新人教版八年级数学暑假作业答案
2022八年级暑假作业数学答案大全
2022八年级暑假作业数学答案大全在时钟的滴答声中,时间又定格到了一年中的暑假,你们是不是应为做暑假作业而烦恼呢?下面为大家收集整理了2022八年级暑假作业数学答案参考大全,欢迎阅读与借鉴!八年级暑假作业数学答案11-5.daaaa6-10bdcba11.125;12.1.2;13.7;32;14.815.∵是平行四边形,∵∵bad∵adc互补,∵ae平分∵bad,∵adc的平分线平分∵adc∵∵ado与∵dao互余∵∵aod是90度所以do垂直于ae,又∵∵ado与∵cdo相等,∵aod等于doe等于90度且do等于do∵三角形ado与三角形doe全等,∵ao等于oe,因此do垂直平分ae16.∵∵dce+∵ecb=90∵dce:∵ecb=1:3∵dce=22.5,∵ecb=67.5∵bdc+∵dce=90,∵bdc=67.5矩形对角线相等,ac=bd,∵co=do∵acd=∵bdc=67.5∵ace=∵acd-∵dce=4517.∵cd=bd,∵rt∵cde全等于rt∵bde;∵ce=be∵de垂直平分bc,∵ae=eb,:ace为60度等腰∵,因此:ac=ce=ae∵af=ce=ae,∵deb=∵aef=∵bac=60度,∵∵aef为60度等腰∵∵af=ae=ef 因此:ac=af=ef=ce因此四边形ecaf为菱形18.(1)∵e为bc的中点,ae∵bc,即ae是bc的垂直平分线,∵ab=ac,又∵abcd是菱形,∵∵abc是等边三角形,故∵bac=60°,∵ab=ac=4∵菱形abcd的面积=2∵abc的面积=2×(1/2)×4×4=8√2.(2)连接ac,因为e为bc的中点,ae∵bc,所以ae是bc的垂直平分线,所以ac=ab=bc,所以∵abc是等边三角形,所以∵b=∵d=60°,所以∵bad=180°-∵b=120°因为ae∵bc,af∵dc所以∵bae=∵daf=30°,∵eaf=∵bad-∵bae-∵daf=60°,,因为ae‖cg,∵∵ecg=90°所以∵cha=180°-∵eaf=120°19.(1)∵四边形abcd是平行四边形∵∵b=∵cdn,ab=cd,ad=bc.又m.n分别是ad.bc的中点,∵bn=dm=am=cn.∵∵abn全等于∵cdm.(2)解:∵m是ad的中点,∵and=90°,∵mn=md=12ad,∵∵1=∵mnd,∵ad∵bc,∵∵1=∵cnd,∵∵1=∵2,∵∵mnd=∵cnd=∵2,∵pn=pc,∵ce∵mn,∵∵cen=90°,∵∵2=∵pne=30°,∵pe=1,∵pn=2pe=2,∵ce=pc+pe=3,∵cn=cecos30°=2√3,∵∵mnc=60°,cn=mn=md,∵∵cnm是等边三角形,∵∵abn∵∵cdm,∵an=cm=2√3.八年级暑假作业数学答案21.答案:B2.解析:∵α=30°+45°=75°.答案:D3.解析:延长线段CD到M,根据对顶角相等可知∵CDF=∵EDM.又因为AB∵CD,所以根据两直线平行,同位角相等,可知∵EDM=∵EAB=45°,所以∵CDF=45°.答案:B4.解析:∵CD∵AB,∵∵EAB=∵2=80°.∵∵1=∵E+∵EAB=120°,∵∵E=40°,故选A.答案:A5.答案:B6.答案:D7.答案:D8.答案:D9.解析:根据四个选项的描述,画图如下,从而直接由图确定答案. 答案:①②④10.答案:如果两个角是同一个角或相等角的余角,那么这两个角相等11.答案:40°12.答案:112.5°13.解:(1)如果一个四边形是正方形,那么它的四个角都是直角,是真命题;(2)如果两个三角形有两组角对应相等,那么这两个三角形相似,是真命题;(3)如果两条直线不相交,那么这两条直线互相平行,是假命题,如图中长方体的棱a,b所在的直线既不相交,也不平行.14.解:平行.理由如下:∵∵ABC=∵ACB,BD平分∵ABC,CE平分∵ACB,∵∵DBC=∵ECB.∵∵DBF=∵F,∵∵ECB=∵F.∵EC与DF平行.15.证明:∵CE平分∵ACD(已知),∵∵1=∵2(角平分线的定义).∵∵BAC∵1(三角形的一个外角大于任何一个和它不相邻的内角),∵∵BAC∵2(等量代换).∵∵2∵B(三角形的一个外角大于任何一个和它不相邻的内角),∵∵BAC∵B(不等式的性质).16.证明:如图④,设AD与BE交于O点,CE与AD交于P点,则有∵EOP=∵B+∵D,∵OPE=∵A+∵C(三角形的外角等于和它不相邻的两个内角的和).∵∵EOP+∵OPE+∵E=180°(三角形的内角和为180°),∵∵A+∵B+∵C+∵D+∵E=180°.如果点B移动到AC上(如图⑤)或AC的另一侧(如图⑥)时,∵EOP,∵OPE仍然分别是∵BOD,∵APC的外角,所以可与图④类似地证明,结论仍然成立.17.解:(1)∵3=∵1+∵2;证明:证法一:过点P作CP∵l1(点C在点P的左边),如图①,则有∵1=∵MPC.图①∵CP∵l1,l1∵l2,∵CP∵l2,∵∵2=∵NPC.∵∵3=∵MPC+∵NPC=∵1+∵2,即∵3=∵1+∵2.证法二:延长NP交l1于点D,如图②.图②∵l1∵l2,∵∵2=∵MDP.又∵∵3=∵1+∵MDP,∵∵3=∵1+∵2.(2)当点P在直线l1上方时,有∵3=∵2-∵1;当点P在直线l2下方时,有∵3=∵1-∵2.八年级暑假作业数学答案3(一)答案:1-8、DABDDDCA;9、1,2,3;10、a≤b;11、a4且a≠0;12、a-1;13、7; 14、(1)x2,(2)x-3;15、a≤;16、1;17、18厘米;18、2121、18题;22、(1)a=0.6,b=0.4;(2)35%到50%之间(不含35%和50%)。
新人教版八年级数学暑假作业(三)含答案
初中八年级数学(人教版)暑假作业(三)一、选一选,看完四个选项再做决定!(每小题5分,共25分)1、下列各式中,从左至右的变形,是因式分解的有( D )()·()()()162324322332241111222222a b a bx x x x xab ab ab b a a a a =--=+---=--+=-+=-()()()()()A .4个B .3个C .2个D .1个2、下列各式中,因式分解正确的是( C ) A B C D ....-+-=-----=--+--=---=+-4622233632363211122222422x y x y xy xy xy x ab a b a a b a b ab a x x y x y x x x y x x x ()()()()()()()()()()3、多项式510332222a bc a b c c +-中公因式为( D )A .52a bcB .abcC .bc 2D .c4、---+--a a x x b ab a x b x ()()()()的公因式是( B )A .-aB .---a a x x b ()()C .a a x ()-D .--a x a () 5、多项式46243322a b a b a b --除以各项的公因式后,所得的商应当是( B )A .23122a b ab -+B .23122a b ab --C .2332a b b --D .2322a b ab -比一比谁更聪明!二、填一填,要相信自己的能力!(每小题5分,共25分)1、一个多项式,分解因式的结果是()()b b 3322+-,那么原题应当是4-6b 。
2、下列多项式中,是完全平方式的是 (1) 。
(1)222510a ab b ++ (2) 222510a ab b -+(3)222510a ab b +- (4) 222510a ab b -++3、如果多项式4142a ka ++是一个完全平方式,则k 的值应是 ±2 。
新人教版八年级数学暑假作业答案
丰富的学习生活对自己的帮助非常大,接下来就是查字典数学网初中频道为大家提供的八年级数学暑假作业答案,希望会对大家的学习带来帮助!《暑假乐园》十一答案一选择题1~10 CDBDABDCCA; 二填空题11. ; 且X9 13 .-m 15. 18 18. 相等 20.三解答题21(1) X (2)a (3)m取一切数(4)x0 22化简(1)156 (2)-5(3) (4) 23(1) (2) (3) (4) (5)(6) 24 X 且X1 25. -1 26.(1) (2)(3)《暑假乐园》(十二)答案:1-13、ACBBBBDCDABBC;14、x15、 ;16、,7;17、30 ;18、219、6,- ;20、21、-2a ;22、5,1;23、( x+ )( x+ );24、5 = ,n = ;25、(1)-24 ;(2)1;(3)4 - +2;(4) ;26、(1)10+12 +4 ;(2)18;27、倍;28、4;29、(1)2 - ;(2) -1。
暑假乐园(13)答案:基本概念:1、离散,2、极差,3、最大值,最小值,4、大,小,一致,作业:1、497 3850,2、32, 3、-8, 4、-2或8, 5、4, 6、D,7、D, 8、30 40, 9、13, 10、16《暑假乐园》十四一,知识回顾(1)平均数 A: B :极差 B:(2)不能二,基本概念,略三,例题分析:方差,A: B: 标准差,略 A更稳定四,作业:(1)B (2)B (3)C (4)8 (5) 200,10 (6)100 (7)方差:甲乙所以乙更稳定暑假乐园(十五)1、12;2、①,②,③;3、2 ;4、 ;5、2, ;6、100;7、乙;8、乙;9、4、3; 10、0;11、C;12、C;13、C;14、D;15、B; 16、A;17、B; 18、C;19、C;20、C;21、(1)A:极差8,平均数99,方差;B:极差9,平均数100,方差9;(2)A; 22、(1)甲组及格率为,乙组及格率为,乙组的及格率高;(2)甲组方差为1,乙组方差为,甲组的成绩较稳定;23、(1)甲班的优秀率为60℅,乙班的优秀率为40℅;(2)甲班的中位数为100,乙班的中位数为97;(3)估计甲班的方差较小;(4)根据上述三个条件,应把冠军奖状发给甲班。
八年级数学暑假作业及参考答案
八年级数学暑假作业及参考答案答案,谢谢阅读。
函数y=a(x+m)2+k(a,m,k是常数,a 0).①当a 0时,图像开口,对称轴是,顶点坐标是,在对称轴的左侧,y 随x的增大而,右侧y随x的增大而,当x=时,y有最值,是.②当a 0时,图像开口,对称轴是,顶点坐标是,在对称轴的左侧,y 随x的增大而,右侧y随x的增大而,当x=时,y有最值,是.课内同步精练●A组基础练习1.函数y=2(x+1)2是由y=2x2向平移单位得到的.2.函数y=-3(x-1)2+1是由y 3x2向平移单位,再向平移单位得到的.3.函数y=3(x-2)2的对称轴是,顶点坐标是,图像开口向,当x时,y 随x的增大而减小,当x时,函数y有最值,是.4.函数y=-(x+5)2+7的对称轴是,顶点坐标是,图象开口向,当x 时,y随x的增大而减小,当时,函数y有最值,是.●B组提高训练6.在同一坐标系内,画出函数y=2x2和y=2(x-1)2+1的图象,并说出它们的相同点和不同点.课外拓展练习●A组基础练习1.二次函数y=(x-1)2-2的顶点坐标是A.(-1,-2)B.(-1,2)C.(1,-2)D.(1,2)2.把y=-x2-4x+2化成y=a(x+m)2+n的形式是A.y=-(x-2)2-2B.y=-(x-2)2+6C.y=-(x+2)2-2D.y=-(x+2)2+6●B组提高训练3.图象的顶点为(-2,-2),且经过原点的二次函数的关系式是A.y=(x+2)2-2B.y=(x-2)2-2C.y=2(x+2)2-2D.y=2(x-2)2-24.经过配方,画出函数y=-3x2+6x-4的图象,并说出它的对称轴及顶点坐标,当x时,y随x的增大而减小,当x时,函数y有最值,是.第4课时二次函数的图像(3)【知识要点】函数y=ax2+bx+c(a,b,c是常数a 0).①当a 0时,函数y有最小值,是.②当a 0时,函数y有最大值,是. 课内同步精练●A组基础练习1.函数y=2x2-8x+1,当x=时,函数有最值,是.2.函数,当x=时,函数有最值,是.3.函数y=x2-3x-4的图象开口,对称轴是,顶点坐标是,在对称轴的左侧,y随x的增大而,当x时,函数y有最值,是.●B组提高训练4.把40表示成两个正数的和,使这两个正数的乘积最大,则这两个数分别是.5.如图,用长20m的篱笆,一面靠墙围成一个长方形的园子,怎么围才能使园子的面积最大?最大面积是多少?课外拓展练习●A组基础练习1.把二次函数的图象向右平移2个单位,再向上平移3个单位,所得到图象的函数解析式是A.B.C.D.2.抛物线y=2x2-5x+3与坐标轴的交点共有A.1个B.2个C.3个D.4个3.二次函数y=(x-3)(x+2)的图象的对称。
最新八年级数学暑假作业答案
最新八年级数学暑假作业答案
一转眼大家期盼已久的暑假又到了,同学们的作业是不是已经完成了呢?假期时间过得很快,赶紧上站找找你的作业答案吧!以下是为您整理的最新八年级数学暑假作业答案,谢谢阅读。
一、选择:DCBBCBADBC
二、填空:11、y=2x-112、略13、614、此袋尿素最多不超过
75.1kg,最少不少于74.9kg15、2016、study或学习17、(2,3)(2,-3)(-2,3)(-2,-3)18、40度
三、19、(1)消元正确得3分,全解对得2分,结论1分
(2)解①得x>-3--------2分,解②得x≤2-------2分
解得-3
20、画图正确得5分,说明理由得3分(文字或符号)。
21、(1)坐标系完全正确得2分,(2)写对每个坐标分别得2分,(3)画出三角形ABC得1分,三角形A/B/C/得3分,(4)算出面积为7得4分。
22、解:设鲜花和礼盒的单价分别是x元和y元,则
----------6分
解得-----------3分
答:--------------------------1分
或用算术方法:90-55=3555-35=2035-20=15
23、填表:18,3,7.5%(6分)图略(4分)(4)375户--4分
24、(1)8分180°,90°,180°,90°
(2)答1分,证明3分(略)
(3)4分,作辅助线,可以采用多种方法,(略)。
(人教版)八年级数学暑假作业答案
〔人教版〕2022八年级数学暑假作业答案多阅读和积累,可以使学生增长知识,使学生在学习中做到举一反三。
在此查字典数学网初中频道为您提供2022八年级数学暑假作业答案,希望给您学习带来帮助,使您学习更上一层楼!暑假乐园?(一)答案:1-8、DABDDDCA;9、1,2,3;10、a11、a 4且a12、a13、7;14、(1)x2,(2)x15、a16、1;17、18厘米;18、2121、18题;22、(1)a=0.6 ,b=0.4;(2)35%到50%之间(不含35%和50%)。
暑假乐园(2)答案:1:D 2:A 3:A 4::A 5:C 6:C7:-2 8:1,9:x=2,10:x.0且x1,11、略,12、略,13、2-a,14、a-3、1,15、(1)x=4,(2)x=-2/3,16、B,17、C,18、2,19、-1,20、k=1、4、7,21、互为相反数,22、47,23、375,24、略,暑假乐园?三答案1,-1 2,y=2/x 3,B 4,D 5,B 6,C 7,B 8,1/2 9,2 10, B 11,(1)y=4-x (2)略 12,(1)x =1 m=1(2)与x轴交点(-1,0),与y轴交点(0,1) 13,x 0) (2)3000 (3)6000暑假乐园?四答案(四)1、B; 2、B ; 3、B; 4、A; 5、B; 6、B; 7、D; 8、D;9、= 10、t1;11、12、减小;13、a14、3和4;15、19; 16、3或4/3;17、x 18、x19、x3,原式=- ;20、略;21、x=4;22、y=-x+2,6;23、略,BD=6暑假乐园?五答案(五)1.4:3 2.6 3.3858 4.18 5.1:9 6.18 7.①④ 8.D暑假乐园?六答案1-8: CCCBBABC 9:1.6,26;10:8.75;11:A,AFE=B, AEF=C, 12:7;13:6.4;14: 8:5;15: 48;16: 6, 4.8, 8.64; 17: 9:4; 18: 1:3 ;19: 4 20: 13, ;21: 8.3暑假乐园?七答案1、C2、A3、D4、C5、B6、B7、B8、D9、假设在一个三角形中有两个角相等,那么这个三角形是直角三角形。
新人教版八年级数学暑假作业(十三)含答案
初中八年级数学(人教版)暑假作业(十三)一、选一选,看完四个选项再做决定!(每小题5分,共25分)1、已知不等式ax b +>0的解集为x >b a -,那么双曲线a y x=的图象上的点一定位于( C ). A .第一象限 B .第二象限 C .第一、三象限 D .第二、四象限2、函数1y x=-的图象上有两点),(11y x A 、),(22y x B 且21x x <,那么下列结论正确的是( D ). A.21y y < B.21y y > C.21y y = D.1y 与2y 之间的大小关系不能确定3、一条直线与双曲线xy 1=的交点是A (a ,4),B (-1,b ),则这条直线的解析式为( C ) A .34-=x y B .341+=x y C .34+=x y D .34--=x y 4、函数y =-kx +k 与y =x k -(k ≠0)在同一坐标系中的图象可能是( A ).5、如右图,点P 是x 轴上的一个动点,过点P 作 x 轴的垂线PQ 交双曲线xy 1=于点Q ,连结OQ ,当点P 沿x 轴正半方向运动时, Rt △QOP 面积( C ).A .逐渐减小B .逐渐增大C .保持不变D .无法确定 你一定行的!认真想想哦!二、填一填,要相信自己的能力!(每小题5分,共25分)1、若函数y =4x 与y =x 1的图象有一个交点是(21,2),则另一个交点坐标是 1(,2)2--.2、点P 在反比例函数y =x6-的图像上,若点P 的纵坐标小于-1,则点P 的横坐标的取值范围是0x <<6. 3、如图,直线y =-2x ─2与双曲线y =x k 相交于点A ,与x 、y 轴交于点B 、C ,AD ⊥x 轴于点D ,如果ADB S △=COB S △,那么k = -4 .4、若点(-3,3)在反比例函数y=k x(k ≠0)的图象上, 则k=___-3___. 5、如图,DE ∥BC ,DB=2,AE=1,AD=x ,EC=y ,则y 与x 之间的函数关系为2y x =. C ED B A 你真棒!三、做一做,要注意认真审题!(每小题10分,共30分)1、一个圆台形物体的上底面积是下底面积的14,如果将下底放在桌上,•圆台对桌面的压强是200帕,反过来放,圆台对桌面的压强是 800 帕2、已知一次函数y=x+m 与反比例函数y=2x 的图象在第一象限的交点为P (x 0,2). (1)则x 0= 1 ,m = 1 ;(2)一次函数的图象与两坐标轴的交点坐标为:(0,1).3、在平面直角坐标系xOy 中,直线y=-x 绕点O 顺时针旋转90°得到直线L ,•直线L 与反比例函数y=k x 的图象的一个交点为A (a ,3),则反比例函数的解析式为:9y x =. 四、探索创新,相信你能做到!(每小题10分,共20分)1、有一个水池,池内原有水500升,现在以每分钟20升注入水,35分钟可注满水池.(1)水池的容积是 1200 升。
八年级数学 暑假作业(一) 新人教版
八年级数学 暑假作业(一)一、选一选,看完四个选项再做决定!(每小题5分,共25分)1. 下列等式中成立的是( D )A. (x -y )3=(-x -y )3 B. (a -b )4=-(b -a )4 C. (m -n )2=m 2-n 2D. (x +y )(x -y )=(-x -y )(-x +y )2. 下列分解因式正确的是( C )A. 2x 2-xy -x =2x (x -y -1)B. -xy +2xy -3y =-y (xy -2x -3)C. x (x -y )-y (x -y )=(x -y )2D. x 2-x -3=x (x -1)-33. 因式分解(x -1)2-9的结果是( B )A. (x +8)(x +1)B. (x +2)(x -4)C. (x -2)(x +4)D. (x -10)(x +8)4. 下列各式中,与(a -1)2相等的是( B )A. a 2-1B. a 2-2a +1C. a 2-2a -1D. a 2+15. 计算(-12)2007+(-12)2008的结果为( B ) A. (-12)2008 B. -(-12)2008 C. 12 D. -12二、填一填,要相信自己的能力!(每小题5分,共25分)1.分解因式:a 2-9=____(a +3)(a -3)______.2.分解因式xy -x -y +1=_____(x -1)(y -1)_____.3.若m 、n 互为相反数,则5m +5n -5=____-5 ______.4.如果x +y =-4,x -y =8,那么代数式x 2-y 2的值是____-32____.5.一个长方形的面积是(x 2-9)平方米,其长为(x +3)米,用含有x 的整式表示它的宽为__ x -3__米.三、做一做,要注意认真审题!(每小题10分,共30分)1. 判断下列各式分解因式的对错,对的打“”,错的打“”:(1)4x 3-8x 2+4x =4x (x -1)2 (√ )(2)9(x +y +z )2-(x -y -z )2=4(2x +y +z )(x +2y +2z )(√ )(3)m 2-n 2+2m -2n =(m -n )(m +n +2)(√ )2. 利用因式分解计算:1-22+32-42+52-62+…+992-1002+1012= 5151 。
新人教版八年级数学暑假作业(二十二)含答案
初中八年级数学(人教版)暑假作业(二十二)一、选一选,看完四个选项再做决定!(每小题5分,共25分)1.若平行四边形ABCD的周长是40cm,△ABC的周长是27cm,则AC的长为( C ) A.13cm B.3cm C.7cm D.11.5 cm2.根据下列条件,不能判定四边形是平行四边形的是( C)A.一组对边平行且相等的四边形B.两组对边分别相等的四边形C.对角线相等的四边形D.对角线互相平分的四边形3.已知平行四边形周长为28cm,相邻两边的差是4cm ,则两边的长分别为( B)A.4cm、10cm B.5cm、9cm C.6cm、8cm D.5cm、7cm4.下列条件中,能判定一个四边形是平行四边形的是( B)A.一组对边平行,另一组对边相等B.一组对边平行,一组对角相等C.一组邻边相等,一组对角相等D.一组对边平行,一组对角互补5.若A、B、C三点不在同一条直线上,则以其为顶点的平行四边形共有( C)个A.1 B.2 C.3 D.4来试试哦,你肯定能行!二、填一填,要相信自己的能力!(每小题5分,共25分)1、一个平行四边形的周长为40,两邻边的比为3∶5,则四条边的长分别为7.5、12.5、7.5、12.5 。
2、一个平行四边形的一个内角比它的邻角大︒24,则这个四边形的四个内角分别是__102度、78度、102度、78度。
3、在平行四边形ABCD中,EF过对角线交点O,交CD、AB于E、F,若AB = 4cm,AD = 3cm,OF = 1.3cm,则四边形BCEF周长为____9.6____ cm。
4、已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长为__68__。
5、在平行四边形ABCD中,对角线BD = 7cm,∠DBC =︒30,BC = 5cm,则平行四边形ABCD的面积为__17.5__cm2。
打起精神来哦!三、做一做,要注意认真审题!(每小题10分,共30分)1、能够判定四边形是平行四边形的条件是( C)A.一组对角相等B.两条对角线互相垂直C.两条对角线互相平分D.一条邻角互补2、已知平行四边形的一条边长为14,下列各组数中能分别作它的两条对角线长的是( C ) A.10与6 B.12与16 C.20与22 D.10与183、四边形ABCD中,AD∥BC,当满足下列哪个条件时,四边形ABCD是平行四边形(D)A.∠A+∠C =︒180180B.∠B+∠D =︒C.∠A+∠B =︒180180D.∠A+∠D =︒四、探索创新,相信你能做到!(每小题10分,共20分)1、已知下列三个命题⑴两组对角分别相等的四边形是平行四边形⑵一个角与相邻两角都互补的四边形是平行四边形⑶一组对角相等,一组对边平行的四边形是平行四边形其中错误的命题的个数是( A )A.0个B.1个C.2个D.3个2、平行四边形ABCD中,对角线AC、BD交于点O,AC = 10,BD = 8,则AD的取值范围是( C )A.AD>1 B.AD<9 C.1<AD<9 D.AD>9出色完成了,很有成就感吧!。
八年级(下)数学暑假作业(人教版,含答案)
八年级(下)数学暑假作业(人教版,含答案)一、单选题1. 如图, 在平行四边形ABCD中, ∠BAD=120°,连接BD, 作AE∥BD交CD延长线于点E,过点 E 作EF⊥BC交BC的延长线于点F, 且CF=1, 则AB的长是( )A. 1B. 2C. √D. √2. Y ABCD中, ∠A的度数为100°, 则∠C= ( )A. 60°B. 80°C. 100°D. 120°3. 菱形的两条对角线的长分别是6和8 ,则这个菱形的周长是( )A. 24B. 20C. 10D. 54. 已知: 如图, 在正方形 ABCD 外取一点E, 连接AE, BE, DE, 过点 A 作 AE的垂线交DE于点P. 若AE=AP=1, PB=√5.下列结论: ①△APD≌△AEB;②点B到直线AE的距离为√③EB⊥ED;(SAPD +SAPB=1+√6.其中正确结论的序号是( )A. ①②③B. ①②④C. ②③④D. ①③④5.如图,在四边形ABDE中,AB∥DE,AB⊥BD,点C是边BD上一点,BC=DE=a, CD= AB=b. AC=CE=c.下列结论:①△ABC≌△CDE;②∠ACE=90°;③四边形ABDE的面积是12(a2+b2);12(a2+b2)−12c2=2×12ab;⑤该图可以验证勾股定理. 其中正确的结论个数是( )A. 5B. 4C. 3D. 26. 如图,在平面直角坐标系中点A 的坐标为(0,6),点B的坐标为(−32,5),将△AOB沿x轴向左平移得到△A'O'B',点A 的对应点 A'落在直线y=−34x上,则点B的对应点B'的坐标为( )A. (-8, 6)B.(−132,5)C.(−192,5)D. (-8, 5)7. 下列计算正确的是()A.√(−3)2=−3B.(√3)2=3C.√9=±3D.√3+√2=√58. 下列曲线中不能表示y是x的函数的是( )9. 如图, 在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,E 是边CD 的中点,连接OE, 若∠ABC=60°, ∠BAC=80°, 则∠1的度数为( )A. 10°B. 20°C. 30°D. 40°10. 在△ABC中, BC²-AC²= AB², 若∠B=25°, 则∠C=( )A. 20°B. 35°C. 65°D. 75°二、填空题11. 已知菱形ABCD 的对角线 AC=10, BD=24, 则此菱形的周长为 .12. 代数式 √a +√a −1+√a −2的最小值是 .13. 菱形 ABCD 在直角坐标系中的位置如图所示,其中点A 的坐标为(1,0), 点B 的坐标为(0, √3),动点P 从点A 出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒0.5 个单位长度的速度移动,移动到第2015 秒时, 点P 的坐标为 .14. 中国古代的数学著作《九章算术》中有这样一个问题,今有二人同所立,甲行率七,乙行率三, 乙东行,甲南行十步而斜东北与乙会.其大意是:如图,已知甲、乙二人同时D.从同一地点出发,甲的速度为7,乙的速度为3,乙一直向东走,甲先向南走10步,后又向北偏东方向走了一段后与乙相遇.那么相遇时,乙走了步.15. 为了了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班 50名同学一周的体育锻炼情况绘制成了如图所示的条形统计图,根据提供的数据,该班 50名同学一周参加体育锻炼时间的中位数是,众数是 .三、解答题16. 九年级某班部分同学利用课外活动时间,积极参加篮球定点投篮的训练,训练后的测试成绩如下表所示:回答下列问题:(1)训练后篮球定点投篮进球数的众数是个,中位数是个;(2)若训练后的人均进球数比训练前增加 25%,求训练前的人均进球数.17.如图,某农户承包的一片稻田位于一条河流的北侧,早年河水通过两条水渠CA,CB流向稻田蓄水池C以满足稻田用水,且AB=AC,现水渠CA因故需要改道,该农户决定把通向河岸的便道CH 修成一条水通(A、 H、 B在同一条直线上),测得CB=1.5千米, CH=1.2千米, HB=0.9千米.。
暑假作业数学八年级(配人教版)答案
暑假作业㊀数学㊀八年级(配人教版)参考答案A 版㊀学习版练㊀习㊀一快乐基础屋一㊁选择题1.D ㊀2.B ㊀3.B ㊀4.C ㊀5.B ㊀6.D ㊀7.A ㊀8.B ㊀9.D ㊀10.C二㊁填空题11.3㊀-0.0212.<㊀=13.0.1m 14.2|a |c 2ab15.x x 2+y 216.1317.518.甲㊀被开方数是负数19.15320.当b >0时,a 2c 10c2b 当b <0时,-a 2c 10c2b三㊁解答题21.(1)解:原式=24ː3=8=22(2)解:原式=27ˑ33ˑ121=211(3)解:原式=12ː3=4=2(4)解:原式=273-123=9-4=3-2=1(5)解:原式=72ˑ-16117()ː14112=-16112ː14112=-23(6)解:原式=(2+26+3)(5-26)=25-(26)2=25-24=122.(1)解:原式=235=1155(2)解:原式=a 2(3)解:ȵxȡ0㊀ʑx+1>0ʑ(x+1)2=x+1(xȡ0) (4)解:原式=(|a+1|)2=(a+1)223.(1)解:原式=1(23)=3(23ˑ3) =36(2)解:原式=3210=(3ˑ10)(210ˑ10) =3020(3)解:原式=506=253=533(4)解:原式=15x35x=3x2=3x24.解:由题意可得2-xȡ0,x-2ȡ0ʑ可得x=2,y=5ʑx y=25欢乐提高吧1.解:原式=-23(m-n)2ˑa2ˑ1m-n =-a62.解:ȵa+1+b-1=0ʑa+1=0,b-1=0ʑa=-1,b=1ʑa2015+b2015=(-1)2015+12015=-1+ 1=0练㊀习㊀二快乐基础屋一㊁选择题1.C㊀2.C㊀3.B㊀4.C㊀5.A㊀6.A㊀7.D㊀8.D㊀㊀二㊁填空题9.010.-2211.29+125㊀66-36212.-24+4313.2+3314.-14215.-116.117.ʃ2318.219.42三㊁解答题20.(1)解:原式=7+27+97= 37+97=127(2)解:原式=32-22+3-33= 2-23(3)解:原式=22+32=52(4)解:原式=23-22+3+2= 33-2(5)解:原式=43+25+23-5 =63+5(6)解:原式=18-35-5=13-35(7)解:原式=22+33-32-2=-22-36(8)解:原式=62-22-2+342=154221.解:原式=2-1(2-1)(2+1)+3-2(3-2)(3+2)+2-3(2-3)(2+3)++10-3(10-3)(10+3)=2-1+3-2+2-3+ +10-3=-1+1022.(1)解:原式=43-(36)2+(3-3)3+33()=43-(36)2+2(2)解:原式=23ˑ3x +6ˑx 2-2x ˑx x=2x +3x -2x =3x23.解:原式=9a a -5a a +3aˑ2a 2a =9a a -5a a +6a a =10a a24.(1)解:ȵx =12(7+5),y =12(7-5)ʑx -y =5,xy =12ʑx 2-xy +y 2=(x -y )2+xy =112(2)解:ȵa =4+15,b =4-15ʑa +b =8,ab =1ʑa 2+5ab +b 2-3a -3b =(a +b )2-3(a +b )+3ab =4325.解:大正方形的边长为:4=2,小正方形的边长为2ʑ阴影部分的面积=(2-2)ˑ2=22-2欢乐提高吧1.解:原式=(25+1)2-12-1+3-23-2(+4-34-3+ +100-99100-99)=(25+1)[(2-1)+(3-2)+(4-3)+ +(100-99)]=(25+1)(100-1)=9(25+1)2.解:原式=(2x -1)2+(y -3)2=0要使两个数的平方和为0,只有使每项式为0,即:2x -1=0,y -3=0解得:x =12,y =323x9x-5x y x=23ˑ3x x-5xy=2x x-5xy=(2-56)2练㊀习㊀三快乐基础屋一㊁选择题1.D㊀2.A㊀3.C㊀4.B㊀5.C㊀6.D㊀7.D㊀8.A㊀9.B㊀10.C㊀11.D㊀12.B㊀13.C二㊁填空题14.13㊀15.20㊀16.11㊀17.24㊀18.601319.5㊀20.492㊀21.32㊀22.13或119㊀23.2㊁2㊁2㊀24.49㊀25.15三㊁解答题26.解:设矩形花池的长是a,宽是b根据题意得:ab=48①a2+b2=100②②+①ˑ2得:(a+b)2=196,即a+b =14ʑ矩形花池的周长是14ˑ2=28m27.解:设E站建在离A站x km处时, C㊁D两村到E站的距离相等㊂在RtәADE 中,DE2=AD2+AE2=152+x2,在RtәCBE 中,CE2=CB2+BE2=102+(25-x)2ȵDE=CE,ʑDE2=CE2,即152+x2= 102+(25-x)2,解得:x=10答:E站建在离A站10km处时,C㊁D 两村到E站的距离相等㊂28.解:设旗杆AB的高为x m,则绳子AC的长为(x+1)mABCȵ在RtәABC中,øABC=90ʎ,BC=5, AB=xAC=x+1,ʑx2+52=(x+1)2解得:x=12答:旗杆的高度为12m㊂欢乐提高吧1.解:连接BD,øA=90ʎ,BD=AB2+AD2 =5cmȵBD2+CD2=BC2ʑәBCD为直角三角形ʑәBCD面积=12ˑBDˑCD=30cm2әABD 的面积=12ˑAB ˑAD =6cm 2故四边形ABCD 的面积为36cm 22.解:过点D 作DE ʅAB 于点E ,ȵø1=ø2,øC =øDEA =90ʎ,AD =AD ,ʑәACD ɸәAED ,ʑCD =DE =1.5,AC =AE在RtәBED 中,BE =BD 2-DE 2=2在RtәABC 中,AC 2=AB 2-BC 2=(AC +BE )2-BC 2即AC 2=(AC +2)2-42ʑAC =33.解:如图所示,过点B 作纸条一边的垂线BDACBDȵ纸条的宽度为3cm ʑBD =3cm ȵøBAD =30ʎʑAB =2BD =2ˑ3=6cm ʑ根据勾股定理得:BC =2AB =2ˑ6=62cm练㊀习㊀四快乐基础屋一㊁选择题1.A ㊀2.C ㊀3.A ㊀4.D ㊀5.C ㊀6.C二㊁填空题7.80ʎ8.8cm 9.3cm 10.1211.12cm 12.12三㊁解答题13.解:ȵ四边形ABCD 为平行四边形ʑAD ʊBC ,ʑøADE =øDEC 又ȵDE 平分øADC ,ʑøADE =øCDEʑøDEC =øCDE ,ʑәCDE 为等腰三角形ʑCD =CE ,则BE =BC -CE =BC -CD=8-6=2(cm)14.证明:ȵ四边形ABCD 是平行四边形ʑAD ʊBC ,AD =BC ȵAE =12AD ,FC =12BC ʑAE =FC ,AE ʊFC ʑ四边形AECF 是平行四边形ʑGF ʊEH同理可证ED ʊBF 且ED =BF ʑ四边形BFDE 是平行四边形ʑGE ʊFHʑ四边形EGFH是平行四边形欢乐提高吧1.DE=BF证明:ȵ四边形ABCD是平行四边形ʑAEʊCF㊀AD=BCʑøE=øFȵO是AC的中点㊀AO=CO在әOCF和әOAE中øAOE=øCOF㊀øE=øF㊀AO=CO ʑәOCFɸәOAE㊀ʑAE=CFʑAE-AD=CF-BC㊀即DE=BF2.(1)证明:ȵ四边形ABCD是平行四边形ʑABʊCD㊀ADʊBC㊀AB=CD㊀AD= BCȵøDAB=60ʎʑøDAB=øDCB=60ʎȵABʊCD㊀ʑøEDA=øDAB㊀øDCB=øCBF ȵøDAB=øDCB=60ʎʑøEDA=øDAB=øDCB=øCBF= 60ʎȵøEDA=øCBF=60ʎ㊀AE=AD㊀CF=CBʑәAED和әCBF均为等边三角形ʑAD=DE㊀BC=BFȵAD=DE㊀BC=BF㊀AD=BCʑDE=BFȵDE=BF㊀AB=CDʑAF=CEȵAFʊCEʑ四边形AFCE是平行四边形(2)解:上述结论还成立,理由如下:ȵ四边形ABCD是平行四边形ʑøADC=øCBA㊀AB=CD㊀AD=BC ㊀ABʊCD㊀ADʊBCȵøADC=øCBA㊀ʑøADE=øCBF ȵAE=AD㊀CF=CB㊀ʑøADE=øAED㊀øCBF=øCFBʑøADE=øAED=øCBF=øCFB ȵøADE=øAED=øCBF=øCFB㊀AD=BCʑәADEɸәCBF㊀ʑDE=BFȵCD=AB㊀ʑAF=CEȵAF=CE㊀AFʊCEʑ四边形AFCE是平行四边形练㊀习㊀五快乐基础屋一㊁选择题1.A㊀2.D㊀3.C㊀4.A㊀5.C㊀6.C㊀7.C㊀二㊁填空题8.129.610.3㊀3㊀菱㊀矩㊀AB=AC且øA= 90ʎ11.8三㊁解答题12.解:ȵ四边形ABCD是平行四边形ʑBC=AD=8cm㊀OA=OCOB=OD=12BD=6cmȵBDʅAD㊀ʑøADO=90ʎʑOA=AD2+OD2=10cmʑAC=2OA=20cm13.证明:ȵBD㊁CE为әABC的中线ʑED为әABC的中位线ʑEDʊBC㊀DE=12CBȵF㊁G分别是BO㊁CO的中点ʑFG是әBOC的中位线ʑFGʊCB㊀FG=12BCʑED=FG㊀DEʊFGʑ四边形DEFG为平行四边形14.证明:ȵ四边形ABCD是平行四边形ʑADʊBC㊀AD=BCȵE㊁F分别是AD㊁BC的中点ʑAE=DE=12AD㊀CF=BF=12BC ʑAEʊCF㊀AE=CFʑ四边形AECF是平行四边形ʑCEʊAFʑEM是әDAN的中位线,FN是әBCM的中位线ʑDM=MN㊀BN=MNʑBN=MN=DM15.证明:ȵ四边形ABCD是平行四边形ʑAB=CD㊀OA=OCʑøBAF=øCEF㊀øABF=øECFȵCE=DC在▱ABCD中,CD=ABʑAB=CEʑ在әABF和әECF中øBAF=øCEFAB=CEøABF=øECFʑәABFɸECF(ASA)ʑBF=CFȵOA=OCʑOF是әABC的中位线ʑAB=2OF欢乐提高吧1.证明:ȵ四边形ABCD是平行四边形ʑADʊBCʑøCBE=øFȵDF=ADʑDF=BC在әBCE和әFDE中,øF=øCBE㊀øDEF=øCEBDF=BC㊀ʑәBCEɸәFDE(AAS)ʑBE=FE㊀DE=CE即点E是CD㊁BF的中点㊂AB CED F2.证明:过点M作MGʅAB连接DG,ADCBMEF G123ȵCFʅABʑMGʊCFȵAM平分øCAB㊀ʑø2=ø3ȵMCʅCA㊀MGʅAB㊀ʑCM=MG ȵøCDM=ø1+ø2㊀øCMD=ø3+øB ø2=ø3㊀ø1=øBʑøCDM=øCMDʑCM=CD㊀ʑCD=CM=MGȵCDʊMG㊀ʑ四边形CDGM是菱形ʑCM=DG㊀且CBʊDGȵDEʊAB㊀ʑ四边形DEBG是平行四边形ʑDG=EB㊀ʑCM=EB练㊀习㊀六快乐基础屋一㊁选择题1.C㊀2.C㊀3.A㊀4.C㊀5.C㊀6.A㊀7.B㊀8.B㊀9.A二㊁填空题10.5311.312.60ʎ13.AB=AC或øB=øC或AD是øBAC的平分线或BD=CD14.AC=BD或ABʅBC15.3三㊁解答题16.证明:ȵDEʊAC㊀DFʊABʑ四边形AEDF是平行四边形ʑøADE=øDAFȵAD平分øBAC㊀ʑøDAE=øDAF ʑøDAE=øADE㊀ʑAE=DEʑ平行四边形AEDF是菱形17.(1)证明:ȵ四边形ABCD是矩形ʑABʊCD㊀ʑøOAE=øOCF㊀øOEA=øOFCȵAE=CF㊀ʑәAEOɸCFO(ASA)ʑOE=OF(2)解:连接BOȵOE=OF㊀BE=BFʑBOʅEF且øEBO=øFBOʑøBOF=90ʎȵ四边形ABCD是矩形ʑøBCF=90ʎ又ȵøBEF=2øBAC㊀øBEF=øBAC+øEOAʑøBAC=øEOA㊀ʑAE=OEȵAE=CF㊀OE=OF㊀ʑOF=CF又ȵBF=BF㊀ʑәBOFɸәBCF(HL)ʑøOBF=øCBF㊀ʑøCBF=øFBO =øOBEȵøABC=90ʎ㊀øOBE=30ʎ㊀øBEO =60ʎʑøBAC=30ʎ㊀ʑAB=3BC=618.(1)证明:ȵ对角线BD平分øABC ʑøABD=øCBD又ȵAB=BC㊀BD=BDʑәABDɸәCBD(SAS)ʑøADB=øCDB(2)证明:ȵPMʅAD㊀PNʅCDʑøPMD=øPND=90ʎȵøADC=90ʎʑ四边形MPND是矩形由(1)知øADB=øCDB又ȵPMʅAD㊀PNʅCDʑPM=MDʑ四边形MPND是正方形欢乐提高吧1.(1)证明:ȵ四边形ABCD是矩形ʑAB=CD㊀AD=BC㊀øA=øC=90ʎȵ在矩形ABCD中,M㊁N分别是AD㊁BC的中点ʑAM=12AD㊀CN=12BCʑAM=CN在әMBA和әNDC中ȵAB=CD㊀øA=øC=90ʎ㊀AM= CNʑәMBAɸәNDC(2)四边形MPNQ是菱形证明:连接MN㊀ȵәMBAɸәNDC ʑMB=ND㊀ȵ四边形ABCD是矩形ʑADʊBC㊀øA=90ʎ㊀AD=BCȵM㊁N分别是AD㊁BC的中点ʑAM=BNʑ四边形AMNB是矩形ʑøMNB=90ʎ在RtәMNB中ȵP是BM的中点ʑPN=12BM=PM同理MQ=NQȵBM=ND㊀P㊁Q分别是BM㊁DN的中点ʑPM=NQ㊀ʑPM=PN=NQ=MQ ʑ四边形MPNQ是菱形2.(1)解:猜想结果,图2结论为BE+ CF=2AG图3结论为BE-CF=2AG (2)证明:连接CE,过D作DQʅl,垂足为点Q,交CE于点HȵøAGO=øDQO=90ʎ㊀øAOG=øDOQ(对顶角相等)且O为AD的中点即AO=DOʑәAOGɸәDOQ(AAS)即AG=DQ ȵBEʊDHʊFC㊀BD=DCʑCHʒEH=CDʒBD=FQʒEQʑQH是三角形EFC的中位线ʑBE=2DH㊀CF=2QHʑBE-CF=2(DQ+QH)-2QH=2DQ =2AGDQFlCH OE A G B练㊀习㊀七快乐基础屋一㊁选择题1.C ㊀2.B ㊀3.C ㊀4.C ㊀5.B ㊀6.B二㊁填空题7.y =100x -408.y =8x ㊀40㊀809.s =2n +110.S =2x 2-4x +411.y =0.25x +6(0ɤx ɤ10)三㊁解答题12.(1)解:由题意可得,甲㊁乙两条生产线投入生产后,甲生产线生产时对应的函数关系式是y 1=20x +200乙生产线生产时对应的函数关系式是y 2=30x(2)令20x +200=30x ㊀解得x =20故第20天结束时,两条生产线的产量相同ʑ甲生产线对应的函数图像一定经过点(0,200)和(20,600)画出函数图像,如下图所示:y x观察图像可知,当第10天结束时甲生产线的总产量高,当第30天结束时乙生产线的总产量高㊂13.(1)由图像得:出租车的起步价是8元,当x >3时,设y 与x 的函数关系式为y =kx +b (k ʂ0),将坐标(3,8)和(5,12)代入函数关系式得:3k +b =8①5k +b =12②{②-①得:2k =4㊀ʑk =2代入①得:b =2解得:k =2,b =2ʑy 与x 的函数关系式为y =2x +2(2)ȵ32元>8元,ʑ把y =32代入函数解析式y =2x +2,解得:x =15ʑ这位乘客乘车的里程是15km欢乐提高吧1.(1)解:设y 1=k 1x 1,将(10,600)代入上式得:k 1=60,ʑy 1=60x (0ɤx ɤ10)设y 2=k 2x 2+b ,将(0,600),(6,0)代入上式得:k 2=-100,b =600ʑy 2=-100x +600(0ɤx ɤ6)(2)根据题意可知当y 1=y 2时,x =154,故当0ɤx ɤ154时,S =600-160x当154ɤx<6时,S=160x-600当6ɤxɤ10时,S=y2=60x,即S关于x的函数关系式为:S=600-160x0ɤx<154() 160x-600154ɤx<6() 60x(6ɤxɤ10)ìîíïïïïïï(3)根据题意,当A加油站在甲地与B 加油站之间时,60x+200=-100x+600,解得:x=52,此时A加油站离甲地的距离为:60ˑ52 =150km,当B加油站在甲地与A加油站之间时, -100x+600+200=60x解得:x=5,此时A加油站离甲地的距离为:60ˑ5=300km综上所述,A加油站离甲地的距离为150km或300km㊂2.解:如图所示,过点B作BDʅOC于点D,则øO=øBDC设OC=x,根据光的反射原理,øACO=øBCD,故әAOCʐәBDC根据三角形的性质可得:OCʒDC= AOʒBD即xʒ(4-x)=2ʒ3解得:x=85故根据勾股定理得:AC=22+85()2 =2415BC=32+4-85()2=3415故这束光从点A到点B所经过的路径的长度为:AC+BC=41练㊀习㊀八快乐基础屋一㊁选择题1.D㊀2.D㊀3.C㊀4.D㊀5.A㊀6.A㊀二㊁填空题7.k<28.y=-2x9.y=x10.(2,0)㊀(0,4)11.6㊀-32三㊁解答题12.(1)解:设y=kx+b则40k+b=7537k+b=70{解得k=53㊀b=253ʑy=53x+253(2)当x=39时,y=53ˑ39+253ʂ78.2ʑ一把高39cm 的椅子和一张高78.2cm的课桌不配套13.如图所示:y 14.解:把(4,a )代入y =12x 得:a =12ˑ4=2ʑ一次函数y =kx +b 的图像经过点(-2,-4)和点(4,2)ʑ-2k +b =-44k +b =2{解得k =1,b =-2ʑ该一次函数的解析式为y =x -215.(1)解:把x =0,y =0代入y =(3-k )x -2k +18可得:k =9(2)解:把x =0,y =-2代入y =(3-k )x -2k +18可得:k =10欢乐提高吧1.解:ȵ一次函数y =-x +a 和一次函数y =x +b 的交点坐标为(m ,8)ʑ8=-m +a ①㊀8=m +b ②①+②得:16=a +b 即a +b =162.解:如图所示,由题意可知A 点坐标为(-1,2+m ),B 点坐标为(1,m -2)C 点坐标为(2,m -4),D 点坐标为(0,2+m ),E 点坐标为(0,m ),F 点坐标为(0,-2+m ),G 点坐标为(1,m -4)ʑDE =EF =BG =2又ȵAD =BF =GC =1ʑ图中阴影部分的面积和等于12ˑ2ˑ1ˑ3=3练㊀习㊀九快乐基础屋一㊁选择题1.B ㊀2.C ㊀3.C ㊀4.B ㊀5.A ㊀6.A ㊀7.A ㊀二㊁填空题8.56㊀80㊀156.89.y =10000+16x ㊀x ȡ110.a <b ㊀011.-212.-213.ʃ414.3<x <6三、解答题15.解:设这个一次函数的解析式为y =kx+bȵ该一次函数的图像经过点(2,3)和点(-1,4)ʑ2k+b=3-k+b=4{解得k=-13,b=113ʑ这个一次函数的解析式为y=-13x+ 11316.解:直线y=kx+b与直线y=5-4x 平行ʑk=-4直线y=-3(x-6)与y轴的交点是(0,18)将x=0,y=18代入y=-4x+b解得b=18ʑ直线的函数解析式是y=-4x+1817.解:设正比例函数的解析式为y= kx,则有-6=3k㊀ʑk=-2即正比例函数解析式为y=-2xȵA(a,a+3)是正比例函数图像上的点ʑa+3=-2a㊀ʑa=-1则平行该图像的一次函数y=kx+a的解析式为y=-2x-1欢乐提高吧1.(1)解:由题意得:x-2y=-k+6x+3y=4k+1{解得:x=k+4,y=k-1ʑ两直线的交点坐标为(k+4,k-1)又ȵ交点在第四象限内ʑk+4>0k-1<1{解得-4<k<1(2)解:由于k为非负整数且-4<k<1ʑk=0㊀ʑ直线方程x-2y=6,x+3y=1两直线相交,即x-2y=6x+3y=1{㊀解得:x=4,y=-1ʑ两直线的交点坐标为(4,-1)ȵ直线x-2y=6与y轴的交点为(0,-3)直线x+3y=1与y轴的交点为0,13()ʑ围成的三角形的面积=12ˑ3+13()ˑ4=2032.(1)解:直线y=-x+b交y轴于点P(0,b),由题意得:b>0,tȡ0,b=1+t,当t=3时,b=4ʑy=-x+4(2)解:当直线y=-x+b过点M(3,2)时,2=-3+b㊀解得:b=55=1+t㊀解得:t=4当直线y=-x+b过点N(4,4)时4=-4+b㊀解得:b=88=1+t㊀解得:t=7故若点M㊁N位于l的异侧,t的取值范围是4<t<7练㊀习㊀十快乐基础屋一㊁选择题1.C㊀2.A㊀3.C㊀4.C㊀5.C㊀6.D二㊁填空题7.29㊀298.769.乙10.711.甲12.87三㊁解答题13.(1)解:70ˑ10%+80ˑ40%+88ˑ50%=83(分)(2)解:80ˑ10%+75ˑ40%+50%㊃x >83ʑx>90ʑ小文同学的总成绩是83分,小明同学要在总成绩上超过小文同学,则他的普通话成绩应超过90分㊂14.解:甲:数据10.8出现2次,次数最多,所以众数是10.8平均数=(10.8+10.9+11+10.7+ 11.2+10.8)ː6=10.9中位数=(10.8+10.9)ː2=10.85乙:数据10.9出现3次,次数最多,所以众数是10.9平均数=(10.9+10.9+10.8+10.8+ 10.5+10.9)ː6=10.8中位数=(10.8+10.9)ː2=10.85所以从众数上看,乙的整体成绩大于甲的整体成绩从平均数上看,甲的平均成绩优于乙的平均成绩从中位数看,甲㊁乙的成绩一样好欢乐提高吧(1)解:观察表格,可知这组样本的平均数=(0ˑ3+1ˑ13+2ˑ16+3ˑ17+4ˑ1)ː50=2样本数据中,3出现17次,出现的次数最多,所以这组数据的众数是3ȵ将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2ʑ这组数据的中位数=(2+2)2=2 (2)解:ȵ在50名学生中,读书多于2册的学生有18名,则该校七年级300名学生在本次活动中读书多于2册的人数为: 300ˑ1850()=108(人)ʑ根据样本数据,可以估计该校八年级300名学生在本次活动中读书多于2册的有108人㊂假期总结测试题一㊁选择题1.B㊀2.D㊀3.D㊀4.D㊀5.C㊀6.B㊀7.D㊀8.A二㊁填空题9.83310.311.等腰直角三角形12.20cm13.y=-x14.4815.y=t-0.6(tȡ3)㊀2.4㊀6.4三㊁解答题16.(1)选①(答案不唯一,任选其一) (2)证明:ȵ四边形ABCD是正方形ʑAB=CD㊀øA=øC=90ʎ又ȵAE=CF,øA=øC,AB=CD ʑәAEBɸCFD(SAS)ʑBE=DF选②:ȵ四边形ABCD是正方形ʑADʊBC又ȵBEʊDFʑ四边形EBFD是平行四边形ʑBE=DF选③:ȵ四边形ABCD是正方形ʑAB=CD㊀øA=øC=90ʎ又ȵø1=ø2ʑәAEBɸәCFD(AAS)ʑBE=DF17.(1)甲:7.5㊀3.8乙:7㊀7.5㊀ 5.4(2)因为甲的方差小于乙的方差,甲的成绩比较稳定,故甲胜出㊂18.(1)解:ȵAD平分øCAB㊀DEʅAB ㊀øC=90ʎʑCD=DE㊀ȵCD=3㊀ʑDE=3 (2)解:在RtәABC中,由勾股定理得: AB=AC2+BC2=62+82=10ʑәADB的面积为:SәADB=12AB㊃DE=12ˑ10ˑ3=1519.解:设一次函数解析式为y=kx+ b,把x=4,y=9和x=6,y=-1,分别带入得:4k+b=9①6k+b=-1②{①-②得:-2k=10㊀ʑk=-5把k=-5代入①得:b=29ʑ一次函数解析式为:y=-5x+2920.(1)解:y=8000-500(x-60)即y=38000-500x(xȡ60) (2)解:当x=70时y=38000-500ˑ70=3000当价格为70元时,这种商品的需求量是3000件㊂。
人教版八年级数学暑假作业参考答案
参考答案第1讲二次根式练一练巩固演练1.B2.C3.D4.A5.B6.67.1008.139.a ≤010.111.解:原式=[(22+3)(22-3)]2017·(22-3)=(-1)2017·(22-3)=3-22.12.解:∵x +1x =10,∴()x +1x 2=10,∴x 2+1x 2+2=10,∴x 2+1x2=8.13.解:∵x <2,∴x -2<0,3-x >0,∴(x -2)2=2-x ,|3-x |=3-x ,∴原式=2-x +3-x =5-2x.提高演练1.B2.A3.-24.75.解:a =681×2019-681×2018=681×(2019-2018)=681,b =6782+678+680+690+678=678×(678+1+1)+680+690=678×680+680+690=680×(678+1)+690=680×(680-1)+690=6802+10,a =(680+1)2=6802+1360+12,则b <a.赛一赛1.B2.C3.b <a <c4.解:∵{1-8x ≥0,8x -1≥0,∴8x -1=0,即x =18,∴y =0+12=12,=52-32=1.第1讲测试题1.C2.D3.B4.C5.B6.C7.B8.C9.B10.C11.112.<13.x >214.2015.016.52+2317.解:(=43-2-3+2=33;(2)原式3-96=8-9218.解:∵b <0<a <2,|b |>|a |,∴a +2>0,b -2<0,a +b <0,∴原式=a +2+(b -2)-a -b =a +2+b -2-a -b =0.∵-5无意义,∴过程错误.=4=2;(2)当a ≥0且b >0b.20.解:(1)原式=a 2-1+2a +1×1a 2+1=1a +1,将a =2-1代入上式得:1a +1=12-1+1(2)原式=x 2+2x +1-x 2-2xy -2x =1-2xy ,将x =3+1,y =3-1代入上式得:1-2xy =1-2(3+1)(3-121.解:(1)17+6=1×(-)7676=7-6;(2)原式=2-1+3-2+4-3+…+100-99=100-1=922.解:x 22(+1)22=3+221=3+22,y =2-12+1=(2-1)2(2+1)(2-1)=3-221=3-22,∴x 2-y 2=(x -y )(x +y )=(3+22-3+22)(3+22+3-22)=42×6=242.23.解法一:m 2=(2-1)2=3-22,1m2=13-22=3+22=3+22.∴=3-22+3+22-2=4=2.解法二:∵(m+1)2=2,∴m2+2m-1=0,∴m+2-1m=0,.24.解:x2+x+1=()x+12+34=)+122+34=54+34=2.第2讲勾股定理练一练巩固演练2.C3.C4.B5.B6.537.239.810.1311.解:∵AC=3,AB=8-3=5,∴BC=52-32=4(m).∴BC的长为4m.12.解:在Rt△ABC中,AC=AB2-BC2=52-42=3(km),∵30.3=10(天),∴10天能将隧道AC凿通.13.解:在△ADB中,∵AD2+AB2=42+32=25=52=BD2,∴∠A=90°.在△BDC中,∵BD2+BC2=52+122=169=132=DC2,∴∠DBC=90°,∴∠BDC<90°,∴该零件不符合要求.提高演练1.C2.A解析:答图2-1如答图2-1,作A点关于O B的对称点A',∵四边形O ABC为正方形.∴A'与C重合,CD为所求最小值,CD=62+22=210.3.6013解析:如答图2-2,作A H⊥BC,垂足为H,连接CD,答图2-2在Rt△AB H中,A H=132-52=12,∴S△ABC=12×10×12=60.∵D为AB的中点,∴S△ADC=S△DBC=30,∴12·AC·DE=30,即DE=6013.4.4解析:如答图2-3,E H=2,F H=8,D H⊥EF,ED⊥DF,答图2-3设D H=x,则由DE2+DF2=EF2,得x2+22+x2+82=(2+8)2,解得x=4.5.解:如答图2-4,连接DB,∵DC=BC,∠C=120°,∴∠1=30°,答图2-4∴∠2=120°-30°=90°.作C H⊥DB,垂足为H,在Rt△C H B中,C H=5,H B=53,AB=DB=103,∴S四边形ABCD=S△ABD+S△BDC=12×(103)2+12×103×5=(150+253)(m2).赛一赛1.D解析:如答图2-5,答图2-5∵AE=EB,DE⊥AB,∴AD=D B.设CD=x,则AD=BD=10-x.在Rt△ACD中,(10-x)2=x2+52,解得x=154,∴CD=154cm.2.解:∵∠BAC+∠ACB=∠ACB+∠ECD=90°,∴∠BAC=∠ECD,∴△ABC≌△CDE,∴AB=CD,BC=ED,∴AC2=3=AB2+BC2=S3+S4,即S3+S4=3.同理,2=S2+S3,S1+S2=1,∴S1+S2+S3+S4=1+3=4.3.解:若n=1,则a=0,不符合题意;n≠1时,∵n2+1>n2-1,c>a.又∵c-b=n2+1-2n=(n-1)2>0,∴c>b.又∵a2+b2=(n2-1)2+(2n)2=n4-2n2+1+4n2=(n2+1)2=c2,∴△ABC为直角三角形.第2讲测试题1.C解析:a可为直角边,也可为斜边.2.A解析:设AC=4x,则BC=3x,由(4x)2+(3x)2= 102,解得x=2,∴AC=8,BC=6,由AB·CD=AC·BC,得CD=8×610=245.3.D解析:由勾股定理可知AB=25m,即践踏绿地走25m,原来需要走24+7=31(m),所以少走31-25=6(m).4.B解析:连接BD,在Rt△ABD中,∵AB=3,AD=4,∴BD=5,又CD=12,BC=13,∴△BCD是直角三角形,∴S四边形ABCD=S△ABD+ S△BCD=12×3×4+12×5×12=36(cm2).5.C解析:设其余两边为a,b(a,b为自然数),则有112+a2=b2,∴112=121=b2-a2=(b+a)(b-a),∴b+a=121,b-a=1,∴b=61,a=60,∴三角形的周长为11+61+60=132.6.D解析:连接BE,交AD于O.作AF⊥BC,垂足为点F.答图Ⅱ-1∵∠BAC=90°,AB=3,AC=4,∴BC=5,∴12AB·AC=12BC·AF,∴AF=125.∵AB=AE,DE=DB=DC,∴AD垂直平分BE,△BEC是直角三角形.∴12AD·B O=12BD·AF.又∵AD=BD,∴B O=AF=125,BE=2B O=245.在Rt△BEC中,CE=BC2-BE2=75.7.B解析:连接AD,在Rt△AED中有:AE2= AD2-DE2,在Rt△EBD中有:BE2=BD2-DE2,又BD=CD,∴AE2-BE2=AD2-DE2-BD2+DE2=AD2-BD2=AD2-CD2=AC2.8.A解析:32+42+122=169=132.9.C解析:分三类,当点A处是直角时,有2个点;当点B处是直角时,有4个点;当点C处是直角时,有2个点,故共有2+4+2=8个点.10.B11.12m12.80解析:由a∶b∶c=15∶8∶17可知△ABC是直角三角形,∴设两条直角边为8x和15x.∵△ABC的面积为240,∴12×8x×15x=240,解得x=2,∴△ABC的三边长为16,30,34,∴△ABC的周长为80.13.12013解析:答图Ⅱ-2过点A作AE⊥BC,垂足为E,又AB=AC,∴E是BC的中点.∵在Rt△ABE中,有AE=AB2-BE2= 132-52=12,点D在AB上运动时,CD最短是当CD⊥AB时,此时CD是边AB上的高,∴S△ABC=12·CD·AB=12·AE·BC,即CD=12×1013=12013.14.45解析:根据图形可得四个三角形的面积+小正方形的面积=大正方形的面积,即4×12ab+4= 49,得2ab+4=49,∴2ab=49-4=45.15.30解析:O D2=O A2+AB2+BC2+CD2=16+1+4+ 9=30.16.直角三角形解析:∵a,b,c满足a2+|b-15|+(c-17)2+64=16a,∴a2-16a+64+|b-15|+(c-17)2=0,即:(a-8)2+|b-15|+(c-17)2=0,由非负性可知:a-8=0,b-15=0,c-17=0,∴a=8,b=15,c=17.又∵a2+b2=82+152=172=c2,∴△ABC是直角三角形.17.解:根据题意画出圆柱侧面展开图,连接AC,答图Ⅱ-3根据两点之间线段最短,蚂蚁从A出发沿圆柱侧面爬行到C的最短路程为A C.∵圆柱的底面周长为20cm,∴BC=AD=10cm.又∵AB=4cm,∴在Rt△ADC中,AC=AD2+DC2=229,则蚂蚁爬行的最短路程为229cm.18.解:过点A作AE⊥BC,垂足为E.答图Ⅱ-4∵AB=AC=20,BC=32,∴CE=BE=16,∴在Rt△AEC中,AE=AC2-EC2=12.∵AD⊥AC,设DE=x,∴在Rt△ADC中,有AD2= DC2-AC2=(x+16)2-202,在Rt△ADE中,有AD2=DE2+AE2=x2+122,∴(x+16)2-202=x2+122,解得:x=9,∴BD=BE-DE=16-9=7(cm).19.解:∵CD=DE=2,∴在Rt△CDE中,CE=CD2+DE2=22.∵直角三角形斜边上的中线等于斜边的一半,∴CE=12AB,∴AB=2CE=42.20.证明:如答图Ⅱ-5,过点A作A M∥BC,交FD 的延长线于点M,连接E M.答图Ⅱ-5∵A M∥BC,∴∠M AE=∠ACB=90°,∠M AD=∠B.∵AD=BD,∠ADM=∠BDF,∴△ADM≌△BDF,∴AM=BF,MD=DF.又∵DE⊥DF,∴EF=EM,∴AE2+BF2=AE2+AM2=EM2=EF2. 21.解:∵c2=a2+22a2=5a2,∴c=5a,∴a c=22.解:∵ìíîïïOB2+OA2=16,①OB2+OC2=9,②OA2+OD2=25,③∴②+③-①:OC2+OD2=25+9-16=18,∴DC2=18,∴DC=32.23.解:如答图Ⅱ-6,作AD关于AB的对称线AD',作D'F⊥AC,垂足为F,交AB于点E,则D'F为EF+DE的最小值.答图Ⅱ-6∵AD=AD'=6,∠D'AD=60°,AF=3,∴在Rt△AD'F中,D'F=D'A2-AF2=33.故DE+EF的最小值为33.24.解:在Rt△ABC中,AB=AC2+BC2=4.∵∠BAD=∠ADB ,∴BD=AB=4.∴CD=BC+BD=10+4.∴S △ADC =12AC ·CD =15+26.25.证明:(1)∵∠ACB=90°,CD ⊥AB ,垂足为点D ,∴S △ABC =12AB ·CD =12AC ·BC ,∴AB·CD=AC·BC ,即ch=ab.∴1a 2+1b 2=a 2+b 2a 2b 2=c 2c 2h 2=1h 2.(2)∵(c +h )-(a +b )=()c +abc-(a +b )=c 2+ab -ac -bc c=(c -a )(c -b )c ,又∵c >a ,c >b ,∴(c -a )(c -b )c>0.∴(c +h )-(a +b )>0.∴c +h >a +b ,即a +b <c +h.(3)∵c +h >a +b ,c +h >h ,∴(c +h )2=c 2+2ch +h 2=a 2+b 2+2ab +h 2=(a +b )2+h 2.∴以a +b ,h ,c +h 为边的三角形是直角三角形.第3讲平行四边形练一练巩固演练1.B2.C3.C4.D5.C6.BO=DO (答案不唯一)7.78.439.310.2411.证明:∵AB ∥CD ,∴∠DCA =∠BA C .∵DF ∥BE ,∴∠DFA =∠BEC ,∴∠AEB =∠DF C .在△AEB 和△CFD 中,{∠DCF =∠EAB,AE =CF,∠DFC =∠AEB,∴△AEB ≌△CFD (ASA ),∴AB =CD.∵AB ∥CD ,∴四边形ABCD 为平行四边形.12.解:∵四边形ABCD 是平行四边形,∴∠ADE =∠DE C .又∵∠DAF =62°,AF ⊥DE ,∴∠ADE =∠DEC =90°-62°=28°.∵∠BED +∠DEC =180°,∴∠BED =180°-28°=152°.13.(1)证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥B C .∵DE =12AD ,F 是BC 边的中点,∴DE =FC ,DE ∥FC ,∴四边形CEDF 是平行四边形;(2)解:过点D 作D N ⊥BC ,垂足为点N ,∵四边形ABCD 是平行四边形,∠A =60°,∴∠BCD =∠A =60°.∵AB =3∴FC =2,N C =12DC =32,D N2∴F N =12,则DF =CE=DN 2+FN 2=7.答图3-1提高演练1.D2.D3.①②④5.解:设x s 后,四边形ABQP 是平行四边形.则AP=x ,CQ=2x ,∴BQ =6-2x.∵AD ∥BC ,∴当AP=BQ 时,四边形ABQP 是平行四边形.∴x =6-2x ,解得x =2.当x =2时,AP=BQ =2<BC<AD ,∴2s 后,四边形ABQP 是平行四边形.测一测1.B2.C3.C4.D5.D6.C7.B8.B 9.310.AF=CE ,答案不唯一11.3312.1<a <713.1014.415.证明:∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB =DC ,∴∠BAE =∠DCF.在△AEB 和△CFD 中,{AB =CD,∠BAE =∠DCF,AE =CF,∴△AEB ≌△CFD (SAS ),∴BE=DF.16.(1)证明:∵O 是AC 的中点,∴OA=OC.∵AD ∥BC ,∴∠ADO=∠CBO.在△AOD 和△COB 中,{∠ADO =∠CBO,∠AOD =∠COB,OA =OC,∴△AOD ≌△COB ,∴OD=OB ,∴四边形ABCD 是平行四边形.(2)解:∵四边形ABCD 是平行四边形,AC ⊥BD ,∴四边形ABCD 是菱形,∴S ▱ABCD =12AC·BD =24.17.(1)证明:∵D ,E 分别是AB ,AC 边的中点,∴DE ∥BC ,且DE =12B C .同理,G F ∥BC ,且G F =12BC ,∴DE ∥GF 且DE=GF ,∴四边形DEFG 是平行四边形.(2)解:当OA=BC 时,▱DEFG 是菱形.18.(1)证明:∵四边形ABCD 是平行四边形,∴DC=AB ,DC ∥AB ,∴∠ODF=∠OBE.在△ODF 与△OBE 中,{∠ODF =∠OBE,∠DOF =∠BOE,DF =BE,∴△ODF ≌△OBE (AAS ),∴BO=DO.(2)解:∵BD ⊥AD ,∴∠ADB =90°.∵∠A=45°,∴∠DBA=∠A =45°.∵EF ⊥AB ,∴∠G =∠A =45°,∴△ODG 是等腰直角三角形.∵AB ∥CD ,EF ⊥AB ,∴DF ⊥OG ,∴OF=FG ,△DFG 是等腰直角三角形,∴DF=FG=1,∴DG=DF 2+FG 2=2.∵DG=DO=2,又∵DO=BO ,∴AD =2DO =22.19.解:(1)△ABC (或△CDA )与△FAE 全等.(下面仅对△ABC ≌△FAE 证明)∵∠FAB =∠EAD =90°,∴∠EAF +∠DAB =180°.∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴∠DAB +∠CBA =180°,∴∠CBA=∠EAF.∵AE=AD ,∴BC=AE.又∵AB=AF ,∴△ABC ≌△FAE.(2)由(1)同理可得,△AEF ≌△DAC ≌△CIJ ,△BGH ≌△DKL ≌△CDB ,则四个三角形面积和为12×5×4=10.赛一赛解:如答图3-2,分别延长AC ,BD 交于点H ,连接HP.∵∠A =∠DPB =60°,∴AH ∥PD.∵∠B=∠CPA =60°,∴BH ∥PC ,∴四边形CPDH 为平行四边形.∴CD 与HP 互相平分,又∵G 为CD 的中点,∴G 正好为PH 的中点,即在P 运动过程中,G 始终为PH 的中点,所以G 的运动轨迹为△HAB 的中位线MN ,∴MN =12AB =5.答图3-2第4讲特殊的平行四边形练一练巩固演练1.C2.C3.D4.A5.D6.27.2458.139.7-110.511.证明:∵∠BAD=∠D =90°,BA=AD=DC ,又∵点M ,N 分别是AD ,CD 的中点,∴AM=DN =12AD ,∴△ABM ≌△DAN ,∴∠ABM=∠DAN.∵∠BAN+∠DAN =90°,∴∠BAN+∠ABM=90°,∴∠AEB =90°,即AN ⊥BM.12.(1)证明:∵∠OBC=∠OCB ,∴BO=CO.又∵在▱ABCD 中,∴AO=CO ,DO=BO ,∴2BO=2AO ,即BD=AC ,∴▱ABCD 为矩形.(2)解:AC ⊥BD 或AB=BC.13.证明:(1)∵四边形ABCD 是矩形,∴AD ∥BC ,AD=BC.∵E ,F 分别是AD ,BC 的中点,∴AE=12AD ,CF =12BC ,∴AE=CF ,∴四边形AFCE 是平行四边形.(2)∵四边形AFCE 是平行四边形,∴CE ∥AF ,∴∠DGE=∠AHD=∠BHF.∵AD ∥BC ,∴∠EDG=∠FBH.在△DEG 和△BFH 中,{∠DGE =∠BHF,∠EDG =∠FBH,DE =BF,∴△DEG ≌△BFH (AAS ),∴EG=FH.提高演练1.D2.C3.103-104.65.(1)解:猜想DM 与ME 的关系是:DM=ME.证明:如答图4-1,延长EM 交AD 于点H.∵四边形ABCD、四边形ECGF 都是矩形,答图4-1∴AD ∥BG ,EF ∥BG ,∠HDE =90°,∴AD ∥EF ,∴∠AHM=∠FEM.又∵AM=FM ,∠AMH=∠FME ,∴△AMH ≌△FME ,∴HM=EM.又∵∠HDE=90°,∴DM=EM.(2)DM=ME ,DM ⊥ME.(3)证明:如答图4-2,连接AC .答图4-2∵四边形ABCD 、四边形ECGF 都是正方形,∴∠DCA=∠DCE =45°,∴点E 在AC 上,∴∠AEF=∠FEC =90°.又∵M 是AF 的中点,∴ME=12AF.∵∠ADC =90°,M 是AF 的中点,∴DM=12AF ,∴DM=EM.∵ME =12AF=FM ,DM=12AF=FM ,∴∠DFM=12(180°-∠DMF ),∠MFE =12(180°-∠FME ),∴∠DFM+∠MFE =180°-12(∠DMF+∠FME )=180°-12∠DME.∵∠DFM+∠MFE=180°-∠CFE =180°-45°=135°,∴180°-12∠DME=135°,∴∠DME=90°,∴DM ⊥ME.测一测2.C3.A4.A5.A6.B7.D8.C 910.311.2-212.105cm 85cm13.4或814.(2,4)或(8,4)15.证明:∵四边形ABCD 是菱形,∴AB=BC ,∠A=∠C.∵在△ABF 和△CBE 中,{AF =CE,∠A =∠C,AB =CB,∴△ABF ≌△CBE (SAS ),∴∠ABF=∠CBE.16.解:线段AF ,BF ,EF 三者之间的数量关系为AF=BF+EF ,理由如下:∵四边形ABCD 是正方形,∴AB =AD ,∠DAB =∠ABC =90°.∵DE ⊥AG ,垂足为E ,BF ∥DE 交AG 于F ,∴∠AED =∠DEF =∠AFB =90°,∴∠ADE +∠DAE =90°,∠DAE+∠BAF =90°,∴∠ADE=∠BAF.在△ABF 和△DAE 中,{∠BAF =∠ADE,∠AFB =∠DEA,AB =AD,∴△ABF ≌△DAE (AAS ),∴BF=AE ,∴AF=AE+EF=BF+EF.17.解:(1)连接AC ,BD ,交于点O ,菱形ABCD 的周长是48cm ,答图4-3则AB=BC=CD=AD =12cm .∵∠A ∶∠B =1∶2,∴∠A =60°,∠B =120°,∴△ADB 是等边三角形,AD=BD =12cm ,在Rt△ADO 中,AO =AD 2-DO 2=63cm ,∴AC=2AO=123cm .(2)S 菱形ABCD =12AC·BD =723cm 2.18.证明:如答图4-4,连接AC ,答图4-4∵四边形ABCD 为菱形,∴AC ⊥BD ,AD =CD ,∴∠ADP =∠CDP.又∵DP =DP ,∴△APD ≌△CP D .∴PA =PC ,∠DAP =∠DCP.又∵∠AEP =∠DCP ,∴∠AEP =∠DAP.∴PA =PE.∴PC =PE.19.(1)解:如答图4-5,答图4-5利用邻边长分别为3和5的平行四边形进行3次操作,所剩四边形是边长为1的菱形,故邻边长分别为3和5的平行四边形是3阶准菱形;如答图4-6,答图4-6∵b =5r ,∴a =8b +r =40r +r =8×5r +r ,利用邻边长分别为41r 和5r 的平行四边形进行8+4=12次操作,所剩四边形是边长为r 的菱形,故邻边长分别为41r 和5r 的平行四边形是12阶准菱形.故答案为:3,12.(2)证明:由折叠知:∠ABE =∠FBE ,AB =BF ,∵四边形ABCD 是平行四边形,∴AE ∥BF ,∴∠AEB =∠FBE ,∴∠AEB =∠ABE ,∴AE =AB ,∴AE =BF ,∴四边形ABFE 是平行四边形,∴四边形ABFE 是菱形.赛一赛解:(1)等腰(2)如答图4-7①,连接BE ,作BE 的垂直平分线交BC 于点F ,连接EF ,△BEF 是矩形ABCD 的一个折痕三角形.∵折痕垂直平分BE ,AB =AE =2,∴点A 在BE 的垂直平分线上,即折痕经过点A ,∴四边形ABFE 为正方形,∴BF =AB =2,∴F 的坐标为(2,0).(3)矩形ABCD 存在面积最大的折痕△BEF ,其面积为4.理由如下:①当F 在边BC 上时,如答图4-7②所示,S △BEF ≤12S 矩形ABCD ,即当F 与C 重合时,△BEF 的面积最大为4.②当F 在边CD 上时,如答图4-7③所示,过F 作F H ∥BC 交AB 于点H ,交BE 于点K ,∵S △E K F =12K F ·A H ≤12H F ·A H =12S 矩形A H FD ,S △B K F =12K F ·B H ≤12H F ·B H =12S 矩形BCF H ,∴S △BEF ≤12S 矩形ABCD =4,即当F 为CD 的中点时,△BEF 的面积最大为4.下面求面积最大时,点E 的坐标:①当F 与点C 重合时,如答图4-7④所示,由折叠可知CE=CB =4,在Rt △CDE 中,ED =CE 2-CD 2=42-22=23,∴AE =4-23,∴E 的坐标为(4-23,2).②当F 在边DC 的中点时,点E 与点A 重合,如答图4-7⑤所示,此时E 的坐标为(0,2).综上所述,折痕△BEF 的最大面积为4时,点E的坐标为(0,2)或(4-23,2).答图4-7第3—4讲测试题1.D2.D3.C4.C5.D6.C7.B8.C9.D 10.D 11.BC=DF (答案不唯一)12.5∶113.60°14.715.75°16.2017.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB=CD ,∴∠BAC=∠DCA ,∴180°-∠BAC =180°-∠DCA ,∴∠EAB=∠DCF.∵BE ⊥AC ,DF ⊥AC ,∴∠BEA=∠DFC=90°.在△BEA 和△DFC 中,{∠BEA =∠DFC,∠EAB =∠DCF,AB =CD,∴△BEA ≌△DFC (AAS ),∴AE=CF.18.证明:∵四边形ABCD 是平行四边形,∴点O 是BD 的中点.又∵点E 是CD 的中点,∴OE 是△BCD 的中位线,∴OE ∥BC ,且OE =12BC.又∵CF=12BC ,∴OE=CF.又∵点F 在BC 的延长线上,∴OE ∥CF ,∴四边形OCFE 是平行四边形.19.证明:如答图Ⅲ-1,连接AF ,EC.答图Ⅲ-1∵四边形ABCD 是矩形,∴OB=OD.又∵AE ∥CF ,∴∠BEO=∠DFO ,∠OBE=∠ODF.∴△BOE ≌△DOF (AAS ),∴BE=DF.∵AB+BE=DC+DF ,∴AE=CF ,AE ∥CF ,∴四边形AECF 为平行四边形.20.证明:∵AB=CD ,AD=BC ,∴四边形ABCD 是平行四边形,∴AD ∥BC.又∵EF ⊥AD ,∴EF ⊥BC.21.证明:∵四边形ABCD 是正方形,∴AB=BC ,∠A=∠CBE =90°.∵BF ⊥CE ,∴∠BCE+∠CBG =90°.∵∠ABF+∠CBG =90°,∴∠BCE=∠ABF.在△BCE 和△ABF 中,{∠BCE =∠ABF,BC =AB,∠CBE =∠A,∴△BCE ≌△ABF (ASA ),∴BE=AF.22.(1)证明:∵四边形ABCD 是矩形,∴AB=DC ,AC=BD ,AD=BC ,∠ADC=∠ABC =90°.由平移的性质得:DE=AC ,CE=BC ,∠DCE=∠ABC=90°,DC=AB ,∴AD=EC.在△ACD 和△EDC 中,{AD =EC,∠ADC =∠DCE,CD =DC,∴△ACD ≌△EDC (SAS ).(2)解:△BDE 是等腰三角形.理由如下:∵AC=BD ,DE=AC ,∴BD=DE ,∴△BDE 是等腰三角形.23.证明:∵四边形ABCD 是菱形,∴AB=BC ,AD ∥BC ,∴∠A=∠CBF.又∵AE=BF ,∴△ABE ≌△BCF ,∴BE=CF.24.(1)证明:如答图Ⅲ-2,连接BD.答图Ⅲ-2∵点E ,H 分别为边AB ,DA 的中点,∴EH ∥BD ,EH =12B D .∵点F ,G 分别为边BC ,CD 的中点,∴FG ∥BD ,FG=12BD ,∴EH ∥FG ,EH=GF ,∴中点四边形EFGH 是平行四边形.(2)四边形EF GH 是菱形.证明:如答图Ⅲ-3,连接AC ,BD,交于点O.答图Ⅲ-3∵∠APB=∠CPD ,∴∠APB+∠APD=∠CPD+∠APD ,即∠APC=∠BPD.在△APC 和△BPD 中,{AP =PB,∠APC =∠BPD,PC =PD,∴△APC ≌△BPD ,∴AC=BD.∵点E ,F ,G 分别为边AB ,BC ,CD 的中点,∴EF =12AC ,FG=12BD ,∴EF=FG.∵四边形EFGH 是平行四边形,∴四边形EFGH 是菱形.(3)四边形EFGH 是正方形.证明:如答图Ⅲ-3,AC 与PD 交于点M ,AC 与EH 交于点N.∵△APC ≌△BPD ,∴∠ACP=∠BDP.∵∠DMO=∠CMP ,∴∠COD=∠CPD =90°.∵EH ∥BD ,AC ∥HG ,∴∠EHG=∠ENO=∠BOC=∠DOC =90°.∵四边形EFGH 是菱形,∴四边形EFGH 是正方形.25.解:(1)()2,32(2)设点D 的坐标为(x ,y ),当AB 为一条对角线时,AB 的中点坐标为()1,32,则ìíîïïïïx+12=1,y +42=32,解得{x =1,y =-1,此时点D 的坐标为(1,-1).当AC 为一条对角线时,AC 的中点坐标为(0,3),则ìíîïïïïx +32=0,y +12=3,解得{x =-3,y =5,此时点D 的坐标为(-3,5).当BC 为一条对角线时,BC 的中点坐标为()2,52,则ìíîïïïïx -12=2,y +22=52,解得{x =5,y =3,此时点D 的坐标为(5,3).综上所述,点D 的坐标为(1,-1)或(-3,5)或(5,3).第5讲一次函数练一练巩固演练1.B2.A解析:一次函数y =(m -2)x +3的图象经过第一、二、四象限,∴m -2<0,解得m <2.3.B解析:根据函数图象上加下减的平移法则,可得y =2x -3+8,即y =2x +5.4.C解析:由已知可得{n +3=km +k +1,①2n -1=k (m +1)+k +1,②②-①得k =n -4,又0<k <2,则有0<n -4<2,解得4<n <6,只有选项C 的数值符合条件,故选C .5.B6.1解析:由题意可得{y =kx +2,y =2x +k,解得{x =1,y =k +2,故答案为1.7.-40℃8.k =-1(答案不唯一)解析:正比例函数y =kx (k 是常数,k ≠0)的图象经过第二、四象限,根据正比例函数的性质可得k <0,只要符合条件的k 值都可以.9.y =x 或y =-x.解析:∵点A (m ,n )在直线y =kx (k ≠0)上,-1≤m ≤1时,-1≤n ≤1,∴图象过点(-1,-1)和(1,1)或者图象过点(-1,1)和(1,-1).∴k =-1或k =1,∴y =x 或y =-x ,故答案为:y =x 或y =-x.10.0.311.解:∵一次函数y =kx +2,当x =-1时,y =1,∴-k +2=1,∴k =1,∴y =x +2.函数图象如答图5-1所示.x y1324答图5-112.(1)l 23020解析:乙离A 地的距离越来越远,图象是l2;甲的速度60÷2=30(km/h);乙的速度60÷(3.5-0.5)=20(km/h);(2)解:设l1所表示的函数关系式为y1=k1x+b1(k1≠0),l2所表示的函数关系式为y2=k2x+b2(k2≠0),可得y1=-30x+60,y2=20x-10,由y1-y2=5得x=1.3;由y2-y1=5得x=1.5.答:甲出发后1.3h或者1.5h时,甲、乙相距5km.13.(1)1,3,1.2,3.3(2)解:y1=0.1x(x≥0);当0≤x≤20时,y2=0.12x,当x>20时,y2=0.12×20+0.09(x-20),即y2=0.09x+ 0.6.故y2关于x的函数解析式为y2={0.12x(0≤x≤20),0.09x+0.6(x>20).(3)解:顾客在乙复印店复印花费少.当x>70时,有y1=0.1x,y2=0.09x+0.6,∴y1-y2=0.1x-(0.09x+0.6)=0.01x-0.6,记y=0.01x-0.6,由于0.01>0,y随x的增大而增大,又x=70时,有y=0.1.∴x>70时,有y>0.1,即y>0,∴y1>y2,∴当x>70时,顾客在乙复印店复印花费少.提高演练1.A解析:∵一次函数y=kx-m-2x的图象与y 轴的负半轴相交,且函数值y随自变量x的增大而减小,∴k-2<0,-m<0,∴k<2,m>0.2.B解析:∵一次函数y=-2x+m的图象经过点P(-2,3),∴3=4+m,解得m=-1,∴y=-2x-1.∵当x=0时,y=-1,∴它的图象与y轴的交点为B(0,-1),∵当y=0时,x=-12,∴它的图象与x轴的交点为A()-12,0,∴S△A O B=12×1×12=14.3.an=bm解析:设交点为(x,0),ax+b=0①,mx+ n=0②,①×m-②×a得:mb-an=0,an=bm.4.-25解析:根据题意得y1+y2=3(x1+x2)-16=3×(-3)-16=-25.5.解:(1)观察函数图象可得当横坐标为18时,纵坐标为45,即应交水费为45元.(2)设当x>18时,y关于x的函数解析式为y=kx+ b(k≠0),将(18,45)和(28,75)代入可得{18k+b=45,28k+b=75,解得{k=3,b=-9,则当x>18时,y关于x的函数解析式为y=3x-9,当y=81时,3x-9=81,解得x=30.答:这个月的用水量为30m3.赛一赛解:(1)依据题意画图,如答图5-2.答图5-2∴S△O PA=12O A·PB=12·O A·y.∵点A的坐标为(6,0),∴S=12×6×y=3y.由题知:x+y=8,∴y=8-x,∴S=3(8-x)=24-3x(0<x<8).画图如答图5-3所示.答图5-3(2)当x=3时,S=24-3×3=15.∴当点P的横坐标为3时,△O PA的面积为15.第5讲测试题1.C2.B3.B4.A5.A6.A7.D8.D9.B10.B11.>12.14.-2或-515.七16.(2021217.解:∵直线y=2x+b经过点(3,5),∴5=2×3+b.∴b=-1.即不等式为2x-1≥0,解得x≥12.18.解:将点(0,2)代入y=kx+b(k≠0)中,得:b=2,则一次函数y=kx+b(k≠0)与x轴的交点横坐标为-bk=-2k,由题意可得:S=12×||||||-2k×2=2,解得k=±1,则一次函数的解析式为y=x+2或y=-x+2. 19.解:(1)设直线AB的解析式为y=kx+b.直线AB过点A(1,0),B(0,-2),∴{k+b=0,b=-2,解得{k=2,b=-2,∴直线AB的解析式为y=2x-2.(2)设点C的坐标为(x,y).∵S△B O C=2,∴12×2×x=2,解得x=2,代入y=2x-2中,∴y=2×2-2=2,∴点C的坐标是(2,2). 20.解:(1)直线y=-x+b交y轴于点P(0,b),由题意,得b>0,t≥0,∵b=1+t,当t=3时,b=4.∴y=-x+4.(2)当直线y=-x+b过点M(3,2)时,有2=-3+b,解得b=5.∵b=1+t,∴t=4.当直线y=-x+b过点N(4,4)时,有4=-4+b,解得b=8.∵b=1+t,∴t=7.故若点M,N位于l的异侧,t的取值范围是4<t<7.21.(1)将(1,0),(0,2)代入y=kx+b中,得{k+b=0,b=2,解得{k=-2, b=2,∴一次函数的解析式为y=-2x+2.把x=-2代入y=-2x+2,得y=6,把x=3代入y=-2x+2,得y=-4,∴y的取值范围是-4≤y<6.(2)∵点P(m,n)在该函数的图象上,∴n=-2m+2.∵m-n=4,∴m-(-2m+2)=4,解得m=2,n=-2,∴点P的坐标为(2,-2). 22.解:(1)3min16s=196(s),196+40=236(s).设y=kx+b,则(196,70),(236,80)在直线y=kx+b上,∴{196k+b=70,236k+b=80,解得{k=0.25, b=21,∴y与x之间的函数关系式为y=0.25x+21.(2)令y=100,得0.25x+21=100,解得x=316,令y=28,得0.25x+21=28,解得x=28,∴316-28=288(s),∴需加热288s. 23.解:(1)由题意可知y=60-5x+3x.∴y=60-2x(x≤30).(2)根据题意得60-2x≥40,∴x≤10.∴最迟应在下午6:00关闭两水管.24.解:(1)y1=280×0.8(x-10)+280×10=224x+560(x>10),y2=280×0.9x=252x(x>10).(2)y1-y2=-28x+560,令-28x+560=0,则x=20;①当x>20时,y1<y2,选甲旅行社的费用较低;②当x=20时,y1=y2,选甲、乙两家旅行社的费用相同;③10<x<20时,y1>y2.选乙旅行社的费用较低.25.解:(1)由题意:y=380x+280(62-x)=100x+ 17360,∵30x+20(62-x)≥1441,∴x≥20.1,∴x的取值范围为21≤x≤62.(2)由题意得100x+17360≤21940,∴x≤45.8.又∵x≥20.1,∴21≤x≤45,∴共有25种租车方案.∵y随x的增大而增大,∴x=21时,y取最小值.x=21时,y=100×21+17360=19460,即租A型号客车21辆,B型号客车41辆时最省钱,最少租车费为19460元.第6讲数据的分析练一练巩固演练1.B2.B3.C4.C5.C6.27.908.59.解:(1)由题意可得,调查的学生有:30÷25%= 120(人),选B的学生有:120-18-30-6=66(人),B所占的百分比是:66÷120×100%=55%,D所占的百分比是:6÷120×100%=5%,故补全条形统计图与扇形统计图如答图6-1所示,答图6-1(2)由(1)中补全的条形统计图知,所抽取学生对数学学习喜欢程度的众数是:比较喜欢,故答案为:比较喜欢.(3)由(1)中补全的扇形统计图可得,该年级学生中对数学学习“不太喜欢”的有:960×25%=240(人),即估计该年级学生中对数学学习“不太喜欢”的有240人.10.解:(1)-x 乙=(73+80+82+83)÷4=79.5,∵80.25>79.5,∴应选派甲.(2)-x 甲=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5,-x 乙=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,∵79.5<80.4,∴应选派乙.提高演练1.C2.D3.84.96分,96.4分5.解:(1)甲的平均成绩为a =5×1+6×2+7×4+8×2+9×11+2+4+2+1=7(环),∵乙射击的成绩从小到大排列为:3,4,6,7,7,8,8,8,9,10,∴乙射击成绩的中位数b =7+82=7.5(环),乙射击成绩的方差为c =110×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=110×(16+9+1+3+4+9)=4.2.(2)从平均成绩看,甲、乙二人的成绩相等,均为7环;从中位数看,甲射中7环以上的次数小于乙;从众数看,甲射中7环的次数最多;而乙射中8环的次数最多;从方差看甲的成绩比乙的成绩稳定.综合以上各因素,若选派一名队员参加比赛,可选择乙参赛,因为乙获得高分的可能更大.赛一赛解:(1)28-22=6(天),∴10盆花的花期最多相差6天.(2)由平均数公式得:-x 甲=15(25+23+28+22+27)=25,-x 乙=15(27+24+24+27+23)=25,∴-x 甲=-x 乙.故无论用哪种花肥,花的平均花期相等.(3)由方差公式得:s 甲2=15[(25-25)2+(23-25)2+(28-25)2+(22-25)2+(27-25)2]=5.2,s 乙2=15[(27-25)2+(24-25)2+(24-25)2+(27-25)2+(23-25)2]=2.8,得s 2乙<s 2甲,故施用乙种花肥效果更好.第6讲测试题1.B 2.C 3.B 4.C 5.B 6.D 7.C 8.C9.D 10.B 11.312.713.1514.4.8或5或5.215.2.516.18317.解:(1)根据题意得:30÷30%=100(人),∴劳动时间为“1.5h ”的人数为100-(12+30+18)=40(人),补全统计图,如答图Ⅵ-1所示:答图Ⅵ-1(2)根据题意得:40100×360°=144°,则扇形图中的“1.5h ”部分的圆心角是144°.(3)根据题意得:抽查的学生劳动时间的众数为1.5h ,中位数为1.5h .18.解:(1)由题意可得,甲组的平均成绩是:91+80+783=83(分),乙组的平均成绩是:81+74+853=80(分),丙组的平均成绩是:79+83+903=84(分),从高分到低分小组的排名顺序是:丙>甲>乙.(2)由题意可得,甲组的平均成绩是:91×40%+80×30%+78×30%40%+30%+30%=83.8(分),乙组的平均成绩是:81×40%+74×30%+85×30%40%+30%+30%=80.1(分),丙组的平均成绩是:79×40%+83×30%+90×30%40%+30%+30%=83.5(分),由上可得,甲组的成绩最高.19.解:(1)根据题意得:15×40+25×40+30×2040+40+20=22(元/千克).则该什锦糖的单价是22元/千克;(2)设加入丙种糖果x kg ,则加入甲种糖果(100-x )kg ,根据题意得:30x +15(100-x )+22×100200≤20,解得x ≤20.答:最多加入丙种糖果20kg .20.解:(1)由表格中的数据可以将折线统计图补充完整,如答图Ⅵ-2所示,答图Ⅵ-2(2)将乙的射击训练成绩按照从小到大排列是:6,7,7,7,7,8,9,9,10,10,故乙运动员射击训练成绩的众数是7,中位数是:7+82=7.5,故答案为:77.5;(3)由表格可得,-x 甲=8+9+7+9+8+6+7+8+10+810=8,s 甲2=110×[(8-8)2×4+(9-8)2×2+(7-8)2×2+(6-8)2+(10-8)2]=1.2,∵1.2<1.8,∴甲本次射击成绩的稳定性好.21.解:(6+12+16+10)÷4=44÷4=11,∴这四个小组回答正确题数的平均数是11题.22.解:(1)如答图Ⅵ-3所示:答图Ⅵ-3(2)由题意知,10+9+9+a +b5=9,∴a +b =17.23.解:(1)-x 甲=15×(7.2+9.6+9.6+7.8+9.3)=8.7(万元),把乙的销售额按照从小到大依次排列可得:5.8,5.8,9.7,9.8,9.9;则中位数为9.7.丙中出现次数最多的数为9.9.(2)我赞同甲的说法.甲的平均销售额比乙、丙都高.24.解:(1)由折线统计图可知,甲组成绩从小到大排列为3,6,6,6,6,6,7,9,9,10,∴甲组学生成绩的中位数a =6,乙组学生成绩的平均分b =5×2+6×1+7×2+8×3+9×210=7.2.(2)∵甲组的中位数为6,乙组的中位数为7.5,而小英的成绩位于全班中上游,∴小英属于甲组学生.(3)①乙组的平均分高于甲组,即乙组的总体平均水平高;②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.25.解:(1)4030(2)观察条形统计图,∵-x =13×4+14×10+15×11+16×12+17×340=15,∴这组数据的平均数为15;∵在这组数据中,16出现了12次,出现的次数最多,∴这组数据的众数为16;∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有15+152=15,∴这组数据的中位数为15.综合测试题1.D2.C3.C4.C5.B6.D7.C8.A9.A 10.D11.三12.y =12x -513.x <114.751615.n -1416.517.解:(1)27+48=33-23+43=53;(2)原式=3+1-3+9+62+2=12+62.18.(1)点A 关于y 轴对称的点的坐标是(2,3).(2)点B对应点的坐标是(0,-6),画图略.(3)以A,B,C为顶点的平行四边形的第四个顶点D的坐标为(-7,3)或(-5,-3)或(3,3). 19.(1)∠ACB=90°;(2)S△ABC=16-12×2×4-12×2×1-12×4×3=5. 20.(1)解:AD=13BC,理由如下:∵AD∥BC,AB∥DE,AF∥DC,∴四边形ABED和四边形AFCD是平行四边形,∴AD=BE,AD=F C.又∵四边形AEFD是平行四边形,∴AD=EF,∴AD=BE=EF=FC,∴AD=13B C.(2)证明:∵四边形ABED和AFCD是平行四边形,∴DE=AB,AF=D C.∵AB=DC,∴DE=AF.又∵四边形AEFD是平行四边形,∴四边形AEFD是矩形.21.解:(1)由题意{17(a+0.8)+3(b+0.8)=66,①17(a+0.8)+8(b+0.8)=91,②②-①,得5(b+0.8)=25,解得b=4.2,把b=4.2代入①,得17(a+0.8)+3×5=66,得a=2.2,b=4.2.(2)当用水量为30m3时,水费为:17×3+13×5=116(元),9200×2%=184(元),∵116<184,∴小王家6月份用水超过30m3.设小王家6月份用水x m3,由题意,得17×3+13×5+6.8(x-30)≤184,6.8(x-30)≤68,解得x≤40.则小王家6月份最多能用水40m3.22.解:从成绩统计表看,甲组成绩高于90分的有20人,乙组成绩高于90分的有24人,乙组成绩集中在高分段的人数多,同时乙组得满分的人数比甲组得满分的人数多6人,从这一角度看乙组的成绩较好.当然还可以从其他角度来分析.(从不同的角度分析,可能会得到不同的结论)23.(1)证明:由折叠知AE=AD=E G,BC=C H,∵四边形ABCD是矩形,∴AD=BC,∴E G=C H.(2)解:∵∠ADE=45°,∠F G E=∠A=90°,AF=2,∴D G=G F=2,DF=DG2+GF2=2,∴AD=AF+DF=2+2.∵∠G EF=∠AEF,又∵∠BEC=∠H EC,∴2∠G EF+2∠H EC=180°,∴∠CEF=90°.∵∠CE H+∠H CE=90°,∠FE G+∠CE H=90°,∴∠G EF=∠H CE.在△F G E和△E H C中,{∠FGE=∠CHE,∠GEF=∠HCE,CH=EG,∴△F G E≌△E H C,∴F G=E H=AF=BE=2,∴AB=AE+BE=AD+AF=2+2+2=22+2. 24.解:(1)设直线l1的表达式为y=k1x,过B(18,6),得18k1=6,解得k1=13,∴直线l1的表达式为y=13x.设直线l2的表达式为y=k2x+b,过A(0,24),B(18,6),得{b=24,18k2+b=6,解得{k2=-1,b=24,∴直线l2的表达式为:y=-x+24.(2)∵点C在直线l1上,且点C的纵坐标为a,∴a=13x,则x=3a,∴点C的坐标为(3a,a).∵CD∥y轴,∴点D的横坐标为3a.∵点D在直线l2上,∴y=-3a+24,∴点D的坐标为(3a,-3a+24).25.证明:由图①知:S多边形ABCDEF=S正方形AB O F+S正方形C O ED+2S△B O C=a2+b2+ 2×12ab=a2+b2+ab.设BC=c,则B'C'=c.由图③知:S多边形A'B'C'D'E'F'=S△A'B'F'+S正方形B'C'E'F'+S△C'D'E'=12ab+ c2+12ab=c2+ab.∵S多边形ABCDEF=S多边形A'B'C'D'E'F',∴a2+b2+ab=c2+ab.∴a2+b2=c2.。
八年级数学暑假作业答案,八年级数学暑假作业答案人教版
八年级数学暑假作业答案,八年级数学暑假作业答案人教版下面是提供的八年级数学暑假作业答案人教版,欢迎阅读。
16.1分式基础能力题一、选择题(每小题3分,共18分)1.代数式-中是分式的有( )A.1个B.2个C.3个D.4个2.使分式有意义的是( )A. B. C. D. 或3. 下列各式中,可能取值为零的是( )A. B. C. D.4. 分式,,,中是最简分式的有( )A.1个B.2个C.3个D.4个5. 分式中,当x=-a时,下列结论正确的是( )A.分式的值为零;B.分式无意义C.若a≠-时,分式的值为零;D.若a≠时,分式的值为零6.如果把分式中的都扩大2倍,则分式的值( )A.扩大2倍B.缩小2倍C.是原来的D.不变二、填空题(每小题3分,共18分)7. 分式,当x 时,分式有意义.8.当x 时,分式的值为0.9.在下列各式中,分式有 .10. 不改变分式的值,使分式的各项系数化为整数,分子、分母应乘以11. 计算= . 12..三、解答题(每大题8分,共24分)13. 约分:(1); (2).14. 通分:(1),; (2),.15.若求的值.拓展创新题一、选择题(每小题2分,共8分)1.如果把分式中的字母扩大为原来的2倍,而缩小原来的一半,则分式的值( )A.不变B.是原来的2倍C.是原来的4倍D.是原来的一半2. 不改变分式的值,使分子、分母最高次项的系数为正数,正确的是(• )A. B. C. D.3.一项工程,甲单独干,完成需要天,乙单独干,完成需要天,若甲、乙合作,完成这项工程所需的天数是( )A. B. C. D.4.如果那么的值是( )A.7B.8C.9D.10二、填空题(每小题2分,共8分)5. 李丽从家到学校的路程为s,无风时她以平均a米/•秒的速度骑车,便能按时到达,当风速为b米/秒时,她若顶风按时到校,请用代数式表示她必须提前出发.6. 当m= 时,分式的值为零.7.已知2+若10+为正整数)则, .8. 若一个分式含有字母,且当时,它的值为12,则这个分式可以是 .(写出一个即可)三、解答题(每大题8分,共24分)9. 已知-=3,求的值.10.先能明白(1)小题的解答过程,再解答第(2)小题,(1)已知求的值,解,由知∴;(2)已知:求的值.11. 已知a2-4a+9b2+6b+5=0,求-的值.16.2分式的运算(1)基础能力题1.计算下列各题:(1)×=______;(2)÷=_______;(3)3a·16ab=________;(4)(a+b)·4ab2=________;(5)(2a+3b)(a-b)=_________.2.把下列各式化为最简分式:(1)=_________; (2)=_________.3.分数的乘法法则为_____________________________________________________;分数的除法法则为_____________________________________________________.4.分式的乘法法则为____________________________________________________;分式的除法法则为____________________________________________________.题型1:分式的乘法运算5.·(-)等于( ) A.6xyz B.- C.-6xyz D.6x2yz6.计算:·.题型2:分式的除法运算7.(技能题)÷等于( )A. B.b2x C.- D.-8.(技能题)计算:÷.9.(-)÷6ab的结果是( )A.-8a2B.-C.-D.-10.-3xy÷的值等于( )A.-B.-2y2C.-D.-2x2y211.若x等于它的倒数,则÷的值是( )A.-3B.-2C.-1D.012.计算:(xy-x2)·=________.13.将分式化简得,则x应满足的条件是________.14.下列公式中是最简分式的是( )A. B. C. D.15.计算·5(a+1)2的结果是( )A.5a2-1B.5a2-5C.5a2+10a+5D.a2+2a+116.计算÷.17.已知+=,则+等于( )A.1B.-1C.0D.2拓展创新题18.(巧解题)已知x2-5x-1 997=0,则代数式的值是( )A.1 999B.2 000C.2 001D.2 00219.(学科综合题)使代数式÷有意义的x的值是( )A.x≠3且x≠-2B.x≠3且x≠4C.x≠3且x≠-3D.x≠-2且x≠3且x≠420.(数学与生活)王强到超市买了a千克香蕉,用了m元钱,又买了b千克鲜橙,•也用了m元钱,若他要买3千克香蕉2千克鲜橙,共需多少钱?(列代数式表示).16.2分式的运算(2)基础能力题1.计算下列各题:(1)·; (2)÷; (3)÷; (4)·.2.55=____×____×_____×_____×5=_______;an=_______.()2=____×_ _____=____;()3=_____·______·_____=.3.分数的乘除混合运算法则是____ ____.题型1:分式的乘除混合运算4.计算:·÷.5.计算:÷·.题型2:分式的乘方运算6.计算:(-)3.7.(-)2n的值是( )A. B.- C. D.-题型3:分式的乘方、乘除混合运算8.计算:()2÷()·(-)3.9.计算()2·()3÷(-)4得( )A.x5B.x5yC.y5D.x1510.计算()·()÷(-)的结果是( )A. B.- C. D.-11.(-)2n+1的值是( )A. B.- C. D.-12.化简:()2·()·()3等于( )A. B.xy4z2 C.xy4z4 D.y5z13.计算:(1)÷(x+3)·; (2)÷·.拓展创新题14.如果()2÷()2=3,那么a8b4等于( )A.6B.9C.12D.8115.已知│3a-b+1│+(3a-b)2=0.求÷[()·()]的值.16.先化简,再求值:÷(·).其中x=-.17.一箱苹果a千克,售价b元;一箱梨子b千克,售价a元,•试问苹果的单价是梨子单价的多少倍?(用a、b的代数式表示)18.有这样一道题:“计算÷-x的值,其中x=2 004”甲同学把“x=2 004”错抄成“x=2 040”,但他的计算结果也正确,你说这是怎么回事?6.3分式方程基础能力题一、选择题(每小题3分,共18分)1.在下列方程中,关于的分式方程的个数有( )① ②. ③. ④. ⑤ ⑥.A.2个B.3个C.4个D.5个2. 关于x的方程的根为x=1,则a应取值( )A.1B.3C.-1D.-33.方程的根是( )A.=1B.=-1C.=D.=24.那么的值是( )A.2B.1C.-2D.-15.下列分式方程去分母后所得结果正确的是( )A. 去分母得,;B.,去分母得,;C.,去分母得,;D. 去分母得,2;6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下面所列方程中,正确的是( )A.=14B. =14C.=14D. =1二、填空题(每小题3分,共18分)7. 满足方程:的x的值是________.8. 当x=________时,分式的值等于.9.分式方程的增根是 .10. 一汽车从甲地开往乙地,每小时行驶v1千米,t小时可到达,如果每小时多行驶v2千米,那么可提前到达________小时.11. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x千米/时,则所列方程为 .12.已知则 .三、解答题(每题8分,共24分)13. .解下列方程(1) (2)14. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?15.在一次军事演习中,红方装甲部队按原计划从A处向距离150的B地的蓝方一支部队直接发起进攻,但为了迷惑蓝方,红方先向蓝方另一支部队所在的C地前进,当蓝方在B 地的部队向 C地增援后,红方在到达D地后突然转向B地进发。
八年级数学 暑假作业(二十) 新人教版
八年级数学 暑假作业(二十)一、选一选,看完四个选项再做决定!(每小题5分,共25分)1、若□ABCD 的周长为28,△ABC 的周长为17cm ,则AC 的长为( D )A 、11cmB 、5.5cmC 、4cmD 、3cm2、如图,□ABCD 和□EAFC 的顶点D 、E 、F 、B 在同一条直线上,则下列关系中正确的是( B )A 、DE >BFB 、DE =BFC 、DE <BFD 、DE =FE =BF第2题图 EF DC B A 第3题图 M ED C B A 第4题图E D CB A3、如图,已知M 是□ABCD 的AB 边的中点,CM 交BD 于E ,则图中阴影部分的面积与□ABCD 的面积之比是( C )A 、61B 、41C 、31D 、125 4、如图,□ABCD 中,BD =CD ,∠C =700,AE ⊥BD 于E ,则∠DAE =( A )A 、200B 、250C 、300D 、350 5、在给定的条件中,能作出平行四边形的是( B )A 、以60cm 为对角线,20cm 、34cm 为两条邻边B 、以20cm 、36cm 为对角线,22cm 为一条边C 、以6cm 为一条对角线,3cm 、10cm 为两条邻边D 、以6cm 、10cm 为对角线,8cm 为一条边比一比看谁更聪明!二、填一填,要相信自己的能力!(每小题5分,共25分)1、一个平行四边形的两条对角线的长度分别为5和7,则它的一条边长a 的取值范围是 1 a << 6 。
2、□ABCD 的周长是30,AC 、BD 相交于点O ,△OAB 的周长比△OBC 的周长大3,则AB = 9 。
3、已知□ABCD 中,AB =2AD ,对角线BD ⊥AD ,则∠BCD 的度数是 60 度。
4、如图:在□ABCD 中,AE ⊥BD 于E ,∠EAD =600,AE =2,AC +BD =16,则△BOC 的周长为 12 。
八年级数学暑假作业(十六)含答案
初中八年级数学(人教版)暑假作业(十六)一、选一选,看完四个选项再做决定!(每小题5分,共25分)1. 三角形的三边长分别为6,8,10,它的最短边上的高为( D )A. 6B. 4.5C. 2.4D. 82. 下面几组数:①7,8,9;②12,9,15;③m2 + n2, m2–n2, 2mn(m,n均为正整数,m n);④,,.其中能组成直角三角形的三边长的是( B )A. ①②B. ②③C. ①③D. ③④3. 三角形的三边为a、b、c,由下列条件不能判断它是直角三角形的是( A)A.a:b:c=8∶16∶17B.a2-b2=c2C.a2=(b+c)(b-c)D.a:b:c=13∶5∶124. 三角形的三边长为,则这个三角形是( C )A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形. 5.已知一个直角三角形的两边长分别为3和4,则第三边长是(D)A.5 B.25 C.D.5或再试试哦!你一定行!二、填一填,要相信自己的能力!(每小题5分,共25分)1、在△ABC中,∠C=90°,AB=5,则++=____50___.2、如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于10.3、直角三角形两直角边长分别为5和12,则它斜边上的高为.(答案用假分数表示)4、直角三角形的三边长为连续偶数,则这三个数分别为6,8, 10___.5、如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有24 ___米.注意把握好时间!三、做一做,要注意认真审题!(每小题10分,共30分)1、已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是( A )A. 24cm2B. 36cm2C. 48cm2D. 60cm22、直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为(C)A.121 B.120 C.90 D.不能确定3、放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为(C)A.600米B. 800米C. 1000米 D. 不能确定四、探索创新,相信你能做到!(每小题10分,共20分)1、如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2米,梯子的顶端B到地面的距离为7米.现将梯子的底端A向外移动到A’,使梯子的底端A’到墙根O的距离等于3米,同时梯子的顶端B下降至B’,那么BB’的值:①等于1米;②大于1米5;③小于1米.其中正确结论的序号是③.第2题图第5题图第1题图2、小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度 m.你做真是好极了!。
八年级数学暑假作业练习答案解析
八年级数学暑假作业练习答案解析人教版数学八年级暑假作业答案(一)1.B2.B3.D4.B5.C6.C7.408.平行9.a=cb10.__.内错角相等,两直线平行;3;4;两直线平行,同位角相等12.(1)略(2)平行,理由略13.略14.(1)∠B+∠D=∠E(2)∠E+∠G=∠B+∠F+∠D(3)略(二)1.C2.B3.D4.D5.D6.C7.50°或65°8.49.平行10.9厘米或13厘米11.60°12.13.略14.略15.略16.(1)15°(2)20°(3)(4)有,理由略(三)1.20°2.厘米3.84.4.85.366.37.D8.C9.B10.B11.略12.FG垂直平分DE,理由略13.0.5米14.同时到达,理由略15.(1)城市A受影响(2)8小时(四)1.C2.D3.B4.A5.C6.A7.C8.B9.3010.611.,12.略13.略14.(1)直六棱柱(2)6ab15.3616.厘米(五)1.D2.D3.B4.D5.(1)抽样调查(2)普查6.8.07.178.50.49.31;3110.1711.冠军、亚军、季军分别为李扬、林飞、程丽12.略13.略(六)1.B2.C3.C4.50;105.0.1576米26.①②③7.略8.略9.略(七)1.B2.A3.C4.A5.C6.B7.D8.(1)(2)(3)≥(4)(5)9.410.a14.-2,-115.16.b0(八)1.D2.C3.C4.C5.n≤76.238.9.0≤y≤510.11.x3(3)无解13.1,214.34,1615.(1)9≤m12(2)9(九)1.C2.B3.C4.18≤t≤225.4.0米/秒6.5,7,97.8.大于__元9.2210.4人,13瓶11.当旅游人数为10~15人时选择乙旅行社;当旅游人数为16人时两家旅行社都可选择;当旅游人数为17~25人时选择甲旅行社12.(1)35元,26元(2)有3种方案;购买文化衫23件,相册27本的方案用于购买教师纪念品的资金更充足13.略(十)1.C2.C3.C4.C5.D6.C7.为任何实数;为08.a-19.南偏西40°距离80米10.(6,6),(-6,6),(-6,-6),(6,-6)11.5或-112.(5,2)13.(x,6)(-3≤x≤2)14.略15.(-2,0)或(6,0)16.等腰直角三角形,917.略18.略八年级数学暑假作业答案大全(一)答案:1-8、__A;9、1,2,3;10、a≤b;11、a4且a≠0;12、a13、7;14、(1)x2,(2)x15、a≤ ;16、1;17、18厘米;18、2121、18题;22、(1)a=0.6 ,b=0.4;(2)35%到50%之间(不含35%和50%)。
【新】八年级数学暑假作业第13天等腰三角形及等边三角形的性质和判定新人教版-参考下载
第13天等腰三角形及等边三角形的性质和判定典例在线△ABC是等腰三角形,D为BC上一点,DE∥AB且交AC于E,请判断△EDC是什么三角形?并说明理由.【参考答案】等腰三角形【解题必备】1.等腰三角形的判定及性质(1)性质:①两腰相等;②等边对等角(即“等腰三角形的两个底角相等”);③三线合一(即“等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合”).(2)判定:①有两边相等的三角形是等腰三角形;②有两个角相等的三角形是等腰三角形(等角对等边).结论总结:等腰三角形底边上的任意一点到两腰的距离之和等于一腰上的高.2.等边三角形的性质及判定定理(1)性质:①三条边都相等;②三个角都相等,并且每个角都等于60°;③三线合一(即“等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合”);④等边三角形是轴对称图形,有3条对称轴.(2)判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角是60度的等腰三角形是等边三角形.试题推荐1.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,若△ABD的周长比△BCD的周长多1厘米,则BD的长是A.0.5厘米B.1厘米C.1.5厘米D.2厘米2.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为A.35°B.40°C.45°D.50°3.如图,△MNP中,∠P=60°,MN=MP,MQ⊥PN,垂足为Q,延长MN至G,取NG=NQ,若△MNP 的周长为12,MQ=a,则△MGQ的周长是A.8+2a B.8+a C.6+a D.6+2a4.已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.5.如图,已知△ABC中,BD平分∠ABC,DE∥BC,交AB于E,若DE=7,AE=5,则AB=__________.6.如图,△ABC中,AB=AC,点P、Q、R分别在AB,BC,AC上,且PB=QC,QB=RC.求证:点Q在PR的垂直平分线上.参考答案3.D【解析】∵△MNP中,∠P=60°,MN=NP,∴△MNP是等边三角形.∵△MNP的周长为12,∴PM=PN=MN=4,又∵MQ⊥PN,垂足为Q,∴NQ=NG=2,∠QMN=30°,∠PNM=60°,∵NG=NQ,∴∠G=∠QMN=30°,∴QG=MQ=a,∴△MGQ周长是6+2a.4.(1)证明见解析;(2)证明见解析.【解析】(1)∵BF=AC,AB=AE(已知),∴FA=EC(等量加等量和相等).∵△DEF是等边三角形(已知),∴EF=DE(等边三角形的性质).又∵AE=CD(已知),∴△AEF≌△CDE(SSS).(2)由△AEF≌△CDE,得∠FEA=∠EDC(对应角相等),∵∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF(等量代换),△DEF是等边三角形(已知),∴∠DEF=60°(等边三角形的性质),∴∠BCA=60°(等量代换),由△AEF≌△CDE,得∠EFA=∠DEC,∵∠DEC+∠FEC=60°,∴∠EFA+∠FEC=60°,又∠BAC是△AEF的外角,∴∠BAC=∠EFA+∠FEC=60°,∴∠ABC=60°,∴△ABC是等边三角形.善于思考,勤于总结!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版八年级数学暑假作业答案
练习一
aadac
x3 0,1,2 k-6 x≥-2 x>2数轴就不画了啊
解不等式①得 x-2 解集为-2
解:(1)设租36座的车x辆.
据题意得: 36x42(x-2)+30
解得: x>7 x0,
∴16-m/7 >0
解得,m0,
∴4m-8>0,
解得,m>2;
综上所述,2
解:(1)设甲、乙两种花木的成本价分别为x元和y元.
由题意得: 2x+3y=1700
3x+y=1500
解得: x=400
y=300
(2)设种植甲种花木为a株,则种植乙种花木为(3a+10)株.
则有:400a+300(3a+10)≤30000
(760-400)a+(540-300)(3a+10)≥21600
解得:160/9≤a≤270/13
因为a为整数,
∴a可取18或19或20.
所以有三种具体方案:
①种植甲种花木18株,种植乙种花木3a+10=64株;
②种植甲种花木19株,种植乙种花木3a+10=67株;
③种植甲种花木20株,种植乙种花木3a+10=70株.
(1) 1.2(300-x)m 1.54mx 360m+0.34mx
(2) 1.2(300-x)m≥4/5×300m
1.54mx>1/2×300m
解得97又31/77(这是假分数)
∵x为正整数,
∴x可取98,99,100.
∴共有三种调配方案:
①202人生产a种产品,98人生产b种产品;
②201人生产a种产品,99人生产b种产品;
③200人生产a种产品,100人生产b种产品;
∵y=0.34mx+360m,
∴x越大,利润y越大,
∴当x取值100,即200人生产a种产品,100人生产b种产品时总利润.
练习三
cbbcd y/x-2 2 x>3 7/10 -3/5 m+n/m-n 8/x+2 原式=x+2y/x-2y 代入=3/7
原式=x+3/x 代入=1+根号3
1/a-1/b=3,(b-a)/ab=3
b-a=3ab
a-b=-3ab
2a+3ab-2b)/(a-2ab-b)
=[2(a-b)+3ab]/[(a-b)-2ab]
=(-6ab+3ab)/(-3ab-2ab)
=-3ab/(-5ab)
=3/5
练习四
baaba -1/5 2/3 1/a 2 1 2/3 x=4 x=2/3 原式=1/a 代入=根号3-1/2
yˉ1+xˉ1y
即求x/y+y/x
=(x²+y²)/xy
=[(x-y)²+2xy]/xy
=11。