【创新设计】2015-2016学年高中数学 2.3.2平面与平面垂直的判定课时作业 新人教A版必修2
高中数学新人教版必修2教案2.3.2平面与平面垂直的判定(教案).doc
备课人
授课时间
课题
§2.3.2平面与平面垂直的判定
教
学
目
标
知识与技能
使学生掌握两个平面垂直的判定定理及其简单的应用;使学生理会“类比归纳”思想在数学问题解决上的作用。
过程与方法
启发引导,充分发挥学生的主体作用
情感态度价值观
激发学生积极思维,培养学生的观察、分析、解决问题能力
重点
平面与平面垂直的判定
2、课后思考问题:在表示二面角的平面角时,为何要求“OA⊥L、OB⊥L”?为什么∠AOB的大小与点O在L上的位置无关?
教
学
小
结
(1)二面角以及平面角的有关概念
(2)两个平面垂直的判定定理的内容,它与直线与平面垂直的判定定理有何关系?
课后
反思
3
教师特别指出:
图2.3-3
(1)在表示二面角的平面角时,要求“OA⊥L”,OB⊥L;
(2)∠AOB的大小与点O在L上位置无关;
(3)当二面角的平面角是直角时,这两个平
面的位置关系怎样?
承上
2
教
学
设
计
教学内容
教学环节与活动设计
承上启下,引导学生观察,类比、自主探究,得两个平面互相垂直的判定定理:
一个平面过另一个平面的垂线,则这两个平面垂直。
难点
如何度量二面角的大小
教
学
设
计
教学内容
教学环节与活动设计
(一)创设情景,揭示课题
问题1:平面几何中“角”是怎样定义的?
问题2:在立体几何中,“异面直线所成的角”、“直线和平面所成的角”又是怎样定义的?它们有什么共同的特征?
以上问题让学生自由发言,教师再作小结,并顺势抛出问题:在生产实践中,有许多问题要涉及到两个平面相交所成的角的情形,你能举出这个问题的一些例子吗?如修水坝、发射人造卫星等,而这样的角有何特点,该如何表示呢?下面我们共同来观察,研探。
高中数学人教A版必修2《2.3.2平面与平面垂直的判定》教案4
必修二2.3.2平面与平面垂直的判定●三维目标1.知识与技能(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念.(2)使学生掌握两个平面垂直的判定定理及其简单应用.(3)使学生体会“类比归纳”思想在数学问题解决上的作用.2.过程与方法(1)通过实例让学生直观感知“二面角”概念的形成过程.(2)类比已学知识,归纳“二面角”的度量方法及两个平面垂直的判定定理.3.情感、态度与价值观通过揭示概念的形成、发展和应用过程,使学生体会数学存在于现实生活周围,从而激发学生积极思维,培养学生的观察、分析、解决问题能力.●重点难点重点:平面和平面垂直的判定.难点:二面角的理解及度量.重难点突破:用FLASH课件播放人造卫星轨道和大坝面的例子,引出课题,然后通过实例说明“二面角的概念”,并通过学生的观察、思考、合作交流得出“二面角的度量方式”,难点之一得以化解,紧接着,从直二面角入手,结合实例(如教室墙面与墙面的位置关系)及多媒体教学,让学生在直观感知中得出面面垂直的判定定理,重难点顺利突破.【课前自主导学】【问题导思】观察教室内门与墙面,当门绕着门轴旋转时,门所在的平面与墙面所形成的角的大小和形状.1.数学上,用哪个概念来描述门所在的平面与墙面所形成的角?【提示】二面角.2.平时,我们常说“把门开大一点”,在这里指的是哪个角大一点?【提示】二面角的平面角.二面角(1)定义:从一条直线出发的两个半平面所组成的图形.(2)相关概念:①这条直线叫二面角的棱,②两个半平面叫二面角的面.(3)画法:直立式平卧式图2-3-12(4)记法:二面角α-l-β或α-AB-β或P-l-Q.(5)二面角的平面角:图2-3-13若有①O∈l;②OA⊂α,OB⊂β;③OA⊥l,OB⊥l,则二面角α-l-β的平面角是∠AOB.【问题导思】建筑工人常在一根细线上拴一个重物,做成“铅锤”,用这种方法来检查墙与地面是否垂直.当挂铅锤的线从上面某一点垂下时,如果墙壁贴近铅锤线,则说明墙和地面什么关系?此时铅锤线与地面什么关系?【提示】垂直.1.平面与平面垂直(1)定义:如果两个平面相交,且它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)画法:图2-3-14记作:α⊥β.2.判定定理文字语言图形语言符号语言一个平面过另一个平面的垂线,则这两个平面垂直⎭⎬⎫l⊥βl⊂α⇒α⊥β【课堂互动探究】面面垂直判定定理及应用如图,AB是⊙O的直径,P A垂直于⊙O所在的平面,C是圆周上异于A、B的任意一点,求证:平面P AC⊥平面PBC.【思路探究】由C是圆周上异于直径AB的点―→AC⊥BC―→由P A垂直于⊙O所在的平面―→P A⊥BC―→BC⊥平面P AC―→平面P AC⊥平面PBC.【自主解答】连接AC,BC,则BC⊥AC,又P A⊥平面ABC,∴P A⊥BC,而P A∩AC=A,∴BC⊥平面P AC,又BC⊂平面PBC,∴平面P AC⊥面PBC.应用判定定理证明平面与平面垂直的基本步骤如果直线l,m与平面α,β,γ满足β∩γ=l,l∥α,m⊂α,m⊥γ,那么必有()A.α⊥γ且l⊥m B.α⊥γ且m∥βC.m∥β且l⊥m D.α∥β且α⊥γ【解析】因为m⊂α,m⊥γ,所以α⊥γ.因为l⊂γ,m⊥γ,所以l⊥m,所以A正确.记α∩γ=n,因为l∥α,l⊂γ,所以l∥n.根据以上分析可画出草图,其中平面β可绕直线l转动,所以m∥β,α∥β都是不成立的.所以B,C,D都是错误的.【答案】 A面面垂直定义的应用如图,在四面体ABCD中,△ABD,△ACD,△BCD,△ABC都全等,且AB=AC=3,BC=2,求证:平面BCD⊥平面BCA.【思路探究】作出二面角D—BC—A的平面角,证明此平面角为直角即可.【自主解答】取BC的中点E,连接AE、DE,∵AB=AC,∴AE⊥BC.又∵△ABD≌△ACD,AB=AC,∴DB=DC,∴DE⊥BC,∴∠AED为二面角A—BC—D的平面角.又∵△ABC≌△DBC,且△ABC是以BC为底的等腰三角形,△DBC也是以BC为底的等腰三角形.∴AB=AC=DB=DC=3,又△ABD≌△BDC,∴AD=BC=2,在Rt△DEB中,DB=3,BE=1,∴DE=DB2-BE2=2,同理AE=2,在△AED中,∵AE=DE=2,AD=2,∴AD2=AE2+DE2,∴∠AED=90°,∴以△BCD和△BCA为面的二面角的大小为90°.∴平面BCD⊥平面BCA.1.利用两个平面互相垂直的定义可以直接判定两平面垂直,其判定的方法是:(1)找出两相交平面的平面角;(2)证明这个平面角是直角;(3)根据定义,这两个相交平面互相垂直.2.面面垂直定义的两个作用(1)证明面面垂直.首先作出两个平面相交所形成的二面角的平面角,然后证明此平面角是直角.(2)证明线线垂直.首先作出两个平面相交所形成的二面角的平面角,然后根据面面垂直推出该直二面角的平面角是直角.如图,△ABC是等腰直角三角形,∠BAC=90°,AB=AC=1,将△ABC沿斜边BC上的高AD 折叠,使平面ABD⊥平面ACD,则折叠后BC=________.【解析】因为AD⊥BC,所以AD⊥BD,AD⊥CD,所以∠BDC是二面角B-AD-C的平面角.因为平面ABD⊥平面ACD,所以∠BDC=90°.在△BCD中∠BDC=90°,BD=CD=22,所以BC=⎝⎛⎭⎪⎫222+⎝⎛⎭⎪⎫222=1.【答案】 1求二面角如图,已知四边形ABCD是正方形,P A⊥平面ABCD.(1)求二面角B-P A-D平面角的度数;(2)求二面角B-P A-C平面角的度数.【思路探究】先依据二面角的定义找相应二面角的平面角,然后借助三角形的边角关系求二面角的平面角的某一三角函数值,最后指出二面角的平面角的大小.【自主解答】(1)∵P A⊥平面ABCD,∴AB⊥P A,AD⊥P A.∴∠BAD为二面角B-P A-D的平面角.又由题意∠BAD=90°,∴二面角B-P A-D平面角的度数为90°.(2)∵P A⊥平面ABCD,∴AB⊥P A,AC⊥P A.∴∠BAC为二面角B-P A-C的平面角.又四边形ABCD为正方形,∴∠BAC=45°.即二面角B-P A-C平面角的度数为45°.1.求二面角同求异面直线所成的角及斜线与平面所成的角一样,步骤如下:2.作二面角平面角的常用方法(1)定义法:在二面角的棱上找一个特殊点,在两个半平面内分别作垂直于棱的射线.如图①,则∠AOB为二面角α-l-β的平面角.(2)垂面法:过棱上一点作棱的垂直平面,该平面与二面角的两个半平面产生交线,这两条交线所成的角,即为二面角的平面角.如图②,∠AOB为二面角α-l-β的平面角.(3)垂线法:过二面角的一个面内异于棱上的A点向另一个平面作垂线,垂足为B,由点B向二面角的棱作垂线,垂足为O,连接AO,则∠AOB为二面角的平面角或其补角.如图③,∠AOB为二面角α-l-β的平面角.在题设条件不变的情况下,若P A=AD,求平面P AB与平面PCD所成的二面角的大小.【解】∵CD∥平面P AB,过P作CD的平行线l,如图所示,由P A⊥CD,CD⊥AD,P A∩AD=A知CD⊥平面P AD,从而CD⊥PD.又CD∥l,∴l⊥PD.∴∠DP A为平面P AB和平面PCD所成二面角的平面角,为45°.【思想方法技巧】转化思想在线面、面面垂直中的应用(12分)(2013·杭州高二检测)如图,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,P A=PC=2a,求证:(1)PD⊥平面ABCD;(2)平面P AC⊥平面PBD;(3)二面角P-BC-D是45°的二面角.【思路点拨】解答本题第(1)(2)问可先根据需证问题寻找相关元素,再由判定定理进行判定.第(3)问可先找出二面角的平面角,再证明平面角等于45°.【规范解答】(1)∵PD=a,DC=a,PC=2a,∴PC2=PD2+DC2. 则PD⊥DC. 2分同理可证PD⊥AD.又∵AD∩DC=D,且AD,DC⊂平面ABCD,∴PD⊥平面ABCD. 4分(2)由(1)知PD⊥平面ABCD,又∵AC⊂平面ABCD,∴PD⊥AC.∵四边形ABCD是正方形,∴AC⊥BD. 6分又∵BD∩PD=D,且PD,BD⊂平面PBD,∴AC⊥平面PBD.又∵AC⊂平面P AC,∴平面P AC⊥平面PBD. 8分(3)由(1)知PD⊥BC,又∵BC⊥DC,且PD,DC为平面PDC内两条相交直线,∴BC⊥平面PDC.∵PC⊂平面PDC,∴BC⊥PC.则∠PCD为二面角P-BC-D的平面角. 10分在Rt△PDC中,∵PD=DC=a,∴∠PCD=45°,即二面角P-BC-D是45°的二面角. 12分【思维启迪】1.本题(1)(2)问涉及线面垂直和面面垂直,求解的关键是转化思想的应用,即“线线垂直⇒线面垂直⇒面面垂直”.2.突出二面角求解过程中的“作—证—解—答”的思想.【课堂小结】1.面面垂直的判定方法(1)定义法.(2)判定一个平面是否经过另一个平面的一条垂线.(3)两个平行平面中的一个垂直于第三个平面,则另一个也垂直于第三个平面.2.求二面角的大小的关键是作出二面角的平面角,这就需要紧扣它的三个条件,即这个角的顶点是否在棱上;角的两边是否分别在两个平面内;这两边是否都与棱垂直.在具体作图时,还要注意掌握一些作二面角的平面角的方法技巧,如:线面的垂直、图形的对称性、与棱垂直的面等.3.线面之间的垂直关系存在如下转化特征:线线垂直⇒线面垂直⇒面面垂直,这体现了立体几何求解的转化思想.【当堂达标检测】1.自二面角棱l上任选一点O,若∠AOB是二面角α-l-β的平面角,则必须具有条件() A.AO⊥BO,AO⊂α,BO⊂βB.AO⊥l,BO⊥lC.AB⊥l,AO⊂α,BO⊂βD.AO⊥l,BO⊥l,且AO⊂α,BO⊂β【解析】由二面角的平面角的定义可知D选项正确.【答案】 D2.已知l⊥α,则过l与α垂直的平面()A.有1个B.有2个C.有无数个D.不存在【解析】由面面垂直的判定定理知,凡过l的平面都垂直于平面α,这样的平面有无数个.【答案】 C3.如图,正方体ABCD-A1B1C1D1中,截面C1D1AB与底面ABCD所成二面角C1-AB-C的大小为________.【解析】∵AB⊥BC,AB⊥BC1,∴∠C1BC为二面角C1-AB-C的平面角,其大小为45°.【答案】45°4.如图,四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD为直角梯形,AB⊥AD,CD⊥AD,求证:平面PDC⊥平面P AD.【证明】∵P A⊥平面ABCD,∴P A⊥CD,又CD⊥AD,P A∩AD=A,∴CD⊥平面P AD.又CD⊂平面PDC,∴平面PDC⊥平面P AD.【课后知能检测】一、选择题1.(2014·杭州高一检测)以下角:①异面直线所成角;②直线和平面所成角;③二面角的平面角,可能为钝角的有()A.0个B.1个C.2个D.3个【解析】异面直线所成角θ的范围是0°<θ≤90°;直线和平面所成角θ范围是0°≤θ≤90°;二面角的平面角θ的范围是0°~180°.故可能为钝角的只有二面角的平面角.【答案】 B2.如图所示,在三棱锥P-ABC中,P A⊥平面ABC,∠BAC=90°,则二面角B-P A-C的大小为()A.90°B.60°C.45°D.30°【解析】∵P A⊥平面ABC,∴P A⊥AB,P A⊥AC,∴∠BAC即为二面角B-P A-C的平面角.又∠BAC=90°,故选A.【答案】 A3.下列说法中:①两个相交平面组成的图形叫做二面角;②异面直线a,b分别和一个二面角的两个面垂直,则a,b所成的角与这个二面角相等或互补;③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成角的最小角;④二面角的大小与其平面角的顶点在棱上的位置没有关系,其中正确的有()A.①③B.②④C.③④D.①②【解析】对①,显然混淆了平面与半平面的概念,是错误的;对②,由于a,b分别垂直于两个面,所以也垂直于二面角的棱,但由于异面直线所成的角为锐角(或直角),所以应是相等或互补,是正确的;对③,因为不垂直于棱,所以是错误的;④是正确的.故选B.【答案】 B4.已知P A⊥矩形ABCD所在的平面(如图所示).图中互相垂直的平面有()A.1对B.2对C.3对D.5对【解析】∵DA⊥AB,DA⊥P A,AB∩P A=A,∴DA⊥平面P AB,同样BC⊥平面P AB,又易知AB⊥平面P AD,∴DC⊥平面P AD.∴平面P AD⊥平面ABCD,平面P AD⊥平面P AB,平面PBC⊥平面P AB,平面P AB⊥平面ABCD,平面PDC⊥平面P AD,共5对.【答案】 D5.经过平面α外一点和平面α内一点与平面α垂直的平面有()A.0个B.1个C.无数个D.1个或无数个【解析】如果平面内一点与平面外一点的连线与平面垂直,则可以作无数个平面与已知平面垂直,如果两点连线与已知平面不垂直,则只能作一个平面与已知平面垂直.【答案】 D二、填空题6.下列四个命题中,正确的序号有________.①α∥β,β⊥γ,则α⊥γ;②α∥β,β∥γ,则α∥γ;③α⊥β,γ⊥β,则α⊥γ;④α⊥β,γ⊥β,则α∥γ.【解析】③④不正确,如图所示,α⊥β,γ⊥β,但α,γ相交且不垂直.【答案】①②7.在长方体ABCD—A1B1C1D1中,AB=AD=23,CC1=2,二面角C1—BD—C的大小为________.【解析】如图,连接AC交BD于点O,连接C 1O,∵C1D=C1B,O为BD中点,∴C1O⊥BD,∵AC⊥BD,∴∠C1OC是二面角C1—BD—C的平面角,在Rt△C1CO中,C1C=2,可以计算C1O=22,∴sin∠C1OC=C1CC1O=12,∴∠C1OC=30°.【答案】30°8.(2014·荆州高一检测)在四面体A-BCD中,AB=BC=CD=AD,∠BAD=∠BCD=90°,二面角A-BD-C为直二面角,E是CD的中点,则∠AED的度数为________.【解析】取BD中点O,连AO,CO,由AB=BC=CD=AD,∴AO⊥BD,CO⊥BD,∴∠AOC为二面角A-BD-C的平面角.∴∠AOC=90°,又∵∠BAD=∠BCD=90°,∴△BAD与△BCD均为直角三角形.∴OC=OD,∴△AOD≌△AOC,∴AD=AC,∴△ACD为等边三角形.又∵E为CD中点,∴AE⊥CD,∴∠AED=90°.【答案】90°三、解答题9.如图所示,Rt△AOC可以通过Rt△AOB以直角边AO所在直线为轴旋转得到,且二面角B-AO-C是直二面角,D是AB的中点.求证:平面COD ⊥平面AOB .【证明】 由题意CO ⊥AO ,BO ⊥AO ,∴∠BOC 是二面角B -AO -C 的平面角.∵二面角B -AO -C 是直二面角,∴CO ⊥BO ,又∵AO ∩BO =O ,∴CO ⊥平面AOB ,∵CO ⊂平面COD ,∴平面COD ⊥平面AOB .10.如图,在四面体A -BCD 中,BD =2a ,AB =AD =CB =CD =AC =a ,求证:平面ABD ⊥平面BCD .【证明】 ∵△ABD 与△BCD 是全等的等腰三角形,∴取BD 的中点E ,连接AE ,CE ,则AE ⊥BD ,CE ⊥BD .在Rt △ABE 中,∵AB =a ,BE =12BD =22a ,∴AE =AB 2-BE 2=22a .同理CE =22a .在△AEC 中,∵AE =CE =22a ,AC =a ,∴AC 2=AE 2+CE 2,即AE ⊥CE ,∠AEC =90°,即二面角A -BD -C 的平面角为90°.故平面ABD ⊥平面BCD .11.如图所示,四棱锥V -ABCD 中,底面ABCD 是边长为2的正方形,其他四个侧面都是侧棱长为5的等腰三角形,求二面角V -AB -C 的大小.【解】 如图,作VO ⊥平面ABCD ,垂足为O ,则VO ⊥AB ,取AB 中点H ,连接VH ,OH ,则VH ⊥AB .∵VH ∩VO =V ,∴AB ⊥平面VHO ,∴AB ⊥OH ,∴∠VHO 为二面角V -AB -C 的平面角.易求VH 2=VA 2-AH 2=(5)2-⎝ ⎛⎭⎪⎫222=4,∴VH =2,而OH =12AB =1,∴∠VHO =60°. 故二面角V -AB -C 的大小是60°.。
2015-2016学年高中数学 2.3.2 平面与平面垂直的判定课件
图 2316
2.3.2 │ 考点类析
证明:(1)取 PA 的中点 H,连接 EH,DH,如图所示.
1 因为 E 为 PB 的中点,所以 EH∥AB,EH=2AB. 1 又 AB∥CD,CD=2AB,所以 EH∥CD,EH=CD, 因此四边形 DCEH 是平行四边形,所以 CE∥DH. 又 DH⊂平面 PAD,CE⊄平面 PAD, 因此 CE∥平面 PAD.
2.3.2 │ 备课素材 备课素材
1.二面角的作法: (1)定义法: 在二面角的棱上找一个特殊点, 在两个半平面内分别作垂直于棱且与 棱交于此点的射线(三线合一). (2)垂面法: 过二面角棱上一点作与棱垂直的平面, 该平面与二面角的两个半平面 角形成交线,这两条交线所成的角,即为二面角的平面角或其补角. (3)垂线法:在二面角的一个半平面内取不在棱上的一点作另一个半平面的垂线, 过垂足作棱的垂线,利用线面垂直可找到二面角的平面角或其补角. [例]如图 2334,四边形 ABCD 是圆柱 OQ 的轴截面,点 P 在圆柱 OQ 的底面圆 周上,G 是 DP 的中点,圆柱 OQ 的底面圆的半径 OA=2,侧面积为 8 3π ,∠AOP =120°.
► 知识点二 二面角的平面角 如图 239 所示,在二面角 αlβ 的棱 l 上任取一点 O,以点 O 为垂足, 在半平面α 和 β 内分别作垂直于棱 l 的射线 OA 和 OB, 射线 OA 和 OB 构成的∠AOB 则________________________________ 叫作二面角 αlβ 的平面 [0°,180°] . 角.二面角的平面角的范围是______________ 特别地,当平面角是直角时,二面角叫作直二面角.
2.3.2 │ 预习探究
[思考] 判断两个平面垂直的方法有哪些?
人教版数学必修二2.3.2《平面与平面垂直的判定》教学教案设计
课题:平面与平面垂直的判定(新授课)
1.教学任务分析:通过教学活动,
(1)使学生了解、感受二面角的概念,感受到生活中处处有数学、数学用途广泛,增强学数学的兴趣.
(2)在二面角的概念教学中,让学生体会以下几点:
a.二面角的大小是用平面角来度量的.
b.二面角的平面角的大小由二面角的两个面的位置唯一确定.
c.平面角的两边分别在二面角的两个平面内,且两边都与二面角的棱垂直,由这个角所
确定的平面和二面角的棱垂直.
(3)了解平面与平面垂直的定义,通过探究掌握平面与平面垂直的判定定理.
(4)通过例题教学,探究确定二面角的平面角的方法,会求特殊二面角的大小.
2.教学难点、重点:
(1)重点:
确定二面角,面面垂直判定定理的应用.
(2)难点:
各种情景下确定二面角的平面角.
3.教学方式与手段:
采用“启发式”、“探究式”、“讲练结合”法.
借助多媒体电脑平台.
4.教学基本流程(总体设计):
从生活实例让学生感性认识二面角
↓
二面角的概念
↓
二面角的平面角
↓
定义两平面垂直
↓
面面垂直的判定
↓
应用、探究
↓
课堂小结、作业
5.页面设计(相应内容逐步演示):
课题:平面与平面垂直的判定
1.二面角概念
2.确定二面角的平面角的方法
3.平面与平面垂直的定义
4.平面与平面垂直的判定定理
5.应用举例
6.小结与作业。
高中数学新课程创新教学设计案例平面与平面垂直
高中数学新课程创新教学设计案例平面与平面垂直Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】19 平面与平面垂直教材分析两个平面垂直的判定定理及性质定理是平面与平面位置关系的重要内容.通过这节的学习可以发现:直线与直线垂直、直线与平面垂直及平面与平面垂直的判定和性质定理形成了一套完整的证明体系,而且可以实现利用低维位置关系推导高维位置关系,利用高维位置关系也能推导低维位置关系,充分体现了转化思想在立体几何中的重要地位.这节课的重点是判定定理及性质定理,难点是定理的发现及证明.教学目标1. 掌握两平面垂直的有关概念,以及两个平面垂直的判定定理和性质定理,能运用概念和定理进行有关计算与证明.2. 培养学生的空间想象能力,逻辑思维能力,知识迁移能力,运用数学知识和数学方法观察、研究现实现象的能力,整理知识、解决问题的能力.3. 通过对实际问题的分析和探究,激发学生的学习兴趣,培养学生认真参与、积极交流的主体意识和乐于探索、勇于创新的科学精神.任务分析判定定理证明的难点是画辅助线.为了突破这一难点,可引导学生这样分析:在没有得到判定定理时,只有根据两平面互相垂直的定义来证明,那么,哪个平面与这两个平面都垂直呢?对性质定理的引入,不是采取平铺直叙,而是根据数学定理的教学是由发现与论证这两个过程组成的,所以应把“引出命题”和“猜想”作为本部分的重要活动内容.教学设计一、问题情境1. 建筑工人在砌墙时,常用一根铅垂的线吊在墙角上,这是为什么?(为了使墙面与地面垂直)2. 什么叫两个平面垂直?怎样判定两平面垂直,两平面垂直有哪些性质?二、建立模型如图19-1,两个平面α,β相交,交线为CD,在CD上任取一点B,过点B分别在α,β内作直线BA和BE,使BA⊥CD,BE⊥CD.于是,直线CD⊥平面ABE.容易看到,∠ABE为直角时,给我们两平面垂直的印象,于是有定义:如果两个相交平面的交线与第三个平面垂直,并且这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.平面α,β互相垂直,记作α⊥β.[问题]1. 建筑工人在砌墙时,铅垂线在墙面内,墙面与地面就垂直吗?如图19-1,只要α经过β的垂线BA,则BA⊥β,∴BA⊥BE,∠ABE=Rt∠.依定义,知α⊥β.于是,有判定定理:定理如果一个平面经过另一个平面的一条垂线,则两个平面互相垂直.2. 如果交换判定定理中的条件“BA⊥β”和结论“α⊥β”.即,也就是从平面与平面垂直出发,能否推出直线与平面垂直?平面α内满足什么条件的直线才能垂直于平面β呢?让学生用教科书、桌面、笔摆模型.通过模型发现:当α⊥β时,只有在一个平面(如α)内,垂直于两平面交线的直线(如BA)才会垂直于另一个平面(如β).于是,有定理:定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.(先分析命题的条件和结论,然后画出图形,再结合图形,写出已知,求证)已知:如图,α⊥β,α∩β=CD,ABα,AB⊥CD,求证:AB⊥β.分析:要证AB⊥β,只需在β内再找一条直线与AB垂直,但β内没有这样的直线,如何作出这条直线呢?因为α⊥β,所以可根据二面角的定义作出这个二面角的平面角.在平面β内过点B作BE⊥CD.因为AB⊥CD,所以∠ABE是二面角α-CD-β的平面角,并且∠ABE=90°,即AB⊥BE.又因为CDβ,BEβ,所以AB⊥β.三、解释应用[例题]1. 已知:如图,平面α⊥平面β,在α与β的交线上取线段AB=4cm,AC,BD分别在平面α和平面β内,它们都垂直于交线AB,并且AC=3cm,BD=12cm,求CD长.解:连接BC.因为AC⊥AB,所以AC⊥β,AC⊥BD.因为BD⊥AB,所以BD⊥α,BD⊥BC.所以,△CBD是直角三角形.在Rt△BAC中,BC==5(cm),在Rt△CBD中,CD==13(cm).2. 已知:在Rt△ABC中,AB=AC=a,AD是斜边BC的高,以AD为折痕使∠BDC折成直角(如图19-4).求证:(1)平面ABD⊥平面BDC,平面ACD⊥平面BDC.(2)∠BAC=60°.证明:(1)如图19-4(2),因为AD⊥BD,AD⊥DC,所以AD⊥平面BDC.因为平面ABD和平面ACD都过AD,所以平面ABD⊥平面BDC,平面ACD⊥平面BDC.(2)如图19-4(1),在Rt△BAC中,因为AB=AC=a,所以BC=a,BD=DC=.如图19-4(2),△BDC是等腰直角三角形,所以BC=BD=2×=a.得AB=AC=BC.所以∠BAC=60°.[练习]1. 如图19-5,有一个正三棱锥体的零件,P是侧面ACD上一点.问:如何在面ACD上过点P画一条与棱AB垂直的线段?试说明理由.2. 已知:如图19-6,在空间四边形ABCD中,AC=AD,BC=BD,E是CD 的中点.求证:(1)平面ABE⊥平面BCD.(2)平面ABE⊥平面ACD.四、拓展延伸能否将平面几何中的勾股定理推广到立体几何学中去?试写一篇研究性的小论文.点评这篇案例结构完整,构思新颖.案例开始以一个生活中常见的例子引入问题,得到了两平面垂直的定义.还是这个例子,改变了问法又得到了两平面垂直的判定定理.即把学科理论和学生的生活实际相结合,激起了学生探索问题的热情.对性质定理和判定定理的引入和证明也不是平铺直叙,而是充分展现了定理的发现和形成过程.通过学生的认真参与,师生之间的民主交流,培养了学生的主体意识和乐于探索、勇于创新的科学精神.。
2高中数学必修2精品教案:2.3 平面与平面垂直的判定 教案2
《2.3.2平面与平面垂直的判定》教学设计教学内容人教版新教材高二数学第二册第二章第三节第2课教材分析直线与平面垂直问题是直线与平面的重要内容,也是高考考查的重点,求解的关键是根据线与面之间的互化关系,借助创设辅助线与面,找出符号语言与图形语言之间的关系把问题解决。
通过对有关概念和定理的概括、证明和应用,使学生体会“转化”的观点,提高学生的空间想象力和逻辑推理能力。
学情分析1.学生思维活跃,参与意识、自主探究能力较强,故采用启发、探究式教学。
2.学生的抽象概括能力和空间想象力有待提高,故采用多媒体辅助教学。
教学目标1.知识与技能(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;(2)使学生掌握两个平面垂直的判定定理及其简单的应用;(3)使学生理会“类比归纳”思想在数学问题解决上的作用。
(4)通过实例让学生直观感知“二面角”概念的形成过程;(5)类比已学知识,归纳“二面角”的度量方法及两个平面垂直的判定定理。
2.情感态度与价值观(1)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳.(2)发展学生的合情推理能力和空间想象力,培养学生的质疑思辨、创新的精神.(3)让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣.教学重、难点1.重点:平面与平面垂直的判定。
2.难点:找出二面角的平面角。
教学理念学生是学习和发展的主体,教师是教学活动的组织者和引导者.设计思路:通过“直观感知、操作确认,推理证明”,培养学生空间概念、空间想象能力以及逻辑推理能力。
让学生在观察物体模型的基础上,进行操作确认,获得对性质定理正确性的认识;“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念认识;利用框图对本章知识进行系统的小结,直观、简明再现所学知识,化抽象学习为直观学习,易于识记;同时凸现数学知识的发展和联系。
通过揭示概念的形成、发展和应用过程,使学生理会教学存在于观实生活周围,从中激发学生积极思维,培养学生的观察、分析、解决问题能力。
高中数学必修2导学案 2.3.2平面与平面垂直的判定
§2.3.2 平面与平面垂直的判定学习目标:1. 理解二面角的有关概念,会作二面角的平面角,能求简单二面角平面角的大小;2. 理解面面垂直的定义,掌握面面垂直的判定定理,初步学会用定理证明垂直关系;3. 熟悉线线垂直、线面垂直的转化.学习重点: 平面与平面垂直的判定;学习难点: 如何度量二面角的大小。
课前预习(预习教材P 67~ P 69,找出疑惑之处)复习1:⑴若直线垂直于平面,则这条直线________平面内的任何直线;⑵直线与平面垂直的判定定理为_________________________________________________.复习2:⑴什么是直线与平面所成的角?⑵直线与平面所成的角的范围为_______________.课内探究探究1:二面角的有关概念图11-1问题:上图中,水坝面与水平面、卫星轨道平面与地球赤道平面都有一定的角度.这两个角度的共同特征是什么?新知1:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的棱,这两个半平面叫二面角的面.图11-2中的二面角可记作:二面角AB αβ--或l αβ--或P AB Q --.图11-2问题:二面角的大小怎么确定呢?新知2:如图11-3,在二面角lαβ--的棱l上任取一点O,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线,OA OB,则射线OA和OB构成的AOB∠叫做二面角的平面角.平面角是直角的二面角叫直二面角.反思:⑴两个平面相交,构成几个二面角?它们的平面角的大小有什么关系?⑵你觉的二面角的大小范围是多少?⑶二面角平面角的大小和O点的选择有关吗?除了以上的作法,二面角的平面角还能怎么作?探究2:平面与平面垂直的判定问题:教室的墙给人以垂直于地面的形象,想一想教室相邻的两个墙面与地面可以构成几个二面角?它们的大小是多少?新知3:两个平面所成二面角是直二面角,则这两个平面互相垂直.如图11-4,α垂直β,记作αβ⊥.图11-4问题:除了定义,你还能想出什么方法判定两个平面垂直呢?新知4:两个平面垂直的判定定理一个平面过另一个平面的垂线,则这两个平面垂直.l反思:定理的实质是什么?例1 如图11-5,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于,A B的任意一点,求证:平面PAC⊥平面PBC.图11-5例2 如图11-6,在正方体中,求面A D CB''与面ABCD所成二面角的大小(取锐角).图11-6小结:求二面角的关键是作出二面角的平面角.※动手试试练. 如图11-7,在空间四边形SABC中,ASC∠ =90°,60ASB BSC∠==°,SA SB SC==,B'C'A'DCBAD'⑴求证:平面ASC ⊥平面ABC .⑵求二面角S AB C --的平面角的正弦值.图11-7当堂检测1. 以下四个命题,正确的是( ).A.两个平面所成的二面角只有一个B.两个相交平面组成的图形叫做二面角C.二面角的平面角是这两个面中直线所成的角中最小的一个D.二面角的大小和其平面角的顶点在棱上的位置无关2. 对于直线,m n ,平面,αβ,能得出αβ⊥的一个条件是( ).A.,//,//m n m n αβ⊥B.,,m n m n αβα⊥=⊂C.//,,m n n m βα⊥⊂D.//,,m n m n αβ⊥⊥3. 在正方体1111ABCD A B C D -中,过,,A C D 的平面与过1,,D B B 的平面的位置关系是( ).A.相交不垂直B.相交成60°角C.互相垂直D.互相平行4. 二面角的大小范围是________________.5. 若平面内的一条直线和这个平面的一条斜线的射影垂直,则它和这条斜线的位置关系为_______.课后反思1. 二面角的有关概念,二面角的求法;2. 两个平面垂直的判定定理及应用.知识拓展二面角的平面角的一个常用作法:如图过平面α内一点A ,作AB β⊥于点B ,再作BO l ⊥于O ,连接OA ,则AOB ∠即为所求平面角.(为什么?)课后训练 1.过平面α外两点且垂直于平面α的平面 ( )()A 有且只有一个 ()B 不是一个便是两个 ()C 有且仅有两个 ()D 一个或无数个2.若平面α⊥平面β,直线n ⊂α,m ⊂β,m n ⊥,则( )()A n ⊥β ()B n ⊥β且m ⊥α ()C m ⊥α ()D n ⊥β与m ⊥α中至少有一个成立3.对于直线,m n 和平面,αβ,α⊥β的一个充分条件是( )()A m n ⊥,//,//m n αβ ()B ,,m n m n αβα⊥=⊂ ()C //,,m n n m βα⊥⊄ ()D ,,m n m n αβ⊥⊥⊥4.设,,l m n 表示三条直线,,,αβγ表示三个平面,给出下列四个命题:①若,l m αα⊥⊥,则//l m ;②若,m n β⊂是l 在β内的射影,m l ⊥,则m n ⊥;③若,//m m n α⊂,则//n α; ④若,αγβγ⊥⊥,则//αβ. 其中真命题是( ) ()A ①② ()B ②③ ()C ①③ ()D ③④5:已知平面α∩平面β=直线a ,α、β垂直于平面γ,又平行于直线b ,求证:(1) a ⊥γ;(2)b ⊥γ.6. 如图11-8,AC ⊥面BCD ,BD CD ⊥,设ABC ∠=1θ,2CBD θ∠=,3ABD θ∠=,求证:312cos cos cos θθθ=图11-87. 如图11-8,在正方体中,,E F 是棱A B ''与D C ''的中点,求面EFCB 与面ABCD 所成二面角的正切值.(取锐角)图11-8。
9.示范教案(2.3.2 平面与平面垂直的判定)
2.3.2 平面与平面垂直的判定整体设计教学分析在空间平面与平面之间的位置关系中,垂直是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中平面与平面垂直的定义是通过二面角给出的,二面角是高考中的重点和难点.使学生掌握两个平面互相垂直的判定,提高学生空间想象能力,提高等价转化思想渗透的意识,进一步提高学生分析问题、解决问题的能力;使学生学会多角度分析、思考问题,培养学生的创新精神.三维目标1.探究平面与平面垂直的判定定理,二面角的定义及应用,培养学生的归纳能力.2.掌握平面与平面垂直的判定定理的应用,培养学生的空间想象能力.3.引导学生总结求二面角的方法,培养学生归纳问题的能力.重点难点教学重点:平面与平面垂直判定.教学难点:平面与平面垂直判定和求二面角.课时安排1课时教学过程复习两平面的位置关系:(1)如果两个平面没有公共点,则两平面平行⇔若α∩β=∅,则α∥β.(2)如果两个平面有一条公共直线,则两平面相交⇔若α∩β=AB,则α与β相交.两平面平行与相交的图形表示如图1.图1导入新课思路1.(情境导入)为了解决实际问题,人们需要研究两个平面所成的角.修筑水坝时,为了使水坝坚固耐用必须使水坝面与水平面成适当的角度;发射人造地球卫星时,使卫星轨道平面与地球赤道平面成一定的角度.为此,我们引入二面角的概念,研究两个平面所成的角.思路2.(直接导入)前边举过门和墙所在平面的关系,随着门的开启,其所在平面与墙所在平面的相交程度在变,怎样描述这种变化呢?今天我们一起来探究两个平面所成角问题.推进新课新知探究提出问题①二面角的有关概念、画法及表示方法.②二面角的平面角的概念.③两个平面垂直的定义.④用三种语言描述平面与平面垂直的判定定理,并给出证明.⑤应用面面垂直的判定定理难点在哪里?讨论结果:①二面角的有关概念.二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱,这两个半平面叫二面角的面.二面角常用直立式和平卧式两种画法:如图2(教师和学生共同动手).直立式:平卧式:(1) (2)图2二面角的表示方法:如图3中,棱为AB,面为α、β的二面角,记作二面角α-AB-β.有时为了方便也可在α、β内(棱以外的半平面部分)分别取点P、Q,将这个二面角记作二面角P-AB-Q.图3如果棱为l,则这个二面角记作αlβ或PlQ.②二面角的平面角的概念.如图4,在二面角αlβ的棱上任取点O,以O为垂足,在半平面α和β内分别作垂直于棱的射线OA和OB,则射线OA和OB组成∠AOB.图4再取棱上另一点O′,在α和β内分别作l的垂线O′A′和O′B′,则它们组成角∠A′O′B′.因为OA∥O′A′,OB∥O′B′,所以∠AOB及∠A′O′B′的两边分别平行且方向相同,即∠AOB=∠A′O′B′.从上述结论说明了:按照上述方法作出的角的大小,与角的顶点在棱上的位置无关.由此结果引出二面角的平面角概念:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.图中的∠AOB,∠A′O′B′都是二面角αlβ的平面角.③直二面角的定义.二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说二面角是多少度.平面角是直角的二面角叫做直二面角.教室的墙面与地面,一个正方体中每相邻的两个面、课桌的侧面与地面都是互相垂直的.两个平面互相垂直的概念和平面几何里两条直线互相垂直的概念相类似,也是用它们所成的角为直角来定义,二面角既可以为锐角,也可以为钝角,特殊情形又可以为直角.两个平面互相垂直的定义可表述为:如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直.直二面角的画法:如图5.图5④两个平面垂直的判定定理.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.两个平面垂直的判定定理符号表述为:⎭⎬⎫⊂⊥αβAB AB ⇒α⊥β.两个平面垂直的判定定理图形表述为:如图6.图6证明如下:已知AB ⊥β,AB∩β=B ,AB ⊂α. 求证:α⊥β.分析:要证α⊥β,需证α和β构成的二面角是直二面角,而要证明一个二面角是直二面角,需找到其中一个平面角,并证明这个二面角的平面角是直角. 证明:设α∩β=CD ,则由AB ⊂α,知AB 、CD 共面. ∵AB ⊥β,CD ⊂β,∴AB ⊥CD ,垂足为点B. 在平面β内过点B 作直线BE ⊥CD, 则∠ABE 是二面角αCDβ的平面角.又AB ⊥BE ,即二面角αCDβ是直二面角, ∴α⊥β.⑤应用面面垂直的判定定理难点在于:在一个平面内找到另一个平面的垂线,即要证面面垂直转化为证线线垂直. 应用示例思路1例1 如图7,⊙O 在平面α内,AB 是⊙O 的直径,PA ⊥α,C 为圆周上不同于A 、B 的任意一点.图7求证:平面PAC ⊥平面PBC.证明:设⊙O 所在平面为α,由已知条件,PA ⊥α,BC ⊂α,∴PA ⊥BC. ∵C 为圆周上不同于A 、B 的任意一点,AB 是⊙O 的直径, ∴BC ⊥AC.又∵PA 与AC 是△PAC 所在平面内的两条相交直线, ∴BC ⊥平面PAC.∵BC ⊂平面PBC,∴平面PAC ⊥平面PBC. 变式训练如图8,把等腰Rt △ABC 沿斜边AB 旋转至△ABD 的位置,使CD=AC ,图8(1)求证:平面ABD ⊥平面ABC ; (2)求二面角CBDA 的余弦值. (1)证明:由题设,知AD=CD=BD,作DO ⊥平面ABC ,O 为垂足,则OA=OB=OC. ∴O 是△ABC 的外心,即AB 的中点. ∴O ∈AB ,即O ∈平面ABD. ∴OD ⊂平面ABD.∴平面ABD ⊥平面ABC.(2)解:取BD 的中点E ,连接CE 、OE 、OC, ∵△BCD 为正三角形,∴CE ⊥BD.又△BOD 为等腰直角三角形,∴OE ⊥BD. ∴∠OEC 为二面角CBDA 的平面角. 同(1)可证OC ⊥平面ABD.∴OC ⊥OE.∴△COE 为直角三角形. 设BC=a ,则CE=a 23,OE=a 21,∴cos ∠OEC=33=CE OE . 点评:欲证面面垂直关键在于在一个平面内找到另一个平面的垂线.例2 如图9所示,河堤斜面与水平面所成二面角为60°,堤面上有一条直道CD ,它与堤角的水平线AB 的夹角为30°,沿这条直道从堤脚向上行走到10 m 时人升高了多少?(精确到0.1 m )图9解:取CD 上一点E ,设CE=10 m ,过点E 作直线AB 所在的水平面的垂线EG ,垂足为G ,则线段EG 的长就是所求的高度.在河堤斜面内,作EF ⊥AB ,垂足为F ,并连接FG ,则FG ⊥AB,即∠EFG 就是河堤斜面与水平面ABG 所成二面角的平面角, ∠EFG=60°,由此,得EG=EFsin60°=CEsin30°sin60°=10×2352321=⨯≈4.3(m ). 答:沿直道行走到10 m 时人升高约4.3 m. 变式训练已知二面角αABβ等于45°,CD ⊂α,D ∈AB ,∠CDB=45°. 求CD 与平面β所成的角.解:如图10,作CO ⊥β交β于点O ,连接DO ,则∠CDO 为DC 与β所成的角.图10过点O 作OE ⊥AB 于E ,连接CE ,则CE ⊥AB. ∴∠CEO 为二面角αABβ的平面角, 即∠CEO=45°. 设CD=a,则CE=a 22,∵CO ⊥OE ,OC=OE , ∴CO=a 21.∵CO ⊥DO,∴sin ∠CDO=21=CD CO . ∴∠CDO=30°,即DC 与β成30°角.点评:二面角是本节的另一个重点,作二面角的平面角最常用的方法是:在一个半平面α内找一点C ,作另一个半平面β的垂线,垂足为O,然后通过垂足O 作棱AB 的垂线,垂足为E,连接AE,则∠CEO 为二面角α-AB-β的平面角.这一过程要求学生熟记.思路2例1 如图11,ABCD 是菱形,PA ⊥平面ABCD ,PA=AD=2,∠BAD=60°.图11(1)求证:平面PBD ⊥平面PAC ; (2)求点A 到平面PBD 的距离; (3)求二面角APBD 的余弦值.(1)证明:设AC 与BD 交于点O ,连接PO, ∵底面ABCD 是菱形,∴BD ⊥AC.∵PA ⊥底面ABCD,BD ⊂平面ABCD,∴的PA ⊥BD. 又PA∩AC=A,∴BD ⊥平面PAC.又∵BD ⊂平面PBD,∴平面PBD ⊥平面PAC.(2)解:作AE ⊥PO 于点E,∵平面PBD ⊥平面PAC,∴AE ⊥平面PBD. ∴AE 为点A 到平面PBD 的距离.在△PAO 中,PA=2,AO=2·cos30°=3,∠PAO=90°, ∵PO=722=+AO PA ,∴AE=7212732==∙PO AO PA .∴点A 到平面PBD 的距离为7212.(3)解:作AF ⊥PB 于点F,连接EF, ∵AE ⊥平面PBD,∴AE ⊥PB. ∴PB ⊥平面AEF,PB ⊥EF.∴∠AFE 为二面角APBD 的平面角. 在Rt △AEF 中,AE=7212,AF=2, ∴sin ∠AFE=742=AF AE ,cos ∠AFE=77)742(12=-. ∴二面角APBD 的余弦值为77. 变式训练如图12,PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点. (1)求证:MN ∥平面PAD ; (2)求证:MN ⊥CD ; (3)若二面角PDCA=45°,求证:MN ⊥平面PDC.图12 图13证明:如图13所示,(1)取PD 的中点Q ,连接AQ 、NQ,则QN21DC,AM 21DC, ∴QN AM.∴四边形AMNQ 是平行四边形.∴MN ∥AQ.又∵MN ⊄平面PAD,AQ ⊂平面PAD,∴MN ∥平面PAD. (2)∵PA ⊥平面ABCD ,∴PA ⊥CD.又∵CD ⊥AD,PA∩AD=A,∴CD ⊥平面PAD. 又∵AQ ⊂平面PAD,∴CD ⊥AQ. 又∵AQ ∥MN,∴MN ⊥CD.(3)由(2)知,CD ⊥平面PAD, ∴CD ⊥AD,CD ⊥PD.∴∠PDA 是二面角PDCA 的平面角.∴∠PDA=45°. 又∵PA ⊥平面ABCD,∴PA ⊥AD.∴AQ ⊥PD. 又∵MN ∥AQ,∴MN ⊥CD.又∵MN ⊥PD,∴MN ⊥平面PDC.例2 如图14,已知直四棱柱ABCD —A 1B 1C 1D 1的底面是菱形,且∠DAB=60°,AD=AA 1,F 为棱BB 1的中点,M 为线段AC 1的中点.图14(1)求证:直线MF ∥平面ABCD ; (2)求证:平面AFC 1⊥平面ACC 1A 1;(3)求平面AFC 1与平面ABCD 所成二面角的大小. (1)证明:延长C 1F 交CB 的延长线于点N ,连接AN. ∵F 是BB 1的中点,∴F 为C 1N 的中点,B 为CN 的中点. 又M 是线段AC 1的中点,故MF ∥AN. 又∵MF ⊄平面ABCD,AN ⊂平面ABCD, ∴MF ∥平面ABCD.(2)证明:连接BD ,由直四棱柱ABCD —A 1B 1C 1D 1,可知AA 1⊥平面ABCD, 又∵BD ⊂平面ABCD ,∴A 1A ⊥BD. ∵四边形ABCD 为菱形,∴AC ⊥BD.又∵AC∩A 1A=A,AC 、A 1A ⊂平面ACC 1A 1, ∴BD ⊥平面ACC 1A 1.在四边形DANB 中,DA ∥BN 且DA=BN , ∴四边形DANB 为平行四边形. 故NA ∥BD ,∴NA ⊥平面ACC 1A 1. 又∵NA ⊂平面AFC 1,∴平面AFC 1⊥平面ACC 1A 1.(3)解:由(2),知BD ⊥平面ACC 1A 1,又AC 1⊂平面ACC 1A 1,∴BD ⊥AC 1. ∵BD ∥NA ,∴AC 1⊥NA.又由BD ⊥AC,可知NA ⊥AC ,∴∠C 1AC 就是平面AFC 1与平面ABCD 所成二面角的平面角或补角. 在Rt △C 1AC 中,tan ∠C 1AC=311=CA C C ,故∠C 1AC=30°. ∴平面AFC 1与平面ABCD 所成二面角的大小为30°或150°.变式训练如图15所示,在四棱锥S —ABCD 中,底面ABCD 是矩形,侧面SDC ⊥底面ABCD ,且AB=2,SC=SD=2.图15(1)求证:平面SAD ⊥平面SBC ;(2)设BC=x ,BD 与平面SBC 所成的角为α,求sinα的取值范围.(1)证明:在△SDC 中,∵SC=SD=2,CD=AB=2,∴∠DSC=90°,即DS ⊥SC.∵底面ABCD 是矩形,∴BC ⊥CD.又∵平面SDC ⊥平面ABCD,∴BC ⊥面SDC. ∴DS ⊥BC.∴DS ⊥平面SBC.∵DS ⊂平面SAD,∴平面SAD ⊥平面SBC.(2)解:由(1),知DS ⊥平面SBC,∴SB 是DB 在平面SBC 上的射影. ∴∠DBS 就是BD 与平面SBC 所成的角,即∠DBS=α. 那么sinα=DBDS. ∵BC=x,CD=2⇒DB=24x +,∴sinα=242x+.由0<x <+∞,得0<sinα<22. 知能训练课本本节练习. 拓展提升如图16,在四棱锥P —ABCD 中,侧面PAD 是正三角形,且与底面ABCD 垂直,底面ABCD 是边长为2的菱形,∠BAD=60°,N 是PB 中点,过A 、D 、N 三点的平面交PC 于M ,E 为AD 的中点.图16(1)求证:EN ∥平面PCD ;(2)求证:平面PBC ⊥平面ADMN ;(3)求平面PAB 与平面ABCD 所成二面角的正切值. (1)证明:∵AD ∥BC,BC ⊂面PBC,AD ⊄面PBC, ∴AD ∥面PBC.又面ADN∩面PBC=MN, ∴AD ∥MN.∴MN ∥BC. ∴点M 为PC 的中点.∴MN21BC. 又E 为AD 的中点,∴四边形DENM 为平行四边形. ∴EN ∥DM.∴EN ∥面PDC.(2)证明:连接PE 、BE,∵四边形ABCD 为边长为2的菱形,且∠BAD=60°, ∴BE ⊥AD.又∵PE ⊥AD,∴AD ⊥面PBE.∴AD ⊥PB. 又∵PA=AB 且N 为PB 的中点, ∴AN ⊥PB.∴PB ⊥面ADMN. ∴平面PBC ⊥平面ADMN.(3)解:作EF ⊥AB ,连接PF ,∵PE ⊥平面ABCD,∴AB ⊥PF. ∴∠PFE 就是平面PAB 与平面ABCD 所成二面角的平面角. 又在Rt △AEB 中,BE=3,AE=1,AB=2,∴EF=23. 又∵PE=3,∴tan ∠PFE=233 EFPE=2,即平面PAB 与平面ABCD 所成的二面角的正切值为2. 课堂小结知识总结:利用面面垂直的判定定理找出平面的垂线,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题. 作业课本习题2.3 A 组1、2、3.设计感想线面关系是线线关系和面面关系的桥梁和纽带,空间中直线与平面垂直的性质定理不仅是由线面关系转化为线线关系,而且将垂直关系转化为平行关系,因此直线与平面垂直的性质定理在立体几何中有着特殊的地位和作用,因此它是高考考查的重点.本节不仅选用了大量经典好题,还选用了大量的2007高考模拟题,相信能够帮助大家解决立体几何中的重点难点问题.。
高中数学必修二《平面与平面垂直的判定》优秀教学设计
2.3.2平面与平面垂直的判定一、教学目标1、知识与技能(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;(2)使学生掌握两个平面垂直的判定定理及其简单的应用;(3)使学生理会“类比归纳”思想在数学问题解决上的作用。
2、过程与方法(1)通过实例让学生直观感知“二面角”概念的形成过程;(2)类比已学知识,归纳“二面角”的度量方法及两个平面垂直的判定定理。
3、情态与价值通过揭示概念的形成、发展和应用过程,使学生理会教学存在于观实生活周围,从中激发学生积极思维,培养学生的观察、分析、解决问题能力。
二、学情分析学生通过学习直线与直线的垂直,直线与平面的垂直,已经初步掌握了线线垂直与线面垂直的判定。
这为学生学习平面与平面的垂直判定打下了良好的基础。
但是,有一部分学生空间想象力和逻辑思维能力较差,在学习的过程中仍有一定的难度,而平面与平面的垂直关系是继教材直线与直线的垂直、直线与平面的垂直之后的迁移与拓展。
因此,在教学中,教师尽量通过多媒体辅助教学,帮助学生提高空间想象能力,同时,尽量让学生多参与,培养自主探索能力。
三、教学重点、难点。
重点:平面与平面垂直的判定;难点:如何度量二面角的大小。
四、教学过程(一)创设情景,揭示课题问题1:平面几何中“角”是怎样定义的?问题2:在立体几何中,“异面直线所成的角”、“直线和平面所成的角”又是怎样定义的?它们有什么共同的特征?以上问题让学生自由发言,教师再作小结,并顺势抛出问题:在生产实践中,有许多问题要涉及到两个平面相交所成的角的情形,你能举出这个问题的一些例子吗?如修水坝、发射人造卫星等,而这样的角有何特点,该如何表示呢?下面我们共同来观察、研探。
(二)研探新知1、二面角的有关概念老师展示一张纸面,并对折让学生观察其状,然后引导学生用数学思维思考,并对以上问题类比,归纳出二面角的概念及记法表示(如下表所示)2、二面角的度量二面角定理地反映了两个平面相交的位置关系,如我们常说“把门开大一些”,是指二面角大一些,那我们应如何度量二两角的大小呢?师生活动:师生共同做一个小实验(预先准备好的二面角的模型)在其棱上位取一点为顶点,在两个半平面内各作一射线(如图2.3-3),通过实验操作,研探二面角大小的度量方法——二面角的平面角。
高中数学新课程创新教学设计案例平面与平面垂直
19 平面与平面垂直教材分析两个平面垂直的判定定理及性质定理是平面与平面位置关系的重要内容.通过这节的学习可以发现:直线与直线垂直、直线与平面垂直及平面与平面垂直的判定和性质定理形成了一套完整的证明体系,而且可以实现利用低维位置关系推导高维位置关系,利用高维位置关系也能推导低维位置关系,充分体现了转化思想在立体几何中的重要地位.这节课的重点是判定定理及性质定理,难点是定理的发现及证明.教学目标1. 掌握两平面垂直的有关概念,以及两个平面垂直的判定定理和性质定理,能运用概念和定理进行有关计算与证明.2. 培养学生的空间想象能力,逻辑思维能力,知识迁移能力,运用数学知识和数学方法观察、研究现实现象的能力,整理知识、解决问题的能力.3. 通过对实际问题的分析和探究,激发学生的学习兴趣,培养学生认真参与、积极交流的主体意识和乐于探索、勇于创新的科学精神.任务分析判定定理证明的难点是画辅助线.为了突破这一难点,可引导学生这样分析:在没有得到判定定理时,只有根据两平面互相垂直的定义来证明,那么,哪个平面与这两个平面都垂直呢?对性质定理的引入,不是采取平铺直叙,而是根据数学定理的教学是由发现与论证这两个过程组成的,所以应把“引出命题”和“猜想”作为本部分的重要活动内容.教学设计一、问题情境1. 建筑工人在砌墙时,常用一根铅垂的线吊在墙角上,这是为什么?(为了使墙面与地面垂直)2. 什么叫两个平面垂直?怎样判定两平面垂直,两平面垂直有哪些性质?二、建立模型如图19-1,两个平面α,β相交,交线为CD,在CD上任取一点B,过点B分别在α,β内作直线BA和BE,使BA⊥CD,BE⊥CD.于是,直线CD⊥平面ABE.容易看到,∠ABE为直角时,给我们两平面垂直的印象,于是有定义:如果两个相交平面的交线与第三个平面垂直,并且这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.平面α,β互相垂直,记作α⊥β.[问题]1. 建筑工人在砌墙时,铅垂线在墙面内,墙面与地面就垂直吗?如图19-1,只要α经过β的垂线BA,则BA⊥β,∴BA⊥BE,∠ABE=Rt∠.依定义,知α⊥β.于是,有判定定理:定理如果一个平面经过另一个平面的一条垂线,则两个平面互相垂直.2. 如果交换判定定理中的条件“BA⊥β”和结论“α⊥β”.即,也就是从平面与平面垂直出发,能否推出直线与平面垂直?平面α内满足什么条件的直线才能垂直于平面β呢?让学生用教科书、桌面、笔摆模型.通过模型发现:当α⊥β时,只有在一个平面(如α)内,垂直于两平面交线的直线(如BA)才会垂直于另一个平面(如β).于是,有定理:定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.(先分析命题的条件和结论,然后画出图形,再结合图形,写出已知,求证)已知:如图,α⊥β,α∩β=CD,ABα,AB⊥CD,求证:AB⊥β.分析:要证AB⊥β,只需在β内再找一条直线与AB垂直,但β内没有这样的直线,如何作出这条直线呢?因为α⊥β,所以可根据二面角的定义作出这个二面角的平面角.在平面β内过点B作BE⊥CD.因为AB⊥CD,所以∠ABE是二面角α-CD-β的平面角,并且∠ABE=90°,即AB⊥BE.又因为CDβ,BEβ,所以AB⊥β.三、解释应用[例题]1. 已知:如图,平面α⊥平面β,在α与β的交线上取线段AB=4cm,AC,BD分别在平面α和平面β内,它们都垂直于交线AB,并且AC=3cm,BD=12cm,求CD长.解:连接BC.因为AC⊥AB,所以AC⊥β,AC⊥BD.因为BD⊥AB,所以BD⊥α,BD⊥BC.所以,△CBD是直角三角形.在Rt△BAC中,BC==5(cm),在Rt△CBD中,CD==13(cm).2. 已知:在Rt△ABC中,AB=AC=a,AD是斜边BC的高,以AD为折痕使∠BDC折成直角(如图19-4).求证:(1)平面ABD⊥平面BDC,平面ACD⊥平面BDC.(2)∠BAC=60°.证明:(1)如图19-4(2),因为AD⊥BD,AD⊥DC,所以AD⊥平面BDC.因为平面ABD和平面ACD都过AD,所以平面ABD⊥平面BDC,平面ACD⊥平面BDC.(2)如图19-4(1),在Rt△BAC中,因为AB=AC=a,所以BC=a,BD=DC=.如图19-4(2),△BDC是等腰直角三角形,所以BC=BD=2×=a.得AB=AC=BC.所以∠BAC=60°.[练习]1. 如图19-5,有一个正三棱锥体的零件,P是侧面ACD上一点.问:如何在面ACD上过点P画一条与棱AB垂直的线段?试说明理由.2. 已知:如图19-6,在空间四边形ABCD中,AC=AD,BC=BD,E是CD 的中点.求证:(1)平面ABE⊥平面BCD.(2)平面ABE⊥平面ACD.四、拓展延伸能否将平面几何中的勾股定理推广到立体几何学中去?试写一篇研究性的小论文.点评这篇案例结构完整,构思新颖.案例开始以一个生活中常见的例子引入问题,得到了两平面垂直的定义.还是这个例子,改变了问法又得到了两平面垂直的判定定理.即把学科理论和学生的生活实际相结合,激起了学生探索问题的热情.对性质定理和判定定理的引入和证明也不是平铺直叙,而是充分展现了定理的发现和形成过程.通过学生的认真参与,师生之间的民主交流,培养了学生的主体意识和乐于探索、勇于创新的科学精神.。
2015-2016学年 高中数学 人教A版必修二 第二章 2.3.2平面与平面垂直的判定
DD1 AA1 6 所以,在 Rt△A1DD1 中,cos∠A1DD1= A D =A D= 3 . 1 1
研一研·问题探究、课堂更高效
2.3.2
小结
本 课 时 栏 目 开 关
求二面角的大小应注意做题的顺序,一般情况下,是先作
出二面角的平面角,然后证明它是二面角的平面角,接着是求出 这个角的值,最后说明二面角为多少度.这个过程可以简记为: 作(找)、证、求、答.
B.②④
①不符合二面角定义,③从运动的角度演示可知,二
面角的平面角不是最小角.故选 B.
练一练·当堂检测、目标达成落实处
3.下列命题中正确的是
2.3.2
( C )
A.平面 α 和 β 分别过两条互相垂直的直线,则 α⊥β B.若平面 α 内的一条直线垂直于平面 β 内的两条平行
本 课 时 栏 目 开 关
2.3.2
2.3.2
[学习要求]
平面与平面垂直的判定
1.理解二面角及其平面角的概念,能确认图形中的已知角是否为
本 课 时 栏 目 开 关
二面角的平面角; 2. 掌握二面角的平面角的一般作法, 会求简单的二面角的平面角; 3. 掌握两个平面互相垂直的概念, 能用定义和定理判定面面垂直. [学法指导] 通过实例直观感知“两个平面互相垂直”、“二面角”概念的 形成过程;类比已学知识,归纳“二面角”的度量方法及两个 平面垂直的判定定理,提高观察、分析、解决问题的能力.
练一练·当堂检测、目标达成落实处
4.如图,已知 AB⊥平面 BCD,BC⊥CD, 你能发现哪些平面互相垂直,为什么?
解
本 课 时 栏 目 开 关
2.3.2
面 ABC⊥面 BCD, 面 ABD⊥面 BCD, 面 ACD⊥面 ABC.
人教版数学必修二2.3.2《平面和平面垂直的判定》教学设计及说明
课 题:平面与平面垂直的判定【教学目标】知识技能目标1.结合实际问题使学生了解二面角及二面角的平面角的定义; 2.学生通过具体情境分析、探索平面与平面垂直的判定定理;3.利用判定定理判定或证明简单的平面与平面垂直问题,初步掌握平面与平面垂直的判定方法。
能力目标1.结合情境,通过自主探究逐步培养学生观察、分析、综合和类比能力,着重培养学生的认知能力;2.引导学生从日常生活中发现判定定理,培养学生的发现意识和能力。
【教学重点、难点】 判定定理的证明及应用. 【教学方法】 教师启发讲授,学生探究学习. 【教学手段】 计算机、投影仪. 【教学过程】一、复习旧知,温故知新师:初中我们学过角的概念是什么?生:由一点引两条射线所组成的几何图形叫做角。
记作:AOB ∠师:什么是斜线与平面所成的角?生:斜线与斜线在平面内的射影所成的角。
师: 也就是说将线面角转化为线线角。
〖设计意图〗复习旧知识,为新知识学习埋下伏笔。
二、创设情境,引入新课师:取一张纸,任意一折,这样一个平面就变成两个……BAO生:相交平面师:此时这两个平面就成一定的…… 生:角度师:为此,我们需要引进二面角的概念,研究两个平面所成的角。
〖设计意图〗从现实生活中,学生所熟悉的简单直观的实际问题引入,使学生易于接受。
三、类比知新,了解概念师:如何定义两个平面所成的角呢?(引导学生类比初中学的角的定义) 二面角的定义:从一条直线出发的两个半平面所组成的几何图形叫做二面角,这条直线叫二面角的棱,这两个半平面叫二面角的面。
记作:二面角βα--l 、二面角βα--AB 或者二面角D BC A -- 师:生活中有许多的二面角,你能举出一些实例吗? 生:折纸,书打开,门打开等。
师:我们常说“把门开大一些”指的是哪个角大一些? 生:门面与墙面所成的二面角。
师:我们怎样刻画二面角的大小呢? 生:…………师: 我们知道斜线与平面所成的角即斜线与斜线在平面内的射影所成的角,即用线线角来刻画线面角;类似的我们用二面角的平面角(线线角)来刻画二面角(面面角)的大小。
高中数学人教A版必修2《2.3.2平面与平面垂直的判定》教案5
必修二2.3.2 平面与平面垂直的判定【教学内容分析】本节课是高中数学人教A版必修二第二章“点、直线、平面之间的位置关系”第三节“线、平面垂直的判定及其性质”第3课时。
前两节分别学习了“线面垂直的判定”和“直线和平面所成角”。
面面垂直是垂直关系中的重点,是“转化”思想的又一重要体现。
平面与平面垂直需要“二面角”的概念,二面角定量地反映了两个平面相交的位置关系,但是如何来度量二面角的大小是一个难点。
根据“异面直线所成角”和“直线与平面所成角”的学习经验,自然想到用“平面化”的思想,进而给出二面角的平面角的概念。
面面垂直是面面相交的特殊情况,生活中面面垂直的例子大量存在,引导学生观察、结合大量实例,再类比归纳平面与平面平行的判定定理的过程,自然地就获得了面面垂直的判定定理。
【学情分析】听课学生是我校高二年级340班,共有60名学生。
这是一个高二理科班,班内不乏年级前十名的学生,基础相对扎实。
在本节课之前,学生已经学习了人教A版必修1、3、4、5的全部课程。
在必修2中从前面线面平行、面面平行、线面垂直等知识的学习过程中,已经把握了学习研究立体几何的一般方法——平面化,对线线、线面、面面间关系的转化也已经比较熟练,因此学习本节知识不会有太大困难。
【教学目标】1、知识与技能(1)理解二面角的有关概念;(2)理解面面垂直的定义,掌握面面垂直的判定定理,初步学会用定理证明垂直关系;(3)熟悉线线垂直、线面垂直、面面垂直的转化.2、过程与方法:在观察物体模型直观感知、操作确认的基础上,通过对几个递进式问题的思考和探究获得对二面角的平面角及面面垂直的认识;3、情感、态度与价值观:通过“直观感知、操作确认、推理证明”,培养学生空间概念、空间想象能力以及逻辑推理能力.【教学重点】平面与平面垂直的判定定理及其应用。
【教学难点】二面角的平面角概念。
【教学策略分析】本节课采用问题导学的方法,整节课提出6个简短而直击要害的问题,激发学习兴趣,调动学生思维。
高中数学必修二教案:2.3.2平面与平面垂直的判定
课题名称平面与平面垂直的判定 三维目标 1.知识与技能:正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;掌握两个平面垂直的判定定理及其简单的应用;2.过程与方法:培养几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论。
3.情感态度与价值观:亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣,同时培养从“感性认识”到“理性认识”过程中获取新知的能力。
重点目标 知识与技能难点目标 过程与方法 导入示标目标三导学做思一: 半平面: 二面角: 二面角的表示: 二面角的平面角: 二面角的平面角∠AOB 的特点: 直二面角: 学做思二: 怎样两个平面互相垂直 达标检测 1.过平面α外两点且垂直于平面α的平面 ( )()A 有且只有一个 ()B 不是一个便是两个()C 有且仅有两个 ()D 一个或无数个2.若平面α⊥平面β,直线n ⊂α,m ⊂β,m n ⊥,则 ( )()A n ⊥β ()B n ⊥β且m ⊥α()C m ⊥α ()D n ⊥β与m ⊥α中至少有一个成立3.对于直线,m n 和平面,αβ,α⊥β的一个充分条件是 ( )()A m n ⊥,//,//m n αβ ()B ,,m n m n αβα⊥=⊂()C //,,m n n m βα⊥⊄ ()D ,,m n m n αβ⊥⊥⊥4.设,,l m n 表示三条直线,,,αβγ表示三个平面,给出下列四个命题:①若,l m αα⊥⊥,则//l m ;②若,m n β⊂是l 在β内的射影,m l ⊥,则m n ⊥;③若,//m m n α⊂,则//n α; ④若,αγβγ⊥⊥,则//αβ. 其中真命题是( )()A ①② ()B ②③ ()C ①③ ()D ③④5:已知平面α∩平面β=直线a ,α、β垂直于平面γ,又平行于直线b ,求证:(1) a ⊥γ;(2)b ⊥γ.反思总结 1.知识建构2.能力提高3.课堂体验课后练习1.如图四面体ABCD的棱BD长为2,其余各棱长均为2,求二面角A-BD-C的大小。
高中数学 2.3.2平面与平面垂直的判定精品教案 新人教A版必修2
(一)教学目标1.知识与技能(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;(2)使学生掌握两个平面垂直的判定定理及其简单的应用;(3)使学生理会“类比归纳”思想在教学问题解决上的作用.2.过程与方法(1)通过实例让学生直观感知“二面角”概念的形成过程;(2)类比已学知识,归纳“二面角”的度量方法及两个平面垂直的判定定理.3.情态、态度与价值观通过揭示概念的形成、发展和应有和过程,使学生理会教学存在于观实生活周围,从中激发学生积极思维,培养学生的观察、分析、解决问题能力.(二)教学重点、难点重点:平面与平面垂直的判定;难点:如何度量二面角的大小.(三)教学方法实物观察、类比归纳、语言表达,讲练结合.教学过程教学内容师生互动设计意图新课导入问题1:平面几何中“角”是怎样定义的?问题2:在立体几何中,“异面直线所成的角”、“直线和平面所成的角”又是怎样定义的?它们有什么共同的特征?学生自由发言,教师小结,并投影两个平面所成角的实际例子:公路上的表面与水平面,打开的门与门椎所在平面等,怎样定义两个平面所成的角呢?复习巩固,以旧导新探索新知一、二面角1.二面角(1)半平面平面内的一条直线把平面分成两部分,这两部分通常称为半平面.(2)二面角从一条直线出发的两个半平面所组成的图形叫做二面角(dihedral angle).这条直线叫做二面角的棱,这两个半平面叫做二面角的面.(3)二面角的求法与画法棱为AB、面分别为α、β的二面角记作二面角教师结合二面角模型,类比以上几个问题,归纳出二面角的概念及记法表示(可将角与二面角从图形、定义、构成、表示进行列表对比).师生共同实验(折纸)思考二面角的大小与哪一个角的大小相同?这个角的边与二面角的棱有什么关系?生:过二面角棱上一点O在二面角的面上分别作射线与二面角的棱垂直,得到的角与二面角大小相等.师:改变O的位置,这个角的大小变不变.生:由等角定理知不变.通过模型教学,培养学生几何直观能力,通过类比教学,加深学生对知识的理解.通过实验,培养学生学习兴趣和探索意识,加深对知识的理解与掌握.ABαβ--. 有时为了方便,也可在,αβ内(棱以外的半平面部分)分别取点P 、Q ,将这个二面角记作二面角P – AB – Q .如果棱记作l ,那么这个二面角记作二面角l αβ--或P –l – Q .2.二面角的平面角 如图(1)在二面角c αβ--的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角.(2)二面角的平面角的大小与O 点位置无关.(3)二面角的平面角的范围是[0,180°](4)平面角为直角的二面角叫做直二面角.探索新知 二、平面与平面垂直1.平面与平面垂直的定义,记法与画法.一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.两个互相垂直的平面通常画成此图的样子,此时,把直立平面的竖边画成与水平平面的横边垂直.平面α与β垂直,记作α⊥β.2.两个平面互相垂直的判定定理,一个平面过另一个平面的垂线,则这两个平面垂直.学生自学,教师点拔一下注意事项.师:以教室的门为例,由于门框木柱与地面垂直,那么经过木柱的门无论转到什么位置都有门面垂直于地面,即αβ⊥,请同学给出面面垂直的判定定理.培养学生自学能力,通过实验,培养学生观察能力,归纳能力,语言表达能力.典例分析例3 如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A、B的任意一点,求证:平面PAC⊥平面PBC.证明:设⊙O所在平面为α,由已知条件,PA⊥α,BC在α内,所以PA⊥BC.因为点C是圆周上不同于A、B的任意一点,AB是⊙O的直径,所以,∠BCA是直角,即BC⊥AC.又因为PA与AC是△PAC所在平面内的两条直线.所以BC⊥平面PAC.又因为BC在平面PBC内,所以,平面PAC⊥平面PBC.师:平面与平面垂直的判定方法有面面垂直的定义和面面垂直的判定定理,而本题二面角A –PC–B的平面角不好找,故应选择判定定理,而应用判定定理正面面垂直的关键是在其中一个平面内找(作)一条直线与另一平面垂直,在已有图形中BC符合解题要求,为什么?学生分析,教师板书巩固所学知识,培养学生观察能力,空间想象能力,书写表达能力.随堂练习1.如图,正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,则在四面体S –EFG中必有( A )A.SG⊥EFG所在平面B.SD⊥EFG所在平面C.GF⊥SEF所在平面D.GD⊥SEF所在平面2.如图,已知AB⊥平面BCD,BC⊥CD,你能发现哪些平面互相垂直,为什么?学生独立完成巩固知识提升能力答:面ABC⊥面BCD 面ABD⊥面BCD面ACD⊥面ABC.归纳总结1.二面角的定义画法与记法.2.二面角的平面角定义与范围.3.面面垂直的判定方法.4.转化思想.学生总结、教师补充完善回顾、反思、归纳知训提高自我整合知识的能力课后作业2.3 第二课时习案学生独立完成固化知识提升能力备选例题例1 如图,平面角为锐角的二面角EFαβ--,A∈EF,AGα⊂,∠GAE = 45°若AG 与β所成角为30°,求二面角EFαβ--的平面角.【分析】首先在图形中作出有关的量,AG与β所成的角(过G到β的垂线段GH,连AH,∠GAH = 30°),二面角EFαβ--的平面角,注意在作平面角是要试图与GAH建立联系,抓住GH⊥β这一特殊条件,作HB⊥EF,连接GB,利用相关关系即可解决问题.【解析】作GH⊥β于H,作HB⊥EF于B,连结GB,则CB⊥EF,∠GBH是二面角的平面角.又∠GAH是AG与β所成的角,设AG = a,则21,2GB a GH a==,2sinGHGBHGB∠==.所以∠GBH = 45°反思研究:本题的成功之处在于作图时注意建立各量之间的有效联系.例2 如图所示,四边形ABCD是平行四边形,直线SC⊥平面ABCD,E是S A的中点,求证:平面EDB⊥平面ABCD.【分析】要证面面垂直,需证线面垂直.这里需要寻找已知条件“SC⊥平面ABCD”与需证结论“平面EDB⊥平面ABCD”之间的桥梁.【证明】连结AC、BD,交点为F,连结EF,∴EF是△SAC的中位线,∴EF∥SC.∵SC⊥平面ABCD,∴EF⊥平面ABCD.又EF⊂平面BDE,BSC∴平面BDE ⊥平面ABCD .【评析】将面面垂直转化为线面垂直是证明此类题的关键. 例3 如图,四棱锥P – ABCD 的底面是边长为a 的正方形,PB ⊥面ABCD .证明无论四棱锥的高怎样变化,面PAD 与面PCD 所成的二面角恒大于90°.【分析】由△PAD ≌ △PCD ,可利用定义法构造二面角的平面角,证明所成角的余弦值恒小于零即可.【解析】不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为全等三角形.作AE ⊥DP ,垂足为E ,连接EC ,则△ADE ≌△CDE .∴AE = CE ,∠CED = 90°.故∠CEA 是面PAD 与面PCD 所成的二面角的平面角.设AC 与BD 相交于点O .连接EO ,则EO ⊥AC .∴2a OA AE AD a =<<=, 在△AEC 中,222(2)cos 2AE EC OA AEC AE EC+-∠=⋅ =(2)(2)0AE OA AE OA +-<,∴∠AEC > 90°.所以面PAD 与面PCD 所成的二面角恒大于90°. 【评析】求二面角的大小应注意作(找)、证、求、答.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3.2 平面与平面垂直的判定
【课时目标】 1.掌握二面角的概念,二面角的平面角的概念,会求简单的二面角的大小.2.掌握两个平面互相垂直的概念,并能利用判定定理判定两个平面垂直.
1.二面角:从一条直线出发的________________所组成的图形叫做二面
角.________________叫做二面角的棱.________________________叫做二面角的面.
2.二面角的平面角
如图:在二面角α-l -β的棱l 上任取一点O ,以点O 为________,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的________叫做二面角的平面角.
3.平面与平面的垂直
(1)定义:如果两个平面相交,且它们所成的二面角是________________,就说这两个平面互相垂直.
(2)面面垂直的判定定理
文字语言:一个平面过另一个平面的________,则这两个平面垂直.符号表示:
⎭
⎪⎬⎪⎫a ⊥β ⇒α⊥β.
一、选择题
1.下列命题:
①两个相交平面组成的图形叫做二面角;
②异面直线a 、b 分别和一个二面角的两个面垂直,则a 、b 组成的角与这个二面角的平面角相等或互补;
③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成角的最小角; ④二面角的大小与其平面角的顶点在棱上的位置没有关系.
其中正确的是( )
A .①③
B .②④
C .③④
D .①②
2.下列命题中正确的是( )
A .平面α和β分别过两条互相垂直的直线,则α⊥β
B .若平面α内的一条直线垂直于平面β内两条平行线,则α⊥β
C .若平面α内的一条直线垂直于平面β内两条相交直线,则α⊥β
D .若平面α内的一条直线垂直于平面β内无数条直线,则α⊥β
3.设有直线M 、n 和平面α、β,则下列结论中正确的是( )
①若M ∥n ,n ⊥β,M ⊂α,则α⊥β;
②若M ⊥n ,α∩β=M ,n ⊂α,则α⊥β;
③若M ⊥α,n ⊥β,M ⊥n ,则α⊥β.
A .①②
B .①③
C .②③
D .①②③
4.过两点与一个已知平面垂直的平面( )
A .有且只有一个
B .有无数个
C .有且只有一个或无数个
D .可能不存在
5.在边长为1的菱形ABCD 中,∠ABC =60°,把菱形沿对角线AC 折起,使折起后BD
=
3
2
,则二面角B-AC-D的余弦值为( )
A.
1
3
B.
1
2
C.
22
3
D.
3
2
6.在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,下面四个结论中不成
立的是( )
A.BC∥面PDF B.DF⊥面PAE
C.面PDF⊥面ABC D.面PAE⊥面ABC
二、填空题
7.过正方形ABCD的顶点A作线段AP⊥平面ABCD,且AP=AB,则平面ABP与平面CDP 所成的二面角的度数是________.
8.如图所示,已知PA⊥矩形ABCD所在的平面,图中互相垂直的平面有________对.
9.已知α、β是两个不同的平面,M、n是平面α及β之外的两条不同直线,给出四个论断:
①M⊥n;②α⊥β;③n⊥β;④M⊥α.
以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:________________.
三、解答题
10.如图所示,在空间四边形ABCD中,AB=BC,CD=DA,E、F、G分别为CD、DA和对角线AC的中点.
求证:平面BEF⊥平面BGD.
11.如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD 的中点,PA⊥底面ABCD,PA=3.
(1)证明:平面PBE⊥平面PAB;
(2)求二面角A—BE—P的大小.
能力提升
12.如图,在直三棱柱ABC—A1B1C1中,E、F分别是A1B、A1C的中点,点D在B1C1上,A1D⊥B1C.
求证:(1)EF∥平面ABC;
(2)平面A1FD⊥平面BB1C1C.
13.如图,在三棱锥P—ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.
(1)求证:BC⊥平面PAC.
(2)是否存在点E使得二面角A—DE—P为直二面角?并说明理由.
1.证明两个平面垂直的主要途径
(1)利用面面垂直的定义,即如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.
(2)面面垂直的判定定理,即如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.
2.利用面面垂直的判定定理证明面面垂直时的一般方法:先从现有的直线中寻找平面的垂线,若图中存在这样的直线,则可通过线面垂直来证明面面垂直;若图中不存在这样的直线,则可通过作辅助线来解决,而作辅助线则应有理论依据并有利于证明,不能随意添加.
3.证明两个平面垂直,通常是通过证明线线垂直→线面垂直→面面垂直来实现的,因此,在关于垂直问题的论证中要注意线线垂直、线面垂直、面面垂直的相互转化.每一垂直的判定都是从某一垂直开始转向另一垂直,最终达到目的的.
2.3.2 平面与平面垂直的判定答案
知识梳理
1.两个半平面这条直线这两个半平面
2.垂足∠AOB
3.(1)直二面角(2)垂线a⊂α
作业设计
1.B [①不符合二面角定义,③从运动的角度演示可知,二面角的平面角不是最小角.故选B.]
2.C
3.B [②错,当两平面不垂直时,在一个平面内可以找到无数条直线与两个平面的交线垂直.]
4.C [当两点连线与平面垂直时,有无数个平面与已知平面垂直,当两点连线与平面不垂直时,有且只有一个平面与已知平面垂直.]
5.B [
如图所示,由二面角的定义知∠BOD即为二面角的平面角.
∵DO=OB=BD=
3 2
,
∴∠BOD=60°.]
6.C [
如图所示,∵BC∥DF,
∴BC∥平面PDF.
∴A正确.
由BC⊥PE,BC⊥AE,
∴BC⊥平面PAE.
∴DF⊥平面PAE.
∴B正确.
∴平面ABC⊥平面PAE(BC⊥平面PAE).
∴D正确.]
7.45°
解析可将图形补成以AB、AP为棱的正方体,不难求出二面角的大小为45°.8.5
解析由PA⊥面ABCD知面PAD⊥面ABCD,面PAB⊥面ABCD,
又PA⊥AD,PA⊥AB且AD⊥AB,
∴∠DAB为二面角D—PA—B的平面角,
∴面DPA⊥面PAB .又BC⊥面PAB ,
∴面PBC⊥面PAB ,同理DC⊥面PDA ,
∴面PDC⊥面PDA .
9.①③④⇒②(或②③④⇒①)
10.证明 ∵AB=BC ,CD =AD ,G 是AC 的中点,
∴BG⊥AC,DG⊥AC,
∴AC⊥平面BGD .
又EF∥AC,∴EF⊥平面BGD .
∵EF ⊂平面BEF ,∴平面BEF⊥平面BGD .
11.(1)证明 如图所示,连接BD ,由ABCD 是菱形且∠BCD=60°知,△BCD 是等边三角形.
因为E 是CD 的中点,所以BE⊥CD.
又AB∥CD,所以BE⊥AB.
又因为PA⊥平面ABCD ,
BE ⊂平面ABCD ,
所以PA⊥BE.而PA∩AB=A ,
因此BE⊥平面PAB .
又BE ⊂平面PBE ,
所以平面PBE⊥平面PAB .
(2)解 由(1)知,BE⊥平面PAB ,PB ⊂平面PAB ,
所以PB⊥BE.又AB⊥BE,
所以∠PBA 是二面角A —BE —P 的平面角.
在Rt △PAB 中,tan ∠PBA=PA AB =3,则∠PBA=60°. 故二面角A —BE —P 的大小是60°.
12.证明 (1)由E 、F 分别是A 1B 、A 1C 的中点知EF∥BC.
因为EF ⊄平面ABC .
BC ⊂平面ABC .
所以EF∥平面ABC .
(2)由三棱柱ABC —A 1B 1C 1为直三棱柱知CC 1⊥平面A 1B 1C 1.
又A 1D ⊂平面A 1B 1C 1,故CC 1⊥A 1D .
又因为A 1D⊥B 1C ,CC 1∩B 1C =C ,故A 1D⊥平面BB 1C 1C ,又A 1D ⊂平面A 1FD ,所以平面A 1FD⊥平面BB 1C 1C .
13.(1)证明 ∵PA⊥底面ABC ,
∴PA⊥BC.
又∠BCA=90°,
∴AC⊥BC.
又∵AC∩PA=A ,∴BC⊥平面PAC .
(2)解 ∵DE∥BC,又由(1)知,
BC⊥平面PAC ,
∴DE⊥平面PAC .
又∵AE ⊂平面PAC ,PE ⊂平面PAC ,
∴DE⊥AE,DE⊥PE.
∴∠AEP 为二面角A —DE —P 的平面角.
∵PA⊥底面ABC ,
∴PA⊥AC,∴∠PAC=90°.
∴在棱PC上存在一点E,
使得AE⊥PC.
这时∠AEP=90°,
故存在点E,使得二面角A—DE—P为直二面角.。