2017不等式与线性规划教案.doc
线性规划教案
线性规划教案一、教案概述本教案是针对线性规划这一数学概念的教学设计,旨在匡助学生理解线性规划的基本概念、原理和应用,并通过实例让学生掌握线性规划的解题方法和技巧。
本教案适合于高中数学课程中线性规划的教学。
二、教学目标1. 知识目标:a. 理解线性规划的基本概念和特点;b. 掌握线性规划的解题方法和技巧;c. 了解线性规划在实际生活中的应用。
2. 能力目标:a. 能够分析和解决简单的线性规划问题;b. 能够运用线性规划的思维方式解决实际问题;c. 能够运用线性规划的方法进行决策和优化。
三、教学重点和难点1. 教学重点:a. 线性规划的基本概念和特点;b. 线性规划的解题方法和技巧;c. 线性规划在实际生活中的应用。
2. 教学难点:a. 如何将实际问题转化为线性规划模型;b. 如何运用线性规划的方法进行决策和优化。
四、教学内容与安排1. 教学内容:a. 线性规划的基本概念和特点;b. 线性规划的解题方法和技巧;c. 线性规划在实际生活中的应用。
2. 教学安排:第一课时:线性规划的基本概念和特点a. 引入线性规划的概念,解释线性规划的基本特点;b. 介绍线性规划的基本术语和符号;c. 分析线性规划的基本模型和约束条件。
第二课时:线性规划的解题方法和技巧a. 介绍线性规划的图形解法和代数解法;b. 演示如何通过图形法解决简单的线性规划问题;c. 分析线性规划中的最优解和可行解的概念。
第三课时:线性规划在实际生活中的应用a. 介绍线性规划在生产计划、资源分配等方面的应用;b. 分析线性规划在经济管理、运输调度等领域的实际案例;c. 引导学生思量如何运用线性规划的思维方式解决实际问题。
五、教学方法与手段1. 教学方法:a. 讲授法:通过讲解线性规划的基本概念和解题方法,匡助学生理解和掌握知识;b. 演示法:通过实例演示线性规划的解题过程,提高学生的解题能力;c. 组织讨论:引导学生参预课堂讨论,促进学生对线性规划的思量和理解。
不等式解法及应用-线性规划
一. 教学内容:不等式解法及应用;线性规划二. 教学重点:不等式解法及应用;线性规划【课标要求】 1. 不等关系通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;2. 一元二次不等式①经历从实际情境中抽象出一元二次不等式模型的过程;②通过函数图像了解一元二次不等式与相应函数、方程的联系;③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。
3. 二元一次不等式组与简单线性规划问题 ①从实际情境中抽象出二元一次不等式组;②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组; ③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。
【命题走向】分析近几年的高考试题,本讲主要考查不等式的解法,综合题多以与其他章节(如函数、数列等)交汇形式出现。
从题型上来看,多为比较大小,解简单不等式以及线性规划等,解答题主要考查含参数的不等式的求解以及它在函数、导数、数列中的应用。
预测2008年高考的命题趋势:1. 结合指数、对数、三角函数的考查函数的性质,解不等式的试题常以填空题、解答题形式出现;2. 以当前经济、社会、生活为背景与不等式综合的应用题仍是高考的热点,主要考查考生阅读以及分析、解决问题的能力;3. 在函数、不等式、数列、解析几何、导数等知识网络的交汇点命题,特别注意与函数、导数综合命题这一变化趋势;4. 对含参数的不等式,要加强分类讨论思想的复习,学会分析引起分类讨论的原因,合理分类,不重不漏。
【教学过程】 一. 基本知识回顾 1. 不等式的解法解不等式是求定义域、值域、参数的取值范围时的重要手段,与“等式变形”并列的“不等式的变形”,是研究数学的基本手段之一。
高考试题中,对解不等式有较高的要求,近两年不等式知识占相当大的比例。
同解不等式(1)f x g x ()()>与f x F x g x F x ()()()()+>+同解; (2)m f x g x >>0,()()与mf x mg x ()()>同解,m f x g x <>0,()()与mf x mg x ()()<同解;(3)f x g x ()()>0与f x g x g x ()()(()⋅>≠00)同解;2. 一元一次不等式解一元一次不等式(组)及一元二次不等式(组)是解其他各类不等式的基础,必须熟练掌握,灵活应用。
线性规划教案
线性规划教案一、教案概述本教案旨在介绍线性规划的基本概念、模型建立方法和求解技巧,帮助学生掌握线性规划的基本理论和应用技巧。
通过理论讲解、示例分析和实践操作等多种教学方法,使学生能够灵活运用线性规划方法解决实际问题。
二、教学目标1. 了解线性规划的基本概念和应用领域;2. 掌握线性规划模型的建立方法;3. 学会使用单纯形法和对偶理论求解线性规划问题;4. 能够应用线性规划解决实际问题。
三、教学内容1. 线性规划的基本概念1.1 线性规划的定义和特点1.2 线性规划的基本术语和符号1.3 线性规划的应用领域2. 线性规划模型的建立方法2.1 目标函数的建立2.2 约束条件的建立2.3 决策变量的定义3. 单纯形法的基本原理和步骤3.1 单纯形表格的构建3.2 单纯形法的迭代计算过程3.3 单纯形法的终止条件和解的判定4. 对偶理论及其应用4.1 对偶问题的建立4.2 对偶问题与原始问题的关系4.3 对偶理论在线性规划中的应用5. 实际问题的线性规划求解5.1 生产计划问题的线性规划求解5.2 运输问题的线性规划求解5.3 投资组合问题的线性规划求解四、教学方法1. 理论讲解:通过教师讲解线性规划的基本概念、模型建立方法和求解技巧,让学生对线性规划有全面的认识。
2. 示例分析:通过具体的实例分析,引导学生理解线性规划模型的建立过程和解题思路。
3. 实践操作:提供一些实际问题,让学生运用线性规划方法进行求解,并对结果进行分析和讨论。
4. 讨论交流:组织学生进行小组讨论,分享解题思路和经验,提高学生的合作能力和解决问题的能力。
1. 课堂练习:在课堂上布置一些练习题,检验学生对线性规划的理解和应用能力。
2. 作业布置:布置一些课后作业,要求学生独立完成线性规划问题的求解,检验学生的独立思考和解决问题的能力。
3. 实践项目:组织学生参与一些实际项目,运用线性规划方法解决实际问题,并进行报告和评估。
六、教学资源1. 教材:《线性规划教程》2. 多媒体教学课件:包括线性规划的基本概念、模型建立方法和求解技巧的讲解和示例分析。
不等式及线性规划课件
生产计划问题
企业需要根据市场需求、生产能力、成本等因素制定生产计划。通过整数 线性规划,可以优化生产资源的配置,实现成本最小化或利润最大化。
物流配送问题
在物流配送领域,需要解决如何合理安排车辆、路线和配送时间等问题。利用 整数线性规划,可以制定高效的配送计划,降低运输成本并提高服务质量。
投资组合优化
大规模问题,计算效率高。
内点法
内点法是一种求解线性规划问题 的数值方法,通过在可行域内部 搜索最优解。适用于某些特定类 型的问题,如具有大量等式约束
的问题。
05
单纯形法求解线性规划问题
单纯形法基本原理
线性规划问题的标准形式
单纯形表
通过引入松弛变量和剩余变量,将一 般形式的线性规划问题转化为标准形 式。
定的整数组合决定。
分支定界法求解整数线性规划
分支策略
通过将问题分解为两个或多个子问题来缩小搜索范围,每个子问题对应原问题的 一个子集。
定界策略
利用线性规划松弛问题的解来估计整数线性规划问题的最优解,从而排除不可能 产生最优解的子问题。
分支定界法求解整数线性规划
分支定界法步骤 1. 求解原问题的线性规划松弛问题,得到最优解。
不等式及线性规划课件
目录
• 不等式基本概念与性质 • 一元一次不等式及其解法 • 一元二次不等式及其解法 • 线性规划基本概念与原理 • 单纯形法求解线性规划问题 • 整数线性规划及其应用
01
不等式基本概念与性质
不等式定义及表示方法
不等式的定义
表示两个量之间大小关系的数学表 达式,常用符号有“<”、“>”、 “≤”、“≥”等。
一元二次不等式解法
判别式法
通过计算判别式 $Delta = b^2 - 4ac$ 的值,判断一 元二次不等式的解的情况。
线性规划教案
一、教案概述
本教案旨在介绍线性规划的基本概念、模型建立和求解方法,以及在实际问题中的应用。通过本教案的学习,学生将能够理解线性规划的基本原理,掌握线性规划模型的建立和求解技巧,以及应用线性规划解决实际问题的能力。
二、教学目标
1.理解线性规划的基本概念,包括决策变量、目标函数、约束条件等。
3.练习与讨论:设计一定数量的练习题,让学生进行实践操作和讨论,巩固所学知识。
五、教学评估与反馈
1.课堂练习:布置一些练习题,检验学生对线性规划的理解和应用能力。
2.作业评估:布置一道综合性的作业题,考察学生对线性规划的综合应用能力。
3.学生反馈:鼓励学生提出问题和意见,及时调整教学方法和内容。
六、教学资源
2.掌握线性规划模型的建立方法,能够将实际问题转化为线性规划模型。
3.学会使用单纯形法和对偶理论等方法求解线性规划问题。
4.能够应用线性规划解决实际问题,如生产计划、资源分配等。
三、教学内容与流程
1.线性规划的基本概念
a.介绍线性规划的定义和基本特点。
b.解释线性规划中的决策变量、目标函数和约束条件的含义。
1.教材:线性规划教材,包括基本概念、模型建立和求解方法的介绍。
2.课件:线性规划的PPT讲义,包括概念解释、例题演示和应用实例等。
3.练习题:线性规划的练习题集,包括基础练习和综合应用题。
七、教学反思
本教案通过清晰的教学目标、详细的教学内容和流程,以及多种教学方法和手段,旨在匡助学生全面理解线性规划的基本概念和求解方法,提高应用线性规划解决实际问题的能力。教学过程中,应注重引导学生思量和讨论,激发学生的学习兴趣和动力。同时,及时进行评估和反馈,以便及时调整教学策略,提高教学效果。
线性规划教案
线性规划教案一、教案简介本教案旨在引导学生了解线性规划的基本概念、模型建立和求解方法,培养学生运用线性规划解决实际问题的能力。
通过理论讲解、案例分析和实践操作,匡助学生掌握线性规划的基本原理和应用技巧。
二、教学目标1. 知识目标:- 掌握线性规划的基本概念和术语;- 理解线性规划模型的建立过程;- 熟悉线性规划的常用求解方法。
2. 能力目标:- 能够运用线性规划解决实际问题;- 能够利用线性规划模型进行决策分析;- 能够分析和评价线性规划解的合理性。
三、教学内容与方法1. 教学内容:- 线性规划的概念和特点;- 线性规划模型的建立;- 单纯形法和对偶理论的基本原理;- 整数规划和混合整数规划的简介;- 线性规划在实际问题中的应用。
2. 教学方法:- 讲授法:通过讲解线性规划的基本概念、模型建立和求解方法,匡助学生理解相关知识;- 案例分析法:选取实际问题案例,引导学生运用线性规划解决问题,培养解决实际问题的能力;- 实践操作法:通过使用线性规划软件,让学生亲自操作求解线性规划问题,提升实际操作能力。
四、教学步骤与时间安排1. 第一课时(40分钟):- 线性规划的概念和特点(10分钟):- 介绍线性规划的定义和基本特点;- 解释线性规划的目标函数、约束条件和决策变量。
- 线性规划模型的建立(20分钟):- 介绍线性规划模型的基本步骤和要素;- 通过实例演示线性规划模型的建立过程。
- 单纯形法的基本原理(10分钟):- 讲解单纯形表格和单纯形法的基本思想;- 通过实例演示单纯形法的求解过程。
2. 第二课时(40分钟):- 对偶理论的基本原理(15分钟):- 介绍线性规划的对偶模型和对偶理论的基本概念;- 解释对偶理论在线性规划中的应用。
- 整数规划和混合整数规划的简介(10分钟):- 介绍整数规划和混合整数规划的概念和特点;- 解释整数规划和混合整数规划的求解方法。
- 线性规划在实际问题中的应用(15分钟):- 选取实际问题案例,引导学生运用线性规划解决问题;- 分析案例中线性规划解的合理性和可行性。
题组9 不等式与线性规划(教案)
题组9 不等式与线性规划(教案) 一、考法解法命题特点分析本部分内容高考主要考查以下几方面:(1)考查利用基本不等式求最值、证明不等式等,利用基本不等式解决实际问题.(2)考查以线性目标函数的最值为重点,目标函数的求解常结合其代数式的几何意义(如斜率、截距、距离、面积等)来求解.(3)一元二次不等式经常与函数、导数、数列、解析几何相结合考查参数的取值范围,以考查一元二次不等式的解法为主,并兼顾二次方程的判别式、根的存在等.不等式部分重点掌握一元二次不等式的解法,特别是含有字母参数的一元二次不等式的解法,基本不等式求最值,二元一次不等式组所表示的平面区域,包括平面区域的形状判断、面积以及与平面区域有关的最值问题,简单的线性规划模型在解决实际问题中的应用.对不等式的深入复习要结合数列、解析几何、导数进行.解题方法荟萃1.解一元二次不等式()200ax bx c a ++>≠或()200ax bx c a ++<≠,可利用一元二次方程、一元二次不等式和二次函数间的关系.2.使用基本不等式以及与之相关的不等式求一元函数或者二元函数最值时,基本的技巧是创造使用这些不等式的条件,如各变数都是正数,某些变数之积或者之和为常数等,解题中要根据这个原则对求解目标进行适当的变换,使之达到能够使用这些不等式求解最值的目的.在使用基本不等式求函数的最值、特别是求二元函数最值时一定要注意等号成立的条件,尽量避免二次使用基本不等式.3.平面区域的确定方法是“直线定界、特殊点定域”,二元一次不等式组所表示的平面区域是各个不等式所表示的半平面的交集.线性目标函数z ax by =+中的z 不是直线z ax by =+在y 轴上的截距,把目标函数化为+a z y x b b=-可知z b 是直线z ax by =+在y 轴上的截距,要根据b 的符号确定目标函数在什么情况下取得最大值、什么情况下取得最小值.二、真题剖析【题干】(2019新课标全国II 卷5)设x ,y 满足约束条件⎪⎩⎪⎨⎧≥+≥++≤-+0303320332y y x y x ,则y x z +=2的最小值是( )A.-15B.-9C.1D.9【答案】A【解析】画出可行域如图中阴影部分所示,可知当目 标函数y x z +=2经过点()3,6--B 时取得最小值,最 小值为-15,选A(点评)本题考查简单的线性规划求最值问题.【题干】(2019新课标全国I 卷16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元【答案】216 000【解析】由已知确定可行域,⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+0060035903.01505.01.5y x y x y x y x ,目标函数为y x z 9002100+=由图得在()10060,A 处取得最大值为216 000 (点评)本题的背景是企业的生产安排问题.企业的利润受到材料数量和工时的限制,所以本题的本质是带有约束条件的线性规划问题.本题考查考生对实际问题的理解和应用数学手段解决实际问题的能力,考查数形结合的数学思想【题干】(2019新课标全国Ⅱ卷)若x ,y 满足约束条件,则的最大值为____________. 【答案】 【解析】画出可行域如图,由图可知使得取最大值的点为,得。
不等式及线性规划问题(讲义)
不等式及线性规划问题(讲义)知识点睛一、 不等式的基本性质 性质1:a b b a >⇔< 性质2:a b b c a c >>⇒>, 性质3:a b a c b c >⇒+>+性质4:a b >,0c >ac bc ⇒>;a b >,0c <ac bc ⇒< 性质5:a b c d a c b d >>⇒+>+, 性质6:00a b c d ac bd >>>>⇒>,性质7:0(2)n n a b a b n n >>⇒>∈≥,N 性质8:0(2)a b n n >>⇒>∈≥,N 二、 一元二次不等式及其解法一般地,对于解一元二次不等式20(0)ax bx c a ++>≠,通常步骤如下: (1)解方程20(0)ax bx c a ++=≠常用方法:直接开平方法、配方法、公式法、分解因式法. (2)解不等式 考虑两种解法:函数法:借助函数图象求解①画出对应函数2y ax bx c =++的图象; ②依据图象得出不等式的解集.代数法:借助实数乘法法则,解不等式组. 三、 绝对值不等式的解法1. 解绝对值不等式的核心:去绝对值去绝对值方法:以||x a -为例 (1)绝对值的几何意义:①||x a -表示数轴上x a -,0对应两点之间的距离②||x a -表示数轴上 x a ,对应两点之间的距离 (2)绝对值法则: ||0x a x a x a x a x a x a ->⎧⎪-==⎨⎪-+<⎩,,,(3)偶次方:221||() ( )n n x a x a n n -=-∈≥,N2. 解绝对值不等式常见题型(1)单个绝对值型不等式:如||ax b c +≤或||ax b c +≥ 思路一:依据绝对值的几何意义①||ax b c +≤转化为c ax b c -+≤≤ ②||ax b c +≥转化为c c ax b ax b ++-≥或≤思路二:依据绝对值的“零点”,由绝对值法则去绝对值,再解不等式 思路三:由相应函数()||f x ax b c =+-,利用数形结合思想,依据图象处理. (2)多个绝对值型不等式:如||||x a x b c -+-≥ 思路一:依据绝对值的几何意义数轴上到a 、b 对应两点的距离之和不小于c 的点的集合; 思路二:依据绝对值的“零点”依据绝对值的“零点”分段,由绝对值法则去绝对值,再解不等式; 思路三:依据函数图象由相应函数()||||f x x a x b c =-+--,利用数形结合思想,依据图象处理. (3)常见函数图象 ①()|1|f x x =-②()|1|f x x =+结论推广:①||||||x a x b a b -+--≥;②||||||||a b x a x b a b ------≤≤.四、 二元一次不等式(组)及线性规划 1. 二元一次不等式与平面区域若方程0Ax By C ++=表示直线l ,则 不等式0Ax By C ++>表示直线l 某一侧所有点组成的平面区域,将该侧任一点坐标00()x y ,代入Ax By C ++,000Ax By C ++> 恒成立.同理,不等式0Ax By C ++<表示直线l 的另一侧. 2. 由二元一次不等式组判断平面区域(1)直线定界(注意虚线与实线);(2)特殊点定域(如:原点,(0 1),,(1 0),等); (3)不等式组找公共区域. 3. 线性规划相关概念 约束条件: 关于x ,y 的不等式(或方程) 线性约束条件:关于x ,y 的一次不等式(或方程) 目标函数: 要求的关于变量x ,y 的函数 线性目标函数:目标函数为关于变量x ,y 的一次函数可行解: 满足约束条件的解(x ,y ) 可行域: 所有可行解组成的集合最优解:使目标函数取得最大值或最小值的可行解线性规划问题:在线性约束条件下求线性目标函数的最大值或最小值问题 4. 求目标函数z =ax +by 的最值利用线性规划求最值,一般用图解法求解,其步骤是: (1)根据约束条件画出可行域;(2)考虑目标函数的几何意义,令z =0,画出直线l 0; (3)在可行域内平行移动直线l 0,从而确定最优解; (4)将最优解代入目标函数即可求出最大值或最小值.精讲精练1. 下列命题中正确的是( ) A . a b c d a c b d >>⇒->-,B .a ba b c c>⇒>C .ac bc a b <⇒<D .22ac bc a b >⇒>2. 若01a b <<<,则( )A .11b a> B .11()()22a b <C .n n a b >D .11lg lg a b>3. 当0a b >>,0c d <<时,给出以下结论:①ad bc <;②22a c b d +>+;③b c a d ->-; ④3330c d a <<<. 其中正确结论的序号是______________.4. 设方程20(0)ax bx c a ++=≠的两根为12 x x ,,且12x x <. (1)若0a <,则20ax bx c ++<的解集为____________; (2)若0a >,则20ax bx c ++≥的解集为____________.5. 已知不等式230x x t -+<的解集为{}|1 x x m x <<∈,R .(1)t =_________,m =_________;(2)若函数2()4f x x ax =-++在区间( 1]-∞,上递增,求关于x 的不等式2log (32)0a mx x t -++-<的解集.6.解下列不等式.(1)|21||21|6++-≤x x(2)|21||4|2x x+-->7.已知函数()|4||3|=-+-.f x x x(1)若()<有解,则实数a的取值范围为_________.f x a(2)若()<无解,则实数a的取值范围为___________.f x a(3)若()f x a>对一切实数x均成立,则实数a的取值范围为_______________.(4)若()2|3|af x x--≥有解,则实数a的取值范围为_______________.8.写出下列平面区域表示的二元一次不等式组.(1)____________________;(2)___________________.(1)9.(21)(4)0x y x y++-+≤表示的平面区域为下图中的()A.B.C.D.10.不等式组3434xx yx y⎧⎪+⎨⎪+⎩≥≥≤所表示的平面区域的面积等于()A.32B.23C.43D.3411.设变量x,y满足约束条件53151053x yx yx y+⎧⎪-+⎨⎪-⎩≤≥≤,则目标函数z=3x+5y的最大值为__________,最小值为_________.12.设变量x,y满足约束条件3602030x yx yy+-⎧⎪--⎨⎪-⎩≥≤≤,则目标函数z=2x-y的最小值为()A.7 B.-4 C.-1 D.413. 设变量x ,y 满足3010350x y x y x y +-⎧⎪-+⎨⎪--⎩≥≥≤,设y k x =,则k 的取值范围是( )A .14[]23,B .4[2]3,C .1[2]2,D .1[)2+∞,14. 给出平面区域如图中的阴影部分所示,若使目标函数z =ax +y(a >0)取得最大值时的最优解有无穷多个,则a 的值为 __________________.15. 某厂拟生产甲、乙两种适销产品,每件产品销售收入分别为3 000元、2 000元.甲、乙产品都需要在A 、B 两种设备上进行加工.在每台A 、B 设备上加工1件甲,设备所需工时分别为1 h 、2 h ;加工1件乙,设备所需工时分别为2 h 、1 h ,A 、B 两种设备每月有效使用台时数分别为400 h 和500 h . 问:如何安排生产可使收入最高?回顾与思考________________________________________________________ ________________________________________________________ ________________________________________________________【参考答案】1. D2. D3. ①②④4. (1)12( )( )x x -∞+∞,,; (2)12( ][ )x x -∞+∞,, 5. (1)22t m ==;;(2)13(0 )(1 )22,, 6. (1)33[ ]22-,;(2)5( 7)( )3-∞-+∞,, 7. (1)(1 )+∞,;(2)( 1]-∞,;(3)( 1)-∞,;(4)( 1]-∞,8.(1)4150220x yx yx y->⎧⎪+-<⎨⎪+-⎩≥;(2)36020yx yx y⎧⎪-+⎨⎪-+<⎩≥≥9. B10.C11.17-1112.C13.C14.3 515.每月生产甲产品200件,乙产品100件,可使收入最高.。
线性规划教案
线性规划教案1. 引言线性规划是一种优化问题的数学建模方法,广泛应用于生产、运输、金融等领域。
本教案旨在介绍线性规划的基本概念、模型构建和求解方法,匡助学生理解和应用线性规划。
2. 知识目标- 理解线性规划的基本概念和特点;- 能够根据实际问题构建线性规划模型;- 掌握线性规划的求解方法。
3. 教学内容3.1 线性规划的基本概念- 定义线性规划及其应用领域;- 理解线性规划的目标函数、约束条件和可行域的概念;- 了解线性规划问题的分类。
3.2 线性规划模型的构建- 根据实际问题确定决策变量;- 建立目标函数和约束条件;- 描述可行域。
3.3 线性规划的求解方法- 图形法:通过绘制可行域和目标函数的等高线图,找到最优解;- 单纯形法:通过迭代计算,找到最优解;- 整数规划的求解方法。
4. 教学过程4.1 导入活动通过给学生提出一个实际问题,引起学生对线性规划的思量和兴趣。
4.2 知识讲解详细介绍线性规划的基本概念、模型构建和求解方法,结合实例进行讲解,匡助学生理解和掌握。
4.3 练习与讨论让学生通过练习题和小组讨论的方式,巩固所学的知识,培养解决实际问题的能力。
4.4 案例分析选择一个实际案例,引导学生运用线性规划的方法进行分析和求解,培养学生的实际应用能力。
5. 教学资源- PowerPoint演示文稿;- 练习题和答案;- 实际案例和解答。
6. 教学评估通过课堂练习、小组讨论和案例分析等方式,进行教学评估,了解学生的学习情况和掌握程度。
7. 教学延伸鼓励学生进一步探索线性规划的高级技巧和应用领域,如灵敏度分析、多目标规划等。
8. 总结通过本教案的学习,学生应能够理解线性规划的基本概念和特点,能够构建线性规划模型并运用求解方法,提高解决实际问题的能力。
9. 参考文献- Hillier, F. S., & Lieberman, G. J. (2022). Introduction to operations research. McGraw-Hill.- Chvátal, V. (1983). Linear programming. W. H. Freeman.以上是关于线性规划教案的详细内容,希翼能够对您的教学有所匡助。
线性规划教案
线性规划教案【教案名称】线性规划教案【教案目标】本教案旨在帮助学生理解线性规划的基本概念、原理和应用,培养学生分析和解决实际问题的能力,提高他们的数学思维和创新能力。
【教学对象】本教案适用于高中数学课程,特别是高二或高三学生。
【教学时间】本教案设计为5个课时,每个课时为45分钟。
【教学内容】1. 线性规划的概念和基本形式- 介绍线性规划的定义和基本术语,如目标函数、约束条件、可行解等。
- 解释线性规划的基本形式,包括标准型和非标准型。
2. 图形法求解线性规划问题- 通过图形法解决二元线性规划问题,引导学生理解可行域、目标函数和最优解的概念。
- 提供实际问题,让学生将其转化为线性规划问题,并利用图形法求解。
3. 单纯形法求解线性规划问题- 介绍单纯形表和单纯形法的基本思想,引导学生理解单纯形法的步骤和计算过程。
- 提供实际问题,让学生将其转化为线性规划问题,并利用单纯形法求解。
4. 两阶段法求解线性规划问题- 介绍两阶段法的基本思想和步骤,引导学生理解两阶段法的优势和应用场景。
- 提供实际问题,让学生将其转化为线性规划问题,并利用两阶段法求解。
5. 线性规划在实际问题中的应用- 通过实际案例,展示线性规划在生产、运输、资源分配等领域的应用。
- 引导学生思考如何将线性规划应用到自己感兴趣的领域,并提供相关案例进行讨论。
【教学方法】本教案采用多种教学方法,包括讲授、示范、练习、讨论和实践等。
【教学资源】1. 教材:根据教学内容准备相应的教材和教辅材料。
2. 多媒体设备:准备投影仪、电脑等设备,以展示教学内容和实例。
【教学评估】1. 课堂练习:每节课结束时进行小组或个人练习,检验学生对所学内容的理解和应用能力。
2. 作业:布置相关作业,包括练习题和思考题,用于巩固和拓展学生的知识。
3. 期中考试:设置线性规划相关的考题,考察学生的综合能力和应用能力。
4. 期末项目:要求学生选择一个实际问题,并运用线性规划方法进行分析和解决,展示他们的研究成果。
高一数学课程教案不等式的应用线性规划与最优解
高一数学课程教案不等式的应用线性规划与最优解高一数学课程教案-不等式的应用:线性规划与最优解I. 引言数学的应用广泛存在于我们日常生活中,而不等式作为数学中的重要概念,也有着广泛的应用。
其中,线性规划作为不等式的一种重要应用之一,被广泛应用于经济学、管理学等领域。
本教案旨在通过实际问题的引入,让学生了解线性规划的基本概念和步骤,并通过最优解的求解来培养他们的应用能力和解决实际问题的能力。
II. 教学目标1. 理解不等式的基本概念和性质。
2. 掌握线性规划的基本思想和步骤。
3. 运用线性规划的方法解决实际问题。
4. 培养学生独立思考、分析问题和解决问题的能力。
III. 教学内容1. 不等式的基本概念和性质a. 不等式及其解集的概念b. 不等式的基本性质c. 不等式的图形表示及其意义2. 线性规划的基本思想和步骤a. 线性规划的定义b. 线性规划问题的一般形式c. 线性规划的基本思想d. 线性规划的解法步骤3. 实际问题的线性规划与最优解a. 通过具体问题引入线性规划b. 求解线性规划问题的最优解c. 判断最优解的合理性及优化方案的解释IV. 教学过程1. 不等式的基本概念和性质a. 引导学生通过具体实例,了解不等式以及不等式解集的定义。
b. 引导学生探讨不等式的基本性质,例如传递性、对称性等,并通过例题进行巩固练习。
c. 利用几何图形引入不等式的图形表示及其意义。
通过实例,让学生理解几何图形与实际问题的关系。
2. 线性规划的基本思想和步骤a. 介绍线性规划的定义,引导学生了解线性规划问题的一般形式和目标函数。
b. 通过具体例子引导学生理解线性规划的基本思想,即求解目标函数在约束条件下的最大(小)值。
c. 详细介绍线性规划的解法步骤,包括建立模型、确定变量、建立目标函数和约束条件等。
3. 实际问题的线性规划与最优解a. 通过生活中的实际问题,引导学生将其转化为线性规划问题,并进行建模。
b. 分步引导学生求解线性规划问题的最优解,包括列出目标函数和约束条件、绘制目标函数和约束条件的图形、确定最优解等。
高中生数学线性规划教案
高中生数学线性规划教案教学内容:1. 了解线性规划的基本概念和应用领域。
2. 掌握线性规划的解题思路和方法。
3. 在实际问题中运用线性规划进行分析和解决。
教学目标:1. 理解线性规划的定义和特点。
2. 能够根据具体问题建立线性规划模型。
3. 能够运用线性规划解决实际生活中的问题。
教学重点:1. 线性规划的基本概念和特点。
2. 线性规划模型的建立和求解方法。
3. 实际问题中线性规划的应用。
教学难点:1. 将实际问题抽象成线性规划模型。
2. 运用线性规划方法解决问题的能力。
教学过程及教学方法:1. 导入(5分钟)通过介绍一个生活中的实际问题,引出线性规划的概念和应用场景。
2. 理论讲解(15分钟)讲解线性规划的定义、目标函数、约束条件等基本概念,并介绍线性规划的解题思路和方法。
3. 示例分析(20分钟)通过具体的例题演示,引导学生理解如何建立线性规划模型,并运用线性规划方法解决问题。
4. 练习与讨论(15分钟)组织学生进行练习题目,引导学生思考问题的建模和解决方法,并开展讨论分享。
5. 拓展应用(10分钟)介绍线性规划在实际生活中的广泛应用领域,启发学生深入思考线性规划的实际意义。
6. 总结归纳(5分钟)对本节课的内容进行总结归纳,梳理线性规划的重点和难点,强调学生需要掌握的知识点。
教学资源:1. PPT课件;2. 课堂练习题目;3. 实际问题案例。
教学评估:1. 课堂练习成绩;2. 参与讨论的表现;3. 课后作业完成情况。
教学反馈:及时对学生在课堂练习和课后作业中存在的问题进行指导和辅导,帮助他们提高线性规划解题能力。
线性规划教案精选全文
可编辑修改精选全文完整版线性规划教案【线性规划教案】一、教学目标1. 了解线性规划的基本概念和应用领域;2. 掌握线性规划的数学模型的建立方法;3. 学会使用线性规划的求解方法,解决实际问题;4. 培养学生的逻辑思维能力和问题解决能力。
二、教学内容1. 线性规划的基本概念a. 线性规划的定义和特点;b. 线性规划的应用领域。
2. 线性规划的数学模型a. 决策变量的定义和约束条件的建立;b. 目标函数的确定。
3. 线性规划的求解方法a. 图形法求解;b. 单纯形法求解。
4. 实际问题的线性规划建模和求解a. 生产计划问题;b. 运输问题;c. 投资组合问题。
三、教学过程1. 线性规划的基本概念a. 引入线性规划的背景和定义,让学生了解线性规划的基本概念;b. 通过实例,介绍线性规划在生产、运输、投资等领域的应用。
2. 线性规划的数学模型a. 介绍决策变量的概念和约束条件的建立方法,让学生掌握数学模型的建立过程;b. 解释目标函数的概念和确定方法,让学生理解目标函数在线性规划中的作用。
3. 线性规划的求解方法a. 详细介绍图形法的步骤和求解过程,通过实例演示图形法的应用;b. 详细介绍单纯形法的步骤和求解过程,通过实例演示单纯形法的应用。
4. 实际问题的线性规划建模和求解a. 通过实际生产计划问题,引导学生进行线性规划建模和求解;b. 通过实际运输问题,引导学生进行线性规划建模和求解;c. 通过实际投资组合问题,引导学生进行线性规划建模和求解。
四、教学方法1. 讲授法:通过讲解线性规划的基本概念、数学模型和求解方法,让学生掌握相关知识;2. 实例演示法:通过实际问题的演示,让学生理解线性规划在实际问题中的应用;3. 讨论交流法:引导学生参与讨论,共同解决线性规划问题,培养学生的合作和交流能力;4. 练习和作业:布置练习和作业,巩固学生的知识和能力。
五、教学评价1. 学生课堂表现:观察学生的听讲和参与情况,评价学生的学习态度和积极性;2. 学生作业完成情况:检查学生的练习和作业完成情况,评价学生的掌握程度;3. 学生实际问题求解能力:通过实际问题的求解,评价学生的问题解决能力和应用能力。
高一数学课程教案不等式的应用线性规划与最优化问题
高一数学课程教案不等式的应用线性规划与最优化问题高一数学课程教案:不等式的应用——线性规划与最优化问题一、引言在高中数学教学中,不等式是一个重要的概念。
不等式不仅仅是一种关系符号,还具有广泛的应用,其中之一就是线性规划与最优化问题。
本教案将主要介绍不等式的应用领域之一——线性规划与最优化问题。
通过本教案的学习,学生将能够了解并掌握线性规划与最优化问题的基本概念、解题思路和相关方法。
二、线性规划的基本概念1. 定义线性规划是指在一组约束条件下,通过优化目标函数的值来求解最优解的数学建模方法。
2. 基本要素a. 决策变量:表示需要优化的数量或决策的结果。
b. 目标函数:表示需要最大化或最小化的数量。
c. 约束条件:表示决策变量的限制范围。
3. 线性规划的解题思路线性规划问题的解题思路主要包括确定变量、建立数学模型、求解最优解及验证等步骤。
三、线性规划问题的常见类型1. 单变量线性规划a. 最大值问题:某个变量在一定约束条件下的最大值。
b. 最小值问题:某个变量在一定约束条件下的最小值。
2. 多变量线性规划a. 最大值问题:多个变量在一定约束条件下的最大值。
b. 最小值问题:多个变量在一定约束条件下的最小值。
四、线性规划问题的解题方法1. 图形法a. 单变量线性规划:通过绘制方程的图像来找出最优解。
b. 多变量线性规划:通过绘制多个方程的共同区域,并确定最优解的范围。
2. 列表法列表法通过列举所有可能解,并逐个验证找出最优解。
3. 辅助线法对于一些复杂的线性规划问题,可以通过引入辅助变量的方式进行求解。
五、最优化问题的基本概念1. 定义在一定约束条件下,通过改善和优化经济、技术等因素,使系统的目标函数达到最佳状态的问题称为最优化问题。
2. 基本要素a. 决策变量:表示需要优化的数量或决策的结果。
b. 目标函数:表示需要最大化或最小化的数量。
c. 约束条件:表示决策变量的限制范围。
3. 最优化问题的解题思路最优化问题的解题思路主要包括确定变量、建立数学模型、求解最优解及验证等步骤。
专题五、不等式与线性规划教案
专题五 不等式与线性规划(教学案)【必考内容要求】(一)不等式1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景. 2.一元二次不等式(1) 会从实际情境中抽象出一元二次不等式模型.(2) 通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系. (3) 会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图. (二)二元一次不等式组与简单线性规划问题(1) 会从实际情境中抽象出二元一次不等式组.(2) 了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组. (3) 会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决. 【知识梳理】1.一元二次不等式的求解步骤: 一变、二求、三画、四结论. 2.一元二次不等式恒成立的条件设f (x )=ax 2+bx +c (a ≠0),则ax 2+bx +c >0恒成立(解集为R)⇔y =f (x )图象恒在x 轴上方⇔f (x )min >0⇔⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac <0.ax 2+bx +c <0恒成立(解集为R)⇔y =f (x )图象恒在x 轴下方⇔f (x )max <0⇔⎩⎪⎨⎪⎧a <0,Δ=b 2-4ac <0. 3.三个“二次”的关系 一元二次不等式解集的端点值是相应一元二次方程的根,也是相应的二次函数图象与x 轴交点的横坐标,即二次函数的零点.4.对于给定集合M 和给定含参数的不等式f (x ) >0,求不等式中的参数的取值范围问题,要看清楚题目的要求,再相应求解,不妨“对号入座”: (1)若M 是f (x )>0的解集,则由M ={x |f (x )>0}来求; (2)若f (x )>0在M 上有解,则由M ∩{x |f (x )>0}≠∅来求; (3)若f (x )>0在M 上恒成立,则由M ⊆{x |f (x )>0}来求. 5.均值不等式I.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当ba =时取“=”)II. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)IV.若0>ab ,则2≥+abb a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) V.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.6.简单的线性规划问题解题步骤:一画二移三算四答,充分挖掘目标对象的几何意义!通常与直线的纵截距、斜率,圆的半径或半径的平方有关. 【热点分类突破】 热点一 一元二次不等式【例1】 解关于x 的不等式ax 2-(2a +1)x +2<0. 解 不等式ax 2-(2a +1)x +2<0,即(ax -1)(x -2)<0. (1)当a >0时,不等式可以化为⎝⎛⎭⎫x -1a (x -2)<0. ①若0<a <12,则1a >2,此时不等式的解集为⎝⎛⎭⎫2,1a ; ②若a =12,则不等式为(x -2)2<0,不等式的解集为∅;③若a >12,则1a<2,此时不等式的解集为⎝⎛⎭⎫1a ,2. (2)当a =0时,不等式即-x +2<0,此时不等式的解集为(2,+∞). (3)当a <0时,不等式可以化为⎝⎛⎭⎫x -1a (x -2)>0. 由于1a<2,故不等式的解集为⎝⎛⎭⎫-∞,1a ∪(2,+∞). 综上所述,当a <0时,不等式的解集为⎝⎛⎭⎫-∞,1a ∪(2,+∞); 当a =0时,不等式的解集为(2,+∞);当0<a <12时,不等式的解集为⎝⎛⎭⎫2,1a ; 当a =12时,不等式的解集为∅;当a >12时,不等式的解集为⎝⎛⎭⎫1a ,2. [规律方法] 含有参数的一元二次不等式在能通过因式分解求出对应方程根的情况下,按照本题的方法求解,但如果不能根据因式分解的方法求出其根,则需要按照不等式对应方程根的判别式的情况进行分类.【训练1】 (1)已知关于x 不等式ax -1x +1>0解集 (-∞,-1)∪⎝⎛⎭⎫12,+∞,则a =________.(2)(2013·安徽卷改编)已知一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1,或x >12,则f (10x )>0的解集为______.解析 (1)由题意,可得a ≠0,且不等式等价于a (x +1)·⎝⎛⎭⎫x -1a >0.由不等式解集的特点可得a >0且1a =12,故a =2.(2)依题意知f (x )>0的解为-1<x <12,故0<10x <12,解得x <lg 12=-lg 2.答案 (1)2 (2){x |x <-lg 2}热点二 含参不等式恒成立问题【例2】 不等式a 2+8b 2≥λb (a +b )对任意a ,b ∈R 恒成立,则实数λ的取值范围为________.解析 先将不等式整理为关于a 的一元二次不等式为a 2-λba +8b 2-λb 2≥0,对任意a ∈R 恒成立,所以λ2b 2-4(8b 2-λb 2)≤0。
线性规划教案
线性规划教案一、教案概述本教案旨在介绍线性规划的基本概念、解法和应用。
通过本教案的学习,学生将能够理解线性规划的原理和方法,掌握线性规划问题的建模和求解技巧,并能够将线性规划应用于实际问题的解决中。
二、教学目标1. 理解线性规划的基本概念和特点;2. 掌握线性规划问题的建模方法;3. 学会使用单纯形法和对偶理论求解线性规划问题;4. 能够将线性规划应用于实际问题的解决中。
三、教学内容与安排1. 线性规划的基本概念(1课时)a. 线性规划的定义和特点;b. 线性规划问题的数学模型。
2. 线性规划问题的建模方法(2课时)a. 线性规划问题的常见形式;b. 线性规划问题的约束条件和目标函数的确定;c. 线性规划问题的变量定义和范围确定。
3. 单纯形法的基本原理和步骤(3课时)a. 单纯形法的基本思想;b. 单纯形表格的构造和更新;c. 单纯形法的迭代过程和终止条件。
4. 对偶理论与对偶问题的求解(2课时)a. 对偶问题的定义和性质;b. 对偶问题的求解方法;c. 原始问题与对偶问题的关系。
5. 线性规划问题的应用案例分析(2课时)a. 生产计划问题;b. 资源分配问题;c. 运输问题。
四、教学方法与手段1. 讲授法:通过教师的讲解,向学生介绍线性规划的基本概念、解法和应用案例,匡助学生理解和掌握相关知识。
2. 实例分析法:通过实际问题的分析和求解,引导学生掌握线性规划问题的建模和求解方法。
3. 讨论互动法:组织学生进行小组讨论和问题解答,促进学生之间的交流和思维碰撞,提高学生的学习兴趣和参预度。
4. 案例分析法:通过真正的应用案例,引导学生将线性规划理论应用于实际问题的解决中,培养学生的实际应用能力。
五、教学评价与反馈1. 课堂练习:布置课堂练习题,检验学生对于线性规划的理解和应用能力。
2. 作业评价:布置相关作业,评价学生对于线性规划知识的掌握程度。
3. 课堂互动:通过课堂讨论和问题解答,评价学生对于线性规划的理解和思量能力。
线性规划教案
线性规划教案【教案名称】:线性规划教案【教学目标】:1. 了解线性规划的基本概念和应用领域;2. 掌握线性规划的基本模型和解题方法;3. 能够运用线性规划解决实际问题。
【教学内容】:1. 线性规划的基本概念和定义;2. 线性规划的基本模型和约束条件;3. 线性规划的图解法和单纯形法求解;4. 线性规划的应用案例分析。
【教学步骤】:一、导入(5分钟)教师简要介绍线性规划的背景和重要性,引起学生对线性规划的兴趣,并与学生互动交流,了解学生对线性规划的初步认识。
二、概念讲解(15分钟)1. 教师通过PPT或者板书,详细介绍线性规划的基本概念,包括目标函数、约束条件、可行解、最优解等,并结合实际案例进行说明。
三、模型建立(20分钟)1. 教师通过具体案例,引导学生学习如何建立线性规划的数学模型,包括确定决策变量、编写目标函数和约束条件等。
四、图解法求解(25分钟)1. 教师详细讲解线性规划的图解法,包括绘制可行域、等高线和目标函数线,通过图形的交点确定最优解,并解释求解过程中的注意事项。
五、单纯形法求解(30分钟)1. 教师讲解线性规划的单纯形法求解步骤,包括构造初始单纯形表、选择进基变量和离基变量、进行主元素列变换等,并通过实例演示单纯形法的求解过程。
六、应用案例分析(30分钟)1. 教师提供一些实际应用案例,让学生运用所学知识解决实际问题,并进行讨论和分析,培养学生的实际应用能力和解决问题的思维能力。
七、总结与拓展(10分钟)1. 教师对本节课的内容进行总结,强调线性规划的重要性和应用领域,并展示一些线性规划的拓展应用,如整数规划、混合整数规划等。
【教学资源】:1. PPT或者白板;2. 教材和教辅资料;3. 实际应用案例。
【教学评估】:1. 课堂练习:在课堂上布置一些线性规划的练习题,检验学生对所学知识的掌握情况。
2. 作业布置:布置一些线性规划的作业题,要求学生运用所学知识解决实际问题,并在下节课进行讲解和讨论。
《线性规划》教学设计
《线性规划》教学设计教学设计:线性规划一、教学目标:1.知识目标:理解线性规划的基本概念和原理,掌握线性规划模型的建立方法和解题技巧;2.能力目标:能够根据实际问题,构建线性规划模型,利用线性规划方法求解最优解;3.情感目标:培养学生的数学建模思维,培养学生解决实际问题的能力。
二、教学内容:1.线性规划的基本概念和原理;2.线性规划模型的建立方法和解题技巧;3.在实际问题中应用线性规划进行求解。
三、教学步骤:第一步:导入新知2.再现:通过对一个线性方程组图像的讨论,引导学生思考如何在图像上找到最优解;3.引出:通过上述引入,导出线性规划的概念和意义,并与线性方程组进行对比。
第二步:概念讲解1.线性规划的定义和特点;2.线性规划模型的建立方法:目标函数的确定,约束条件的建立;3.线性规划模型的求解方法:几何法、单纯形法。
第三步:解题演练1.练习1:通过一个简单的例子,引导学生理解线性规划模型的建立和求解过程;2.练习2:通过一个较复杂的实际问题,引导学生应用线性规划模型进行求解。
第四步:拓展应用1.探究1:通过给出一个实际问题,让学生自己构建线性规划模型,并进行求解;2.探究2:让学生自选一个实际问题进行建模和求解,并在班内进行交流和展示。
第五步:归纳总结1.汇总学生的解题思路和方法,共同总结线性规划模型的建立和求解的一般步骤;2.通过思考,总结线性规划在实际问题中的应用范围和意义。
四、教学手段:1.板书:绘制线性规划的基本概念和公式;2.多媒体:播放动态示意图和实例讲解视频,帮助学生理解和记忆;3.演练练习:布置适量的练习题,帮助学生巩固所学知识;4.案例分析:通过实际问题的讨论和解答,帮助学生将所学知识应用到实践中。
五、教学评价:1.教师观察学生对概念和基本原理的理解程度,以及解题过程中的思考能力和解题技巧;2.教师收集学生在练习和解题中的作业,对学生的解题过程和答案进行评价;3.学生之间相互交流和展示,并对自己的解题思路进行评价。
第九讲 不等式与线性规划
第九讲 不等式与线性规划【命题角度聚焦】(1)以客观题形式考查不等式的性质和解不等式与集合、函数、简易逻辑知识结合命题. (2)以客观题形式考查基本不等式的应用.(3)以客观题形式考查线性规划知识,主要是求目标函数的最值问题或求平面图形的面积.(4)不等式恒成立问题与函数、导数、数列等知识结合作为大题的一问,或将不等式有关知识分散在几个题中,间接考查,一般不单独命制大题. 【核心知识整合】1.熟记比较实数大小的依据与基本方法. ①作差(商)法;②利用函数的单调性.2.特别注意熟记活用以下不等式的基本性质 (1)乘法法则:a>b ,c>0⇒ac>bc ;a>b ,c<0⇒ac<bc ; (2)同向可加性:a>b ,c>d ⇒a +c>b +d ; (3)同向可乘性:a>b>0,c>d>0⇒ac>bd ; (4)乘方法则:a>b>0⇒an>bn(n ∈N ,n≥2); (5)开方法则:a>b>0⇒na>nb(n ∈N ,n≥2).3.熟练应用基本不等式证明不等式与求函数的最值. 4.牢记常见类型不等式的解法.(1)一元二次不等式,利用三个二次之间的关系求解. (2)简单分式、高次不等式,关键是熟练进行等价转化. (3)简单指、对不等式利用指、对函数的单调性求解. 5.简单线性规划(1)应用特殊点检验法判断二元一次不等式表示的平面区域. (2)简单的线性规划问题解线性规划问题,关键在于根据条件写出线性约束关系式及目标函数,必要时可先做出表格,然后结合线性约束关系式作出可行域,在可行域中求出最优解. 【命题热点突破】考点1:不等式的性质及比较数的大小例1、(2013·漳州一中期末)若a 、b 为任意非零实数,且a>b ,则下列不等式成立的是( )A.1a <1bB.ba <1 C .lg(a -b)>0D .(13)a<(13)b变式1、(2014·天津理,7)设a 、b ∈R ,则“a >b ”是“a |a |>b |b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件考点2:不等式的解法 例2、(2014·合肥市质检)关于x 的不等式ax2-|x +1|+3a≥0的解集为(-∞,+∞),则实数a 的取值范围是________.变式2、若关于x 的不等式(2x -1)2<ax2的解集中整数恰好有3个,则实数a 的取值范围是________. [方法规律总结]1.解简单的分式、指数、对数不等式的基本思想是把它们等价转化为整式不等式(一般为一元二次不等式)求解.2.解决含参数不等式的难点在于对参数的恰当分类,关键是找到对参数进行讨论的原因.确定好分类标准,有理有据、层次清楚地求解.3.解不等式与集合结合命题时,先解不等式确定集合,再按集合的关系与运算求解. 4.分段函数与不等式结合命题,应注意分段求解. 考点3:基本不等式及其应用例3、(2013·徐州质检)设a 、b 、c 都是正实数,且a 、b 满足1a +9b =1,则使a +b≥c 恒成立的c 的范围是( )A .(0,8]B .(0,10]C .(0,12]D .(0,16]变式3、(2014·济南三月模拟)在△ABC 中,E 为AC 上一点,且AC →=4AE →,P 为BE 上一点,且满足AP →=mAB →+nAC →(m>0,n>0),则1m +1n 取最小值时,向量a =(m ,n)的模为________. [方法规律总结]1.用基本不等式a +b2≥ab 求最值时,要注意“一正、二定、三相等”,一定要明确什么时候等号成立,要注意“代入消元”、“拆、拼、凑”、“1的代换”等技巧的应用.2.不等式恒成立问题一般用分离参数法转化为函数最值求解或用赋值法讨论求解. 考点4:线性规划及其应用例4、(2013·天津理,2)设变量x 、y 满足约束条件⎩⎨⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为( )A .-7B .-4C .1D .2变式4、(理)(2014·浙江文,12)若实数x 、y 满足⎩⎨⎧x +2y -4≤0,x -y -1≤0,x≥1,则x +y 的取值范围是____.变式5、(理)(2014·山西省重点中学四校联考)实数x ,y 满足⎩⎨⎧x≥2x -2y +4≥02x -y -4≤0,若z =kx +y 的最大值为13,则实数k =( ).A .2 B.132 C.94 D .5[方法规律总结]1.线性规划问题一般有三种题型:一是求最值;二是求区域面积;三是由最优解确定目标函数中参数的取值范围.2.解决线性规划问题首先要画出可行域,再注意目标函数所表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题可通过验证解决.3.确定二元一次不等式组表示的平面区域:①画线,②定侧,③确定公共部分;解线性规划问题的步骤:①作图,②平移目标函数线,③解有关方程组求值,确定最优解(或最值等).第九讲 不等式与线性规划课堂检测一、选择题1.(2014·唐山市一模)己知集合A ={x |x 2-3x +2<0},B ={x |log 4x >12},则( )A .A ∩B =∅ B .B ⊆AC .A ∩∁R B =RD .A ⊆B2.(2014·山东理,5)已知实数x 、y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A.1x 2+1>1y 2+1 B .ln(x 2+1)>ln(y 2+1) C .sin x >sin yD .x 3>y 33.(理)已知a 、b ∈R ,下列四个条件中,使a >b 成立的必要而不充分的条件是( )A .a >b -1B .a >b +1C .|a |>|b |D .2a >2b4.(理)若直线2ax +by -2=0(a 、b ∈R )平分圆x 2+y 2-2x -4y -6=0,则2a +1b的最小值是( )A .1B .5C .4 2D .3+2 25.(2013·哈六中三模)在坐标平面内,不等式组⎩⎪⎨⎪⎧y ≥2|x |-1,y ≤x +1所表示的平面区域的面积为( )A .2 2 B.83 C.223D .26.若实数x 、y 满足不等式组⎩⎪⎨⎪⎧y ≥0,x -y ≥0,2x -y -2≥0,则w =y -1x +1的取值范围是( )A .[-1,13]B .[-12,13]C .[-12,+∞)D .[-12,1)7.(理)如果不等式组⎩⎪⎨⎪⎧x ≥0,y ≥2x ,kx -y +1≥0表示的平面区域是一个直角三角形,则该三角形的面积为( )A.12或15 B.12或13 C.15或14 D.14或12二、填空题8、 (理)设变量x 、y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =x 2+y 2的最大值为________.9.(2014·邯郸市一模)已知f (x )是定义在[-1,1]上的奇函数且f (1)=2,当x 1、x 2∈[-1,1],且x 1+x 2≠0时,有f (x 1)+f (x 2)x 1+x 2>0,若f (x )≥m 2-2am -5对所有x ∈[-1,1]、a ∈[-1,1]恒成立,则实数m 的取值范围是________.一、选择题10.(文)(2013·重庆文,7)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( )A.52B.72C.154D.15211、(理)(2013·天津文,7)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增,若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是( )A .[1,2]B .(0,12]C .[12,2]D .(0,2]12.(2014·新课标Ⅰ文,11)设x 、y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-313.(文)(2014·北京理,6)若x 、y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2 C.12D .-1214 .(理)(2013·惠州调研)已知A (3,3),O 是原点,点P (x ,y )的坐标满足⎩⎨⎧3x -y ≤0,x -3y +2≥0,y ≥0,若z 为OA →在OP →上的投影,则z 的取值范围是( )A .[-3,3]B .[-3,3]C .[-3,3]D .[-3,3]15. (理)(2014·中原名校联考)已知实数x 、y 满足⎩⎪⎨⎪⎧y ≤x x +ay ≤4y ≥1,若z =3x +y 的最大值为16,则a =________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一 体验高考1.(2012年高考福建卷,理9)若函数y=2x 图象上存在点(x,y)满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( B )(A)21 (B)1 (C)23 (D)2 解析:∵x+y-3=0和y=2x 交点为(1,2), ∴只有m ≤1时才能符合条件,故选B.2.(2012年高考福建卷,理5)下列不等式一定成立的是( C ) (A)lg(x 2+41)>lg x(x>0) (B)sin x+x sin 1≥2(x ≠k π,k ∈Z ) (C)x 2+1≥2|x|(x ∈R )(D)112+x >1(x ∈R ) 解析:当x>0时,x 2+41≥2·x ·21=x,故lg(x 2+错误!未找到引用源。
)≥lg x(x>0), 当且仅当x=错误!未找到引用源。
时取等号,因此A 不对,B 中由于x ≠k π,k ∈Z 时,sin x 的正、负不确定, 因此sin x+x sin 1≥2或sin x+xsin 1≤-2,故B 不正确, C 中,由基本不等式x+y ≥2xy (x>0,y>0)知x 2+1≥22x =2|x|,故C 一定成立,而D 中,由于x 2≥0,则x 2+1≥1.因此0<112+x ≤1.从而D 不正确,因此选C.3.(2011年高考湖南卷,理10)设x,y ∈R,且xy ≠0,则(x 2+21y )(21x +4y 2)的最小值为 . 解析:(x 2+21y )(错误!未找到引用源。
+4y 2)=1+4x 2y 2+221yx +4 =5+(4x 2y 2+错误!未找到引用源。
)≥5+2222214yx y x=5+2×2=9. 当且仅当4x 2y 2=错误!未找到引用源。
即x 2y 2=21时取得最小值9. 答案:9二备考感悟1.命题与备考(1)不等式解法常与二次函数、集合等知识交汇在一起命题;基本不等式常与函数或代数式的最值问题、不等式恒成立问题、实际应用相互交汇命题.在备考中要熟练掌握各种不等式的解法,注意基本不等式成立的条件.(2)线性规划有时单独考查目标函数的最值问题,或求字母的取值范围问题,有时也会与函数、平面向量、解析几何等相互交汇考查,求解此类问题时应准确作出不等式表示的平面区域.2.小题快做:线性规划问题中,若不等式组表示的平面区域具有边界且目标函数是线性的,则目标函数的最值就在其区域边界的顶点处取得.三热点考向突破考向一 不等式的解法 解不等式的常见策略1.解一元二次不等式的策略:先化为一般形式ax 2+bx+c>0(a>0),再结合相应二次方程的根及二次函数图象确定一元二次不等式的解集.2.解简单的分式不等式的策略:将不等式一边化为0,再将不等式等价转化为整式不等式(组)求解;3.解含指、对数不等式的策略:利用指、对数函数的单调性将其转化为整式不等式求解;4.解含参数不等式的策略:根据题意确定参数分类的标准,依次讨论求解.【例1】 (1)(2012年高考重庆卷)不等式121+-x x ≤0的解集为( ) (A)(-21,1] (B)[- 21,1](C)(-∞,-错误!未找到引用源。
)∪[1,+∞) (D)(-∞,-错误!未找到引用源。
]∪[1,+∞)2)若函数f(x)=⎩⎨⎧>--≤-+-)3(1)2(log )3(10632x x x x x ,则关于a 的不等式f(6-a 2)>f(a)的解集是 .解析:(1)法一:原不等式等价于(x-1)(2x+1)<0或x-1=0,即-21<x<1或x=1,所以不等式的解集为(-错误!未找到引用源。
,1],选A.法二:原不等式等价于⎩⎨⎧>+≤-01201x x ①或⎩⎨⎧<+≥-01201x x ②解①得-21<x ≤1,解②得x ∈φ.故原不等式的解集为{x|-错误!未找到引用源。
<x ≤1},即x ∈(-错误!未找到引用源。
,1].(2)f(x)=-x 2+6x-10在(-∞,3]上单调递增,f(x)=log 3(x-2)-1在(3,+∞)上单调递增且f(x)在(3,+∞)上,f(x)>f(3), ∴f(x)在R 上是增函数, ∴6-a 2>a,解得-3<a<2. 答案:(1)A(2){a|-3<a<2}(或(-3,2))关注细节:1)求解分式不等式时通常将其转化为整式不等式求解,但一定要注意分母不等于零这一条件;(2)不等式的解与解集是不同的,填空题中若是求不等式的解集则答案一定要写成集合或区间的形式,本题(2)中若写为-3<a<2则是错误的热点训练1:(1)(2012年山东威海一模)已知f(x)=⎩⎨⎧<-≥00x x x x ,则不等式x+xf(x)≤2的解集是 .(2)(2012年安徽省知名省级示范高中期末)已知不等式ax 2+bx+c<0的解集为{x|-2<x<1},则不等式cx 2+bx+a>c(2x-1)+b 的解集为 .解析:(1)当x ≥0时,原不等式可化为x 2+x-2≤0.解之得-2≤x ≤1,即不等式的解集为{x|0≤x ≤1}.当x<0时,原不等式可化为x 2-x+2≥0, 即(x-21)2+47≥0恒成立,即不等式的解集为{x|x<0}.综上可知原不等式的解集为{x|0≤x ≤1}∪{x|x<0}={x|x ≤1}.(2)由题意可知a>0,且-2,1是方程ax 2+bx+c=0的两个根,则⎪⎪⎩⎪⎪⎨⎧-=-=-21ac ab,解得⎩⎨⎧-==a c ab 2,所以不等式 cx 2+bx+a>c(2x-1)+b 可化为-2ax 2+ax+a>-2a(2x-1)+a,整理得2x 2-5x+2<0,解得21<x<2.∴原不等式的解集为{x|21<x<2}.答案:(1){x|x ≤1} (2){x|21<x<2}考向二 基本不等式及其应用利用基本不等式求最值要特别注意“折(添)、拼、凑”等技巧,使其满足基本不等式中一正二定三相等的条件.【例2】 (1)(2012年山东青岛一模)已知a>0,b>0,且2a+b=4,则ab1的最小值是( )(A)41 (B)4 (C)21 (D)2(2)(2012年福州第一中学月考试题)设x,y ∈R,a>1,b>1,若a x =b y =3,a+b=23,则x1+y1的最大值为( )(A)2 (B)23 (C)1 (D)21解析:(1)法一:∵2a+b=4,a>0,b>0, ∴4=2a+b ≥2ab 2. ∴ab ≤2. ∴ab 1≥21. 当且仅当2a=b,即b=2,a=1时取等号, 故选C.法二:∵2a+b=4,∴2a+4b =1.又∵a>0,b>0, ∴ab 1=(2a +错误!未找到引用源。
)×错误!未找到引用源。
=b 21+a41≥2ab81. ∴ab 1≥21即ab 1≥21(当且仅当2a=b,即b=2,a=1时取等号).故选C. (2)因为a>1,b>1,a x =b y =3,a+b=23,所以x=log a 3,y=log b 3.x1+y1=3log 13log 1b a +=log 3a+log 3b =log 3ab ≤log 3(2b a +)2=log 3(232)2=1,热点训练2:(1)(2012年山东泰安模拟)函数y=log a (x+3)-1(a>0,且a ≠1)的图象恒过定点A,若点A 在直线mx+ny+1=0上(其中m,n>0),则m 1+n2的最小值等于( ) (A)16 (B)12 (C)9 (D)8(2)(2011年高考北京卷)某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产x 件,则平均仓储时间为8x天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) (A)60件 (B)80件 (C)100件 (D)120件解析:(1)∵y=log a (x+3)-1恒过定点A(-2,-1), ∴2m+n=1.∴m 1+n 2=(m 1+n2)(2m+n) =4+m n +n m4≥4+2nm m n 4⋅ =8.(当且仅当m=41,n=21时取等号)故选D.(2)设每批生产x 件时,平均到每件产品的费用之和为y,则y=x xx ⋅+8800=x 800+8x ≥28800x x ⋅ =20(元),当且仅当x 800=8x,即x=80件时费用之和最小,故选B. 考向三 平面区域与线性规划问题求解线性规划问题的解题思路:线性规划的基本思想是数形结合,求解时首先要准确作出可行域,根据目标函数所表示的几何意义和平面区域的关系,数形结合找到目标函数取到最值时的最优解. 【例3】 (1)(2012年高考四川卷)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ) (A)1800元 (B)2400元 (C)2800元 (D)3100元(2)(2011年高考湖南卷)设m>1,在约束条件⎪⎩⎪⎨⎧≤+≤≥1,,y x mx y x y 下,目标函数z=x+my 的最大值小于2,则m 的取值范围为( ) (A)(1,1+2)(B)(1+2,+∞)(C)(1,3) (D)(3,+解析:(1)设生产甲产品x 桶,乙产品y 桶,每天利润为z 元,则⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00122122y x y x y x ,z=300x+400y. 作出可行域,如图阴影部分所示.作直线300x+400y=0,向右上方平移,过点时,z=300x+400y 取最大值,由⎩⎨⎧=+=+122122y x y x ,得⎩⎨⎧==44y x .∴A(4,4),∴z max =300×4+400×4=2800.故选C.故当直线z=x+my 平移至经过可行域中的M 点时,z 取最大值.由⎩⎨⎧=+=1y x mx y 解得⎪⎪⎩⎪⎪⎨⎧+=+=m my m x 111,则M(m +11,m m +1). 所以z=x+my 的最大值为m +11+m m +12=mm ++112,依题意知错误!未找到引用源。