]外都是发散的. 得证!例2:证明:函数列f n (x)=nsinnx, n=1,2,…的收敛域是R ,极限函数f(x)=0. 证:∵对任意实数x ,都有n sinnx ≤n 1,∴任给ε>0,只要n>N=ε1, 就有0nsinnx-< ε,得证!定义1:设函数列{f n }与函数f 定义在同一数集D 上,若对任给的正数ε,总存在某一正整数N ,使得当n>N 时,对一切x ∈D ,都有 |f n (x)-f(x)|< ε,则称函数列{f n }在D 上一致收敛于f ,记作 f n (x)⇉f(x) (n →∞), x ∈D.注:反之,若存在某正数ε0,对任何正数N ,都有D 上某一点x ’与正整数n ’>N ,使|f n (x ’)-f(x ’)|≥ε0,则函数列{f n }在D 上不一致收敛于f. 如:例1中的函数列{x n }在(0,1)上收敛于f(x)=0,但不一致收敛.∵令ε0=21,对任何正数N ,取正整数n>N+1及x ’=21n 11⎪⎭⎫ ⎝⎛-∈(0,1),则有|x ’2 -0|=1-n 1≥21. ∴函数列{x n }在(0,1)上不一致收敛于f(x)=0.函数列一致收敛于f 的几何意义:对任何正数ε,存在正整数N ,对于一切序号大于N 的曲线y=f n (x),都落在以曲线y=f(x)+ ε与y=f(x)- ε为边(即以y=f(x)为“中心线”,宽度为2ε)的带形区域内(如图1).(图1)(图2)函数列{x n }在(0,1)内不一致收敛,即对于某个事先给定的正数ε<1, 无论N 多么大,总有曲线y=x n (n>N)不能全部落在以y=ε与y=-ε为边的带形区域内(如图2). 若函数列{x n }只限于在区间(0,b) (b<1)内讨论,则只要n>lnbln ε(其中0<ε<1),曲线y=x n 就全部落在y=ε与y=-ε为边的带形区域内,所以{x n }在区间(0,b)内一致收敛.定理13.1:(函数列一致收敛的柯西准则)函数列{f n }在数集D 上一致收敛的充要条件是:对任给ε>0,总存在正数N ,使得当n,m>N 时, 对一切x ∈D ,都有|f n (x)-f m (x)|< ε.证:[必要性]若f n (x)⇉f(x) (n →∞), x ∈D ,则∀ε>0,∃正数N , 使得当n,m>N 时,对一切x ∈D ,都有|f n (x)-f(x)|<2ε及|f m (x)-f(x)|<2ε. ∴|f n (x)- f m (x)|≤|f n (x)-f(x)|+ |f m (x)-f(x)|<2ε+2ε= ε. [充分性]若|f n (x)-f m (x)|< ε, 则由数列收敛的柯西准则知, {f n }在D 上任一点都收敛,记其极限函数f(x),则有∞m lim +→|f n (x)-f m (x)|=|f n (x)-f(x)|<ε,由定义1知f n (x)⇉f(x) (n →∞), x ∈D.定理13.2:函数列{f n }在区间D 上一致收敛于f 的充要条件是:Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0.证:[必要性]若f n (x)⇉f(x) (n →∞), x ∈D ,则∀ε>0,∃正整数N ,当n>N 时,有|f n (x)-f(x)|<ε, x ∈D.由上确界定义,有Dx sup ∈|f n (x)-f(x)|≤ε. ∴Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0. [充分性]若Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0,则∀ε>0,∃正整数N , 使得当n>N 时,有Dx sup ∈|f n (x)-f(x)|<ε. 又对一切x ∈D ,总有|f n (x)-f(x)|≤Dx sup ∈|f n (x)-f(x)|<ε,∴{f n }在D 上一致收敛于f.推论:函数列{f n }在D 上不一致收敛于f 的充要条件是: 存在{x n }⊂D ,使得{f n (x n )-f(x n )}不收敛于0.例3:设f n (x)=nx 2-nx e , x ∈D=R +,n=1,2,….判别{f n (x)}在D 上的一致收敛性.解法一:对任意x ∈R +, ∞n lim +→nx 2-nx e=0=f(x). 又当f ’n (x)=222ex 2n -n =0时, x=2n1,且f ”(2n1)=-2e 2n2n <0, ∴在R +上,每个nx 2-nx e 只有一个极大值点x n =2n1,而Dx ∞n sup lim ∈+→|f n (x)-f(x)|=∞n lim +→f n (x n )=2enlim∞n +→=+ ∞≠0, ∴{f n (x)}在D 上不一致收敛于f.解法二:取x n =n1∈R +,则∞n lim +→f n (x n )=n 1-∞n e lim +→=1≠0, ∴{f n }在D 上不一致收敛于f.定义1:设函数列{f n }与f 定义在区间I 上,若对任意闭区间[a,b]⊂I, {f n }在[a,b]上一致收敛于f ,则称{f n }在I 上内闭一致收敛于f.注:若I 为有界闭区间,则{f n }在I 上内闭一致收敛于f 与{f n }在I 上一致收敛于f 是一致的.例1中函数列{x n }在[0,1)上不一致收敛于0,但对任意δ>0,]δ,0[x sup ∈|x n |≤δn→0 (n →∞),∴{f n }在[0,1)上内闭一致收敛于0.例3中函数列{f n }在R +上不一致收敛于0,但对任意[a,b]⊂R +,]b ,a [x sup ∈|nx 2-nx e |≤nb 2-na e →0 (n →∞),∴{f n }在R +上内闭一致收敛于0.二、函数项级数及其一致收敛性概念:设{u n (x)}是定义在数集E 上的一个函数列,表达式: u 1(x)+ u 2(x)+…+u n (x)+…, x ∈E称为定义在E 上的函数项级数,简记为∑∞=1n n (x )u 或∑(x)u n .称S n (x)=∑=n1k k (x )u , x ∈E, n=1,2,…为函数项级数∑(x)u n 的部分和函数.若x 0∈E, 数项级数u 1(x 0)+ u 2(x 0)+…+u n (x 0)+…收敛,即部分和 S n (x 0)=∑=n1k 0k )(x u 当n →∞时极限存在,则称级数∑(x)u n 在点x 0收敛,x 0称为级数∑(x)u n 的收敛点.若级数∑)(x u 0n 发散,则称级数∑(x)u n 在点x 0发散.若∑(x)u n 在E 的某个子集D 上每点都收敛,则称∑(x)u n 在D 上收敛. 若D 为级数∑(x)u n 全部收敛点的集合,则称D 为∑(x)u n 的收敛域. 级数∑(x)u n 在D 上每一点x 0与其所对应的数项级数∑)(x u 0n 的和S(x 0)构成一个定义在D 上的函数,称为级数∑(x)u n 的和函数,并写作: S(x)=u 1(x)+ u 2(x)+…+u n (x)+…, x ∈D 即∞n lim +→S n (x)=S(x), x ∈D ,于是函数项级数的收敛性等价于它的部分和函数列{S n (x)}的收敛性.例4:判别函数项级数(几何级数)1+x+x 2+…+x n +…在R 上的收敛性.解:几何级数的部分和函数为S n (x)=x-1x -1n .当|x|<1时,S(x)=∞n lim +→S n (x)=x-11; 当|x|≥1时,S(x)=∞n lim +→S n (x)=+∞.∴几何级数在(-1,1)内收敛于和函数S(x)=x-11;当|x|≥1时,发散.定义3:设{S n (x)}函数项级数∑(x)u n 的部分和函数列. 若{S n (x)}在数集D 上一致收敛于S(x),则称∑(x)u n 在D 上一致收敛于S(x). 若∑(x)u n 在任意闭区间[a,b]⊂I 上一致收敛,则称∑(x)u n 在I 上内闭一致收敛.定理13.3:(一致收敛的柯西准则)函数项级数∑(x)u n 在数集D 上一致收敛的充要条件是:对任给ε>0,总存在某正整数N ,使得当n>N 时, 对一切x ∈D 和一切正整数p ,都有|S n+p (x)-S n (x)|< ε或∑++=pn 1n k k(x)u< ε.推论:函数项级数∑(x)u n 在数集D 上一致收敛的必要条件是函数列{u n (x)}在D 上一致收敛于0.注:设函数项级数∑(x)u n 在数集D 上的和函数为S(x), 称 R n (x)=S(x)-S n (x)为函数项级数∑(x)u n 的余项.定理13.4:函数项级数∑(x)u n 在数集D 上一致收敛于S(x)的充要条件是:Dx ∞n sup lim∈+→|R n (x)|=Dx ∞n sup lim ∈+→|S(x)-S n (x)|=0.注:几何级数∑n x 在(-1,1)上不一致收敛,因为)(-1,1x sup ∈|S(x)-S n (x)|=1-x x sup n )(-1,1x ∈≥1n n -11n n n+⎪⎭⎫⎝⎛+=n 1-n 1n n ⎪⎭⎫ ⎝⎛+ →∞ (n →∞). 又对任意a(0<a<1),]a -a,[x sup ∈|S(x)-S n (x)|=1-x x sup n]a -a,[x ∈=a -1a n →0 (n →∞).∴几何级数∑n x 在(-1,1)上内闭一致收敛.三、函数项级数的一致收敛性判别法定理13.5:(魏尔斯特拉斯判别法或M 判别法或优级数判别法) 设函数项级数∑(x)u n 定义在数集D 上,∑n M 为收敛的正项级数, 若对一切x ∈D ,有|u n (x)|≤M n , n=1,2,…, 则函数项级数∑(x)u n 在D 上一致收敛.证:∵∑n M 为收敛的正项级数,根据数项级数的柯西准则, ∀ε>0,∃正整数N ,使得当n>N 及任何正整数p ,有∑++=pn 1n k kM=∑++=pn 1n k kM< ε,又对一切x ∈D ,有|u n (x)|≤M n , n=1,2,…,∴∑++=pn 1n k k(x)u≤∑++=pn 1n k k(x )u≤∑++=pn 1n k kM< ε,由函数项级数一致收敛的柯西准则知,级数∑(x)u n 在D 上一致收敛.例5:证明函数项级数∑2n nx sin 和∑2n cosnx在R 上一致收敛. 证:∵对一切x ∈R ,有2n nx sin ≤2n 1,∑2n cosnx ≤2n1. 又级数∑2n 1收敛,∴函数项级数∑2n nx sin 和∑2n cosnx在R 上一致收敛.注:当级数∑(x)u n 与级数∑n M 在 [a,b]上,都有|u n (x)|≤M n , n=1,2,…时,称级数∑n M 在[a,b]优于∑(x)u n ,或称∑n M 为∑(x)u n 的优级数.定理13.6:(阿贝尔判别法)设 (1)∑(x)u n 在区间I 上一致收敛; (2)对每一个x ∈I ,{v n (x)}是单调的;(3){v n (x)}在I 上一致有界,即对一切x ∈I 和正整数n ,存在正数M ,使得|v n (x)|≤M ,则级数∑(x)(x)v u n n 在I 上一致收敛. 证:由条件(1),∀ε>0,∃某正整数N ,使得 当n>N 及任何正整数p ,对一切x ∈I ,有∑++=pn 1n k k(x)u< ε.又由条件(2),(3),根据阿贝尔引理得:∑++=pn 1n k k k(x)(x)v u≤[|v n+1(x)|+2|v n+p (x)|]ε≤3M ε.由函数项级数一致收敛的柯西准则知,∑(x)(x)v u n n 在I 上一致收敛.定理13.7:(狄利克雷判别法)设(1)∑(x)u n 的部分和函数列S n (x)=∑=n1k k (x )u , (n=1,2,…)在I 上一致有界;(2)对于每一个x ∈I ,{v n (x)}是单调的; (3)在I 上v n (x)⇉0 (n →∞), 则级数∑(x)(x)v u n n 在I 上一致收敛.证:由条件(1),存在正数M ,对一切x ∈I ,有|S n (x)|≤M , ∴当n,p 为任何正整数时,∑++=pn 1n k k(x)u=|S n+p (x)-S n (x)|<2M.对任何一个x ∈I ,由条件(2)及阿贝尔引理得:∑++=pn 1n k k k(x)(x)v u≤2M[|v n+1(x)|+2|v n+p (x)|]又由条件(3),∀ε>0,∃正数N ,使得当n>N 时,对一切x ∈I , 有|v n (x)|<ε. ∴∑++=pn 1n k k k(x)(x)v u<6M ε.由函数项级数一致收敛的柯西准则知,∑(x)(x)v u n n 在I 上一致收敛.例6:证明:函数项级数∑++-1n nn n )n x ()1(在[0,1]上一致收敛. 证:记u n (x)=n )1(n -, v n (x)=nn x 1⎪⎭⎫⎝⎛+,则∑(x)u n 在[0,1]上一致收敛;又{v n (x)}单调增,且1≤v n (x)≤e, x ∈[0,1],即{ v n (x)}在[0,1]上一致有界.根据阿贝尔判别法知数∑++-1n n n )n x ()1(在[0,1]上一致收敛.例7:证明:若数列{a n }单调且收敛于0,则级数∑cosnx a n 在[α,2π-α] (0<α<π)上一致收敛.证:∵∑=n1k coskx = 21-2x 2sin x 21n sin ⎪⎭⎫ ⎝⎛+≤2x sin21+21≤2α2sin 1+21, x ∈[α,2π-α],∴级数∑cosnx 的部分和函数列在[α,2π-α]上一致有界. 令u n (x)=cosnx, v n (x)=a n ,∵数列{a n }单调且收敛于0, 根据狄利克雷判别法知,级数∑cosnx a n 在[α,2π-α]上一致收敛.注:只要{a n }单调且收敛于0,那么级数∑cosnx a n 在不包含2k π (k 为整数)的任何闭区间上都一致收敛.习题1、讨论下列函数列在所示区间D 上是否一致收敛或内闭一致收敛,并说明理由: (1)f n (x)=22n1x +, n=1,2,…,D=(-1,1); (2)f n (x)=22xn 1x+, n=1,2,…,D=R ;(3)f n (x)=⎪⎩⎪⎨⎧≤<++≤≤++-1x 1n 101n 1x 01x )1n (,,, n=1,2,…; (4)f n (x)=n x, n=1,2,…,D=[0,+∞);(5)f n (x)=nxsin , n=1,2,…,D=R.解:(1)∞n lim +→f n (x)=22∞n n 1x lim ++→ =|x|=f(x), x ∈D=(-1,1);又 D x sup ∈|f n (x)-f(x)|=|x |n 1x sup 22D x -+∈=|x |n1x n 1sup 222D x ++∈≤n 1→0(n →∞).∴22n 1x +⇉|x| (n →∞),x ∈(-1,1). (2)∞n lim +→f n (x)=22∞n x n 1xlim++→ =0=f(x), x ∈D=R ;又Dx sup ∈|f n (x)-f(x)|=22D x xn 1x sup+∈≤nx 2x =n 21→0(n →∞). ∴22x n 1x+⇉0 (n →∞),x ∈R.(3)当x=0时,∞n lim +→f n (x)=1;当0<x ≤1时,只要n>x1-1,就有f n (x)=0, ∴f n (x)在[0,1]上的极限函数为f(x)= ⎩⎨⎧≤<=1x 000x 1,,.又]1,0[x ∞n sup lim ∈+→|f n (x)-f(x)|=1≠0. ∴f n (x)在[0,1]上不一致收敛. (4)∞n lim +→f n (x)=nxlim ∞n +→=0=f(x), x ∈D=[0,+∞);又 )∞[0,+x ∞n sup lim ∈+→|f n (x)-f(x)|=nxsuplim )∞[0,+x ∞n ∈+→=+∞, ∴f n (x)在[0,+∞)上不一致收敛. 在任意[0,a]上,a][0,x ∞n sup lim∈+→|f n (x)-f(x)|=nalim ∞n +→=0, ∴f n (x)在[0,+∞)上内闭一致收敛.(5)∞n lim +→f n (x)=nx sin lim ∞n +→=0=f(x), x ∈D=R ;又 Rx ∞n sup lim ∈+→|f n (x)-f(x)|=nxsinsup lim Rx ∞n ∈+→=1, ∴f n (x)在R 上不一致收敛. 在任意[-a,a]上,a][-a,x ∞n sup lim∈+→|f n (x)-f(x)|=nx sin sup lim a][-a,x ∞n ∈+→≤n a lim ∞n +→=0, ∴f n (x)在R 上内闭一致收敛.2、证明:设f n (x)→f(x), x ∈D , a n →0(n →∞) (a n >0). 若对每一个正整数n 有|f n (x)-f(x)|≤a n , x ∈D ,则{f n }在D 上一致收敛于f. 证:∵|f n (x)-f(x)|≤a n , x ∈D ,且a n →0(n →∞),∴a][-a,x ∞n sup lim∈+→|f n (x)-f(x)|= 0,∴f n (x)⇉f(x) (n →∞),x ∈D.3、判别下列函数项级数在所示区间上的一致收敛性:(1)∑1)!-(n x n , x ∈[-r,r];(2)∑+n221-n )x (1x (-1), x ∈R ;(3)∑n x n , |x|>r>1; (4)∑2n n x , x ∈[0,1];(5)∑+n x (-1)21-n , x ∈R ;(6)∑+1-n 22)x (1x , x ∈R. 解:(1)∀x ∈[-r,r], 有1)!-(n x n≤1)!-(n r n ,记u n =1)!-(n r n ,则n 1n u u +=n r →0(n →∞),∴∑1)!-(n r n 收敛,∴∑1)!-(n x n在[-r,r]上一致收敛.(2)记u n (x)=(-1)n-1, v n (x)=n22)x (1x +,则对任意的x ∈R ,有 |∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在R 上有界;又{v n (x)}单调减,且由0≤n22)x (1x +≤n 1→0(n →∞)知,v n (x)⇉0 (n →∞), 由狄利克雷判别法知∑+n221-n )x (1x (-1)在R 上一致收敛. (3)∀|x|>r>1, 有n x n <n r n ,记u n =nrn,则n 1n u u +=rn 1n +→r 1<1 (n →∞), ∴∑n r n 收敛,∴∑n xn在|x|>r>1上一致收敛. (4)∀x ∈[0,1], 有2nnx ≤2n 1, 又∑2n 1收敛,∴∑2n n x 在[0,1]上一致收敛.(5)方法一:记u n (x)=(-1)n-1, v n (x)=nx 12+,则对任意的x ∈R ,有 |∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在R 上有界;又{v n (x)}单调减,且由0<nx 12+≤n 1→0(n →∞)知,v n (x)⇉0 (n →∞), 由狄利克雷判别法知∑+n x (-1)21-n 在R 上一致收敛.方法二:|∑++=+pn 1n k 21-k kx (-1)|≤1n x 12+++p n x 12++≤n 2.∀ε>0,只要取N=⎥⎦⎤⎢⎣⎡ε2,则当n>N 及任意自然数p ,就有|∑++=+pn 1n k 21-k kx (-1)|<ε,由柯西准则知,∑+n x (-1)21-n 在R 上一致收敛.方法三:由莱布尼兹判别法知,对R 上的任意一点x ,∑+nx (-1)21-n 收敛.又)x (R sup lim n R x ∞n ∈+→=1n 1lim ∞n ++→=0,∴∑+nx (-1)21-n 在R 上一致收敛.(6)当x ≠0时,该函数项级数的部分和函数S n (x)=x 2+22x 1x ++…+1-n 22)x (1x +=1+x 2-1-n 2)x (11+→1+x 2=S(x) (n →∞), ∴Rx sup ∈|R n (x)|=1-n 2Rx )x (11sup+∈=1→/0 (n →∞), ∴∑+1-n 22)x (1x 在R 上不一致收敛.4、设函数项级数∑)x (u n 在D 上一致收敛于S(x),函数g(x)在D 上有界. 证明:级数∑)x (g(x)u n 在D 上一致收敛于g(x)S(x).证:可设|g(x)|≤M ,x ∈D. ∵∑)x (u n 在D 上一致收敛于S(x), ∴∀ε>0,∃N>0,当n>N 时,对一切x ∈D ,都有|∑=n1k k (x )u -S(x)|<Mε. ∴|∑=n 1k k (x )g(x )u - g(x)S(x)|=|g(x)|·|∑=n1k k (x )u -S(x)|< ε. 得证!5、若区间I 上,对任何正整数n ,|u n (x)|≤v n (x),证明: 当∑)x (v n 在I 上一致收敛时,级数∑)x (u n 在I 上也一致收敛. 证:∵|u n (x)|≤v n (x),∴∑=+p1k k n |(x )u |≤∑=+p1k k n (x )v .又∑)x (v n 在I 上一致收敛,∴∀ε>0,∃N>0,当n>N 时, 对一切x ∈I 和一切自然数p ,都有|∑=+p1k k n (x )v |<ε.∴|∑=+p 1k k n (x )u |≤∑=+p 1k k n |(x )u |≤∑=+p 1k k n (x )v ≤|∑=+p1k k n (x )v |<ε,得证!6、设u n (x)(n=1,2,…)是[a,b]上的单调函数,证明:若∑)a (u n 与∑)b (u n 都绝对收敛,则∑)x (u n 在[a,b]绝对且一致收敛. 证:∵u n (x)(n=1,2,…)在[a,b]上单调,∴|u n (x)|≤|u n (a)|+|u n (b)|, 又∑|)a (u |n 与∑|)b (u |n 都收敛,∴正项级数|))b (u ||)a (u (|n n +∑收敛; 根据优级数判别法知,∑)x (u n 在[a,b]绝对且一致收敛.7、证明:{f n } 区间I 上内闭一致收敛于f 的充要条件是:对任意x 0∈I ,存在x 0的邻域U(x 0),使{f n }在U(x 0)∩I 上一致收敛于f. 证: [必要性]设{f n } 区间I 上内闭一致收敛于f ,对任意x 0∈I ,任意邻域U(x 0)∩I ⊂I ,根据内闭一致收敛的定义, {f n }在U(x 0)∩I 上一致收敛于f.[充分性]设任意x 0∈I ,存在x 0的一个邻域U(x 0), 使得{f n }在U(x 0)∩I 上一致收敛于f ,即 对一切x ∈I ,{f n }一致收敛于f ,∴{f n }在I 上一致收敛,从而内闭一致收敛.8、在[0,1]上定义函数列u n (x)=⎪⎩⎪⎨⎧≠=n 1x 0n 1x n1,,,证明: 级数∑)x (u n 在[0,1]上一致收敛,但它不存在优级数.证:∵|∑=+p1k k n (x )u |=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=⋯+=+==+⋯++++=++⋯+⋯+=+⋯++++=+⋯+++其它点p n 1x 2n 1x 1n 1x 00000p n 1p n 102n 102n 101n 1001n 1,,,,,∴当0≤x<1时,恒有|∑=+p1k k n (x )u |<n1,于是∀ε>0,取N=[ε1],则当n>N 时,对一切x ∈[0,1]和一切自然数p ,都有|∑=+p1k k n (x )u |<ε,∴级数∑)x (u n 在[0,1]上一致收敛.若∑)x (u n 在[0,1]上存在优级数∑n M ,取x=n1,则M n ≥|u n (x)|=|u n (n 1)|=n 1>0. 由∑n M 收敛知∑n1收敛,不合理! ∴∑)x (u n 不存在优级数.9、讨论下列函数列或函数项级数在所示区间D 上的一致连续性: (1)∑∞=++2n 2222]1)-(n )[x n (x 2n -1, D=[-1,1];(2)∑nn3x sin 2, D=R +; (3)∑++)nx 1](1)x -(n [1x 222, D=R +;(4)∑nx n , D=[-1,0]; (5)∑++1n 2x (-1)12n n, D=(-1,1);(6)∑∞=1n n sinnx, D=(0,2π).解:(1)∵∑++=++pn 1n k 2222]1)-(k )[x k (x 2k -1=2222n x 1p)(n x 1+-++<22n x 1+≤2n 1; ∴∀ε>0,取N=[ε1]+1,当n>N 时,对一切x ∈[-1,1]和一切自然数p ,都有∑++=++pn 1n k 2222]1)-(k )[x k (x 2k-1<ε,∴原级数在[-1,1]上一致收敛. (2)对任意自然数n ,取x n =n 32π⋅∈R +,有|n n 3x sin 2|=2n →/ 0 (n →∞), ∵原级数在R +上不一致收敛. (3)S n (x)=∑=⎥⎦⎤⎢⎣⎡+-+n1k 22kx 111)x-(k 11=1-2nx 11+→1(n →∞),+∈R x sup |S n (x)-1|=≥2n 1n 11⎪⎭⎫ ⎝⎛+=21(n=1,2,…);∵原级数在R +上不一致收敛.(4)记u n (x)=(-1)n, v n (x)=n(-x)n,则对任意的x ∈[-1,0],有|∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在[-1,0]上有界;又{v n (x)}单调减,且由0<n(-x)n≤n1→0(n →∞)知,v n (x)⇉0 (n →∞),由狄利克雷判别法知原级数在[-1,0]上一致收敛.(5)记u n (x)=(-1)n, v n (x)=1n 2x 12n ++,则对任意的x ∈(-1,1),有|∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在(-1,1)上有界;又{v n (x)}单调减,且由0<1n 2x 12n ++≤1n 21+→0(n →∞)知,v n (x)⇉0 (n →∞),由狄利克雷判别法知原级数在(-1,1)上一致收敛. (6)取ε0=21sin 31,对任意自然数N ,存在n=N ,p=N+1,x 0=1)2(N 1+∈(0,2π),使∑++=pn 1n k 0k )(x u =∑++=+1N 21N k 1)2(N k sin k1>∑++=1N 21N k 2k 1sin >21sin 21>ε0.∴原级数在(0,2π)上不一致收敛.10、证明:级数∑∞=-0n n n )x 1(x (-1)在[0,1]上绝对收敛并一致收敛,但由其各项绝对值组成的级数在[0,1]上却不一致收敛. 证:易见|R n |≤(1-x)x n+1. 又由((1-x)x n+1)’=(n+1)(1-x)x n -x n+1=(n+1)x n -(n+2)x n+1=(n+2)x n (2n 1n ++-x),知 当x=2n 1n ++时,|R n |≤(1-2n 1n ++)1n 2n 1n +⎪⎭⎫ ⎝⎛++=1n 2n 1n 2n 1+⎪⎭⎫ ⎝⎛+++<2n 1+, ∴[0,1]x ∞n sup lim ∈+→|R n |≤2n 1lim ∞n ++→=0. ∴原级数在[0,1]上一致收敛. 对级数∑∞=-0n nn)x 1(x (-1)各项绝对值组成的级数∑∞=-0n n )x 1(x ,∵)x 1(x lim n ∞n -+→=0, x ∈[0,1],∴原级数在[0,1]上绝对收敛.又∞n lim +→S n (x)=∞n lim +→(1-x)∑=nk k x =∞n lim +→(1-x n )=⎩⎨⎧=<≤1x 01x 01,,,可见[0,1]x ∞n sup lim ∈+→|R n |=1→/ 0 (n →∞),得证.11、设f 为定义在区间(a,b)内的任一函数,记f n (x)=n[nf(x)], n=1,2,…, 证明:函数列{f n }在(a,b)内一致收敛于f. 证:由|R n |=|n [nf(x)]-f(x)|=n nf(x )-[nf(x )]≤n11→0 (n →∞),得证!12、设{u n (x)}为[a,b]上正的递减且收敛于零的函数列,每一个u n (x)都是[a,b]上的单调函数. 证明:级数u 1(x)-u 2(x)+u 3(x)-u 4(x)+…在[a,b]上不仅收敛,而且一致收敛. 证:根据莱布尼茨判别法,该级数在[a,b]上收敛. 记v n (x)=(-1)n-1,则对任意的x ∈[a,b],有|∑=n1k k (x )v |≤1, (n=1,2,…),即{v n (x)}的部分和函数列在[a,b]上有界;又u n (x)在[a,b]上单调,且u n (a),u n (b)都收敛于零,∴0<u n (x)<u n (a)+u n (b)→0(n →∞),∴u n (x)⇉0 (n →∞), 由狄利克雷判别法知该级数在[a,b]上一致收敛.13、证明:若{f n (x)}在区间I 上一致收敛于0,则存在子列{in f },使得∑=n1k n if在I 上一致收敛.证:∵{f n (x)}在区间I 上一致收敛于0,∴对任意自然数i ,总存在自然数n i ,使得∀x ∈I ,有|i n f |<2i 1,又级数∑=n1k 2i1收敛,由魏尔斯特拉斯判别法知,∑=n1k n if 在I 上一致收敛.。

(NEW)华东师范大学数学系《数学分析》(第4版)(下册)配套题库【名校考研真题+课后习题章节题库模拟试题

(NEW)华东师范大学数学系《数学分析》(第4版)(下册)配套题库【名校考研真题+课后习题章节题库模拟试题

有界,由Dirichlet判别法,知 二、解答题
收敛.
1.设 ,求级数
的和.[苏州大学2004研]
解:设
, 的收敛区间为



,则


,则

从而
2.
.[武汉大学2004研]
解:原式 3.判断下列级数是绝对收敛、条件收敛还是发散:
(1)

(2)
.[北京科技大学2011研]
解:(1)因为

收敛,
所以由级数的比较判别法知,级数
上逐
点收敛,即由Osgood定理,得
上一致收敛.
(Osgood定理)设函数列 在有限闭区间 上连续, 在 上等 度连续,如果

(1)
上连续;
(2)
上一致收敛于 [哈尔滨工业大学2009研]
证明:(1)由 在 上等度连续,得

,当
成立;
时,不等式
令 取极限得,
由此得
上连续;
,对所有
(2)由 时,有

;对于任意的
目 录
第一部分 名校考研真题 第12章 数项级数 第13章 函数列与函数项级数 第14章 幂级数 第15章 傅里叶级数 第16章 多元函数的极限与连续 第17章 多元函数微分学 第18章 隐函数定理及其应用 第19章 含参量积分
第20章 曲线积分 第21章 重积分 第22章 曲面积分 第23章 向量函数微分学 第二部分 课后习题 第12章 数项级数 第13章 函数列与函数项级数 第14章 幂级数 第15章 傅里叶级数 第16章 多元函数的极限与连续
闭区间的性质可知,存在
即 这里
,由比值判别法知
绝对收敛.

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-函数列与函数项级数(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-函数列与函数项级数(圣才出品)

是单调递减的.
又对任意

由狄利克雷判别法知
致收敛.
(3)因为|x|>r≥1,所以

上一
当 r>1 时,因级数
收敛,所以 在| x |>r>1 上一致收敛.
3 / 23
圣才电子书

当 r=1 时,
十万种考研考证电子书、题库视频学习平台
所以级数
上不一致收敛.
(4)因
时.
,而
上不一致收敛. 考虑区间[0,M]时,
所以 在[0,M]上一致收敛且
上内闭一致收敛.
(5)任意给定的
(i)
,考虑区间[-1,1]时,
由(ii)知 在[0,+∞)
(ii)D=(-∞,+∞)时.
故 但由(i)知 在
所以
在(-∞,+∞)上不一致收敛.
上内闭一致收敛.
2.证明:设
2 / 23
若对每一个正整数 n 有
证明:必要性
总存在 的一个邻域 和 I 的一个内闭区间[a,b],使得
所以
而 在[a,b]上一致收敛于 f,因此 在
上一致收敛于 f.
充分性
由已知
使得 在
上一致收敛于
f.从而



显然,当
取遍[a,b]上所有点时,
覆盖[a,b].由有限覆盖定理,存在有限个区间覆盖[a,b].不妨设

,则当 n>N 时,
证明:不妨设存在 M≥0,对任意
有|g(x)|<M.因
在 D 上一致收敛于
S(x),故对任意
存在 N>0,当 n>N 时,对任意
,均有
从而,对任意
4 / 23
圣才电子书 十万种考研考证电子书、题库视频学习平台

函数列与函数项级数

函数列与函数项级数

第十三章 函数列与函数项级数(12学时)§1 一致收敛性教学目的: 让学生掌握函数列与函数项级数一致收敛的定义及其判别方法.教学重点难点:一致收敛定义、一致收敛的柯西准则、一致收敛的充要条件、一致收敛的优级数判别法、阿贝耳判别法和狄利克雷判别法.一致收敛与非一致收敛的定义的几何解释、例3、阿贝耳判别法和狄利克雷判别法的应用和证明.学时安排: 6学时 教学方法: 讲授法. 教学过程:我们知道,可以用收敛数列(或级数)来表示或定义一个数,在此,将讨论如何用函数列(或函数项级数)来表示或定义一个函数。

一 函数列及其一致收敛性。

设ΛΛ,,,,21n f f f (1)是一列定义在同一数集E 上的函数,称为定义在E 上的函数列。

也可简记为: }{n f 或 n f , Λ,2,1=n 。

设E x ∈0,将0x 代入ΛΛ,,,,21n f f f 得到数列:ΛΛ),(,),(),(00201x f x f x f n (2)若数列(2)收敛,则称函数列(1)在点0x 收敛,0x 称为函数列(1)的收敛点。

若数列(2)发散,则称函数列(1)在点0x 发散。

则称函数列(1)在数集E D ⊂上每一点都收敛,则称(1)在数集D 上收敛。

这时D x ∈∀,都有数列)}({x f n 的一个极限值与之对应,由这个对应法则就确定了D 上的一个函数,称它为函数列}{n f 的极限函数。

记作f 。

于是,有)()(lim x f x f n n =∞→, D x ∈,或 )()(x f x f n →)(∞→n ,D x ∈。

函数列极限的N -ε定义 对每一个固定的D x ∈,对0>∀ε,0>∃N (注意:一般说来N 值的确定与ε和x 的值都有关),使得当N n >时,总有 ε<-)()(x f x f n 。

使函数列}{n f 收敛的全体收敛点的集合,称为函数列}{n f 的收敛域。

例1 设nn x x f =)(,Λ,2,1=n 为定义在),(∞-∞上的函数列,证明它的收敛域是]1,1(-,且有极限函数 ⎩⎨⎧=<=1,11,0)(x x x f (3)证 任给0>ε(不妨设1<ε),当10<<x 时,由于nn x x f x f =-)()(,故只要取xx N ln ln ),(εε=,则当),(x N n ε>时,就有ε<-)()(x f x f n 。

数学分析课本(华师大三版)-习题及答案第十三章

数学分析课本(华师大三版)-习题及答案第十三章

第十三章 函数列与函数项级数一、证明题1.讨论下列函数列或函数项级数在所示区间D 上是否一致收敛,并说明理由:(1) f n (x)=22n 1x +,n=1,2,…,D=(-1,1); (2) f n (x)=22xn 1x +,n=1,2,…D=(-∞,+∞); (3) f n (x)=⎪⎪⎩⎪⎪⎨⎧≤<++≤≤++-1x 1n 1 0,1n 1x 0 1,1)x (n (n=1,2……); (4) f n (x)=nx , n=1,2,…, (i) D=[0,+∞]; (ii) D=[0,1000]; (5) f n (x)=sin n x , n=1,2,…, (i) D=[-L,L]; (ii) D=[-∞,+∞]; (6) ∑+--nx 1)(21n , D=[-∞,+∞]; (7) ∑-+1n 22)x (1x , (i) D=[-∞,+∞]; (ii) D=⎥⎦⎤⎢⎣⎡10,101. 2. 证明:设f(x)→f(x),x ∈D; a n →0(n →∞),(a n >0),若对每一个自然数n.有|f n (x)-f(x)|≤a n , x ∈D,则{f n }在D 上一致收敛于f.3. 设{f n }为定义在[a,b]上的函数列,且对每一个n,f n 在点a 右连续,但{f n (a n )}是发散的,证明在任何开区间(a,a+δ)这里(a+δ<b)内{f n }都不一致收敛.4. 设函数项级数∑n u (x)在D 上一致收敛于S(x),函数g(x)在D 上有界,证明级数∑(x)g(x)u n 在D 上一致收敛于g(x)S(x). 5. 若在区间I 上,对任何自然数n, |u n (x)|≤V n (x), 证明当∑n v (x)在I 上一致收敛时,级数∑n u (x)在I 也一致收敛.6. 设u n (x)(n=1,2,…)是[a,b]上的单调函数,证明:若∑n u (a)与∑n u (b)都绝对收敛,则级数∑n u (x)在[a,b]上绝对并一致收敛.7. 在[0,1]上定义函数列1,2n n 1x 0,n 1 x ,n 1(x)u n =⎪⎪⎩⎪⎪⎨⎧≠==证明: 级数∑n u (x)在[0,1]上一致收敛,但它不存在优级数.8. 证明:级数∑∞=0n n n x )-(1x (-1)在[0,1]上绝对并一致收敛,但由其各项绝对值组成的级数在[0,1]上却不一致收敛.9. 设f 为定义在区间(a,b)内的任一函数,记f n (x)=n [nf(x)],n=1,2,……,证明函数列{f n }在(a,b)内一致收敛于f.10. 设{u n (x)}为[a,b]上正的递减且收敛于零的函数列,每一个u n (x)都是[a,b]上的单调函数.则级数u 1(x)-u 2(x)+u 3(x)-u 4(x)+…在[a,b]上一致收敛.11. 证明: 若函数列{f n }在[a,b]上满足定理13.10的条件,则{f n }在[a,b]上一致收敛.12. 证明: 函数f(x)=∑3n sinnx 在(-∞,+∞)上连续,且有连续的导函数.13. 证明: 定义在[0,2π]上的函数项级数∑∞=0n n cosnx r (0<r<1)满足定理13.12条件,且 ∑⎰∞==0n n2πcosnx dx r 02π 14. 讨论下列函数列在所定义区间上的一致收敛性及其极限函数的连续性,可积性和可微性.(1) f n (x)=2nx x e -(n=1,2,…)x ∈[-L,L];(2) f n (x)=nx1nx +,n=1,2,…, (i) x ∈[)+∞,0, (ii) x ∈[)+∞a, (a>0); 15. 证明函数ξ(x)=∑x n 1在(1,+∞)内连续,且有连续的各阶导数.16. 证明:若函数列{f n }在x 0的某δ邻域U(x 0,δ)内一致收敛于f,且)1,2,(n a (x)f lim n n x x 0 ==→,则n n a lim ∞→与f(x)lim 0x x →存在且相等,即∞→n lim (x)f lim n x x 0→=(x)f lim lim n n x x 0∞→→ 17. 设f 在(-∞,+∞)上有任何阶导数,记F n =f (n),且在任何有限区间内,F n →ϕ(n →∞),试证 ϕ(x)=ce x (c 为常数).二、计算题1. 判别下列函数项级数在所示区间上的一致收敛性. (1) ∑-∈-r]r,[x ,1)!(n x n; (2) ∑+∞-∞∈+],[x ,)x (1x (-1)n 221-n ; (3) ∑>≥0r |x |,x n n ;(4) ∑∈[0,1]x ,nx 2n.2. 讨论下列函数列或函数英级数在所示区间D 上的敛散性: (1) (0,1]D ,1,2,n ,nx11(x)f n ==+=(2) ∑=][0,2D ,n sinnx π; (3) ∑∞=++2n 2222]1)-(n )[x n (x 2n -1, D=[-1,1]; (4) ∑n n 3xsin 2, D=(0,+∞) (5) ∑+-+)nx ](11)x (n [1x 222, D=(0,+∞) (6) ∑nx n, D=[-1,0]; (7) ∑+-+12n x 1)(12n n D=[-1,1] 3. 设S(x)=∑-21n nx ,x ∈[-1,1],计算积分S(t)dt 0x ⎰. 4. 设S(x)=∑⋅n n cosnx ,x ∈(-∞,+∞),计算积分S(t)dt 0x ⎰.5. 设S(x)=∑-nx ne (x>0),计算积分S(t)dt ln2ln3⎰ 三、考研复习题1. 试问K 为何值时,下列函数列{f n }一致收敛:(1) f n (x)=xn k e -nx ,0≤x<+∞; (2) ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<≤<⎪⎭⎫ ⎝⎛-≤≤=1x n 2 0,,n 2x n 1 ,n x n2n 1x 0 ,xn (x)f k k n 2. 证明:(1)若f n (x)→f(x)(n →∞)(x ∈I),且f 在I 上有界,则{f n }至多除有限项外,在I 上是一致有界的;(2) 若f n (x)⇒f(x) (n →∞)(x ∈I),且对每一个自然数n,f n 在I 上有界,则{f n }在I 上一致有界.3. 设f 为⎥⎦⎤⎢⎣⎡1,21上的连续函数,证明: (1) {x n f(x)}在⎥⎦⎤⎢⎣⎡1,21上收敛; (2) {x n f(x)}在⎥⎦⎤⎢⎣⎡1,21上一致收敛的充要条件是f 在⎥⎦⎤⎢⎣⎡1,21上有界且f(1)=04. 若把定理13.9中一致收敛函数列{f n }的每一项在[a,b]上连续改为在[a,b]上可积,试证{f n }在[a,b]上的极限函数在[a,b]上也可积.5. 证明: 由二重极限∞→m lim (∞→n lim cos 2n (m!πx)) 所确定的极限函数是狄利克雷函数.6. 设级数∑n a 收敛,证明∞→n lim ∑x n n a =∑n a . 7. 设可微函数列{f n }在[a,b]上收敛,{f 'n }在[a,b]上一致有界,证明:{f n }在[a,b]上一致收敛.。

第十三章 函数列与函数项级数

第十三章 函数列与函数项级数
函数列(1)不一致收敛于的f充要条件:
存在某个正整数 0对任何正数N ,都有
D上某一点x'与自然数n' N , 使得
fn' (x') f (x') 0
定理13.1: 函数列{ fn}在数集D上一致收敛的充要条件
是:对任给正数,总存在正数N , 使得当n, m N时,对一切x D,都有 fn (x) fm (x)
第十三章 函数列与函数项级数
∮1 一致收敛性
㈠ 函数列及其一致收敛性
函数列: f1, f2.., fn ,..(1) 是一列定义在同一数集E上的函数,则称之为 定义在E上的函数列。
设x0 E,以x0代入(1)可得函数列: f1( x0 ), f2 ( x0 ),..fn ( x0 ),..(2)
fn (0) f (0) 0 , fn (1) f (1) 0 ,
即证得{ fn}在(1,1]上收敛,且有如题所示 的极限函数。
例2: 定义在(,)上的函数列fn (x) sin nx / n, n 1,2,...由. 于对任何实数x,都有sin nx / n
1/ n,故对任给的 0,只要n N 1/ , 就有sin nx / n 0 .
证明:必要性
设fn (x) f (x)(n ), x D,即对给任何 0
存在正数N,使得当n N时,对一切x D都
有 fn (x) f (x) / 2,于是当n, m N时,就可
得 fn (x) fm (x) fn (x) f (x) f (x) fm (x)
fn(x) f (x) f (x) fm(x) / 2 / 2
..
xn
..的部分和函数为Sn
(x)
1 xn 1 x

数学分析函数列与函数项级数一致收敛

数学分析函数列与函数项级数一致收敛

数学分析函数列与函数项级数一致收敛函数列与函数项级数的一致收敛是数学分析中的重要概念,它在函数的极限、连续性、可积性等方面具有重要的应用价值。

我们先来简单介绍一下函数列和函数项级数的定义,然后详细讨论一致收敛的概念。

函数列是指一列函数组成的序列,记作{f_n(x)}。

函数项级数是指一列函数项组成的级数,记作Σf_n(x)。

在这里我们只讨论实函数的情况,即函数的定义域是实数集R。

一致收敛是函数列与函数项级数的重要性质之一,它是一种比点wise收敛更强的收敛方式。

我们先来回顾一下点wise收敛的定义。

【定义】函数列{f_n(x)}在定义域上点wise收敛到函数f(x),即对于任意的实数x,有lim┬(n→∞)⁡〖f_n (x)=f(x)〗。

点wise收敛的定义是逐点逼近,即对于每个固定的x,函数列中的函数值逐渐接近极限函数的函数值。

但是,它并不能保证对于每个函数点x,函数列中的函数在该点附近都可以逐渐逼近极限函数。

为了能够在整个定义域上都能够逐渐逼近极限函数,我们引入了一致收敛的概念。

【定义】函数列{f_n(x)}在定义域上一致收敛到函数f(x),即对于任意的正数ε,存在正整数N,使得当n>N时,对于所有的x∈R,有,f_n(x)-f(x),<ε。

可以看出,一致收敛关注的是函数列中的函数在整个定义域上的逼近性,而点wise收敛只关注固定点x的逼近性。

一致收敛的定义中,要求对于每个n>N,函数列中的函数与极限函数的差值都小于ε。

这意味着函数列中的函数可以在整个定义域上同时逐渐逼近极限函数。

一致收敛的定义意味着函数列中的函数一致地逼近极限函数,差值不受特定点的影响。

这使得我们可以在整个定义域上对函数列和极限函数进行更深入的比较与分析。

一致收敛在函数的极限、连续性、可积性等方面都有重要的应用。

例如,一致收敛的函数列的极限函数仍然是连续函数,一致收敛的函数项级数仍然是可积的。

简单总结一下,函数列与函数项级数的一致收敛是指函数列或函数项级数在整个定义域上同时逐渐逼近极限函数的性质。

华东师范大学数学系《数学分析》讲义函数列与函数项级数【圣才出品】

华东师范大学数学系《数学分析》讲义函数列与函数项级数【圣才出品】

第13章函数列与函数项级数13.1本章要点详解本章要点■函数列及其一致收敛性■函数列一致收敛的柯西准则■函数项级数及其一致收敛性■一致收敛的柯西准则■M判别法■阿贝尔判别法■狄利克雷判别法■一致收敛函数列的性质■一致收敛函数项级数的性质重难点导学一、一致收敛性1.函数列及其一致收敛性(1)相关定义①函数列设12,,,,n f f f(13-1)是一列定义在同一数集E 上的函数,则称式(13-1)为定义在E 上的函数列.函数列(13-1)也可记为{}n f 或n f ,n =1,2,….以x 0∈E 代入函数列(13-1),可得数列10200(),(),,(),n f x f x f x②收敛点和发散点设12,,,,n f f f (13-2)10200(),(),,(),n f x f x f x(13-3)如果数列(13-3)收敛,则称函数列(13-2)在点x 0收敛,x 0称为函数列(13-2)的收敛点.如果数列(13-3)发散,则称函数列(13-2)在点x 0发散.当函数列(13-2)在数集D ∈E 上每一个点都收敛时,就称函数列(13-2)在数集D 上收敛.③极限函数若将D 中每一个点x 对对应的数列的极限记作f (x ),则→∞=∈lim ()(),n n f x f x x D称f (x )为函数列(13-2)的极限函数.(2)函数列的一致收敛性设函数列{}n f 与函数f 定义在同一数集D 上,若对任意的正数ε,总存在某一正整数N ,使得当n >N 时,对一切x ∈D ,都有则称函数列{}n f 在D 上一致收敛于f ,记作(3)函数列一致收敛的柯西准则函数列{}n f 在数集D 上一致收敛的充要条件是:对任给正数ε,总存在正整数N ,使得当n ,m >N 时,对一切x ∈D ,都有(4)函数列{}n f 在区间D 上一致收敛于f 的充要条件是(5)函数列{}n f 在D 上不一致收敛于f 的充要条件是:存在{}n x D ⊂,使得{}()()n n n f x f x -不收敛于0.(6)函数列内闭一致收敛设函数列{}n f 与f 定义在区间I 上,若对任意闭区间[],a b I ⊂,{}n f 在[a ,b ]上一致收敛于f ,则称{}n f 在I 上内闭一致收敛于f .2.函数项级数及其一致收敛性(1)相关定义①函数项级数设{}()n u x 是定义在数集E 上的一个函数列,称12()()(),n u x u x u x x E++++∈ (13-4)为定义在E 上的函数项级数,记为或∑u n (x ).称为部分和函数列.②收敛点和发散点若x 0∈E ,数项级数10200()()()n u x u x u x ++++(13-5)收敛,即部分和数列当n →∞时极限存在,则称级数(13-4)在点x 0收敛,x 0称为级数(13-4)的收敛点.若级数(13-5)发散,则称级数(13-4)在点x 0发散.③收敛域若级数(13-4)在E 的某个子集D 上每点都收敛,则称级数(13-4)在D 上收敛.若D 为级数(13-4)全体收敛点的集合,(也就是说级数只在D 上收敛)这时就称D 为级数(13-4)的收敛域.④和函数设级数(13-4)在其收敛域D 上每一点x 与其所对应的数项级数(13-5)的和记为S (x ),则S (x )构成一个定义在D 上的函数,称为级数(13-4)的和函数,并记作即.(2)一致收敛的柯西准则函数项级数∑u n (x )在数集D 上—致收敛的充要条件为:对任给的正数ε,总存在某正整数N ,使得当n >N 时,对一切x ∈D 和一切正整数p ,都有即(3)函数项级数∑u n (x )在数集D 上一致收敛的必要条件是函数列{u n (x )}在D 上一致收敛于零.(4)函数项级数∑u n (x )在数集D 上一致收敛于S (x )的充要条件是3.函数项级数的一致收敛性判别法(1)魏尔斯特拉斯判别法(M 判别法或优级数判别法)设函数项级数()n u x ∑定义在数集D 上,n M ∑为收敛的正项级数.若对一切x ∈D ,有则函数项级数()n u x ∑在D 上一致收敛.(2)函数项级数的一致收敛性判别法.①阿贝尔判别法设a .∑u n (x )在区间I 一致收敛;b .对于每一个x ∈I ,{v n (x )}是单调的;c .{v n (x )}在I 上一致有界,即存在正数M ,使得对一切x ∈I 和正整数n ,有则级数∑u n (x )v n (x )在I 上一致收敛.②狄利克雷判别法设a .∑u n (x )的部分和函数列在I上一致有界;b.对于每个x∈I,{v n(x)}是单调的;c.在I上,则级数∑u n(x)v n(x)在I上一致收敛.二、一致收敛函数列与函数项级数的性质1.一致收敛函数列的性质(1)极限交换定理设函数列{f n}在上一致收敛于f(x),且对每个n,,则和均存在且相等.即(2)性质①连续性若函数列{f n}在区间I上一致收敛,且每一项都连续,则其极限函数f在I上也连续.注:若各项为连续函数的函数列在区间I上其极限函数不连续,则此函数列在区间I上一定不一致收敛.②可积性若函数列{f n}在[a,b]上一致收敛,且每一项都连续,则注:一致收敛性是极限运算与积分运算交换的充分条件,不是必要条件.③可微性设{f n}为定义在[a,b]上的函数列,若x0∈[a,b]为{f n}的收敛点,{f n}的每一项在[a.b]。

数学分析教案 (华东师大版)第十三章 函数列与函数项级数

数学分析教案 (华东师大版)第十三章 函数列与函数项级数

第十三章函数列与函数项级数教学目的:1.使学生理解怎样用函数列(或函数项级数)来定义一个函数;2.掌握如何利用函数列(或函数项级数)来研究被它表示的函数的性质。

教学重点难点:本章的重点是函数列一致收敛的概念、性质;难点是一致收敛的概念、判别及应用。

教学时数:20学时§1 一致收敛性函数列及极限函数:对定义在区间I上的函数列,介绍概念:一.收敛点,收敛域(注意定义域与收敛域的区别),极限函数等概念.”定义.逐点收敛( 或称为“点态收敛”)的“例1 对定义在义验证其收敛域为例2 .用“”定义验证在内.例3 考查以下函数列的收敛域与极限函数: .⑴..⑵..⑶设为区间上的全体有理数所成数列. 令, .⑷. , .⑸有, , . (注意.)二. 函数列的一致收敛性:问题: 若在数集D上, . 试问: 通项的解析性质是否必遗传给极限函数? 答案是否定的. 上述例1、例3⑴⑵说明连续性未能遗传,而例3⑶说明可积性未能遗传. 例3⑷⑸说明虽然可积性得到遗传, 但.用函数列的极限表示函数是函数表达的一种重要手段. 特别是表达非初等函数的一种手段. 对这种函数, 就是其表达式.于是,由通项函数的解析性质研究极限函数的解析性质就显得十分重要. 那末, 在什么条件下通项函数的解析性质能遗传给极限函数呢? 一个充分条件就是所谓“一致收敛”. 一致收敛是把逐点收敛加强为所谓“整体收敛”的结果.定义( 一致收敛)一致收敛的几何意义.在数集D上一致收敛,Th1 (一致收敛的Cauchy准则) 函数列.,( 介绍另一种形式.)证( 利用式),……,有易见逐点收敛. 设, 对D成立,. 令, ,D.即, ,.推论1 在D上D ,推论2 设在数集D上, . 若存在数列使, 则函数列应用系2 判断函数列―在数集D上的最值点.. 证明函数列在R内一致收敛.例4. 证明在R内, 但不一致收敛.例5,在点处取得极证显然有. 由系2 , 不一致收敛.大值,内, .例6. 证明在内成立.在由系1 , ……上的函数列例7 对定义在区间上不一致收敛. P38—39 例3, 参图13-4.证明: , 但在, 就有. 因此, 在上有证时, 只要. ,, ,. 但由于因此, 该函数列在. 考查函数列在下列区间上的一致收例8敛性:⑴; ⑵.三. 函数项级数及其一致收敛性:, 前项部分和函数列,1.函数项级数及其和函数:,内的函数项级数( 称为几何级数)例9 定义在.的部分和函数列为, 收敛域为2.一致收敛性: 定义一致收敛性.Th2 (Cauchy准则) 级数在区间D上一致收敛,对,D成立.在区间D上一致收敛, , .推论级数Th3 级数在区间D上一致收敛,.例10 证明级数在R内一致收敛 .证令=, 则时对R成立. ……在区间上一致收敛;但在例11几何级数上, 有证在区间, .一致收敛;内, 取, 有而在区间, .非一致收敛.在区间内非一致收敛于零,非一致( 亦可由通项收敛.)虽然在区间内非一致收敛, 但在包含于内几何级数的任何闭区间上却一致收敛 . 我们称这种情况为“闭一致收敛”. 因此, 我们说在区间内闭一致收敛 .几何级数四.函数项级数一致收敛判别法:1.M - 判别法:Th 4 ( Weierstrass判别法) 设级数定义在区间D上, 是充分大时, 对D有|, 则在D上收敛的正项级数.若当一致收敛 .证然后用Cauchy准则.亦称此判别法为优级数判别法. 称满足该定理条件的正项级数是级数的一个优级数.于是Th 4 可以叙述为: 若级数在区间D上存在优级数, 则级数在区间D上一致收敛 . 应用时, 常可试取.但应注意, 级数在区间D上不存在优级数, 级数在区间D上非一致收敛.注意区分用这种控制方法判别函数列和函数项级数一致收敛性的区别所在.例12判断函数项级数和在R内的一致收敛性 .是区间上的单调函数. 试证明:例13 设都绝对收敛, 则级数在区间上绝对若级数与并一致收敛 .简证,留为作业. .……2. Abel判别法:在区间上收敛; ⅱ> 对每个, 数列Th 5 设ⅰ> 级数单调; ⅲ> 函数列, 有. 则级数在区间上一致收和敛 . ( [1]P43 )2.Dirichlet判别法:的部分和函数列在区间上一致Th 6 设ⅰ> 级数有界;, 数列单调; ⅲ> 在区间上函数列ⅱ> 对于每一个在区间上一致收敛 .一致收敛于零. 则级数在区间上的一致收敛性.例14判断函数项级数解记. 则有ⅰ> 级数收敛;, ↗;ⅲ> 对ⅱ> 对每个和成立. 由Abel判别法, 在区间上一致收敛.单调收敛于零 . 试证明: 级数在例15设数列区间上一致收敛.证在.的部分和函数列在区间上一致有界 . 取可见级数的部分和函数列在区间, . 就有级数上一致有界, 而函数列致收敛于零.由Dirichlet判别法,级数在区间上一致收敛.单调收敛于零的条件下, 级数在不包含其实, 在数列习题课设,, . 且,例1―|对成立, 则函数列若对每个自然数有|{}在上一致收敛于函数.例2证明函数列在区间上非一致收敛.例3, . 讨论函数列{}的一致收敛性.―0|. 可求得.函数列{例4设函数在区间上连续 . 定义. 试证明函数列{有界 . 设在区间上||证法一由|;|||;|.|, .注意到对证法二.有界. 设在区间上||. 把函数在点展开成具Lagrange型余项的,,就有, , .所以, 0, , .设. 且, . 令例5, ,. …….试证明: 若对和, 有, 则函数列{证对取, 使时, 有. 于是对任何自然数和, 有.由Cauchy收敛准则, 函数列{}在区间上一致收敛 .上函数列{}一致收敛于函数. 若每个在数集证( 先证函数对||,||<. 即函数在数集上有界.( 次证函数列{}在数集上一致有界 )时, 对 ,有||―||| ―|< , | |.取 易见对和有||.即函数列{}在数集上一致有界 .例7 设{}为定义在区间上的函数列, 且对每个, 函数在点右连续 , 但数列{ } 发散. 试证明: 对 ),函数列{}在区间内都不一致收敛.证 反设, 使{}在区间 内一致收敛. 则对, 有对成立..{}为Cauchy列,即{}收敛. 与已知条件矛盾.§ 2 一致收敛函数列和函数项级数的性质一. 一致收敛函数列极限函数的解析性质:1. 连续性:上,且对,函数在上连续,Th 1 设在在证( 要证: 对, 当|在估计上式右端三项. 由一致收敛, 第一、三两项可以任意小; 而由函数点推论设在上一致收敛和所有註Th1表明: 对于各项都连续且一致收敛的函数列{即极限次序可换 .2. 可积性:上函数列{}一致收敛, 且每个在Th 2若在区间上连续. 则有.上, 由Th1, 函数在区间上连证设在续,因此可积. 我们要证. 注意到在上成, 可见只要立.Th2的条件可减弱为: 用条件“在上( R )可积”代替条件“在关于函数列逐项积分条件的减弱有一系列的工作. 其中之一是:}是定义在区间上的函数列. 若{}在上Th 设{收敛且一致可积, 则其极限函数.3. 可微性:}定义在区间上, 在某个点收敛.Th 3 设函数列{对上一致收敛, 则函数列{.,. , .证设, 注意到函数连续和+, 就有对+ (对第二项交换极限与积分次序)+ +.估计|+―――| + |,可证得.|.即. 亦即求导运算与极限运算次序可换.例1 P38 例1 ( 说明定理的条件是充分的, 但不必要. )例2 P39例2( 说明定理的条件是充分的, 但不必要. )Ex P42 9,11 P43 4 .二. 一致收敛函数项级数和函数的解析性质:把上述Th1—3表为函数项级数的语言,即得关于和函数解析性质的相应结果.例3P40例3证明函数在区间内连续.例4在区间内闭一致收敛.)对,证( 先证有,;又,在一致收敛.( 次证对, 在点连续) 对, 由上上一致收敛; 又函数连续,段讨论, 在区间在区间在区间内连续.例5, . 计算积分.。

华东师大数学分析13章_函数项级数

华东师大数学分析13章_函数项级数
的所有曲线 y f n ( x ) ( n N ),
都落在曲线 y f ( x ) 与
y f ( x) y fn ( x)
y f ( x)
y f ( x ) 所夹的带状区域内.
O
a
b
x
定理1 (函数列的柯西一致收敛准则) 函数列{ f n ( x )}
n
Sn ( x ) uk ( x ),
k 1
n
x E , n 1,2,
(10)
为函数项级数(9)的部分和函数列.
若 x0 E , 数项级数
u1 ( x0 ) u2 ( x0 ) un ( x0 )
n k 1
(11)
收敛, 即部分和 S n ( x0 ) uk ( x0 ) 当 n 时极限 存在, 则称级数(9)在点 x0 收敛, x0 称为级数(9)的收 敛点. 若级数(11)发散, 则称级数(9)在点 x0 发散. 若 级数(9)在 E 的某个子集 D 上每点都收敛, 则称级数 (9)在 D 上收敛. 若 D 为级数全体收敛点的集合, 就称 D为函数项级数的收敛域. 级数在 D上每一
解:x [0,1], 有 lim nx(1 x ) n 0 即极限函数 f ( x ) 0. n
设 ( x) | f n ( x) f ( x) | nx(1 x)n ,
x [0,1]
( x )在[0,1]连续, 必有最大值
( x) n(1 x)n1 (1 x nx)
1
1 n0
1 n0 n0 1 | f n0 ( x0 ) f ( x0 ) | [( ) ] 0 . 2 2 即函数列 {x n }在区间 [0,1)不一致收敛 .

数分(中)教学计划表

数分(中)教学计划表
江苏工业学院课程计划表
13-14学年第2学期
课程名称数学分析专业班级信息131,2应数131考核方式考试学分数5学时数85
课程类别B1主讲教师刘玉清辅导教师教材《数学分析》华师大第三版
周次
教学方式
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
共计
备注
理论课
4
6
4
6
4
6
4
6
4
6
4
6
4
6
5
4
讲授
(1)§5变上限积分(2)§5定积分计算
6
6
讲授
(1)§5定积分计算(2)(3)第十章定积分应用§1面积§2体积§3弧长
7
4
讲授
(1)§4旋转面的面积§5某些物理应用(2)第十一章反常积分§1概念
8
6
讲授
(1)(2)(3)§2无穷积分的性质与收敛性判别
9
4
讲授
(1)(2)习题课
10
6
讲授
(1)第十二章数项级数§1。级数收敛性(2)(3)§2正项级数
4
6
80
实验课
多媒体教学
其它教学手段
习题课
2
2
2
6
上机
大作业
每周学时小计
本课程的教学方式和内容
周次
时数
教学方式
课程内容
1
4
讲授
第八章不定积分(1)§1不定积分概念与基本积分公式(2)换元法
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章函数列与函数项级数教学目的:1.使学生理解怎样用函数列(或函数项级数)来定义一个函数;2.掌握如何利用函数列(或函数项级数)来研究被它表示的函数的性质。

教学重点难点:本章的重点是函数列一致收敛的概念、性质;难点是一致收敛的概念、判别及应用。

教学时数:20学时§1 一致收敛性函数列及极限函数:对定义在区间I上的函数列,介绍概念:一.收敛点,收敛域(注意定义域与收敛域的区别),极限函数等概念.”定义.逐点收敛( 或称为“点态收敛”)的“例1 对定义在义验证其收敛域为例2 .用“”定义验证在内.例3 考查以下函数列的收敛域与极限函数: .⑴..⑵..⑶设为区间上的全体有理数所成数列. 令, .⑷. , .⑸有, , . (注意.)二. 函数列的一致收敛性:问题: 若在数集D上, . 试问: 通项的解析性质是否必遗传给极限函数? 答案是否定的. 上述例1、例3⑴⑵说明连续性未能遗传,而例3⑶说明可积性未能遗传. 例3⑷⑸说明虽然可积性得到遗传, 但.用函数列的极限表示函数是函数表达的一种重要手段. 特别是表达非初等函数的一种手段. 对这种函数, 就是其表达式.于是,由通项函数的解析性质研究极限函数的解析性质就显得十分重要. 那末, 在什么条件下通项函数的解析性质能遗传给极限函数呢? 一个充分条件就是所谓“一致收敛”. 一致收敛是把逐点收敛加强为所谓“整体收敛”的结果.定义( 一致收敛)一致收敛的几何意义.在数集D上一致收敛,Th1 (一致收敛的Cauchy准则) 函数列.,( 介绍另一种形式.)证( 利用式),……,有易见逐点收敛. 设, 对D成立,. 令, ,D.即, ,.推论1 在D上D ,推论2 设在数集D上, . 若存在数列使, 则函数列应用系2 判断函数列―在数集D上的最值点.. 证明函数列在R内一致收敛.例4. 证明在R内, 但不一致收敛.例5,在点处取得极证显然有. 由系2 , 不一致收敛.大值,内, .例6. 证明在内成立.在由系1 , ……上的函数列例7 对定义在区间上不一致收敛. P38—39 例3, 参图13-4.证明: , 但在, 就有. 因此, 在上有证时, 只要. ,, ,. 但由于因此, 该函数列在. 考查函数列在下列区间上的一致收例8敛性:⑴; ⑵.三. 函数项级数及其一致收敛性:, 前项部分和函数列,1.函数项级数及其和函数:,内的函数项级数( 称为几何级数)例9 定义在.的部分和函数列为, 收敛域为2.一致收敛性: 定义一致收敛性.Th2 (Cauchy准则) 级数在区间D上一致收敛,对,D成立.在区间D上一致收敛, , .推论级数Th3 级数在区间D上一致收敛,.例10 证明级数在R内一致收敛 .证令=, 则时对R成立. ……在区间上一致收敛;但在例11几何级数上, 有证在区间, .一致收敛;内, 取, 有而在区间, .非一致收敛.在区间内非一致收敛于零,非一致( 亦可由通项收敛.)虽然在区间内非一致收敛, 但在包含于内几何级数的任何闭区间上却一致收敛 . 我们称这种情况为“闭一致收敛”. 因此, 我们说在区间内闭一致收敛 .几何级数四.函数项级数一致收敛判别法:1.M - 判别法:Th 4 ( Weierstrass判别法) 设级数定义在区间D上, 是充分大时, 对D有|, 则在D上收敛的正项级数.若当一致收敛 .证然后用Cauchy准则.亦称此判别法为优级数判别法. 称满足该定理条件的正项级数是级数的一个优级数.于是Th 4 可以叙述为: 若级数在区间D上存在优级数, 则级数在区间D上一致收敛 . 应用时, 常可试取.但应注意, 级数在区间D上不存在优级数, 级数在区间D上非一致收敛.注意区分用这种控制方法判别函数列和函数项级数一致收敛性的区别所在.例12判断函数项级数和在R内的一致收敛性 .是区间上的单调函数. 试证明:例13 设都绝对收敛, 则级数在区间上绝对若级数与并一致收敛 .简证,留为作业. .……2. Abel判别法:在区间上收敛; ⅱ> 对每个, 数列Th 5 设ⅰ> 级数单调; ⅲ> 函数列, 有. 则级数在区间上一致收和敛 . ( [1]P43 )2.Dirichlet判别法:的部分和函数列在区间上一致Th 6 设ⅰ> 级数有界;, 数列单调; ⅲ> 在区间上函数列ⅱ> 对于每一个在区间上一致收敛 .一致收敛于零. 则级数在区间上的一致收敛性.例14判断函数项级数解记. 则有ⅰ> 级数收敛;, ↗;ⅲ> 对ⅱ> 对每个和成立. 由Abel判别法, 在区间上一致收敛.单调收敛于零 . 试证明: 级数在例15设数列区间上一致收敛.证在.的部分和函数列在区间上一致有界 . 取可见级数的部分和函数列在区间, . 就有级数上一致有界, 而函数列致收敛于零.由Dirichlet判别法,级数在区间上一致收敛.单调收敛于零的条件下, 级数在不包含其实, 在数列习题课设,, . 且,例1―|对成立, 则函数列若对每个自然数有|{}在上一致收敛于函数.例2证明函数列在区间上非一致收敛.例3, . 讨论函数列{}的一致收敛性.―0|. 可求得.函数列{例4设函数在区间上连续 . 定义. 试证明函数列{有界 . 设在区间上||证法一由|;|||;|.|, .注意到对证法二.有界. 设在区间上||. 把函数在点展开成具Lagrange型余项的,,就有, , .所以, 0, , .设. 且, . 令例5, ,. …….试证明: 若对和, 有, 则函数列{证对取, 使时, 有. 于是对任何自然数和, 有.由Cauchy收敛准则, 函数列{}在区间上一致收敛 .上函数列{}一致收敛于函数. 若每个在数集证( 先证函数对||,||<. 即函数在数集上有界.( 次证函数列{}在数集上一致有界 )时, 对 ,有||―||| ―|< , | |.取 易见对和有||.即函数列{}在数集上一致有界 .例7 设{}为定义在区间上的函数列, 且对每个, 函数在点右连续 , 但数列{ } 发散. 试证明: 对 ),函数列{}在区间内都不一致收敛.证 反设, 使{}在区间 内一致收敛. 则对, 有对成立..{}为Cauchy列,即{}收敛. 与已知条件矛盾.§ 2 一致收敛函数列和函数项级数的性质一. 一致收敛函数列极限函数的解析性质:1. 连续性:上,且对,函数在上连续,Th 1 设在在证( 要证: 对, 当|在估计上式右端三项. 由一致收敛, 第一、三两项可以任意小; 而由函数点推论设在上一致收敛和所有註Th1表明: 对于各项都连续且一致收敛的函数列{即极限次序可换 .2. 可积性:上函数列{}一致收敛, 且每个在Th 2若在区间上连续. 则有.上, 由Th1, 函数在区间上连证设在续,因此可积. 我们要证. 注意到在上成, 可见只要立.Th2的条件可减弱为: 用条件“在上( R )可积”代替条件“在关于函数列逐项积分条件的减弱有一系列的工作. 其中之一是:}是定义在区间上的函数列. 若{}在上Th 设{收敛且一致可积, 则其极限函数.3. 可微性:}定义在区间上, 在某个点收敛.Th 3 设函数列{对上一致收敛, 则函数列{.,. , .证设, 注意到函数连续和+, 就有对+ (对第二项交换极限与积分次序)+ +.估计|+―――| + |,可证得.|.即. 亦即求导运算与极限运算次序可换.例1 P38 例1 ( 说明定理的条件是充分的, 但不必要. )例2 P39例2( 说明定理的条件是充分的, 但不必要. )Ex P42 9,11 P43 4 .二. 一致收敛函数项级数和函数的解析性质:把上述Th1—3表为函数项级数的语言,即得关于和函数解析性质的相应结果.例3P40例3证明函数在区间内连续.例4在区间内闭一致收敛.)对,证( 先证有,;又,在一致收敛.( 次证对, 在点连续) 对, 由上上一致收敛; 又函数连续,段讨论, 在区间在区间在区间内连续.例5, . 计算积分.。

相关文档
最新文档