人教版初一数学下册不等式组与方程组综合应用题[001]

合集下载

人教版七年级下册数学不等式与不等式组试题带答案

人教版七年级下册数学不等式与不等式组试题带答案

2021年七年级下册数学不等式与不等式组试题一、选择题(每小题3分, 共30分) 1.下列说法中, 错误的是( ) A. x =1是不等式x <2的解 B. -2是不等式2x -1<0的一个解 C. 不等式-3x >9的解集是x =-3 D. 不等式x <10的整数解有无数个 2. 下列变形不正确的是( ) A. 由b>5得4a +b>4a +5 B. 由a>b 得b<a C. 由- x>2y 得x<-4y D. -5x>-a 得x>3. 不等式3x +2<2x +3的解集在数轴上表示正确的是( )4. 小明准备用22元钱买笔和笔记本, 已知每支笔3元, 每本笔记本2元, 他买了3本笔记本后, 用剩余的钱来买笔, 那么他最多可以买( )A. 3支笔B. 4支笔C. 5支笔D. 6支笔 5. 不等式组 的解集是( ) A. x >1 B. 1<x ≤2 C. x ≤2 D. 无解6.如果不等式组 的解集是x <2, 那么m 的取值范围是( )A. m =2B. m >2C. m <2D. m ≥2 7. 不等式组 的最小整数解是( )A. 1B. 2C. 3D. 48.小红读一本500页的书, 计划10天内读完, 前5天因种种原因只读了100页, 为了按计划读完, 则从第六天起平均每天至少要读( )姓名:学号:A. 50页B. 60页C. 80页D. 100页 9.已知不等式组 的解集中共有5个整数, 则a 的取值范围为( ) A. 7<a ≤8 B. 6<a ≤7 C. 7≤a <8 D. 7≤a ≤810.关于x 的不等式组 的解集为x<3, 那么m 的取值范围为( ) A. m =3 B. m >3 C. m <3 D. m ≥3 二、填空题(每小题4分, 共24分)11. 在下列各数: -2, -2.5, 0, 1, 6中, 不等式 x>1的解有6;不等式- x>1的解有 . 12.在实数范围内规定新运算“△”, 其规则是:a △b =2a -b.已知不等式x △k ≥1的解集在数轴上如图表示, 则k 的值是 .13. 若不等式组 的解集为3≤x ≤4, 则不等式ax +b <0的解集为 .14. 某种商品的进价为800元, 出售时标价为1 200元, 后来由于该商品积压, 商店准备打折销售, 但要保证利润率不低于5%, 则至多可打 折.15. 对于任意实数m, n, 定义一种运算m ※n =mn -m -n +3, 等式的右边是通常的加减和乘法运算. 例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a<2※x<7, 且解集中有两个整数解, 则a的取值范围是 .16.对一个实数x 按如图所示的程序进行操作, 规定:程序运行从“输入一个实数x ”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止, 那么x 的取值范围是 .三、解答题(共66分)17. (18分)解下列不等式, 并将其解集在数轴上表示出来. (1)8x -1≥6x +3; (2)2x -1<10x +16.(3)解不等式2(x +1)-1≥3x +2, 并把它的解集在数轴上表示出来.18. (8分)若代数式 的值不大于代数式5k +1的值, 求k 的取值范围.19.(8分)(呼和浩特中考)已知实数a是不等于3的常数, 解不等式组并依据a的取值情况写出其解集.20. (10分)定义新运算: 对于任意实数a, b, 都有a⊕b=a(a-b)+1, 等式右边是通常的加法、减法及乘法运算.比如: 2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5.(1)求(-2)⊕3的值;(2)若3⊕x的值小于13, 求x的取值范围, 并在数轴上表示出来.21.(10分)某商店5月1日举行促销优惠活动, 当天到该商店购买商品有两种方案. 方案一: 用168元购买会员卡成为会员后, 凭会员卡购买商店内任何商品, 一律按商品价格的8折优惠;方案二: 若不购买会员卡, 则购买商店内任何商品, 一律按商品价格的9.5折优惠. 已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡, 所购买商品的价格为120元时, 实际应支付多少元?(2)请帮小敏算一算, 所购买商品的价格在什么范围内时, 采用方案一更合算?(2)若该商场把这100个球全部以零售价售出, 为使商场获得的利润不低于2 580元, 则采购员至少要购篮球多少个?该商场最多可盈利多少元?参考答案一、选择题(每小题3分, 共30分)1.下列说法中, 错误的是(C)A. x=1是不等式x<2的解B. -2是不等式2x-1<0的一个解C. 不等式-3x>9的解集是x=-3D. 不等式x<10的整数解有无数个2. 下列变形不正确的是(D)A. 由b>5得4a+b>4a+5B. 由a>b得b<aC. 由-x>2y得x<-4yD. -5x>-a得x>3. 不等式3x+2<2x+3的解集在数轴上表示正确的是(D)4. 小明准备用22元钱买笔和笔记本, 已知每支笔3元, 每本笔记本2元, 他买了3本笔记本后, 用剩余的钱来买笔, 那么他最多可以买(C)A. 3支笔B. 4支笔C. 5支笔D. 6支笔5. 不等式组的解集是(B)A. x>1B. 1<x≤2C. x≤2D. 无解6.如果不等式组的解集是x<2, 那么m的取值范围是(D)A. m=2B. m>2C. m<2D. m≥27. 不等式组的最小整数解是(C)A. 1B. 2C. 3D. 48.小红读一本500页的书, 计划10天内读完, 前5天因种种原因只读了100页, 为了按计划读完, 则从第六天起平均每天至少要读(C)A. 50页B. 60页C. 80页D. 100页9.已知不等式组的解集中共有5个整数, 则a的取值范围为(A)A. 7<a≤8B. 6<a≤7C. 7≤a<8D. 7≤a≤810.关于x的不等式组的解集为x<3, 那么m的取值范围为(D)A. m=3B. m>3C. m<3D. m≥3二、填空题(每小题4分, 共24分)11. 在下列各数: -2, -2.5, 0, 1, 6中, 不等式x>1的解有6;不等式-x>1的解有-2, -2.5.12.在实数范围内规定新运算“△”, 其规则是:a△b=2a-b.已知不等式x△k≥1的解集在数轴上如图表示, 则k的值是-3.13. 若不等式组的解集为3≤x≤4, 则不等式ax+b<0的解集为x>.14. 某种商品的进价为800元, 出售时标价为1 200元, 后来由于该商品积压, 商店准备打折销售, 但要保证利润率不低于5%, 则至多可打7折.15. 对于任意实数m, n, 定义一种运算m※n=mn-m-n+3, 等式的右边是通常的加减和乘法运算. 例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a<2※x<7, 且解集中有两个整数解, 则a的取值范围是4≤a<5.16.对一个实数x按如图所示的程序进行操作, 规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止, 那么x的取值范围是x>49.三、解答题(共66分)17. (18分)解下列不等式, 并将其解集在数轴上表示出来.(1)8x-1≥6x+3;解: 移项, 得8x -6x ≥3+1. 合并同类项, 得2x ≥4. 系数化为1, 得x ≥2.其解集在数轴上表示为:(2)2x -1<10x +16.解: 去分母, 得12x -6<10x +1. 移项, 得12x -10x <1+6. 合并同类项, 得2x <7. 系数化为1, 得x< .其解集在数轴上表示为:(3)解不等式2(x +1)-1≥3x +2, 并把它的解集在数轴上表示出来. 解: 去括号, 得2x +2-1≥3x +2. 移项, 得2x -3x ≥2-2+1. 合并同类项, 得-x ≥1. 系数化为1, 得x ≤-1.∴这个不等式的解集为x ≤-1, 在数轴上表示如下:18. (8分)若代数式 的值不大于代数式5k +1的值, 求k 的取值范围. 解:由题意, 得 3(2k +5)2≤5k +1. 解得k≥134.19.(8分)(呼和浩特中考)已知实数a 是不等于3的常数, 解不等式组 并依据a 的取值情况写出其解集. 解: 解不等式①, 得x ≤3. 解不等式②, 得x<a. ∵a 是不等于3的常数,∴当a>3时, 不等式组的解集为x ≤3; 当a<3时, 不等式组的解集为x<a.20. (10分)定义新运算: 对于任意实数a, b, 都有a⊕b=a(a-b)+1, 等式右边是通常的加法、减法及乘法运算.比如: 2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5.(1)求(-2)⊕3的值;(2)若3⊕x的值小于13, 求x的取值范围, 并在数轴上表示出来.解: (1)(-2)⊕3=-2×(-2-3)+1=-2×(-5)+1=10+1=11.(2)∵3⊕x<13,∴3(3-x)+1<13.解得x>-1.解集在数轴表示为:21.(10分)某商店5月1日举行促销优惠活动, 当天到该商店购买商品有两种方案. 方案一: 用168元购买会员卡成为会员后, 凭会员卡购买商店内任何商品, 一律按商品价格的8折优惠;方案二: 若不购买会员卡, 则购买商店内任何商品, 一律按商品价格的9.5折优惠. 已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡, 所购买商品的价格为120元时, 实际应支付多少元?(2)请帮小敏算一算, 所购买商品的价格在什么范围内时, 采用方案一更合算?解: (1)120×0.95=114(元).答: 实际应支付114元.(2)设购买商品的价格为x元, 由题意得0. 8x+168<0.95x, 解得x>1 120.答:当购买商品的价格超过1 120元时, 采用方案一更合算.22. (12分)某体育厂家批发价(元/个) 商场零售价(元/个)用品商场采购(2)若该商场把这100个球全部以零售价售出, 为使商场获得的利润不低于2 580元, 则采购员至少要购篮球多少个?该商场最多可盈利多少元?解:(1)设采购员最多可购进篮球x个, 则排球是(100-x)个, 依题意, 得130x+100(100-x)≤11 815.解得x≤60.5.∵x是整数, ∴x最大取60.答: 该采购员最多可购进篮球60个.(2)设篮球x个, 则排球是(100-x)个, 则(160-130)x+(120-100)(100-x)≥2 580.解得x≥58.又由第(1)问得x≤60.5,∴正整数x的取值为58, 59, 60.即采购员至少要购篮球58个.∵篮球的利润大于排球的利润,∴这100个球中, 当篮球最多时, 商场可盈利最多, 故篮球60个, 排球40个, 此时商场可盈利(160-130)×60+(120-100)×40=1 800+800=2 600(元), 即该商场最多可盈利2 600元.。

人教版七年级数学下册 利用方程组与不等式组解应用题专题训练(含答案)

人教版七年级数学下册 利用方程组与不等式组解应用题专题训练(含答案)

人教版七年级数学下册利用方程组与不等式组解应用题专题训练1.某校计划购买篮球、排球共20个购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.2.某小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.5万元;新建3个地上停车位和2个地下停车位共需1.1万元(1) 该小区新建1个地上停车位和1个地下停车位各需多少万元?(2) 若该小区投资超过10万元的金额新建停车位,且地上的停车位要求不少于30个,问共有几种建造方案?(3) 对(2)中的几种建造方案中,哪一种方案的投资最少?并求出最少投资金额?3.星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?4. 某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元.已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元?(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌的足球50个,正好赶上商场对商品价格进行调整,A种品牌的足球售价比第一次购买时提高4元,B种品牌的足球按第一次购买时售价的九折出售,如果学校此次购买A、B两种品牌的足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌的足球不少于23个,则这次学校有哪几种购买方案?5.某中学为达到校园足球特色学校的要求,准备一次性购买一批训练用足球和比赛用足球.若购买3个训练用足球和2个比赛用足球共需500元,购买2个训练用足球和3个比赛用足球共需600元.(1)购买1个训练用足球和1个比赛用足球各需多少元?(2)某中学实际需要一次性购买训练用足球和比赛用足球共96个,要求购买训练用足球和比赛用足球的总费用不超过6000元,问这所中学最多可以购买多少个比赛用足球?6.为解决中小学班额问题,东营市各区县今年将改扩建部分中小学,某县计划对A,B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7 800万元,改扩建3所A类学校和1所B类学校共需资金5 400万元.( 1 )改扩建1所A类学校和1所B类学校所需资金分别是多少万元?( 2 )该县计划改扩建A,B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11 800万元;地方财政投入资金不少于4 000万元,其中地方财政投入到A,B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?7.我区注重城市绿化提高市民生活质量,新建林荫公园计划购买甲、乙两种树苗共800株,甲种树苗每株12元,乙种树苗每株15元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去10500元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.8.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中的A,B,C三种粗粮的成本价之和.已知A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,求该电商销售甲、乙两种袋装粗粮的数量之比。

七年级下册数学不等式与不等式组综合题人教版(含答案)

七年级下册数学不等式与不等式组综合题人教版(含答案)

七年级下册数学不等式与不等式组综合题人教版一、单选题(共10道,每道10分)1.已知ax<2a(a≠0)是关于x的不等式,那么它的解集是()A.x<2B.x>-2C.当a>0时,x<2D.当a>0时,x<2;当a<0时,x>2答案:D试题难度:三颗星知识点:含字母的不等式2.若不等式组无解,则实数m的取值范围是( )A.B.C.D.答案:D试题难度:三颗星知识点:含字母的不等式组的无解问题3.如果不等式组有解,则m的取值范围为()A.m≧4B.m>4C.m<4D.m≦4答案:C试题难度:三颗星知识点:含字母的不等式组的无解问题4.如果不等式组的解集为x<2,则m的取值范围为()A.m>2B.m≧2C.m<2D.m≦2答案:B试题难度:三颗星知识点:含字母的不等式组的有解问题5.如果-3x-a<0的负整数解有2个,则a的取值范围为()A.-9≤a<-6B.-9<a≤-6C.6≤a<9D.6<a≤9答案:D试题难度:三颗星知识点:含字母的不等式的整数解6.如果不等式组的解集是,那么a+b的值为()A.-1B.2C.1D.不能确定答案:C试题难度:三颗星知识点:含字母的不等式组的有解问题7.若关于x、y的二元一次方程组的解满足4x+2y<3,则a的取值范围为()A.a<0B.a≦-1C.a<-1D.a≧3答案:C试题难度:三颗星知识点:含字母的不等式组8.某班50名学生利用现有的36kg甲种材料和29kg乙种材料制作陶艺品.每人制作一件A型或B型的陶艺品.已知制作一件A型陶艺品需甲种材料0.9kg、乙种材料0.3kg,制作一件B 型陶艺品需甲种材料0.4kg、乙种材料1kg.设制作B型陶艺品x件,则x的取值有()A.18≤x≤20B.18<x<20C.19D.18,19或20答案:D试题难度:三颗星知识点:一元一次不等式组的应用——方案设计9.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,则宿舍间数和住宿人数分别是()A.9,54或10,59或11,63B.12,67或11,63C.10,59或11,63或12,67D.9,54或10,59或11,63或12,67答案:C试题难度:三颗星知识点:一元一次不等式组的应用——不空不满10.为了缓解停车矛盾,郑州市某小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个、露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?请写出所有可能的方案.A.方案一:室内车位20个,露天车位50个;方案二:室内车位21个,露天车位45个B.室内车位20个,露天车位50个C.室内车位21个,露天车位45个D.方案一:室内车位20个,露天车位50个;方案二:室内车位21个,露天车位45个;方案三:室内车位22个,露天车位40个答案:A试题难度:三颗星知识点:一元一次不等式组的应用——关键词型。

七年级下册方程组与不等式组解决《方案选择》应用题含答案

七年级下册方程组与不等式组解决《方案选择》应用题含答案

七年级下册不等式组《方案选择》专题1、为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A 和B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7800万元,改扩建3所A 类学校和1所B 类学校共需资金5400万元。

(1)改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?(2)该县计划改扩建A 、B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担。

规定若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A 、B 两类学校的改扩建资金分别为每所300万元和500万元。

请问共有哪几种改扩建方案?解:(1)设改扩建1所A 类学校需资金x 万元,改扩建1所B 类学校需资金y 万元则依题意可得⎩⎨⎧=+=+54003780032y x y x∴⎩⎨⎧==18001200y x ∴改扩建1所A 类学校需资金1200万元,改扩建1所B 类学校需资金1800万元 (2)设改扩建A 类学校m 所,则改扩建B 类学校(10-m )所依题意可得:()()()()⎩⎨⎧≥-+≤--+-400010500300118001050018003001200m m m m∴⎩⎨⎧≥-+≤-+4000500500030011800130013000900m m m m ∴⎩⎨⎧≤≥53m m∴53≤≤m ∵m 是正整数 ∴m=3或4或5 即共有3种方案方案一:改扩建A 类学校3所,B 类学校7所 方案二:改扩建A 类学校4所,B 类学校6所 方案三:改扩建A 类学校5所,B 类学校5所2、某房地产开发公司计划建A、B两种户型的住房共80套。

该公司所筹资金不少于2090万元,但不超过2096万元。

且所筹资金全部用于建房,两种户型的建房成本和售价如下表(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a 万元(a>0),且所建的两种住房可全部售出,该公司如何建房获得利润最大?解:(1)设A种户型的住房建x套,则B种户型的住房建(80-x)套根据题意,得()()⎩⎨⎧≤-+≥-+20968028252090802825xxxx,解得48≤x≤50∵x取非负整数,∴x为48,49,50(2由题意知:W=5x+6(80-x)=480-x∵k=-1,W随x的增大而减小∴当x=48时,即A型住房建48套,B型住房建32套获得利润最大(3)根据题意,得W=5x+(6-a)(80-x)=(a-1)x+480-80a∴当0<a<l时,x=48,W最大,即A型住房建48套,B型住房建32套当a=l时,a-1=0,三种建房方案获得利润相等当1<a<6时,x=50,W最大,即A型住房建50套,B型住房建30套3、某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文件衫和5本相册。

数学人教版七年级下册一元一次不等式组 解应用题

数学人教版七年级下册一元一次不等式组 解应用题

人教版七年级数学下第九章一元一次不等式与不等式组9.3 一元一次不等式(组)的实际应用第2课时大理市上关一中 杨利娟教学目标:1、能够根据实际问题中的不等关系,列出一元一次不等式组,解决实际问题。

2、会解决一元一次不等式组和二元一次方程组的综合应用,完成方案设计题。

教学重点:1. 会找实际问题中的等量关系与不等关系;2. 并将生活问题准确地转化为数学模型解决方案设计;教学难点:1、分析清楚多个量之间的等量关系与不等关系。

2、建立完整的列不等式组解决实际问题的模型。

教学策略:1、紧扣审、设、列、解、验、答的步骤;2、先用文字表述多个量间的等量关系与不等关系,再转化为代数式。

教学方式:类比教学教学过程:一、复习解不等式组的过程例1:解不等式组5)1(325≤-->+x x xx解:解不等式①得:x<5解不等式②得:x≥-1∴不等式组的解集为-1≤x<5追问1:x可取哪些整数?X可取-1,0,1,2,3,4这6个整数。

追问2:x可取那些非负整数?X可取0,1,2,3,4这5个非负整数。

追问3:x可取那些正整数?X可取1,2,3,4这4个正整数。

设计理念:为进一步应用不等式组解决实际问题结果打牢基础,提高准确度。

追问1、2、3为方案设计题作出方案决策作好突破性的准备。

二、由浅入深,先由二元一次方程组与不等式的综合到二元一次方程组与不等式组的综合。

例2:为培养学生养成良好的“爱读书,读好书,好读书”的习惯,我市上关一中举办了“汉字听写大赛”,准备为获奖同学颁奖,在购买奖品时发现,一个书包和一本词典会花去96元,用262元恰好可以购买3个书包和2本词典。

问:(1)每个书包和每本词典的价格各是多少元?(2)学校计划用总费用不超过1000元的钱数为获胜的30名同学颁发奖品(每人一个书包或一本词典),求最多可以购买多少个书包。

分析:(1)1个书包的费用+1本词典的费用=96利用方程组求出即可3个书包的费用+2本词典的费用=262而以上4个量中都与书包的单价,词典的单价有关(审),所以设一个书包x元,一本词典y元(设)(2)利用30名同学的奖品总费用为书包的总费用+词典总费用,总费用=单价╳数量,单价第(1)问已得出,所以设数量(审)设书包有Z个,则词典有(30-Z)本(设)解:(1)设每个书包x元,每本词典y元,则:X+y=96 x=70解得:3x+y=262 y=26因此,每个书包70元,每本词典26元。

新人教版初中数学七年级数学下册第五单元《不等式与不等式组》测试(答案解析)(1)

新人教版初中数学七年级数学下册第五单元《不等式与不等式组》测试(答案解析)(1)

一、选择题1.不等式()2533x x ->-的解集为( ) A .4x <- B .4x >C .4x <D .4x >-2.不等式组23x x ≥-⎧⎨<⎩的整数解的个数是( ) A .4个B .5个C .6个D .无数个3.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( ) A .6折 B .7折 C .8折D .9折4.已知01m <<,则m 、2m 、1m( ) A .21m m m>>B .21m m m >> C .21m m m>> D .21m m m>> 5.不等式组43x x <⎧⎨≥⎩的解集在数轴上表示为( )A .B .C .D .6.下列说法中不正确的是( ) A .若a b >,则a 1b 1->- B .若3a 3b >,则a b > C .若a b >,且c 0≠,则ac bc >D .若a b >,则7a 7b -<-7.若关于x 的方程 332x a += 的解是正数,则a 的取值范围是( ) A .23a <B .23a >C .a 为任何实数D .a 为大于0的数8.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( )A .2m >-B .2m >C .3m >D .2m <-9.不等式组32153x x ->⎧⎨-<-⎩的解集在数轴上的表示是( )A .B .C .D .10.若不等式组11x x m ->⎧⎨<⎩无解,那么m 的取值范围是( )A .2m >B .2m <C .2m ≥D .2m ≤ 11.下列是一元一次不等式的是( )A .21x >B .22x y -<-C .23<D .29x <12.已知实数x ,y ,且2<2x y ++,则下列不等式一定成立的是( ) A .x y >B .44x y ->-C .33x y ->-D .22x y> 二、填空题13.“鼠去牛来辞旧岁,龙飞凤舞庆明时.”在新年的钟声敲响之际,南开中学初2022级举行了元旦晚会.在晚会前,一、二、三班都组织购买了 A 、B 、C 三类糖果.已知一班分别购买 A 、B 、C 三类糖果各3千克、2千克、5千克,二班分别购买A 、B 、C 三类糖果各 2千克、1千克、4千克,且一班和二班购买糖果的总金额比值为3∶2.若三类糖果单价和为108元,且各单价是低于50元/千克的整数,A 与C 单价差大于25元.则三班分别购买A 、B 、C 三类糖果各2千克、3千克、4千克的总金额为______元. 14.对任意四个整数a 、b 、c 、d 定义新运算:a b c dad bc =-,若1<2 4 1x x -<12,则x 的取值范围是____.15.已知:[]x 表示不超过x 的最大整数.例:[]4.84=,[]0.81-=-.现定义:{}[]x x x =-,例:{}[]1.5 1.5 1.50.5=-=,则{}{}{}3.9 1.81+--=________.16.若不等式(2﹣a )x >2的解集是x <22a-,则a 的取值范围是_____. 17.若关于x 的不等式组2()12153xm x 的解集为76x -<<-,则m 的值是______.18.定义一种法则“⊗”如下:()()a ab a b b a b >⎧⊗=⎨≤⎩,如:122⊗=,若(25)33m -⊗=,则m 的取值范围是_______. 19.若a b >0,cb<0,则ac________0. 20.若关于x 的不等式2x ﹣m≥1的解集如图所示,则m =_____.三、解答题21.某商家欲购进甲、乙两种抗疫用品共180件,其进价和售价如表:甲乙 进价(元/件) 14 35 售价(元/件)2043、乙两种用品应分别购进多少件?(请用二元一次方程组求解)(2)若商家计划投入资金少于5040元,且销售完这批抗疫用品后获利不少于1314元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.22.为了积极争创“天府旅游名县”,鼓励全民参与健身运动,2019年12月29日,广汉市在城北全民健身中心举行了“2019年广汉市三星堆迷你马拉松(10公里)”比赛.组委会为了奖励活动中取得了好成绩的参赛选手,计划购买一批纪念品发放.已知甲、乙两商场以同样价格出售同样的纪念品,并且又各自推出不同的优惠方案:在甲商场累计购买该纪念品超过1000元后,超出1000元的部分按90%收费;在乙商场累计购买该纪念品超过500元后,超出500元的部分按95%收费,组委会到哪家商场购买花费少?23.阅读:我们知道,00aa a a a ≥⎧=⎨-<⎩于是要解不等式|3|4x -≤,我们可以分两种情况去掉绝对值符号,转化为我们熟悉的不等式,按上述思路,我们有以下解法: 解:(1)当30x -≥,即3x ≥时:34x -≤解这个不等式,得:7x ≤ 由条件3x ≥,有:37x ≤≤(2)当30x -<,即3x <时,(3)4x --≤ 解这个不等式,得:1x ≥- 由条件3x <,有:13x -≤<∴如图,综合(1)、(2)原不等式的解为17x -≤≤ 根据以上思想,请探究完成下列2个小题: (1)|1|2x +≤; (2)|2|1x -≥. 24.解方程组与不等式组.(1)解方程组244523x y x y -=-⎧⎨-=-⎩.(2)解不等式组4(1)710853x x x x +≤+⎧⎪-⎨-<⎪⎩. 25.解方程或不等式(组)(1)2(21)1690x --=. (2)211143x x +-+. (3)421223x x x x+⎧-<⎪⎨⎪-⎩26.解不等式组:()324112x x x ⎧+≥+⎪⎨-<⎪⎩.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据解一元一次不等式的方法解答即可. 【详解】解:去括号,得2539x x ->-, 移项、合并同类项,得4x ->-, 不等式两边同时除以﹣1,得4x <. 故选:C . 【点睛】本题考查了一元一次不等式的解法,属于基础题目,熟练掌握解一元一次不等式的方法是关键.2.B解析:B 【分析】本题首先求解该不等式组公共解集,继而在解集内确定整数解. 【详解】由已知得:23x -≤<,该范围内包含5个整数解:2-,1-,0,1,2. 故选:B . 【点睛】本题考查求不等式的整数解,解题关键在于确定公共解集,其次确定答案时要确保不重不漏.3.B解析:B 【详解】设可打x 折,则有1200×10x-800≥800×5%, 解得x≥7. 即最多打7折. 故选B . 【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.4.C解析:C 【分析】根据不等式的性质解答. 【详解】 解:∵01m <<,∴01m m m <⋅<⨯,即20m m <<(不等式的两边都乘以同一个正数,所得的不等式仍然成立)①10m m m <<,即101m<<(不等式的两边都除以同一个正数,所得的不等式仍然成立)②由①②知21m m m>>; 故选:C. 【点睛】此题考查不等式的性质:不等式两边都乘以同一个正数,所得的不等式仍然成立,不等式的两边都除以同一个正数,所得的不等式仍然成立,解题的关键是正确掌握不等式的性质.5.D解析:D 【分析】根据不等式组的解集在数轴上的表示方法进行分析解答即可. 【详解】A 选项中,数轴上表达的解集是:4x >;B 选项中,数轴上表达的解集是:34x -≤<;C 选项中,数轴上表达的解集是:3x ≤;D 选项中,数轴上表达的解集是:34x ≤<;∵不等式组43xx⎧⎨≥⎩<的解集是34x≤<,∴选D.【点睛】本题考查的是在数轴上表示不等式组的解集,熟知:“小于向左,大于向右”是解答此题的关键.6.C解析:C【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A、∵a>b,∴a-1>b-1,故本选项正确,不符合题意;B、∵3a>3b,∴a>b,故本选项正确,不符合题意;C、∵a>b且c≠0,当c >0时,ac>bc;当c<0时,ac<bc,故本选项错误,符合题意;D、∵a>b,∴-a<-b,∴7-a<7-b,故本选项正确,不符合题意.故选:C.【点睛】本题考查的是不等式的性质,熟记不等式的基本性质是解答此题的关键.7.A解析:A【分析】先解方程,再结合题意列出不等式,解之即可得出答案.【详解】解:∵3x+3a=2,∴x=233a-,又∵方程的解为正数,∴233a->0,∴a<2 3 .故选:A.【点睛】本题考查一元一次不等式与一元一次方程的综合运用,正确理解一元一次方程解的意义及熟练求解一元一次不等式是解题关键.8.A解析:A【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m 的范围. 【详解】 解:2133x y m x y -+⋯⎧⎨+⋯⎩=①=②①+②得2x+2y=2m+4, 则x+y=m+2, 根据题意得m+2>0, 解得m >-2. 故选:A . 【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m 当作已知数表示出x+y 的值,再得到关于m 的不等式.9.C解析:C 【分析】先解不等式组求出其解集,然后根据不等式的解集在数轴上的表示方法进行判断即可. 【详解】 解:对不等式组32153x x ->⎧⎨-<-⎩,解不等式3x -2>1,得x >1, 解不等式x -5<﹣3,得x <2, ∴不等式组的解集是1<x <2, 不等式组的解集在数轴上表示为:.故选:C . 【点睛】本题考查了一元一次不等式组的解法和不等式的解集在数轴上的表示,属于基础题目,熟练掌握解一元一次不等式组的方法是解题的关键.10.D解析:D 【分析】先求出11x ->的解,再根据不等式组无解,可得关于m 的不等式,根据解不等式,可得答案. 【详解】解:解11x ->得2x >.∵不等式组11x x m ->⎧⎨<⎩无解,∴2m ≤,【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.A解析:A 【分析】根据一元一次不等式的定义对各选项进行逐一分析即可. 【详解】解:A 、21x >中含有一个未知数,并且未知数的最高次数等于1,是一元一次不等式,故本选项正确;B 、22x y -<-中含有两个未知数,故本选项错误;C 、23<中不含有未知数,故本选项错误;D 、29x <中含有一个未知数,但未知数的最高次数等于1,不是一元一次不等式,故本选项错误. 故选:A . 【点睛】本题考查的是一元一次不等式的定义,即含有一个未知数,未知数的最高次数是1的不等式,叫做一元一次不等式.12.B解析:B 【分析】根据不等式的性质逐项排除即可. 【详解】 解:∵2<2x y ++∴x <y ,故选项A 不符合题意;∴44x y ->-,故B 选项符合题意;33x y --<,故选项C 不符合题意;22x y<,故D 选项不符合题意. 故答案为B . 【点睛】本题主要考查了不等式的性质,给不等式左右两边乘以(除以)一个大于0的代数式(数),不等式符号不变,反之改变.二、填空题13.296【分析】可设A 单价x 元B 单价y 元由三类糖果单价和为108元得C 单价;再由一班和二班购买糖果的总金额比值为3∶2可得xy 的关系式再由A 与C 单价差大于25元可得一元一次不等式根据各单价是低于50元【分析】可设A 单价x 元,B 单价y 元,由三类糖果单价和为108元得C 单价;再由一班和二班购买糖果的总金额比值为3∶2,可得x 、y 的关系式,再由A 与C 单价差大于25元,可得一元一次不等式,根据各单价是低于50元/千克的整数求出符合题意的解即可 【详解】解:设A 单价x 元,B 单价y 元三类糖果单价和为108元得C 单价为(108-x-y )元 又一班和二班购买糖果的总金额比值为3∶2可得:325(108)324(108)2x y x y x y x y ++--=++--整理可得:2x+3y=216①又A 与C 单价差大于25元,即x-(108-x-y )>25 整理可得:2x+y>133,将①中的2x 代入可得:y<41.5 又A 、B 、C 三类糖果单价是低于50元/千克的整数,故: 若y=41,代入①得x=46.5,不符合题意 若y=40,代入①得x=48,符合题意 若y=39,代入①得x=49.5,不符合题意 若y=38,代入①得x=51,不符合题意y 越小,x 越大,故后面x 的结果均大于50,不符合题意 故x=48,y=40,108-x-y=20 由上可知:A 类糖果的单价是48元B 类糖果的单价是40元C 类糖果的单价是20元故分别购买A 、B 、C 三类糖果各2千克、3千克、4千克的总金额为: 48×2+40×3+20×4=296(元) 故答案为:296 【点睛】本题考查一元一次不等式的解法,利用条件建立一元一次不等式并结合题意准确得到A 、B 、C 三类糖果的单价是解本题的关键14.【分析】根据新定义列不等式组并求解集即可【详解】解:由题意得:1<2x-(-4)x <12即1<6x <12解得故答案为【点睛】本题主要考查了新定义运用解不等式组等知识点正确理解新运算法则是解答本题的关键解析:126x <<【分析】根据新定义列不等式组并求解集即可. 【详解】解:由题意得:1<2x-(-4)x <12,即1<6x <12,解得126x << .故答案为126x <<.【点睛】本题主要考查了新定义运用、解不等式组等知识点,正确理解新运算法则是解答本题的关键.15.【分析】根据题意列出代数式解答即可【详解】解:故答案为:【点睛】此题考查解一元一次不等式关键是根据题意列出代数式解答 解析:1.1【分析】根据题意列出代数式解答即可. 【详解】解:{}{}{}3.9 1.81+--()()()()39318211⎡⎤=-+-----⎣⎦..0902=+.. 11=.故答案为:11.. 【点睛】此题考查解一元一次不等式,关键是根据题意列出代数式解答.16.a >2【分析】先根据不等式(2﹣a )x >2的解集是x <得出关于a 的不等式求出a 的取值范围即可【详解】解:∵不等式(2﹣a )x >2的解集是x <∴2﹣a <0解得a >2故答案为:a >2【点睛】本题主要考查解析:a >2 【分析】先根据不等式(2﹣a )x >2的解集是x <22a-得出关于a 的不等式,求出a 的取值范围即可. 【详解】解:∵不等式(2﹣a )x >2的解集是x <22a-, ∴2﹣a <0,解得,a >2. 故答案为:a >2. 【点睛】本题主要考查的是含参数的一元一次不等式,掌握一元一次不等式的性质是解题的关键.17.【分析】先解不等式组得出其解集为结合可得关于的方程解之可得答案【详解】解:由①得:由②得:不等式的解集为:∵关于的不等式组的解集为【点睛】本题考查的是利用一元一次不等式组的解集求参数熟悉相关性质是解 解析:152【分析】 先解不等式组得出其解集为1262mx ,结合76x -<<-可得关于m 的方程,解之可得答案.【详解】解:2()102153x m x ①②由①得:2210x m +->,221x m >-+, 12x m >-+由②得:212x <-,6x <-, ∴不等式的解集为:162m x -+<<- ∵关于x 的不等式组的解集为76x -<<-,172m ∴-+=- 152m ∴= 【点睛】本题考查的是利用一元一次不等式组的解集求参数,熟悉相关性质是解题的关键. 18.【分析】根据题意可得2m ﹣5≤3然后求解不等式即可【详解】根据题意可得∵(2m -5)⊕3=3∴2m ﹣5≤3解得:m≤4故答案为【点睛】本题主要考查解一元一次不等式解此题的关键在于准确理解题中新定义法解析:4m ≤【分析】根据题意可得2m ﹣5≤3,然后求解不等式即可.【详解】根据题意可得,∵(2m -5)⊕3=3,∴2m ﹣5≤3,解得:m≤4故答案为4m ≤.【点睛】本题主要考查解一元一次不等式,解此题的关键在于准确理解题中新定义法则的运算规律,得到一元一次不等式.19.<【分析】根据有理数的除法判断出ab 同号再根据有理数的除法判断出bc 异号然后根据有理数的乘法运算法则判断即可【详解】解:∵>0∴ab 同号∵<0∴bc 异号∴ac 异号∴ac <0故答案为<【点睛】本题考查解析:<【分析】根据有理数的除法判断出a 、b 同号,再根据有理数的除法判断出b 、c 异号,然后根据有理数的乘法运算法则判断即可.【详解】解:∵a b>0, ∴a 、b 同号, ∵c b<0, ∴b 、c 异号,∴a 、c 异号,∴ac <0.故答案为<.【点睛】本题考查有理数的乘法,有理数的除法,熟记运算法则是解题关键.20.3【分析】根据不等式的解集可得关于m 的方程根据解方程可得答案【详解】解:解不等式得x≥由不等式的解集是x≥2得=2解得m =3故答案为:3【点睛】本题主要考查的是一元一次不等式的解法将数轴和不等式结合 解析:3【分析】根据不等式的解集,可得关于m 的方程,根据解方程,可得答案.【详解】解:解不等式得 x≥12+m , 由不等式的解集是x≥2,得12+m =2, 解得m =3,故答案为:3.【点睛】本题主要考查的是一元一次不等式的解法,将数轴和不等式结合起来观察是解题的关键.三、解答题21.(1)甲种商品购进100件,乙种商品购进80件;(2)方案一:甲种商品购进61件,乙种商品购进119件.方案二:甲种商品购进62件,乙种商品购进118件.方案三:甲种商品购进63件,乙种商品购进117件.获利最大的是方案一:甲种商品购进61件,乙种商品购进119件.【分析】(1)等量关系为:甲件数+乙件数=180;甲总利润+乙总利润=1240.(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<5040;甲总利润+乙总利润≥1314.【详解】解:(1)(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:180 681240 x yx y+=⎧⎨+=⎩.解得:10080xy=⎧⎨=⎩.答:甲种商品购进100件,乙种商品购进80件.(2)设甲种商品购进a件,则乙种商品购进(180)a-件.根据题意得1435(180)504068(180)1314a aa a+-<⎧⎨+-≥⎩解不等式组得6063a<.a为非负整数,a∴取61,62,63180a∴-相应取119,118,117方案一:甲种商品购进61件,乙种商品购进119件,此时利润为:66181191318⨯+⨯=元;方案二:甲种商品购进62件,乙种商品购进118件,此时利润为:66281181316⨯+⨯=元;方案三:甲种商品购进63件,乙种商品购进117件,此时利润为:66281181314⨯+⨯=元;所以,有三种购货方案,其中获利最大的是方案一:甲种商品购进61件,乙种商品购进119件.【点睛】本题考查了二元一次方程组的应用及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.22.见解析【分析】设顾客累计花费x元,然后根据x的不同取值范围分类讨论哪家的花费更少,利用不等式列式求解.【详解】解:设顾客累计花费x元,根据题意得:(1)当x≤500时,两家商场都不优惠,则花费一样;(2)若500<x≤1000,去乙商场花费少;(3)若x>1000,在甲商场花费1000+(x-1000)×90%=0.9x+100(元),在乙商场花费500+(x-500)×95%=0.95x+25(元),①到甲商场花费少,则0.9x+100<0.95x+25,解得x>1500;∴x>1500到甲商场花费少②到乙商场花费少,则0.9x+100>0.95x+25,解得x<1500;∴1000<x<1500时,去乙商场购物花费少③到两家商场花费一样多,则0.9x+100=0.95x+25,解得x=1500,∴x=1500时,到两家商场花费一样多.【点睛】本题考查不等式的应用,解题的关键是根据题意列出不等式进行求解,需要注意进行分类讨论.23.(1)-3≤x≤1;(2)x≥3或x≤1.【分析】(1)分①x+1≥0,即x≥-1,②x+1<0,即x<-1,两种情况分别求解可得;(2)分①x-2≥0,即x≥2,②x-2<0,即x<2,两种情况分别求解可得.【详解】解:(1)|x+1|≤2,①当x+1≥0,即x≥-1时:x+1≤2,解这个不等式,得:x≤1由条件x≥-1,有:-1≤x≤1;②当x+1<0,即 x<-1时:-(x+1)≤2解这个不等式,得:x≥-3由条件x<-1,有:-3≤x<-1∴综合①、②,原不等式的解为:-3≤x≤1.(2)|x-2|≥1①当x-2≥0,即x≥2时:x-2≥1解这个不等式,得:x≥3由条件x≥2,有:x≥3;②当x-2<0,即 x<2时:-(x-2)≥1,解这个不等式,得:x≤1,由条件x<2,有:x≤1,∴综合①、②,原不等式的解为:x≥3或x≤1.【点睛】本题主要考查绝对值不等式的求解,熟练掌握绝对值的性质分类讨论是解题的关键.24.(1)125x y ⎧=⎪⎨⎪=⎩;(2)722x -≤< 【分析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集.【详解】(1)244523x y x y -=-⎧⎨-=-⎩①②. ①5⨯得:10520x y -=-,③③-②得:63x =, ∴12x =, 将12x =代入①得:14y -=-, ∴5y =,∴方程组的解为125x y ⎧=⎪⎨⎪=⎩;(2)4(1)710853x x x x +≤+⎧⎪⎨--<⎪⎩①②, 由①得:44710x x +≤+,解得:2x ≥-,由②得:3(5)8x x -<-, 解得:72x <, ∴不等式组的解集为722x -≤<. 【点睛】 本题考查了解二元一次方程组与一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解答此题的关键.25.(1)7x =或6x =-;(2)52x;(3)12x -<. 【分析】(1)用直接开平方解方程即可;(2)去括号,去分母,移项合并同类项,系数化为1,即可解;(3)分别解出两个不等式,再找公共部分即可.解:(1)2(21)1690x --=∴2(21)169x -=∴2x-1是169的平方根,∴2113x -=±∴2113x -=或2113x -=-,∴214x =或212x =-∴7x =或6x =-.故7x =或6x =-.(2)211143x x +-+ ∴3(21)4(1)12x x +-+ ∴634412x x +-+∴25x∴52x (3)421223x x x x +⎧-<⎪⎨⎪-⎩①②, ①式化简424x x -<+,∴36x <,∴2x <.②式化简22x -,∴1x -∴12x -<.【点睛】本题考查了利用平方根方程及一元一次不等式(组)的解法,熟悉平方根定义及一元一次不等式的解法步骤是解题关键.26.﹣1≤x <3.【分析】先分别求出各不等式的解集,再求出其公共解集.【详解】解:不等式组3(2)4?11? 2x x x +≥+⎧⎪⎨-<⎪⎩①②, 由①得:x ≥﹣1,由②得:x <3,故不等式组的解集是:﹣1≤x <3.本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.。

人教版七年级下册数学不等式与不等式组应用题训练(word,含答案)

人教版七年级下册数学不等式与不等式组应用题训练(word,含答案)

人教版七年级下册数学不等式与不等式组应用题训练1.列方程组或不等式解决问题:2022年北京冬奥会、冬残奥会已圆满结束,活泼敦厚的“冰墩墩”,喜庆祥和的“雪容融”引起广大民众的喜爱.王老师想要购买两种吉祥物作为本次冬奥会的纪念品,已知购买2件“冰墩墩”和1件“雪容融”共需150元,购买3件“冰墩墩”和2件“雪容融”共需245元.(1)求“冰墩墩”和“雪容融”的单价;(2)学校现需一次性购买上述型号的“冰墩墩”和“雪容融”纪念品共100个,要求购买的总费用不超过5000元,则最多可以购买多少个“冰墩墩”?2.为支援上海抗击新冠肺炎,甲地捐赠多批救援物资并联系了一家快递公司进行运送.快递公司准备安排A、B两种车型把这批物资从甲地快速送到上海.其中,从甲地到上海,A型货车1辆、B型货车1辆,一共需补贴油费1000元;A型货车10辆、B 型货车6辆,一共需补贴油费8400元.(1)从甲地到上海,A、B两种型号的货车,每辆车需补贴的油费分别是多少元?(2)如果需派出20辆车,并且预算油费补贴不超过9600元,那么该快递公司至多能派出几辆A型货车?3.开学前夕,某书店计划购进A、B两种笔记本共350 本.已知A种笔记本的进价为12 元/本,B种笔记本的进价为15 元/本,共计4800 元.(1)请问购进了A种笔记本多少本?(2)在销售过程中,A、B两种笔记本的标价分别为20元/本、25元/本.受疫情影响,两种笔记本按标价各卖出m本以后,该店进行促销活动,剩余的A种笔记本按标价的七折全部售出,剩余的B种笔记本按成本价清货,若两种笔记本的总利润不少于2348元,请求出m的最小值.4.抗击新型冠状肺炎疫情期间,84消毒液和酒精都是重要的防护物资.某药房根据实际需要采购了一批84消毒液和酒精,共花费11000元,84消毒液和酒精的进价和售价如下:(1)该药房销售完这批84消毒液和酒精后共获利5400元,则84消毒液和酒精各销售了多少瓶?(2)随着疫情的发展,结合药房实际,该药房打算用不超过6600元钱再次采购84消毒液和酒精共300瓶,已知84消毒液和酒精价格不变,则第二批最多采购84消毒液多少瓶?5.小玉计划购买A、B两种饮料,若购买8瓶A种饮料和5瓶B种饮料需用220元;若购买4瓶A种饮料和6瓶B种饮料需用152元.(1)求每瓶A种饮料和B种饮料各多少元;(2)小玉决定购买A种饮料和B种饮料共15瓶,总费用不超过260元,那么最多可以购买多少瓶A种饮料?6.小明家新买了一套住房,打算装修一下,春节前住进去.现有甲、乙两家装修公司可供选择,这两家装修公司提供的信息如下表所示:若设需要x天装修完毕,请解答下列问题:(1)请分别用含x的代数式,写出甲、乙两家公司的装修总费用;(2)当装修天数为多少时,两家公司的装修总费用一样多?(3)根据装修天数x讨论选择哪家装修公司更合算(提示:结合(2)中的结论进行分类解决问题).7.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)公司决定购买甲、乙两种型号的设备共10台,且该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司甲种型号的设备至多购买几台?8.为庆祝“元旦”,光明学校统一组织合唱比赛,七、八年级共92人(其中七年级的人数多于八年级的人数,且七年级的人数不足90人)准备统一购买服装参加比赛.如表是某服装厂给出服装的价格表:(1)如果两个年级分别单独购买服装一共应付5000元,求七、八年级各有多少学生参加合唱比赛;(2)如果七年级参加合唱比赛的学生中,有10名同学抽调去参加绘画比赛,不能参加合唱比赛,请你为两个年级设计一种最省钱的购买服装方案.9.某电器超市销售每台进价分别为140元、100元的A、B两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入一进货成本)(1)求A、B两种型号的电风扇的销售单价.(2)若超市准备用不多于6500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过2850元的目标?若能,请给出相应的采购方案:若不能,请说明理由.10.某商店欲购进A、B两种商品,若购进A种商品5件和B种商品4件需300元;购进A种商品6件和B种商品8件需440元.(1)A、B两种商品每件的进价分别为多少元?(2)若该商店A种商品每件的售价为48元,B种商品每件的售价为31元,该商店准备购进A、B两种商品共50件,且这两种商品全部售出后总获利不低于344元,则至少购进多少件A种商品?11.学校近期举办了一年一度的经典诵读比赛.某班级因节目需要,须购买A、B两种道具.已知购买1件A道具比购买1件B道具多10元,购买2件A道具和3件B道具共需要45元.(1)购买一件A道具和一件B道具各需要多少元?(2)根据班级情况,需要这两种道具共60件,且购买两种道具的总费用不超过620元.求道具A最多购买多少件?12.对于企业来说:科学技术永远是第一生产力,在长沙市里程最长、站点最多的地铁6号线建设过程中,某知名运输集团承包了地铁6号线多标段的土方运输任务,该集团为了出色完成承接任务,拟派出该集团自主研发的A、B两种新型运输车运输土方.已知4辆A型运输车与3辆B型运输车一次共运输土方64吨,2辆A型运输车与4辆B型运输车一次共运输土方52吨.(1)请问一辆A型运输车和一辆B型运输车一次各运输土方多少吨?(2)该运输集团决定派出A、B两种型号新型运输车共18辆参与运输土方,若每次运输土方总量不小于169吨,且B型运输车至少派出4辆,则有哪几种派车方案?13.某商店欲购进A、B两种商品,若购进A种商品5件和B种商品4件需300元;若购进A种商品6件和B种商品8件需440元.(1)求A、B两种商品每件的进价分别为多少元?(2)商店准备用不超过1615元购进50件这两种商品,求购进A种商品最多是多少件?14.某超市共用24000元同时购进甲、乙两种型号书包各200个,购进甲型号书包40个比购进乙型书包30个少用100元.(1)求甲、乙两种型号书包的进价各为多少元?(2)若超市把甲、乙两种型号书包均按每个90元定价进行零售,同时为扩大销售,拿出一部分书包按零售价的8折进行优惠销售.商场在这批背包全部售完后,若总获利不低于10200元,则超市用于优惠销售的书包数量最多为多少个?15.某工艺品店购进A,B两种工艺品,已知这两种工艺品的单价之和为200元,购进2个A种工艺品和3个B种工艺品需花费520元.(1)求A,B两种工艺品的单价;(2)该店主欲用9600元用于进货,且最多购进A种工艺品36个,B种工艺品的数量不超过A种工艺品的2倍,则共有几种进货方案?16.每年的4月22日是世界地球日.某校为响应“携手为保护地球投资”的号召计划购入,A B两种规格的分类垃圾桶,用于垃圾分类.若购买A种垃圾桶30个和B种垃圾桶20个共需1020元;若购买A种垃圾桶50个和B种垃圾桶40个共需1860元.(1),A B两种垃圾桶的单价分别是多少元?(2)若该校最多有4360元用于购买这两种规格的垃圾桶共200个,则B种垃圾桶最多可以买________个.17.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B 商品共用了880元.(1)A,B两种商品的单价分别是多少元?(2)已知该商店购买A,B两种商品共30件,要求购买B商品的数量不高于A商品数量的2倍,且该商店购买的A,B两种商品的总费用不超过276元,那么该商店有几种购买方案?18.每年一度的中考牵动着数万家长的心,为了给考生一个良好的环境,某市教委规定每个考场安排考生数是固定的人数,该市A 区的9000 名考生安排的考场数比B 区3000人安排的考场数多200个.(1)求每个考场安排固定考生的人数;(2)该市C区共有可作为考场的大小教室共300 间,由于今年疫情影响,该市教委要求大教室按原固定人数的80%安排考生,小教室按原固定人数的50%安排考生,若该市C 区共有考生6300 人,则至少需要有多少间大教室.19.2022年北京冬奥会吉祥物冰墩墩和雪容融在一开售时,就深受大家的喜欢.某供应商今年2月购进一批冰墩墩和雪容融,已知一个冰墩墩的进价比一个雪容融的进价多40元,并且购买20个冰墩墩和30个雪容融的价格相同.(1)问每个冰墩墩和雪容融的进价分别是多少元?(2)根据市场实际,供应商计划用20000元购进这两种吉祥物200个,则他本次采购时最多可以购进多少个冰墩墩?20.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.已知工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?参考答案:1.(1)“冰墩墩”和“雪容融”的单价分别为55元,40元(2)最多可以购买66个“冰墩墩”2.(1)每辆A型货车补贴油费600元,每辆B型货车补贴油费400元.(2)该快递公司至多能派出8辆A型货车.3.(1)购进了A种笔记本150本;(2)m的最小值128.4.(1)84消毒液销售了200瓶,酒精销售了300瓶;(2)120瓶5.(1)每瓶A种饮料20元,每瓶B种饮料12元(2)10瓶6.(1)甲公司的总费用为(900x+2700)元,乙公司的总费用为(960x+1500)元;(2)当装修天数为20天时,两家公司的装修总费用一样多;(3)当x<20时,乙装修公司更合算;当x=20时,两家装修公司一样;当x>20时,甲装修公司更合算.7.(1)甲、乙两种型号设备每台的价格分别为12万元和10万元(2)至多购买5台8.(1)七年级52人,八年级40人;(2)两个年级一起买91套时最省钱;9.(1)A、B两种型号的电风扇的销售单价分别为200元和150元(2)A种型号的电风扇最多能采购37台(3)能实现利润超过2850元的目标,相应方案有两种:方案一:购买A种型号的电风扇36台,购买B种型号的电风扇14台;方案二:购买A种型号的电风扇37台,购买B种型号的电风扇13台10.(1)A种商品每件的进价为40元,B种商品每件的进价为25元(2)至少购进22件A种商品11.(1)购买1件A道具需要15元,1件B道具需要5元(2)道具A最多购买32件12.(1)一辆A型运输车一次运土10吨,一辆B型运输车一次运土8吨(2)有两种派送方案,方案一:派出A型号的新型运输车13辆,B型号的新型运输车5辆;方案二:派出A型号的新型运输车14辆,B型号的新型运输车4辆.13.(1)A种商品每件进价40元,B种商品每件进价25元(2)24件14.(1)A、B两种型号书包的进货单价各为50元、70元;(2)商场用于优惠销售的书包数量为100个.15.(1)A种工艺品的单价为80元,B种工艺品的单价为120元(2)共有3种进货方案16.(1)A种垃圾桶的单价熟练掌握18元,B种垃圾桶的单价是24元.(2)12617.(1)A种商品的单价为16元、B种商品的单价为4元(2)有四种方案,方案一:购买A商品的件数为10件,购买B商品的件数为20件;方案二:购买A商品的件数为11件,购买B商品的件数为19件;方案三:购买A商品的件数为12件,购买B商品的件数为18件;方案四:购买A商品的件数为13件,购买B商品的件数为17件.18.(1)每个考场安排固定考生的人数为30人;(2)至少需要有200间大教室.19.(1)今年2月第一周每个冰墩墩的进价为120元,每个雪容融的进价为80元(2)最多可以购进100个冰墩墩20.共有如下四种方案:A种21件,B种39件;A种20件,B种40件;A种19件,B种41件;A种18件,B种42件。

人教版初一数学下册一元一次不等式(组)及应用题精选练习

人教版初一数学下册一元一次不等式(组)及应用题精选练习

34. 若干名学生, 若干间宿舍, 若每间住 4 人将有 20 人无法安排住处; 若每间住 8 人, 则有一间宿舍的人不空也不满. 问 学生有多少人?宿舍有几间?
35. 某零件制造车间有 20 名工人,已知每名工人每天可制造甲种零件 6 个或乙种零件 5 个,且每制造一个甲种零件可 获利 150 元,每制造一个乙种零件可获利 260 元.在这 20 名工人中,车间每天安排 x 名工人制造甲种零件,其余 工人制造乙种零件. (1) 若此车间每天所获利润为 y(元),用 x 的代数式表示 y.
26. 适当选择 a 的取值范围,使 1.7<x<a 的整数解: (1) x 只有一个整数解; (2) x 一个整数解也没有.
27. 已知 A=2x2+3x+2,B=2x2-4x-5,试比较 A 与 B 的大小.
28. 已知 a 是自然数,关于 x 的不等式组
3x 4 a, 的解集是 x>2,求 a 的值. x 2 0
2 x 1 0, 4 x 0.
3x 0, 4 x 7 0.
1 x 1 x, 21. 2 2 x 4 3x 3.
2 x 5 3 x , x 2 x . 3 2
2 4 x 3x 7, 22. 解不等式组 6 x 3 5 x 4, 3x 7 2 x 3.
8.
1 x 2, 有解,则 k 的取值范围是( x k
(B)k≥2 (C)k<1
). (D)1≤k<2 ). (D)m≥1
9.
不等式组 (A)m≤2
x 9 5 x 1, 的解集是 x>2,则 m 的取值范围是( x m 1
(B)m≥2 (C)m≤1

人教版七年级下册数学不等式与不等式组应用题专项训练(含答案)

人教版七年级下册数学不等式与不等式组应用题专项训练(含答案)

人教版七年级下册数学不等式与不等式组应用题专项训练1.某班开展植树活动,欲购买甲、乙两种树苗.已知购买25棵甲种树苗和10棵乙种树苗共需1250元,购买15棵甲种树苗和5棵乙种树苗共需700元.(1)求购买的甲、乙两种树苗的单价.(2)经商量、决定用不超过1600元的费用购买甲、乙两种树苗共40棵,其中乙种树苗的数量不少于甲种树苗数量的13,求购买的甲种树苗数量的取值范围.2.为满足广大居民的常态性防疫需求,我市某药店需储备一定数量的医用酒精和医用口罩.已知每箱医用酒精比每箱医用口罩的进价多100元.该药店用3600元去购买医用酒精的箱数恰好与用2700元去购买医用口罩的箱数相同.(1)求每箱医用酒精和每箱医用口罩的进价各是多少元?(2)由于疫情紧张,该药店为了帮助大家共渡难关,决定再次购买医用酒精和医用口罩共50箱用于储备,此时,每箱医用口罩的进价已经增长了20%,每箱医用酒精的进价也已经增长了10%,如果再次购买两种防护用品的总费用不超过19400元,那么该药店最多可购进多少箱医用酒精?3.某商店需要购进甲、乙两种商品共120件,其进价和售价如下表:(1)若商店计划销售完这批商品后能获利1000元,请问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4000元,且销售完这批商品后获利多于1135元,请问有哪几种购货方案?并指出获利最大的购货方案.4.红星中学计划从某公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据红星中学实际情况,需从某公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的13.请你通过计算,求出红星中学从某公司购买A、B两种型号的小黑板有哪几种方案?5.某医院准备派遣医护人员协助西安市抗击疫情,现有甲、乙两种型号的客车可供租用,已知每辆甲型客车的租金为280元,每辆乙型客车的租金为220元,若医院计划租用6辆客车,租车的总租金不超过1530元,那么最多租用甲型客车多少辆?6.某工人制造机器零件,如果每天比预定的多做一件,那么80天所做的零件数超过1000件;如果每天比预定的少做一件,那么80天所做的零件数不到900件,这个工人预定每天做几件零件?7.为了防控“新冠肺炎”疫情,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种8元/瓶,乙种12元/瓶.(1)如果购买这两种消毒液共用1040元,求甲,乙两种消毒液各购买多少瓶?(2)该校准备再次购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍少4瓶,且所需费用不多于1200元,求甲种消毒液最多能再购买多少瓶?8.在某官方旗舰店购买3个冰墩墩和6个雪融融毛绒玩具需1194元;购买1个冰墩墩和5个雪融融毛绒玩具需698元.(1)求冰墩墩、雪融融毛绒玩具单价各是多少元?(2)某单位准备用不超过3000元的资金在该官方旗舰店购进冰墩墩、雪融融两种毛绒玩具共20个,问最多可以购进冰墩墩毛绒玩具多少个?9.要开学了,学校计划购买一些篮球、足球.若购买6个篮球和8个足球共花费1700元,且购买一个篮球比购买一个足球多花50元.(1)求购买一个篮球,一个足球各需多少元;(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用低于1150元,则最多可购买多少个篮球?10.截至12月25日,全国累计报告接种新型冠状病毒疫苗超过12亿剂次.为了满足市场需求,某公司计划投入10个大、小两种车间共同生产同一种新型冠状病毒疫苗,已知1个大车间和2个小车间每周能生产疫苗共35万剂,2个大车间和1个小车间每周能生产疫苗共40万剂,每个大车间生产1万剂疫苗的平均成本为90万元,每个小车间生产1万剂疫苗的平均成本为80万元.(1)该公司每个大车间、小车间每周分别能生产疫苗多少万剂?(2)若投入的10个车间每周生产的疫苗不少于135万剂,请问一共有几种投入方案,并求出每周生产疫苗的总成本最小值?11.嘉琪到某水果店购买苹果梨,他发现购买1千克苹果和2千克梨需要26元,购买3千克苹果和1千克梨需要28元.(1)妈妈让嘉琪去购买苹果和梨各1千克,给他发了20元红包,够用吗?说明理由;(2)到家后妈妈问嘉琪:“如果给你100元购买苹果和梨,当购买的苹果重量是梨的2倍时,最多能买多少千克苹果(千克只取整数)?”请用不等式的知识帮助嘉琪解决这个问题.12.某班到毕业时有经费1800元,决定拿出不少于270元但不超过300元的资金为老师买纪念品,其余资金用于给50名同学每人买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册.(1)求每件文化衫和每本相册的价格分别为多少元?(2)有几种购买文化衫和相册的方案?13.某工厂接受了15天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工8个G型装置或4个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工4个G型装置.请问至少需要补充多少名新工人?14.一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售(整箱配货),预计每箱水果的盈利情况如下表:(1)如果按照“甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱”的方案配货,请你计算出经销商能盈利多少元?(2)如果按照“甲、乙两店盈利相同配货”的方案配货,请写出一种配货方案:A种水果甲店______箱,乙店______箱;B种水果甲店______箱,乙店______箱,并根据你填写的方案计算出经销商能盈利多少元?(3)在甲、乙两店各配货10箱,甲店配的A种水果与乙店配的B种水果箱数相同,且保证乙店盈利不小于115元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少元?15.在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A、B两种防疫物品.如果购买A种物品60件,B种物品45件,共需1140元;如果购买A种物品40件,B种物品50件,共需840元.(1)求A、B两种防疫物品每件各多少元;(2)现要购买A、B两种防疫物品共600件,总费用不超过6500元,那么A种防疫物品最多购买多少件?16.某工人加工零件,若每小时加工50个,则6小时就可按时完成.(1)工人需要加工多少个零件?(2)若他加工2小时后,因事停工40分钟.那么这个工人为了按时或提前完成任务,后面的时间每小时他至少要加工多少个零件?17.某电器超市销售进价分别为200元/台,170元/台的A、B两种型号的电风扇.下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价.(2)若超市准备采购电风扇共30台,并打算销售完这批电风扇实现利润不低于1320元,则A种型号的电风扇至少要采购多少台?18.为建设京西绿色走廊,改善永定河水质,某治污公司决定购买10台污水处理设备.现有A、B两种型号的设备,其中每台的价格与月处理污水量如下表:(1)经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.求x、y的值;(2)如果治污公司购买污水处理设备的资金不超过105万元,求该治污公司有哪几种购买方案;(3)在(2)的条件下,如果月处理污水量不低于2040吨,为了节约资金,请为该公司设计一种最省钱的购买方案.19.采购甲、乙两种抗疫物资共540吨,甲物资单价为4万元/吨,乙物资单价为3万元/吨,采购两种物资共花费1920万元.(1)求甲、乙两种物资各采购了多少吨?(2)现在计划安排A,B两种不同型号的卡车共50辆来运输这批物资.甲物资7吨和乙物资3吨可装满一辆A型卡车;甲物资5吨和乙物资7吨可装满一辆B型卡车。

人教版七年级下册数学不等式与不等式组应用题训练

人教版七年级下册数学不等式与不等式组应用题训练

人教版七年级下册数学不等式与不等式组应用题训练1.随着夏季的到来,某床上用品店准备新进A,B两种不同型号的凉席.在进货时,发现购进10件A种凉席和15件B种凉席的费用是4250元;购进22件A种凉席和30件B种凉席的费用是8900元.(1)求A,B两种凉席每件进价是多少元?(2)已知A种凉席每件的售价是300元,B种凉席每件的售价是220元,现在准备购进A种和B种凉席共60件,若使全部售完后获取的利润不低于5000元,则最少需要购进A种凉席多少件,并说明理由.2.立体书兼具了传统书的内容和形式,也拥有玩具的趣味和功能.某工厂生产了一款立体书,按标价销售此立体书,每本可获利30元;若按标价的八折销售6本此立体书与将标价降低10元销售3本此立体书获得的利润相同.(1)该工厂生产的这款立体书的标价与成本分别为多少元?(2)该工厂原计划按标价销售这款立体书共600本,销售一部分后发现生意火爆,于是将每本立体书提价10元,很快全部销售完,最后发现总利润不低于22000元,求提价前最多销售多少本此款立体书?3.某汽车租赁公司要购买轿车和面包车共10辆,已知轿车每辆7万元,面包车每辆4万元,其中轿车至少要购买3辆,且公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有哪几种?(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么该租赁公司应选择以上哪种购买方案?4.莆田市校园阅读研究中心开展“教师共读”活动:计划购买甲乙两种书籍共100套,其中甲种书籍每套售价120元,乙种书籍每套售价80元.(1)如果购买甲乙两种书籍一共花费了9600元,求购买甲乙两种书籍各多少套?(2)设购买甲种书籍m套,如果购买乙种书籍的套数不超过甲种书籍的2倍,并且总费用不超过9440元,问购买甲乙两种书籍共有几种方案?哪种方案所需总费用最少?最少总费用是多少?5.某零食店销售牛轧糖、雪花酥2种糖果,如果用800元可购买5千克牛轧糖和4千克雪花酥,用760元可购买7千克牛轧糖和2千克雪花酥.(1)求牛轧糖、雪花酥每千克的价格分别为多少元?(2)已知该零食店在12月共售出牛轧糖50千克、雪花酥30千克.春节将近,1月份超市将牛轧糖每千克的售价提升43m元,雪花酥的价格不变,结果与12月相比,牛轧糖只销售了45千克,雪花酥销量上升1m5千克,销售总额超过了12月份销售总额;求m的取值范围.6.某地面对形势异常严峻的新冠疫情,遵从党和国家部署,最大程度保障人民群众的健康,将所在区域划分为封控区、管控区和防范区. 现要将一批蔬菜运往封控区,已知用3辆A型车和1辆B型车装满蔬菜一次可运26吨;用1辆A型车和2辆B型车装满蔬菜一次可运22吨.(1)求一辆A型车和一辆B型车装满蔬菜分别可运多少吨?(2)若一辆A型车的租金是180元,一辆B型车的租金是220元,该地计划租用A型车和B型车共7辆,且租金不超过1400元,问最多可租用几辆B型车?7.为了减少疫情带来的损失,某市决定加快复工复产.该市一企业需要运输一批物小货车一次可运输650箱物资.(1)1辆大货车与1辆小货车一次分别可运输多少箱物资?(2)该企业计划用这两种货车共12辆一次性运输这批物资,每辆大货车运输一次需5000元运费,每辆小货车运输一次需3000元运费.若运输物资不少于1500箱,且总费用小于53000元.请你列出所有运输方案,并指出哪种方案所需要费用最少,最少费用是多少元?8.用甲、乙两种原料配制成某种饮料,已知两种原料的维生素C 的含量以及购买这两种原料的价格如下表所示:现配制这种饮料10kg ,所需乙种原料的质量为()kg 0x x ≠.(1)当配制成的饮料,维生素C 的含量不少于4200单位,求配制这种饮料需乙种原料的质量范围;(2)在(1)的条件下,为了称量方便,所需甲、乙两种原料的质量均为整数,请你判断配制这种饮料共有几种方案,并计算哪种方案所需费用较少.9.国内某航空公司为提高经济效益,准备一次性购买国内A 品牌飞机和国际B 品牌飞机若干架.若购买2架国内A 品牌飞机和3架国际B 品牌飞机共需36亿元;购买4架国内A 品牌飞机和1架国际B 品牌飞机共需32亿元.(1)求购买一架国内A 品牌飞机与一架国际B 品牌飞机各需多少亿元;(2)根据该航空公司的实际情况,需一次性购买国内A 品牌飞机和国际B 品牌飞机共10架(两种品牌飞机均需购买),要求购买国内A 品牌飞机和国际B 品牌飞机的总费用不超过64亿元,共有哪几种购买方案?10.某水果店主计划采购A、B两种水果100kg进行销售,其中A水果的进货量(取整数)不小于28kg,下表为这两种水果的进货价、销售价及损耗率:经预算,该店主准备采购的总资金不高于950元.(1)请你为店主设计有几种采购方案,请写出具体方案;(2)设采购A水果akg,请用含有a字母的代数式(化简后)表示采购A、B两种水果销售后所获取的利润;在(1)方案中,最多获取利润是多少元?11.“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,并写出各种方案.12.张家口市某校为了普及推广冰雪活动进校园,准备购进速滑冰鞋和花滑冰鞋用于开展冰雪运动,若购进30双速滑冰鞋和20双花滑冰鞋共需8500元;若购进40双速滑冰鞋和10双花滑冰鞋共需8000元.(1)求速滑冰鞋和花滑冰鞋每双购进价格分别为多少元?(2)若该校购进两种冰鞋共50双,其中花滑冰鞋的数量不少于速滑冰鞋的数量,且用于购置两种冰鞋的总经费不超过8900元,则该校本次购买两种冰鞋共有哪几种方案?13.历经7年艰辛努力,北京冬奥会、冬残奥会胜利举办,激发了亿万人民的体育热情,推动了我国体育业发展.某校为了普及推广冰雪活动进校园,准备购买滑雪镜和滑雪手套用于开展冰雪运动,已知购买20副滑雪镜和60副滑雪手套共需7800元,购买40副滑雪镜和50副滑雪手套共需10000元.(1)求滑雪镜和滑雪手套每副购买的价格分别为多少元?(2)学校准备购买滑雪镜和滑雪手套共100副,购买的总费用不能超过12000元,则该校最多购买滑雪镜多少副?14.2022年冬奥会吉祥物“冰墩墩”与冬残奥会吉祥物“雪容融”深受人们的喜爱.某玩具店预购进这两款吉祥物玩具100个进行销售.若购进20个“冰墩墩”和10个“雪容融”共需1000元;若购进10个“冰墩墩”和20个“雪容融”共需950元.(1)求“冰墩墩”和“雪容融”单价;(2)若购买“冰墩墩”不少于60个,所需费用总额不超过3310元,请你求出满足要求的所有进货方案,并直接写出最省钱的进货方案.15.某商场在“双11”前准备从供货商家处新选购一批商品,已知按进价购进1件甲种商品和2件乙种商品共需320元,购进3件甲种商品和2件乙种商品共需520元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)若甲种商品的售价为每件120元,乙种商品的售价为每件140元,该商场准备购进甲、乙两种商品共50件,且这两种商品全部售出后总利润不少于1350元,不高于1375元.若购进甲种商品m件,请问该商场共有哪几种进货方案?(3)根据往年销售情况,商场计划在“双11”当天将现有的甲、乙两种商品共46件按(2)中的售价全部售完.但因受拉尼娜现象形成的冷空气持续影响,当天出现的雨雪天气使得46件商品没有全部售完,两种商品的实际销售利润总和为1220元.那么,“双11”当天商场至少卖出乙种商品多少件?16.篮球赛单循环赛一般按积分确定名次.胜一场得2分,负一场得1分.如果积分相同,再比较相互间胜负记录.某次篮球联赛中,太阳队与蓝天队要争夺一个出线权,太阳队目前的战绩是12胜8负(与蓝天队无比赛),后面还要比赛5场(其中与蓝天队有一场比赛);蓝天队目前的战绩是10胜10负,后面还要比赛5场.探究以下问题:(1)为确保出线,太阳队在后面的比赛中至少要胜多少场?(2)如果太阳队在后面的比赛中3胜2负,未能出线,那么蓝天队后续战果如何?17.河南某校为做好新型冠状病毒感染的预防工作,计划为教职工购买一批洗手液(每人1瓶).学校派王老师去商场购买,他在商场了解到,某个牌子的洗手液,售价为每瓶14元,有两种优惠活动:活动一:一律打9折;活动二:当购买量不超过50瓶时,按原价销售;当购买量超过50瓶时,超过的部分打8折.如果该校共有m名教职工,请你帮王老师设计最省钱的购买方案.18.炎炎夏日,雪糕成为降暑解渴的必需品,小王通过市场调查,准备购进甲乙两种口味的雪糕进行销售.已知购进30支甲种口味雪糕和25支乙种口味雪糕共需215元;购进40支甲种口味雪糕和50支乙种口味雪糕共需370元.(1)求两种雪糕的进价分别为每支多少元?(2)甲种口味雪糕售价为每支4.5元,乙种口味雪糕售价为每支7元,在销售过程中,小王发现甲种口味的雪糕更受人们喜爱,所以打算再次购进两种雪糕共800支,并且乙种口味雪糕的数量不多于甲种口味雪糕数量13,则乙种口味雪糕最多购进多少支?此时的利润是多少元?19.疫情期间为了满足口罩需求,某药店计划购买同一品牌的甲型口罩和乙型口罩.已知购买1个甲型口罩和2个乙型口罩需花费8元,购买2个甲型口罩和3个乙型口罩需花费13元.(1)求购买该品牌一个甲型口罩、一个乙型口罩各需花费多少元?(2)如果药店需要甲型口罩的个数是乙型口罩个数的2倍还多8个,且该药店购买甲型口罩和乙型口罩的总费用不超过5000元,那么该药店最多可购买多少个该品牌乙型口罩?20.随着“一带一路”的进一步推进,我国瓷器更是“一带一路”沿线人民所推崇的,某商户看准这一商机,准备经销瓷器茶具,计划购进青瓷茶具和白瓷茶具共80套.已知青瓷茶具每套280元,白瓷茶具每套250元,设购进x套青瓷茶具,购进青瓷茶具和白瓷茶具的总费用为y.(1)求出y与x之间的函数关系式;(2)该商户想要用不多于20900元的钱购进这两种茶具,且购买白瓷茶具的数量不超过青瓷茶具的两倍,请问有哪几种购进方案.。

数学人教版七年级下册不等式组与方程组综合应用题

数学人教版七年级下册不等式组与方程组综合应用题
每辆汽车载鱼量(吨) 每吨鱼获利(万元)

鲢鱼 8 2 0.25
草鱼 6 0.3
x
青鱼 5 0.2
y
(1)若安排 辆汽车装运鲢鱼,则装运草鱼和青鱼的车辆数各 为多少辆?
2
精讲精练 某渔业公司组织20辆汽车装运鲢鱼、草鱼、青鱼共120吨
去外地销售,按计划三种鱼都要有,20辆车都要装运,每辆汽车只 能装运同一种鱼,且必须装满,根据下表提供的信息,解答下列问 题:
解关于x,y的二元一次方程组:
x y 8m ( 1 ) x - y 2m x y 20 a (2) 6x 5y 120 8a
精讲精练 某渔业公司组织20辆汽车装运鲢鱼、草鱼、青鱼共120吨
去外地销售,按计划三种鱼都要有,20辆车都要装运,每辆汽车只 能装运同一种鱼,且必须装满,根据下表提供的信息,解答下列问 题:
决策
方案
正整数解
解集
每辆汽车载鱼量(吨) 每吨鱼获利(万元)
鲢鱼 8 a 0.25
草鱼 6 m 0.3
青鱼 5 0.2
n
(2)若安排 辆车装运鲢鱼,则装运草鱼和青鱼的车辆数各为 多少辆(用含a的式子表示)?
a
精讲精练 某渔业公司组织20辆汽车装运鲢鱼、草鱼、青鱼共120吨
去外地销售,按计划三种鱼都要有,20辆车都要装运,每辆汽车只 能装运同一种鱼,且必须装满,根据下表提供的信息,解答下列问 题:
每辆汽车载鱼量(吨) 每吨鱼获利(万元)
鲢鱼 8 a 0.25
草鱼 青鱼 m a)5 2 na 6 (20-3 0.3 0.2
若设销售获利为W万元
方案 装运鲢鱼车 (辆) 装运草鱼车 (辆) 装运青鱼车 (辆) 销售获利 (万元)

人教版七年级数学下册 第九章:不等式(组)和方程(组)的综合应用(含答案)

人教版七年级数学下册 第九章:不等式(组)和方程(组)的综合应用(含答案)

不等式(组)与方程(组)的综合应用1.方程组或不等式出现字母系数时可将字母当数字,解方程组成不等式的参数解。

2.解决不等式(组)或方程(组)的问题可运用整体思想、转化思想、消元思想。

【例1】若方程组3133x y k x y +=+⎧⎨+=⎩解为x ,y ,且2<k <4,则x -y 的取值范围是( ) A.102x y -<<B.01x y -<<C.31x y ---<<D.11x y --<<【例2】若关于x ,y 的二元一次方程组323225x y m x y m -=+⎧⎨-=-⎩的解满足x >y ,求m 的取值范围。

【例3】若2a +b =12,其中a ≥0,b ≥=0,又P=3a +2b ,试确定P 的最小值和最大值。

【例4】若关于x ,y 的二元一次方程组25x y a x y +=⎧⎨-=⎩的解满足1x >,1y ≤,其中a 是满足条件的最小整数,求a 2+1的值。

【例5】已知关于x,y的方程组2232 4x y mx y m-=⎧⎨+=+⎩①②的解满足不等式组3050x yx y+≤⎧⎨+⎩>,求满足条件的m的整数值。

1.已知关于x,y的方程组2121x y ax y a-=+⎧⎨+=-⎩的解满足不等式21x y->,求a的取值范围。

2.已知x、y同时满足三个条件:①324x y p-=-,②4x-3y=2+p,③x>y,则()A.p>-1B.p<1C.1p-< D.1p>3.若30x y z++=,350x y z+-=,x、y、z皆为非负数,求M=5x+4y+2z的取值范围。

4.在关于x ,y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值在数轴上应表示为( )5.已知关于x ,y 的方程组213252x y k x y k +=+⎧⎨-=-⎩的解满足5035x y x y -⎧⎨-+≥-⎩>,求整数k 的值。

人教版七年级下册数学不等式与不等式组试题附答案

人教版七年级下册数学不等式与不等式组试题附答案

2021年七年级下册数学不等式与不等式组试题一、选择题(共30分)1.已知a b>,下列变形一定正确的是()A.33a b<B.44a b+>-C.22ac bc>D.3232a b+>+2.有下列不等式组:①43xx≥-⎧⎨>-⎩;②24xx>⎧⎨+>⎩;③21024xx⎧+>⎨+>⎩;④301xx+>⎧⎪⎨>⎪⎩;⑤1010xy+>⎧⎨->⎩;⑥1321321xx xx x+>⎧⎪->⎨⎪+>-⎩.其中是一元一次不等式组的有()A.1个B.2个C.3个D.4个3.如图,数轴上表示的是下列哪个不等式组的解集()A.53xx≥-⎧⎨>-⎩B.53xx>-⎧⎨≥-⎩C.53xx<⎧⎨<-⎩D.53xx<⎧⎨>-⎩4.如果点P(3x+9,12x﹣2)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.5.对于命题“若22a b>,则a b>”下面四组关于,a b的值中,能说明这个命题是假命题的是()A.3,2a b==B.1,3a b=-=C.3,2a b=-=D.3,1a b==-6.已知1x=是不等式20x b-<的解,b的值可以是()A.4 B.2 C.0 D.2-7.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量.若设原来每天能生产x辆,则可列关于x的不等式为()A.15x>20(x+6) B.15(x+6)≥20x C.15x>20( x-6) D.15(x+6)>20x8.若不等式组2x ax>⎧⎨<⎩恰有3个整数解,则a的取值范围是()姓名:学号:A .1a ≤B .1a <-C .21a -<≤-D .21a -≤<-9.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[2]2,[1.7]1,[0.4]1,[ 2.6]3==-=--=-,若4310x +⎡⎤=-⎢⎥⎣⎦,则x 的取值范围是( ) A .3424x -<-B .3424x -<-C .3429x -<-D .3429x -<- 10.码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.轮船到达目的地后开始卸货,由于遇到紧急情况,需要将船上的货物不超过五天卸载完毕,那么平均每天至少要卸载货物的重量为( )A .60吨B .48吨C .40吨D .30吨二、填空题(共18分)11.给出下列表达式:①a(b +c)=ab +ac ;②-2<0;③x ≠5;④2a >b +1;⑤x 2-2xy +y 2;⑥2x -3>6,其中不等式的个数是______________.12.请用不等式表示“x 的2倍与3的和大于1”:_________________.13.一种药品的说明书上写着:“每日用量60~120mg ,分4次服用”,一次服用这种药量x(mg)范围为_________.14.若mx -8≤4-2x 是关于x 的一元一次不等式,则m 的取值是______.15.某试卷共有30道题,每道题选对得10分,选错了或者不选扣5分,至少要选对______ 道题,其得分才能不少于80分. 16.已知关于x 的不等式组5310x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是_____. 三、解答题(共52分)17.(8分)解下列不等式或不等式组,并把解集在数轴上表示出来:(1) 3(x +2)-7<4(x -1) (2) 3(2)41213x x x x --≥⎧⎪+⎨<-⎪⎩ 18.(6分)解不等式组()3x 2x 4x 112⎧+≥+⎪⎨-⎪⎩<,并求出不等式组的非负整数解.19.(6分)某花卉种植基地欲购进甲、乙两种君子兰进行培育.若购进甲种2株,乙种3株,则共需成本l700元;若购进甲种3株,乙种l株.则共需成本l500元.(1)求甲、乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购入甲、乙两种君子兰,若购入乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?20.(7分)对x,y定义一种新运算T,规定:(,)ax byT x yx y+=+(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:01(0,1)01a bT b⨯+⨯==+,已知(1,1) 2.5T=,(4,2)4T-=.(1)求a,b的值;(2)若关于m的不等式组()4543(232)T m mT m m P⎧-≤⎨-⎩,,>恰好有2个整数解,求实数P的取值范围.21.(8分)解方程|x-1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x的值.在数轴上,1和-2的距离为3,满足方程的x对应点在1的右边或-2的左边,若x对应点在1的右边,由图可以看出x=2;同理,若x对应点在-2的左边,可得x=-3,故原方程的解是x=2或x=-3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为________.(2)解不等式|x-3|+|x+4|≥9;(3)若|x-3|+|x+4|≥a对任意的x都成立,求a的取值范围.22.(8分)如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x-1=0,②2103x+=③x-(3x+1)=-5 中,不等式组25312x xx x-+>-⎧⎨->-+⎩的关联方程是________(2)若不等式组112132xx x⎧-<⎪⎨⎪+>-+⎩的一个关联方程的根是整数,则这个关联方程可以是________(写出一个即可)(3)若方程3-x=2x,3+x=122x⎛⎫+⎪⎝⎭都是关于x 的不等式组22x x mx m<-⎧⎨-≤⎩的关联方程,直接写出m 的取值范围.23.(9分)为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?。

新人教版七年级下册专题六---不等式(组)解应用题

新人教版七年级下册专题六---不等式(组)解应用题

丰溪中学七年级数学专题六——列不等式(组)解应用题1、把若干颗花生分给若干只猴子。

如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。

问猴子有多少只,花生有多少颗?2、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

问这些书有多少本?学生有多少人?3、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间 8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。

4、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。

问有笼多少个?有鸡多少只?5、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空.请问:有多少辆汽车?6、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。

(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?7、爆破施工时,导火索燃烧的速度是0。

8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?8、王凯家到学校2.1千米,现在需要在18分钟内走完这段路。

已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?9、抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?10、一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?11、某工人计划在15天里加工408个零件,最初三天中每天加工24个,问以后每天至少要加工多少个零件,才能在规定的时间内超额完成任务?12、某同学要在4小时内,从甲地赶到相距15公里的乙地,他从甲地出发后,以每小时3公里的速度走了1小时,以后至少平均每小时要走多少公里,才能按计划到达乙地?13、一本英语书98页,张力读了7天(一周)还没读完,而李永不到一周就读完了.李永平均每天比张力多读3页,张力每天读多少页?14、商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式组与方程组综合应用题
吕娜娜
教学目标
1•知识与技能:
(1)进一步巩固一元一次不等式组和二元一次方程组的解法。

(2)会用一元一次不等式组和二元一次方程组解决有关的实际问题。

(3)理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力。

2.过程与方法:
(1)培养学生用数学的意识,激发学生的学习兴趣。

(2)通过思考、讨论等活动,经历从实际问题中抽象出数学模型的过程,积累利用一元一次不等式组解决问题的经验,培养学生建模能力和分析问题、解决问题能力3.情感态度与价值观:
(1)使学生体验数学活动充满着探索与创造。

(2)能积极参与数学学习活动,体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。

教学重难点:
重点:正确分析实际问题中的相等或不等关系,列出方程组或不等式组。

难点:在实际问题中寻找相等或不等关系,列出方程组或不等式组。

建立方程组或不等式组解决实际问题模型。

在实际问题中建立一元一次不等式组的数量关系,再根据问题的实际意义得出不等式组的特殊解来确定方案。

教学方法:
讲授法、练习法教学过程:
一、复习提问
1•一元一次不等式组的解集的确定分几种情况?
2•我们一起回忆一下这几种情况。

二、师生互动
1•求不等式组的解集:
(1 )不等式组心的解集是 ________________ .
<3
(2)不等式组丿X〉5的解集是______________ .
<3
x 2 0
(3) _________________________________________ 不等式组 仪―3>0的正整数解是 ____________________________________________
x -6 兰 0
2•求关于x,y 的二元一次方程组的解:
x + y = 8m
/J x+ y = 20_a (1)) ⑵) x - y = 2m 6x 5y= 120 8a
三、互助探究
例:某渔业公司组织20辆汽车装运鲢鱼、草鱼、青鱼共120吨去外地销售,按计 划三种鱼都要有,20辆车都要装运,每辆汽车只能装运同一种鱼,且必须装满,根据 下表提供的信息,解答下列问题:
(1)若安排2辆汽车装运鲢鱼,则装运草鱼和青鱼的车辆数各为多少辆?
讨论: 应该怎样设未知数?
有哪些相等关系?
(通过思考问题的提出,帮助学生学会审题的方法,并降低难度。


解:设安排x 辆车装运草鱼,安排y 辆汽车装运青鱼。

2+ x + y=20

护 2+6x+5y =120 答:装运草鱼的车辆为14辆,装运青鱼的车辆为4辆
(2)若安排a 辆车装运鲢鱼,则装运草鱼和青鱼的车辆数各为多少辆(用含 a 的式子 x= 14 ,=4
(3) 如果外地对鲢鱼、草鱼、青鱼的需求量分别不少于 24吨、18吨、15吨,那么怎 样安排车辆能使此次销售获利最大?并求出最大的利润 .
讨论: 应该怎样设未知数?
有哪些不等关系?
解:由(2)知,若设安排a 辆车装运鲢鱼,则装运草鱼有(20 — 3a)辆车,装运青鱼有 2a 辆车。

[8a > 24
贝卩 6(20-3a)_18 解得 3 空 a < 5-
.5x2a^15
3 a 为正整数,.a 可取3,4,5.
则有三种方案:
装运鲢鱼3辆车,则装运草鱼11辆车,装运青鱼6辆车。

销售获利为 3 8 0.25 11 6 0.3 6 5 0.2 =31.8万元.
装运鲢鱼4辆车,则装运草鱼8辆车,装运青鱼8辆车。

销售获利为 4 8 0.25 8 6 0.3 8 5 0.2 =30.4 万元.
装运鲢鱼5辆车,则装运草鱼5辆车,装运青鱼10辆车。

销售获利为5 8 0.25 5 6 0.3 10 5 0.2 =29万元.
故第一种方案获利最大,最大利润为 31.8万元。

(问题:若销售获利为 W 万元,用a 表示W.)
W =a 8 0.25 (20 -3a) 6 0.3 2a 5 0.2= 2a 36-5.4a 2a =36- 1.4a
(a 越小,W 越大。

用这种方法求最大利润,可以简化计算,同时为后续函数学 习作铺垫。

)
四、课堂小结
教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:
(1 )一元一次不等式组与方程组解决实际问题的区别与联系。

表示)?
(本问题难
寻找等量关系带参数二元一次方程组的解法, 在前面学习 中已经得到化解,因此学生独立完成,请同学上黑板板演, 最后师生共同探讨答 案。


解:设安排m 辆车装运草鱼,安排n 辆汽车装运青鱼。

a +m + n =20 & +6m +5 n = 120
= 20_3a
n = 2a 答:装运草鱼的车辆为(20-3a )辆,装运青鱼的车辆为2a 辆
(2)利用方程组与不等式组解决实际问题时,最关键的是哪一步?
(3)用一元一次不等式组解决方案问题的思维过程。

(通过问题归纳,总结本节课所学的内容。

)。

相关文档
最新文档