最新 北师大版七年级数学下册期末测试卷(含答案) (2) - 副本
北师大版七年级数学下册期末测试题及参考答案
北师大版七年级数学下册期末测试题) 1. 下列事件是必然事件的是( )A. 小梅的数学考试将得99分B. 抛出去的铅笔将着地C. 明天会是晴天D. 2018年有370天 2. 下列计算正确的是( )A. a4·a4=a16B. (a3)4=a7C. 12a6b4÷3a2b -2=4a4b2D. (-a3b)2=a6b23.如图, 在△ABC 中, AB =AC, DE ∥BC, ∠ADE =48°, 则下列结论中不正确的是( )A. ∠B =48°B. ∠AED =66°C. ∠A =84°D. ∠B +∠C =96° 4.已知xy =9, x -y =-3, 则x2+3xy +y2的值为( ) A. 27 B. 9 C. 54 D. 185.为应对越来越严峻的交通形势, 某市对其主干道进行拓宽改造.工程队在工作了一段时间后, 因雨被迫停工几天, 随后工程队加快了施工进度, 按时完成了拓宽改造任务.下面能反映该工程尚未改造的道路y(米)与时间x(天)的关系的大致图象是( )6. 如图, 在△ABC 中, D 是AB 上一点, DF 交AC 于点E, AE =EC, DE =EF, 则下列说法中: ①∠ADE =∠EFC ;②∠ADE +∠ECF +∠FEC =180°;③∠B +∠BCF =180°;④S △ABC =S 四边形DBCF, 正确说法的个数有( )A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共6小题, 每小题3分, 满分18分)7. 在不借助任何工具的情况下, 人的眼睛可以看到的最小物体的大小约为0.00003米, 将0.00003用科学记数法表示为____________.8. 汽车由吉安驶往相距220km的南昌,它的平均速度为100km/h,则汽车距南昌的路程s(km)与行驶的时间t(h)的关系式为__________________.9.四张质地、大小相同的卡片上, 分别画上如图所示的四个图形.在看不到图形的情况下从中任意抽取一张, 则抽取的卡片是轴对称图形的概率为________.10. 如图, 在△ABC中, AB=AC, D是BC的中点, AC的垂直平分线分别交AC, AD, AB于点E, O, F, 则图中全等的三角形共有________对.第10题图第11题图11. 如图, 有一块边长为4的正方形塑料模板ABCD, 将一块足够大的直角三角板的直角顶点落在A点, 两条直角边分别与CD交于点F, 与CB的延长线交于点E, 则四边形AECF 的面积是________.12. 我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”. 如果等腰三角形的“内角正度值”为45°, 那么该等腰三角形的顶角度数为________.三、解答题(本大题共5小题, 每小题6分, 满分30分)13. (1)计算:43×0.259;(2)如图, 直线AB, CD相交于点O, OM⊥AB.若∠COB=135°, 求∠MOD的度数.14. 先化简, 再求值: 2a(a+2b)-(a+2b)2, 其中a=2, b=-1.15. 如图, ∠A=65°, ∠ABD=∠DCE=30°, 且CE平分∠ACB, 求∠DBC的度数.16. 如图, 在等边△ABC中, D是BC上一点, ∠BAD=40°, E是AC上一点, AD=AE,求∠AED的度数.17. 如图是由一个长方形和一个等腰三角形组成的轴对称图形, 请你用两种方法作出它的对称轴(要求: 只能用没有刻度的直尺, 可不写作法, 但要保留作图痕迹).四、(本大题共3小题, 每小题8分, 共24分)18.如图, 已知AB ∥CD, DA 平分∠BDC, ∠A =∠C. (1)试说明: CE ∥AD ;(2)若∠C =30°, 求∠B 的度数.19. 有四根小木棒长度分别是1, 3, 5, 7, 若从中任意抽出三根木棒组成三角形. (1)下列说法正确的序号是________; ①第一根抽出木棒长度是3的可能性是14;②抽出的三根木棒能组成三角形是必然事件; ③抽出的三根木棒能组成三角形是随机事件; ④抽出的三根木棒能组成三角形是不可能事件.(2)求抽出的三根木棒能组成三角形的概率.20. 对于任意有理数a, b, c, d, 我们规定符号(a, b)□(c, d)=ad-bc.例如: (1, 3)□(2, 4)=1×4-2×3=-2.(1)(-2, 3)□(4, 5)=________;(2)求(3a+1, a-2)□(a+2, a-3)的值, 其中a2-4a+1=0.五、(本大题共2小题, 每小题9分, 共18分)21. 如图, 在△ABC中, AB=AC, D, E, F分别在三边上, 且BE=CD, BD=CF, G为EF 的中点.(1)若∠A=40°, 求∠B的度数;(2)试说明: DG垂直平分EF.22. 一水果零售商在批发市场按每千克1.8元批发了若干千克西瓜进城出售, 为了方便, 他带了一些零钱备用. 他先按市场价售出一些后, 又降价出售. 售出西瓜的质量x(千克)与他手中持有的钱数y(元)(含备用零钱)的关系如图所示, 结合图象回答下列问题:(1)零售商自带的零钱是多少?(2)降价前他每千克西瓜出售的价格是多少?(3)随后他按每千克下降0.5元将剩余的西瓜售完, 这时他手中的钱(含备用的钱)是450元, 问他一共批发了多少千克的西瓜?(4)这位水果零售商一共赚了多少钱?六、(本大题共12分)23. 如图①, 在△ABC中, ∠BAC=90°, AB=AC, 直线MN过点A, 且MN∥BC, 点D是直线MN上一点, 不与点A重合.(1)若点E是图①中线段AB上一点, 且DE=DA, 请判断线段DE与DA的位置关系, 并说明理由;(2)请在下面的A, B两题中任选一题解答.A: 如图②, 在(1)的条件下, 连接BD, 过点D作DP⊥DB交线段AC于点P, 请判断线段DB与DP的数量关系, 并说明理由;B:如图③, 在图①的基础上, 改变点D的位置后, 连接BD, 过点D作DP⊥DB交线段CA的延长线于点P, 请判断线段DB与DP的数量关系, 并说明理由.我选择: ________.参考答案与解析1. B2.D3.B4.C5.D6.A7. 3×10-58.s=220-100t9.10.411. 16解析: 根据题意可知∠BAE=∠DAF=90°-∠BAF, AB=AD, ∠ABE=∠ADF=90°, ∴△AEB≌△AFD(ASA), ∴S四边形AECF=S正方形ABCD=42=16.12.30°或90°解析: 设最小角的度数为x, 则最大角的度数为x+45°.当最小角是顶角时, 则x+x+45°+x+45°=180°, 解得x=30°, 此时三角形顶角的度数为30°.当最大角为顶角时, 则x+x+45°+x=180°, 解得x=45°, 此时三角形顶角的度数为90°.综上所述, 等腰三角形的顶角为30°或90°.13. 解: (1)43×0.259=43×0.253×0.256=(4×0.25)3×0.256=1×0.256=0.256.(3分)(2)∵∠COB=135°, ∴∠AOD=135°.∵OM⊥AB, ∴∠AOM=90°, ∴∠MOD=∠AOD-∠AOM=135°-90°=45°.(6分)14. 解: 原式=2a2+4ab-a2-4ab-4b2=a2-4b2.(3分)当a=2, b=-1时, 原式=4-4=0.(6分)15. 解: ∵∠DCE=30°, CE平分∠ACB, ∴∠ACB=2∠DCE=60°.(2分)∵∠A=65°, ∴∠ABC=180°-∠ACB-∠A=55°.(4分)∵∠ABD=30°, ∴∠DBC=∠ABC-∠ABD=25°.(6分)16. 解:∵△ABC是等边三角形, ∴∠BAC=60°.(2分)∵∠BAD=40°, ∴∠CAD=∠BAC-∠BAD=20°.(4分)∵AD=AE, ∴∠AED=(180°-∠CAD)=80°.(6分)17.解:如图所示, 直线AB即为所求.(6分)18. 解: (1)∵AB∥CD, ∴∠A=∠ADC.(1分)又∵∠A=∠C, ∴∠ADC=∠C, ∴CE∥AD.(3分)(2)由(1)可得∠ADC=∠C=30°.∵DA平分∠BDC, ∴∠CDB=2∠ADC=60°.(5分)∵AB∥DC, ∴∠B+∠CDB=180°, ∴∠B=180°-∠CDB=120°.(8分)19. 解: (1)①③(3分)(2)从1, 3, 5, 7中任意抽出三根木棒有1, 3, 5;1, 3, 7;3, 5, 7;1, 5, 7, 共四种情况, 而能组成三角形的只有3, 5, 7一种情况, (6分)∴抽出的三根木棒恰好能组成三角形的概率为.(8分)20. 解: (1)-22(2分)(2)原式=(3a+1)(a-3)-(a-2)(a+2)=3a2-9a+a-3-(a2-4)=3a2-9a+a-3-a2+4=2a2-8a+1.(5分)∵a2-4a+1=0, ∴a2=4a-1, ∴原式=2(4a-1)-8a+1=-1.(821. 解: (1)∵AB=AC, ∴∠C=∠B.∵∠A=40°, ∴∠B==70°.(3分)(2)连接DE, DF.在△BDE与△CFD中, ∴△BDE≌△CFD(SAS), ∴DE=DF.(7分)∵G 为EF的中点, ∴DG⊥EF, ∴DG垂直平分EF.(9分)22. 解: (1)零售商自带的零钱为50元. (2分)(2)(330-50)÷80=280÷80=3.5(元).答: 降价前他每千克西瓜出售的价格是3.5元. (4分)(3)(450-330)÷(3.5-0.5)=120÷3=40(千克), 80+40=120(千克).答: 他一共批发了120千克西瓜. (7分)(4)450-120×1.8-50=184(元).答: 这位水果零售商一共赚了184元. (9分)23. 解:(1)DE⊥DA.(1分)理由如下:∵∠BAC=90°, AB=AC, ∴∠B=∠C=45°.(2分)∵MN∥BC, ∴∠DAE=∠B=45°.(3分)∵DA=DE, ∴∠DEA=∠DAE=45°, ∴∠ADE=180°-∠DEA-∠DAE=90°, 即DE⊥DA.(5分)(2)选A DB=DP.(6分)理由如下:∵DP⊥DB, ∴∠BDE+∠EDP=90°.(7分)由(1)知DE⊥DA, ∴∠ADP+∠EDP=90°, ∴∠BDE=∠ADP.(9分)∵∠DEA=∠DAE=45°, ∴∠BED=∠DAE+∠BAC=135°, ∠DAP=∠DAE+∠BAC=135°, ∴∠BED=∠DAP.(10分)在△DEB和△DAP中, ∴△DEB≌△DAP(ASA), ∴DB=DP.(12分)或选B DB=DP.(6分)理由如下: 如图, 延长AB至F, 连接DF, 使DF=DA.(7分)同(1)得∠DFB=∠DAF=45°, ∴∠ADF=90°.∵DP⊥DB, ∴∠FDB=∠ADP.(9分)∵∠BAC=90°, ∠DAF=45°, ∴∠PAD=45°, ∴∠BFD=∠PAD.(10分)在△DFB和△DAP中, ∴△DFB≌△DAP(ASA),∴DB=DP.(12分)。
2022年最新北师大版七年级数学下册期末测评 卷(Ⅱ)(含答案及详解)
北师大版七年级数学下册期末测评 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、如图,将一个棱长为3的正方体表面涂上颜色,再把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,只有一个面被涂色的概率为( ) A .427 B .29C .827D .227 2、如图,直线a ∥b ,Rt △ABC 的直角顶点C 在直线b 上.若∠1=50°,则∠2的度数为( ) A .30°B .40°C .50°D .60° 3、如图,已知∠BAC =∠ABD =90°,AD 和BC 相交于O .在①AC=BD ;②BC =AD ;③∠C =∠D ;④OA=OB .条件中任选一个,可使△ABC ≌△BAD .可选的条件个数为( )·线○封○密○外A.1 B.2 C.3. D.44、已知一个正方形的边长为a+1,则该正方形的面积为()A.a2+2a+1 B.a2-2a+1 C.a2+1 D.4a+4 5、已知∠1与∠2互为补角,且∠1>∠2,则∠2的余角是()A.∠1B.122∠-∠C.∠2D.122∠+∠6、若∠A与∠B互为补角,且∠A=28°,则∠B的度数是()A.152°B.28°C.52°D.90°7、下列运算正确的是().A.a2•a3=a6B.a3÷a=a3C.(a2)3=a5D.(3a2)2=9a48、如图,点A在DE上,点F在AB上,△ABC≌△EDC,若∠ACE=50°,则∠DAB=()A.40°B.45°C.50°D.55°9、如图,直线l1∥l2,直线l3与l1、l2分别相交于点A,C,BC⊥l3交l1于点B,若∠2=30°,则∠1的度数为()A .30°B .40°C .50°D .60°10、下列运算正确的是( ) A .235b b b += B .33a a a ⋅= C .824y y y ÷= D .()3328x x = 第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分) 1、如图,点D 、 E 分别在ABC 的AB 、AC 边上,沿DE 将ADE 翻折,点A 的对应点为点A ',∠A 'EC =α,∠A 'DB =β,且α<β,则∠A 等于________(用含α、β表示). 2、从分别写有2,4,5,6的四张卡片中任取一张,卡片上的数是偶数的概率为_____. 3、如图,OE 是AOB ∠的平分线,CD OB ∥交OA 于点C ,交OE 于点D ,50ACD ∠=︒,则CDO ∠的度数是______°.4、如图,在△ABC 中,AD 是BC 边上的中线,BE 是△ABD 中AD 边上的中线,若△ABC 的面积是80,则△ABE 的面积是________. ·线○封○密○外5、若()0211x -=,则x ≠______.6、比较大小:4442____33337、抛掷一枚质地均匀硬币,第一次正面朝上,第二次也是正面朝上,问第三次是正面朝上的可能性为__________.8、若实数m ,n 满足m 2﹣m +3n 2+3n =﹣1,则m ﹣2﹣n 0=_____.9、如图,在ABC 中,AF 是中线,AE 是角平分线,AD 是高,90BAC ∠=︒,13BC =,12AB =,5AC =,则根据图形填空:(1)BF =_________,AD =_________;(2)BAE ∠=_________︒,CAE ∠=_________︒.10、在关系式38y x =+中,当122y =时,x 的值是________.三、解答题(5小题,每小题8分,共计40分)1、(阅读与理解)折纸,常常能为证明一个命题提供思路和方法,例如,在△ABC 中,AB >AC (如图),怎样证明∠C >∠B 呢?(分析)把AC 沿∠A 的角平分线AD 翻折,因为AB >AC ,所以点C 落在AB 上的点C ’处,即AC =AC ’,据以上操作,易证明△ACD ≌△AC ’D ,所以∠AC ’D =∠C ,又因为∠AC ’D >∠B ,所以∠C >∠B .(感悟与应用)(1)如图(1),在△ABC 中,∠ACB =90°,∠B =30°,CD 平分∠ACB ,试判断AC 和AD 、BC 之间的数量关系,并说明理由; (2)如图(2),在四边形ABCD 中,AC 平分∠DAB ,CD =CB .求证:∠B +∠D =180°. 2、李华同学用11块高度都是1cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个正方形ABCD (∠ABC =90°,AB =BC ),点B 在EF 上,点A 和C 分别与木墙的顶端重合,求两堵木墙之间的距离EF . 3、已知在纸面上画有一数轴,如图所示.(1)折叠纸面,使表示1的点与表示-1的点重合,则表示-3的点与表示 的点重合;(直接写出答案) (2)折叠纸面,使表示-1的点与表示3的点重合,则表示100的点与表示数 的点重合;(直接写出答案)(3)已知在数轴上点A 表示的数是a ,将点A 移动10个单位得到点B ,此时点B 表示的数和a 是互为相反数,求a 的值. 4、将边长为a 的正方形的左上角剪掉一个边长为b 的正方形(如图1),将剩下部分按照虚线分割成·线○封○密·○外①和②两部分,将①和②两部分拼成一个长方形(如图2),解答下列问题:(1)设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2,请用含a ,b 的式子表示:S 1= ,S 2= ;(不必化简)(2)由(1)中的结果可以验证的乘法公式是 ;(3)利用(2)中得到的公式,计算:20212﹣2020×2022.5、按照要求进行计算:(1)计算:()()()222223x x y xy xy y x xy xy ⎡⎤----÷⎣⎦(2)利用乘法公式进行计算:()()22x y z x y z ++---参考答案-一、单选题1、B【分析】将一个棱长为3的正方体分割成棱长为1的小正方体,一共可得到27个小立方体,其中一个面涂色的有6块,可求出相应的概率.【详解】解:将一个棱长为3的正方体分割成棱长为1的小正方体,一共可得到3×3×3=27(个),有6 个一面涂色的小立方体,所以,从27个小正方体中任意取1个,则取得的小正方体恰有一个面涂色的概率为62279 , 故选:B . 【点睛】 本题考查了概率公式,列举出所有等可能出现的结果数和符合条件的结果数是解决问题的关键.2、B【分析】由平角的定义可求得∠BCD 的度数,再利用平行线的性质即可求得∠2的度数.【详解】解:如图所示:∵∠1=50°,∠ACB =90°, ∴∠BCD =180°﹣∠1﹣∠BCD =40°, ∵a ∥b , ∴∠2=∠BCD =40°. 故选:B .【点睛】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等. 3、D 【分析】 先得到∠BAC =∠ABD =90°,若添加AC =BD ,则可根据“SAS ”判断△ABC ≌△BAD ;若添加BC =AD ,则可利用“HL ”证明Rt △ABC ≌Rt △BAD ,若添加∠C =∠D ,则可利用“AAS ”证明△ABC ≌△BAD ;若添加·线○封○密○外OA =OB ,可先根据“ASA ”证明△AOC ≌△BOD 得∠C =∠D ,则可利用“AAS ”证明△ABC ≌△BAD .【详解】解:在△ABC 和△BAD 中,90BA AB BAC ABD AC BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABC ≌△BAD故选AC=BD 可使△ABC ≌△BAD .∵∠BAC =∠ABD =90°,∴△ABC 和△BAD 均为直角三角形在Rt △ABC 和Rt △BAD 中,BA AB BC AD =⎧⎨=⎩∴Rt △ABC ≌Rt △BAD故选BC=AD 可使△ABC ≌△BAD .在△ABC 和△BAD 中,90BA AB BAC ABD C D =⎧⎪∠=∠=︒⎨⎪∠=∠⎩∴△ABC ≌△BAD故选∠C=∠D 可使△ABC ≌△BAD .∵OA=OB∴OAB OBA ∠=∠∵∠BAC =∠ABD =90°,∴OAC OBD ∠=∠在△AOC 和△BOD 中, OA OB AOC BOD OAC OBD =⎧⎪∠=∠⎨⎪∠=∠⎩ ∴△AOC ≌△BOD ∴C D ∠=∠ 在△ABC 和△BAD 中, 90BA AB BAC ABD C D =⎧⎪∠=∠=︒⎨⎪∠=∠⎩ ∴△ABC ≌△BAD 故选OA=OB 可使△ABC ≌△BAD . ∴可选的条件个数有4个 故选:D 【点睛】 本题考查了全等三角形的判定:判定三角形全等的方法有“SSS ”、“SAS ”、“ASA ”、“AAS ”、“HL ”. 4、A 【分析】 由题意根据正方形的面积公式可求该正方形的面积,再根据完全平方公式计算即可求解. 【详解】 解:该正方形的面积为(a +1)2=a 2+2a +1. 故选:A . ·线○封○密·○外【点睛】本题主要考查列代数式,解题的关键是熟练掌握正方形的面积公式以及完全平方公式.5、B【分析】由已知可得∠2<90°,设∠2的余角是∠3,则∠3=90°﹣∠2,∠3=∠1﹣90°,可求∠3=122∠-∠,∠3即为所求.【详解】解:∵∠1与∠2互为补角,∴∠1+∠2=180°,∵∠1>∠2,∴∠2<90°,设∠2的余角是∠3,∴∠3=90°﹣∠2,∴∠3=∠1﹣90°,∴∠1﹣∠2=2∠3, ∴∠3=122∠-∠,∴∠2的余角为122∠-∠,故选B .【点睛】本题主要考查了与余角补角相关的计算,解题的关键在于能够熟练掌握余角和补角的定义. 6、A 【分析】 根据两个角互为补角,它们的和为180°,即可解答. 【详解】 解:∵∠A 与∠B 互为补角, ∴∠A +∠B =180°, ∵∠A =28°, ∴∠B =152°. 故选:A 【点睛】 本题考查了补角,解决本题的关键是熟记补角的定义. 7、D 【分析】 分别根据同底数幂的乘法法则、同底数幂的除法法则、幂的乘方法则以及积的乘方法则逐一判断即可. 【详解】 解:A 、a 2•a 3= a 5 a 6,故本选项不合题意; ·线○封○密·○外B、a3÷a= a2≠a3,故本选项不合题意;C、(a2)3= a6≠a5,故本选项不合题意;D、(3a2)2=9a4,故本选项符合题意;故选:D.【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,掌握运算法则正确计算是本题的解题关键.8、C【分析】首先根据△ABC≌△EDC得到∠E=∠BAC,然后由三角形外角的性质求解即可.【详解】解:∵△ABC≌△EDC,∴∠E=∠BAC,∵∠DAC=∠E+∠ACE,∴∠DAB+∠BAC=∠E+∠ACE,∴∠DAB=∠ACE=50°,故选:C.【点睛】此题考查了三角形全等的性质,三角形外角的性质,解题的关键是熟练掌握三角形全等的性质,三角形外角的性质.9、D【分析】根据平行线的性质和垂直的定义解答即可.【详解】解:∵BC ⊥l 3交l 1于点B ,∴∠ACB =90°,∵∠2=30°,∴∠CAB =180°−90°−30°=60°,∵l 1∥l 2,∴∠1=∠CAB =60°.故选:D .【点睛】 此题考查平行线的性质,关键是根据平行线的性质解答. 10、D 【分析】根据整式的运算法则逐项检验即可.【详解】解:A 、b 2与b 3不是同类项,不能合并,故该选项不符合题意;B 、34a a a ⋅=,原计算错误,故该选项不符合题意;C 、826y y y ÷=,原计算错误,故该选项不符合题意;D 、()3328x x =,正确,故该选项符合题意; 故选:D . 【点睛】 本题考查了合并同类项,同底数幂的乘法除法,积的乘方等整式的相关运算法则,能够熟记基本的运算法则并灵活运用,正确计算是解决本题的关键. ·线○封○密·○外二、填空题1、1122βα-【分析】根据翻转变换的性质得到ADE A DE =∠',AED A ED ∠=∠',根据三角形的外角的性质计算,即可得到答案.【详解】解:∵A DB β∠'=, ∴由折叠的性质可知,11(180)9022ADE A DE ββ∠=∠'=︒-=︒-,AED A ED ∠=∠',设DEC x ∠=,∵AED A ED ∠=∠',∴180x x α︒-=+, 解得:1902x α=︒-, ∴1902DEC α∠=︒-,A DEC ADE ∴∠=∠-∠1190(90)22αβ=︒--︒- 1122βα=-, 故答案为:1122βα-. 【点睛】 本题考查的是翻转变换的性质,三角形的外角的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.·线2、34【分析】根据概率的求法,让是偶数的卡片数除以总卡片数即为所求的概率.【详解】解答:解:∵四张卡片上分别标有数字2,4,5,6,其中有2,4,6,共3张是偶数, ∴从中随机抽取一张,卡片上的数字是偶数的概率为34, 故答案为:34. 【点睛】点评:本题考查随机事件概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n . 3、25【分析】 先证明1,2AODBOD AOB 再证明,50,CDO BOD ACD AOB 从而可得答案.【详解】解: OE 是AOB ∠的平分线, 1,2AOD BOD AOB ∵CD OB ∥,50ACD ∠=︒,50,CDOBOD ACD AOB 125,2CDO AOB 故答案为:25本题考查的是角平分线的定义,平行线的性质,熟练的运用平行线的性质与角平分线的定义证明角的相等是解本题的关键.4、20【分析】根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可解答.【详解】解:∵AD 是BC 上的中线,∴S △ABD =S △ACD =12S △ABC ,∵BE 是△ABD 中AD 边上的中线,∴S △AB E =S △BED =12S △ABD ,∴S △ABE =14S △ABC , ∵△ABC 的面积是80,∴S △ABE =14×80=20. 故答案为:20.【点睛】本题主要考查了三角形面积的求法,掌握三角形的中线将三角形分成面积相等的两部分,是解答本题的关键.5、12## 【分析】 直接利用零指数幂的底数不为0可得出答案.·线解:∵(2x﹣1)0=1,∴2x﹣1≠0,.解得:x≠12.故答案为:12【点睛】此题主要考查了零指数幂,正确掌握零指数幂的底数不为0是解题关键.6、【分析】把它们化为指数相同的幂,再比较大小即可.【详解】解:∵2444=(24)111=16111,3333=(33)111=27111,而16111<27111,∴2444<3333,故答案为:<.【点睛】本题主要考查了幂的乘方以及有理数大小比较,熟记幂的运算法则是解答本题的关键.7、1##2【分析】根据概率的意义直接回答即可.【详解】解:∵每次抛掷硬币正面朝上的概率均为12,且三次抛掷相互不受影响,∴抛掷一枚质地均匀的硬币,若第一次是正面朝上,第二次也是正面朝上, 则第三次正面朝上的概率为12, 故答案为:12.【点睛】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.8、3【分析】利用完全平方公式分别对等式中的m 、n 配方得到2211()3()022m n -++=,根据平方式的非负性求出m 、n 的值,再代入求解即可.【详解】解:由m 2﹣m +3n 2+3n =﹣1,得:m 2﹣m +3n 2+3n +1=0, ∴2211()3()044m m n n -++++=, 即2211()3()022m n -++=, ∵21()02m -≥,213()02n +≥, ∴102m -=,102n +=, 解得:m =12,12n =-, ∴m -2﹣n 0=201122-⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=4-1=3. ·线故答案为:3.【点睛】本题考查代数式的求值、完全平方公式、平方式的非负性、负整数指数幂、零指数幂,会利用完全平方公式求解是解答的关键.9、6.5601345 45 【分析】(1)根据三角形高和中线的定义进行求解即可得到答案;(2)根据三角形角平分线的定义进行求解即可【详解】解:(1)在ABC 中,AF 是中线, ∴1 6.52BF CF BC ===, ∵90BAC ∠=,13BC =,12AB =,5AC =,AD 是高, ∴11=22ABC S AC AB BC AD ⋅=⋅, ∴6013AB AC AD BC ⋅==; (2)∵90BAC ∠=,AE 是角平分线,∴=45BAE CAE =∠∠,故答案为:6.5,6013;45,45.【点睛】本题主要考查了三角形高,角平分线和中线的定义,解题的关键在于能够熟练掌握相关知识进行求解.10、38【分析】把y 的值代入解析式,解一元一次方程即可.【详解】解:把y=122代入38y x =+中,得:122=3x+8,解得:x=38.故答案为38.【点睛】本题考查了一次函数自变量的值,利用已知条件代入式子求解,是比较简单的题目.三、解答题1、(1)AC +AD =BC ;(2)证明见解答过程;【分析】(1)把AC 沿∠ACB 的角平分线CD 翻折,点A 落在BC 上的点A ′处,连接A′D ,根据直角三角形的性质求出∠A ,根据三角形的外角性质得到∠A ′DB =∠B ,根据等腰三角形的判定定理得到A ′D =A ′B ,结合图形计算,证明结论; (2)将AD 沿AC 翻折,使D 落在AB 上的D ′处,连接CD ′,根据全等三角形的性质得到CD =CD ′=BC ,∠D =∠AD ′C ,进而证明结论; 【详解】 (1)解:AC +AD =BC , 理由如下:如图,把AC 沿∠ACB 的角平分线CD 翻折,点A 落在BC 上的点A ′处,连接A′D , ·线○∵∠ACB=90°,∠B=30°,∴∠A=90°-∠B=60°,由折叠的性质可知,CA′=CA,A′D=AD,∠CA′D=∠A=60°,∵∠B=30°,∴∠A′DB=∠CA′D-∠B=30°,∴∠A′DB=∠B,∴A′D=A′B,∴AD=A′B,∴BC=CA′+A′B=AC+AD;(2)证明:如图,将AD沿AC翻折,使D落在AB上的D′处,连接CD′,则△ADC≌△AD′C,∴CD=CD′=BC,∠D=∠AD′C,∴∠B=∠BD′C,∵∠BD′C+∠AD′C=180°,∴∠B+∠D=180°.本题考查的是翻折变换的性质、等腰三角形的性质,掌握翻折变换的性质是解题的关键. 2、11cm【分析】根据∠ABE 的余角相等求出∠EAB =∠CBF ,然后利用“角角边”证明△ABE 和△BCF 全等,根据全等三角形对应边相等可得AE =BF ,BE =CF ,于是得到结论.【详解】解:∵AE ⊥EF ,CF ⊥EF ,∴∠AEB =∠BFC =90°,∴∠EAB +∠ABE =90°,∵∠ABC =90°,∴∠ABE +∠CBF =90°,∴∠EAB =∠CBF ,在△ABE 和△BCF 中,90EAB CBF AEB BFC AB BC ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩, ∴△ABE ≌△BCF (AAS ), ∴AE =BF =5cm ,BE =CF =6cm , ∴EF =5+6=11(cm ). 【点睛】 本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键. 3、(1)3;(2)-98;(3)a 的值为5或-5 ·线○(1)根据对称的知识,若1表示的点与-1表示的点重合,则对称中心是原点,从而找到-3的对称点;(2)由表示−1的点与表示3的点重合,可确定对称中心是表示1的点,则表示100的点与对称中心距离为99,与左侧与对称中心距离为99的点重合;(3)分两种情况分析,①若A 往左移10个单位得10a -,②若A 往右移10个单位得10a +.【详解】(1)根据题意,得对称中心是原点,则−3表示的点与数3表示的点重合,故答案为:3;(2)∵表示-1的点与表示3的点重合,∴表示100的点与表示数-98的点重合;(3)①若A 往左移10个单位得10a -,根据题意得()100a a -+=.解得:5a =.②若A 往右移10个单位得10a +,根据题意得:()100a a ++=,解得:5a =-.答:a 的值为5或-5.【点睛】此题考查数轴上的点和数之间的对应关系,结合数轴,找到对称中心是解决问题的关键.4、(1)22()()a b a b a b ,-+-;(2)22()()a b a b a b +-=-;(3)1.【分析】(1)根据图形以及正方形和长方形的面积计算公式即可解答;(2)由(1)中所得的S ₁和S ₂的面积相等即可解答;(3)根据(2)中的公式,将2020×2022写成(2021-1)×(2021+1),然后按照平方差公式进行化简,再按照有理数的混合运算计算出即可.【详解】解:(1)根据图形以及正方形和长方形的面积计算公式可得:S ₁=a 2﹣b 2,S ₂=(a +b )(a ﹣b ) 故答案是:a 2﹣b 2,(a +b )(a ﹣b );(2)由(1)所得结论和面积相等,则可以验证的乘法公式是a 2﹣b 2=(a +b )(a ﹣b ). 故答案是:(a +b )(a ﹣b )=a 2﹣b 2.(3)运用(2)所得的结论可得:20212﹣2020×2022=20212﹣(2021﹣1)×(2021+1)=20212﹣(20212﹣1)=20212﹣20212+1=1.【点睛】本题考查了平方差公式的几何背景及其在简算中的应用,灵活利用数形结合思想以及掌握平方差公式的形式是解答本题的关键. 5、(1)1133xy -(2)22242x y yz z --- 【分析】(1)先计算中括号内的整式乘法,再运用多项式除以单项式的法则计算即可; (2)运用平方差公式计算即可. 【详解】 解:(1)()()()222223x x y xy xy y x xy xy ⎡⎤----÷⎣⎦ ·线○封=()()22322322233x y x y x y x y x y xy xy ⎡⎤----+÷⎣⎦=22322322233x y x y x y x y x y xy xy ⎡⎤--++-÷⎣⎦=23223x y xy xy ⎡⎤-÷⎣⎦ =1133xy - (2)()()22x y z x y z ++--=()()222x y z -+=()22242x y yz z -++ =22242x y yz z ---.【点睛】本题考查了整式的乘除和乘法公式,解题关键是熟练掌握整式运算法则,熟练运用乘法公式进行计算.。
最新北师大版七年级数学下册期末考试卷(含答案)
本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意!最新北师大版七年级数学下册期末考试卷(含答案)一、选择题(每题3分,共18分)1、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形(5)长方形,在这五种图形中是轴对称图形的有( )A 、1个B 、2个C 、3个D 、4个2、下列运算正确的是( )。
A 、1055a a a =+B 、2446a a a =⨯C 、a a a =÷-10D 、044a a a =-3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )A 、154B 、31C 、51D 152 4、1纳米相当于1根头发丝直径的六万分之一。
则利用科学记数法来表示,头发丝的半径是()A、6万纳米 B、6×104纳米 C、3×10-6米 D、3×10..-5米5、下列条件中,能判定两个直角三角形全等的是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为()(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车Array停下来了.A、1个B、2个C、3个D、4个二、填空题(每空3分,共27分)7、单项式313xy -的次数是 . 8、一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为 三角形.9、在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为 万元.10、如图∠AOB=1250,AO ⊥OC ,B0⊥0D 则∠COD= .11、小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是 .ODCB A12、若229++是一个完全平方式,则k等于.a ka13、()32+m(_________)=942-m14、已知:如图,矩形ABCD的长和宽分别为2和1,以D为圆心, AD为半径作AE弧,再以AB的中点F为圆心,FB长为半径作BE弧,则阴影部分的面积为.15、观察下列运算并填空:1×2×3×4+1=25=52;2×3×4×5+1=121=112:3×4×5×6+1=361=192;……根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1= 。
【最新】北师大版数学七年级下册《期末测试卷》附答案解析
B. ∠BEA =∠CDAC. BE =CD北师大版七年级下学期期末测试数 学 试 卷学校________班级________姓名________ 成绩________一、选择题(本大题共 12 小题,每小题 4 分,共 48 分)1.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.下列计算正确 是( )A. 3a ·4a =12aB. a 3·a 2=a 12C. (-a 3)4=a 12D. a 6÷a 2=a 3的3.将 0.0000019 用科学计数法表示为()A. 1.9×10-6B. 1.9×10-5C. 19×10-7D. 0.19×10-54.如图,AB ∥CD ,直线 l 交 AB 于点 E ,交 CD 于点 F ,若∠2=80°,则∠1 等于()A. 80°B. 100°C. 110°D. 120°5.点 D 、E 分别在级段 AB 、AC 上,CD 与 BE 相交于点 O ,已知 AB =AC ,添加以下哪一个条件不能判定 △ABE ≌△ACD ()A. ∠B =∠CD. CE =BD△6.如图,把 ABC 纸片沿 DE 折叠,当点 A 落在四边形 BCDE 内部时,如果∠1=40°,∠2=30°,那么∠A =( )则2 D.3 .A.40°B.30°C.70°D.35°7.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=20°,则∠2的度数为()A.25°B.65°C.70°D.75°8.已知a+b=5,ab=3,则a2+b2的值为()A19 B.25 C.8 D.69.已知a=8131,b=2741,c=961,a、b、cA.a>b>cB.a>c>b大小关系是()C.a<b<cD.b>c>a的10.有四条线段,长度分别是4,6,8,10,从中任取三条能构成直角三角形的概率是()A.13B.14C.1411.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M 和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④△ABD边AB 上的高等于DC.其中正确的个数是()A.1B.2C.3D.412.求1+2+22+23+…+22019的值,可令S=1+2+22+23+…+22019,则2S=2+22+23+…+22019+22020n,,,因此2S-S=22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为()A.52019-1B.52020-1C.52020-14D.52019-14二、填空题(共6小题,每小题4分,满分24分)13.若a m=3,a n=2,则a m+=_______;14.若x2-2mx+9是一个完全平方式,则m的值为______;15.如图:AB∥CD,AE平分∠BAC CE平分∠ACD,则∠1+∠2=_____;16.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行_____米.17.等腰三角形两边长为4cm、6cm,求等腰三角形的周长.18.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O AD与BC交于点P BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP =BQ;④DE=DP;⑤∠AOE=120°,其中正确结论有_____;(填序号).三、解答题(共9小题,满分78分,解答应写出必要的文字说明,证明过程或演算步骤)19.计算(1)(2a4)2÷a3-a2·a3;(2)2a2b(-3b2c)÷(4ab3)20.先化简,再求值,(x+1)(x-1)-(x-2)2,其中x=1421.如图,AC和BD相交于点O,OA=OC,OB=OD,则线段AB与CD有什么位置类系?并说明理由.22.填空:如图,已知DG⊥BC,BC⊥AC,EF⊥AB,∠1=∠2,试判断CD与AB的位置关系:.解:CD⊥AB∵DG⊥BC,BC⊥AC(已知)∴∠DGB=∠_____=90°(垂直定义)∴DG∥AC,(____________________)∴∠2=∠_________(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠________(等量代换)∴EF∥______(同位角相等,两直线平行)∴∠AEF=∠ADC,(________________)∵EF⊥AB,∴∠AEF=90°∴∠ADC=90°即:CD⊥AB.23.在一个装有2个红球和3个白球(每个球除颜色外完全相同)的盒子中任意摸出一个球,摸到红球小明获胜,摸到白球小刚获胜,这个游戏对双方公平吗?为什么?如何修改可以让游戏公平?24.我县出租车车费标准如下:2千米以内(含2千米)收费4元;超过2千米的部分每千米收费1.5元.(1)写出收费y(元)与出租车行驶路程x(km)(x>2)之间的关系式;(2)小明乘出租车行驶6km,应付多少元?(3)小颖付车费16元,那么出租车行驶了多少千米?25.如图,在方格纸中,每个小正方形的边长为1,其中有两个格点A、B和直线l.(1)在直线l上找一点M,使得MA=MB;(2)找出点A关于直线l的对称点A1;(3)P为直线l上一点,连接BP,△AP,当ABP周长最小时,画出点P的位置,并直接写出△ABP周长的最小值.26.如图,已知在△ABC中,AB=AC,BC=12厘米,点D为AB上一点且BD=8厘米,点P在线段BC上以2厘米/秒的速度由B点向C点运动,设运动时间为t,同时,点Q在线段CA上由C点向A点运动.(1)用含t的式子表示PC的长为_______________;(2)若点Q的运动速度与点p的运动速度相等,当t=2时,三角形BPD与三角形CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,请求出点Q的运动速度是多少时,能够使三角形BPD与三角形CQP全等?27.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,△ADC和△CEB全等吗?请说明理由.(2)聪明的小亮发现,当直线MN绕点C旋转到图1的位置时,可得DE=AD+BE,请你说明其中的理由.(3)小亮将直线MN绕点C旋转到图2的位置,线段DE、AD、BE之间存在着什么的数量关系,请写出这一关系,并说明理由.答案与解析一、选择题(本大题共12小题,每小题4分,共48分)1.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故选D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.【此处有视频,请去附件查看】2.下列计算正确的是()A.3a·4a=12aB.a3·a2=a12C.(-a3)4=a12D.a6÷a2=a3【答案】C【解析】【分析】直接利用单项式乘以单项式;同底数幂的乘法运算法则;以及幂的乘法运算法则和同底数幂除法运算法则分别计算得出答案.【详解】A项3a·4a=12a2故A项错误.B项a3·a2=a5故B项错误.C项(-a3)4=a12正确.D项a6÷a2=a4故D项错误.【点睛】此题考查了单项式乘以单项式、同底数幂的乘法运算法则以及幂的乘法运算法则和同底数幂除法运算法则运算法则,熟练掌握运算法则是解题的关键.3.将0.0000019用科学计数法表示为()A.1.9×10-6B.1.9×10-5C.19×10-7D.0.19×10-5【答案】A【解析】【分析】利用科学计数法,表达的形式a×10n,其中0≤|a|<10,n是负整数,其n是原数前面0的个数,包括小数点前面的0.【详解】1.9×10-6【点睛】本题考查:小于1的正数也可以利用科学记数法表示,一般形式为a×10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.4.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于()A.80°B.100°C.110°D.120°【答案】B【解析】【分析】利用AB∥CD,所以∠1=∠CFE,因为∠2+∠CFE=180°,∠2=80°,所以∠CFE=100°,因此∠1=100°【详解】因为AB∥CD,所以∠1=∠CFE,因为∠2+∠CFE=180°,∠2=80°,所以∠CFE=100°,因此∠1=100°.故选B【点睛】本题考查平行线的性质,要熟练掌握内错角相等两直线平行;同旁内角互补两直线平行;同位角相等,两直线平行.5.点D、E分别在级段AB、AC上,CD与BE相交于点O,已知AB=AC,添加以下哪一个条件不能判定△ABE≌△ACD()A.∠B=∠CB.∠BEA=∠CDAC.BE=CDD.CE=BD【答案】C【解析】【分析】把选项代入,可知A、B、D都符合全等三角形的判定,只有C项不符合.【详解】添加A选项中条件可用ASA判定两个三角形全等;添加B选项以后是AAS,判定两个三角形全等;添加C是SSA,无法判定这两个三角形全等;添加D因为AB=AC,CE=BD,所以AD=AE,又因为∠A=∠A,AB=AC所以,这两个三角形全等,SAS.故选C.【点睛】本题考查全等三角形的判定,要掌握ASA,SSS,SAS,AAS是解题的关键.△6.如图,把ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,如果∠1=40°,∠2=30°,那么∠A=()A.40°B.30°C.70°D.35°【答案】D【解析】【分析】根据折叠的性质得到∠AED=∠A´ED,∠ADE=∠A´DE,一,再根据平角的性质和三角形内角和定理得出答案.【详解】因为折叠使∠A ED=∠A´ED,∠ADE=∠A´DE,所以∠1+∠AEA´=180°,因为∠1=40°,所以∠AEA´=140°,即∠AED=∠A´ED=70°,同理求出∠ADE=∠A´DE=75°,因为ΔA´DE的内角和180°,所以∠A´=180°-70°-75°=35°,即∠A=35°.则【点睛】本题考查折叠的性质、平角的性质、三角形内角和定理来解,熟练掌握折叠会出现相等的角和线段.7.如图,a ∥b ,点 A 在直线 a 上,点 C 在直线 b 上,∠BAC =90°,AB =AC ,若∠1=20°,则∠2 的度数为()A. 25°B. 65°C. 70°D. 75°【答案】B.【解析】试题分析:∵∠BAC=90°,AB=AC ,∴∠B=∠ACB=45°,∵∠1=20°,∴∠ACE=20°+45°=65°,∵a ∥b ,∴∠2=∠ACE=65°,故选 B .考点: 1.等腰直角三角形;2.平行线的性质.8.已知 a +b =5,ab =3,则 a 2+b 2 的值为()A. 19B. 25C. 8D. 6【答案】A【解析】【分析】先根据完全平方公式得到 a 2+b 2=(a+b )2-2ab ,然后把 a+b=5,ab=3 整体代入计算即可.【详解】因为 a 2+b 2=(a+b )2-2ab ,a+b=5,ab=3,所以 a 2+b 2=(a+b )2-2ab=25-6=19.【点睛】本题考查了完全平方公式:(a ±b )2=a 2±2ab+b 2.也考查了整体代入的思想运用.9.已知 a = 8131,b = 2741,c = 961, a 、b 、c 的大小关系是( ) A. a >b >c【答案】AB. a >c >bC. a <b <cD. b >c >a2 D.33 B.14 C.1.【分析】先把a,b,c化成以3为底数的幂的形式,再比较大小.【详解】解:a=8131=3124,b=3123,c=961=3122,a>b>c.故选A.【点睛】此题重点考察学生对幂的大小比较,掌握同底数幂的大小比较方法是解题的关键10.有四条线段,长度分别是4,6,8,10,从中任取三条能构成直角三角形的概率是()A.14【答案】B【解析】【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率.【详解】从四条线段中任意选取三条,所有的可能有:4,6,8;4,6,10;6,8,10;4,8,10共4种,其中构成直角三角形的有6,8,10共1种,则P(构成直角三角形)=1 4故选B.【点睛】从四条线段中任意选取三条,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率.11.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④△ABD边AB 上的高等于DC.其中正确的个数是()A.1B.2C.3D.4【解析】【分析】①根据作图的过程可以判定AD是∠BAC的角平分线;②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB 的中垂线上;④利用角平分线上的一点到线段两端点的距离相等,因此判断出△ABD边AB上的高等于DC.【详解】①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠CAD=∠BAD=12∠CAB=30°,∴∠ADC=90°-∠2=60°,即∠ADC=60°.故②正确;③∵∠BAD=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④角平分线上的一点到线段两端点的距离相等,因此判断出△ABD边AB上的高等于DC.故④正确.综上所述,正确的结论是:①②③④,共有4个.故选D.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时,需要熟悉等腰三角形的判定与性质.12.求1+2+22+23+…+22019的值,可令S=1+2+22+23+…+22019,则2S=2+22+23+…+22019+22020因此2S-S=22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为()A.52019-1B.52020-1C.52020-14 D.52019-142019【解析】【分析】根据题目信息,设 S=1+5+52+53+…+52019,表示出 5S=5+52+53+…+52020,然后相减求出 S 即可.【详解】根据题意,设 S=1+5+52+53+…52019,则 5S=5+52+53+…52020,5S-S=(5+52+53+…52020)-(1+5+52+53+…52019),4S=52020-1,所以,1+5+52+53+…+5 = 52020 1 4故选 C .【点睛】本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.二、填空题(共 6 小题,每小题 4 分,满分 24 分)13.若 a m =3,a n =2,则 a m +n =_______;【答案】6【解析】【分析】先根据同底数幂的乘法法则把代数式化为已知的形式,再把已知代入求解即可.【详解】∵a m •a n =a m+n ,∴a m+n =a m •a n =3×2=6.【点睛】解答此题的关键是熟知同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即 a m •a n =a m+n .14.若 x 2-2mx +9 是一个完全平方式,则 m 的值为______;【答案】±3【解析】【分析】本题考查完全平方公式的灵活应用,这里首末两项是 x 和 3 的平方,那么中间项为加上或减去 x 和 3 的乘积的 2 倍.【详解】∵x 2-2mx+9 是一个完全平方式,∴-2m=±6,∴∠1=∠BAC,∠2=∠ACD,o.解得:m=±3.故答案为±3.【点睛】本题主要考查完全平方公式,属于基础题,关键是根据两平方项确定出这两个数,再根据乘积二倍项求解.15.如图:AB∥CD,AE平分∠BAC,CE平分∠ACD,则∠1+∠2=_____;【答案】90°【解析】试题解析:AB∥CD,∠BAC+∠ACD=180o,∵AE平分∠BAC,CE平分∠ACD,112211∴∠1+∠2=(∠BAC+∠ACD)=⨯180o=90.22故答案为90o.点睛:两直线平行,同旁内角互补.16.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行_____米.【答案】10米【解析】【分析】根据实际问题抽象出数学图形,作垂线构造直角三角形,利用勾股定理求出结果【详解】解:如图,设大树高为AB=10米,, , 小树高为 CD=4 米,过 C 点作 CE ⊥AB 于 E ,则 EBDC 是矩形,连接 AC ,∴EB=4m ,EC=8m ,AE=AB-EB=10-4=6 米,在 △Rt AEC 中,AC= AE 2 + EC 2 =10 米故答案为 10.【点睛】本题考查勾股定理的应用,即 a 2 + b 2 = c 2 .17.等腰三角形两边长为 4cm 、6cm ,求等腰三角形的周长.【答案】14cm 或 16cm【解析】【分析】由于两边的长为 4m 和 6cm ,具体哪边是底,哪边是腰题目没有明确,应分两种情况讨论.【详解】解:当腰长是 6m ,底长是 4cm 时,4+6>6,故能构成三角形,则周长是 4+6+6=16cm ;当腰长是 4m ,底长是 6cm 时,4+4>6,故能构成三角形,则周长是:4+4+6=14cm ;则等腰三角形 周长是 14cm 或 16cm .故答案为 14cm 或 16cm【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边时要分类进行讨论,同时要验证各种情况是否能构成三角形进行解答.18.如图,C 为线段 AE 上一动点(不与点 A ,E 重合),在 AE 同侧分别作等边△ABC 和等边△CDE ,AD 与BE 交于点 O AD 与 BC 交于点 P BE 与 CD 交于点 Q ,连接 PQ .以下五个结论:①AD =BE ;②PQ ∥AE ;③AP=BQ ;④DE =DP ;⑤∠AOE =120°,其中正确结论有_____;(填序号).【答案】①②③⑤【解析】分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC△,得到CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;③根据②△CQB≌△CPA(ASA),可知③正确;④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,即∠AOE=180°-60°=120°可知⑤正确.【详解】∵等边△ABC和等边△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,∴①正确,∵△ACD≌△BCE,∴∠CBE=∠DAC,又∵∠ACB=∠DCE=60°,∴∠BCD=60°,即∠ACP=∠BCQ,又∵AC=BC,∴△CQB≌△CPA(ASA),∴CP=CQ,(又∵∠PCQ=60°△可知 PCQ 为等边三角形,∴∠PQC=∠DCE=60°,∴PQ ∥AE ②正确,∵△CQB ≌△CPA ,∴AP=BQ ③正确,∵AD=BE ,AP=BQ ,∴AD-AP=BE-BQ ,即 DP=QE ,∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ ,∠CDE=60°,∴∠DQE ≠∠CDE ,故④错误;∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等边△DCE ,∠EDC=60°=∠BCD ,∴BC ∥DE ,∴∠CBE=∠DEO ,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,∴∠AOE=180°-60°=120°∴⑤正确.故正确的有:①②③⑤.【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质,利用旋转不变性,找到不变量,是解题的关键.三、解答题(共 9 小题,满分 78 分,解答应写出必要的文字说明,证明过程或演算步骤)19.计算(1)(2a 4)2÷a 3-a 2·a 3;(2)2a 2b (-3b 2c )÷(4ab 3)【答案】 1)3a 5 (2)- 3 2ac 【解析】【分析】(1)根据整式混合运算即可求出结果;(2)单项式乘以单项式和单项式除以单项式即可求出答案.【详解】(1)原式=4a 8÷a 3- a 2·a 3=4a 5-a 5=3a 5..(2)原式=-6a2b3c÷(4ab3)=-32ac【点睛】本题考查整式混合运算和单项式乘以单项式、单项式除以单项式,熟练掌握其定义即可20.先化简,再求值,(x+1)(x-1)-(x-2)2,其中x=14【答案】4x﹣5,﹣4【解析】利用平方差公式和完全平方公式进行化简,然后代入求值即可解:(x+1)(x﹣1)﹣(x﹣2)2=x2﹣1﹣x2+4x﹣4=4x﹣5;当x=11时,原式=4×﹣5=﹣4.4421.如图,AC和BD相交于点O,OA=OC,OB=OD,则线段AB与CD有什么位置类系?并说明理由.【答案】AB∥CD,理由看详解.【解析】分析】根据ΔABO≌ΔCDO,求出∠C=∠A,根据内错角相等,两直线平行.【详解】在ΔABO和ΔCDO中,AO=CO,∠AOB=∠COD(对顶角相等),BO=DO.所以ΔABO≌ΔCDO (SAS),所以∠C=∠A,所以AB∥CD(内错角相等,两直线平行).因此AB和CD的位置关系是平行.【点睛】本题考查平行线的判定,内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.22.填空:如图,已知DG⊥BC,BC⊥AC,EF⊥AB,∠1=∠2,试判断CD与AB的位置关系:解:CD⊥AB∵DG⊥BC,BC⊥AC(已知)∴∠DGB=∠_____=90°(垂直定义)∴DG∥AC,(____________________)∴∠2=∠_________.(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠________(等量代换)∴EF∥______(同位角相等,两直线平行)∴∠AEF=∠ADC,(________________)∵EF⊥AB,∴∠AEF=90°∴∠ADC=90°即:CD⊥AB.【答案】∠ACB;同位角相等,两直线平行;∠ACD;∠ACD;CD;两直线平行,同位角相等.【解析】【分析】根据垂直于同一直线的两条直线平行,证出DG∥AC,再根据DG∥AC,∠1=∠2,证出∠1=∠ACD,所以EF∥CD,因此∠AEF=∠ADC=90°,即CD⊥AB.【详解】解:CD⊥AB∵DG⊥BC,BC⊥AC(已知)∴∠DGB=∠_ACB__=90°(垂直定义)∴DG∥AC,(同位角相等,两直线平行_____)∴∠2=∠ACD__.(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠ACD_(等量代换)∴EF∥__CD__(同位角相等,两直线平行)∴∠AEF=∠ADC,(_两直线平行,同位角相等__)∵EF⊥AB,∴∠AEF=90°...∴∠ADC=90°即:CD⊥AB.【点睛】本题考查平行线的判定和平行线的性质的综合运用,要熟练掌握是做题的关键23.在一个装有 2 个红球和 3 个白球(每个球除颜色外完全相同)的盒子中任意摸出一个球,摸到红球小明获胜,摸到白球小刚获胜,这个游戏对双方公平吗?为什么?如何修改可以让游戏公平?【答案】不公平;理由看详解;取出一个白球,使红球和白球的个数相等,这样游戏公平【解析】分析】根据红球和白球的个数,以及总个数,求出 P(小明获胜)和 P(小刚获胜),比较大小所以游戏即可.再根据取出一个白球,使红球和白球的个数相等,P(小明获胜)= 1 2 ;P(小刚获胜)= 1 2,获胜的概率相等,游戏公 平.【详解】因为共 5 个球,红球 2 个,白球 3 个,所以 P(小明获胜)= 2 5 ;P(小刚获胜)= 3 5 , 2 3 < ,所以游 5 5 戏不公平.取出一个白球,使红球和白球的个数相等,P(小明获胜)= 1 2 ;P(小刚获胜)= 1 2,获胜的概率相 等,游戏公平.【点睛】本题考查游戏的公平性,即概率的意义:一般地,如果在一次试验中,有 n 种可能的结果,并且它们发生的可能性都相等,事件 A 包含其中的 m 中结果,那么事件 A 发生的概率为 P (A )=m n . 24.我县出租车车费标准如下:2 千米以内(含 2 千米)收费 4 元;超过 2 千米的部分每千米收费 1.5 元.(1)写出收费 y (元)与出租车行驶路程 x (km )(x >2)之间的关系式;(2)小明乘出租车行驶 6km ,应付多少元?(3)小颖付车费 16 元,那么出租车行驶了多少千米?【答案】(1) y=1+1.5x ;(2)10 元;(3)10 千米.【解析】【分析】根据题意列出来表达式,y=1+1.5x ,然后当 x=6 时求出 y 值,最后当 y=16 时,再求出 x 值.【详解】(1) y=4+(x-2)×1.5=4+1.5x-3=1+1.5x ,即 y=1+1.5x .(2)当 x=6km 时,y=1+1.5×6=10 元,即小明乘出租车行驶 6km ,应付 10 元.(3)当 y=16 元时,则 16=1+1.5x ,则 x=10km ,即小颖付车费 16 元,那么出租车行驶了 10 千米.【点睛】本题考查变量之间的关系,根据题意列出表达式是解题的关键25.如图,在方格纸中,每个小正方形的边长为1,其中有两个格点A、B和直线l.(1)在直线l上找一点M,使得MA=MB;(2)找出点A关于直线l的对称点A1;(3)P为直线l上一点,连接BP,△AP,当ABP周长最小时,画出点P的位置,并直接写出△ABP周长的最小值.【答案】答案看详解.【解析】【分析】(1)连接AB,做AB的垂直平分线L1,L1与L相交于点M,连接MA和MB,所以MA=MB.(2)过A点向L做垂线AO,并延长AO,使AO=A1O,即A1即为所求.(3)由(2)知A点关于L的对称点A1连接BA与L相交于P,P点即为所求.1【详解】(1)(2)(3)由图知:△ABP周长=AP+BP+AB=AB+BP+P A1=4+6=10,即△ABP周长的最小为10.【点睛】本题考查垂直平分线上的一点到线段两端点的距离相等,一点关于一条直线对称,轴对称最短线路问题,本题关键是掌握两点间线段最短.26.如图,已知在△ABC中,AB=AC,BC=12厘米,点D为AB上一点且BD=8厘米,点P在线段BC上以2厘米/秒的速度由B点向C点运动,设运动时间为t,同时,点Q在线段CA上由C点向A点运动.(1)用含 t 的式子表示 PC 的长为_______________;(2)若点 Q 的运动速度与点 p 的运动速度相等,当 t =2 时,三角形 BPD 与三角形 CQP 是否全等,请说明理由;(3)若点 Q 的运动速度与点 P 的运动速度不相等,请求出点 Q 的运动速度是多少时,能够使三角形 BPD 与三角形 CQP 全等?【答案】(1)PC=12-2t ;(2)ΔBPD ≌ΔCQP 理由见详解;(3) 8 3cm/s 【解析】【分析】(1)根据 BC=12cm ,点 P 在线段 BC 上以 2 厘米/秒的速度由 B 点向 C 点运动,所以当 t 秒时,运动 2t ,因此PC=12-2t.(2)若点 Q 的运动速度与点 p 的运动速度相等,当 t =2s 时,则 CQ=4cm ,BP=4cm ,因为 BC=12cm ,所以 PC=8cm,又因为 BD=8cm ,AB=AC ,所以∠B=∠C,因此求出 ΔBPD≌ΔCQP.(3) 已知∠B=∠C,BP≠CQ,根据 ΔBPD≌ΔCQP 得出 BP=PC ,进而算出时间 t ,再算出 v 即可.【详解】(1)由题意得出:PC=12-2t(2)若点 Q 的运动速度与点 p 的运动速度相等,当 t =2s 时,则 CQ=4cm ,BP=4cm ,∵ BC=12cm ,∴PC=8cm,又∵BD=8cm,AB=AC ,∴∠B=∠C,在 ΔBPD 和 ΔCQP 中,CQ=BP, ∠B=∠C,PC=BD,∴ΔBPD≌ΔCQP(SAS ).(3)若点 Q 的运动速度与点 P 的运动速度不相等,∵V p ≠V Q ,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则 BP=PC=6cm,CQ=BD=8cm,∴点 P 、点 Q 运动的时间 t=CQ 8 8 8 ∴V Q == = cm/s ,即 Q 速度为 cm/s. t3 3 3 BP 2=3s , 【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有 SAS ,ASA ,AAS ,SSS ,题目比较好,但是有一定的难度.27.在△ABC 中,∠ACB =90°,AC =BC ,直线 MN 经过点 C ,且 AD ⊥MN 于 D ,BE ⊥MN 于 E .(1)当直线MN绕点C旋转到图1的位置时,△ADC和△CEB全等吗?请说明理由.(2)聪明的小亮发现,当直线MN绕点C旋转到图1的位置时,可得DE=AD+BE,请你说明其中的理由.(3)小亮将直线MN绕点C旋转到图2的位置,线段DE、AD、BE之间存在着什么的数量关系,请写出这一关系,并说明理由.【答案】(1)△ADC≌△CEB;(2)理由见详解;(3)理由见详解.【解析】【分析】(1)由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,则∠ADC=∠CEB=90°,根据等角的余角相等得到∠ACD=∠CBE,易得Rt△ADC≌Rt△CEB,(2)由(1)可知△ADC≌△CEB所以AD=CE,DC=BE,即可得到DE=DC+CE=BE+AD.(3)根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,得到AD=CE,DC=BE,所以DE=CE-CD=AD-BE.【详解】(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC和△CEB中,∠ADC=∠CEB∠ACD=∠CBEAC=CB,∴△ADC≌△CEB(AAS).(2)由(1)可知△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(3)证明:在△ADC和△CEB中,∠ADC=∠CEB=90°∠ACD=∠CBEAC=CB,∴△ADC≌△CEB(AAS),∴AD=CE,DC=BE,∴DE=CE-CD=AD-BE;【点睛】本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了直角三角形全等的判定与性质.。
最新北师大新版七年级下学期数学期末考试试卷(精品期末试卷含数学参考答案)
2024—2025学年最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、纳米是一种长度单位,它用来表示微小的长度,1纳米为十亿分之一米,即10﹣9米.甲型H1N1流感病毒的直径大约83纳米左右,“83纳米”用科学记数法表示为()A.8.3×10﹣8米B.8.3×10﹣9米C.83×10﹣9米D.0.83×10﹣11米2、下列运算正确的是()A.a4+a3=a7B.(a﹣1)2=a2﹣1C.(a3b)2=a3b2D.a(2a+1)=2a2+a3、下列说法正确的是()A.10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大B.从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大C.小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件D.抛一枚质地均匀的硬币,正面朝上的概率为,连续抛此硬币2次必有1次正面朝上4、等腰三角形的两边长分别为4cm和9cm,则这个三角形的周长为()A.22cm B.17cm或13cmC.13cm D.17cm或22cm5、如图,在三角形ABC中,∠C=90°,AC=5,点P是边BC上的动点,则AP的长不可能是()A.4.8B.5C.6D.76、根据下列条件能画出唯一确定的△ABC的是()A.AB=4,BC=3,∠A=30°B.AB=3,BC=4,AC=8C.∠A=60°,∠B=45°,AB=4D.∠A=50°,∠B=60°,∠C=70°7、如图,AB∥DC,BC∥DE,∠B=145°,则∠D的度数为()A.25°B.35°C.45°D.55°8、七巧板是我国古代的一项发明,被誉为“东方魔板”,19世纪传到国外被称为“唐图”,它是由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成.如图,在七巧板铺成的正方形地板上,一个小球自由滚动,则小球停留在阴影部分的概率为()A.B.C.D.9、如果(x 2﹣px +1)(x 2+6x ﹣7)的展开式中不含x 2项,那么p 的值是( )A .1B .﹣1C .2D .﹣210、如图1,矩形ABCD 中,BD 为其对角线,一动点P 从D 出发,沿着D →B →C 的路径行进,过点P 作PQ ⊥CD ,垂足为Q .设点P 的运动路程为x ,PQ ﹣DQ 为y ,y 与x 的函数图象如图2,则AD 的长为( )A .B .C .D .二、填空题(每小题3分,满分18分)11、计算(﹣0.25)2024×(﹣4)2025的结果是 .12、若(x ﹣1)(x ﹣2)=x 2+mx +n ,则n m 的值为 .13、若x ﹣2y =2,则10x ÷100y = .14、如图,在锐角三角形ABC 中,AD 是边BC 上的高,在BA ,BC 上分别截取线段BE ,BF ,使BE =BF ;分别以点E ,F 为圆心,大于EF 的长为半径画弧,在∠ABC 内,两弧交于点P ,作射线BP ,交AD 于点M ,过点M 作MN ⊥AB 于点N .若MN =2,AD =4MD ,则AM = ,15、如图,△ABC 中,AB =AC =4,P 是BC 上任意一点,过P 作PD ⊥AC 于D ,PE ⊥AB 于E ,若S △ABC =12,则PE +PD = .16、如图,点C ,D 分别是边∠AOB 两边OA 、OB 上的定点,∠AOB =20°,OC =OD =4.点E ,F 分别是边OB ,OA 上的动点,则CE +EF +FD 的最小值是 .第5题图 第7题图 第8题图 第16题图第15题图 第14题图2024—2025学年最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:;18、先化简,再求值:[(2a+b)2﹣(2a+b)(2a﹣b)]÷2b,其中a=2,b=﹣1.19、如图,点D、E分别是等边三角形ABC边BC、AC上的点,且BD=CE,BE与AD交于点F.求证:AD=BE.20、如图,EF∥CD,GD∥CA,∠1=140°.(1)求∠2的度数;(2)若DG平分∠CDB,求∠A的度数.21、如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,BE平分∠ABC交AC于点E,交CD于点F,过点E作EG∥CD,交AB于点G,连接CG.(1)求证:∠A+∠AEG=90°(2)求证:EC=EG;(3)若CG=4,BE=5,求四边形BCEG的面积.22、如图,长方形ABCD中,点P沿着四边按B→C→D→A方向运动,开始以每秒m个单位匀速运动,a秒后变为每秒2个单位匀速运动,b秒后恢复原速匀速运动.在运动过程中,△ABP的面积S与运动时间t的函数关系如图所示.(1)求长方形的长和宽;(2)求m、a、b的值;(3)当P点运动到BC中点时,有一动点Q从点C出发,以每秒1个单位的速度沿C→D→A运动,当一个点到达终点,另一个点也停止运动,设点Q运动的时间为x秒,△BPQ的面积为y,求y与x之间的关系式.23、如图①,点A、点B分别在直线EF和直线MN上,EF∥MN,∠ABN=45°,射线AC从射线AF的位置开始,绕点A以每秒2°的速度顺时针旋转,同时射线BD从射线BM的位置开始,绕点B以每秒6°的速度顺时针旋转,射线BD 旋转到BN的位置时,两者停止运动.设旋转时间为t秒.(1)∠BAF=°;(2)在转动过程中,当射线AC与射线BD所在直线的夹角为80°,求出t 的值.(3)在转动过程中,若射线AC与射线BD交于点H,过点H作HK⊥BD交直线AF于点K,的值是否会发生改变?如果不变,请求出这个定值;如果改变,请说明理由.24、对于任意有理数a、b、c、d,定义一种新运算:.(1)=;(2)对于有理数x、y,若是一个完全平方式,则k;(3)对于有理数x、y,若x+y=10,xy=22.①求的值;②将长方形ABCD和长方形CEFG按照如图方式进行放置,其中点B、C、G在同一条直线上,点E在边CD上,连接BD、BF.若AD=x,AB=nx,FG =y,EF=ny,图中阴影部分的面积为45,求n的值.25、△ABC中,∠ACB=90°,AC=BC,点D是BC边上的一个动点,连接AD 并延长,过点B作BF⊥AD延长线于点F.(1)如图1,若AD平分∠BAC,AD=6,求BF的值;(2)如图2,M是FB延长线上一点,连接AM,当AD平分∠MAC时,试探究AC、CD、AM之间的数量关系并说明理由;(3)如图3,连接CF,①求证:∠AFC=45°;②S△BCF =,S△ACF=21,求AF的值.2024—2025学年最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、﹣412、13、100 14、6 15、6 16、4三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、918、2a+b,3.19、略20、(1)40°(2)40°21、(1)证明略(2)证明略(3)1022、(1)长为8,宽为4(2)a=4,b=11,m=1(3)y=.23、(1)135(2)20或25(3)不变,=.24、(1)﹣4;(2)2或﹣2;(3)①56;②2.25、(1)3;(2)AM=AC+CD,理由略(3)①∠AFC=45°;②AF的值为12.。
最新北师大版七年级(下册)数学期末试卷和答案2套
北师大版七年级下册数学期末试卷(含答案)一、细心填一填(每小题2分,共计20)1. 计算:32x x ⋅ = ;2ab b 4a 2÷= .2.如果1kx x 2++是一个完全平方式,那么k 的值是.3.如图,两直线a 、b 被第三条直线c 所截,若∠1=50°,∠2=130°,则直线a 、b 的位置关系是 . 4. 温家宝总理在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为万元.5. 一只蝴蝶在空中飞行,然后随意落在如图所示的某一方格中(每个方格除颜色外完全相同),则蝴蝶停止在白色方格中的概率是 .6. 等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是.7. 如图,已知∠BAC=∠DAE=90°,AB=AD ,要使△ABC≌△ADE,还需要添加的条件是 .8.现在规定两种新的运算“﹡”和“◎”:a ﹡b=;a ◎b=2ab,如(2﹡3)(2◎3)=(22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]= .9.某物体运动的路程s (千米)与运动的时间t (小时)关系如图所示,则当t=3小时时,物体运动所经过的路程为 千米.10.某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图 所示, 则该汽车的号码是 .二、相信你的选择(每小题只有一个正确的选项,每小题3分,共计30分)11.下列图形中不是..正方体的展开图的是( )A B C D 12. 下列运算正确..的是( ) A .1055a a a =+ B .2446a a a =⨯ C .a a a =÷-10 D .044a a a =-13. 下列结论中,正确..的是( ) A.若22b a ,b a ≠≠则 B.若22b a , b a >>则 11△ADB≌△EDB≌△EDC ,则∠C 的度数是( )A.15°B.20°C.25°D.30° 15. 由四舍五入得到近似数3.00万( )A.精确到万位,有1个有效数字B. 精确到个位,有1个有效数字C.精确到百分位,有3个有效数字D. 精确到百位,有3个有效数字 16. 观察一串数:0,2,4,6,….第n 个数应为( )A.2(n -1)B.2n -1C.2(n +1)D.2n +1 17.下列关系式中,正确..的是( ) A.()222b a b a -=- B.()()22b a b a b a -=-+C.()222b a b a +=+ D.()222b 2ab a b a +-=+18. 如图表示某加工厂今年前5来说,该厂( ) A.1月至3月每月产量逐月增加,4、5两月产量逐月 减小B.1月至3月每月产量逐月增加,4、5两月产量与3 持平C.1月至3月每月产量逐月增加,4、5生产D. 1月至3月每月产量不变,4、5两月均停止生产 19.下列图形中,不一定...是轴对称图形的是( ) A.等腰三角形 B.线段 C.钝角 D.直角三角形20. 长度分别为3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为( )A.1B.2C. 3D.4三、精心算一算(21题3分,22题5分,共计8分)21.()()3426y y 2-;22.先化简()()()()1x 5x 13x 13x 12x 2-+-+--,再选取一个你喜欢的数代替x ,并求原代数式的值。
北师大版七年级数学下册期末测试卷及答案(最新版)
(北师大版)七年级下册数学期末模拟试卷及答案考试时间90分钟一、选择题:(每小题3分,共36分。
每小题四个选项中,只有一个是正确的。
) 1.下列计算正确的是( )A .x+x=2x 2,B .x 3•x 2=x 5,C .(x 2)3=x 5,D .(2x )2=2x 2 2.一个三角形的三条边长分别为1、2、x ,则x 的取值范围是( ) A .1≤x≤3, B .1<x≤3, C .1≤x <3, D .1<x <3 3.如图,AB ∥CD ,∠CDE=140°,则∠A 的度数为( ) A .140°, B .60°, C .50°, D .40°4.如图,AB ∥CD ,DB ⊥BC ,∠2=50°,则∠1的度数是( ) A .40°, B .50°, C .60°, D .140°5.以下事件中,必然发生的是( ) A .打开电视机,正在播放体育节目 B .正五边形的外角和为180°C .通常情况下,水加热到100℃沸腾D .掷一次骰子,向上一面是5点6.已知点P (a a 31,2-)在第二象限,若点P 到x 轴的距离与到y 轴的距离之和为6,则a 的值为( )A .1-B .1C .5D .37.一个多边形的内角和与它的一个外角和为570°,则这个多边形的边数为( )A .5B .6C .7D .88.贝贝解二元一次方程组⎩⎨⎧=+=+12y x py x 得到的解是⎪⎩⎪⎨⎧∆==y x 21,其中y 的值被墨水盖住了,不过她通过验算求出了y 的值,进而解得p 的值为( )A .21B .1C .2D .39.如图,在△ABC 中,∠ABC=50°,∠ACB=80°,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .100°B .110°C .115°D .120°10.如果()()q a pa a a +-++3822的乘积不含a 3和a 2项,那么p ,q 的值分别是( )A .p =0,q =0B .3-=p ,q =9C .p =3,q =8D .p =3,q =111.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A .(5,4)B .(4,5)C .(3,4)D .(4,3)12.若定义()()a b b a f ,,=,()()n m n m g --=,,,例如()()3,23,2=f ,()()4,14,1=--g ,则()()6,5-f g 的值为( )A .(6-,5)B .(5-,6-)C .(6,5-)D .(5-,6)第Ⅱ卷 非选择题二、填空题:本大题共6小题,满分18分.把答案填写在题中横线上13.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数量用科学记数法可表示为________cm . 14.已知()()ab x b x a x x ++=++52,b a +=________.15.从A 沿北偏东60°的方向行驶到B ,再从B 沿南偏西20°的方向行驶到C ,则∠ABC=________度.16.已知⊙O 的半径为6cm ,(1)OB=6cm ,则点B 在________;(2)若OB=7.5cm ,则点B 在________.17.已知三元一次方程组⎪⎩⎪⎨⎧=-=+=-1721y z z x y x ,则z y x +-的值为________.18.若多项式42++mx x 能用完全平方公式分解因式,则m 的值是________.三、解答题:本大题共6小题,满分66分.解答应写出必要的计算过程、推演步骤或文字说明.19.(1)解方程组⎩⎨⎧=-=+5342y x y x (5分)(2)分解因式:r p q pqr q 225105++ (5分) 20.(1)利用公式计算803×797(4分)(2)先化简,再求值:()()()a b a b b a b a 24222-++-+,其中21-=a ,2=b (6分) 21.(7分)如图,已知A 、B 两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x 轴上行驶,从原点O 出发.(1)汽车行驶到什么位置时离A 村最近?写出此点的坐标. (2)汽车行驶到什么位置时离B 村最近?写出此点的坐标. (3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?22.(7分)一个零件的形状如图所示,按规定∠A 应等于90°,∠B ,∠C 应分别是21°和32°.检验工人量得∠BDC=148°.就断定这个零件不合格,这是为什么?23.(10分)2012年12月1日,世界上第一条地处高寒地区的高铁线路——哈大高铁正式通车运营。
【最新】北师大版七年级下册数学《期末考试试卷》(带答案)
二、填空题(每题2分)
11.已知 是方程2x﹣ay=3的一个解,那么a的值是_____.
12.如图,将三角尺与直尺贴在一起,使三角尺的直角顶点 ( )在直尺的一边上,若 ,则 的度数等于____.
13.要使 在实数范围内有意义,x应满足的条件是_____.
6.已知四边形ABCD各边长如图所示,且四边形OPEF≌四边形ABCD.则PE的长为( )
A.3B.5C.6D.10
【答案】D
【解析】
【详解】∵四边形OPEF≌四边形ABCD
∴PE=BC=10,
故选D.
【点睛】本题考查全等形的性质,对应边相等,对应角相等,能正确地找到对应边是解题的关键.
7.若点P(a,b)在第三象限,则点Q(-a,b-1)在( )
【详解】解:∵直尺的两边互相平行,
∴∠3=∠1=60°,
∴∠2=90°-∠3=90°-60°=30°.
故答案为:30°.
【点睛】本题考查了平行线的性质,余角的定义,是基础题,熟记性质并准确识图是解题的关键.
13.要使 在实数范围内有意义,x应满足的条件是_____.
【答案】
【解析】
【分析】
二次根号下的数为非负数时,二次根式才有意义。
A.第一象限B.第二象限C.第三象限D.第四象限
【答案】D
【解析】
本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)
根据各象限内点的符号特征确定点的位置.
解:若点P(a,b)在第四象限,则a>0,b<0,
最新北师大版七年级数学下册期末考试(含答案)
最新北师大版七年级数学下册期末考试(含答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.小丽在纸上画了一条数轴后,折叠纸面,使数轴上表示2的点与表示-4的点重合;若数轴上A 、B 两点之间的距离为10(A 在B 的左侧),且A 、B 两点经上述折叠后重合,则A 点表示的数是( )A .-5B .-6C .-10D .-43.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A .40°B .45°C .50°D .55°43815244,…,其中第6个数为( )A 373535235.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB = 6.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A .118°B .119°C .120°D .121°7.若3a b +=,则226a b b -+的值为( )A .3B .6C .9D .128.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或79.如图,直线l 1∥l 2,∠α=∠β,∠1=50°,则∠2的度数为( )A .130°B .120°C .115°D .100°10.已知关于x 的方程2x-a=x-1的解是非负数,则a 的取值范围为( )A .1a ≥B .1a >C .1a ≤D .1a <二、填空题(本大题共6小题,每小题3分,共18分)1.把命题“等角的补角相等”改写成“如果…那么…”的形式是______.2.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是________.3.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 __________.4.方程()()()()32521841x x x x +--+-=的解是_________.5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.6.木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为______________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)4935x y x y -+=⎧⎨+=⎩ (2)3224()5()2x y x y x y +=⎧⎨+--=⎩2.如果方程34217123x x -+-=- 的解与关于x 的方程4x -(3a +1)=6x +2a -1的解相同,求代数式a 2+a -1的值.3.已知:如图,∠C=∠1,∠2和∠D 互余,BE ⊥FD 于点G .试说明:AB ∥CD .4.尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)5.现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数;(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.6.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B 两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、C6、C7、C8、D9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、如果两个角是等角的补角,那么它们相等.2、55°3、180°4、3x=.5、40°6、两点确定一条直线.三、解答题(本大题共6小题,共72分)1、(1)12xy=-⎧⎨=⎩;(2)71xy=⎧⎨=⎩2、x=10;a=-4;11.3、略4、略.5、(1)甲蛋糕店数量为100家,该市蛋糕店总数为600家;(2)甲公司需要增设25家蛋糕店.6、(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆。
最新北师大版七年级数学下册期末测试卷及答案
最新北师大版七年级数学下册期末测试卷及答案班级___________ 姓名___________ 成绩_______一、填空题(每空3分,共24分)1. 已知,2)31()9(732=⋅a 则12a 的值为 。
2. 已知三点M 、N 、P 不在同一条直线上,且MN=4厘米,NP=3厘米,M 、P 两点间的距离为x 厘米,那么x 的取值范围是 。
3. 3.一只小鸟自由自在在空中飞翔,然后随意落在下图(由16个小正方形组成)中,则落在阴影部分的概率是 。
4.假如小猫在如图所示的地板上自由地走来走去,并随意停留在某块方砖上,它最终停留在黑色方砖上的概率是 (图中每一块方砖除颜色外完全相同)。
5.计算:8100×0.125100= 。
6.如图,ΔABC 中,AB 的垂直平分线交AC 于点M 。
若CM=3cm ,BC=4cm ,AM=5cm ,则ΔMBC 的周长=_____________cm 。
.7、有一种原子的直径约为0.00000053米,它可以用科学记数法表示为___________米。
8数量x (千克) 1 2345售价y (元)3+0.1 6+0.2 9+0.3 12+0.4 15+0.5写出用x 表示y 的公式是________.二、选择题(每小题3分,共24分)9.掷一颗均匀的骰子,6点朝上的概率为( )A .0B .21 C .1 D .61 10.地球绕太阳每小时转动通过的路程约是51.110km ⨯,用科学记数法表示地球一天(以24小时计)转动通过的路程约是( )A .70.26410km ⨯B .62.6410km ⨯C .526.410km ⨯D .426410km ⨯ 11.=5)(m a ( ) (A )m a+5 (B )ma-5 (C ) ma5 (D )55m a12.)()23)(23(=---b a b a(A )2269b ab a -- (B )2296a ab b -- (C )2249b a - (D )2294a b -13.如图,下列条件中,不能判断直线l 1∥l 2的是( ) A 、∠1=∠3 B 、∠2=∠3C 、∠4=∠5D 、∠2+∠4=180°14.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是( )A 、第一次向右拐50°,第二次向左拐130°B 、第一次向左拐30°,第二次向右拐30C 、第一次向右拐50°,第二次向右拐130°D 、第一次向左拐50°,第二次向左拐13015.一个多项式的平方是m a a ++122,则=m ( )。
最新北师大版七年级数学下册期末考试【附答案】
最新北师大版七年级数学下册期末考试【附答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.对于任何有理数a ,下列各式中一定为负数的是( ).A .(3)a --+B .a -C .1a -+D .1a --2.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总 人口为4400000000人,这个数用科学记数法表示为( )A .4.4×108B .4.40×108C .4.4×109D .4.4×10103.如图,ABCD 为一长方形纸带,AB ∥CD ,将ABCD 沿EF 折,A 、D 两点分别与A D ''、对应,若∠1=2∠2,则∠AEF 的度数为( )A .60°B .65°C .72°D .75°4.如图, BD 是△ABC 的角平分线, AE ⊥ BD ,垂足为 F ,若∠ABC =35°,∠ C =50°,则∠CDE 的度数为( )A .35°B .40°C .45°D .50° 5.12-的倒数是( ) A . B . C .12- D .126.当1<a<2时,代数式|a -2|+|1-a|的值是( )A .-1B .1C .3D .-37.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .8.关于x 的不等式2(1)40x a x ><-⎧⎨-⎩的解集为x >3,那么a 的取值范围为( ) A .a >3 B .a <3 C .a ≥3 D .a ≤39.已知3,5a b x x ==,则32a b x -=( )A .2725B .910C .35D .52 10.如图所示的几何体的主视图是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a 1-,4.则a 的取值范围是________.2.如图,在△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,动点P 从A 点出发,先以每秒2cm 的速度沿A →C 运动,然后以1cm /s 的速度沿C →B 运动.若设点P 运动的时间是t 秒,那么当t =_______________,△APE 的面积等于6.3.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.4.如图,AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD ,∠ABO =a °.有下列结论:①∠BOE=12(180-a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确的结论是________(填序号).5.若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为________.6.化简:9=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)x-12(3x-2)=2(5-x)(2)24x+-1=236x-2.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求a bm cdm+++的值.3.(1)如图a示,AB∥CD,且点E在射线AB与CD之间,请说明∠AEC=∠A+∠C的理由.(2)现在如图b示,仍有AB∥CD,但点E在AB与CD的上方,①请尝试探索∠1,∠2,∠E三者的数量关系;②请说明理由.4.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.5.为丰富学生的课余生活,陶冶学生的情趣,促进学生全面发展,其中七年级开展了学生社团活动.学校为了解学生参加情况,进行了抽样调查,制作如下的统计图:请根据上述统计图,完成以下问题:(1)这次共调查了______名学生;扇形统计图中,表示“书法类”所在扇形的圆心角是______度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名,请估算有多少名学生参加文学类社团?6.有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、C5、A6、B7、B8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1a4<<2、1.5或5或93、(3,7)或(3,-3)4、①②③5、126、3三、解答题(本大题共6小题,共72分)1、(1)x=6(2 x=02、(1)a+b=0,cd=1,m=±2;(2)3或-13、(1)略;(2)∠1+∠2-∠E=180°.4、(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒.5、(1)50;72;(2)详见解析;(3)330.6、(1)1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨;(2)货运公司应安排大货车8辆时,小货车2辆时最节省费用.。
新北师大版七年级数学下册期末测试卷(带答案)
新北师大版七年级数学下册期末测试卷(带答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+7C.12或7+7D.以上都不对2.如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x ax+4<的解集为()A.3x2>B.x3>C.3x2<D.x3<3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x4.如图,若AB,CD相交于点O,∠AOE=90°,则下列结论不正确的是()A.∠EOC与∠BOC互为余角B.∠EOC与∠AOD互为余角C.∠AOE与∠EOC互为补角D.∠AOE与∠EOB互为补角5.若数a使关于x的不等式组232x ax a->⎧⎨-<-⎩无解,且使关于x的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个7.点()1,3M m m ++在y 轴上,则点M 的坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,28.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .09.用代数式表示:a 的2倍与3 的和.下列表示正确的是( )A .2a -3B .2a +3C .2(a -3)D .2(a +3)10.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯二、填空题(本大题共6小题,每小题3分,共18分)1.已知5a =2b =10,那么 ab a b+的值为________. 2.绝对值不大于4.5的所有整数的和为________.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4.如图,已知直线AB 、CD 、EF 相交于点O ,∠1=95°,∠2=32°,则∠BOE=________.5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________.6.将一副三角板如图放置,若20AOD ∠=,则BOC ∠的大小为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)321123x x -+-= (2)31322322105x x x +-+-=-2.化简求值:(1)化简:()()2222332a b a b ---(2)先化简,再求值:()()2223124a b ab a b ab +----,其中2019a =,12019b =3.如图,已知点A(-2,3),B(4,3),C(-1,-3).(1)求点C 到x 轴的距离;(2)求三角形ABC 的面积;(3)点P在y轴上,当三角形ABP的面积为6时,请直接写出点P的坐标.4.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;=2,求点C的坐(2)若直线AB上的点C在第一象限,且S△BOC标.5.小颖同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)小颖同学共调查了多少名居民的年龄,扇形统计图中a,b各等于多少?(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有1500人,请估计年龄在15~59岁的居民的人数.6.某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、C5、B6、B7、D8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、12、03、15°4、53°5、±46、160°三、解答题(本大题共6小题,共72分)1、(1)17x =-;(2)716x =.2、(1)25b ;(2)21--a b ;2020-.3、(1)3;(2)18;(3)(0,5)或(0,1).4、(1)直线AB 的解析式为y=2x ﹣2,(2)点C 的坐标是(2,2).5、(1)300,a =20%,b =12%;(2)答案见解析;(3)5100.6、(1)购进甲矿泉水300箱,购进乙矿泉水200箱;(2)该商场售完这500箱矿泉水,可获利5600元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西安名校2018-2019学年度第二学期七年级期末考试数学试题一、选择题(本大题共10小题,共30.0分)1.下列方程是二元一次方程的是A. B. C. D.【答案】B【解析】解:A、,是一元一次方程,故此选项错误;B、,是二元一次方程,故此选项正确;C、,是二元二次方程,故此选项错误;D、,是二元二次方程,故此选项错误;故选:B.直接利用方程的定义分析得出答案.此题主要考查了二元一次方程的定义,正确把握定义是解题关键.2.如图图形中,既是轴对称图形又是中心对称图形的是A.B.C.D.【答案】A【解析】解:A、是轴对称图形,也是中心对称图形,故本选项正确;B、不是轴对称图形,也不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误;故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.若方程的解与关于x的方程的解相同,则a的值为A. 2B.C. 1D.【答案】D【解析】解:得:.把代入方程得:解得:.故选:D.先解方程,得,因为这个解也是方程的解,根据方程的解的定义,把x代入方程中求出a的值.本题考查了方程的解的定义,就是能够使方程左右两边相等的未知数的值解题的关键是正确解一元一次方程.4.下列正多边形的组合中,能够铺满地面的是A. 正六边形和正方形B. 正五边形和正八边形C. 正六边形和正三角形D. 正十边形和正三角形【答案】C【解析】解:A、正六边形和正方形内角分别为、,不能构成的周角,故不能铺满,故此选项错误;B、正五边形、正八边形内角分别为、,不能构成的周角,故不能铺满,故此选项错误;C、正六形、正三角形内角分别为、,因为或,能构成周角,故能铺满,故此选项正确;D、正十边形和正三角形内角分别为、,不能构成的周角,故不能铺满,故此选项错误.故选:C.正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为若能,则说明能铺满;反之,则说明不能铺满.此题主要考查了平面镶嵌,两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.5.如图,直线,直线c分别与a,b相交于A,C两点,于点A,AB交直线b于点B,若,则的度数为A.B.C.D.【答案】B【解析】解:如图,,,,,,故选:B.先根据,,求得的度数,再根据平行线的性质,即可得到的度数.本题主要考查了平行线的性质,解题的关键是掌握:两直线平行,内错角相等.6.若,则下列不等式中,不成立的是A. B. C. D.【答案】D【解析】解:A、B、不等式的两边都加或都减同一个整式,不等号的方向不变,故A、B正确;C、不等式的两边都乘以同一个正数不等号的方向不变,故C正确;D、不等式的两边都乘以同一个负数不等号的方向改变,故D错误;故选:D.根据不等式的性质1,可判断A、B,根据不等式的性质2,可判断C,根据不等式的性质3,可判断D.本题考查了不等式的性质,不等式的两边都乘以同一个负数不等号的方向改变.7.如图,在长方形ABCD中,放入六个形状、大小相同的小长方形即空白的长方形,若,,则一个小长方形的面积为A.B.C.D. 32【答案】B【解析】解:设小长方形的长为x,宽为y,如图可知,,解得:.所以小长方形的面积故选:B.设长方形的长和宽为未数,根据图示可得两个量关系:小长方形的1个长个宽,小长方形的1个长个宽,进而可得到关于x、y的两个方程,可求得解,从而可得到小长方形的面积.本题考查了二元一次方程的应用,以及学生对图表的阅读理解能力解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.8.若关于x的不等式组无解,则m的取值范围为A. B. C. D.【答案】A【解析】解:解不等式,得:,解不等式,得:,不等式组无解,,故选:A.解两个不等式,再根据“大大小小找不着”可得m的取值范围.此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则是解题关键.9.小王与小张各自乘坐滴滴快车,行车里程分别为公里与公里如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差A. 10分钟B. 13分钟C. 15分钟D. 19分钟【答案】D【解析】解:设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:,,,.故这两辆滴滴快车的行车时间相差19分钟.故选:D.设小王的行车时间为x分钟,小张的行车时间为y分钟,根据题意列出小王和小张车费的代数式,两者相等,计算可得出时间差.考查了二元一次方程的应用,解题的关键是仔细审题,确定已知量和未知量,找出它们之间的等量关系.10.如图是由按照一定规律组成的图形,其中第个图中共有3个,第个图中共有8个,第个图中共有15个,第个图中共有24个照此规律排列下去,则第个图中的个数为11.A. 105B. 110C. 120D. 140【答案】C【解析】解:第个图中有个,第个图中有个,第个图中有个,第个图中有个,第个图中的个数为个,故选:C.根据已知条件得出第n个图中的个数为,据此可得.本题主要考查图形的变化规律,解题的关键是根据题意得出第n个图中的个数为.二、填空题(本大题共6小题,共18.0分)12.方程的解为______.【答案】【解析】解:方程,移项合并得:,解得:,故答案为:方程移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,解方程移项时注意要变号.13.已知等腰三角形的两边长是5和12,则它的周长是______.【答案】29【解析】解:当腰为5时,,不能构成三角形,因此这种情况不成立,当腰为12时,,能构成三角形,此时等腰三角形的周长为.故答案为:29.题目给出等腰三角形有两条边长为5和12,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题主要考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去,难度适中.14.一个多边形的内角和比它的外角和的2倍还大,这个多边形的边数为______.【答案】7【解析】解:设这个多边形的边数是n,根据题意得,,.故答案为:7.根据多边形的内角和公式,外角和等于列出方程,然后求解即可.本题考查了多边形的内角和与外角,熟记多边形的内角和公式与外角和定理是解题的关键,需要注意,任何多边形的外角和都是,与边数无关.15.如图,在中,,将沿着BC的方向平移至,若平移的距离是3,则图中阴影部分的面积为______.16.17.18.【答案】30【解析】解:直角沿BC边平移3个单位得到直角,,,四边形ACFD为平行四边形,平行四边形,即阴影部分的面积为30.故答案为:30.先根据平移的性质得,,于是可判断四边形ACFD为平行四边形,然后根据平行四边形的面积公式计算即可.本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点连接各组对应点的线段平行且相等也考查了平行四边形的面积公式.19.如图在长方形ABCD中,E为AD上一点,将边AB沿BE折叠,A点恰好落在CD边20.上的点F处若,的周长为3,则的周长为______.21.22.23.【答案】9【解析】解:由折叠得:,,的周长为3,,,,的周长为:,故答案为:9根据折叠的性质可得,,从而的周长可转化为:,求出CF,再由的周长,即可解决问题.本题主要考查了翻折变换的性质、矩形的性质等几何知识点;根据折叠的性质将的周长进行转化是解决问题的关键.24.已知关于x、y的方程组,其中,有以下结论:当时,x、y的值互为相反数;当时,方程组的解也是方程的解;若,则其中所有正确的结论有______填序号【答案】【解析】解:解方程组,得,,,,当时,,,x,y的值互为相反数,结论正确;当时,,,方程两边相等,结论正确;当时,,解得,且,,,结论正确,故答案为:.解方程组得出x、y的表达式,根据a的取值范围确定x、y的取值范围,逐一判断.本题考查了二元一次方程组的解,解一元一次不等式组关键是根据条件,求出x、y的表达式及x、y的取值范围.三、计算题(本大题共4小题,共24.0分)25.解下列方程组:26.27.【答案】解:去分母得:,移项合并得:,解得:;,得:,解得:,把代入得:,则方程组的解为.【解析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解;方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.28.解不等式组,并把解集在数轴上表示出来.【答案】解:解不等式,得:,解不等式,得:,则不等式组的解集为,将不等式组的解集表示在数轴上如下:【解析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.29.已知关于x、y的方程组的解满足,求整数k的值.【答案】解:两方程分别相加和相减可得,,解得,整数k的值为1、2.【解析】两方程分别相加和相减可得,由已知不等式组得出关于k的不等式组,解之可得.此题考查了二元一次方程组的解与解一元一次不等式组,方程组的解即为能使方程组中两方程成立的未知数的值,解决本题的关键是求出方程组的解,列出不等式组.30.对于任意有理数x,我们用表示不大于x的最大整数,则如:,,,请根据以上信息,回答下列问题31.填空:______,______;32.若,求x的取值范围;33.已知,求x的值.【答案】7;【解析】解:,,故答案为:7、;,,解得:;,,解得,,为整数,或1,.根据最大整数的定义即可求解;根据最大整数的定义即可得到一个关于x的不等式组,即可求得x的范围.根据新定义列出关于x的不等式组,解之求得x的范围及的范围,再根据为整数可得的值,解之可得.本题考查了解一元一次不等式组,能得出关于x的不等式组是解此题的关键.四、解答题(本大题共5小题,共40.0分)34.如图所示的正方形方格每个小正方形的边长为1个单位的三个顶点均在小方格的顶点上.35.画出关于O点的中心对称图形;36.画出将沿直线l向上平移5个单位得到的;37.要使与重合,则绕点顺时针方向至少旋转的度数为______.【答案】【解析】解:如图,即为所求;如图,即为所求;由题可得,要使与重合,则绕点顺时针方向至少旋转的度数为.故答案为:.利用中心对称的性质,即可得到关于O点的中心对称图形;利用平移的方向和距离,即可得到沿直线l向上平移5个单位得到的;依据旋转中心以及对应点的位置,即可得到绕点顺时针方向至少旋转的度数.本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.38.如图, ≌ ,,,.39.求线段BF的长;40.试判断DF与BE的位置关系,并说明理由.41.42.43.【答案】解: ≌ ,,,即;≌ ,,,,,,.【解析】根据全等三角形的性质得出,求出即可;,根据三角形内角和定理求出的度数,即可得出答案.本题考查了全等三角形的性质和三角形内角和定理,能灵活运用全等三角形的性质进行推理是解此题的关键.44.如图,在中,点D为BC上一点,将沿AD翻折得到,AE与BC相交于点F,若AE平分,,,求的度数.【答案】解:,,,.又平分,.由翻折得:,,,.又,.【解析】根据三角形内角和定理可求出的值,根据角平分线的性质结合折叠的性质可得出、,再利用三角形的外角的性质可求出及的度数.本题考查了三角形内角和定理、三角形的外角性质、角平分线的性质以及折叠的性质,利用角平分线的性质、折叠的性质及三角形的外角性质找出各角之间的关系是解题的关键.45.2018年暑期临近,学生们也可轻松逛逛商场,选择自己心仪的衣服安岳上府街一服装店老板打算不错失这一良机,计划购进甲、乙两种T恤已知购进甲T恤2件和乙T恤3件共需310元;购进甲T恤1件和乙T恤2件共需190元46.求甲、乙两种T恤每件的进价分别是多少元?47.为满足市场需求,服装店需购进甲、乙两种T恤共100件,要求购买两种T恤的总费用不超过6540元,并且购买甲T恤的数量应小于购买甲乙两种T恤总数量的,请你通过计算,确定服装店购买甲乙两种T恤的购买方案.【答案】解:设甲种T恤每件进价为x元,乙种T恤每件进价为y元由题意得解得答:甲种T恤每件进价为50元,乙种T恤每件进价为70元.设商场购进甲种T恤a件,则购进乙种T恤为件.根据题意得:分解得分为整数,为23或24当时,;当时,分有两种购买方案,方案一:购买甲种T恤23件,购买乙种T恤77件,方案二:购买甲种T恤24件,购买乙种T恤76件.【解析】设甲种商品每件的进价为x元,乙种商品每件的进价为y元,根据“购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元”可列出关于x、y的二元一次方程组,解方程组即可得出两种商品的单价;设商场购进甲种T恤a件,则购进乙种T恤为件根据“购买两种T恤的总费用不超过6540元,并且购买甲T恤的数量应小于购买甲乙两种T恤总数量的”列出不等式组并解答.本题考查了二元一次方程组的应用、解一元一次不等式,解题的关键是:根据数量关系列出关于x、y 的二元一次方程组;解决该题型题目时,根据数量关系列出方程方程组、不等式或函数关系式是关键.48.将两块三角板按图1摆放,固定三角板ABC,将三角板CDE绕点C按顺时针方向旋转,其中,,设旋转角为,49.当时如图,求的值;50.当时如图与CE相交于点F,求的值;51.当时,连结如图,直线AB与DE相交于点F,试探究的大小是否改变?若不改变,请求出此定值,若改变,请说明理由.52.【答案】解:,又,,即,又,,即大小不变,其值为.,,,又,【解析】由可得,则可求.由可得,根据三角形内角和可求即可求,则可求根据三角形内角和和外角等于不相邻的两个内角和,列出,,关系式可求的值本题考查了旋转的性质,平行线的性质,关键是灵活运用这些性质解决问题.。