2012年高考真题——理科数学(上海卷)-复兰高考名师在线精编解析版

合集下载

2012年上海高考理科数学试卷及解析

2012年上海高考理科数学试卷及解析

2012年上海市高考数学试卷(理科)一、填空题( 分):.( 上海)计算: ( 为虚数单位)..( 上海)若集合 > , ﹣ < ,则 ..( 上海)函数 ( ) 的值域是 ..( 上海)若 (﹣ , )是直线 的一个法向量,则 的倾斜角的大小为 (结果用反三角函数值表示)..( 上海)在的二项展开式中,常数项等于..( 上海)有一列正方体,棱长组成以 为首项、为公比的等比数列,体积分别记为 , , , , ,则( )..( 上海)已知函数 ( ) ﹣ ( 为常数).若 ( )在区间 , )上是增函数,则 的取值范围是 ..( 上海)若一个圆锥的侧面展开图是面积为 的半圆面,则该圆锥的体积为 ..( 上海)已知 ( ) 是奇函数,且 ( ) ,若 ( ) ( ) ,则 (﹣ ) ..( 上海)如图,在极坐标系中,过点 ( , )的直线 与极轴的夹角 ,若将 的极坐标方程写成 ( )的形式,则 ( )..( 上海)三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示)..( 上海)在平行四边形 中, ,边 、 的长分别为 、 ,若 、 分别是边 、 上的点,且满足 ,则的取值范围是 ..( 上海)已知函数 ( )的图象是折线段 ,其中 ( , )、 (, )、 ( , ),函数 ( )( )的图象与 轴围成的图形的面积为 ..( 上海)如图, 与 是四面体 中互相垂直的棱,,若 ,且 ,其中 、 为常数,则四面体 的体积的最大值是 .二、选择题( 分):.( 上海)若 是关于 的实系数方程 的一个复数根,则(). , . ﹣ , . ﹣ , ﹣ . , ﹣.( 上海)在 中,若 < ,则的形状是().锐角三角形 .直角三角形 .钝角三角形 .不能确定.( 上海)设 < < < , ,随机变量 取值 、 、 、 、 的概率均为 ,随机变量 取值、、、、的概率也均为 ,若记 、 分别为 、的方差,则(). >.. <. 与 的大小关系与 、 、 、 的取值有关.( 上海)设 , ,在 ,, 中,正数的个数是(). . . .三、解答题(共 小题,满分 分).( 上海)如图,在四棱锥 ﹣ 中,底面 是矩形, 底面 , 是 的中点,已知 , , ,求:( )三角形 的面积;( )异面直线 与 所成的角的大小..( 上海)已知 ( ) ( )( )若 < ( ﹣ )﹣ ( )< ,求 的取值范围;( )若 ( )是以 为周期的偶函数,且当 时, ( ) ( ),求函数 ( )( , )的反函数..( 上海)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为 轴正方向建立平面直角坐标系(以 海里为单位长度),则救援船恰好在失事船正南方向 海里 处,如图,现假设:失事船的移动路径可视为抛物线;定位后救援船即刻沿直线匀速前往救援;救援船出发 小时后,失事船所在位置的横坐标为( )当 时,写出失事船所在位置 的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.( )问救援船的时速至少是多少海里才能追上失事船?.( 上海)在平面直角坐标系 中,已知双曲线 : ﹣.( )过 的左顶点引 的一条渐进线的平行线,求该直线与另一条渐进线及 轴围成的三角形的面积;( )设斜率为 的直线 交 于 、 两点,若 与圆 相切,求证: ;( )设椭圆 : ,若 、 分别是 、 上的动点,且 ,求证: 到直线 的距离是定值..( 上海)对于数集 ﹣ , , , , ,其中 < < < < , ,定义向量集 ( , ), , ,若对任意,存在,使得,则称 具有性质 .例如 ﹣ , , 具有性质 .( )若 > ,且 ﹣ , , , 具有性质 ,求 的值;( )若 具有性质 ,求证: ,且当 > 时, ;( )若 具有性质 ,且 、 ( 为常数),求有穷数列 , , , 的通项公式.年上海市高考数学试卷(理科)参考答案与试题解析一、填空题( 分):.( 上海)计算: ﹣ ( 为虚数单位).考点:复数代数形式的乘除运算。

2012年上海高考理科数学试卷及解析

2012年上海高考理科数学试卷及解析

2012年上海市高考数学试卷(理科)一、填空题(56分):1.(2012•上海)计算:= _________ (i为虚数单位).2.(2012•上海)若集合A={x|2x+1>0},B={x||x﹣1|<2},则A∩B=_________ .3.(2012•上海)函数f(x)=的值域是_________ .4.(2012•上海)若=(﹣2,1)是直线l的一个法向量,则l的倾斜角的大小为_________ (结果用反三角函数值表示).5.(2012•上海)在的二项展开式中,常数项等于_________ .6.(2012•上海)有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为V1,V2,…,V n,…,则(V1+V2+…+V n)═_________ .7.(2012•上海)已知函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是_________ .8.(2012•上海)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为_________ .9.(2012•上海)已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g(﹣1)= _________ .10.(2012•上海)如图,在极坐标系中,过点M(2,0)的直线l与极轴的夹角a=,若将l的极坐标方程写成ρ=f(θ)的形式,则f(θ)= _________ .11.(2012•上海)三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是_________ (结果用最简分数表示).12.(2012•上海)在平行四边形ABCD中,∠A=,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足=,则的取值范围是_________ .13.(2012•上海)已知函数y=f(x)的图象是折线段ABC,其中A(0,0)、B(,5)、C (1,0),函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为_________ .14.(2012•上海)如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是_________ .二、选择题(20分):15.(2012•上海)若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3B.b=﹣2,c=3C.b=﹣2,c=﹣1D.b=2,c=﹣116.(2012•上海)在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定17.(2012•上海)设10≤x1<x2<x3<x4≤104,x5=105,随机变量ξ1取值x1、x2、x3、x4、x5的概率均为0.2,随机变量ξ2取值、、、、的概率也均为0.2,若记Dξ1、Dξ2分别为ξ1、ξ2的方差,则()A.Dξ>Dξ21B.Dξ=Dξ21C.Dξ<Dξ21D.Dξ与Dξ2的大小关系与x1、x2、x3、x4的取值有关118.(2012•上海)设a n=sin,S n=a1+a2+…+a n,在S1,S2,…S100中,正数的个数是()A.25B.50C.75D.100三、解答题(共5小题,满分74分)19.(2012•上海)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC 的中点,已知AB=2,AD=2,PA=2,求:(1)三角形PCD的面积;(2)异面直线BC与AE所成的角的大小.20.(2012•上海)已知f(x)=lg(x+1)(1)若0<f(1﹣2x)﹣f(x)<1,求x的取值范围;(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.21.(2012•上海)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A处,如图,现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t小时后,失事船所在位置的横坐标为7t(1)当t=0.5时,写出失事船所在位置P的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.(2)问救援船的时速至少是多少海里才能追上失事船?22.(2012•上海)在平面直角坐标系xOy中,已知双曲线C1:2x2﹣y2=1.(1)过C1的左顶点引C1的一条渐进线的平行线,求该直线与另一条渐进线及x轴围成的三角形的面积;(2)设斜率为1的直线l交C1于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ;(3)设椭圆C2:4x2+y2=1,若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN 的距离是定值.23.(2012•上海)对于数集X={﹣1,x1,x2,…,x n},其中0<x1<x2<…<x n,n≥2,定义向量集Y={=(s,t),s∈X,t∈X},若对任意,存在,使得,则称X具有性质P.例如{﹣1,1,2}具有性质P.(1)若x>2,且{﹣1,1,2,x}具有性质P,求x的值;(2)若X具有性质P,求证:1∈X,且当x n>1时,x1=1;(3)若X具有性质P,且x1=1、x2=q(q为常数),求有穷数列x1,x2,…,x n的通项公式.2012年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(56分):1.(2012•上海)计算:= 1﹣2i (i为虚数单位).考点:复数代数形式的乘除运算。

2012年高考真题——理科数学(上海卷)解析版(1)

2012年高考真题——理科数学(上海卷)解析版(1)

2012上海高考数学试题(理科)答案与解析一.填空题 1.计算:3-i=1+i(i 为虚数单位). 【答案】1-2i 【解析】3-i (3-i)(1-i)2-4i ===1-2i 1+i (1+i)(1-i)2. 【点评】本题着重考查复数的除法运算,首先,将分子、分母同乘以分母的共轭复数,将分母实数化即可.2.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A . 【答案】 ⎪⎭⎫⎝⎛-3,21 【解析】根据集合A 210x +>,解得12x >-,由12,,13x x --<<得到,所以⎪⎭⎫⎝⎛-=3,21B A .【点评】本题考查集合的概念和性质的运用,同时考查了一元一次不等式和绝对值不等式的解法.解决此类问题,首先分清集合的元素的构成,然后,借助于数轴或韦恩图解决. 3.函数1sin cos 2)(-= x x x f 的值域是 .【答案】⎥⎦⎤⎢⎣⎡--23,25 【解析】根据题目22sin 212cos sin )(--=--=x x x x f ,因为12sin 1≤≤-x ,所以23)(25-≤≤-x f . 【点评】本题主要考查行列式的基本运算、三角函数的范围、二倍角公式,属于容易题,难度较小.考纲中明确要求掌握二阶行列式的运算性质.4.若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示).【答案】2arctan【解析】设直线的倾斜角为α,则2arctan ,2tan ==αα.【点评】本题主要考查直线的方向向量、直线的倾斜角与斜率的关系、反三角函数的表示.直线的倾斜角的取值情况一定要注意,属于低档题,难度较小. 5.在6)2(xx -的二项展开式中,常数项等于 . 【答案】160-【解析】根据所给二项式的构成,构成的常数项只有一项,就是333462C ()160T x x=-=- .【点评】本题主要考查二项式定理.对于二项式的展开式要清楚,特别注意常数项的构成.属于中档题.6.有一列正方体,棱长组成以1为首项、21为公比的等比数列,体积分别记为 ,,,,n V V V 21,则=+++∞→)(lim 21n n V V V .【答案】78【解析】由正方体的棱长组成以1为首项,21为公比的等比数列,可知它们的体积则组成了一个以1为首项,81为公比的等比数列,因此,788111)(lim 21=-=+++∞→n n V V V . 【点评】本题主要考查无穷递缩等比数列的极限、等比数列的通项公式、等比数列的定义.考查知识较综合. 7.已知函数||)(a x e x f -=(a 为常数).若)(x f 在区间),1[+∞上是增函数,则a 的取值范围是 . 【答案】(]1,∞-【解析】根据函数,(),x a x ax ae x af x ee x a---+⎧≥⎪==⎨<⎪⎩看出当a x ≥时函数增函数,而已知函数)(x f 在区间[)+∞,1上为增函数,所以a 的取值范围为:(]1,∞- .【点评】本题主要考查指数函数单调性,复合函数的单调性的判断,分类讨论在求解数学问题中的运用.本题容易产生增根,要注意取舍,切勿随意处理,导致不必要的错误.本题属于中低档题目,难度适中.8.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 . 【答案】33π 【解析】根据该圆锥的底面圆的半径为r ,母线长为l ,根据条件得到ππ2212=l ,解得母线长2=l ,1,22===r l r πππ所以该圆锥的体积为:ππ331231S 3122=-⨯==h V 圆锥.【点评】本题主要考查空间几何体的体积公式和侧面展开图.审清题意,所求的为体积,不是其他的量,分清图形在展开前后的变化;其次,对空间几何体的体积公式要记准记牢,属于中低档题.9.已知2)(x x f y +=是奇函数,且1)1(=f ,若2)()(+=x f x g ,则=-)1(g . 【答案】1- 【解析】因为函数2)(x x f y +=为奇函数,所以,3)1(,1)1(,2)1()1(==+=g f f g 所以,又1232)1()1(,3)1(-=+-=+-=--=-f g f .(1)(1).f f -=-【点评】本题主要考查函数的奇偶性.在运用此性质解题时要注意:函数)(x f y =为奇函数,所以有)()(x f x f -=-这个条件的运用,平时要加强这方面的训练,本题属于中档题,难度适中.10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=,若将l 的极坐标方程写成)(θρf =的形式,则=)(θf .【答案】)6sin(1θπ-【解析】根据该直线过点)0,2(M ,可以直接写出代数形式的方程为:)2(21-=x y ,将此化成极坐标系下的参数方程即可 ,化简得)6sin(1)(θπθ-=f .【点评】本题主要考查极坐标系,本部分为选学内容,几乎年年都有所涉及,题目类型以小题为主,复习时,注意掌握基本规律和基础知识即可.对于不常见的曲线的参数方程不作要求.本题属于中档题,难度适中.11.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示). 【答案】32 【解析】一共有27种取法,其中有且只有两个人选择相同的项目的取法共有18种,所以根据古典概型得到此种情况下的概率为32. 【点评】本题主要考查排列组合概率问题、古典概型.要分清基本事件数和基本事件总数.本题属于中档题.12.在平行四边形ABCD 中,3π=∠A ,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD =AN AM ⋅的取值范围是 .【答案】[]5,2【解析】以向量AB 所在直线为x 轴,以向量AD 所在直线为y 轴建立平面直角坐标系,如图所示,因为1,2==AD AB ,所以51(0,0),(2,0),(,1)(,1).22A B C D 设1515515151(,1)(), , - , - , (2,()sin ).22224284423N x x BM CN CN x BM x M x x π≤≤===+--则根据题意,有)83235,4821(),1,(xx AM x AN --==→→.【点评】本题主要考查平面向量的基本运算、概念、平面向量的数量积的运算律.做题时,要切实注意条件的运用.本题属于中档题,难度适中.13.已知函数)(x f y =的图象是折线段ABC ,其中)0,0(A 、)5,21(B 、)0,1(C , 函数)(x xf y =(10≤≤x )的图象与x 轴围成的图形的面积为 . 【答案】45 【解析】根据题意得到,110,02()11010,12x x f x x x ⎧≤≤⎪⎪=⎨⎪-+≤⎪⎩从而得到22110,02()11010,12x x y xf x x x x ⎧≤≤⎪⎪==⎨⎪-+<≤⎪⎩所以围成的面积为45)1010(10121221=+-+=⎰⎰dx x x xdx S ,所以围成的图形的面积为45 . 【点评】本题主要考查函数的图象与性质,函数的解析式的求解方法、定积分在求解平面图形中的运用.突出体现数形结合思想,本题综合性较强,需要较强的分析问题和解决问题的能力,在以后的练习中加强这方面的训练,本题属于中高档试题,难度较大. 14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2=BC ,若c AD 2=,且a CD AC BD AB 2=+=+,其中a 、c 为常数,则四面体ABCD 的体积的最 大值是 . 【答案】13222--c a c 【解析】据题a CD AC BD AB 2=+=+,也就是说,线段CD AC BD AB ++与线段的长度是定值,因为棱AD 与棱BC 互相垂直,当ABD BC 平面⊥时,此时有最大值,此时最大值为:13222--c a c . 【点评】本题主要考查空间四面体的体积公式、空间中点线面的关系.本题主要考虑根据已知条件构造体积表达式,这是解决问题的关键,本题综合性强,运算量较大.属于中高档试题.二、选择题(20分) 15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )A .3,2==c bB .3,2=-=c bC .1,2-=-=c bD .1,2-==c b 【答案】 B【解析】根据实系数方程的根的特点1也是该方程的另一个根,所以b i i -==-++22121,即2-=b ,c i i ==+-3)21)(21(,故答案选择B.【点评】本题主要考查实系数方程的根的问题及其性质、复数的代数形式的四则运算,属于中档题,注重对基本知识和基本技巧的考查,复习时要特别注意.16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 【答案】C【解析】由正弦定理,得,sin 2,sin 2,sin 2C Rc B R b A R a ===代入得到222a b c +<, 由余弦定理的推理得222cos 02a b c C ab+-=<,所以C 为钝角,所以该三角形为钝角三角形.故选择A.【点评】本题主要考查正弦定理及其推理、余弦定理的运用.主要抓住所给式子的结构来选择定理,如果出现了角度的正弦值就选择正弦定理,如果出现角度的余弦值就选择余弦定理.本题属于中档题.17.设443211010≤<<<≤x x x x ,5510=x ,随机变量1ξ取值54321x x x x x 、、、、的概率均为2.0,随机变量2ξ取值222221554433221x x x x x x x x x x +++++、、、、的概率也均为2.0,若记21ξξD D 、分别为21ξξ、的方差,则( ) A .21ξξD D > B .21ξξD D =C .21ξξD D < D .1ξD 与2ξD 的大小关系与4321x x x x 、、、的取值有关 【答案】 A【解析】 由随机变量21,ξξ的取值情况,它们的平均数分别为:1123451(),5x x x x x x =++++,2334455112211,522222x x x x x x x x x x x x +++++⎛⎫=++++= ⎪⎝⎭且随机变量21,ξξ的概率都为2.0,所以有1ξD >2ξD . 故选择A.【点评】本题主要考查离散型随机变量的期望和方差公式.记牢公式是解决此类问题的前提和基础,本题属于中档题. 18.设25sin1πn n a n =,n n a a a S +++= 21,在10021,,,S S S 中,正数的个数是( ) A .25 B .50 C .75 D .100 【答案】C【解析】依据正弦函数的周期性,可以找其中等于零或者小于零的项.【点评】本题主要考查正弦函数的图象和性质和间接法解题.解决此类问题主要找到规律,从题目出发可以看出来相邻的14项的和为0,这就是规律,考查综合分析问题和解决问题的能力.三、解答题(74分):19.(6+6=12分)如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求:(1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小. 【答案及解析】所以三角形PCD 的面积为3232221=⨯⨯................6分【点评】本题主要考查直线与直线、直线与平面的位置关系,考查空间想象能力和推理论证能力.综合考查空间中两条异面直线所成的角的求解,同时考查空间几何体的体积公式的运用.本题源于《必修2》立体几何章节复习题,复习时应注重课本,容易出现找错角的情况,要考虑全面,考查空间想象能力,属于中档题. 20.(6+8=14分)已知函数)1lg()(+=x x f . (1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =(]2,1[∈x )的反函数.【答案及解析】,3132<<-x【点评】本题主要考查函数的概念、性质、分段函数等基础知识.考查数形结合思想,熟练掌握指数函数、对数函数、幂函数的图象与性质,属于中档题.21.(6+8=14分)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图.现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为t 7.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标.若此时两船恰好会合,求 救援船速度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?22.(4+6+6=16分)在平面直角坐标系xOy 中,已知双曲线1C :1222=-y x . (1)过1C 的左顶点引1C 的一条渐进线的平行线,求该直线与另一条渐进线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证:OQ OP ⊥;(3)设椭圆2C :1422=+y x ,若M 、N 分别是1C 、2C 上的动点,且ON OM ⊥,求证:O 到直线MN 的距离是定值. 【答案及解析】过点A 与渐近线x y 2=平行的直线方程为, 1.y x y =+=+即1=ON ,22=OM ,则O 到直线MN .设O 到直线MN 的距离为d .【点评】本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系、椭圆的标准方程和圆的有关性质.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲线,它的离心率为2,它的渐近线为x y ±=,并且相互垂直,这些性质的运用可以大大节省解题时间,本题属于中档题 .23.(4+6+8=18分)对于数集}1{21n x x x X ,,,, -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s a a Y ∈∈==,若对任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X 具有性质P .例如}2,1,1{-具有性质P . (1)若2>x ,且},2,1,1{x -具有性质P ,求x 的值;(2)若X 具有性质P ,求证:X ∈1,且当1>n x 时,11=x ;(3)若X 具有性质P ,且11=x 、q x =2(q 为常数),求有穷数列n x x x ,,, 21的通项公式.【答案及解析】必有形式),1(b -显然有2a 满足021=∙a a【点评】本题主要考查数集、集合的基本性质、元素与集合的关系等基础知识,本题属于信息给予题,通过定义“X具有性质P”这一概念,考查考生分析探究及推理论证的能力.综合考查集合的基本运算,集合问题一直是近几年的命题重点内容,应引起足够的重视.。

2012年上海市高考数学试卷(理科)附送答案

2012年上海市高考数学试卷(理科)附送答案

2012年上海市高考数学试卷(理科)一、填空题(56分):1.(4分)计算:=(i为虚数单位).2.(4分)若集合A={x|2x+1>0},B={x||x﹣1|<2},则A∩B=.3.(4分)函数f(x)=的值域是.4.(4分)若=(﹣2,1)是直线l的一个法向量,则l的倾斜角的大小为(结果用反三角函数值表示).5.(4分)在的二项展开式中,常数项等于.6.(4分)有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为V 1,V2,…,V n,…,则(V1+V2+…+V n)═.7.(4分)已知函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是.8.(4分)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为.9.(4分)已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g (﹣1)=.10.(4分)如图,在极坐标系中,过点M(2,0)的直线l与极轴的夹角a=,若将l的极坐标方程写成ρ=f(θ)的形式,则f(θ)=.11.(4分)三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示).12.(4分)在平行四边形ABCD中,∠A=,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足=,则的取值范围是.13.(4分)已知函数y=f(x)的图象是折线段ABC,其中A(0,0)、B(,5)、C(1,0),函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为.14.(4分)如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是.二、选择题(20分):15.(5分)若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3 B.b=﹣2,c=3 C.b=﹣2,c=﹣1 D.b=2,c=﹣116.(5分)在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定17.(5分)设10≤x1<x2<x3<x4≤104,x5=105,随机变量ξ1取值x1、x2、x3、x4、x5的概率均为0.2,随机变量ξ2取值、、、、的概率也均为0.2,若记Dξ1、Dξ2分别为ξ1、ξ2的方差,则()A.Dξ1>Dξ2B.Dξ1=Dξ2C.Dξ1<Dξ2D.Dξ1与Dξ2的大小关系与x1、x2、x3、x4的取值有关18.(5分)设a n=sin,S n=a1+a2+…+a n,在S1,S2,…S100中,正数的个数是()A.25 B.50 C.75 D.100三、解答题(共5小题,满分74分)19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=2,PA=2,求:(1)三角形PCD的面积;(2)异面直线BC与AE所成的角的大小.20.(14分)已知f(x)=lg(x+1)(1)若0<f(1﹣2x)﹣f(x)<1,求x的取值范围;(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.21.(14分)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A处,如图,现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t小时后,失事船所在位置的横坐标为7t(1)当t=0.5时,写出失事船所在位置P的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.(2)问救援船的时速至少是多少海里才能追上失事船?22.(16分)在平面直角坐标系xOy中,已知双曲线C1:2x2﹣y2=1.(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积;(2)设斜率为1的直线l交C1于P、Q两点,若l与圆x2+y2=1相切,求证:OP ⊥OQ;(3)设椭圆C2:4x2+y2=1,若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN的距离是定值.23.(18分)对于数集X={﹣1,x1,x2,…,x n},其中0<x1<x2<…<x n,n≥2,定义向量集Y={=(s,t),s∈X,t∈X},若对任意,存在,使得,则称X具有性质P.例如{﹣1,1,2}具有性质P.(1)若x>2,且{﹣1,1,2,x}具有性质P,求x的值;(2)若X具有性质P,求证:1∈X,且当x n>1时,x1=1;(3)若X具有性质P,且x1=1、x2=q(q为常数),求有穷数列x1,x2,…,x n的通项公式.2012年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(56分):1.(4分)(2012•上海)计算:=1﹣2i(i为虚数单位).【分析】由题意,可对复数代数式分子与分母都乘以1﹣i,再由进行计算即可得到答案【解答】解:故答案为1﹣2i2.(4分)(2012•上海)若集合A={x|2x+1>0},B={x||x﹣1|<2},则A∩B=(﹣,3).【分析】由题意,可先将两个数集化简,再由交的运算的定义求出两个集合的交集即可得到答案【解答】解:由题意A={x|2x+1>0}={x|x>﹣},B={x||x﹣1|<2}={x|﹣1<x <3},所以A∩B=(﹣,3)故答案为(﹣,3)3.(4分)(2012•上海)函数f(x)=的值域是.【分析】先根据二阶行列式的运算法则求出函数的解析式,然后化简整理,根据正弦函数的有界性可求出该函数的值域.【解答】解:f(x)==﹣2﹣sinxcosx=﹣2﹣sin2x∵﹣1≤sin2x≤1∴﹣≤﹣sin2x≤则﹣≤﹣2﹣sin2x≤﹣∴函数f(x)=的值域是故答案为:4.(4分)(2012•上海)若=(﹣2,1)是直线l的一个法向量,则l的倾斜角的大小为arctan2(结果用反三角函数值表示).【分析】根据直线的法向量求出直线的一个方向向量,从而得到直线的斜率,根据k=tanα可求出倾斜角.【解答】解:∵=(﹣2,1)是直线l的一个法向量∴可知直线l的一个方向向量为(1,2),直线l的倾斜角为α得,tanα=2∴α=arctan2故答案为:arctan25.(4分)(2012•上海)在的二项展开式中,常数项等于﹣160.【分析】研究常数项只需研究二项式的展开式的通项,使得x的指数为0,得到相应的r,从而可求出常数项.=x6﹣r(﹣)r=(﹣2)r x6﹣2r【解答】解:展开式的通项为T r+1令6﹣2r=0可得r=3常数项为(﹣2)3=﹣160故答案为:﹣1606.(4分)(2012•上海)有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为V 1,V2,…,V n,…,则(V1+V2+…+V n)═.【分析】由题意可得,正方体的体积=是以1为首项,以为公比的等比数,由等不数列的求和公式可求【解答】解:由题意可得,正方体的棱长满足的通项记为a n则∴=是以1为首项,以为公比的等比数列则(V 1+V2+…+v n)==故答案为:7.(4分)(2012•上海)已知函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是(﹣∞,1] .【分析】由题意,复合函数f(x)在区间[1,+∞)上是增函数可得出内层函数t=|x﹣a|在区间[1,+∞)上是增函数,又绝对值函数t=|x﹣a|在区间[a,+∞)上是增函数,可得出[1,+∞)⊆[a,+∞),比较区间端点即可得出a的取值范围【解答】解:因为函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数由复合函数的单调性知,必有t=|x﹣a|在区间[1,+∞)上是增函数又t=|x﹣a|在区间[a,+∞)上是增函数所以[1,+∞)⊆[a,+∞),故有a≤1故答案为(﹣∞,1]8.(4分)(2012•上海)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为.【分析】通过侧面展开图的面积.求出圆锥的母线,底面的半径,求出圆锥的体积即可.【解答】解:由题意一个圆锥的侧面展开图是面积为2π的半圆面,因为4π=πl2,所以l=2,半圆的弧长为2π,圆锥的底面半径为2πr=2π,r=1,所以圆锥的体积为:=.故答案为:.9.(4分)(2012•上海)已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f (x)+2,则g(﹣1)=﹣1.【分析】由题意,可先由函数是奇函数求出f(﹣1)=﹣3,再将其代入g(﹣1)求值即可得到答案【解答】解:由题意,y=f(x)+x2是奇函数,且f(1)=1,所以f(1)+1+f(﹣1)+(﹣1)2=0解得f(﹣1)=﹣3所以g(﹣1)=f(﹣1)+2=﹣3+2=﹣1故答案为:﹣1.10.(4分)(2012•上海)如图,在极坐标系中,过点M(2,0)的直线l与极轴的夹角a=,若将l的极坐标方程写成ρ=f(θ)的形式,则f(θ)=.【分析】取直线l上任意一点P(ρ,θ),连接OP,则OP=ρ,∠POM=θ,在三角形POM中,利用正弦定理建立等式关系,从而求出所求.【解答】解:取直线l上任意一点P(ρ,θ),连接OP,则OP=ρ,∠POM=θ在三角形POM中,利用正弦定理可知:解得ρ=f(θ)=故答案为:11.(4分)(2012•上海)三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示).【分析】先求出三个同学选择的所求种数,然后求出有且仅有两人选择的项目完全相同的种数,最后利用古典概型及其概率计算公式进行求解即可.【解答】解:每个同学都有三种选择:跳高与跳远;跳高与铅球;跳远与铅球三个同学共有3×3×3=27种有且仅有两人选择的项目完全相同有××=18种其中表示3个同学中选2个同学选择的项目,表示从三种组合中选一个,表示剩下的一个同学有2中选择故有且仅有两人选择的项目完全相同的概率是=故答案为:12.(4分)(2012•上海)在平行四边形ABCD中,∠A=,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足=,则的取值范围是[2,5] .【分析】画出图形,建立直角坐标系,利用比例关系,求出M,N的坐标,然后通过二次函数求出数量积的范围.【解答】解:建立如图所示的直角坐标系,则B(2,0),A(0,0),D(),设==λ,λ∈[0,1],M(2+),N(),所以=(2+)•()=﹣λ2﹣2λ+5,因为λ∈[0,1],二次函数的对称轴为:λ=﹣1,所以λ∈[0,1]时,﹣λ2﹣2λ+5∈[2,5].故答案为:[2,5].13.(4分)(2012•上海)已知函数y=f(x)的图象是折线段ABC,其中A(0,0)、B(,5)、C(1,0),函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为.【分析】根据题意求得f(x)=,从而y=xf(x)=,利用定积分可求得函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积.【解答】解:由题意可得,f(x)=,∴y=xf(x)=,设函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为S,则S=10x2dx+(﹣10x2+10x)dx=10×+(﹣10)×+10×=﹣+5﹣==.故答案为:.14.(4分)(2012•上海)如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是.【分析】作BE⊥AD于E,连接CE,说明B与C都是在以AD为焦距的椭球上,且BE、CE都垂直于焦距AD,BE=CE.取BC中点F,推出四面体ABCD的体积的最大值,当△ABD是等腰直角三角形时几何体的体积最大,求解即可.【解答】解:作BE⊥AD于E,连接CE,则AD⊥平面BEC,所以CE⊥AD,由题设,B与C都是在以AD为焦点的椭球上,且BE、CE都垂直于焦距AD,AB+BD=AC+CD=2a,显然△ABD≌△ACD,所以BE=CE.取BC中点F,∴EF⊥BC,EF⊥AD,要求四面体ABCD的体积的最大值,因为AD 是定值,只需三角形EBC的面积最大,因为BC是定值,所以只需EF最大即可,当△ABD是等腰直角三角形时几何体的体积最大,∵AB+BD=AC+CD=2a,∴AB=a,所以EB=,EF=,所以几何体的体积为:×=.故答案为:.二、选择题(20分):15.(5分)(2012•上海)若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3 B.b=﹣2,c=3 C.b=﹣2,c=﹣1 D.b=2,c=﹣1【分析】由题意,将根代入实系数方程x2+bx+c=0整理后根据得数相等的充要条件得到关于实数a,b的方程组,解方程得出a,b的值即可选出正确选项【解答】解:由题意1+i是关于x的实系数方程x2+bx+c=0∴1+2i﹣2+b+bi+c=0∴,解得b=﹣2,c=3故选B16.(5分)(2012•上海)在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【分析】由sin2A+sin2B<sin2C,结合正弦定理可得,a2+b2<c2,由余弦定理可得CosC=可判断C的取值范围【解答】解:∵sin2A+sin2B<sin2C,由正弦定理可得,a2+b2<c2由余弦定理可得cosC=∴∴△ABC是钝角三角形故选C17.(5分)(2012•上海)设10≤x1<x2<x3<x4≤104,x5=105,随机变量ξ1取值x1、x2、x3、x4、x5的概率均为0.2,随机变量ξ2取值、、、、的概率也均为0.2,若记Dξ1、Dξ2分别为ξ1、ξ2的方差,则()A.Dξ1>Dξ2B.Dξ1=Dξ2C.Dξ1<Dξ2D.Dξ1与Dξ2的大小关系与x1、x2、x3、x4的取值有关【分析】根据随机变量ξ1、ξ2的取值情况,计算它们的平均数,根据随机变量ξ1、ξ2的取值的概率都为0.2,即可求得结论.【解答】解:由随机变量ξ1、ξ2的取值情况,它们的平均数分别为:=(x1+x2+x3+x4+x5),=(++++)=且随机变量ξ1、ξ2的取值的概率都为0.2,所以有Dξ1>Dξ2,故选择A.18.(5分)(2012•上海)设a n=sin,S n=a1+a2+…+a n,在S1,S2,…S100中,正数的个数是()A.25 B.50 C.75 D.100【分析】由于f(n)=sin的周期T=50,由正弦函数性质可知,a1,a2,…,a24>0,a26,a27,…,a49<0,f(n)=单调递减,a25=0,a26…a50都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24,从而可判断【解答】解:由于f(n)=sin的周期T=50由正弦函数性质可知,a1,a2,…,a24>0,a25=0,a26,a27,…,a49<0,a50=0且sin,sin…但是f(n)=单调递减a26…a49都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24∴S1,S2,…,S25中都为正,而S26,S27,…,S50都为正同理S1,S2,…,s75都为正,S1,S2,…,s75,…,s100都为正,故选D三、解答题(共5小题,满分74分)19.(12分)(2012•上海)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA ⊥底面ABCD,E是PC的中点,已知AB=2,AD=2,PA=2,求:(1)三角形PCD的面积;(2)异面直线BC与AE所成的角的大小.【分析】(1)可以利用线面垂直的判定与性质,证明出三角形PCD是以D为直角顶点的直角三角形,然后在Rt△PAD中,利用勾股定理得到PD=2,最后得到三角形PCD的面积S;(2)[解法一]建立如图空间直角坐标系,可得B、C、E各点的坐标,从而=(1,,1),=(0,2,0),利用空间向量数量积的公式,得到与夹角θ满足:cosθ=,由此可得异面直线BC与AE所成的角的大小为;[解法二]取PB的中点F,连接AF、EF,△PBC中,利用中位线定理,得到EF∥BC,从而∠AEF或其补角就是异面直线BC与AE所成的角,然后可以通过计算证明出:△AEF是以F为直角顶点的等腰直角三角形,所以∠AEF=,可得异面直线BC与AE所成的角的大小为.【解答】解:(1)∵PA⊥底面ABCD,CD⊂底面ABCD,∴CD⊥PA.∵矩形ABCD中,CD⊥AD,而PA、AD是平面PAD的交线.∴CD⊥平面PDA,∵PD⊂平面PDA,∴CD⊥PD,三角形PCD是以D为直角顶点的直角三角形.∵Rt△PAD中,AD=2,PA=2,∴PD==2.∴三角形PCD的面积S=×PD×DC=2.(2)[解法一]如图所示,建立空间直角坐标系,可得B(2,0,0),C(2,2,0),E(1,,1).∴=(1,,1),=(0,2,0),设与夹角为θ,则cosθ===,∴θ=,由此可得异面直线BC与AE所成的角的大小为.[解法二]取PB的中点F,连接AF、EF、AC,∵△PBC中,E、F分别是PC、PB的中点,∴EF∥BC,∠AEF或其补角就是异面直线BC与AE所成的角.∵Rt△PAC中,PC==4.∴AE=PC=2,∵在△AEF中,EF=BC=,AF=PB=∴AF2+EF2=AE2,△AEF是以F为直角顶点的等腰直角三角形,∴∠AEF=,可得异面直线BC与AE所成的角的大小为.20.(14分)(2012•上海)已知f(x)=lg(x+1)(1)若0<f(1﹣2x)﹣f(x)<1,求x的取值范围;(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.【分析】(1)应用对数函数结合对数的运算法则进行求解即可;(2)结合函数的奇偶性和反函数知识进行求解.【解答】解:(1)f(1﹣2x)﹣f(x)=lg(1﹣2x+1)﹣lg(x+1)=lg(2﹣2x)﹣lg(x+1),要使函数有意义,则由解得:﹣1<x<1.由0<lg(2﹣2x)﹣lg(x+1)=lg<1得:1<<10,∵x+1>0,∴x+1<2﹣2x<10x+10,∴.由,得:.(2)当x∈[1,2]时,2﹣x∈[0,1],∴y=g(x)=g(x﹣2)=g(2﹣x)=f(2﹣x)=lg(3﹣x),由单调性可知y∈[0,lg2],又∵x=3﹣10y,∴所求反函数是y=3﹣10x,x∈[0,lg2].21.(14分)(2012•上海)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A处,如图,现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t小时后,失事船所在位置的横坐标为7t(1)当t=0.5时,写出失事船所在位置P的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.(2)问救援船的时速至少是多少海里才能追上失事船?【分析】(1)t=0.5时,确定P的横坐标,代入抛物线方程中,可得P 的纵坐标,利用|AP|=,即可确定救援船速度的大小和方向;(2)设救援船的时速为v海里,经过t小时追上失事船,此时位置为(7t,12t2),从而可得vt=,整理得,利用基本不等式,即可得到结论.【解答】解:(1)t=0.5时,P的横坐标x P=7t=,代入抛物线方程中,得P的纵坐标y P=3.…2分由|AP|=,得救援船速度的大小为海里/时.…4分由tan∠OAP=,得∠OAP=arctan,故救援船速度的方向为北偏东arctan弧度.…6分(2)设救援船的时速为v海里,经过t小时追上失事船,此时位置为(7t,12t2).由vt=,整理得.…10分因为,当且仅当t=1时等号成立,所以v2≥144×2+337=252,即v≥25.因此,救援船的时速至少是25海里才能追上失事船.…14分22.(16分)(2012•上海)在平面直角坐标系xOy中,已知双曲线C1:2x2﹣y2=1.(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积;(2)设斜率为1的直线l交C1于P、Q两点,若l与圆x2+y2=1相切,求证:OP ⊥OQ;(3)设椭圆C2:4x2+y2=1,若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN的距离是定值.【分析】(1)求出双曲线的渐近线方程,求出直线与另一条渐近线的交点,然后求出三角形的面积.(2)设直线PQ的方程为y=kx+b,通过直线PQ与已知圆相切,得到b2=2,通过求解=0.证明PO⊥OQ.(3)当直线ON垂直x轴时,直接求出O到直线MN的距离为.当直线ON 不垂直x轴时,设直线ON的方程为:y=kx,(显然|k|>),推出直线OM的方程为y=,利用,求出,,设O到直线MN的距离为d,通过(|OM|2+|ON|2)d2=|OM|2|ON|2,求出d=.推出O到直线MN的距离是定值.【解答】解:(1)双曲线C1:左顶点A(﹣),渐近线方程为:y=±x.过A与渐近线y=x平行的直线方程为y=(x+),即y=,所以,解得.所以所求三角形的面积为S=.(2)设直线PQ的方程为y=kx+b,因直线PQ与已知圆相切,故,即b2=2,由,得x2﹣2bx﹣b2﹣1=0,设P(x1,y1),Q(x2,y2),则,又y1y2=(x1+b)(x2+b).所以=x1x2+y1y2=2x1x2+b(x1+x2)+b2=2(﹣1﹣b2)+2b2+b2=b2﹣2=0.故PO⊥OQ.(3)当直线ON垂直x轴时,|ON|=1,|OM|=,则O到直线MN的距离为.当直线ON不垂直x轴时,设直线ON的方程为:y=kx,(显然|k|>),则直线OM的方程为y=,由得,所以.同理,设O到直线MN的距离为d,因为(|OM|2+|ON|2)d2=|OM|2|ON|2,所以==3,即d=.综上,O到直线MN的距离是定值.23.(18分)(2012•上海)对于数集X={﹣1,x1,x2,…,x n},其中0<x1<x2<…<x n,n≥2,定义向量集Y={=(s,t),s∈X,t∈X},若对任意,存在,使得,则称X具有性质P.例如{﹣1,1,2}具有性质P.(1)若x>2,且{﹣1,1,2,x}具有性质P,求x的值;(2)若X具有性质P,求证:1∈X,且当x n>1时,x1=1;(3)若X具有性质P,且x1=1、x2=q(q为常数),求有穷数列x1,x2,…,x n的通项公式.【分析】(1)在Y中取=(x,2),根据数量积的坐标公式,可得Y中与垂直的元素必有形式(﹣1,b),所以x=2b,结合x>2,可得x的值.(2)取=(x1,x1),=(s,t)根据,化简可得s+t=0,所以s、t 异号.而﹣1是数集X中唯一的负数,所以s、t中的负数必为﹣1,另一个数是1,从而证出1∈X,最后通过反证法,可以证明出当x n>1时,x1=1.(3)[解法一]先猜想结论:x i=q i﹣1,i=1,2,3,…,n.记A k═{﹣1,x1,x2,…,x k},k=2,3,…,n,通过反证法证明出引理:若A k+1具有性质P,则A k也具有性质P.最后用数学归纳法,可证明出x i=q i﹣1,i=1,2,3,…,n;[解法二]设=(s1,t1),=(s2,t2),则等价于,得到一正一负的特征,再记B={|s∈X,t∈X且|s|>|t|},则可得结论:数集X具有性质P,当且仅当数集B关于原点对称.又注意到﹣1是集合X中唯一的负数,B∩(﹣∞,0)={﹣x2,﹣x3,﹣x4,…,﹣x n},共有n﹣1个数,所以B∩(0.+∞)也有n﹣1个数.最后结合不等式的性质,结合三角形数阵加以说明,可得==…=,最终得到数列的通项公式是x k=x1•()k﹣1=q k﹣1,k=1,2,3,…,n.【解答】解:(1)选取=(x,2),则Y中与垂直的元素必有形式(﹣1,b),所以x=2b,又∵x>2,∴只有b=2,从而x=4.(2)取=(x1,x1)∈Y,设=(s,t)∈Y,满足,可得(s+t)x1=0,s+t=0,所以s、t异号.因为﹣1是数集X中唯一的负数,所以s、t中的负数必为﹣1,另一个数是1,所以1∈X,假设x k=1,其中1<k<n,则0<x1<1<x n.再取=(x1,x n)∈Y,设=(s,t)∈Y,满足,可得sx1+tx n=0,所以s、t异号,其中一个为﹣1①若s=﹣1,则x1=tx n>t≥x1,矛盾;②若t=﹣1,则x n=sx1<s≤x n,矛盾;说明假设不成立,由此可得当x n>1时,x1=1.(3)[解法一]猜想:x i=q i﹣1,i=1,2,3,…,n记A k═{﹣1,x1,x2,…,x k},k=2,3,…,n具有性质P,则A k也具有性质P.先证明若A k+1任取=(s,t),s、t∈A k,当s、t中出现﹣1时,显然有满足当s、t中都不是﹣1时,满足s≥1且t≥1.具有性质P,所以有=(s1,t1),s1、t1∈A k+1,使得,从而因为A k+1s1、t1其中有一个为﹣1不妨设s1=﹣1,假设t1∈A k+1,且t1∉A k,则t1=x k+1.由(s,t)(﹣1,x k+1)=0,得s=tx k+1≥x k+1,与s∈A k矛盾.所以t1∈A k,从而A k也具有性质P.再用数学归纳法,证明x i=q i﹣1,i=1,2,3,…,n当n=2时,结论显然成立;假设当n=k时,A k═{﹣1,x1,x2,…,x k}具有性质P,则x i=q i﹣1,i=1,2,…,k 当n=k+1时,若A k═{﹣1,x1,x2,…,x k+1}具有性质P,则A k═{﹣1,x1,x2,…,+1x k}具有性质P,═{﹣1,q,q2,…,q k﹣1,x k+1}.所以A k+1,q),并设=(s,t)∈Y,满足,由此可得s=﹣1或t=取=(x k+1﹣1=,不可能若t=﹣1,则x k+1=qt=q j≤q k且x k+1>q k﹣1,因此x k+1=q k所以s=﹣1,x k+1综上所述,x i=q i﹣1,i=1,2,3,…,n[解法二]设=(s1,t1),=(s2,t2),则等价于记B={|s∈X,t∈X且|s|>|t|},则数集X具有性质P,当且仅当数集B关于原点对称注意到﹣1是集合X中唯一的负数,B∩(﹣∞,0)={﹣x2,﹣x3,﹣x4,…,﹣x n},共有n﹣1个数.所以B∩(0,+∞)也有n﹣1个数.由于<<<…<,已经有n﹣1个数对以下三角形数阵:<<<…<,<<<…<…注意到>>>…>,所以==…=从而数列的通项公式是x k=x1•()k﹣1=q k﹣1,k=1,2,3,…,n.。

2012年高考理数真题试卷(上海卷)及解析

2012年高考理数真题试卷(上海卷)及解析

2012年高考理数真题试卷(上海卷)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、选择题1.若1+ √2 i是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3B.b=﹣2,c=3C.b=﹣2,c=﹣1D.b=2,c=﹣12.在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定3.设10≤x1<x2<x3<x4≤104, x5=105,随机变量ξ1取值x1、x2、x3、x4、x5的概率均为0.2,随机变量ξ2取值x1+x22、x2+x32、x3+x42、x4+x52、x5+x12的概率也均为0.2,若记Dξ1、Dξ2分别为ξ1、ξ2的方差,则()A.Dξ1>Dξ2B.Dξ1=Dξ2C.Dξ1<Dξ2D.Dξ1与Dξ2的大小关系与x1、x2、x3、x4的取值有关第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(题型注释)4.计算:3−i1+i= (i为虚数单位).5.若n→=(﹣2,1)是直线l的一个法向量,则l的倾斜角的大小为(结果用反三角函数值表示).6.在(x−2x)6的二项展开式中,常数项等于.7.有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为V1,V2,…,Vn,…,则limn→∞(V1+V2+…+Vn)═.8.已知函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是.答案第2页,总14页…外…………○…………装………○…………订………线………※※请※※不※※※※在※※装※※订※※线※※内…内…………○…………装………○…………订………线………9.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为 .10.已知y=f (x )+x 2是奇函数,且f (1)=1,若g (x )=f (x )+2,则g (﹣1)= . 11.如图,在极坐标系中,过点M (2,0)的直线l 与极轴的夹角a= π6 ,若将l 的极坐标方程写成ρ=f(θ)的形式,则f (θ)= .12.在平行四边形ABCD 中,∠A= π3 ,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足|BM|→|BC|→ =|CN|→|CD|→,则 AM →⋅AN →的取值范围是 .13.已知函数y=f (x )的图象是折线段ABC ,其中A (0,0)、B ( 12 ,5)、C (1,0),函数y=xf (x )(0≤x≤1)的图象与x 轴围成的图形的面积为 .14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2,若AD=2c ,且AB+BD=AC+CD=2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是 .三、解答题(题型注释)15.如图,在四棱锥P ﹣ABCD 中,底面ABCD 是矩形,PA⊥底面ABCD ,E 是PC 的中点,已知AB=2,AD=2 √2 ,PA=2,求:(1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小. 16.已知f (x )=lg (x+1)(1)若0<f (1﹣2x )﹣f (x )<1,求x 的取值范围;(2)若g (x )是以2为周期的偶函数,且当0≤x≤1时,g (x )=f (x ),求函数y=g (x )(x∈[1,2])的反函数.…………订…………○…………线…………○…级:___________考号:___________…………订…………○…………线…………○…17.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图,现假设:①失事船的移动路径可视为抛物线 y =1249x 2 ;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t(1)当t=0.5时,写出失事船所在位置P 的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.(2)问救援船的时速至少是多少海里才能追上失事船? 18.在平面直角坐标系xOy 中,已知双曲线C 1:2x 2﹣y 2=1.(1)过C 1的左顶点引C 1的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交C 1于P 、Q 两点,若l 与圆x 2+y 2=1相切,求证:OP⊥OQ; (3)设椭圆C 2:4x 2+y 2=1,若M 、N 分别是C 1、C 2上的动点,且OM⊥ON,求证:O 到直线MN 的距离是定值.19.对于数集X={﹣1,x 1 , x 2 , …,x n },其中0<x 1<x 2<…<x n , n≥2,定义向量集Y={ a →|a →=(s ,t ),s∈X,t∈X},若对任意 a 1→∈Y ,存在 a 2→∈Y ,使得 a 1→⋅a 2→=0 ,则称X 具有性质P .例如{﹣1,1,2}具有性质P .(1)若x >2,且{﹣1,1,2,x}具有性质P ,求x 的值; (2)若X 具有性质P ,求证:1∈X,且当x n >1时,x 1=1;(3)若X 具有性质P ,且x 1=1、x 2=q (q 为常数),求有穷数列x 1 , x 2 , …,x n 的通项公式.答案第4页,总14页○…………外……○…………内……参数答案1.B【解析】1.解:由题意1+ √2 i 是关于x 的实系数方程x 2+bx+c=0 ∴1+2 √2 i ﹣2+b+ √2 bi+c=0 ∴ {−1+b +c =02√2+√2b =0,解得b=﹣2,c=3故选B【考点精析】通过灵活运用复数相等,掌握如果两个复数实部相等且虚部相等就说这两个复数相等即可以解答此题. 2.C【解析】2.解:∵sin 2A+sin 2B <sin 2C , 由正弦定理可得,a 2+b 2<c 2由余弦定理可得cosC= a 2+b 2−c 22ab<0∴ π2<C <π∴△ABC 是钝角三角形 故选C 3.A【解析】3.解:由随机变量ξ1、ξ2的取值情况,它们的平均数分别为:x ¯= 15 (x 1+x 2+x 3+x 4+x 5), x′¯ = 15 ( x 1+x 22 + x 2+x 32 + x 3+x 42 + x 4+x 52 + x 5+x12 )= x ¯ 且随机变量ξ1、ξ2的取值的概率都为0.2,所以有Dξ1>Dξ2 , 故选择A .【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X 可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x1,x2,.....,xi ,......,xn ,X 取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi ,则称表为离散型随机变量X 的概率分布,简称分布列. 4.1﹣2i【解析】4.解: 3−i1+i =(3−i)(1−i)(1+i)(1−i)=2−4i 2=1−2i所以答案是1﹣2i【考点精析】掌握复数的乘法与除法是解答本题的根本,需要知道设则;.5.arctan2【解析】5.解:∵ n →=(﹣2,1)是直线l 的一个法向量∴可知直线l 的一个方向向量为(1,2),直线l 的倾斜角为α得,tanα=2 ∴α=arctan2所以答案是:arctan2 6.﹣160【解析】6.解:展开式的通项为T r+1= c 6r x 6﹣r (﹣ 2x )r =(﹣2)r c 6rx6﹣2r 令6﹣2r=0可得r=3常数项为(﹣2)3c 63 =﹣160所以答案是:﹣160 7.87【解析】7.解:由题意可得,正方体的棱长满足的通项记为a n 则 a n =(12)n−1∴ V n =a n3 = (18)n−1是以1为首项,以 18 为公比的等比数列则 lim n→∞(V 1+V 2+…+v n )= lim n→∞1−(18)n1−18= 87所以答案是: 878.(﹣∞,1]【解析】8.解:因为函数f (x )=e |x ﹣a|(a 为常数).若f (x )在区间[1,+∞)上是增函数由复合函数的单调性知,必有t=|x ﹣a|在区间[1,+∞)上是增函数 又t=|x ﹣a|在区间[a ,+∞)上是增函数 所以[1,+∞)⊆[a ,+∞),故有a≤1 所以答案是(﹣∞,1] 9.√33π【解析】9.解:由题意一个圆锥的侧面展开图是面积为2π的半圆面, 因为4π=πl 2 , 所以l=2, 半圆的弧长为2π,圆锥的底面半径为2πr=2π,r=1,所以圆锥的体积为: 13×π12×√22−1 = √33π .答案第6页,总14页……装…………○………※※不※※要※※在※※装※※订※※线……装…………○………所以答案是: √33π .【考点精析】本题主要考查了旋转体(圆柱、圆锥、圆台)的相关知识点,需要掌握常见的旋转体有:圆柱、圆锥、圆台、球才能正确解答此题. 10.﹣1【解析】10.解:由题意,y=f (x )+x 2是奇函数,且f (1)=1, 所以f (1)+1+f (﹣1)+(﹣1)2=0解得f (﹣1)=﹣3 所以g (﹣1)=f (﹣1)+2=﹣3+2=﹣1 所以答案是:﹣1.【考点精析】认真审题,首先需要了解函数奇偶性的性质(在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇),还要掌握函数的值(函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法)的相关知识才是答题的关键. 11.1sin(π6−θ)【解析】11.解:取直线l 上任意一点P (ρ,θ),连接OP ,则OP=ρ,∠POM=θ 在三角形POM 中,利用正弦定理可知: ρsin 5π6=2sin(π6−θ)解得ρ=f(θ)= 1sin(π6−θ)所以答案是:1sin(π6−θ)12.[2,5]【解析】12.解:建立如图所示的直角坐标系,则B (2,0),A (0,0), D ( 12,√32 ),设 |BM|→|BC|→ = |CN|→|CD|→ =λ,λ∈[0,1], M (2+ λ2,√3λ2 ),N ( 52−2λ,√32), 所以 AM →⋅AN →=(2+ λ2,√3λ2 )•( 52−2λ,√32 )=﹣λ2﹣2λ+5,因为λ∈[0,1],二次函数的对称轴为:λ=﹣1,所以λ∈[0,1]时,﹣λ2﹣2λ+5∈[2,5].…线…………○……线…………○…所以答案是:[2,5].13.54【解析】13.解:由题意可得,f (x )= {10x,(0≤x ≤12)10−10x,(12≤x ≤1),∴y=xf(x )= {10x 2,(0≤x ≤12)10x 2−10x,(12≤x ≤1),设函数y=xf (x )(0≤x≤1)的图象与x 轴围成的图形的面积为S , 则S= ∫1210x 2dx+ ∫121(﹣10x 2+10x )dx =10× x 33|012 +(﹣10)× x 33|121 +10× x 22|121= 512 ﹣ 3512 +5﹣ 54 = 1512 = 54 .所以答案是: 54 . 14.23c √a 2−c 2−1【解析】14.解:作BE⊥AD 于E ,连接CE ,则AD⊥平面BEC ,所以CE⊥AD, 由题设,B 与C 都是在以AD 为焦点的椭球上,且BE 、CE 都垂直于焦距AD , AB+BD=AC+CD=2a ,显然△ABD≌△ACD,所以BE=CE .取BC 中点F ,∴EF⊥BC,EF⊥AD,要求四面体ABCD 的体积的最大值,因为AD 是定值,只需三角形EBC 的面积最大,因为BC 是定值,所以只需EF 最大即可, 当△ABD 是等腰直角三角形时几何体的体积最大,∵AB+BD=AC+CD=2a, ∴AB=a,所以EB= √a 2−c 2 ,EF= √a 2−c 2−1 ,所以几何体的体积为: 13×2×√a 2−c 2−1×2c × 12 = 23c √a 2−c 2−1 .答案第8页,总14页……外…………○………线…………○※……内…………○………线…………○所以答案是: 23c √a 2−c 2−1 .15.(1)解:∵PA⊥底面ABCD ,CD ⊂底面ABCD , ∴CD⊥PA.∵矩形ABCD 中,CD⊥AD,而PA 、AD 是平面PAD 的交线. ∴CD⊥平面PDA ,∵PD ⊂平面PDA ,∴CD⊥PD,三角形PCD 是以D 为直角顶点的直角三角形. ∵Rt△PAD 中,AD=2 √2 ,PA=2, ∴PD= √PA 2+AD 2 =2 √3 .∴三角形PCD 的面积S= 12 ×PD×DC=2 √3 .(2)解:[解法一]如图所示,建立空间直角坐标系,可得B (2,0,0),C (2,2 √2 ,0),E (1, √2 ,1).∴ AE → =(1, √2 ,1), BC →=(0,2 √2 ,0), 设 AE →与 BC →夹角为θ,则cosθ=AE →⋅BC→|AE →||BC →|= 2×2√2 = √22 ,∴θ= π4 ,由此可得异面直线BC 与AE 所成的角的大小为 π4 .[解法二]取PB 的中点F ,连接AF 、EF 、AC ,∵△PBC 中,E 、F 分别是PC 、PB 的中点,∴EF∥BC,∠AEF 或其补角就是异面直线BC 与AE 所成的角.…………○………:___________…………○………∵Rt△PAC 中,PC= √PA 2+AC 2=4. ∴AE= 12 PC=2,∵在△AEF 中,EF= 12 BC= √2 ,AF= 12 PB= √2∴AF 2+EF 2=AE 2,△AEF 是以F 为直角顶点的等腰直角三角形, ∴∠AEF= π4 ,可得异面直线BC 与AE 所成的角的大小为 π4 .【解析】15.(1)可以利用线面垂直的判定与性质,证明出三角形PCD 是以D 为直角顶点的直角三角形,然后在Rt△PAD 中,利用勾股定理得到PD=2 √3 ,最后得到三角形PCD 的面积S ;(2)[解法一]建立如图空间直角坐标系,可得B 、C 、E 各点的坐标,从而 AE →=(1, √2 ,1), BC → =(0,2 √2 ,0),利用空间向量数量积的公式,得到 AE → 与 BC →夹角θ满足:cosθ= √22 ,由此可得异面直线BC 与AE 所成的角的大小为 π4 ;[解法二]取PB 的中点F ,连接AF 、EF ,△PBC 中,利用中位线定理,得到EF∥BC,从而∠AEF 或其补角就是异面直线BC 与AE 所成的角,然后可以通过计算证明出:△AEF 是以F 为直角顶点的等腰直角三角形,所以∠AEF= π4 ,可得异面直线BC 与AE 所成的角的大小为 π4 . 【考点精析】本题主要考查了异面直线及其所成的角和直线与平面垂直的性质的相关知识点,需要掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;垂直于同一个平面的两条直线平行才能正确解答此题. 16.(1)解:f (1﹣2x )﹣f (x )=lg (1﹣2x+1)﹣lg (x+1)=lg (2﹣2x )﹣lg (x+1), 要使函数有意义,则 由 {2−2x >0x +1>0解得:﹣1<x <1.由0<lg (2﹣2x )﹣lg (x+1)=lg 2−2xx+1 <1得:1< 2−2xx+1 <10, ∵x+1>0,∴x+1<2﹣2x <10x+10,答案第10页,总14页∴ −23<x <13.由 {−1<x <1−23<x <13,得: −23<x <13.(2)解:当x∈[1,2]时,2﹣x∈[0,1],∴y=g (x )=g (x ﹣2)=g (2﹣x )=f (2﹣x )=lg (3﹣x ), 由单调性可知y∈[0,lg2], 又∵x=3﹣10y ,∴所求反函数是y=3﹣10x ,x∈[0,lg2].【解析】16.(1)应用对数函数结合对数的运算法则进行求解即可;(2)结合函数的奇偶性和反函数知识进行求解. 17.(1)解:t=0.5时,P 的横坐标x P =7t= 72 ,代入抛物线方程 y =1249x 2 中,得P 的纵坐标y P =3. 由|AP|=√9492,得救援船速度的大小为 √949 海里/时.由tan∠OAP= 730 ,得∠OAP=arctan 730 ,故救援船速度的方向为北偏东arctan 730 弧度.(2)解:设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为(7t ,12t 2).由vt= √(7t)2+(12t 2+12)2,整理得 v 2=144(t 2+1t2)+337 . 因为 t 2+1t 2≥2 ,当且仅当t=1时等号成立,所以v 2≥144×2+337=252,即v≥25.因此,救援船的时速至少是25海里才能追上失事船.【解析】17.(1)t=0.5时,确定P 的横坐标,代入抛物线方程 y =1249x 2 中,可得P 的纵坐标,利用|AP|=√9492,即可确定救援船速度的大小和方向;(2)设救援船的时速为v海里,经过t 小时追上失事船,此时位置为(7t ,12t 2),从而可得vt=√(7t)2+(12t 2+12)2 ,整理得 v 2=144(t 2+1t2)+337 ,利用基本不等式,即可得到结论. 18.(1)解:双曲线C 1:x 212−y 21=1 左顶点A (﹣ √22,0 ),渐近线方程为:y=± √2 x .过A 与渐近线y= √2 x 平行的直线方程为y= √2 (x+ √22),即y= √2x +1 ,所以 {y =−√2x y =√2x +1 ,解得 {x =−√24y =12. 所以所求三角形的面积为S= 12|OA||y|=√28.(2)解:设直线PQ 的方程为y=kx+b , 因直线PQ 与已知圆相切,故√2=1 ,即b 2=2,由 {y =kx +b2x 2−y 2=1,得x 2﹣2bx ﹣b 2﹣1=0,设P (x 1,y 1),Q (x 2,y 2),则 {x 1+x 2=2bx 1x 2=−1−b 2,又y 1y 2=(x 1+b )(x 2+b ).所以 OP →⋅OQ →=x 1x 2+y 1y 2=2x 1x 2+b (x 1+x 2)+b 2 =2(﹣1﹣b 2)+2b 2+b 2 =b 2﹣2=0. 故PO⊥OQ.(3)解:当直线ON 垂直x 轴时,|ON|=1,|OM|= √22 ,则O 到直线MN 的距离为 √33 . 当直线ON 不垂直x 轴时,设直线ON 的方程为:y=kx ,(显然|k|> √22 ), 则直线OM 的方程为y= −1k x ,由{y =kx 4x 2+y 2=1 得 {x 2=14+k 2y 2=k 24+k2, 所以 |ON|2=1+k 24+k 2. 同理 |OM|2=1+k 22k 2−1,设O 到直线MN 的距离为d ,因为(|OM|2+|ON|2)d 2=|OM|2|ON|2, 所以1d 2=1|OM|2+1|ON|2=3+3k 2k 2+1=3,即d= √33 .综上,O 到直线MN 的距离是定值.答案第12页,总14页【解析】18.(1)求出双曲线的渐近线方程,求出直线与另一条渐近线的交点,然后求出三角形的面积.(2)设直线PQ 的方程为y=kx+b ,通过直线PQ 与已知圆相切,得到b 2=2,通过求解 OP →⋅OQ →=0.证明PO⊥OQ.(3)当直线ON 垂直x 轴时,直接求出O 到直线MN 的距离为 √33 .当直线ON 不垂直x 轴时,设直线ON 的方程为:y=kx ,(显然|k|> √22 ),推出直线OM 的方程为y= −1k x ,利用 {y =kx 4x 2+y 2=1,求出 |ON|2=1+k 24+k 2 , |OM|2=1+k 22k 2−1,设O 到直线MN 的距离为d ,通过(|OM|2+|ON|2)d 2=|OM|2|ON|2 , 求出d= √33 .推出O 到直线MN 的距离是定值. 19.(1)解:选取 a 1→=(x ,2),则Y中与 a 1→垂直的元素必有形式(﹣1,b ),所以x=2b ,又∵x>2,∴只有b=2,从而x=4.(2)解:取 a 1→=(x 1,x 1)∈Y,设 a 2→=(s ,t )∈Y,满足 a 1→⋅a 2→=0 ,可得(s+t )x 1=0,s+t=0,所以s 、t 异号.因为﹣1是数集X 中唯一的负数,所以s 、t 中的负数必为﹣1,另一个数是1,所以1∈X, 假设x k =1,其中1<k <n ,则0<x 1<1<x n .再取 a 1→=(x 1,x n )∈Y,设 a 2→=(s ,t )∈Y,满足 a 1→⋅a 2→=0 ,可得sx 1+tx n =0, 所以s 、t 异号,其中一个为﹣1①若s=﹣1,则x 1=tx n >t≥x 1,矛盾; ②若t=﹣1,则x n =sx 1<s≤x n ,矛盾;说明假设不成立,由此可得当x n >1时,x 1=1.(3)解:[解法一]猜想:x i =q i ﹣1,i=1,2,3,…,n 记A k ═{﹣1,x 1,x 2,…,x k },k=2,3,…,n 先证明若A k+1具有性质P ,则A k 也具有性质P .任取 a 1→=(s ,t ),s 、t∈A k ,当s 、t 中出现﹣1时,显然有 a 2→ 满足 a 1→⋅a 2→=0当s 、t 中都不是﹣1时,满足s≥1且t≥1.因为A k+1具有性质P ,所以有 a 2→=(s 1,t 1),s 1、t 1∈A k+1,使得 a 1→⋅a 2→=0 ,从而s 1、t 1其中有一个为﹣1 不妨设s 1=﹣1,假设t 1∈A k+1,且t 1∉A k ,则t 1=x k+1.由(s ,t )(﹣1,x k+1)=0,得s=tx k+1≥x k+1,与s∈A k 矛盾.所以t 1∈A k ,从而A k 也具有性质P .再用数学归纳法,证明x i =q i ﹣1,i=1,2,3,…,n 当n=2时,结论显然成立;假设当n=k 时,A k ═{﹣1,x 1,x 2,…,x k }具有性质P ,则x i =q i ﹣1,i=1,2,…,k当n=k+1时,若A k+1═{﹣1,x 1,x 2,…,x k+1}具有性质P ,则A k ═{﹣1,x 1,x 2,…,x k }具有性质P ,所以A k+1═{﹣1,q ,q 2,…,q k ﹣1,x k+1}.取 a 1→=(x k+1,q ),并设 a 2→=(s ,t )∈Y,满足 a 1→⋅a 2→=0 ,由此可得s=﹣1或t=﹣1若t=﹣1,则x k+1= qs <q ,不可能所以s=﹣1,x k+1=qt=q j ≤q k 且x k+1>q k ﹣1,因此x k+1=q k 综上所述,x i =q i ﹣1,i=1,2,3,…,n[解法二]设 a 1→ =(s 1,t 1), a 2→ =(s 2,t 2),则 a 1→⋅a 2→=0 等价于 s 1t 1=−t2s 2记B={ st |s∈X,t∈X 且|s|>|t|},则数集X 具有性质P ,当且仅当数集B 关于原点对称 注意到﹣1是集合X 中唯一的负数,B∩(﹣∞,0)={﹣x 2,﹣x 3,﹣x 4,…,﹣x n },共有n ﹣1个数.所以B∩(0,+∞)也有n ﹣1个数. 由于 x nxn−1< x nxn−2< x nxn−3<…< x n x 2<xn x 1,已经有n ﹣1个数对以下三角形数阵: x nxn−1< x nxn−2< x nxn−3<…< x n x 2<xn x 1,x n x n−2< xn−1x n−3< xn−1x n−4<…<x n−1x 1x 2x 1注意到 xn x 1>x n−1x 1 > x n−2x 1 >…> x 2x 1 ,所以 x n x n−1 = x n−1x n−2 =…= x 2x 1从而数列的通项公式是x k =x 1•( x2x 1)k ﹣1=q k ﹣1,k=1,2,3,…,n .【解析】19.(1)在Y 中取 a 1→=(x ,2),根据数量积的坐标公式,可得Y 中与 a 1→垂直的元素必有形式(﹣1,b ),所以x=2b ,结合x >2,可得x 的值.(2)取 a 1→=(x 1 , x 1),a 2→ =(s ,t )根据 a 1→⋅a 2→=0 ,化简可得s+t=0,所以s 、t 异号.而﹣1是数集X 中唯一的负数,所以s 、t 中的负数必为﹣1,另一个数是1,从而证出1∈X,最后通过反证法,可以证明出当x n >1时,x 1=1.(3)[解法一]先猜想结论:x i =q i ﹣1 , i=1,2,3,…,n .记A k ═{﹣1,x 1 , x 2 , …,x k },k=2,3,…,n ,通过反证法证明出引理:若A k+1具有性质P ,则A k 也具有性质P .最后用数学归纳法,可证明出x i =q i ﹣1 , i=1,2,3,…,n ; [解法二]设 a 1→ =(s 1 , t 1), a 2→ =(s 2 , t 2),则 a 1→⋅a 2→=0 等价于 s 1t 1=−t2s 2,得到一正一负的特征,再记B={ st |s∈X,t∈X 且|s|>|t|},则可得结论:数集X 具有性质答案第14页,总14页……线…………○……线…………○={﹣x 2 , ﹣x 3 , ﹣x 4 , …,﹣x n },共有n ﹣1个数,所以B∩(0.+∞)也有n ﹣1个数.最后结合不等式的性质,结合三角形数阵加以说明,可得 x nxn−1= x n−1x n−2=…= x2x 1,最终得到数列的通项公式是x k =x 1•( x2x 1)k ﹣1=q k ﹣1 , k=1,2,3,…,n .【考点精析】利用元素与集合关系的判断对题目进行判断即可得到答案,需要熟知对象与集合的关系是,或者,两者必居其一.。

【专家解析】2012年高考数学(理)真题精校精析(上海卷)(纯word书稿)

【专家解析】2012年高考数学(理)真题精校精析(上海卷)(纯word书稿)

2012·上海卷(数学理科)1.[2012·上海卷] 计算:3-i1+i=________(i 为虚数单位).1.1-2i [解析] 考查复数的除法运算,是基础题,复数的除法运算实质就是分母实数化运算.原式=(3-i )(1-i )1-i 2=1-2i.2.[2012·上海卷] 若集合A ={x |2x +1>0},B ={x ||x -1|<2},则A ∩B =________. 2.⎝ ⎛⎭⎪⎫-12,3 [解析] 考查集合的交集运算和解绝对值不等式,解此题的关键是解绝对值不等式,再利用数轴求解.解得集合A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >-12,集合B ={x |-1<x <3},求得A ∩B =⎝ ⎛⎭⎪⎫-12,3.3.[2012·上海卷] 函数f (x )=⎪⎪⎪⎪⎪⎪2 cos x sin x -1的值域是________. 3.⎣⎢⎡⎦⎥⎤-52,-32 [解析] 考查二阶矩阵和三角函数的值域,以矩阵为载体,实为考查三角函数的值域,易错点是三角函数的化简.f (x )=-2-sin x cos x =-2-12sin2x ,又-1≤sin2x ≤1,所以f (x )=-2-12sin2x 的值域为⎣⎢⎡⎦⎥⎤-52,-32.4.[2012·上海卷] 若=(-2,1)是直线l 的一个法向量,则l 的倾斜角的大小为________(结果用反三角函数值表示).4.arctan2 [解析] 考查直线的法向量和倾斜角,关键是求出直线的斜率. 由已知可得直线的斜率k ×1-2=-1,∴k =2,k =tan α,所以直线的倾斜角α=arctan2.5.[2012·上海卷] 在⎝ ⎛⎭⎪⎫x -2x 6的二项展开式中,常数项等于________.5.-160 [解析] 考查二项式定理,主要是二项式的通项公式的运用.由通项公式得T r +1=C r 6x 6-r ⎝ ⎛⎭⎪⎫-2x r =(-2)r C r 6x 6-2r,令6-2r =0,解得r =3,所以是第4项为常数项,T 4=(-2)3C 36=-160.6.[2012·上海卷] 有一列正方体,棱长组成以1为首项12为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则lim n →∞(V 1+V 2+…+V n )=________.6.87 [解析] 考查等比数列和无穷递缩等比数列的极限,此题只要掌握极限公式即可解决,是简单题型.由已知可知V 1,V 2,V 3,…构成新的等比数列,首项V 1=1,公比q =18,由极限公式得lim n →∞(V 1+V 2+…+V n )=11-18=87.7.[2012·上海卷] 已知函数f (x )=e |x -a |(a 为常数).若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是________.7.(-∞,1] [解析] 考查复合函数的单调性,实为求参数a 的取值范围. 令t =||x -a ,又e>1,函数f (x )在[1,+∞)上是增函数,只需函数t =||x -a 在[1,+∞)上是增函数,所以参数a ≤1.8.[2012·上海卷] 若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为________.8.33π [解析] 考查扇形的弧长和面积公式,以及圆锥的体积公式,关键是求出圆锥的半径和高.由已知可得圆锥的母线长l =2,底面圆的周长2πr =πl =2π,所以底面半径r =1,由此得圆锥的高h =l 2-r 2=3,由圆锥的体积公式得V =13πr 2h =33π.9.[2012·上海卷] 已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________.9.-1 [解析] 考查函数的奇偶性和转化思想,此题的关键是利用y =f (x )+x 2为奇函数.已知函数y =f (x )+x 2为奇函数,则f (-1)+(-1)2=-[f (1)+1]=-2,解得f (-1)=-3,所以g (-1)=f (-1)+2=-3+2=-1.10.[2012·上海卷] 如图1-1所示,在极坐标系中,过点M (2,0)的直线l 与极轴的夹角α=π6,若将l 的极坐标方程写成ρ=f (θ)的形式,则f (θ)=________.图1-110.1sin ⎝ ⎛⎭⎪⎫π6-θ [解析] 考查极坐标方程,关键是写出直线的极坐标方程,再按要求化简.由已知得直线方程为y =(x -2)tan π6,化简得x -3y -2=0,转化为极坐标方程为: ρcos θ-3ρsin θ-2=0,解得ρ=2cos θ-3sin θ=1sin ⎝ ⎛⎭⎪⎫π6-θ,所以 f (θ)=1sin ⎝ ⎛⎭⎪⎫π6-θ.11.[2012·上海卷] 三位同学参加跳高跳远铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是________(结果用最简分数表示).11.23 [解析] 考查古典概率和排列问题,关键是把情况分析清楚,不要漏掉或者重复情况.所有的可能情况有C 23C 23C 23,满足条件有且仅有两人选择的项目完全相同的情况有 C 23C 23C 12,由古典概率公式得P =C 23C 23C 12C 23C 23C 23=23.12.[2012·上海卷] 在平行四边形ABCD 中,∠A =π3,边ABAD 的长分别为21.若MN 分别是边BCCD 上的点,且满足|BM →||BC→|=|CN →||CD →|,则AM →·AN→的取值范围是________.12.[2,5] [解析] 令BM →=nBC →(0≤n ≤1),则DN →=(1-n )DC →,在平行四边形ABCD中,AM→=AB →+nAD →, AN →=AD →+(1-n )AB →,所以AM →·AN →=(AB →+nAD →)·[AD→+(1-n )AB →] =-n 2-2n +5,而函数f (n )=-n 2-2n +5在[0,1]上是单调递减的,其值域为[2,5], 所以AM →·AN →的取值范围是[2,5].13.[2012·上海卷] 已知函数y =f (x )的图像是折线段ABC ,其中A (0,0)B ⎝ ⎛⎭⎪⎫12,5C (1,0).函数y =xf (x )(0≤x ≤1)的图像与x 轴围成的图形的面积为________.13.54 [解析] 考查分段函数和用定积分求曲边形的面积,考查学生分类讨论思想和转化思想.由已知可得函数的解析式y =xf (x )=⎩⎪⎨⎪⎧10x 2,x ∈⎣⎢⎡⎦⎥⎤0,12,10x -10x 2,x ∈⎝ ⎛⎦⎥⎤12,1, 曲线与x 轴围成区域的面积,可用定积分表示S =∫120(10x 2 )d x +⎠⎛112(10x -10x 2)d x = 54.图1-214.[2012·上海卷] 如图1-2所示,AD与BC是四面体ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD=AC+CD=2a,其中ac为常数,则四面体ABCD的体积的最大值是________.14.23c a2-c2-1[解析] 以空间四面体为载体,考查几何体的体积和代数式的最值问题,以及转化思想,解此题的关键是求出侧面三角形ABD的高的最大值.作BE垂直AD于E,连接CE,则CE也垂直AD,且BE=CE,所以四面体ABCD 的体积V=13S△BCE·AD=23c BE2-1,在三角形ABD中,AB+BD=2a,AD=2c,所以AD边上的高BE等于以AD为焦点,长轴为2a的椭圆上的点到x轴的距离,其最大值刚好在点在短轴端点的时候得到,即BE≤a2-c2,所以V=23c BE2-1≤23c a2-c2-1.15.[2012·上海卷] 若1+2i是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3 B.b=-2,c=3C.b=-2,c=-1 D.b=2,c=-115.B[解析] 考查复数的概念和一元二次方程,可利用方程的两根是共轭复数解题.由韦达定理可知:-b=(1+2i)+(1-2i)=2,∴b=-2,c=(1+2i)(1-2i)=1+2=3,∴c=3,所以选B.此题还可以直接把复数根1+2i代入方程中,利用复数相等求解.16.[2012·上海卷] 在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是() A.锐角三角形B.直角三角形C.钝角三角形D.不能确定16.C[解析] 考查正弦定理和判断三角形的形状,考查考生的转化思想,关键是利用正弦定理,把角转化边,再利用边之间的关系,判断三角形的形状.由正弦定理可把不等式转化为a 2+b 2<c 2,cos C =a 2+b 2-c 22ab <0,所以三角形为钝角三角形.故选C.17.[2012·上海卷] 设10≤x 1<x 2<x 3<x 4≤104,x 5=105.随机变量ξ1取值x 1x 2x 3x 4x 5的概率均为0.2,随机变量ξ2取值x 1+x 22x 2+x 32x 3+x 42x 4+x 52x 5+x 12的概率也均为0.2.若记Dξ1Dξ2分别为ξ1ξ2的方差,则( )A .Dξ1>Dξ2B .Dξ1=Dξ2C .Dξ1<Dξ2D .Dξ1与Dξ2的大小关系与x 1x 2x 3x 4的取值有关17.A [解析] 考查样本估计总体的平均数和方差,主要是对方差概念的理解,利用基本不等式求解.由已知可知两个变量的平均数相等,Dξ1=15[(x -x 1)2+…+(x -x 5)2]=15(x 21+x 22+x 23+x 24+x 25)-x 2, Dξ2=15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -x 1+x 222+…+⎝ ⎛⎭⎪⎫x -x 5+x 122= 15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x 1+x 222+…+⎝ ⎛⎭⎪⎫x 5+x 122-x 2 <15(x 21+x 22+x 23+x 24+x 25)-x 2,所以Dξ1>Dξ2.18.[2012·上海卷] 设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中,正数的个数是( )A .25B .50C .75D .10018.D [解析] 考查数列求和和转化思想,关键是发现数列为振幅越来越小的摆动数列.令b n =sin n π25,周期为50,前n 项和记作:T n =b 1+b 2+…+b n ,根据三角函数图象的对称性,可知T 1,T 2,…,T 49均大于0,只有两个T 50=0,T 100=0,数列a n =1n sin n π25为振幅越来越小的摆动数列,||a n ≤||b n ,只有当n =1,50,100时相等,故S 1,S 2,…,S 100中正数个数为100.图1-319.[2012·上海卷] 如图1-3所示,在四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥底面ABCD .E 是PC 的中点,已知AB =2,AD =22,P A =2,求:(1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小.19.解:(1)因为P A ⊥底面ABCD ,所以P A ⊥CD . 又AD ⊥CD ,所以CD ⊥平面P AD . 从而CD ⊥PD .因为PD =22+(22)2=23,CD =2. 所以三角形PCD 的面积为12×2×23=2 3.(2)解法一:如图所示,建立空间直角坐标系,则B (2,0,0),C (2,22,0),E (1,2,1).AE→=(1,2,1),BC →=(0,22,0), 设AE→与BC →的夹角为θ,则cos θ=AE →·BC →|AE →||BC →|=42×22=22,∴θ=π4.由此知,异面直线BC 与AE 所成的角的大小是π4.解法二:取PB 中点F ,连接EF AF ,则EF ∥BC ,从而∠AEF (或其补角)是异面直线BC 与AE 所成的角.在△AEF 中,由EF =2AF =2AE =2知△AEF 是等腰直角三角形, 所以∠AEF =π4.因此,异面直线BC 与AE 所成的角的大小是π4.20.[2012·上海卷] 已知函数f (x )=lg(x +1). (1)若0<f (1-2x )-f (x )<1,求x 的取值范围;(2)若g (x )是以2为周期的偶函数,且当0≤x ≤1时,有g (x )=f (x ),求函数y =g (x )(x ∈[1,2])的反函数.20.解:(1)由⎩⎨⎧2-2x >0,x +1>0,得-1<x <1.由0<lg(2-2x )-lg(x +1)=lg 2-2x x +1<1得1<2-2xx +1<10.因为x +1>0,所以x +1<2-2x <10x +10, -23<x <13, 由⎩⎪⎨⎪⎧-1<x <1,-23<x <13得-23<x <13.(2)g (x )是以2为周期的偶函数, 当x ∈[1,2]时,2-x ∈[0,1],因此y =g (x )=g (x -2)=g (2-x )=f (2-x )=lg(3-x ). 由单调性可得y ∈[0,lg2].因为x =3-10y ,所以所求反函数是y =3-10x ,x ∈[0,lg2].图1-421.[2012·上海卷] 海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图1-4.现假设:①失事船的移动路径可视为抛物线y =1249x 2;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t .(1)当t =0.5时,写出失事船所在位置P 的纵坐标.若此时两船恰好会合,求救援船速度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?21.解:(1)t =0.5时,P 的横坐标x P =7t =72,代入抛物线方程y =1249x 2,得P 的纵坐标y P =3.由|AP |=9492,得救援船速度的大小为949海里/时.由tan ∠OAP =730,得∠OAP =arctan 730,故救援船速度的方向为北偏东arctan 730弧度.(2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为(7t,12t 2). 由v t =(7t )2+(12t 2+12)2, 整理得v 2=144⎝ ⎛⎭⎪⎫t 2+1t 2+337.因为t 2+1t 2≥2,当且仅当t =1时等号成立.所以v 2≥144×2+337=252,即v ≥25.因此,救援船的时速至少是25海里才能追上失事船.22.[2012·上海卷] 在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1. (1)过C 1的左顶点引C 1的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交C 1于PQ 两点.若l 与圆x 2+y 2=1相切,求证:OP ⊥OQ ; (3)设椭圆C 2:4x 2+y 2=1,若MN 分别是C 1C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值.22.解:(1)双曲线C 1:x 212-y 2=1,左顶点A ⎝ ⎛⎭⎪⎫-22,0,渐近线方程:y =±2x .过点A 与渐近线y =2x 平行的直线方程为y =2⎝ ⎛⎭⎪⎫x +22,即y =2x +1.解方程组⎩⎨⎧y =-2x ,y =2x +1得⎩⎪⎨⎪⎧x =-24,y =12.所以所求三角形的面积为S =12|OA ||y |=28.(2)设直线PQ 的方程是y =x +b ,因直线PQ 与已知圆相切, 故|b |2=1,即b 2=2. 由⎩⎨⎧y =x +b ,2x 2-y 2=1,得x 2-2bx -b 2-1=0. 设P (x 1,y 1)Q (x 2,y 2),则⎩⎨⎧x 1+x 2=2b ,x 1x 2=-1-b 2.又y 1y 2=(x 1+b )(x 2+b ),所以OP →·OQ →=x 1x 2+y 1y 2=2x 1x 2+b (x 1+x 2)+b 2 =2(-1-b 2)+2b 2+b 2=b 2-2=0. 故OP ⊥OQ .(3)当直线ON 垂直于x 轴时,|ON |=1,|OM |=22,则O 到直线MN 的距离为33.当直线ON 不垂直于x 轴时,设直线ON 的方程为y =kx ⎝⎛⎭⎪⎫显然|k |>22, 则直线OM 的方程为y =-1k x .由⎩⎨⎧ y =kx ,4x 2+y 2=1得⎩⎪⎨⎪⎧ x 2=14+k 2,y 2=k 24+k 2,所以|ON |2=1+k 24+k 2. 同理|OM |2=1+k 22k 2-1, 设O 到直线MN 的距离为d ,因为(|OM |2+|ON |2)d 2=|OM |2|ON |2.所以1d 2=1|OM |2+1|ON |2=3k 2+3k 2+1=3,即d =33. 综上,O 到直线MN 的距离是定值.23.[2012·上海卷] 对于数集X ={-1,x 1,x 2,…,x n },其中0<x 1<x 2<…<x n ,n ≥2,定义向量集Y ={|=(s ,t ),s ∈X ,t ∈X },若对任意1∈Y ,存在2∈Y ,使得1·2=0,则称X 具有性质,例如{-1,1,2}具有性质.(1)若x >2,且{-1,1,2,x }具有性质,求x 的值;(2)若X 具有性质,求证:1∈X ,且当x n >1时,x 1=1;(3)若X 具有性质,且x 1=1x 2=q (q 为常数),求有穷数列x 1,x 2,…,x n 的通项公式.23.解:(1)选取1=(x,2),Y 中与1垂直的元素必有形式(-1,b ),所以x =2b ,从而x =4.(2)证明:取1=(x 1,x 1)∈Y ,设2=(s ,t )∈Y ,满足1·2=0.由(s +t )x 1=0得s +t =0,所以s ,t 异号.因为-1是X 中唯一的负数,所以s ,t 之中一个为-1,另一个为1,故1∈X . 假设x k =1,其中1<k <n ,则0<x 1<1<x n .选取1=(x 1,x n )∈Y ,并设2=(s ,t )∈Y 满足1·2=0,即sx 1+tx n =0, 则s ,t 异号,从而s ,t 之中恰有一个为-1.若s =-1,则x 1=tx n >t >x 1,矛盾;若t =-1,则x n =sx 1<s ≤x n ,矛盾.所以x 1=1.(3)设1=(s 1,t 1),2=(s 2,t 2),则1·2=0等价于s 1t 1=-t 2s 2, 记B =⎩⎨⎧ s t |}s ∈X ,t ∈X ,|s |>|t |,则数集X 具有性质当且仅当数集B 关于原点对称. 注意到-1是X 中的唯一负数,B ∩(-∞,0)={-x 2,-x 3,…,-x n }共有n -1个数,所以B ∩(0,+∞)也只有n -1个数.由于x n x n -1<x n x n -2<…<x n x 2<x n x 1,已有n -1个数,对以下三角数阵 x n x n -1<x n x n -2<…<x n x 2<x n x 1, x n -1x n -2<x n -1x n -3<…<x n -1x 1, …x 2x 1.注意到x n x 1>x n -1x 1>…>x 2x 1,所以x n x n -1=x n -1x n -2=…=x 2x 1,从而数列的通项为x k =x 1⎝ ⎛⎭⎪⎫x 2x 1k -1=q k -1,k =1,2,…,n .。

2012年上海卷(理科数学)

2012年上海卷(理科数学)

2012年普通高等学校招生全国统一考试理科数学(上海卷)一、填空题:本大题共14小题,每小题4分,共56分.1.计算:=+-ii13 .(i 为虚数单位)2.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A I .3.函数1sin cos 2)(-= x xx f 的值域是 .4.若(2,1)n =-r是直线l 的一个法向量,则l 的倾斜角的大小为 .(结果用反三角函数值表示)5.在6)2(xx -的二项展开式中,常数项等于 .6.有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为1V ,2V ,L ,n V ,L ,则=+++∞→)(lim 21n n V V V Λ .7.已知函数||)(a x e x f -=(a 为常数).若)(x f 在区间),1[+∞上是增函数,则a 的取值范围是 .8.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 . 9.已知2)(x x f y +=是奇函数,且1)1(=f ,若2)()(+=x f x g ,则=-)1(g . 10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=,若将l 的极坐标方程写成)(θρf =的形式,则=)(θf .11.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示). 12.在平行四边形ABCD 中,3π=∠A ,边AB ,AD 的长分别为2,1,若M ,N 分别是边BC 、CD 上的点,且满足||||CD BC =,则AN AM ⋅的取值范围是 .13.已知函数)(x f y =的图象是折线段ABC ,其中)0,0(A ,)5,21(B ,)0,1(C ,x loαM函数)(x xf y =(10≤≤x )的图象与x 轴围成的图形的面积为 .14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2=BC ,若c AD 2=, 且a CD AC BD AB 2=+=+,其中a ,c 为常数,则四面体ABCD 的体积的最 大值是 .二、选择题:本大题共5小题,每小题4分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则 A .2b =,3c = B .2b =-,3c = C .2b =-,1c =- D .2b =,1c =- 16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 17.设443211010≤<<<≤x x x x ,5510=x ,随机变量1ξ取值1x ,2x ,3x ,4x ,5x 的概率均为2.0,随机变量2ξ取值122x x+,232x x +,342x x +,452x x +,512x x +,的概率也均为2.0,若记1D ξ,2D ξ分别为1ξ,2ξ的方差,则 A .21ξξD D > B .21ξξD D =C .21ξξD D < D .1ξD 与2ξD 的大小关系与1x ,2x ,3x ,4x 的取值有关18.设25sin 1πn n a n =,n n a a a S +++=Λ21,在1S ,2S ,L ,100S 中,正数的个数是A .25B .50C .75D .100 三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.19.(本小题满分12分)如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求: (Ⅰ)三角形PCD 的面积;(Ⅱ)异面直线BC 与AE 所成的角的大小.ABCD20.(本小题满分14分) 已知函数)1lg()(+=x x f .(Ⅰ)若1)()21(0<--<x f x f ,求x 的取值范围;(Ⅱ)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =(]2,1[∈x )的反函数.21.(本小题满分14分)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图.现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为t 7.(Ⅰ)当5.0=t 时,写出失事船所在位置P 的纵坐标.若此时两船恰好会合,求 救援船速度的大小和方向;(Ⅱ)问救援船的时速至少是多少海里才能追上失事船?22.(本小题满分16分)在平面直角坐标系xOy 中,已知双曲线1C :1222=-y x .(Ⅰ)过1C 的左顶点引1C 的一条渐进线的平行线,求该直线与另一条渐进线及xABCDE PxPoAy轴围成的三角形的面积;(Ⅱ)设斜率为1的直线l 交1C 于P ,Q 两点,若l 与圆122=+y x 相切,求证:OQ OP ⊥;(Ⅲ)设椭圆2C :1422=+y x ,若M ,N 分别是1C ,2C 上的动点,且ON OM ⊥,求证:O 到直线MN 的距离是定值.23.(本小题满分18分)对于数集12{1,}n X x x x =-L ,,,,其中n x x x <<<<Λ210,2≥n ,定义向量集 {|(,),,}Y a a s t s X t X ==∈∈r r ,若对任意1a Y ∈u r ,存在2a Y ∈u u r ,使得120a a ⋅=u r u u r,则称X 具有性质P .例如{1,1,2}-具有性质P . (Ⅰ)若2x >,且{1,1,2,}x -具有性质P ,求x 的值; (Ⅱ)若X 具有性质P ,求证:1X ∈,且当1n x >时,11x =;(Ⅲ)若X 具有性质P ,且11x =,2x q =(q 为常数),求有穷数列12,n x x x L ,,的通项公式.。

12年高考真题——理科数学(上海卷)

12年高考真题——理科数学(上海卷)

2012年全国普通高等学校招生统一考试上海数学试卷(理)一.填空题(每小题4分,共56分)1.计算:=+-ii 13 (i 为虚数单位)。

2.若集合{}|210A x x =+>,{}||1|2B x x =-<,则=B A 。

3.函数()2cos sin 1x f x x =- 的值域是 。

4.若()2,1n =-是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示)。

5.在62x x ⎛⎫- ⎪⎝⎭的二项展开式中,常数项等于 。

6.有一列正方体,棱长组成以1为首项、21为公比的等比数列,体积分别记为12,,,,n V V V ,则()12lim n n V V V →∞+++= 。

7.已知函数()||x a f x e -=(a 为常数)。

若()f x 在区间[)1,+∞上是增函数,则a 的取值范围是 。

8.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 。

9.已知()2y f x x =+是奇函数,且()11f =,若()()2g x f x =+,则()1g -= 。

10.如图,在极坐标系中,过点()2,0M 的直线l 与极轴的夹角6πα=,若将l 的极坐标方程写成()f ρθ=的形式,则()f θ= 。

11.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示)。

12.在平行四边形ABCD 中,3π=∠A ,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD ||||CD BC =,则⋅的取值范围是 。

13.已知函数()y f x =的图象是折线段ABC ,其中()0,0A 、()12,5B 、()1,0C ,函数()()01y xf x x =≤≤的图象与x 轴围成的图形的面积为 。

14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2=BC ,若c AD 2=,且a CD AC BD AB 2=+=+,其中a 、c 为常数,则四面体ABCD 的体积的最大值是 。

高考真题试卷理科数学(上海卷)答案解析版

高考真题试卷理科数学(上海卷)答案解析版

2012年全国普通高等学校招生统一考试上海数学试卷(理)一、填空题(56分):1.计算:=+-ii 13 (i 为虚数单位)。

【解析】复数i i i i i i i i 21242)1)(1()1)(3(13-=-=-+--=+-。

【答案】i 21-2.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A 。

【解析】集合}21{}012{->=>+=x x x x A ,}31{}21{<<-=<-=x x x x B ,所以}321{<<-=x x B A ,即)3,21(-。

【答案】)3,21(- 3.函数1sin cos 2)(-= x x x f 的值域是 。

【解析】函数x x x x f 2sin 212cos sin 2)(--=--=,因为12sin 1≤≤-x ,所以212sin 2121≤-≤-x ,232sin 21225-≤--≤-x ,即函数)(x f 的值域为]23,25[--。

【答案】]23,25[-- 4.若)1,2(-=是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示)。

【解析】【 设倾斜角为α,由题意可知,直线的一个方向向量为(1,2),则2tan =α, ∴α=2arctan 。

【答案】2arctan5.在6)2(xx -的二项展开式中,常数项等于 。

【解析】二项展开式的通项为k k k k k k k x C x x C T )2()2(26666661-=-=----+,令026=-k ,得3=k ,所以常数项为160)2(3364-=-=C T 。

【答案】160-6.有一列正方体,棱长组成以1为首项、21为公比的等比数列,体积分别记为 ,,,,n V V V 21,则=+++∞→)(lim 21n n V V V 。

【解析】由题意可知,该列正方体的体积构成以1为首项,81为公比的等比数列, ∴1V +2V +…+n V =811811--n =)811(78n -,∴=+++∞→)(lim 21n n V V V 78。

2012年普通高等学校招生全国统一考试 理数(上海卷)(含答案)

2012年普通高等学校招生全国统一考试 理数(上海卷)(含答案)

(D)
(A)25.
(B)50.
(C)75.
三、解答题(本大题共有 5 题,满分 74 分)
(D)100. P
19.如图,在四棱锥 P-ABCD 中,底面 ABCD 是矩形,
PA⊥底面 ABCD,E 是 PC 的中点.已知 AB=2,
AD=2 2 ,PA=2.求: (1)三角形 PCD 的面积;(6 分)
21.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为 y 轴
正方向建立平面直角坐标系(以 1 海里为单位长度),则救援船恰在失事船的正南方向 12

里 A 处,如图. 现假设:①失事船的移动路径可视为抛物线
y
12 49
x2
;②定位后救援船即刻沿直线匀速前往救援;③救
y P
援船出发 t 小时后,失事船所在位置的横坐标为 7t .
(1)若 x>2,且{1, 1, 2, x} ,求 x 的值;(4 分)
(2)若 X 具有性质 P,求证:1 X,且当 xn>1 时,x1=1;(6 分) (3)若 X 具有性质 P,且 x1=1,x2=q(q 为常数),求有穷数列 x1, x2 , , xn 的通 项公式.(8 分)
2012 年上海高考数学(理科)试卷解答
l
6
.若将 l 的极坐标方程写成
f ( ) 的形式,则
f ( )
1
sin(
6
)
.
O
M
x
11.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有
两人选择的项目完全相同的概率是
2 3
(结果用最简分数表示).
12.在平行四边形
ABCD

2012年上海高考数学理科试题及答案

2012年上海高考数学理科试题及答案

2012年上海高考数学(理科)试卷一、填空题(本大题共有14题,满分56分)1。

计算:ii+-13= (i 为虚数单位).2.若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A = 。

3。

函数1sin cos 2)(-=x xx f 的值域是 。

4。

若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示). 5。

在6)2(xx -的二项展开式中,常数项等于 . 6。

有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V 。

7。

已知函数||)(a x e x f -=(a 为常数).若)(x f 在区间[1,+∞)上是增函数,则a 的取值范围是 。

8。

若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为 .9.已知2)(x x f y +=是奇函数,且1)1(=f 。

若2)()(+=x f x g ,则=-)1(g 。

10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=.若将l 的极坐标方程写成)(θρf =的形式,则=)(θf 。

11.三位同学参加跳高、跳远、铅球项目的比赛。

若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示)。

12.在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1。

若M 、N 分别是边BC 、CD ||||CD CN BC BM ,则AN AM ⋅的取值范围是 . 13.已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,5),C (1,0).函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为 。

14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2。

2012年高考理科数学上海卷-答案

2012年高考理科数学上海卷-答案

2012年普通高等学校招生全国统一考试(上海卷)数学试卷(理工农医类)12AB ⎛-= ⎝【提示】由题意,可先将两个数集化简,再由交的运算的定义求出两个集合的交集即可得到答案arctan2【解析】方向向量(1,2)d =,所以2l k =,倾斜角arctan2α=【提示】根据直线的法向量求出直线的一个方向向量,从而得到直线的斜率,根据tan k α=可求出倾斜角 【考点】平面向量坐标 5.【答案】160-【解析】展开式通项662166(1)2(1)2r r r r r r r r rr T C x x C x ---+=-=-,令620r -=,得3r =,故常数项为3362160C -⨯=-【提示】研究常数项只需研究二项式的展开式的通项,使得x 的指数为0,得到相应的r ,从而可求出常数项【考点】二项式定理6.【答案】8 )1n V ++=【提示】由题意可得,正方体的体积1318n n n V a -⎛⎫== ⎪⎝⎭是以1为首项,以18为公比的等比数,由不等数列的求和公式可求【考点】数列的极限,棱柱,棱锥,棱台的体积. 7.【答案】1a ≤【解析】令()||g x x a =-,则()()e g x f x =,由于底数1e >,故()()f x g x ↑⇔↑,由()g x 的图像知()f x 在区间[1,)+∞上是增函数时,1a ≤【提示】由题意,复合函数()f x 在区间[1,)+∞上是增函数可得出内层函数||t x a =-在区间[1,)+∞上是增函数,又绝对值函数||t x a =-在区间[)a +∞,上是增函数,可得出[1,,)[)a ⊆+∞+∞,比较区间端点即可得出a 的取值范围【考点】指数函数单调性8. 【解析】如图,21π2π22l l=⇒=,又22ππ2π1r l r ==⇒=,所以h 21π3V r h ==【提示】通过侧面展开图的面积.求出圆锥的母线,底面的半径,求出圆锥的体积即可 【考点】旋转体 9.【答案】1-【解析】2()y f x x =+是奇函数,则22(1)(1)[(1)1]4f f -+-=-+=-,所以(1)3f -=-,(1)(1)21g f -=-+=-【提示】由题意,可先由函数是奇函数求出(1)3f -=-,再将其代入(1)g -求值即可得到答案 【考点】函数奇偶性,函数的值 10.【答案】()π61sin θ-【解析】(2,0)M 的直角坐标也是(2)0,,斜率k =2x =,化为极坐标方程为:cos 2ρθθ-=,1cos 12ρθθ⎛⎫= ⎪ ⎪⎝⎭,πsin 16ρθ⎛⎫-= ⎪⎝⎭,()π61sin ρθ=-,即()π61()sin f θθ=-.【提示】取直线l 上任意一点(,)P ρθ,连接OP ,则OP ρ=,POM θ∠=,在三角形POM 中,利用正弦定理建立等式关系,从而求出所求 22233327C C =,求21133218C C =,故2【提示】先求出三个同学选择的所求种数,然后求出有且仅有两人选择的项目完全相同的种数,最后利用古典概型及其概率计算公式进行求解即可 【考点】古典概型,概率计算 [2,5]||||[||||BM CN t BC CD ==∈||BM t =,||2CN t =,所以故22532222t AM AN t t t ⎛⎫⎛=+= ⎪--+⎝⎭max ()AM AN f =min ()(1)AM AN f =【提示】画出图形,建立直角坐标系,利用比例关系,求出M ,N 的坐标,然后通过二次函数求出数量积的范围【考点】平面向量 13.【答案】54133211201122535515510|(10)|10|533212124124x x x =⨯+-⨯+⨯=-+-==故答案为:54【提示】根据题意求得110,02()11010,12x x f x x x ⎧⎛⎫≤≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-≤≤ ⎪⎪⎝⎭⎩,从而22110,02()11010,12x x y xf x x x x ⎧⎛⎫≤≤ ⎪⎪⎪⎝⎭==⎨⎛⎫⎪-≤≤ ⎪⎪⎝⎭⎩,利用定积分可求得函数(),(01)y xf x x =≤≤的图像与x 轴围成的图形的面积319.【答案】(Ⅰ)(Ⅱ)π∴(1,AE =,(0,2BC =,设AE 与BC 夹角为222AE BC AE BC=⨯,由此可得异面直线各点的坐标,从而(1,AE =,(0,2BC =得到AE 与BC 夹角为【考点】直线与平面垂直,异面直线及其所成的角.20.【答案】(Ⅰ)2133x -<<(Ⅱ)310xy =-,0,[]lg2x ∈(Ⅱ)结合函数的奇偶性和反函数知识进行求解. 【考点】函数的周期性,反函数,对数函数图像与性质. 21.【答案】/时 救援船速度的方向为北偏东7arctan30弧度22.【答案】(Ⅰ)双曲线212:111x y C -=左顶点A ⎛⎫ ⎪ ⎪⎝⎭,渐近线方程为:y =.所以12OP OQ x x =20-= (Ⅰ)求出双曲线的渐近线方程,求出直线与另一条渐近线的交点,然后求出三角形的面积. ,通过求解0OP OQ = 轴时,设直线ON 【考点】直线,圆锥曲线.23.【答案】(Ⅰ)选取1(,2)a x =,Y 中与1a 垂直的元素必有形式(1,)b -.,从而4x =(Ⅱ)证明:取11(,a x x =.设2(,)a s t =满足120a a =. 中唯一的负数,所以t 、中之一为,另一为1,故11n x x <<选取11(,a x x =并设2(,)a s t =满足120a a =,即1=-,则1x ,矛盾;,,}k x ,k 先证明:若A 任取1(,)a s t =K s t A ∈、时,显然有2a 满足120a a =; 11k A +具有性质,所以有21(,a s t =,使得120a a =,从而1k x +=.由1)(1,)k x +-=,得1k s tx x +=≥,,}k x 有性质1,,,}k k x x +,,}k x1,1,,,,k k q q x -取11(k a x +=,并设2(,)a s t =满足120a a =,即.由此可得s 与t 中有且只有一个为所以1s =-1k k q q q -≤=,又x q >11 / 11综上所述1i i x q -=,1,2,,i n =⋯【提示】(Ⅰ)在Y 中取1(,2)a x =,根据数量积的坐标公式,可得Y 中与1a 垂直的元素必有形式(1,)b -,所以2x b =,结合2x >,可得x 的值.(Ⅱ)取111(,)a x x =,2(,)a s t =根据120a a =,化简可得0s t +=,所以s t 、异号.而1-是数集X 中唯一的负数,所以s t 、中的负数必为1-,另一个数是1,从而证出1X ∈,最后通过反证法,可以证明出当1n x >时,11x =(Ⅲ)先猜想结论:1i i x q -=,1,2,3,...i n =记2{1,1,,,}k k A x x =-,2,3,,k n =⋯通过反证法证明出引理:若1k A +具有性质P ,则k A 也具有性质P .最后用数学归纳法,可证明出1i i x q -=,1,2,3,...i n =【考点】数列,向量,元素,集合关系.。

2012年上海高考数学理科试题及标准答案

2012年上海高考数学理科试题及标准答案

2012年上海高考数学(理科)试卷一、填空题(本大题共有14题,满分56分) 1.计算:ii+-13= (i 为虚数单位). 2.若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A = .3.函数1sin cos 2)(-=xx x f 的值域是 .4.若)1,2(-=是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示).5.在6)2(xx -的二项展开式中,常数项等于 .6.有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,Vn ,…,则=+++∞→)(lim 21n n V V V .7.已知函数||)(a x ex f -=(a 为常数).若)(x f 在区间[1,+∞)上是增函数,则a 的取值范围是 .8.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为 . 9.已知2)(x x f y +=是奇函数,且1)1(=f .若2)()(+=x f x g ,则=-)1(g . 10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=.若将l 的极坐标方程写成)(θρf =的形式,则=)(θf .11.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示).12.在平行四边形ABCD 中,∠A =3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD 上的点,||||CD BC =,则AN AM ⋅的取值范围是 . 13.已知函数)(x f y =的图像是折线段AB C,若中A(0,0),B (21,5),C(1,0).函数)10()(≤≤=x x xf y 的图像与x轴围成的图形的面积为 .14.如图,AD 与B C是四面体ABC D中互相垂直的棱,BC=2. 若A D=2c ,且AB +BD=AC +CD=2a ,其中a、c 为常数,则四面体ABCD 的体积的最大值是 .二、选择题(本大题共有4题,满分20分) 15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则 ( )(A)3,2==c b .ﻩ(B)3,2=-=c b .ﻩ(C)1,2-=-=c b .(D )1,2-==c b .16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是 ﻩ( )(A)锐角三角形.(B)直角三角形.ﻩ(C)钝角三角形.ﻩ(D)不能确定.17.设443211010≤<<<≤x x x x ,5510=x . 随机变量1ξ取值1x 、2x 、3x 、4x 、5x 的概率均为0.2,随机变量2ξ取值221x x +、232x x +、243x x +、254x x +、215x x +的概率也为0.2. 若记1ξD 、2ξD 分别为1ξ、2ξ的方差,则ﻩ( )ﻩ(A)1ξD >2ξD .ﻩ(B)1ξD =2ξD .ﻩ(C)1ξD <2ξD .(D )1ξD 与2ξD 的大小关系与1x 、2x 、3x 、4x 的取值有关.18.设251sin πn n n a =,n na a a S +++= 21. 在10021,,,S S S 中,正数的个数是ﻩ( ) (A)25. (B)50. (C)75.ﻩ(D)100.三、解答题(本大题共有5题,满分74分)19.如图,在四棱锥P -ABCD 中,底面A BCD 是矩形,PA ⊥底面AB CD ,E是PC 的中点.已知AB=2,AD=22,PA=2.求:(1)三角形PCD 的面积;(6分) (2)异面直线BC 与A E所成的角的大小.(6分)ABCDA B CD P E。

2012年上海高考数学理科试题及答案

2012年上海高考数学理科试题及答案

2012年上海高考数学(理科)试卷一、填空题(本大题共有14题,满分56分)1.计算:ii+-13= (i 为虚数单位).2。

若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A = 。

3.函数1sin cos 2)(-=xx x f 的值域是 。

4。

若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示)。

5.在6)2(xx -的二项展开式中,常数项等于 。

6。

有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21nn V V V 。

7.已知函数||)(a x e x f -=(a 为常数)。

若)(x f 在区间[1,+∞)上是增函数,则a 的取值范围是 .8。

若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为 . 9.已知2)(x x f y +=是奇函数,且1)1(=f 。

若2)()(+=x f x g ,则=-)1(g . 10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=.若将l 的极坐标方程写成)(θρf =的形式,则=)(θf 。

11.三位同学参加跳高、跳远、铅球项目的比赛。

若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示)。

12。

在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD 上的点,且满足||||||||CD CN BC BM =,则AN AM ⋅的取值范围是 . 13。

已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,5),C (1,0).函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为 .xOMlα14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2。

2012年高考真题——理科数学(上海卷)解析版

2012年高考真题——理科数学(上海卷)解析版

2012年全国普通高等学校招生统一考试上海数学试卷(理)一、填空题(56分): 1.计算:=+-ii 13 (i 为虚数单位)。

【解析】复数i i i i i i ii 21242)1)(1()1)(3(13-=-=-+--=+-。

【答案】i 21-2.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A 。

【解析】集合}21{}012{->=>+=x x x x A ,}31{}21{<<-=<-=x x x x B ,所以}321{<<-=x x B A ,即)3,21(-。

【答案】)3,21(-3.函数1sin cos 2)(-= x x x f 的值域是 。

【解析】函数x x x x f 2s i n 212c o s s i n 2)(--=--=,因为12s i n 1≤≤-x ,所以212s i n 2121≤-≤-x ,232sin 21225-≤--≤-x ,即函数)(x f 的值域为]23,25[--。

【答案】]23,25[--4.若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示)。

【解析】【 设倾斜角为α,由题意可知,直线的一个方向向量为(1,2),则2tan =α, ∴α=2arctan 。

【答案】2arctan 5.在6)2(xx -的二项展开式中,常数项等于 。

【解析】二项展开式的通项为kkkkkkk xC xxC T )2()2(26666661-=-=----+,令026=-k ,得3=k ,所以常数项为160)2(3364-=-=C T 。

【答案】160-6.有一列正方体,棱长组成以1为首项、21为公比的等比数列,体积分别记为,,,,n V V V 21,则=+++∞→)(lim 21n n V V V 。

【解析】由题意可知,该列正方体的体积构成以1为首项,81为公比的等比数列,∴1V +2V +…+n V =811811--n=)811(78n -,∴=+++∞→)(lim 21n n V V V 78。

2012学年高考理科数学年上海卷

2012学年高考理科数学年上海卷

2012年普通高等学校招生全国统一考试(大纲卷)文科数学(必修+选修Ⅰ)答案解析第Ⅰ卷CF=,选D。

等积法得1,即4444()5555AD AB a b a b==-=-,选D。

平行关系,作图,可以得到回到EA点时,需要碰撞6次即可。

【提示】通过相似三角形,来确定反射后的点的落的位置,结合图像分析反射的次数即可。

【考点】三角形相似知识的运用第Ⅱ卷【考点】简单线性规划。

5π5255⨯⨯【考点】等角定理、异面直线所成的角的概念。

【考点】数列与三角函数的综合。

18.【答案】(1)解:由224=3S a 得1223()4a a a +=,解得2133a a ==;由335=3S a 得12333()5a a a a ++=,解得3123()62a a a =+=(2)解:由题设知11a =19.【答案】(1)证法一:因为底面ABCD 为菱形,所以BD AC ⊥,又PA ⊥底面ABCD ,所以PC BD ⊥设=ACBD F ,连接EF 。

因为AC 2PA =,2PE EC =,故PC EC FC =PC AC ==,证法二:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A xyz -设00)C ,,0)D b ,,0)B b ,P ,E ,,0)B b -于是2222(22,0,2),,=,33PA BE b DE b ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,, 从而0PC BE =,0PC DE =,故PC BE PC DE ⊥,⊥ 又BEDE E =,所以PC ⊥平面BDEPABP 平面PBC PAB 内两条相交直线AB ,所以底面所以PD 与平面PBC 所成角为30︒解法二:(00,2)AP =,,(2,0)AB b =-, 设(,,m x y =的法向量,则0=0m AP m AB =, ,则(,2,0)m b =设(,,)n p q r =的法向量,则00n PC n BE ==,, =0,且,21,n b ⎛⎫=- ,故0m n =,即于是(1,1,n =-,=(2,DP -1,2n DP n DP n DP<>==,60n DP <>=︒所成角和,n DP <>互余,故PD 与平面PBC 所成角为30︒(2)解:五次发球,甲领先时的比分有:3:14:0,这两种情况 开始第5次发球时比分为3:1的概率为:22112222220.60.40.60.60.40.40.17280.07680.2496C C C C ⨯⨯+⨯⨯=+=开始第5次发球时比分为4:0的概率为:2222220.60.40.0576C C ⨯=所以开始第5次发球时,甲得分领先的概率为0.24960.05760.3072+=【提示】首先要理解发球的具体情况,然后对于事件的情况分析,讨论,并结合独立事件的概率求解结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在做试卷之前,给大家推荐一个视频学习网站,我之前很长时间一直是做试卷之后,再到这上面去找一些相关的学习视频再复习一遍,效果要比只做试题要好很多,真不是打广告。

如果你有上网的条件,建议你也去学习一下,全站所有的视频都是免费的。

◆高考语文类在线听课地址:/yuwen◆高考数学类在线听课地址:/shuxue◆高考英语类在线听课地址:/yingyu◆高考化学类在线听课地址:/huaxue◆高考物理类在线听课地址:/wuli 其他学科的大家自己去找吧!◆高考在线题库:/exams2012上海高考数学试题(理科)答案与解析一.填空题 1.计算:3-i=1+i(i 为虚数单位). 【答案】1-2i 【解析】3-i (3-i)(1-i)2-4i ===1-2i 1+i (1+i)(1-i)2. 【点评】本题着重考查复数的除法运算,首先,将分子、分母同乘以分母的共轭复数,将分母实数化即可.2.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A . 【答案】 ⎪⎭⎫⎝⎛-3,21 【解析】根据集合A 210x +>,解得12x >-,由12,,13x x --<<得到,所以⎪⎭⎫⎝⎛-=3,21B A .【点评】本题考查集合的概念和性质的运用,同时考查了一元一次不等式和绝对值不等式的解法.解决此类问题,首先分清集合的元素的构成,然后,借助于数轴或韦恩图解决.【答案】⎥⎦⎤⎢⎣⎡--23,25 【解析】根据题目22sin 212cos sin )(--=--=x x x x f ,因为12sin 1≤≤-x ,所以23)(25-≤≤-x f . 【点评】本题主要考查行列式的基本运算、三角函数的范围、二倍角公式,属于容易题,难度较小.考纲中明确要求掌握二阶行列式的运算性质.4.若)1,2(-=是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示). 【答案】2arctan【解析】设直线的倾斜角为α,则2arctan ,2tan ==αα.【点评】本题主要考查直线的方向向量、直线的倾斜角与斜率的关系、反三角函数的表示.直线的倾斜角的取值情况一定要注意,属于低档题,难度较小. 5.在6)2(xx -的二项展开式中,常数项等于 . 【答案】160-【解析】根据所给二项式的构成,构成的常数项只有一项,就是333462C ()160T x x=-=- . 【点评】本题主要考查二项式定理.对于二项式的展开式要清楚,特别注意常数项的构成.属于中档题.6.有一列正方体,棱长组成以1为首项、21为公比的等比数列,体积分别记为 ,,,,n V V V 21,则=+++∞→)(lim 21n n V V V .【答案】78【解析】由正方体的棱长组成以1为首项,21为公比的等比数列,可知它们的体积则组成了一个以1为首项,81为公比的等比数列,因此,788111)(lim 21=-=+++∞→n n V V V . 【点评】本题主要考查无穷递缩等比数列的极限、等比数列的通项公式、等比数列的定义.考查知识较综合.7.已知函数||)(a x e x f -=(a 为常数).若)(x f 在区间),1[+∞上是增函数,则a 的取值范围是 . 【答案】(]1,∞-【解析】根据函数,(),x ax ax a e x a f x eex a ---+⎧≥⎪==⎨<⎪⎩看出当a x ≥时函数增函数,而已知函数)(x f 在区间[)+∞,1上为增函数,所以a 的取值范围为:(]1,∞- .【点评】本题主要考查指数函数单调性,复合函数的单调性的判断,分类讨论在求解数学问题中的运用.本题容易产生增根,要注意取舍,切勿随意处理,导致不必要的错误.本题属于中低档题目,难度适中.8.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 . 【答案】33π【解析】根据该圆锥的底面圆的半径为r ,母线长为l ,根据条件得到ππ2212=l ,解得母线长2=l ,1,22===r l r πππ所以该圆锥的体积为:ππ331231S 3122=-⨯==h V 圆锥. 【点评】本题主要考查空间几何体的体积公式和侧面展开图.审清题意,所求的为体积,不是其他的量,分清图形在展开前后的变化;其次,对空间几何体的体积公式要记准记牢,属于中低档题.9.已知2)(x x f y +=是奇函数,且1)1(=f ,若2)()(+=x f x g ,则=-)1(g . 【答案】1-【解析】因为函数2)(x x f y +=为奇函数,所以,3)1(,1)1(,2)1()1(==+=g f f g 所以,又1232)1()1(,3)1(-=+-=+-=--=-f g f .(1)(1).f f -=-【点评】本题主要考查函数的奇偶性.在运用此性质解题时要注意:函数)(x f y =为奇函数,所以有)()(x f x f -=-这个条件的运用,平时要加强这方面的训练,本题属于中档题,难度适中.10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=,.【答案】)6sin(1θ-【解析】根据该直线过点)0,2(M ,可以直接写出代数形式的方程为:)2(21-=x y ,将此化成极坐标系下的参数方程即可 ,化简得)6sin(1)(θπθ-=f .【点评】本题主要考查极坐标系,本部分为选学内容,几乎年年都有所涉及,题目类型以小题为主,复习时,注意掌握基本规律和基础知识即可.对于不常见的曲线的参数方程不作要求.本题属于中档题,难度适中.11.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示). 【答案】32 【解析】一共有27种取法,其中有且只有两个人选择相同的项目的取法共有18种,所以根据古典概型得到此种情况下的概率为32. 【点评】本题主要考查排列组合概率问题、古典概型.要分清基本事件数和基本事件总数.本题属于中档题.12.在平行四边形ABCD 中,3π=∠A ,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD ||||CD BC =⋅的取值范围是 .【答案】[]5,2【解析】以向量AB 所在直线为x 轴,以向量AD 所在直线为y 轴建立平面直角坐标系,如图所示,因为1,2==AD AB ,所以51(0,0),(2,0),(,1)(,1).22A B C D 设1515515151(,1)(), , - , - , (2,()sin ).22224284423N x x BM CN CN x BM x M x x π≤≤===+--则根据题意,有)83235,4821(),1,(xx AM x AN --==→→.所以83235)4821(x x x AN AM -+-=∙→→⎪⎭⎫⎝⎛≤≤2521x ,所以2 5.AM AN →→≤∙≤【点评】本题主要考查平面向量的基本运算、概念、平面向量的数量积的运算律.做题时,要切实注意条件的运用.本题属于中档题,难度适中.13.已知函数)(x f y =的图象是折线段ABC ,其中)0,0(A 、)5,21(B 、)0,1(C , 函数)(x xf y =(10≤≤x )的图象与x 轴围成的图形的面积为 . 【答案】45 【解析】根据题意得到,110,02()11010,12x x f x x x ⎧≤≤⎪⎪=⎨⎪-+≤⎪⎩从而得到22110,02()11010,12x x y xf x x x x ⎧≤≤⎪⎪==⎨⎪-+<≤⎪⎩所以围成的面积为45)1010(10121221=+-+=⎰⎰dx x x xdx S ,所以围成的图形的面积为45 .【点评】本题主要考查函数的图象与性质,函数的解析式的求解方法、定积分在求解平面图形中的运用.突出体现数形结合思想,本题综合性较强,需要较强的分析问题和解决问题的能力,在以后的练习中加强这方面的训练,本题属于中高档试题,难度较大.14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2=BC ,若c AD 2=, 且a CD AC BD AB 2=+=+,其中a 、c 为常数,则四面体ABCD 的体积的最 大值是 .【答案】1322--c a c 【解析】据题a CD AC BD AB 2=+=+,也就是说,线段CD AC BD AB ++与线段的长度是定值,因为棱AD 与棱BC 互相垂直,当ABD BC 平面⊥时,此时有最大值,此时最大值为:13222--c a c . 【点评】本题主要考查空间四面体的体积公式、空间中点线面的关系.本题主要考虑根据已知条件构造体积表达式,这是解决问题的关键,本题综合性强,运算量较大.属于中高档试题. 二、选择题(20分) 15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )A .3,2==c bB .3,2=-=c bC .1,2-=-=c bD .1,2-==c b 【答案】 B【解析】根据实系数方程的根的特点1也是该方程的另一个根,所以b i i -==-++22121,即2-=b ,c i i ==+-3)21)(21(,故答案选择B.【点评】本题主要考查实系数方程的根的问题及其性质、复数的代数形式的四则运算,属于中档题,注重对基本知识和基本技巧的考查,复习时要特别注意.16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 【答案】C【解析】由正弦定理,得,sin 2,sin 2,sin 2C Rc B R b A R a ===代入得到222a b c +<, 由余弦定理的推理得222cos 02a b c C ab+-=<,所以C 为钝角,所以该三角形为钝角三角形.故选择A.【点评】本题主要考查正弦定理及其推理、余弦定理的运用.主要抓住所给式子的结构来选择定理,如果出现了角度的正弦值就选择正弦定理,如果出现角度的余弦值就选择余弦定理.本题属于中档题.17.设443211010≤<<<≤x x x x ,5510=x ,随机变量1ξ取值54321x x x x x 、、、、的概率均为2.0,随机变量2ξ取值222221554433221x x x x x x x x x x +++++、、、、的概率也均为,若记21分别为21的方差,则( )A .21ξξD D >B .21ξξD D =C .21ξξD D < D .1ξD 与2ξD 的大小关系与4321x x x x 、、、的取值有关 【答案】 A【解析】 由随机变量21,ξξ的取值情况,它们的平均数分别为:1123451(),5x x x x x x =++++,2334455112211,522222x x x x x x x x x x x x +++++⎛⎫=++++= ⎪⎝⎭且随机变量21,ξξ的概率都为2.0,所以有1ξD >2ξD . 故选择A.【点评】本题主要考查离散型随机变量的期望和方差公式.记牢公式是解决此类问题的前提和基础,本题属于中档题. 18.设25sin 1πn n a n =,n n a a a S +++= 21,在10021,,,S S S 中,正数的个数是( ) A .25 B .50 C .75 D .100 【答案】C【解析】依据正弦函数的周期性,可以找其中等于零或者小于零的项.【点评】本题主要考查正弦函数的图象和性质和间接法解题.解决此类问题主要找到规律,从题目出发可以看出来相邻的14项的和为0,这就是规律,考查综合分析问题和解决问题的能力.三、解答题(74分):19.(6+6=12分)如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求:(1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小. 【答案及解析】所以三角形PCD 的面积为3232221=⨯⨯................6分【点评】本题主要考查直线与直线、直线与平面的位置关系,考查空间想象能力和推理论证能力.综合考查空间中两条异面直线所成的角的求解,同时考查空间几何体的体积公式的运用.本题源于《必修2》立体几何章节复习题,复习时应注重课本,容易出现找错角的情况,要考虑全面,考查空间想象能力,属于中档题. 20.(6+8=14分)已知函数)1lg()(+=x x f . (1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =(]2,1[∈x )的反函数. 【答案及解析】,3132<<-x【点评】本题主要考查函数的概念、性质、分段函数等基础知识.考查数形结合思想,熟练掌握指数函数、对数函数、幂函数的图象与性质,属于中档题.21.(6+8=14分)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图.现假设:①失事船的移动路径可视为抛物线249x y =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为t 7.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标.若此时两船恰好会合,求 救援船速度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?22.(4+6+6=16分)在平面直角坐标系xOy 中,已知双曲线1C :1222=-y x .(1)过1C 的左顶点引1C 的一条渐进线的平行线,求该直线与另一条渐进线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证:OQ OP ⊥; (3)设椭圆2C :1422=+y x ,若M 、N 分别是1C 、2C 上的动点,且ON OM ⊥,求证:O 到直线MN 的距离是定值. 【答案及解析】过点A 与渐近线x y 2=平行的直线方程为, 1.2y x y =+=+⎭即1=ON ,22=OM ,则O 到直线MN设O 到直线MN 的距离为d .【点评】本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系、椭圆的标准方程和圆的有关性质.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲线,它的离心率为2,它的渐近线为x y ±=,并且相互垂直,这些性质的运用可以大大节省解题时间,本题属于中档题 .23.(4+6+8=18分)对于数集}1{21n x x x X ,,,, -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s Y ∈∈==,若对任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X 具有性质P .例如}2,1,1{-具有性质P .(1)若2>x ,且},2,1,1{x -具有性质P ,求x 的值;(2)若X 具有性质P ,求证:X ∈1,且当1>n x 时,11=x ;(3)若X 具有性质P ,且11=x 、q x =2(q 为常数),求有穷数列n x x x ,,, 21的通项公式.【答案及解析】必有形式),1(b -显然有2a 满足021=∙a a【点评】本题主要考查数集、集合的基本性质、元素与集合的关系等基础知识,本题属于信息给予题,通过定义“X具有性质P”这一概念,考查考生分析探究及推理论证的能力.综合考查集合的基本运算,集合问题一直是近几年的命题重点内容,应引起足够的重视.。

相关文档
最新文档