鸡兔同笼问题五种基本公式和例题讲解

合集下载

鸡兔同笼五种基本公式

鸡兔同笼五种基本公式
鸡兔同笼问题五种基本公式和例题讲解
【鸡兔问题公式】 (1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数; 总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”
解 〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2 =20÷2=10(只)……………………………鸡 〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2 =12÷2=6(只)…………………………兔(答略)
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个 不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个 灯泡不合格?” 解一 (4×1000-3525)÷(4+15) =475÷19=25(个) 解二 1000-(15×1000+3525)÷(4+15) =1000-18525÷19 =1000-975=25(个)(答略) (“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅 不给运费,还需要赔成本××元……。它的解法显然可套用上述公式。)
(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)= 鸡数; 总头数-鸡数=兔数。(例略)
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时, 可用公式。 (每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只 兔的脚数)=兔数; 总头数-兔数=鸡数。

鸡兔同笼问题(一)五种基本公式和例题讲解

鸡兔同笼问题(一)五种基本公式和例题讲解

(奥数)鸡兔同笼问题(一) 【2 】五种根本公式和例题讲授(一)已知总头数和总脚数,求鸡.兔各若干(假设法):假设满是鸡:口诀:假“鸡”得“兔”(第一次算得的数)(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数.或者假设满是兔:口诀:假“兔”得“鸡”(第一次算得的数)(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数.例如,“有鸡.兔共36只,它们共有脚100只,鸡.兔各是若干只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡.解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔.答:略(二)已知总头数和鸡.兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式※仍属假“鸡”得“兔”类型(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数※仍属假“兔”得“鸡”类型或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数.(例如:鸡和兔总共107只,鸡比兔多58只脚,鸡和兔各几只?(1)假设满是鸡:(2×107-58)÷(2+4)=26(只兔);107-26=81(只鸡)※↓因为鸡脚比兔脚多58,所以应减去58(2)假设满是兔: (4×107+58)÷(2+4)=81(只鸡); 107-81=26(只兔)※↓因兔脚比鸡脚少58,所以应加上58(三)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式.※仍属假“鸡”得“兔”类型(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数.※仍属假“兔”得“鸡”类型或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数.例如:鸡和兔总共107只,兔比鸡多56只脚,鸡和兔各几只?(2×107+56)÷(2+4)=45(只兔);107-45=62(只鸡)※↓因为鸡脚比兔脚少56,所以应加上56或(4)62(只鸡);107-62=45(只兔)※↓因为兔脚比鸡脚多56,所以应减去56解释:每增长(或削减)一只鸡(或兔),它们脚数的差就是(2+4)(四)鸡兔交换问题(已知总脚数及鸡兔交换后总脚数,求鸡兔各若干的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡.兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡.兔脚数之和)-(两次总脚数之差)÷(每只鸡.兔脚数之差)〕÷2=兔数.例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数交换,则共有脚52只.鸡兔各是若干只?”剖析:由题意知,鸡比兔多解法一:(1)〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2=(16+4)2=20÷2=10(只鸡)(2)〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2=(16-4)=12÷2=6(只兔)(答略)或:解:(52-44)4(只兔)→鸡比兔多4只法二:设鸡有x只,则兔有(x-4)只. 法三:解:设兔有x只,则鸡有(x+4)只.(x-4)4+2x=44 (x+4)2+4x=444x-16+2x=44 2x+8+4x=446x=60 6x=36X=10 x=610-4=6(只兔) 6+4=10(只鸡)答:略答:略(五)得掉问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只及格品得分数×产品总数-实得总分数)÷(每只及格品得分数+每只不及格品扣分数)=不及格品数;或者是总产品数-(每只不及格品扣分数×总产品数+实得总分数)÷(每只及格品得分数+每只不及格品扣分数)=不及格品数.例如,“灯泡厂临盆灯泡的工人,按得分的若干给工资.每临盆一个及格品记4分,每临盆一个不及格品不仅不记分,还要扣除15分.某工人临盆了1000只灯泡,共得3525分,问个中有若干个灯泡不及格?”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(答略)(“得掉问题”也称“运玻璃器皿问题”,运到无缺无损者每只给运费××元,破损者不仅不给运费,还须要赔成本××元…….它的解法显然可套用上述公式.)。

五年级数学上册《鸡兔同笼》公式及例题解析

五年级数学上册《鸡兔同笼》公式及例题解析

五年级数学上册
《鸡兔同笼》公式+例题解析
一、已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
总头数-兔数=鸡数。

二、已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时:
(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数
三、已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时:
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数。

1.笼子里有若干只鸡和兔。

从上面数,有16个头,从下面数,有52只脚。

鸡和兔各有多少只?
兔:52÷2-16=10(只)
鸡:16-10=6(只)
答:兔有10只,鸡有6只。

2.鸡与兔共有200只,鸡的脚比兔的脚多160只,问鸡与兔各多少只?
兔:(2x200-160)÷(2+4)=40(只)
鸡:200-40=160(只)
答:有鸡160只,兔40只。

3.鸡与兔共有100只,鸡的脚比兔的脚少28只,问鸡与兔各多少只?
兔:(2x100+28)÷(2+4)=38(只)
鸡:100-38=62(只)
答:有兔38只,有鸡62只。

4.鸡兔共有27只,兔的脚比鸡的脚多18只,则兔有多少只?
兔:(2x27+18)÷(2+4)=12(只)
鸡:27-12=15(只)
答:有兔12只,有鸡15只。

(完整版)鸡兔同笼问题五种基本公式和例题讲解

(完整版)鸡兔同笼问题五种基本公式和例题讲解
鸡兔同笼问题是一类经典的数学问题,其解法多样其中方程法是一种重要的解决方式。通过设立代表鸡和兔数量的未知数,根据题目条件构建等式,进而求解。此外,还有假设法,即先假设所有动物都是鸡或兔,然后根据腿的数量差异进行调整。抬腿法则是通过让鸡和兔同时抬起一定数量的腿,简化问题。分组法是将动物按一定规则分组,使每组动物腿数相同,从而简化计算。最后,画图法通过直观的图形表示,帮助理解和解决问题。这五种方法各有特点,适用于不同场景和难度的问题。通过学习和实践这些方法,可以培养逻辑思维和问题解决能力。

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(例题略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时(例题略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时(例题略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。

它的解法显然可套用上述公式。

)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

1、“灯泡厂生产灯泡的工人,按得分的多少给工资。

每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。

某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”2、有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第二次15道题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分?3、有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只?4、有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。

鸡兔同笼问题基本公式

鸡兔同笼问题基本公式

鸡兔同笼问题基本公式鸡兔同笼问题基本公式和例题讲解第一种题型:已知总头数和总脚数,求鸡、兔各多少:A:假设把所有的兔子当成鸡:看成兔子后退站立,翘起两只前腿(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

B:假设把所有的鸡当成兔子:看成鸡伸出双翅也着地(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

总脚数÷2—总头数=兔的只数总只数—兔的只数=鸡的只数例如:有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

第二种题型:已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

第三种题型:已知总头数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(总头数+鸡兔脚数之差)÷(2+1)= 兔数。

总头数-兔数=鸡数。

(上面公式实际上转化为和倍问题)例如:鸡兔共40只,兔的脚数比鸡的脚数多70只,问鸡兔各多少只?第四种题型:鸡兔互换问题(已知互换前总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。

每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。

鸡兔同笼问题五种基本公式

鸡兔同笼问题五种基本公式

鸡兔同笼问题五种【鸡兔问题基本公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

例如:鸡,兔共100只,鸡脚比兔脚多20只,问:鸡,兔各有多少只?(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

例如:鸡,兔共50只,兔脚比鸡脚多80只,问:鸡,兔个有多少只?(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。

每生产一个合格品记0.24元,每生产一个不合格品不仅不给工资,还要赔偿1.26元。

某工人生产了500只灯泡,共得115.5元,问其中有多少个灯泡不合格?”(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。

鸡兔同笼问题五种基本公式和例题讲解修订稿

鸡兔同笼问题五种基本公式和例题讲解修订稿

鸡兔同笼问题五种基本公式和例题讲解Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

最新鸡兔同笼问题(一)五种基本公式和例题讲解

最新鸡兔同笼问题(一)五种基本公式和例题讲解

(奥数)鸡兔同笼问题(一)五种基本公式和例题讲解(一)已知总头数和总脚数,求鸡、兔各多少(假设法):假设全是鸡:口诀:假“鸡”得“兔”(第一次算得的数)(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者假设全是兔:口诀:假“兔”得“鸡”(第一次算得的数)(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

答:略(二)已知总头数和鸡、兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式※仍属假“鸡”得“兔”类型(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数※仍属假“兔”得“鸡”类型或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例如:鸡和兔总共107只,鸡比兔多58只脚,鸡和兔各几只?(1)假设全是鸡:(2×107-58)÷(2+4)=26(只兔);107-26=81(只鸡)※↓因为鸡脚比兔脚多58,所以应减去58(2)假设全是兔: (4×107+58)÷(2+4)=81(只鸡); 107-81=26(只兔)※↓因兔脚比鸡脚少58,所以应加上58(三)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

※仍属假“鸡”得“兔”类型(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

鸡兔同笼问题(一)五种基本公式和例题讲解

鸡兔同笼问题(一)五种基本公式和例题讲解

(奥数)鸡兔共笼问题(一)之阳早格格创做五种基原公式战例题道解(一)已知总头数战总足数,供鸡、兔各几(假设法):假设尽是鸡:心诀:假“鸡”得“兔”(第一次算得的数)(总足数-每只鸡的足数×总头数)÷(每只兔的足数-每只鸡的足数)=兔数;总头数-兔数=鸡数.大概者假设尽是兔:心诀:假“兔”得“鸡”(第一次算得的数)(每只兔足数×总头数-总足数)÷(每只兔足数-每只鸡足数)=鸡数;总头数-鸡数=兔数.比方,“有鸡、兔共36只,它们公有足100只,鸡、兔各是几只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡.解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔.问:略(二)已知总头数战鸡、兔足数的好数,当鸡的总足数比兔的总足数多时,可用公式※仍属假“鸡”得“兔”典型(每只鸡足数×总头数-足数之好)÷(每只鸡的足数+每只兔的足数)=兔数;总头数-兔数=鸡数※仍属假“兔”得“鸡”典型大概(每只兔足数×总头数+鸡兔足数之好)÷(每只鸡的足数+每只免的足数)=鸡数;总头数-鸡数=兔数.(比方:鸡战兔总合107只,鸡比兔多58只足,鸡战兔各几只?(1)假设尽是鸡:(2×107-58)÷(2+4)=26(只兔);107-26=81(只鸡)※↓果为鸡足比兔足多58,所以应减来58(2)假设尽是兔: (4×107+58)÷(2+4)=81(只鸡);10 7-81=26(只兔)※↓果兔足比鸡足少58,所以应加上58(三)已知总数取鸡兔足数的好数,当兔的总足数比鸡的总足数多时,可用公式.※仍属假“鸡”得“兔”典型(每只鸡的足数×总头数+鸡兔足数之好)÷(每只鸡的足数+每只兔的足数)=兔数;总头数-兔数=鸡数.※仍属假“兔”得“鸡”典型大概(每只兔的足数×总头数-鸡兔足数之好)÷(每只鸡的足数+每只兔的足数)=鸡数;总头数-鸡数=兔数.比方:鸡战兔总合107只,兔比鸡多56只足,鸡战兔各几只?(2×107+56)÷(2+4)=45(只兔);107-45=62(只鸡)※↓果为鸡足比兔足少56,所以应加上56大概(4)62(只鸡);107-62=45(只兔)※↓果为兔足比鸡足多56,所以应减来56证明:每减少(大概缩小)一只鸡(大概兔),它们足数的好便是(2+4)(四)鸡兔互换问题(已知总足数及鸡兔互换后总足数,供鸡兔各几的问题),可用底下的公式:〔(二次总足数之战)÷(每只鸡、兔足数战)+(二次总足数之好)÷(每只鸡兔足数之好)〕÷2=鸡数;〔(二次总足数之战)÷(每只鸡、兔足数之战)-(二次总足数之好)÷(每只鸡、兔足数之好)〕÷2=兔数.比方,“有一些鸡战兔,公有足44只,若将鸡数取兔数互换,则公有足52只.鸡兔各是几只?”分解:由题意知,鸡比兔多解法一:(1)〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2 =(16+4)2=20÷2=10(只鸡)(2)〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2 =(16-4)=12÷2=6(只兔)(问略)大概:解:(52-44)4(只兔)→鸡比兔多4只法二:设鸡有x只,则兔有(x-4)只. 法三:解:设兔有x只,则鸡有(x+4)只.(x-4)4+2x=44 (x+4)2+4x=444x-16+2x=442x+8+4x=446x=606x=36X=10 x=610-4=6(只兔) 6+4=10(只鸡)问:略问:略(五)得得问题(鸡兔问题的推广题)的解法,不妨用底下的公式:(1只合格品得分数×产品总数-真得总分数)÷(每只合格品得分数+每只分歧格品扣分数)=分歧格品数;大概者是总产品数-(每只分歧格品扣分数×总产品数+真得总分数)÷(每只合格品得分数+每只分歧格品扣分数)=分歧格品数.比方,“灯泡厂死产灯泡的工人,按得分的几给人为.每死产一个合格品记4分,每死产一个分歧格品没有但是没有记分,还要扣除15分.某工人死产了1000只灯泡,共得3525分,问其中有几个灯泡分歧格?”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(问略)(“得得问题”也称“运玻璃器皿问题”,运到完佳无益者每只给运费××元,破坏者没有但是没有给运费,还需要赚成原××元…….它的解法隐然可套用上述公式.)。

鸡兔同笼问题五种基本公式

鸡兔同笼问题五种基本公式

鸡兔同笼问题五种基本公式(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。

它的解法显然可套用上述公式。

)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

鸡兔同笼问题(一)五种基本公式和例题讲解

鸡兔同笼问题(一)五种基本公式和例题讲解

(奥数)鸡兔同笼问题(一)五种基本公式和例题讲解(一)已知总头数和总脚数,求鸡、兔各多少(假设法):假设全是鸡:口诀:假“鸡”得“兔”(第一次算得的数)(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者假设全是兔:口诀:假“兔”得“鸡”(第一次算得的数)(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

答:略(二)已知总头数和鸡、兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式※仍属假“鸡”得“兔”类型(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数※仍属假“兔”得“鸡”类型或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例如:鸡和兔总共107只,鸡比兔多58只脚,鸡和兔各几只?(1)假设全是鸡:(2×107-58)÷(2+4)=26(只兔);107-26=81(只鸡)※↓因为鸡脚比兔脚多58,所以应减去58(2)假设全是兔: (4×107+58)÷(2+4)=81(只鸡); 107-81=26(只兔)※↓因兔脚比鸡脚少58,所以应加上58(三)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

※仍属假“鸡”得“兔”类型(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。

鸡兔同笼问题公式详细讲解

鸡兔同笼问题公式详细讲解

【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(3)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(4)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是:总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。

公式是:1只器皿运到所得钱数×器皿总数-实得总钱数)÷(每只器皿运到所得钱数+每只损坏所赔钱数)=损坏器皿数。

)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

鸡兔同笼问题公式和例题

鸡兔同笼问题公式和例题

鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鸡兔同笼问题五种基本公式和例题讲解
【鸡兔问题公式】
(1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;
总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”
解一(100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;
36-22=14(只)…………………………兔。

(答略)
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式
(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;
总头数-鸡数=兔数。

(例略)
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;
总头数-鸡数=兔数。

(例略)
(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:
(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。

每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。

某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”
解一(4×1000-3525)÷(4+15)
=475÷19=25(个)
解二1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(个)(答略)
(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。

它的解法显然可套用上述公式。


(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:
〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;
〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。

鸡兔各是多少只?”
解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………鸡
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)。

相关文档
最新文档