北京市东城区2015-2016学年高二下学期期末考试数学(理)试题
福建省厦门市高二数学下学期期末试卷 理(含解析)-人教版高二全册数学试题
2015-2016学年某某省某某市高二(下)期末数学试卷(理科)一、选择题:每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=(1+i)(a+2i)(i为虚数单位)是纯虚数,则实数a等于()A.﹣2 B.﹣1 C.0 D.22.双曲线x2﹣=1的一个顶点到一条渐近线的距离是()A.B.C.D.3.已知随机变量X服从正态分布N(1,4),P(﹣1<X<3)=0.6826,则下列结论正确的是()A.P(X<﹣1)=0.6587 B.P(X>3)=0.1587C.P(﹣1<X<1)=0.3174 D.P(1<X<3)=0.18264.已知函数f(x)的导函数是f′(x),且满足f(x)=2xf′(e)﹣lnx,则f′(e)等于()A.1 B.﹣1 C.e D.5.由曲线y=,直线y=x及x=3所围成的图形的面积是()A.4﹣ln3 B.8﹣ln3 C.4+ln3 D.8+ln36.三棱柱ABC﹣A1B1C1中,△ABC是等边三角形,AA1⊥底面ABC,AB=2,AA1=,则异面直线AC1与B1C所成的角的大小是()A.30° B.60° C.90° D.120°7.假设有两个分类变量X和Y的2×2列联表为:Yy1y2总计Xx1 a 10 a+10x2 c 50 c+50总计40 60 100对同一样本,以下数据能说明X与Y有关系的可能性最大的一组是()A.a=10,c=30 B.a=15,c=25 C.a=20,c=20 D.a=30,c=108.甲、乙、丙、丁四个人去旅游,可供选择的景点有3个,每人只能选择一个景点且甲、乙不能同去一个景点,则不同的选择方案的种数是()A.54 B.36 C.27 D.249.“m<1”是“函数y=x2+在[1,+∞)单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.甲、乙、丙三人,一人在看书,一人在画画,一人在听音乐.已知:①甲不看书;②若丙不画画,则乙不听音乐;③若乙在看书,则丙不听音乐.则()A.甲一定在画画 B.甲一定在听音乐C.乙一定不看书 D.丙一定不画画11.函数f(x)=e|x|cosx的图象大致是()A. B.C.D.12.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别是F1、F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=8,椭圆与双曲线的离心率分别为e1,e2,则+的取值X围是()A.(1,+∞)B.(1,4)C.(2,4)D.(4,8)二、填空题:每小题5分,共20分.13.(2x+)n的二项式系数的和是32,则该二项展开式中x3的系数是(用数字填写答案).14.已知m∈R,p:方程+=1表示焦点在y轴上的椭圆;q:在复平面内,复数z=1+(m ﹣3)i对应的点在第四象限.若p∧q为真,则m的取值X围是.15.抛物线y2=4x的焦点为F,A为抛物线上在第一象限内的一点,以点F为圆心,1为半径的圆与线段AF的交点为B,点A在y轴上的射影为点N,且|ON|=2,则线段NB的长度是.16.设函数f(x)在R上的导函数是f′(x),对∀x∈R,f′(x)<x.若f(1﹣a)﹣f (a)≤﹣a,则实数a的取值X围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.某工厂为了增加其产品的销售量,调查了该产品投入的广告费用x与销售量y的数据,如表:广告费用x(万元) 2 3 4 5 6销售量y(万件) 5 7 8 9 11由散点图知可以用回归直线=x+来近似刻画它们之间的关系.(Ⅰ)求回归直线方程=x+;(Ⅱ)在(Ⅰ)的回归方程模型中,请用相关指数R2说明,广告费用解释了百分之多少的销售量变化?参考公式: =, =﹣;R2=1﹣.18.函数f(x)=x3+ax2+bx﹣在x=2处的切线方程为x+y﹣2=0.(Ⅰ)某某数a,b的值;(Ⅱ)求函数f(x)的极值.19.如图,已知四棱锥P﹣ABCD的底面为菱形,且∠ABC=60°,AB=PC=2,AP=BP=.(Ⅰ)求证:平面PAB⊥平面ABCD;(Ⅱ)求二面角A﹣PC﹣D的平面角的余弦值.20.某工厂有甲乙两个车间,每个车间各有3台机器.甲车间每台机器每天发生故障的概率均为,乙车间3台机器每天发生故障的概率分别为,,.若一天内同一车间的机器都不发生故障可获利2万元,恰有一台机器发生故障仍可获利1万元,恰有两台机器发生故障的利润为0万元,三台机器发生故障要亏损3万元.(Ⅰ)求乙车间每天机器发生故障的台数的分布列;(Ⅱ)由于节能减排,甲乙两个车间必须停产一个.以工厂获得利润的期望值为决策依据,你认为哪个车间停产比较合理.21.已知圆C1:x2+y2=4与x轴左右交点分别为A1、A2,过点A1的直线l1与过点A2的直线l2相交于点D,且l1与l2斜率的乘积为﹣.(Ⅰ)求点D的轨迹C2方程;(Ⅱ)若直线l:y=kx+m不过A1、A2且与轨迹C2仅有一个公共点,且直线l与圆C1交于P、Q 两点.求△POA1与△QOA2的面积之和的最大值.22.已知函数f(x)=lnx﹣cx2(c∈R).(Ⅰ)讨论函数f(x)的零点个数;(Ⅱ)当函数f(x)有两个零点x1,x2时,求证:x1•x2>e.2015-2016学年某某省某某市高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题:每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=(1+i)(a+2i)(i为虚数单位)是纯虚数,则实数a等于()A.﹣2 B.﹣1 C.0 D.2【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘法运算化简复数z,又已知复数z是纯虚数,得到,求解即可得答案.【解答】解:复数z=(1+i)(a+2i)=(a﹣2)+(a+2)i,又∵复数z是纯虚数,∴,解得a=2.故选:D.2.双曲线x2﹣=1的一个顶点到一条渐近线的距离是()A.B.C.D.【考点】双曲线的简单性质.【分析】根据双曲线的方程求出一个顶点和渐近线,利用点到直线的距离公式进行求解即可.【解答】解:由双曲线的方程得a=1,b=,双曲线的渐近线为y=x,设双曲线的一个顶点为A(1,0),渐近线为y=x,即x﹣y=0,则顶点到一条渐近线的距离d==,故选:C.3.已知随机变量X服从正态分布N(1,4),P(﹣1<X<3)=0.6826,则下列结论正确的是()A.P(X<﹣1)=0.6587 B.P(X>3)=0.1587C.P(﹣1<X<1)=0.3174 D.P(1<X<3)=0.1826【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据对称性,由P(﹣1<X<3)可求出P(X>3).【解答】解:∵随机变量X服从正态分布N(1,4),∴曲线关于x=1对称,∵P(﹣1<X<3)=0.6826,∴P(X>3)=0.5﹣0.3413=0.1587.故选:B.4.已知函数f(x)的导函数是f′(x),且满足f(x)=2xf′(e)﹣lnx,则f′(e)等于()A.1 B.﹣1 C.e D.【考点】导数的运算.【分析】求函数的导数,直接令x=e进行求解即可.【解答】解:∵f(x)=2xf′(e)﹣lnx,∴函数的导数f′(x)=2f′(e)﹣,令x=e,则f′(e)=2f′(e)﹣,即f′(e)=,故选:D5.由曲线y=,直线y=x及x=3所围成的图形的面积是()A.4﹣ln3 B.8﹣ln3 C.4+ln3 D.8+ln3【考点】定积分在求面积中的应用.【分析】作出对应的图象,确定积分的上限和下限,利用积分的应用求面积即可.【解答】解:作出对应的图象,由得x=1,则阴影部分的面积S=∫(x﹣)dx=(x2﹣lnx)|=(﹣ln3)﹣(﹣ln1)=4﹣ln3,故选:A6.三棱柱ABC﹣A1B1C1中,△ABC是等边三角形,AA1⊥底面ABC,AB=2,AA1=,则异面直线AC1与B1C所成的角的大小是()A.30° B.60° C.90° D.120°【考点】异面直线及其所成的角.【分析】取中点连接,由异面直线所成角的概念得到异面直线AC1与B1C所成的角,求解直角三角形得到三角形边长,再由余弦定理得答案.【解答】解:如图,分别取AC、B1C1、CC1、BC的中点E、F、G、K,连接EF、EG、FG、EK、FK,EK=,FK=,则EF=,EG=,.在△EFG中,cos∠EGF=.∴异面直线AC1与B1C所成的角的大小是90°.故选:C.7.假设有两个分类变量X和Y的2×2列联表为:Yy1y2总计Xx1 a 10 a+10x2 c 50 c+50总计40 60 100对同一样本,以下数据能说明X与Y有关系的可能性最大的一组是()A.a=10,c=30 B.a=15,c=25 C.a=20,c=20 D.a=30,c=10【考点】独立性检验的应用.【分析】当ad与bc差距越大,两个变量有关的可能性就越大,检验四个选项中所给的ad与bc的差距,前三个选项都一样,只有第四个选项差距大,得到结果.【解答】解:根据观测值求解的公式可以知道,当ad与bc差距越大,两个变量有关的可能性就越大,选项A,|ad﹣bc|=200,选项B,|ad﹣bc|=500,选项C,|ad﹣bc|=800,选项D,|ad﹣bc|=1400,故选D8.甲、乙、丙、丁四个人去旅游,可供选择的景点有3个,每人只能选择一个景点且甲、乙不能同去一个景点,则不同的选择方案的种数是()A.54 B.36 C.27 D.24【考点】排列、组合及简单计数问题.【分析】间接法:先求所有可能分派方法,先求所有可能的分派方法,甲、乙、丙、丁四个人去旅游,可供选择的景点有3个,共有34=81种情况,甲、乙同去一个景点有33=27种情况,相减可得结论.【解答】解:间接法:先求所有可能的分派方法,甲、乙、丙、丁四个人去旅游,可供选择的景点有3个,共有34=81种情况,甲、乙同去一个景点有33=27种情况,∴不同的选择方案的种数是81﹣27=54.故选:A9.“m<1”是“函数y=x2+在[1,+∞)单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】充要条件;函数的单调性与导数的关系.【分析】若函数y=x2+在[1,+∞)单调递增,则y′=2x﹣≥0在[1,+∞)上恒成立,求出m的X围,进而根据充要条件的定义,可得答案.【解答】解:∵函数y=x2+在[1,+∞)单调递增,∴y′=2x﹣≥0在[1,+∞)上恒成立,即m≤2,故“m<1”是“函数y=x2+在[1,+∞)单调递增”的充分不必要条件,故选:A.10.甲、乙、丙三人,一人在看书,一人在画画,一人在听音乐.已知:①甲不看书;②若丙不画画,则乙不听音乐;③若乙在看书,则丙不听音乐.则()A.甲一定在画画 B.甲一定在听音乐C.乙一定不看书 D.丙一定不画画【考点】进行简单的合情推理.【分析】由①开始,进行逐个判断,采用排除法,即可得到答案.【解答】解:由①可知:甲可能在画画或在听音乐,由③可知,乙在看书,丙在画画,甲只能在听音乐,由②丙可以听音乐或看书,乙只能看书或画画,结合①③可知:甲听音乐,乙画画,丙看书,所以甲一定在听音乐,故选:B.11.函数f(x)=e|x|cosx的图象大致是()A.B.C.D.【考点】函数的图象.【分析】根据函数的奇偶性,排除B;根据函数在(0,)上,为增函数,在(,)上,为减函数,排除A;再根据在(,)上,为增函数,f()>f(),排除C,可得结论.【解答】解:由于函数函数f(x)=e|x|cosx为偶函数,它的图象关于y轴对称,故排除B.当x>0时,f(x)=e x•cosx,f′(x)=e x•cosx﹣e x•sinx=2x(cosx﹣sinx),故函数在(0,)上,f′(x)>0,f(x)为增函数;在(,)上,f′(x)<0,f(x)为减函数,故排除A.在(,)上,f′(x)>0,f(x)为增函数,且f()>f(),故排除C,只有D满足条件,故选:D.12.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别是F1、F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=8,椭圆与双曲线的离心率分别为e1,e2,则+的取值X围是()A.(1,+∞)B.(1,4)C.(2,4)D.(4,8)【考点】双曲线的简单性质.【分析】利用待定系数法设出双曲线和椭圆的方程,根据双曲线和椭圆的定义得到a1=4+c,a2=4﹣c,然后利用离心率的公式进行转化求解即可.【解答】解:设椭圆与双曲线的标准方程分别为:,.(a1,a2,b1,b2>0,a1>b1)∵△PF1F2是以PF1为底边的等腰三角形,|PF1|=8,∴8+2c=2a1,8﹣2c=2a2,即有a1=4+c,a2=4﹣c,(c<4),再由三角形的两边之和大于第三边,可得2c+2c>8,可得c>2,即有2<c<4.由离心率公式可得+====,∵2<c<4,∴<<,则2<<4,即2<+<4,故+的取值X围是(2,4),故选:C二、填空题:每小题5分,共20分.13.(2x+)n的二项式系数的和是32,则该二项展开式中x3的系数是80 (用数字填写答案).【考点】二项式系数的性质.【分析】由题意可得:2n=32,解得n.再利用其通项公式即可得出.【解答】解:由题意可得:2n=32,解得n=5.∴的通项公式T r+1=(2x)5﹣r=25﹣r x5﹣2r,令5﹣2r=3,解得r=1.∴该二项展开式中x3的系数=24=80.故答案为:80.14.已知m∈R,p:方程+=1表示焦点在y轴上的椭圆;q:在复平面内,复数z=1+(m﹣3)i对应的点在第四象限.若p∧q为真,则m的取值X围是(2,3).【考点】复合命题的真假.【分析】利用椭圆的标准方程、复数的几何意义、复合命题的真假的判定方法即可得出.【解答】解:p:方程+=1表示焦点在y轴上的椭圆,则m>2;q:在复平面内,复数z=1+(m﹣3)i对应的点在第四象限,∴m﹣3<0,解得m<3.∵p∧q为真,∴p与q都为真命题.∴2<m<3.则m的取值X围是(2,3).故答案为:(2,3).15.抛物线y2=4x的焦点为F,A为抛物线上在第一象限内的一点,以点F为圆心,1为半径的圆与线段AF的交点为B,点A在y轴上的射影为点N,且|ON|=2,则线段NB的长度是 3 .【考点】抛物线的简单性质.【分析】求出N,B的坐标,利用两点间的距离公式,即可得出结论.【解答】解:由题意,A(3,2),N(0,2),以点F为圆心,1为半径的圆的方程为(x﹣1)2+y2=1,直线AF的方程为y=(x﹣1)联立直线与圆的方程可得(x﹣1)2=,∴x=或,∴B(,),∴|NB|==3故答案为:3.16.设函数f(x)在R上的导函数是f′(x),对∀x∈R,f′(x)<x.若f(1﹣a)﹣f (a)≤﹣a,则实数a的取值X围是a≤.【考点】利用导数研究函数的单调性.【分析】令g(x)=f(x)﹣x2,求出g(x)的单调性,问题等价于f(1﹣a)﹣(1﹣a)2≤f(a)﹣a2,根据函数的单调性得到关于a的不等式,解出即可.【解答】解:令g(x)=f(x)﹣x2,则g′(x)=f′(x)﹣x,而f′(x)<x,∴g′(x)=f′(x)﹣x<0,故函数g(x)在R递减,∴f(1﹣a)﹣f(a)≤﹣a等价于f(1﹣a)﹣(1﹣a)2≤f(a)﹣a2,即g(1﹣a)≤g(a),∴1﹣a≥a,解得a≤,故答案为:a≤.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.某工厂为了增加其产品的销售量,调查了该产品投入的广告费用x与销售量y的数据,如表:广告费用x(万元) 2 3 4 5 6销售量y(万件) 5 7 8 9 11由散点图知可以用回归直线=x+来近似刻画它们之间的关系.(Ⅰ)求回归直线方程=x+;(Ⅱ)在(Ⅰ)的回归方程模型中,请用相关指数R2说明,广告费用解释了百分之多少的销售量变化?参考公式: =, =﹣;R2=1﹣.【考点】线性回归方程.【分析】(Ⅰ)由数据求得样本中心点,利用最小二乘法求得系数,由线性回归方程过样本中心点,代入即可求得,即可求得回归直线方程;(Ⅱ)分别求得1, 2…,5,根据相关指数公式求得相关指数R2,即可求得广告费用解释了百分之多少的销售量变化.【解答】解:(Ⅰ) =×(2+3+4+5+6)=5, =×(5+7+8+9+11)=11,==1.4,=﹣=8﹣1.4×4=2.4,∴回归直线方程=1.4x+2.4;(Ⅱ)由(Ⅰ)可知:=1.4×2+2.4=5.2;1=1.4×3+2.4=6.6;2=1.4×4+2.4=8;3=1.4×5+2.4=9.4;4=1.4×6+2.4=10.8;5R2=1﹣=0.98,∴广告费用解释了98%的销售量变化.18.函数f(x)=x3+ax2+bx﹣在x=2处的切线方程为x+y﹣2=0.(Ⅰ)某某数a,b的值;(Ⅱ)求函数f(x)的极值.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求导数得到f′(x)=x2+2ax+b,这样根据函数在切点处导数和切线斜率的关系以及切点在函数图象上便可得出关于a,b的方程组,解出a,b即可;(Ⅱ)上面已求出a,b,从而可以得出导函数f′(x),这样判断导数的符号,从而便可得出函数f(x)的极值.【解答】解:(Ⅰ)f′(x)=x2+2ax+b;由题意可得,切点为(2,0),切线斜率为k=﹣1;∴;解得;(Ⅱ)由上面得,f′(x)=x2﹣4x+3=(x﹣1)(x﹣3);∴x<1时,f′(x)>0,1<x<3时,f′(x)<0,x>3时,f′(x)>0;∴x=1时,f(x)取极大值,x=3时,f(x)取极小值.19.如图,已知四棱锥P﹣ABCD的底面为菱形,且∠ABC=60°,AB=PC=2,AP=BP=.(Ⅰ)求证:平面PAB⊥平面ABCD;(Ⅱ)求二面角A﹣PC﹣D的平面角的余弦值.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定;二面角的平面角及求法.【分析】(I)取AB中点E,连PE、CE,由等腰三角形的性质可得PE⊥AB.再利用勾股定理的逆定理可得PE⊥CE.利用线面垂直的判定定理可得PE⊥平面ABCD.再利用面面垂直的判定定理即可证明.(II)建立如图所示的空间直角坐标系.利用两个平面的法向量的夹角即可得到二面角.【解答】(Ⅰ)证明:如图1所示,取AB中点E,连PE、CE.则PE是等腰△PAB的底边上的中线,∴PE⊥AB.∵PE=1,CE=,PC=2,即PE2+CE2=PC2.由勾股定理的逆定理可得,PE⊥CE.又∵AB⊂平面ABCD,CE⊂平面ABCD,且AB∩CE=E,∴PE⊥平面ABCD.而PE⊂平面PAB,∴平面PAB⊥平面ABCD.(Ⅱ)以AB中点E为坐标原点,EC所在直线为x轴,EB所在直线为y轴,EP所在直线为z 轴,建立如图所示的空间直角坐标系.则A(0,﹣1,0),C(,0,0),D(,﹣2,0),P(0,0,1),=(,1,0),=(,0,﹣1),=(0,2,0).设是平面PAC的一个法向量,则,即.取x1=1,可得,.设是平面PCD的一个法向量,则,即.取x2=1,可得,.故,即二面角A﹣PC﹣D的平面角的余弦值是.20.某工厂有甲乙两个车间,每个车间各有3台机器.甲车间每台机器每天发生故障的概率均为,乙车间3台机器每天发生故障的概率分别为,,.若一天内同一车间的机器都不发生故障可获利2万元,恰有一台机器发生故障仍可获利1万元,恰有两台机器发生故障的利润为0万元,三台机器发生故障要亏损3万元.(Ⅰ)求乙车间每天机器发生故障的台数的分布列;(Ⅱ)由于节能减排,甲乙两个车间必须停产一个.以工厂获得利润的期望值为决策依据,你认为哪个车间停产比较合理.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)乙车间每天机器发生故障的台数ξ,可以取0,1,2,3,求出相应的概率,即可求乙车间每天机器发生故障的台数的分布列;(Ⅱ)设甲车间每台机器每天发生故障的台数η,获得的利润为X,则η~B(3,),求出甲乙的期望,比较,即可得出结论.【解答】解:(Ⅰ)乙车间每天机器发生故障的台数ξ,可以取0,1,2,3,P(ξ=0)=(1﹣)×(1﹣)×(1﹣)=,P(ξ=1)=C21××((1﹣)×(1﹣)2+(1﹣)×=,P(ξ=2)=C21××((1﹣)×+()2×(1﹣)=,P(ξ=3)=××=,∴乙车间每天机器发生故障的台数ξ的分布列;ξ0 1 2 3P(Ⅱ)设甲车间每台机器每天发生故障的台数η,获得的利润为X,则η~B(3,),P(η=k)=(k=0,1,2,3),∴EX=2P(η=0)+1×P(η=1)+0×P(η=2)﹣3×P(η=3)=,由(Ⅰ)得EY=2P(ξ=0)+1×P(ξ=1)+0×P(ξ=2)﹣3×P(ξ=3)=,∵EX<EY,∴甲车间停产比较合理.21.已知圆C1:x2+y2=4与x轴左右交点分别为A1、A2,过点A1的直线l1与过点A2的直线l2相交于点D,且l1与l2斜率的乘积为﹣.(Ⅰ)求点D的轨迹C2方程;(Ⅱ)若直线l:y=kx+m不过A1、A2且与轨迹C2仅有一个公共点,且直线l与圆C1交于P、Q 两点.求△POA1与△QOA2的面积之和的最大值.【考点】直线与圆的位置关系.【分析】(Ⅰ)设点D的坐标为(x,y),求出A1、A2的坐标,由题意和斜率公式列出方程化简,可得点D的轨迹C2的方程;(Ⅱ)设P(x1,y1),Q(x2,y2),联立直线方程和C2的方程消去y,由条件可得△=0并化简,联立直线l与圆C1的方程消去x,利用韦达定理写出表达式,由图象和三角形的面积公式表示出,化简后利用基本不等式求出△POA1与△QOA2的面积之和的最大值.【解答】解:(Ⅰ)设点D的坐标为(x,y),∵圆C1:x2+y2=4与x轴左右交点分别为点A1(﹣2,0),A2(2,0),且l1与l2斜率的乘积为﹣,∴,化简得,∴点D的轨迹C2方程是;(Ⅱ)设P(x1,y1),Q(x2,y2),联立得,(1+4k2)x2+8kmx+4m2﹣4=0,由题意得,△=64k2+16﹣16m2=0,化简得,m2=4k2+1,联立消去x得,(1+k2)y2﹣2my+1=0,∴△=4m2﹣4(1+k2)=12k2>0,y1+y2=,>0,则y1,y2同号,由r=2得,+=+====≤=,当且仅当3=1+4k2,即k=时取等号,∴的最大值是.22.已知函数f(x)=lnx﹣cx2(c∈R).(Ⅰ)讨论函数f(x)的零点个数;(Ⅱ)当函数f(x)有两个零点x1,x2时,求证:x1•x2>e.【考点】利用导数研究函数的单调性;函数零点的判定定理.【分析】(Ⅰ)求出函数的定义域,函数的导数,通过a≤0时,f'(x)>0,f(x)在(0,+∞)上单调递增;a>0时,求出极值点,然后通过导数的符号,判断函数的单调性,从而求出函数的零点的个数;(Ⅱ)设x1>x2,求出关于c的表达式,利用分析法证明x1x2>e,转化为证明ln>(x1>x2>0),令=t,则t>1,设g(t)=lnt﹣=lnt+﹣1(t>1),利用函数的导数求解函数的最小值利用单调性证明即可.【解答】解:(Ⅰ)定义域为(0,+∞),f′(x)=﹣2cx=,当c≤0时,f'(x)>0,f(x)在(0,+∞)上单调递增,x→0时,f(x)→﹣∞,x→+∞时,f(x)→+∞,f(x)有且只有1个零点;当c>0时,由f'(x)=0,得x=,当0<x<时,f'(x)>0,f(x)单调递增,当x>时,f'(x)<0,f(x)单调递减,∴f(x)最大值=f()=ln﹣,令ln﹣>0,解得:c>,∴c>时,f(x)有2个零点,c=时,f(x)有1个零点,0<c<时,f(x)没有零点,综上:c≤0或c=时,f(x)有1个零点,0<c<时,f(x)没有零点,c>时,f(x)有2个零点.(Ⅱ)证明:设x1>x2,∵lnx1﹣cx12=0,lnx2﹣cx22=0,∴lnx1+lnx2=cx12+cx22,lnx1﹣lnx2=cx12﹣cx22,则c=,欲证明x1x2>e,即证lnx1+lnx2>1,因为lnx1+lnx2=c(x12+x22),∴即证c>,∴原命题等价于证明>,即证:ln>(x1>x2>0),令=t,则t>1,设g(t)=lnt﹣=lnt+﹣1(t>1),∴g′(t)=≥0,∴g(t)在(1,+∞)单调递增,又因为g(1)=0,∴g(t)>g(1)=0,∴lnt>,所以x1x2>e.。
2015-2016学年度第一学期期末测试(数学)
2015~2016学年度第一学期期末测试七 年 级 数 学本卷分值 100分,考试时间120分钟.一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.34-的相反数是A .43-B .43C .34-D .342.单项式225x y-的系数和次数分别是A .-2,2B .2-,3C .25-,2D .25-,33.在下面的四幅图案中,通过平移图案(1)得到的是图案4.下列各组中的两项,不是..同类项的是 A .22x y 与23x y - B .3x 与3xC .232ab c -与32c b aD .1与-18 5.若关于x 的方程710x a +-=解是1x =-,则a 的值等于A .8B .-8C .6D .-6 6.从三个不同方向看一个几何体,得到的三视图 如图所示,则这个几何体是A .圆锥B .圆柱C .棱锥D .球7.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中不正确...的是 A .ab<0 B .a -b >0 C .a +b >0 D .ab <0b 0a(1) A B C D(第6题)(第7题)8. 如图,直线a ,b 被直线c 所截,则下列说法中错误..的是 A .∠1与∠2是邻补角 B .∠1与∠3是对顶角C .∠3与∠4是内错角D .∠2与∠4是同位角 9. 如图,点D 在直线AE 上,量得∠CDE=∠A=∠C ,有以下三个结论:①AB ∥CD ;②AD ∥BC ;③∠B=∠CDA .则正确的结论是A .①②③B .①②C .①D .②③ 10.王力骑自行车从A 地到B 地,陈平骑自行车从B 地到A 地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36 km ,到中午12时,两人又相距36 km .求A 、B 两地间的路程.可设A 、B 两地间的路程为x km ,则下列所列方程中:①363624x x -+=;②36363622x -+=;③36362x -=⨯; ④3636x -=;其中正确的个数为A .1个B .2个C .3个D .4个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.用科学记数法表示9600000为 ▲ .12.点A 、B 在同一条数轴上,其中点A 表示的数为-1,若点B 与点A 之间距离为3,则点B 表示的数为 ▲ . 13.已知2a b -的值是2015,则124a b -+的值等于 ▲ .14.若23(2)0x y -++=,则16xy = ▲ .15.飞机的无风航速为a 千米/小时,风速为20千米/小时.则飞机逆风飞行4小时的行程是 ▲ 千米.16.某服装店以每件180元的价格卖出两件衣服,其中一件 盈利25%,另一件亏损25%,若盈利记为正,亏损记为负,则该店卖这两件衣服总的盈亏金额是 ▲ 元.17.如图,把小河里的水引到田地A 处就作AB ⊥l ,垂足 为B ,沿AB 挖水沟,这条水沟最短的理由是 ▲ . 18. 如图,将三角板与两组对边分别平行的直尺贴在一起, 使三角板的顶点C (AC ⊥BC )落在直尺的一边上,若∠1=24°,则∠2等于 ▲ 度. 19.如图,平面内有公共端点的6条射线OA 、OB 、OC 、 OD 、OE 、OF ,从射线OA 开始按逆时针方向依次在 射线上写上数字1、2、3、4、5、6、7…,则数字 “2016”应在射线 ▲ 上.20.已知线段AB =12㎝,若M 是AB 的三等分点,N 是AM 的中点,则线段BN 的长度为 ▲ ㎝.三、解答题(本大题共8小题,共60分.请在答题卡指定区域.......内作答,解答时应写出文ac1 234 A B C DE(第8题) (第9题)(第17题)(第18题)(第19题)字说明、证明过程或演算步骤) 21.(每小题4分,共16分)计算:(1) (20)(3)(5)(7)-++---+;(2) 111()(12)462+-⨯-;(3) 322(2)(3)(4)2(3)(2)⎡⎤-+-⨯-+--÷-⎣⎦;(4) 471127326631440-+⨯-⨯÷.22.(每小题3分,共6分)(1)如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =4㎝,求线段CD的长度.(2)如图,货船A 在灯塔O 的北偏东53°35′的方向上,客船B 在灯塔O 的南偏东28°12′的方向上.求∠AOB 的度数.23.(每小题4分,共8分)先化简,再求值:(1)求22113333a abc c a c +--+的值,其中1,2,36abc =-==-;(2)求2211312()()2323x x y x y --+-+的值,其中22,3x y =-=.24.(每小题4分,共8分)解方程: (1)72(33)20x x +-=; (2)121224x x+--=+.25.(本小题6分)如图,AD ∥BC ,∠1=60°,∠B =∠C ,DF 为∠ADC 的平分线. (1)求∠ADC 的度数;(2)试说明DF ∥AB . 解:(1)根据题意完成填空(括号内填写理由): ∵AD ∥BC (已知)∴∠B =∠1( ) 又∵∠B =∠C (已知) ∴ =∠1=60°C D (第22题(2)) A O B 西 东 北南 (第22题(1))又∵AD ∥BC (已知)∴∠ADC +∠C =180°( ) ∴∠ADC = .(2)请你完成第2题的解答过程:26.(本小题4分)列方程解应用题:某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名? 27.(本小题6分)如图:已知AB ∥CD ,∠ABE 与∠CDE 两个角的角平分线相交于点F . (1)如图1,若∠E =78°,则∠BFD = °;(2)如图2,若∠ABM =14∠ABF ,∠CDM =14∠CDF ,则∠M 和∠E 之间的数量关系为 ;(3)如图2,∠ABM =1n ∠MBF ,∠CDM =1n∠MDF ,设∠M =m °,直接用含有n ,m 的代数式表示出∠E = °.28.(本小题6分)如图,在∠AOB 的内部作射线OC ,使∠AOC 与∠AOB 互补.将射线OA ,OC 同时绕点O 分别以每秒12°,每秒8°的速度按逆时针方向旋转,旋转后的射线OA ,OC 分别记为OM ,ON ,设旋转时间为t 秒.已知t <30,∠AOB =114°. (1)求∠AOC 的度数;(2)在旋转的过程中,当射线OM ,ON 重合时,求 t 的值; (3)在旋转的过程中,当∠COM 与∠BON 互余时,求 t 的值.BE DFACBE DFA CM 图1图2CMNB(第27题)。
北京市东城区2021-2022高二数学下学期期末考试试题(含解析)
北京市东城区2021-2022高二数学下学期期末考试试题(含解析)重点中学试卷可修改,欢迎下载2021-2022学年东城区高二数学期末考试本试卷共4页,共100分,考试时间120分钟。
请考生将答案填写在答题卡上,试卷上的答案无效。
考试结束后,请将试卷和答题卡一并交回。
第一部分选择题(共32分)一、选择题:本大题共8小题,每小题4分,共32分。
在每个小题给出的四个备选答案中,只有一个是符合题目要求的。
1.已知集合 $M=\{0.1.2\}$,$N=\{x|0\leq x<2\}$,则$M\cap N$ 等于A。
$\{0\}$。
B。
$\{0.1\}$。
C。
$\{1.2\}$。
D。
$\emptyset$解析】直接进行交集的运算即可得到$M\cap N=\{0.1\}$,故选 B。
2.已知曲线 $y=\dfrac{1}{x}$,$x\neq 0$,那么集合$\{x|y=f(x)\}$ 在点 $(5.0.2)$ 处的切线方程是A。
$y=5x-24$。
B。
$y=5x-25$。
C。
$y=4x-19$。
D。
$y=4x-21$解析】求出切线的斜率即可。
由导数的几何意义,切线的斜率等于函数在该点的导数值,即 $f'(5)=-\dfrac{1}{25}$,带入点斜式即可得到切线方程 $y=5x-25$,故选 B。
3.已知 $x>0$,$y>0$,那么“$x\cdot y>0$”是“$x>0$且$y>0$”的A。
充分而不必要条件。
B。
充要条件。
C。
必要而不充分条件。
D。
既不充分也不必要条件解析】先利用取特殊值法判断 $x\cdot y>0$ 时,$x>0$ 且$y>0$ 不成立,再说明 $x>0$ 且 $y>0$ 时,$x\cdot y>0$ 一定成立,即可得到结论。
故“$x\cdot y>0$”是“$x>0$且$y>0$”的必要不充分条件,故选 C。
2015-2016第一学期高二期末考试理科数学试题及答案
2015-2016学年度高二年级期末教学质量检测理科数学试卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.“0x >”是0>”成立的A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件 2.抛物线24y x =的焦点坐标是A .(1,0)B .(0,1)C .1(,0)16 D .1(0,)163.与圆8)3()3(22=-+-y x 相切,且在y x 、轴上截距相等的直线有A .4条B .3条C .2条D .1条 4.设l 是直线,,αβ是两个不同的平面,则下列结论正确的是A .若l ∥α,l ∥β,则//αβB .若//l α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β, //l α,则l ⊥β 5.已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<06.设(2,1,3)a x = ,(1,2,9)b y =-,若a 与b 为共线向量,则A .1x =,1y =B .12x =,12y =-C .16x =,32y =-D .16x =-,32y =7.已知椭圆2215x y m +=的离心率5e =,则m 的值为A .3B .3C D .253或38.如图,在正方体1111ABCD A BC D -中,,,M N P 分别是111,,B B B C CD 的中点,则MN 与1D P 所成角的余弦值为A. BCD .9.如图,G 是ABC ∆的重心,,,OA a OB b OC c ===,则OG =A .122333a b c ++B .221333a b c ++C .222333a b c ++D .111333a b c ++10.下列各数中,最小的数是A .75B .)6(210 C .)2(111111 D .)9(8511.已知双曲线22214x yb-=的右焦点与抛物线y 2=12x 的焦 点重合,则该双曲线的焦点到其渐近线的距离等于 A . B C .3 D .512、在如图所示的算法流程图中,输出S 的值为 A 、 11 B 、12 C 、1 D 、15二、填空题:本大题共4小题,每小题5分,满分20分13.若直线x +a y+2=0和2x+3y+1=0互相垂直,则a = 14.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 。
2015-2016学年高二上学期期末考试数学(理)试卷及答案
2015-2016学年度 第一学期期末质量监测高二数学(理科)试卷一、选择题:本大题供8小题,每小题5分,供40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 直线023=+-y x 的倾斜角是A.6π B.3π C.23π D.56π 2. 直线l 过点(2,2)P -,且与直线032=-+y x 垂直,则直线l 的方程为 A. 220x y +-= B. 260x y --=C. 260x y --=D. 250x y -+=3. 一个几何体的三视图如图所示,如果该几何体的侧面面积为π12, 则该几何体的体积是A. π4B. 12πC. 16πD. 48π 4. 在空间中,下列命题正确的是 A. 如果直线m ∥平面α,直线α⊂n 内,那么m ∥n ;B. 如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC. 如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m α⊥D. 如果平面α⊥平面β,任取直线m α⊂,那么必有m β⊥5. 如果直线013=-+y ax 与直线01)21(=++-ay x a 平行.那么a 等于A. -1B.31 C. 3 D. -1或316. 方程)0(0222≠=++a y ax x 表示的圆A. 关于x 轴对称B. 关于y 轴对称C. 关于直线x y =轴对称D. 关于直线x y -=轴对称7. 如图,正方体1111ABCD A BC D -中,点E ,F 分别是1AA ,AD 的中点,则1CD 与EF 所成角为A. 0︒B. 45︒C. 60︒D. 90︒8. 如果过点M (-2,0)的直线l 与椭圆1222=+y x 有公共点,那么直线l 的斜率k 的取值范围是A.]22,(--∞ B.),22[+∞ C.]21,21[-D. ]22,22[-二、填空题:本大题共6小题,每小题5分,共30分.9. 已知双曲线的标准方程为116422=-y x ,则该双曲线的焦点坐标为,_________________渐近线方程为_________________.10. 已知向量)1,3,2(-=a,)2,,5(--=y b 且a b ⊥ ,则y =________.11. 已知点),2,(n m A -,点)24,6,5(-B 和向量(3,4,12)a =-且AB ∥a .则点A 的坐标为________.12. 直线0632=++y x 与坐标轴所围成的三角形的面积为________. 13. 抛物线x y 82-=上到焦点距离等于6的点的坐标是_________________.14. 已知点)0,2(A ,点)3,0(B ,点C 在圆122=+y x 上,当ABC ∆的面积最小时,点C 的坐标为________.三、解答题:本大题共6小题,共80分,解答应写出文字说明,演算步骤或证明过程.15. (本小题共13分)如图,在三棱锥A BCD -中,AB ⊥平面BCD ,BC CD ⊥,E ,F ,G 分别是AC ,AD ,BC 的中点. 求证:(I )AB ∥平面EFG ;(II )平面⊥EFG 平面ABC .16. (本小题共13分)已知斜率为2的直线l 被圆0241422=+++y y x 所截得的弦长为求直线l 的方程.17. (本小题共14分)如图,在四棱锥P ABCD -中,平面⊥PAB 平面ABCD ,AB ∥CD ,AB AD ⊥,2CD AB =,E 为PA 的中点,M 在PD 上(点M 与D P ,两点不重合).(I ) 求证:PB AD ⊥;(II )若λ=PDPM,则当λ为何值时, 平面⊥BEM 平面PAB ?(III )在(II )的条件下,求证:PC ∥平面BEM .18. (本小题共13分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,平面PCD ⊥底面ABCD ,PD CD ⊥,PD CD =,E 为PC 的中点. (I ) 求证:AC ⊥PB ; (II ) 求二面角P --BD --E 的余弦值.19. (本小题共14分)已知斜率为1的直线l 经过抛物线22y px =(0)p >的焦点F ,且与抛物线相交于A ,B 两点,4=AB .(I ) 求p 的值;(II ) 设经过点B 和抛物线对称轴平行的直线交抛物线22y px =的准线于点D ,求证:DO A ,,三点共线(O 为坐标原点).20. (本小题共13分)已知椭圆2222:1(0)x y G a b a b +=>>的左焦点为F ,离心率为33,过点)1,0(M 且与x 轴平行的直线被椭圆G 截得的线段长为6. (I ) 求椭圆G 的方程;(II )设动点P 在椭圆G 上(P 不是顶点),若直线FP 的斜率大于2,求直线OP (O 是坐标原点)的斜率的取值范围.2015-2016学年度第一学期期末质量检测高二数学(理科)试卷参考答案2016.1一、ABB C BA CD二、9.(±52,0),2y x =±10. -411. (1,-2,0)12. 313. (-4,24±)14. (13133,13132) 说明:1.第9题,答对一个空给3分。
15—16学年下学期七年级期末考试数学试题(附答案)
2015-2016学年第二学期期末联考试卷七年级数学一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A.3列5行B.5列3行C.4列3行D.3列4行2.如果a>b,那么下列不等式中一定成立的是()A.a2>b2B.1﹣a>1﹣b C.1+a>1﹣b D.1+a>b﹣13.在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率5.若是方程kx﹣2y=2的一个解,则k等于()A.B.C.6 D.﹣6.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE7.如图,在平面直角坐标系中,A(﹣3,2)、B(﹣1,0)、C(﹣1,3),将△ABC向右平移4个单位,再向下平移3个单位,得到△A1B1C1,点A、B、C的对应点分别A1、B1、C1,则点A1的坐标为()A.(3,﹣3)B.(1,﹣1)C.(3,0)D.(2,﹣1)8.在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A.B.C.D.9.若关于x的不等式组无解,则a的取值范围是()A.a≤3 B.a≥3 C.a<3 D.a>310.已知方程组和有相同的解,则a,b的值为()A.B.C.D.11.小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm2,则宽的长度xcm应满足的不等式组为()A.B.C.D.12.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2015年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A.0.5元、0.6元B.0. 4元、0.5元C.0.3元、0.4元D.0.6元、0.7元第6题图第7题图第12题图二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中横线上.13.的整数部分是.14.某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为.15.已知2x﹣3y﹣1=0,请用含x的代数式表示y:.16.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为°.17.若不等式组的解集是﹣1<x <1,则b a 212 的立方根为 . 18.如图,正方形ABCD 的顶点B 、C 都在直角坐标系的x 轴上,若点D 的坐标是(3,4),则点A 的坐标是 .第14题图 第16题图 第18题图三、解答题:本大题共6小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤.19.(5分)解方程组:20.(6分)解不等式组请结合题意填空,完成本题的解答. (1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .21.(7分)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.22.(8分)已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.证明:AD∥BE.证明:∵AB∥CD(已知)∴∠4=①(②)∵∠3=∠4(已知)∴∠3=③(④)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等量代换)即∠BAF=∠DAC∴∠3= ⑤(等量代换)∴AD∥BE(⑥)23.(9分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、哲学四类.在“读书月”活动中,为了了解图书的借阅情况,图书管理员对本月各类图书的借阅进行了统计,表)和图是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)表中m=,n=;(2)在图中,将表示“自然科学”的部分补充完整;(3)若该学校打算采购一万册图书,请你估算“哲学”类图书应采购多少册较合适?(4)根据图表提供的信息,请你提出一条合理化的建议.24.(11分)在南宁市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和1台电子白板共需要2万元,购买2台电脑和1台电子白板共需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过32万元,但不低于30万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2015-2016学年第二学期期末联考七年级数学评分细则一、选择题(本题共12小题,每小题3分,共36分)1-5 CDBBC 6-10 DBBAD 11-12 AA二、填空题(本题共6小题,每小题3分,共18分)13. 4 14. 0.4 15. y=16. 35 17. 2 18. (﹣1,4)三、解答题(本大题共6小题,共46分)注:解答题解法多样,非本细则所述的其他正确解法请阅卷老师酌情给分19. 解:,①+②×2得:7x=7,即x=1,------- 3分把x=1代入①得:y=1,------- 4分则方程组的解为------- 5分20. 解:(1)x<2,------- 1分(2)x≥﹣1,------- 3分(3)------- 5分(4)-1≤x<2.------- 6分21. 解:(1)设魔方的棱长为x cm,可得:x3=216,------- 2分解得:x=6.------- 3分(2)设该长方体纸盒的长为y cm,6y2=600,------- 5分y2=100,即y=10.------- 6分答:魔方的棱长6 cm,长方体纸盒的长为10 cm.------- 7分22. 解:①∠BAE ,------- 1分②(两直线平行,同位角相等),------- 3分③∠BAE ------- 4分④(等量代换),------- 5分⑤∠DAC ,------- 6分⑥(内错角相等,两直线平行).------- 8分23. 解:(1)m= 500 ,------- 2分n= 0.05 ;------- 3分(2)自然科学:2000×0.20=400 册如图,------- 5分(3)10000×0.05=500(册),即估算“哲学”类图书应采购500册较合适;------- 7分(4)鼓励学生多借阅哲学类的书.------- 9分24. 解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,------- 3分解得,即每台电脑0.5万元,每台电子白板1.5万元;------- 5分(2)设需购进电脑a台,则购进电子白板(30﹣a)台,根据题意得:,------- 7分解得:13≤a≤15,∵a只能取整数,∴a=13,14,15,------- 9分∴有三种购买方案,方案1:需购进电脑13台,则购进电子白板17台,13×0.5+1.5×17=32(万元),方案2:需购进电脑14台,则购进电子白板16台,14×0.5+1.5×16=31(万元),方案3:需购进电脑15台,则购进电子白板15台,15×0.5+1.5×15=30(万元),∵30<31<32,∴购买电脑15台,电子白板15台最省钱.------- 11分。
北京市西城区2015-2016学年高二上学期期末考试文数试题(原卷版)
北京市西城区2015-2016学年高二上学期期末考试文数试题一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符 合要求的.1.命题“若1a >,则0a >”的逆命题是( )(A )若0a >,则1a ≤(B )若0a >,则1a >(C )若0a ≤,则1a >(D )若0a ≤,则1a ≤2.复数12i z =+的虚部是( )(A )2i -(B )2i (C )2-(D )23.在空间中,给出下列四个命题:① 平行于同一个平面的两条直线互相平行;②垂直于同一个平面的两个平面互相平行;③ 平行于同一条直线的两条直线互相平行;④垂直于同一条直线的两条直线互相平行.其中真命题的序号是( )(A )①(B )②(C )③(D )④4.抛物线22x y =的焦点到其准线的距离是( )(A )1(B )2(C )3(D )45.两条直线1110A x B y C ++=,2220A x B y C ++=互相垂直的充分必要条件是( )(A )12121-=B B A A (B )12121A A B B =(C )12120A A B B +=(D )12120A A B B -=6.如图,在长方体1111ABCD A B C D -中,12AA AB =,AB BC =,则下列结论中正确的是( )(A )1BD ∥1B C (B )11A D ∥平面1AB C (C )1BD AC ⊥(D )1BD ⊥平面1AB C7.已知椭圆22221(0)x y a b a b+=>>的两个焦点分别为1F ,2F ,12||2(0)F F c c =>.若点 P 在椭圆上,且1290F PF ∠=︒,则点P 到x 轴的距离为( )(A )2b a (B )2b c (C )2c a (D )2c b8. 在长方体1111ABCD A B C D -中,6AB =,4BC =,12AA =,P ,Q 分别为棱1AA ,11C D 的中点. 则从点P 出发,沿长方体表面到达点Q 的最短路径的长度为( )(A)B)CD)第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上)9. 命题“x ∀∈R ,210x ->”的否定是_______.10. 已知球O 的大圆面积为1S ,表面积为2S ,则12:S S =_______.11. 如图,在复平面内,复数1z ,2z 对应的向量分别是OA ,OB ,则12z z =_______.12. 已知双曲线2221(0)y x b b -=>的一个焦点是(2,0),则b =_______;双曲线渐近线的方程 _______.13. 已知正六棱柱的底面边长和侧棱长均为2,其三视图中的俯视图如图所示,则其左视图的面积是_______.14. 已知曲线C 的方程是421x y +=.关于曲线C 的几何性质,给出下列三个结论:① 曲线C 关于原点对称;② 曲线C 关于直线y x =对称;③ 曲线C 所围成的区域的面积大于π.其中,所有正确结论的序号是_______.三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分13分)如图,四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 是正方形,且PD AB ==2.(Ⅰ)求PB 的长;(Ⅱ)求四棱锥P ABCD -的表面积.16.(本小题满分13分)如图,已知圆心为(43)C ,的圆经过原点O .(Ⅰ)求圆C 的方程;(Ⅱ)设直线340x y m -+=与圆C 交于A ,B 两点.若||8AB =,求m 的值.17.(本小题满分14分)如图,矩形ABCD 所在的平面与正方形ADPQ 所在的平面相互垂直,E 是QD 的中点.(Ⅰ)求证:QB ∥平面AEC ;(Ⅱ)求证:平面QDC ⊥平面AEC ;(Ⅲ)若1AB =,2AD =,求多面体ABCEQ 的体积.18.(本小题满分13分)已知抛物线22(0)y px p =>的准线方程是12x =-. (Ⅰ)求抛物线的方程;(Ⅱ)设直线(2)(0)y k x k =-≠与抛物线相交于M ,N 两点,O 为坐标原点,证明:OM ON ⊥.19.(本小题满分13分)如图1,在△ABC 中,90ABC ∠=︒,D 为AC 中点,AE BD ⊥于E ,延长AE 交BC 于F .将△ABD 沿BD 折起,得到三棱锥1A BCD -,如图2所示.(Ⅰ)若M 是1AC 的中点,求证:DM ∥平面1A EF ;(Ⅱ)若平面1A BD ⊥平面BCD ,试判断直线1A B 与直线CD 能否垂直?并说明理由.20.(本小题满分14分)如图,已知椭圆2222:1(0)x y C a b a b +=>>,一个顶点是(0,1)B . (Ⅰ)求椭圆C 的方程;(Ⅱ)设P ,Q 是椭圆C 上异于点B 的任意两点,且BP BQ ⊥.试问:直线PQ 是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.:。
北京市东城区三年(2020-2022)高二物理下学期期末试题题型分类汇编3-解答题
(2)摆球在A点时回复力的大小;
(3)摆球运动过程中的最大动能。
参考答案:
1.① ;②见解析
【详解】①设向东方向为正,则由动量守恒知:
代入数据解得:
②设m1=3m,m2=5m碰撞前系统总能量:
Ek= m1v12+ m2v22=64m
碰撞后系统总能量:
Ek'= m1v1'2+ m2v2'2=64m
(1)在图中标出图示时刻线圈内感应电流的方向。
(2)转动过程中感应电动势的最大值是多少?
(3)用外力使线圈转一周的过程中(不计线框质量),外力至少做多少功?
3.(2021春·北京东城·高二期末)磁流体发电机是一项新兴技术,如图所示是它的示意图。平行金属板A、B之间的距离为d,极板面积为S,板间的磁场按匀强磁场处理,磁感应强度为B,两极板连接的外电路由阻值为R1,R2的电阻和电容为C的电容器组成,K为电键。将等离子体(即高温下电离的气体,含有大量的正、负带电粒子)以速度v沿垂直于B的方向射入磁场,假设等离子体在两极板间的平均电阻率为ρ,忽略极板和导线的电阻,开始时电键断开。
且
联立解得
, (舍去)
方向竖直向上。
b.由题意可得
联立解得
9.(1)
(2) ;(3)
【详解】(1)1~2s物体做匀加速直线运动,由牛顿第二定律得
解得
2~4s物体做匀减速直线运动,同理可得
前 物体运动的 图像为
(2)2s时物体的速度为
3s时物体的速度为
可得3s时物体的动量大小为
(3)由动量定理得前 内物体受到的冲量为
(1)图中A、B板哪个电势高?
(2)这个发电机的电动势是多大?
高考数学一轮总复习专题2.6对数及对数函数练习(含解析)文(2021年整理)
专题2.6 对数及对数函数真题回放1. 【2017高考天津文第6题】已知奇函数在上是增函数.若,则的大小关系为 (A )(B )(C )(D ) 【答案】【考点】1。
指数,对数;2.函数性质的应用【名师点睛】本题主要考查函数的奇偶性与指数、对数的运算问题,属于基础题型,首先根据奇函数的性质和对数运算法则,,再比较比较大小。
2.【2017高考全国卷文第9题】已知函数,则 A . 在(0,2)单调递增B .在(0,2)单调递减C .y =的图像关于直线x =1对称D .y =的图像关于点(1,0)对称【答案】C 【解析】试题分析:由题意知,,所以的图象关于直线对称,C 正确,D 错误;又(),在上单调递增,在上单调递减,A ,B 错误,故选C .【考点】函数性质【名师点睛】如果函数,,满足,恒有 ()f x R0.8221(l o g ),(l o g 4.1),(2)5a f b f cf =-==,,abca b c <<b a c <<c b a <<c a b <<C()2l o g5a f =0.822l o g 5,l o g 4.1,2()l nl n (2)fx x x =+-()f x ()f x ()f x ()f x (2)l n (2)l n()fx x x f x -=-+=()f x 1x =112(1)'()2(2)x f x x x x x -=-=--02x <<(0,1)[1,2)()f x x D ∀∈x D ∀∈()()fa x fb x +=-,那么函数的图象有对称轴;如果函数,,满足,恒有,那么函数的图象有对称中心.3。
【2017高考全国卷文第8题】函数的单调递增区间是 A 。
B. C 。
D.【答案】D4。
【2015高考上海卷文第8题】 方程的解为 。
【答案】2【解析】依题意,所以, 令,所以,解得或, 当时,,所以,而,所以不合题意,舍去; 当时,,所以,,,所以满足条件,所以是原方程的解. 【考点定位】对数方程。
人教版高二(理科)第一学期期末考试数学试题-含答案
2015~2016学年度第一学期期末考试试卷 高二(理) 数学 座位号第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1、向量(1,2,2),(2,4,4)a b =-=--,则a b 与 ( ) A 、相交 B 、垂直 C 、平行 D 、以上都不对2、如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是 ( )A 、32B 、62C 、32D 、23、已知命题:,sin 1,p x R x ∀∈≤则p ⌝是 ( ) A 、,sin 1x R x ∃∈≥ B 、,sin 1x R x ∀∈≥ C 、,sin 1x R x ∃∈> D 、,sin 1x R x ∀∈>4、若向量)0,2,1(=a ,)1,0,2(-=b ,则( )A 0120,cos >=<b aB b a ⊥C b a //D ||||b a =5、若原命题“0,0,0a b ab >>>若则”,则其逆命题、否命题、逆否命题中( ) A 、都真 B 、都假 C 、否命题真 D 、逆否命题真6、 “2320x x -+≠”是“1x ≠” 的( )条件 ( ) A 、充分不必要 B 、必要不充分 C 、充要 D 、既不充分也不必要 7、若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A 、-9<m <25B 、8<m <25C 、16<m <25D 、m >88、已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0)B .1362022=+y x (x ≠0)C .120622=+y x (x ≠0)D .162022=+y x (x ≠0)9、一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m .若铅球运行的路线是抛物线,则铅球出手时距地面的高度是( ) A . 1.75m B . 1.85mC . 2.15mD . 2.25m 10、设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件 11.抛物线281x y -=的准线方程是 ( ) A . 321=x B . 2=y C . 321=y D . 2-=y12. 若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A .不等边锐角三角形 B .直角三角形C .钝角三角形D .等边三角形第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13、经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 。
2014-2015学年高二上学期期末考试数学(理)试题_Word版含答案
2016级高二期末考试试卷理科数学一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求. 1.i 为虚数单位,则2013i = ( )A .i -B .1-C .iD .1 2.若()e x f x x =,则(1)f '=( )A .0B .eC .2eD .2e3.已知双曲线2219x y m-=的一个焦点坐标是()5,0,则双曲线的渐近线方程是 ( )A .34y x =±B .43y x =±C.y x = D.y x = 4.下列叙述:①若两条直线平行,则它们的方向向量方向相同或相反;②若两个向量均为同一个平面的法向量,则以这两个向量为方向向量的直线一定平行; ③若一条直线的方向向量与某一个平面的法向量垂直,则该直线与这个平面平行. 其中正确的个数是 ( ) A .0个 B .1个 C .2个 D .3个5.学校体育场南侧有4个大门,北侧有3个大门,西侧有2个大门,某学生到该体育场训练,但必须是从南或北门进入,从西门或北门出去,则他进出门的方案有( )A .7个B .12个C .24个D .35个 6.下列推理中属于归纳推理且结论正确的是( )A .设数列{}n a 的前n 项和为n S .由21n a n =-,求出2221231,2,3,S S S ===,…,推断:2n S n =B .由()cos f x x x =满足()()f x f x -=-对∀x ∈R 都成立,推断:()cos f x x x =为奇函数C .由圆222x y r +=的面积2S r π=,推断:椭圆22221(0)x y a b a b+=>>的面积S ab π=D .由()()()222123112,212,312,+>+>+>…,推断:对一切n ∈N *,()212n n +>7.已知函数32()393f x x x x =--+,若函数()()g x f x m =-在[]2,5x ∈-上有3个零点,则m 的取值范围为( ) A .(-24,8)B .(-24,1]C .[1,8]D .[1,8)8.抛物线22(0)y px p =>的焦点为F ,已知点,A B 为抛物线上的两个动点,且满足90AFB ∠=.过弦AB的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN AB的最大值为ABC .1D二、 75分,共35分.9.204sin xdx π=⎰10.已知01a <<,复数z 的实部为a ,虚部为1,则复数z 对应的点Z 到原点距离的取值范围是 11.曲线C :ln xy x=在点(1,0)处的切线方程是 . 12.棱长均为3的三棱锥S ABC -,若空间一点P 满足(1)SP xSA ySB zSC x y z =++++=,则SP 的最小值为 .13.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼-15”飞机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法数是 .14.椭圆22:143x y C +=的左、右顶点分别为12A A 、,点P 在椭圆C 上,记直线2PA 的斜率为2k ,直线1PA 的斜率为1k ,则 1k ·2k = . 15.函数2()ln(1)f x x a x =++有两个不同的极值点12,x x ,且12x x <,则实数a 的范围是 三、解答题:本大题共6个小题,共75分,解答题写出文字说明、证明过程或演算步骤.16.(本小题满分12分) 设p :实数x 满足22430x ax a -+<, :q 实数x 满足31x -<. (1)若1,a =且p q ∧为真,求实数x 的取值范围;(2)若其中0a >且p ⌝是⌝q 的充分不必要条件,求实数a 的取值范围. 17.(本小题满分12分)如图,在三棱柱111ABC A B C -中,侧棱垂直底面,90ACB ∠=︒,12AC BC CC ===. (1)求证:11AB BC ⊥;(2)求二面角111C AB A --的大小.18.(本小题满分12分)时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y (单位:千套)与销售价格x (单位:元/套)满足的关系式()2462m y x x =+--,其中26x <<,m 为常数.已知销售价格为4元/套时,每日可售出套题21千套.(1)求m 的值;(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大.(保留1位小数). 19.(本小题满分13分)设数列{}n a 的前n 项和为n S (即123n n S a a a a =++++),且方程20n n x a x a --=有一根为n S -1,n =1,2,3…….(1)求12,a a ;(2)猜想数列{}n S 的通项公式,并用数学归纳法给出严格的证明.20.(本小题满分13分)已知椭圆C :22221x y a b +=(0)a b >>2.(1)求椭圆C 的方程;(2)过点M (0,13-)的动直线l 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点T ,使得无论l 如何转动,以A B 为直径的圆恒过定点T ?若存在,求出点T 的坐标;若不存在,请说明理由. 21.(本小题满分13分)已知),1ln()(+=x x f bx ax x g +=221)( (1)若0=a ,1=b 时,求证:0)()(≤-x g x f 对于),1(+∞-∈x 恒成立; (2)若2=b ,且)()1()(x g x f x h --=存在单调递减区间,求a 的取值范围;(3)利用(1)的结论证明:若y x <<0,则2ln )(ln ln yx y x y y x x ++>+.CCBBDADA 9.4 10.()1,2 11.1y x =- 12.6 13.24 14.-34 15.10,2⎛⎫⎪⎝⎭16.解:(1). 由22430x ax a -+<得(3)()0x a x a --<当1a =时,13x <<,即p 为真时实数x 的取值范围是13x <<.……………2分由31x -<, 得131x -<-<, 得24x <<即q 为真时实数x 的取值范围是24x <<,……4分 若p q ∧为真,则p 真且q 真,所以实数x 的取值范围是23x <<.……6分(2) 由22430x ax a -+<得(3)()0x a x a --< p ⌝是q ⌝的充分不必要条件,即p ⌝⇒q ⌝,且q ⌝⇒/p ⌝, ……………8分设A ={|}x p ⌝,B ={|}x q ⌝,则AB ,又A ={|}x p ⌝={|3}x x a x a ≤≥或, B ={|}x q ⌝={x|x≥4或x≤2},……………10分 则02a <≤,且34a ≥所以实数a 的取值范围是423a ≤≤12分 17.解::方法一:(1)∵11,AC BC AC CC BCCC C ⊥⊥=且∴11AC C CBB ⊥平面,又111BC C CBB ⊂平面∴1111,,AC BC B C BC AC B C C ⊥⊥=且 ∴1111BC AB C AB AB C ⊥⊂平面,又平面 ∴11AB BC ⊥(2)取11A B 的中点为H ,在平面11A ABB 内过H 作1HQ AB ⊥于点Q ,连接1C Q 则111C H A ABB ⊥平面,∴11C H AB ⊥,而1C H HQ H =∴1111AB C HQ AB C Q ⊥∴⊥平面,∴1C QH ∠是二面角111C AB A --的平面角,又1162C H A AB HQ ==,在内,解得∴111tan 3,60C HC QH C QH HQ∠==∠=︒∴二面角111C AB A --为60°.18.解:(1)因为4x =时,21y =, 代入关系式()2462m y x x =+--,得16212m +=, 解得10m =.……………………4分 (2)由(1)可知,套题每日的销售量()210462y x x =+--,……………5分 所以每日销售套题所获得的利润()()()()()223210()24610462456240278262f x x x x x x x x x x ⎡⎤=-+-=+--=-+-<<⎢⎥-⎣⎦……………………8分从而()()()()2'121122404310626f x x x x x x =-+=--<<.令()'0f x =,得103x =,且在102,3⎛⎫ ⎪⎝⎭上,0)('>x f ,函数)(x f 单调递增;在10,63⎛⎫⎪⎝⎭上,0)('<x f ,函数)(x f 单调递减, ……………………10分所以103x =是函数)(x f 在()2,6内的极大值点,也是最大值点,所以当103.33x =≈时,函数)(x f 取得最大值. 故当销售价格为3.3元/套时,网校每日销售套题所获得的利润最大. …………………12分19.解:(1)当n =1时,x 2-a 1x -a 1=0有一根为S 1-1=a 1-1,于是(a 1-1)2-a 1(a 1-1)-a 1=0,解得a 1=12.……………3分当n =2时,x 2-a 2x -a 2=0有一根为S 2-1=a 2-12,于是⎝⎛⎭⎫a 2-122-a 2⎝⎛⎭⎫a 2-12-a 2=0,解得a 2=16.……5分 (2)由题设(S n -1)2-a n (S n -1)-a n =0,即S 2n -2S n +1-a n S n =0. 当n ≥2时,a n =S n -S n -1,代入上式得S n -1S n -2S n +1=0.① 由(1)得S 1=a 1=12,S 2=a 1+a 2=12+16=23.由①可得S 3=34.由此猜想S n =nn +1,n =1,2,3…. ……………7分下面用数学归纳法证明这个结论. (ⅰ)n =1时已知结论成立.……………8分(ⅱ)假设n =k (k ≥1,k ∈N *)时结论成立,即S k =kk +1,当n =k +1时,由①得S k +1=12-S k,……………10分 即S k +1=k +1k +2,故n =k +1时结论也成立.……………12分综上,由(ⅰ)(ⅱ)可知S n =nn +1对所有正整数n 都成立.……………13分1CA BC1A1B20.解:(1)设椭圆的焦距为2c,则由题设可知2221a c ca a cb ⎧-=⎪⎪=⎨⎪⎪=+⎩,解此方程组得a =1b =. 所以椭圆C 的方程是2212x y +=. ……………………5分 (2)解法一:假设存在点T (u, v ). 若直线l 的斜率存在,设其方程为13y kx =-, 将它代入椭圆方程,并整理,得22(189)12160k x kx +--=.设点A 、B 的坐标分别为1122(,),(,)A x y B x y ,则 12212212,18916.189k x x k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩因为1122(,),(,)TA x u y v TB x u y v =--=--及112211,,33y kx y kx =-=-所以1212()()()()TA TB x u x u y v y v =--+--2221212121(1)()()339v k x x u k kv x x u v =+-+++++++222222(666)4(3325)62u v k ku u v v k +--+++-=+ …………………9分 当且仅当0TA TB =恒成立时,以AB 为直径的圆恒过定点T ,所以2222618180,0,33250.u v u u v v ⎧+-=⎪=⎨⎪++-=⎩解得0, 1.u v ==此时以AB 为直径的圆恒过定点T (0,1). …………………11分 当直线l 的斜率不存在,l 与y 轴重合,以AB 为直径的圆为221x y +=也过点T (0,1). 综上可知,在坐标平面上存在一个定点T (0,1),满足条件. …………………13分解法二:若直线l 与y 轴重合,则以AB 为直径的圆是22 1.x y +=若直线l 垂直于y 轴,则以AB 为直径的圆是22116().39x y ++=……………7分 由22221,116().39x y x y ⎧+=⎪⎨++=⎪⎩解得01x y =⎧⎨=⎩.由此可知所求点T 如果存在,只能是(0,1). ………………8分 事实上点T (0,1)就是所求的点. 证明如下:当直线l 的斜率不存在,即直线l 与y 轴重合时,以AB 为直径的圆为221x y +=,过点T (0,1);当直线l 的斜率存在,设直线方程为13y kx =-,代入椭圆方程,并整理,得22(189)12160.k x kx +--= 设点A 、B 的坐标为1122(,),(,)A x y B x y ,则12212212,18916.189k x x k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩…………………10分因为1122(,1),(,1)TA x y TB x y =-=-,21212121212416()1(1)()39TA TA x x y y y y k x x k x x =+-++=+-++222216161632160.189k k k k ---++==+所以TA TB ⊥,即以AB 为直径的圆恒过定点T (0,1).综上可知,在坐标平面上存在一个定点T (0,1)满足条件. …………………13分 21.解:(1)设x x x g x f x -+=-=)1ln()()()(ϕ,则.1111)('+-=-+=x x x x ϕ………………….2分当时,)(x 有最大值0 ∴0)(≤x 恒成立。
人教A版高中数学选修一高二下学期第一阶段考试(期中)(文)试题.docx
2015-2016学年度下学期高二第一次阶段测试数学(文科)试卷答题时间:120分钟 满分:150分 命题人:杨冠男,刘芷欣第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若是虚数单位,则乘积的值是A.15-B.3C.3-D.52.有一段“三段论”推理是这样的:对于可导函数()f x ,如果0()0f x '=,那么0x x =是 函数()f x 的极值点,因为函数3()f x x =在0x =处的导数值(0)0f '=,所以,0x =是函17(,),2ia bi ab R i i+=+∈-ab数3()f x x =的极值点.以上推理中A .大前提错误B .小前提错误C .推理形式错误D .结论正确 3.给出下列命题(1)实数的共轭复数一定是实数; (2)满足2z i z i -++=的复数z 的轨迹是椭圆;(3)若2,1m Z i ∈=-,则1230;m m m m i ii i ++++++= 其中正确命题的序号是( )A.(1)B.(2)(3)C.(1)(3)D.(1)(4)4.不等式3529x ≤-<的解集为( )A .[2,1)[4,7)-B .(2,1](4,7]-C .(2,1][4,7)--D .(2,1][4,7)-5.已知函数x ax f ππsin )(-=,且2)1()1(lim=-+→hf h f h ,则a 的值为A.2-B.2C.π2D.π2- 6.设,,(,0),a b c ∈-∞则111,,a b c b c a+++( ) A .都不大于2- B .都不小于2- C .至少有一个不大于2- D .至少有一个不小于2- 7.在一次实验中,测得的四组值分别为,,,,则与的线性 回归方程可能是( )A .B .C .D .(,)x y ()1,2()2,3()3,4()4,5y x 1y x =+2y x =+21y x =+1y x =-8. 设0a >b >,则()211a ab a a b ++-的最小值是( ) A .1 B .2 C .3D .49.若1322i ω=-+,则等于421ωω++=( ) A .1 B .13i -+ C .33i + D . 0 10. 若1x >,则函数21161xy x x x =+++的最小值为( ) A .16 B .8 C .4 D .非上述情况11.设,且,若,则必有( )A .B .C .D . 12.已知定义在R 上的可导函数()=y f x 的导函数为()f x ',满足()()f x f x '<,且(1)y f x =+为偶函数,(2)1=f ,则不等式()<xf x e 的解集为A.(,0)-∞B.(0,)+∞C.4(,)-∞eD.4(,)+∞e第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.若复数i m m m m )3()65(22-++-是纯虚数,则实数m 的值是 .AC =14.如图,已知AB 是⊙O 的直径,AB =2,AC 和AD 是⊙O 的两条弦,,,a b c R +∈1a b c ++=111(1)(1)(1)M a b c=---8M ≥118M ≤<18M ≤<108M ≤<,AD =,则∠CAD 的弧度数为 .15.参数方程()2()t tt tx e et y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为_____. 16.在Rt ABC ∆中,若090,,C AC b BC a ∠===,则ABC ∆外接圆半径222a b r +=.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为c b a ,,,则其外接球的半径R = .三、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤)17. (本小题满分l0分)如图,,,,A B C D 四点在同一圆上,BC 与AD 的延长线交于点E ,点F 在BA 的延长线上.(Ⅰ)若11,32EC ED EB EA ==,求DCAB的值; (Ⅱ)若2EF FA FB =⋅,证明://EF CD .18.(本小题满分l2分)某校高二年级共有1600名学生,其中男生960名,女生640名,该校组织了一次满分为100分的数学学业水平模拟考试,根据研究,在正式的学业水平考试中,本次成绩在[80,100]的学生可取得A 等(优秀),在[60,80)的学生可取得B 等(良好),在[40,60)的学生可取得C 等(合格),在不到40分的学生只能取得D 等(不合格),为研究这次考试成绩优秀是否与性别有关,现23按性别采用分层抽样的方法抽取100名学生,将他们的成绩按从低到高分成[30,40)、[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100]七组加以统计,绘制成频率分布直方图,如图是该频率分布直方图.(Ⅰ)估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数;(Ⅱ) 请你根据已知条件将下列2×2列联表补充完整,并判断是否有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”?数学成绩优秀 数学成绩不优秀 合计男生 a=12 b= 女生 c= d=34 合计n=100附:.P (k 2≥k 0) 0.15 0.10 0.05 0.01k 0 2.0722.7063.841 6.63519.(本小题满分l2分)设函数()|21||4|f x x x =+--.(1)解不等式()0f x >;(2)若()3|4|f x x m +->对一切实数x 均成立,求m 的取值范围.20.(本小题满分l2分)设函数2()f x ax bx c =++且(1)2af =-,322.a c b >> (1)试用反证法证明:0a > (2)证明:33.4b a -<<-21.(本小题满分l2分)在以直角坐标原点O 为极点,x 轴的非负半轴为极轴的极坐标系下,曲线1C 的方程是1ρ=,将1C 向上平移1个单位得到曲线2C .(Ⅰ)求曲线2C 的极坐标方程;(Ⅱ)若曲线1C 的切线交曲线2C 于不同两点,M N ,切点为T ,求||||TM TN ⋅的取值范围.22.(本小题满分l2分)已知函数1()ln (0,)f x a x a a R x=+≠∈ (Ⅰ)若1a =,求函数()f x 的极值和单调区间;(Ⅱ)若在区间[1,]e 上至少存在一点0x ,使得0()0f x <成立,求实数a 的取值范围.2015-2016学年度下学期高二第一次阶段测试数学(文科)试卷答题时间:120分钟 满分:150分 命题人:杨冠男,刘芷欣第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若是虚数单位,则乘积的值是 CA.15-B.3C.3-D.52.有一段“三段论”推理是这样的:对于可导函数()f x ,如果0()0f x '=,那么0x x =是 函数()f x 的极值点,因为函数3()f x x =在0x =处的导数值(0)0f '=,所以,0x =是函 数3()f x x =的极值点.以上推理中 A A .大前提错误 B .小前提错误 C .推理形式错误 D .结论正确 3.给出下列命题(1)实数的共轭复数一定是实数; (2)满足2z i z i -++=的复数z 的轨迹是椭圆;(3)若2,1m Z i ∈=-,则1230;m m m m i ii i ++++++= 其中正确命题的序号是( )CA.(1)B.(2)(3)C.(1)(3)D.(1)(4)4.不等式3529x ≤-<的解集为( )D17(,),2ia bi ab R i i+=+∈-abA .[2,1)[4,7)-B .(2,1](4,7]-C .(2,1][4,7)--D .(2,1][4,7)-5.已知函数x ax f ππsin )(-=,且2)1()1(lim=-+→hf h f h ,则a 的值为 BA.2-B.2C.π2D.π2- 6.设,,(,0),a b c ∈-∞则111,,a b c b c a+++( )c A .都不大于2- B .都不小于2-C .至少有一个不大于2-D .至少有一个不小于2-7.在一次实验中,测得的四组值分别为,,,,则与的线性回归方程可能是( )A .B .C .D .解析:A 线性回归直线一定过样本中心点,故选A .8. 设0a >b >,则()211a ab a a b ++-的最小值是 (A )1 (B )2 (C )3 (D )49.若1322i ω=-+,则等于421ωω++=( )D A .1 B .13i -+ C .33i + D . 0 10. 若1x >,则函数21161xy x x x =+++的最小值为( )B (,)x y ()1,2()2,3()3,4()4,5y x 1y x =+2y x =+21y x =+1y x =-()2.5,3.5A .16B .8C .4D .非上述情况11.设,且,若,则必有( )AA .B .C .D .12.已知定义在R 上的可导函数()=y f x 的导函数为()f x ',满足()()f x f x '<,且(1)y f x =+为偶函数,(2)1=f ,则不等式()<xf x e 的解集为 BA.(,0)-∞B.(0,)+∞C.4(,)-∞e D.4(,)+∞e第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.若复数i m m m m )3()65(22-++-是纯虚数,则实数m 的值是 .2 AC =14.如图,已知AB 是⊙O 的直径,AB =2,AC 和AD 是⊙O 的两条弦,,AD =,则∠CAD 的弧度数为 . 15.15.参数方程()2()t tt tx e et y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为_____.)2(116422≥=-x y x 16.在Rt ABC ∆中,若090,,C AC b BC a ∠===,则ABC ∆外接圆半径222a b r +=.运用,,a b c R +∈1a b c ++=111(1)(1)(1)M a b c=---8M ≥118M ≤<18M ≤<108M ≤<23512π类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为c b a ,,,则其外接球的半径R= . 2222a b c ++三、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤) 17. (本小题满分l0分)如图,A ,B ,C ,D 四点在同一圆上,BC 与AD 的延长线交于点E ,点F 在BA 的延长线上. (Ⅰ)若,求的值;(Ⅱ)若EF 2=FA•FB,证明:EF∥CD.【解答】解:(Ⅰ)∵A,B ,C ,D 四点共圆, ∴∠ECD=∠EAB,∠EDC=∠B∴△EDC∽△EBA,可得,∴,即∴(Ⅱ)∵EF2=FA•FB,∴,又∵∠EFA=∠BFE,∴△FAE∽△FEB,可得∠FEA=∠EBF,又∵A,B,C,D四点共圆,∴∠EDC=∠EBF,∴∠FEA=∠EDC,∴EF∥CD.18(本小题满分l2分)某校高二年级共有1600名学生,其中男生960名,女生640名,该校组织了一次满分为100分的数学学业水平模拟考试,根据研究,在正式的学业水平考试中,本次成绩在[80,100]的学生可取得A等(优秀),在[60,80)的学生可取得B等(良好),在[40,60)的学生可取得C等(合格),在不到40分的学生只能取得D等(不合格),为研究这次考试成绩优秀是否与性别有关,现按性别采用分层抽样的方法抽取100名学生,将他们的成绩按从低到高分成[30,40)、[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100]七组加以统计,绘制成频率分布直方图,如图是该频率分布直方图.(Ⅰ)估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数;(Ⅱ)请你根据已知条件将下列2×2列联表补充完整,并判断是否有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”?数学成绩优秀数学成绩不优秀合计男生a=12 b=女生c= d=34合计n=100附:.P(k2≥k0)0.15 0.10 0.05 0.01k0 2.072 2.706 3.841 6.635解:(Ⅰ)抽取的100名学生中,本次考试成绩不合格的有x人,根据题意得x=100×[1﹣10×(0.006+0.012×2+0.018+0.024+0.026)]=2.…(2分)据此估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数为(人).…(4分)(Ⅱ)根据已知条件得2×2列联表如下:数学成绩优秀数学成绩不优秀合计男生a=12 b=48 60女生c=6 d=34 40合计18 82 n=100 …(10分)∵,所以,没有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”.…(12分)19.设函数f(x)=|2x+1|﹣|x﹣4|.(1)解不等式f(x)>0;(2)若f(x)+3|x﹣4|>m对一切实数x均成立,求m的取值范围.【解答】解:(1)当x≥4时f(x)=2x+1﹣(x﹣4)=x+5>0得x>﹣5,所以,x≥4时,不等式成立.当时,f(x)=2x+1+x﹣4=3x﹣3>0,得x>1,所以,1<x<4时,不等式成立.当时,f(x)=﹣x﹣5>0,得x<﹣5,所以,x<﹣5成立综上,原不等式的解集为:{x|x>1或x<﹣5}.(2)f(x)+3|x﹣4|=|2x+1|+2|x﹣4|≥|2x+1﹣(2x﹣8)|=9,当且仅当﹣≤x≤4时,取等号,所以,f(x)+3|x﹣4|的最小值为9,故m<9.20.(本小题满分l2分)设函数f(x)=ax2+bx+c且f(1)=﹣,3a>2c>2b.(1)试用反证法证明:a>0(2)证明:﹣3<.【解答】证明:(1)假设a≤0,∵3a>2c>2b,∴3a≤0,2c<0<,2b<0,将上述不等式相加得3a+2c+2b<0,∵f(1)=﹣,∴3a+2c+2b=0,这与3a+2c+2b<0矛盾,∴假设不成立,∴a>0;(2)∵f(1)=a+b+c=﹣,∴c=﹣a﹣b∴3a>2c=﹣3a﹣2b,∴3a>﹣b,∵2c>2b,∴﹣3a>4b;∵a>0,∴﹣3<<﹣.21.(本小题满分l2分)在以直角坐标原点O为极点,x轴的非负半轴为极轴的极坐标系下,曲线C1的方程是ρ=1,将C1向上平移1个单位得到曲线C2.(Ⅰ)求曲线C2的极坐标方程;(Ⅱ)若曲线C1的切线交曲线C2于不同两点M,N,切点为T,求|TM|•|TN|的取值范围.【解答】解:(I)曲线C1的方程是ρ=1,即ρ2=1,化为x2+y2=1,将C1向上平移1个单位得到曲线C2:x2+(y﹣1)2=1,展开为x2+y2﹣2y=0.则曲线C2的极坐标方程为ρ2﹣2ρsinθ=0,即ρ=2sinθ.(II)设T(cosθ,sinθ),θ∈[0,π].切线的参数方程为:(t为参数),代入C2的方程化为:t2+2t[cos(θ﹣α)﹣sinα]+1﹣2sinθ=0,∴t1t2=1﹣2sinθ,∴|TM|•|TN|=|t1t2|=|1﹣2sinθ|∈[0,1],∴|TM|•|TN|的取值范围是[0,1].22.(本小题满分l2分)已知函数f(x)=+alnx(a≠0,a∈R)(Ⅰ)若a=1,求函数f(x)的极值和单调区间;(Ⅱ)若在区间[1,e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范围.【解答】解:(I)因为,(2分)当a=1,,令f'(x)=0,得x=1,(3分)又f(x)的定义域为(0,+∞),f'(x),f(x)随x的变化情况如下表:x (0,1) 1 (1,+∞)f'(x)﹣0 +f(x)↘极小值↗所以x=1时,f(x)的极小值为1.(5分)f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1);(6分)(II)因为,且a≠0,令f'(x)=0,得到,若在区间[1,e]上存在一点x0,使得f(x0)<0成立,其充要条件是f(x)在区间[1,e]上的最小值小于0即可.(7分)(1)当a<0时,f'(x)<0对x∈(0,+∞)成立,所以,f(x)在区间[1,e]上单调递减,故f(x)在区间[1,e]上的最小值为,由,得,即(9分)(2)当a>0时,①若,则f'(x)≤0对x∈[1,e]成立,所以f(x)在区间[1,e]上单调递减,所以,f(x)在区间[1,e]上的最小值为,显然,f(x)在区间[1,e]上的最小值小于0不成立(11分)②若,即1>时,则有xf'(x)﹣0 +f(x)↘极小值↗所以f(x)在区间[1,e]上的最小值为,由,得1﹣lna<0,解得a>e,即a∈(e,+∞)舍去;当0<<1,即a>1,即有f(x)在[1,e]递增,可得f(1)取得最小值,且为1,f(1)>0,不成立.综上,由(1)(2)可知a<﹣符合题意.(14分)…。
北京市东城区2017-2018学年下学期高二年级期末考试数学试卷(理科)及答案
北京市东城区2017-2018学年下学期高二年级期末考试数学试卷(理科)本试卷共100分。
考试时长120分钟。
第一部分(选择题 共36分)一、选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知复数1z ,2z 互为共轭复数,若1211+=i z ,则=2z ( )A. i 211+B. i 211-C. i +21D. i 211--2. 在对两个变量x ,y 进行线性回归分析时有下列步骤:①对所求出的回归直线方程作出解释; ②收集数据(i x ,i y ),i=1,2,…,n ;③求线性回归方程;④选用线性回归方程并求相关系数;⑤根据所搜集的数据绘制散点图,确定存在线性关系。
若根据可靠性要求能够作出变量x ,y 具有线性相关结论,则下列操作顺序正确的是( )A. ①②⑤③④B. ③②④⑤①C. ②④③①⑤D. ②⑤④③① 3.⎰+1)2(dx x ex等于( )A. 1+eB.eC. 1-eD. 14. 若随机变量),(~p n B X ,且25)(=X E ,45)(=X D ,则==)1(X P ( ) A.321 B.81C. 325 D. 1655. 下面几个推理过程是演绎推理的是( ) A. 在数列}{n a 中,根据11=a ,*),2(1211N n n a a a n n n ∈≥+=--,计算出2a ,3a ,4a 的值,然后猜想}{n a 的通项公式B. 某校高二共8个班,一班51人,二班52人,三班52人,由此推测各班人数都超过50人C. 因为无限不循环小数是无理数,而π是无限不循环小数,所以π是无理数D. 由平面三角形的性质,推测空间四面体的性质 6. 6将一枚均匀的硬币连掷5次,如果出现k 次正面的概率等于出现1+k 次正面的概率,那么k 的值为( ) A. 1 B. 2 C. 3 D. 47. 在极坐标系中,过点)2,2(π且与极轴平行的直线方程是( ) A. 2=ρB. 2πθ=C. 2cos =θρD. 2sin =θρ8. 如图是正态分布),(21σμN ,),(22σμN ,),(23σμN )0,,(321>σσσ相应的曲线,那么1σ,2σ,3σ的大小关系是( )A. 321σσσ>〉B. 123σσσ>>C.231σσσ>>D.312σσσ>>9. 现有五张卡片,其中两张上写着数字5,三张上写着数字8,从这五张卡片中选出四张组成一个四位数,那么这样的四位数共有( ) A. 4个 B. 6个 C. 10个 D. 14个 10. 已知2121111)(nn n n n f ++++++=,*N n ∈,则( ) A. f (n )共有n 项,当n=2时,3121)2(+=fB. f (n )共有1+n 项,当n=2时,413121)2(++=fC. f (n )共有n n -2项,当2=n 时,3121)2(+=fD. f (n )共有12+-n n 项,当2=n 时,413121)2(++=f11. 已知函数f (x )的导函数)('x f 是二次函数,且)('x f y =的图象关于y 轴对称,0)3('=f ,若)(x f 的极大值与极小值之和为4,则f (0)=( )A. 2B. 0C. -2D. -412. 如图所示,一质点P (x,y )在xOy 平面上沿曲线从A 到B 作匀速运动,其在x 轴上的投影点Q (x ,0)的运动速度)(t v V =的图象大致为( )第二部分(非选择题 共64分)二、填空题(本题共6小题,每小题3分,共18分)13. 学校食堂在某天中午备有5种素菜,3种荤菜,2种汤,现要配成一荤一素一汤的套餐,则可以配制出不同的套餐____________种。
东城南2014高二期末下(理)
东城区2013-2014学年下学期高二年级期末考试数学试卷(理科)(考试时间120分钟 满分100分)一、选择题(每小题4分,共32分。
1. 在复平面内,复数112i-对应的点位于 A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 2. 已知32()21f x ax x =++,若(1)4f '-=,则a = A.23B.14C.83D.123. 二项式61(2)x x-展开式中的常数项为 A. -160B. -180C. 160D. 1804. 用反证法证明命题:“1234,,,a a a a 至少有一个数大于25”时,假设正确的是 A. 假设1234,,,a a a a 都大于25 B. 假设1234,,,a a a a 都小于或等于25C. 假设1234,,,a a a a 至多有一个数大于25D. 假设1234,,,a a a a 至少有两个数大于25 5. 6本不同的书分给甲、乙、丙三人,每人2本,不同的分法种数为 A. 6B. 12C. 60D. 906. 如图,M ,N 分别是四面体OABC 的边OA ,BC 的中点,E 是MN 的三等分点,且13NE NM =,用向量,,OA OB OC 表示OE 为A. 16OE OA OB OC =++B. 111333OE OA OB OC =++ C. 111663OE OA OB OC =++ D. 111633OE OA OB OC =++ 7. 利用数学归纳法证明“*(1)(2)()213(21),n n n n n n n N +++=⨯⨯⨯⨯-∈”时,从“n k =”变到“1n k =+”时,左边应增乘的因式是A. 21k +B. 2(21)k +C. 1k +D. 2(1)k +8. 若函数3()63f x x bx b =-+在(0,1)内有极小值,则实数b 的取值范围是 A. (0,1)B. (,1)-∞C. (0,)+∞D. 1(0,)2二、填空题(本题共6小题,每小题4分,共24分。
北京市东城区2023-2024学年高二下学期期末统一检测数学试题(含答案)
北京市东城区2023-2024学年高二下学期期末统一检测数学2024.7本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合,,若,则()A. B. C. D. 2. 某校学生科研兴趣小组为了解1~12岁儿童的体质健康情况,随机调查了20名儿童的相关数据,分别制作了肺活量、视力、肢体柔韧度、BMI 指数和身高之间的散点图,则与身高之间具有正相关关系的是( )A. 肺活量B. 视力C. 肢体柔韧度D. BMI 指数3. 已知,且,则下列不等式中一定成立的是( )A. B.C. D. 4. 袋中有10个大小相同的小球,其中7个黄球,3个红球.每次从袋子中随机摸出一个球,摸出的球不再放回,则在第一次摸到黄球的前提下,第二次又摸到黄球的概率为( )A.B.C.D.{}20,,M a a ={}2,1,0,1,2N =--1M ∈M N ⋂={}0,1{}1,0,1-{}0,1,2{}2,1,0,1,2--,R x y ∈x y >22x y >11x y>ln ln x y>22x y>2312133105. 已知,,则的值为( )A. 15B.C.D. 6. ,,三所大学发布了面向高二学生夏令营招生计划,每位学生只能报一所大学.某中学现有四位学生报名.若每所大学都有该中学的学生报名,则不同的报名方法共有( )A 30种B. 36种C. 72种D. 81种7. 2024年3月20号,我国成功发射鹊桥二号中继卫星,其通过一个大型可展开的星载天线,实现了月球背面与地球之间的信号传输.星载天线展开后形成一把直径(口径)为的“金色大伞”,它的曲面与轴截面的交线为抛物线,在轴截面内的卫星波束呈近似平行状态射入接收天线,经反射聚集到焦点处.若“金色大伞”的深度为,则“金色大伞”的边缘点到焦点的距离为( )A. B. C. D. 8. 已知直线被圆截得弦长为整数,则满足条件的直线共有( )A. 1条B. 2条C. 3条D. 4条9. 已知函数,则“”是“为的极小值点”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件10. 《孙子算经》是中国南北朝时期重要的数学著作,书中的“中国剩余定理”对同余除法进行了深入的研究.现给出一个同余问题:如果和被除得的余数相同,那么称和对模同余,记为.若,则的值可以是( )A. 2023 B. 2024 C. 2025 D. 2026第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分.的.的23a =4log 5b =22a b -53352-A B C 4.2m F 0.49m A F 2.25m 2.74m4.5m4.99m:250l mx y m --+=()()22344x y -+-=l ()()()()2,f x a x a x b a b =--∈R 0b a >>b ()f x a b m a b m ()mod a b m ≡()0122202420242024202420242024C C 3C 3C 3,mod5a a b =+⨯+⨯++⨯≡ b11. 函数的定义域是_________.12. 已知双曲线的焦点为和,一条渐近线方程为,则的方程为_________.13. 已知二项式的所有项的系数和为,则_____________;_________.14. 某学校要求学生每周校园志愿服务时长不少于1小时.某周可选择的志愿服务项目如下表所示:岗位环保宣讲器材收纳校史讲解食堂清扫图书整理时长20分钟20分钟25分钟30分钟40分钟每位学生每天最多可选一个项目,且该周同一个项目只能选一次,则不同选择的组合方式共有________种.15 设,函数给出下列四个结论:①当时,函数的最大值为0;②当时,函数是增函数;③若函数存在两个零点,则;④若直线与曲线恰有2个交点,则.其中所有正确结论的序号是_________.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16. 某次乒乓球比赛单局采用11分制,每赢一球得一分.每局比赛开始时,由一方进行发球,随后每两球交换一次发球权,先得11分且至少领先2分者胜,该局比赛结束;当某局比分打成后,每球交换发球权,领先2分者胜,该局比赛结束.已知甲、乙两人要进行一场五局三胜制(当一方赢得三局比赛时,该方获胜,比赛结束)的比赛.(1)单局比赛中,若甲发球时甲得分的概率为,乙发球时甲得分的概率为,求甲领先的概率;(2)若每局比赛乙获胜的概率为,且每局比赛结果相互独立,求乙以赢得比赛的概率.17. 设函数,其中.曲线在点处的切线方程为.(1)求,的值;(2)求的单调区间..()ln f x x =+C ()2,0-()2,0y =C ()111021...nn n n n x a x a x a x a --+=++++243n =2a =R a ∈()32,,ax x x af x x x a⎧->=⎨-≤⎩0a =()f x 7a =()f x ()f x 01a <<y ax =()y f x =a<010:1045124:0133:1()e xf x a x =+R a ∈()y f x =(0,(0))f y x b =-+a b ()f x18. 近年来,我国新能源汽车蓬勃发展,极大地促进了节能减排.遥遥计划在,,,,,这6个国产新能源品牌或在,,,这4个国产燃油汽车品牌中选择购车.预计购买新能源汽车比燃油车多花费40000元.据测算,每行驶5公里,燃油汽车约花费3元,新能源汽车约消耗电1千瓦时.如果购买新能源汽车,遥遥使用国家电网所属电动汽车公共充电设施充电,充电价格分为峰时、平时、谷时三类,具体收费标准(精确到0.1元/千瓦时)如下表:充电时间段充电价格(元/千瓦时)充电服务费(元/千瓦时)峰时10:00—15:00和18:00—21:001.0平时7:00—10:00,15:00—18:00和21:00—23:000.7谷时当日23:00—次日7:000.40.8(1)若遥遥在6个新能源汽车品牌中选出2个品牌作比较,求品牌被选中的概率;(2)若遥遥选购新能源汽车,他在18:00,18:30,19:00,19:30,…,23:30这12个时间点中随机选择一个时间点给车充电,每次充电30千瓦时(用时不超过半小时).设为遥遥每次充电的费用,求的分布列和数学期望;(3)假设遥遥一年驾车约行驶30000公里,按新车使用8年计算,如果只考虑购车成本与能源消耗支出,计算说明选择新能源汽车和燃油汽车哪个的总花费更少.19. 已知椭圆,过点,,分别是的左顶点和下顶点,是右焦点,.(1)求的方程;(2)过点的直线与椭圆交于点,,直线,分别与直线交于不同的两点,.设直线,的斜率分别为,,求证:为定值.1A 2A 3A 4A 5A 6A 1B 2B 3B 4B 1A X X 2222:1(0)x y E a b a b+=>>A B E F E π3AFB ∠=E F E P Q AP AQ 4x =M N FM FN 1k 2k 12k k20. 已知函数.(1)当时,求极值;(2)若对任意,有恒成立,求的取值范围;(3)证明:若在区间上存在唯一零点,则(其中).21. 已知项数列,满足对任意的有. 变换满足对任意,有,且对有,称数列是数列的一个排列. 对任意,记,,如果是满足的最小正整数,则称数列存在阶逆序排列,称是的阶逆序变换.(1)已知数列,数列,求,;(2)证明:对于项数列,不存在阶逆序变换;(3)若项数列存在阶逆序变换,求的最小值.的()()2ln 1f x x a x a =--∈R 2a =()f x ()1,x ∈+∞()0f x >a ()f x ()1,+∞0x 20e a x -<e 2.71828...=n ()12:,,...,3n n A a a a n ≥i j ≠i j a a ≠T {}1,2,...,i n ∈(){}12,,...,i n T a a a a ∈i j ≠()()i j T a T a ≠()()()()12:,,...,n n T A T a T a T a n A {}1,2,...,i n ∈()()1i i T a Ta =()()()()1*k k i i T a T T a k +=∈N k ()()11,2,...,k i n i T a a i n +-==n A k T n A k 4:1,2,3,4A ()4:3,1,4,2T A ()24T A ()44T A 44A 3n n A 3n北京市东城区2023-2024学年高二下学期期末统一检测数学 答案第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.【1题答案】【答案】B 【2题答案】【答案】A 【3题答案】【答案】D 【4题答案】【答案】A 【5题答案】【答案】C 【6题答案】【答案】B 【7题答案】【答案】B 【8题答案】【答案】C 【9题答案】【答案】A 【10题答案】【答案】D第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分.【11题答案】【答案】【12题答案】()1,+∞【答案】【13题答案】【答案】①. ②. 【14题答案】【答案】20【15题答案】【答案】①③##③①三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.【16题答案】【答案】(1); (2).【17题答案】【答案】(1)(2)递增区间为,递减区间为.【18题答案】【答案】(1)(2)分布列略,期望 (3)选择新能源汽车的总花费最少【19题答案】【答案】(1);(2)证明略.【20题答案】【答案】(1)极小值为,无极大值 (2) (3)证明略【21题答案】2213y x -=5404252272a b ==-(,ln 2)-∞-(ln 2,)-+∞13()48E X =22143x y +=0(],2-∞【答案】(1),(2)证明略(3)()24:4,3,2,1T A ()44:1,2,3,4T A 6。
2015-2016学年高二下学期期中考试数学(理)试题含答案
白云中学2015—2016学年第二学期期中测试高二理科数学试卷一、选择题(每题5分,共60分)1.函数),1)(1()(-+=x x x f 则=')2(f ( )A. 3B. 2C. 4D. 0 2.已知函数,2)(2+-=x x x f 则⎰=10)(dx x f ( )A.613 B. 611 C. 2 D. 33.已知a 为实数,若2321>++i a i ,则=a ( ) A .1 B .2- C . 31 D .214.“所有金属都能导电,铁是金属,所以铁能导电”这种推理方法属于( )A .演绎推理B .类比推理C .合情推理D .归纳推理5.已知抛物线2y ax bx c =++通过点(11)P ,,且在点(21)Q -,处的切线平行于直线3y x =-,则抛物线方程为( )A.23119y x x =-+ B.23119y x x =++C.23119y x x =-+D.23119y x x =--+6.命题p :∃x ∈R ,使得3x >x ;命题q :若函数y=f (x ﹣1)为偶函数,则函数y=f (x )关于直线x=1对称,则( )A .p ∨q 真B .p ∧q 真C .¬p 真D .¬q 假7.在复平面内,复数2(13)1iz i i =+++对应的点在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限8.如图,阴影部分的面积是( )A.23B.23-C.323D.3539.函数2()sin f x x =的导数是( )A.2sin xB.22sin xC.2cos x D.sin 2x10.下列说法正确的是()A.函数y x =有极大值,但无极小值 B.函数y x =有极小值,但无极大值 C.函数y x =既有极大值又有极小值 D.函数y x =无极值11.下列函数在点0x =处没有切线的是( )A.23cos y x x =+ B.sin y x x =· C.12y x x=+D.1cos y x=12.已知抛物线C 的方程为x 2=y ,过点A (0,﹣1)和点B (t ,3)的直线与抛物线C 没有公共点,则实数t 的取值范围是( )A .(﹣∞,﹣1)∪(1,+∞)B .(﹣∞,﹣)∪(,+∞)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣∞,﹣)∪(,+∞)二、填空题(每小题5分 ,共20分)13.函数23)(x x x f +=单调递减区间是14.若复数22(2)(2)z a a a a i =-+--为纯虚数,则实数a 的值等于 . 15.已知函数32()39f x x x x m =-+++在区间[22]-,上的最大值是20,则实数m 的值等于 .16.通过观察下面两等式的规律,请你写出一般性的命题:23150sin 90sin 30sin 222=++23125sin 65sin 5sin 222=++________________________________________________高二理科数学试卷答题卡1 2 3 4 5 6 7 8 9 10 11 12二、填空题(每小题5分 ,共20分)13.___________, 14.____________,15.____________,16.______________________________.三、解答题(共70分)17.(本小题满分12分)已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值.18.(本小题满分12分)求函数5224+-=x x y 在区间[-2,2]上的最大值与最小值19.(本小题满分10分)求曲线2xy 过点P(1,-1)的切线方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市东城区2015-2016学年下学期高二期末考试数学试卷(理科)本试卷共100分,考试时长120分钟。
参考公式:如果事件A ,B 互斥,那么P (A+B )=P (A )+P (B ). 如果事件A, B 相互独立,那么P (A·B )=P (A )·P (B ).若11(,)x y ,22(,)x y ,…,(,)n n x y 为样本点,y b x a ∧∧∧=+为回归方程,则121()()()niii ni x x y y b xi x ∧==--=-∑∑,a yb x ∧∧=-,其中11n i i x x n ==∑,11n i i y y n ==∑. 22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++为样本容量。
一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设复数z 满足(1)2i z i -=,则z=A. 1i --B. 1i -+C. 1i +D. 1i -2. 下列四个命题中的真命题为A. 00,143x Z x ∃∈<<B. 00,510x Z x ∃∈+=C. 2,10x R x ∀∈-= D. 2,20x R x x ∀∈++> 3.12(23)x x dx -=⎰A. -6B. -1C. 0D. 14. 用数学归纳法证明“21122221()n n n N -+++=-∈* ”的过程中,第二步假设n k =时等式成立,则当1n k =+时应得到A. 22111222221k k k --+++++=-B. 21112222212kk k k ++++++=-+C. 21111222221k k k -++++++=- D. 2112222212k k k k -++++=-+5. “2a =-”是“复数2(4)(1)()z a a i a R =-++∈为纯虚数”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6. 函数xe y x=在1x =处的导数等于A. 0B. 1C. eD. 2e7. 某人有3个电子邮箱,他要发5封不同的电子邮件,则不同的发送方法有A. 8种B. 15种C. 53种 D. 35种8.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计人数后,得到2×2列联表,则随机变量2K 的观测值为班级与成绩统计表 优秀 不优秀 总计 甲班 11 34 45 乙班 8 37 45 总计197190A. 0.600B. 0.828C. 2.712 D . 6.0049. 甲、乙两人进行乒乓球比赛,比赛采用五局三胜制,无论哪一方先胜三局比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3:1的比分获胜的概率为 A.6481B.827 C. 49 D. 8910. 为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息。
设定原信息为012a a a ,其中{}0,1(0,1,2)i a i ∈=,传输信息为00121h a a a h ,001102,h a a h h a =⊕=⊕,⊕运算规则为:000,011,101,110⊕=⊕=⊕=⊕=.例如原信息为111,则传输信息为01111. 传输信息在传输过程中受到干扰可能导致接收信息出错,则下列信息一定有误的是A. 11010B. 01100C. 10111D. 00011二、填空题(本大题共6小题,每小题3分,共18分) 11. 二项式61()2x x-展开式中的常数项为_________. 12. 曲线sin (0)y x x π=≤≤与x 轴围成的封闭区域的面积为_______________.13. 已知变量x ,y 具有线性相关关系,测得(x ,y )的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为 1.4y x a ∧∧=+,则a ∧的值是___________. 14. 已知离散型随机变量X 的分布列如下表: X -1 0 1 2Pabc112若E (X )=0,D (X )=1,则a=___________,b=_____________.15. 甲公司生产某种产品,固定成本为20000元,每生产1件产品,成本增加100元,已知总收益R (单位:元)与年产量x 件产品的关系是21400,0400,()280000,400,x x x R x x ⎧-≤≤⎪=⎨⎪>⎩则年产量为________件时,总利润(利润=收益—成本)最大.16. 已知两个正数a ,b ,可按规则c ab a b =++扩充为一个新数c ,在a ,b ,c 三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作.(1)若a=1,b=3,按上述规则操作三次,扩充所得的数是_____________;(2)若p>q>0,经过6次操作后扩充所得的数为(1)(1)1m n q p ++-(m ,n 为正整数),则m ,n 的值分别为____________.三、解答题(本大题共5小题,共52分。
解答应写出文字说明,证明过程或演算步骤) 17. (本小题满分10分)用数字0,1,2,3,4组成没有重复数字的五位数。
(I )能够组成多少个奇数?(II )能够组成多少个1和3不相邻的正整数?(III )能够组成多少个1不在万位,2不在个位的正整数? 18. (本小题满分10分)已知命题p :方程210x mx ++=有两个不等的正实数根;命题q :方程244(2)10x m x +++=无实数根.若“p 或q”为真命题,“p 且q”为假命题,求m 的取值范围。
19.(本小题满分10分)某校高一年级开设A ,B ,C ,D ,E 五门选修课,每位同学须彼此独立地选三门课程,其中甲同学必选A 课程,不选B 课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.(I )求甲同学选中C 课程且乙同学未选中C 课程的概率;(II )用X 表示甲、乙、丙选中C 课程的人数之和,求X 的分布列和数学期望. 20. (本小题满分11分)已知函数()ln(21)1f x a x bx =+++.(I )若()y f x =,在x=1处取得极值,且曲线()y f x =在点(0,f (0))处的切线与直线230x y +-=平行,求a 的值;(II )若12b =,讨论()f x 的单调性. 21.(本小题满分11分)定义在D 上的函数()f x ,若满足:,0x D M ∀∈∃>,都有|()|f x M ≤成立,则称()f x 是D上的有界函数,其中M 称为函数()f x 的上界.(I )设()1x f x x =+,证明:()f x 在11,22⎡⎤-⎢⎥⎣⎦上是有界函数,并写出()f x 所有上界的值的集合;(II )若函数()124x x g x a =++⋅在[]0,2x ∈上是以3为上界的有界函数,求实数a 的取值范围.参考答案一、选择题(共10小题,每小题3分,共30分)1. B2. D3.C4.D5.A6.A7.C8.A9.B 10.C二、填空题(共6小题,每小题3分,共18分) 11. 52- 12. 2 13. 0.9 14. 512 1415. 300 16. 255 8.13三、解答题(共5小题,共52分) 17. (本小题满分10分)解:(I )奇数共有11323336C C A ⨯⨯=个.…………………………3分(II )1和3不相邻,共有12312262332260C A A C A A ⨯⨯-⨯⨯=个。
………………6分 (III )1不在万位,2不在个位,共有4113423360A C C A +⨯⨯=个.……………………10 18. (本小题满分10分)解:因为命题p :方程210x mx ++=有两个不等的正实数根, 设方程的两根为12,x x ,则112120,0,10,x x m x x ∆>⎧⎪+=->⎨⎪=>⎩ 所以命题p :2m <-.…………………………3分 因为命题q :方程244(2)10x m x +++=无实数根,2216(2)160m ∆=+-<,所以命题q :31m -<<-.……………………5分 若“p 或q”为真命题,“p 且q”为假命题,则p 真q 假,则3m ≤-;…………………………7分 p 假q 真,则21m -≤<-.………………………………9分 综上,3m ≤-或21m -≤<-。
………………………………10分 19. (本小题满分10分)解: (I )设事件A 为“甲同学选中C 课程”,事件B 为“乙同学选中C 课程”.则1224233523(),()35C C P A P B C C ====.因为事件A 与B 相互独立,所以甲同学选中C 课程且乙同学未选中C 课程的概率为224()()()()[1()]3515P AB P A P B P A P B ==-=⨯=.…………………3分(II )设事件C 为“丙同学选中C 课程”,则24353()5C P C C ==.………………………………4分X 的可能取值为:0,1,2,3.1224(0)()35575P X P ABC ===⨯⨯=,……………………5分(1)()()()222132123435535535515P X P ABC P ABC P ABC ==++=⨯⨯+⨯⨯+⨯⨯=…………………………6分 (2)()()()2322231331135535535515P X P ABC P ABC P ABC ==++=⨯⨯+⨯⨯+⨯⨯=…………………………7分 2336(3)()35525P X P ABC ===⨯⨯=……………………8分X 的分布列为: X 0123P475 415 1115 625………………………………9分4411614028()0123751525257515E X =⨯+⨯+⨯+⨯==.…………………………10分 20.(本小题满分11分)解: (I )函数()f x 的定义域为1(,)2-+∞. 22'()21bx a bf x x ++=+由题意'(1)0,'(0)2,f f =⎧⎨=-⎩解得3,21.a b ⎧=-⎪⎨⎪=⎩所以32a =-.……………………………………3分(II )若12b =,则1()ln(21)12f x a x x =+++. 241'()42x a f x x ++=+.………………………………4分(1)令241'()42x a f x x ++=+>0,由函数定义域可知,420x +>,所以2410x a ++>.①当0a ≥时,1(,),'()02x f x ∈-+∞>,()f x 单调递增; ②当a<0时,1(2,),'()02x a f x ∈--+∞>,()f x 单调递增;……………………7分 (2)令241'()042x a f x x ++=<+,即2410x a ++<,①当0a ≥时,不等式'()0f x <无解; ②当a<0时,11(,2),'()022x a f x ∈---<,()f x 单调递减;……………………10分 综上:当0a ≥时,()f x 在区间1(,)2-+∞为增函数; 当a<0时,()f x 在区间1(2,)2a --+∞为增函数; 在区间11(,2)22a ---为减函数。