1.1.1集合的含义与表示教学设计(师)

合集下载

人教课标A版数学必修一1.1.1集合的含义与表示教案

人教课标A版数学必修一1.1.1集合的含义与表示教案

1.1.1《集合的含义与表示》导学案班级组名:姓名【学习目标】A级目标:通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.B级目标:了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.【重点难点】重点:集合的基本概念与表示方法.难点:选择恰当的方法表示一些简单的集合.【学习过程】一、课题引入问题1.军训前学校通知:8月30日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?问题2.首先教师提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?二、自主探究得出结论阅读课本第2~3页,完成下列探究任务[问题一]①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.④如果用A表示高一(1)班全体学生组成的集合,用a表示高一(1)班的一位同学,b是高一(2)班的一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系?⑤世界上最高的山能不能构成一个集合?⑥世界上的高山能不能构成一个集合?⑦问题⑥说明集合中的元素具有什么性质?⑧由实数1、2、3、1组成的集合有几个元素?⑨问题⑧说明集合中的元素具有什么性质?⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?[问题二]阅读课本P3中:数学中一些常用的数集及其记法.快速写出常见数集的记号.[问题三]①前面所说的集合是如何表示的?②阅读课本中的相关内容,并思考:除字母表示法和自然语言之外,还能用什么方法表示集合?③集合共有几种表示法?三、合作交流,解决问题例1.下列各组对象不能组成集合的是( )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=x1图象上所有的点例2.在数集{2x,x 2-x}中,实数x 的取值范围是什么?例3.试分别用列举法和描述法表示下列集合:(1) 小于10的所有自然数组成的集合;(2) 方程x 2=x 的所有实数根组成的集合;(3) 由1~20以内的所有质数组成的集合.四.突破疑难例4.若集合A={}23,21,4a a a ---且3A -∈,求实数a 的值组成的集合.例5.已知集合A={x|ax 2-3x+2=0,a ∈R},若A 中至少有一个元素,求a 的取值范围.【当堂检测】1. (1) A={1,3},判断元素3,5和集合A 的关系,并用符号表示.(2) 所有素质好的人能否表示为集合?(3) A={2,2,4}表示是否准确?(4) A={太平洋,大西洋},B={大西洋,太平洋}是否表示同一集合?2.方程ax 2+5x+c=0的解集是{21,31},则a=________,c=_______.3.已知A={x ∈R |x=abcabc bc bc ac ac ab ab c c b b a a ||||||||||||||++++++,abc ≠0},用列举法表示集合A.4.用列举法表示下列集合:(1) 所有绝对值等于8的数的集合A;(2) 所有绝对值小于8的整数的集合B.5.试分别用列举法和描述法表示下列集合:(1) 方程x 2-2=0的所有实数根组成的集合;(2) 由大于10小于20的所有整数组成的集合.【课后反思】1.今天你的收获是什么?2.你有哪些方面需要努力?【课后巩固提高】1.说出下面集合中的元素:(1) {大于3小于11的偶数};(2) {平方等于1的数};(3) {15的正约数}.2.判断正误:(1)所有属于N 的元素都属于N *. ( )(2)所有属于N 的元素都属于Z . ( )(3)所有不属于N *的数都不属于Z . ( )(4)所有不属于Q 的实数都属于R . ( )(5)不属于N 的数不能使方程4x=8成立. ( )3.用列举法表示下列集合:(1)小于5的正奇数组成的集合;(2)能被3整除且大于4小于15的自然数组成的集合;(3)方程x 2-9=0的解组成的集合;(4){15以内的质数}; (5){x|x-36∈Z ,x ∈Z }. (6){(x,y)|x ∈N 且1≤x<4,y-2x=0};(7){(x,y)|x+y=6,x ∈N ,y ∈N }.4.用描述法分别表示下列集合:(1)二次函数y=x 2图象上的点组成的集合;(2)数轴上离原点的距离大于6的点组成的集合;(3)不等式x-7<3的解集.(4)方程ax+by=0(ab ≠0)的解;(5)平面直角坐标系中第Ⅱ、Ⅳ象限点的集合;(6)能被3整除的整数.5.定义集合运算:A ⊙B={z|z=xy(x+y),x ∈A,y ∈B},设集合A={0,1},B={2,3},则集合A ⊙B 的所有元素之和为( )A.0B.6C.12D.186.集合A 中的元素由关于x 的方程kx 2-3x+2=0的解构成,其中k ∈R,若A 中仅有一个元素,求k 的值.7. 已知集合A 有三个元素2+a ,2)1(+a ,332++a a(1)若1A ∈,则集合A 中还有哪些元素?(2)若1A ∉,则a 应满足什么条件?拓展提升1.集合A={x|x=a+2b,a ∈Z ,b ∈Z },判断下列元素x=0、121-、231-与集合A 之间的关系.2.已知集合C={x|x=a+b,a ∈A,b ∈B}.(1)若A={0,1,2,3},B={6,7,8,9},求集合C 中所有元素之和S;(2)若A={0,1,2,3,4,…,2 005},B={5,6,7,8,9},试用代数式表示出集合C 中所有元素之和S;(3)联系高斯求S=1+2+3+4+…+99+100的方法,试求出(2)中的S.思路分析:先用列举法写出集合C,然后解决各个小题.答案:(1)列举法表示集合C={6,7,8,9,10,11,12},进而易求得S=6+7+8+9+10+11+12=63.(2)列举法表示集合C={5,6,7,…,2 013,2 014},由此可得S=5+6+7+…+2 013+2 014.(3)高斯求S=1+2+3+4+…+99+100时,利用1+100=2+99=3+98=…=50+51=101,进而得S=1+2+3+4+…+99+100=101×50=5 050.本题(2)中S=5+6+7+…+2 013+2 014=2 019×1 005=2 029 095.。

1.1.1 集合的含义及其表示教案

1.1.1 集合的含义及其表示教案

§1.1.1 集合的含义及其表示一、教学目标(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;初步了解属于关系和集合相等的意义(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;(3)熟记有关数集,培养学生认识事物的能力二、教学重点集合的基本概念与表示方法;三、教学难点运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;四、教学过程1、创设情境,引入新课在小学和初中我们已经接触了一些集合,例如自然数的集合,有理数的集合,不等式x-7<3的解的集合,到一个定点的距离的定长的集合(即圆),到一条线段的两个端点距离相等的点的集合(即这条线段的垂直平分线)……那么集合的含义是什么呢?我们再来看看下面的一些例子:(1)1~20以内的所有质数(2)2010年4月1日之前与我国建立外交关系的所有国家(2)所有的正方形(3)高一<2>班的学生在上数学课(4)方程x2+3x-2=0的所有实数解上面这些例子有什么共同的特征?2、推进新课(1)元素与集合的概念:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。

(2)集合的性质○1确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。

○2互异性:集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个。

○3无序性:集合中的元素间是无次序关系的。

(3)集合相等:只要构成两个集合的元素是一样的,我们就称这两个集合是相等的。

练习:1.判断以下元素的全体是否组成集合(1)大于3小于11的偶数。

(2)我国的小河流。

2.说出集合A={a,b,c}和集合B={b, a,c}的关系。

(4)集合与元素的表示:集合通常用大括号或大写的拉丁字母表示,如{1,2,3,4,5}与{高一(2)班的所有学生},又如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……如果a是集合A的元素,就说a属于A,记作a∈A。

教学设计2:1.1.1集合的概念

教学设计2:1.1.1集合的概念

§1.1.1集合的概念一. 教学目标:1.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性、互异性、无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力.2. 过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3. 情感.态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.二. 教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.三. 学法与教学用具1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2. 教学用具:投影仪.四. 教学思路(一)创设情景,揭示课题1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.(二)研探新知1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)海南省在2004年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点;(7)方程2560x x -+=的所有实数根;(8)不等式30x ->的所有解;(9)国兴中学2004年9月入学的高一学生的全体.2.教师组织学生分组讨论:这9个实例的共同特征是什么?3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.4.教师指出:集合常用大写字母A ,B ,C ,D ,…表示,元素常用小写字母,,,a b c d …表示.(三)质疑答辩,排难解惑,发展思维1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.教师组织引导学生思考以下问题:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的见解.3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.4.教师提出问题,让学生思考(1)如果用A 表示高—(3)班全体学生组成的集合,用a 表示高一(3)班的一位同学,b 是高一(4)班的一位同学,那么,a b 与集合A 分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.如果a 是集合A 的元素,就说a 属于集合A ,记作a A ∈.如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉.(2)如果用A 表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A 的关系分别是什么?请用数学符号分别表示.(3)让学生完成教材第6页练习第1题.5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A 组第1题.6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:(1)要表示一个集合共有几种方式?(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?(3)如何根据问题选择适当的集合表示法?使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

示范教案(1.1集合的含义与表示)

示范教案(1.1集合的含义与表示)

模块纵览课标要求1.知识与技能认识和理解集合、映射、函数、幂函数、指数函数、对数函数等概念,认识和理解它们的有关性质和运算.具有一定的把函数应用于实际的能力.2.过程与方法通过背景的给出,通过经历、体验和实践探索过程的展现,通过数学思想方法的渗透,让学生体会过程的重要,并在过程中学习知识,同时领会一定的数学思想和方法.3.情感、态度与价值观教育的根本目的是育人.通过对本模块内容的教学,使学生在学习和运用知识的过程中提高对数学学习的兴趣,并在初中函数的学习基础上,对数学有更深刻的感受,提高说理、批判和质疑精神,形成锲而不舍追求真理的科学态度和习惯,树立良好的情感态度和价值观.内容概述本模块共三章:第一章集合与函数概念;第二章基本初等函数(Ⅰ);第三章函数的应用.本模块为了用集合与对应的语言刻画函数概念,先在第一章给出集合的有关概念、表示、关系和运算等;然后从函数实例出发深化函数概念及其表示,并研究映射概念;进而又给出了函数的性质:单调性、最值、奇偶性,这也是对函数的深化;接下来再回到特殊的函数——几个基本初等函数,继续认识函数,本模块重点涉及了指数函数、对数函数、幂函数;最后专门给出了函数在数学和实际中的一些应用实例,使函数的价值得到体现,也是进一步巩固函数的概念,更加强了数学应用.概括地说,本模块的核心内容是“函数”.函数是描述现实世界最重要、最常用的数学模型,是贯穿整个高中数学的纽带,是学生进一步学习的准备,是未来公民的必需,因此,整个模块以函数作为中心,以函数思想作为指导思想.本模块无论是数还是形都用函数观点来研究,研究它们的变化及其规律.对方程的认识和研究,也是从函数出发,把它与两个函数相结合,把它的解看成两个函数图象的交点的横坐标.这里把函数作为整体来认识,方程则被看成是包含于函数的局部.教学建议教师,对数学应该有自己深入的想法,只有教师深入了才能有教学的浅出;教师,对于教学也应该有自己的想法,唯其有自己的想法,才能发挥自己的特长,教出具有独到想法的学生.1.抓住核心,重点突破由于函数是本模块的重点和核心,因此教师要重视函数的教学,向学生贯彻函数的数学思想,逐步让学生掌握学会函数,更会用函数的思想去解决数学和实际问题.函数概念的教学要从实际背景和定义两个方面帮助学生理解函数的本质,教学中可引导学生联系生活常识,尝试列举具体函数,构建函数的一般定义.要注意:①构成函数的要素和相同函数的含义,②函数的三种表示法的联系、区别与适用性,③分段函数的意义,④映射的概念和判断.教学中应强调对函数概念本质的理解,在求函数定义域、值域时,要控制难度.2.用课本教,而非教课本《普通高中数学课程标准》是在《基础教育课程改革纲要(试行)》的指导下编写的,是数学学科教育目标的具体化,体现数学学科对学生最起码的要求,是编制高考大纲的依据,是数学教学和培养学生数学素质的主要依据,具有指导性.《普通高中数学课程标准》的目标是包含“双基”在内的三维发展目标:知识与技能,过程与方法,情感、态度与价值观.在这种教学过程中,课本仅仅是一种学习工具,是课程标准的具体化,课本内容仅仅是帮助学生实现三维发展目标的一种载体,并不要求学生将课本内容全部掌握.由于高中数学课本版本的多样化,高考数学只能依据高中数学课程标准而不是某个版本的课本来命题.因此在处理新课标课本时,首先要考虑高中数学课程标准的培养目标和具体要求.就课本来说,版本不同,对课程标准的理解就有不同,其处理的方式也就不同,因此,在教学中,要深入钻研课程标准、课本、学生,找准三者的连接点.这样在新课程改革的形势下,课本仅仅是教学的素材,在教学过程中,以课本为依托,把课本当作指导教学的素材和蓝本,创造性地使用、改造课本,最终突破课本,即变“教课本”为“用课本教”,树立“用课本教”的课本观.同时这也要求提醒学生,不要把课本看得过于神圣.3.把学生当成学习的主人独立自主地思考是学习数学的需要,但是合作交流更不能少.在课堂上,教师尽量不要大包大揽,以先知先觉出现,把结论告诉学生,而是推出判断,引导学生独立思考,并在此基础上进行合作和交流,努力实现师生的互动,这是课标的要求也是时代发展的必然.4.强调应用,突出提出、分析和解决问题的能力数学是美的,这正是数学使人兴趣盎然、乐此不疲之处.数学的美,有两个方面:一是其中的思维之美,内在的逻辑和运用逻辑的机智,外在的形式,莫不充满着思维之美;另一方面则是它的作用,它在方方面面的应用.新课标要求强化数学应用,在应用中,应该特别重视实践能力和创造能力的培养;在教学中,要重视动手和一题多解的能力.第一章集合与函数概念本章教材分析通过本章的学习,使学生会使用最基本的集合语言表示有关的数学对象,并能在自然语言、图形语言、集合语言之间进行转换,体会用集合语言表达数学内容的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.通过本章的学习,使学生不仅把函数看成变量之间的依赖关系,同时还会用集合与对应的语言刻画函数,为后续学习奠定基础.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识,培养学生的抽象概括能力,增强学生应用数学的意识.课本力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,强调从实例出发,让学生对集合和函数概念有充分的感性认知基础,再用集合与对应语言抽象出函数概念.课本突出了集合和函数概念的背景教学,这样比较符合学生的认识规律.教学中要高度重视数学概念的背景教学.课本尽量创设使学生运用集合语言和数学符号进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,用图象表示函数,帮助学生借助直观图示认识抽象概念.课本在例题、习题的教学中注重运用集合和函数的观点研究、处理数学问题,这一观点,一直贯穿到以后的数学学习中.在例题和习题的编排中,渗透了分类讨论思想,让学生体会到分类讨论思想在生活中和数学中的广泛运用,这是学生在初中阶段所缺少的.函数的表示是本章的主要内容之一,课本重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念.在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.课本将函数推广到了映射,体现了由特殊到一般的思维规律,有利于学生对函数概念学习的连续性.在教学中,要坚持循序渐进,逐步渗透数形结合、分类讨论这方面的训练.对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不作提倡,要准确把握这方面的要求,防止拔高教学.重视函数与信息技术整合的要求,通过电脑绘制简单函数动态图象,使学生初步感受到信息技术在函数学习中的重要作用.为了体现课本的选择性,在练习题安排上加大了弹性,教师应根据学生实际情况,合理地取舍.本章教学时间约需13课时,具体分配如下(仅供参考):1.1.1集合的含义与表示约1课时1.1.2集合间的基本关系约1课时1.1.3集合的基本运算约2课时1.2.1函数的概念约2课时1.2.1函数的表示法约3课时1.3.1单调性与最大约2课时1.3.2奇偶性约1课时本章复习约1课时1.1 集合1.1.1 集合的含义与表示整体设计教学分析集合论是现代数学的一个重要的基础.在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础.课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,结合实例给出元素、集合的含义,课本注重体现逻辑思考的方法,如抽象、概括等. 值得注意的问题:由于本小节的新概念、新符号较多,建议教学时先引导学生阅读课本,然后进行交流,让学生在阅读与交流中理解概念并熟悉新符号的使用.在信息技术条件较好的学校,可以利用网络平台让学生交流学习概念后的认识;也可以由教师给出问题,让学生读后回答问题,再由教师给出评价.这样做的目的是培养学生主动学习的习惯,提高阅读与理解、合作与交流的能力.在处理集合问题时,根据需要,及时提示学生运用集合语言进行表述.三维目标1.通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.2.了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.重点难点教学重点:集合的基本概念与表示方法.教学难点:选择恰当的方法表示一些简单的集合.课时安排1课时设计方案(一)教学过程导入新课思路1.军训前学校通知:8月15日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合.思路2.首先教师提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆、举例和互相交流自己举的例子.与此同时,教师对学生的活动给予评价.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.推进新课新知探究提出问题①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.④如果用A表示高一(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系?⑤世界上最高的山能不能构成一个集合?⑥世界上的高山能不能构成一个集合?⑦问题⑥说明集合中的元素具有什么性质?⑧由实数1、2、3、1组成的集合有几个元素?⑨问题⑧说明集合中的元素具有什么性质?⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?讨论结果:①能.②能.③我们把研究的对象统称为“元素”,那么把一些元素组成的总体叫“集合”.④a是集合A的元素,b不是集合A的元素.学生得出元素与集合的关系有两种:属于和不属于.⑤能,是珠穆朗玛峰.⑥不能.⑦确定性.给定的集合,它的元素必须是明确的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合的确定性.⑧3个.⑨互异性.一个给定集合的元素是互不相同的,即集合中的元素是不重复出现的,这就是集合的互异性.⑩集合M和N相同.这说明集合中的元素具有无序性,即集合中的元素是没有顺序的.可以发现:如果两个集合中的元素完全相同,那么这两个集合是相等的.提出问题阅读课本P3中:数学中一些常用的数集及其记法.快速写出常见数集的记号.活动:先让学生阅读课本,教师指定学生展示结果.学生写出常用数集的记号后,教师强调:通常情况下,大写的英文字母N、Z、Q、R不能再表示其他的集合,这是专用集合表示符号,类似于110、119等专用电话号码一样.以后,我们会经常用到这些常见的数集,要求熟练掌握.讨论结果:常见数集的专用符号.N:非负整数集(或自然数集)(全体非负整数的集合);N*或N+:正整数集(非负整数集N内排除0的集合);Z:整数集(全体整数的集合);Q:有理数集(全体有理数的集合);R:实数集(全体实数的集合).提出问题①前面所说的集合是如何表示的?②阅读课本中的相关内容,并思考:除字母表示法和自然语言之外,还能用什么方法表示集合?③集合共有几种表示法?活动:①学生回顾所学的集合并作出总结.教师提示可以用字母或自然语言来表示.②教师可以举例帮助引导:例如,24的所有正约数构成的集合,把24的所有正约数写在大括号“{}”内,即写出为{1,2,3,4,6,8,12,24}的形式,这种表示集合的方法是列举法.注意:大括号不能缺失;有些集合所含元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可用列举法表示,如:从1到100的所有整数组成的集合:{1,2,3,…,100},自然数集N:{0,1,2,3,4,…,n,…};区分a与{a}:{a}表示一个集合,该集合只有一个元素,a表示这个集合的一个元素;用列举法表示集合时不必考虑元素的前后次序;相同的元素不能出现两次.又例如,不等式x-3>2的解集,这个集合中的元素有无数个,不适合用列举法表示.可以表示为{x ∈R|x-3>2}或{x|x-3>2},这种表示集合的方法是描述法.③让学生思考总结已经学习了的集合表示法.讨论结果:①方法一(字母表示法):大写的英文字母表示集合,例如常见的数集N、Q,所有的正方形组成的集合记为A等等;方法二(自然语言):用文字语言来描述出的集合,例如“所有的正方形”组成的集合等等.②列举法:把集合中的全部元素一一列举出来,并用大括号“{}”括起来表示集合,这种表示集合的方法叫做列举法;描述法:在大括号内先写上表示这个集合元素的一般符号及其取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.注:在不致混淆的情况下,也可以简写成列举法的形式,只是去掉竖线和元素代表符号,例如:所有直角三角形的集合可以表示为{x|x是直角三角形},也可以写成{直角三角形}.③表示一个集合共有四种方法:字母表示法、自然语言、列举法、描述法.应用示例思路11.下列各组对象不能组成集合的是( )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=图象上所有的点活动:学生先思考、讨论集合元素的性质,教师指导学生此类选择题要逐项判断.判断一组对象能否构成集合,关键是看是否满足集合元素的确定性.在选项A、C、D中的元素符合集合的确定性;而选项B中,难题没有标准,不符合集合元素的确定性,不能构成集合.答案:B变式训练1.下列条件能形成集合的是( )A.充分小的负数全体B.爱好足球的人C.中国的富翁D.某公司的全体员工答案:D2.2007浙江宁波高三第一次“十校联考”,理1在数集{2x,x2-x}中,实数x的取值范围是.分析:实数x的取值满足集合元素的互异性,则2x≠x2-x,解得x≠0且x≠3,∴实数x的取值范围是{x|x<0或0<x<3或x>3}.答案:{x|x<0或0<x<3或x>3}点评:本题主要考查集合的含义和元素的性质.当所指的对象非常明确时就能构成集合,若元素不明确,没有判断的标准就不能构成集合.2.用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合.活动:学生先思考或讨论列举法的形式,展示解答过程.当学生出现错误时,教师及时加以纠正.利用相关的知识先明确集合中的元素,再把元素写入大括号“{}”内,并用逗号隔开.所给的集合均是用自然语言给出的.提示学生注意以下方面:(1)自然数中包含零;(2)解一元二次方程有公式法和分解因式法,方程x2=x的根是x=0,x=1;(3)除去1和本身外没有其他约数的正整数是质数,1~20以内的所有质数是2、3、5、7、11、13、17、19.解:(1)设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9}.(2)设方程x2=x的所有实数根组成的集合为B,那么A={0,1}.(3)设由1~20以内的所有质数组成的集合为C,那么C={2,3,5,7,11,13,17,19}.点评:本题主要考查集合表示法中的列举法.通过本题可以体会利用集合表示数学内容的简洁性和严谨性,以后我们尽量用集合来表示数学内容.如果一个集合是有限集,并且元素的个数较少时,通常选择列举法表示,其特点是非常显明地表示出了集合中的元素,是常用的表示法;列举法表示集合的步骤:(1)用字母表示集合;(2)明确集合中的元素;(3)把集合中所有元素写在大括号“{}”内,并写成A={……}的形式.变式训练用列举法表示下列集合:(1)所有绝对值等于8的数的集合A;(2)所有绝对值小于8的整数的集合B.答案:(1)A={-8,8};(2)B={-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7}.3.试分别用列举法和描述法表示下列集合:(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.活动:先让学生回顾列举法表示集合的步骤,思考描述法的形式,再找学生到黑板上书写.当学生出现错误时,教师指导学生书写过程.用描述法表示集合时,要用数学符号表示集合元素的特征.大于10小于20的所有整数用数学符号可以表示为10<x<20,x∈Z.(重点引导用描述法表示集合)用描述法表示集合时,用一个小写英文字母表示集合中的元素,作为集合中元素的代表符号,找到集合中元素的共同特征,并把共同特征用数学符号来表达,然后写在大括号“{}”内,在大括号内先写上集合中元素的代表符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.在(1)中利用条件中现有元素代表符号x,集合中元素的共同特征就是满足方程x2-2=0.在(2)的条件中没有元素代表符号,故要先设出,用一个小写英文字母表示即可;集合中元素的共同特征有两个:一是大于10小于20(用不等式表示),二是整数(用元素与集合的关系符号“∈”来表示).解:(1)设方程x2-2=0的实根为x,它满足条件x2-2=0,因此,用描述法表示为A={x∈R|x2-2=0}.方程x2-2=0的两个实数根为,,因此,用列举法表示为A={,}.(2)设大于10小于20的整数为x,它满足条件x∈Z,且10<x<20,因此,用描述法表示为B={x∈Z|10<x<20}.大于10小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为B={11,12,13,14,15,16,17,18,19}.描述法表示集合的步骤:(1)用字母分别表示集合和元素;(2)用数学符号表达集合元素的共同特征;(3)在大括号内先写上集合中元素的代表符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.并写成A={…|…}的形式.描述法适合表示有无数个元素的集合.注意:当集合中的元素个数较少时,通常用列举法表示,否则用描述法表示.思路21.(1)A={1,3},判断元素3,5和集合A的关系,并用符号表示.(2)所有素质好的人能否表示为集合?(3)A={2,2,4}表示是否准确?(4)A={太平洋,大西洋},B={大西洋,太平洋}是否表示同一集合?活动:如果学生没有解题思路,让学生思考以下知识:(1)元素与集合的关系及其符号表示;(2)集合元素的性质;(3)两个集合相同的定义.解:(1)根据元素与集合的关系有两种:属于(∈)和不属于(),知3属于集合A,即3∈A,5不属于集合A,即5A.(2)由于素质好的人标准不可量化,不符合集合元素的确定性,故A不能表示为集合.(3)表示不准确,不符合集合元素的互异性,应表示为A={2,4}.(4)因其元素相同,A与B表示同一集合.变式训练1.数集{3,x,x2-2x}中,实数x满足什么条件?解:集合元素的特征说明{3,x,x2-2x}中元素应满足即也就是即满足x≠-1,0,3.2.方程ax2+5x+c=0的解集是{,},则a=________,c=_______.分析:方程ax2+5x+c=0的解集是{,},那么、是方程的两根,即有得那么a=-6,c=-1.答案:6 -13.集合A中的元素由关于x的方程kx2-3x+2=0的解构成,其中k∈R,若A中仅有一个元素,求k 的值.解:由于A中元素是关于x的方程kx2-3x+2=0(k∈R)的解,若k=0,则x=,知A中有一个元素,符合题设;若k≠0,则方程为一元二次方程,当Δ=9-8k=0即k=时,kx2-3x+2=0有两相等的实数根,此时A中有一个元素.综上所述k=0或k=.4.2006山东高考,理1定义集合运算:A⊙B={z|z=xy(x+y),x∈A,y∈B},设集合A={0,1},B={2,3},则集合A⊙B的所有元素之和为…( )A.0B.6C.12D.18分析:∵x∈A,∴x=0或x=1.当x=0,y∈B时,总有z=0;当x=1时,若x=1,y=2时,有z=6;当x=1,y=3时,有z=12.综上所得,集合A⊙B的所有元素之和为0+6+12=18.答案:D注意:①判断元素与此集合的关系时,用列举法表示的集合,只需观察这个元素是否在集合中即可.用符号∈, 表示,注意这两个符号的左边写元素,右边写集合,不能互换它们的位置,否则没有意义.②如果有明确的标准来判断元素在集合中,那么这些元素就能构成集合,否则不能构成集合.③用列举法表示的集合,直接观察它们的元素是否完全相同,如果完全相同,那么这两个集合就相等,否则不相等.2.用列举法表示下列集合:(1)小于5的正奇数组成的集合;(2)能被3整除且大于4小于15的自然数组成的集合;(3)方程x2-9=0的解组成的集合;(4){15以内的质数};(5){x|∈Z,x∈Z}.活动:教师指导学生思考列举法的书写格式,并讨论各个集合中的元素.明确各个集合中的元素,写在大括号内即可.提示学生注意:(2)中满足条件的数按从小到大排列时,从第二个数起,每个数比前一个数大3;(4)中除去1和本身外没有其他的约数的正整数是质数;(5)中3-x是6的约数,6的约数有±1,±2,±3,±6.解:(1)满足题设条件小于5的正奇数有1、3,故用列举法表示为{1,3};(2)能被3整除且大于4小于15的自然数有6、9、12,故用列举法表示为{6,9,12};(3)方程x2-9=0的解为-3、3,故用列举法表示为{-3,3};(4)15以内的质数有2、3、5、7、11、13,故该集合用列举法表示为{2,3,5,7,11,13};(5)满足∈Z的x有3-x=±1、±2、±3、±6,解之,得x=2、4、1、5、0、6、-3、9,故用列举法表示为{2,4,1,5,0,6,-3,9}.变式训练用列举法表示下列集合:(1)x2-4的一次因式组成的集合;(2){y|y=-x2-2x+3,x∈R,y∈N};(3)方程x2+6x+9=0的解集;(4){20以内的质数};(5){(x,y)|x2+y2=1,x∈Z,y∈Z};(6){大于0小于3的整数};(7){x∈R|x2+5x-14=0};(8){(x,y)|x∈N且1≤x<4,y-2x=0};(9){(x,y)|x+y=6,x∈N,y∈N}.思路分析:用列举法表示集合的关键是找出集合中的所有元素,要注意不重不漏,不计次序地用“,”隔开放在大括号内.解:(1)因x2-4=(x-2)(x+2),故符合题意的集合为{x-2,x+2};(2)y=-x2-2x+3=-(x+1)2+4,即y≤4.又y∈N,∴y=0、1、2、3、4,故{y|y=-x2-2x+3,x∈R,y∈N}={0,1,2,3,4};(3)由x2+6x+9=0得x1=x2=-3,∴方程x2+6x+9=0的解集为{-3};(4){20以内的质数}={2,3,5,7,11,13,17,19};(5)因x∈Z,y∈Z,则x=-1、0、1时,y=0、1、-1,那么{(x,y)|x2+y2=1,x∈Z,y∈Z}={(-1,0),(0,1),(0,-1),(1,0)};(6){大于0小于3的整数}={1,2};(7)因x2+5x-14=0的解为x1=-7,x2=2,则{x∈R|x2+5x-14=0}={-7,2};(8)当x∈N且1≤x<4时,x=1、2、3,此时y=2x,即y=2、4、6,那么{(x,y)|x∈N且1≤x<4,y-2x=0}={(1,2),(2,4),(3,6)};(9){(x,y)|x+y=6,x∈N,y∈N}={(0,6)(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.点评:本题主要考查集合的列举法表示.列举法适用于元素个数有限个并且较少的集合.用列举法表示集合:先明确集合中的元素,再把元素写在大括号内并用逗号隔开,相同的元素写成一个.3.用描述法分别表示下列集合:(1)二次函数y=x2图象上的点组成的集合;(2)数轴上离原点的距离大于6的点组成的集合;。

1.1.1集合的含义与表示

1.1.1集合的含义与表示

一、集合的含义 1.什么是集合?
一般的,我们把研究对象统称为元素,把一些元 素组成的总体叫做集合(简称为集)。
元素:用小写字母a,b,c...表示 集合:用大写字母A,B,C...表示
2.集合与元素的关系 • 如果a是集合A的元素,就说a属于集合A,记作 a A 如果a不是集合A中的元素,就说a不属于集合A,
• 正整数集:N*或N+ • 整数集:Z
• 有理数集:Q
• 实数集:R
二、集合的表示
• 列举法:把集合的元素一一列举出来,写在大括号内 注:1.元素之间要用逗号隔开 2.元素不能重复
如:地球上的四大洋组成的集合表示为{太平洋,大西洋, 印度洋,北冰洋}
方程(x 1)( x 2) 0 组成的集合表示为{1,-2}
梦 境
集合? 例:(1)1~20内的所有整数 1,2,3,4,5..... • (2)亚洲的所有国家 中国,韩国,日本,印度..... • (3)所有的正方形 • (4)方程x2 3x 2 0 的所有实数根 - 1 , - 2 • (5)化德一中2020年9月入学的所有高一学生
二、集合的表示
• 描述法:用集合所含元素的共同特征表示集合 注:集合的代表元素
如:不等式 x 7 3的解集,共同特征:x R ,且 x 7 3
集合表示为:{x R x 10}
列举法主要针对集合中元素个数较少的情况,而描述法 主要适用于集合中的元素个数无限或不宜一一列举的情况
记作 a A
• 例:1~20内的所有素数记为集合A,则 3 A,4 A
素数:除1和它本身外,不能被其他自然数整除的 数。
判断下列对象能否组成集合: • 1.小于6的正整数 • 2.大于3小于11的偶数 • 3.中国男子足球队中技术很差的队员 • 4.中国的富翁 • 5.爱好足球的人 • 6.世界上所有的高山

集合的概念教学设计

集合的概念教学设计

1—1.1.1集合的含义与表示一、教材分析1.在教材中的地位与作用在《集合与函数概念》一章中,《集合的含义与表示》是一项重要的基础内容,在知识体系来看,他不仅是高中数学的开始,也是中小学数学的一个承接。

具体体现在:第一、内容的定位。

集合在高中课程中的定位,在标准中写的比较清楚。

标准是这样说的,集合语言是现代数学的基本语言,使用集合语言可以简洁准确的表达数学中的一些内容。

高中数学只将集合作为一种语言来学习,它把集合是作为一种语言,来描述和表达问题的一种语言来学习的。

学生学会使用最基本的集合语言表示有关的数学对象,发展运用语言进行交流的能力。

我觉得这一段话,就给了我们这个集合内容的一个基本的定位。

第二、集合内容的一个目标。

集合在实现目标中的作用。

提高数学的表达和交流的能力,是集合的一个基本的目标。

集合作为一个数学的概念,对于数学中的分类思想,起了一个促进的作用。

我们数学里有自然语言,有符号语言,有图形语言,还有图表语言等等。

集合就是一种特殊的符号语言。

集合在实现这个目标中,是起了一个作用的。

集合主要是要把各种不同的事物能刻划清楚。

在我们中学所使用、所体现出来的具体集合,都是非常清楚的元素和集合之间的关系,是非常清楚的。

为了搞清楚集合在整个课程中的一个定位,我们应该搞清楚课程中的一个基本脉络。

那些可以作为集合的载体,教室里的男女同学,自然数、整数、分数、小数等等。

我们用这些来对数进行分类。

另外呢,数轴上的点集,比如说我们在讲不等式的点集、不等式的解集、方程的解。

我们总希望用数形结合,它反映在这个是一个点集。

另外还有直角坐标系中的点集、方程的根、不等式的解集、函数的定义域等等,函数的定义域、单调区间,函数这个单调的区间,还要学习图形,图形上的一些特殊点。

集合也需要,作为一种支撑的一个语言。

直线与平面的关系,我们常常说直线L是含于某一个平面的等等。

那么,到了我们学解析几何的时候,我们又要使用集合的语言来帮助我们去刻划平面直角坐标系中的某些特殊点,等等。

精品教案 1.1.1 集合的含义与表示

精品教案 1.1.1 集合的含义与表示

1.1 集合1.1.1 集合的含义与表示整体设计教学分析集合语言是现代数学的基本语言,同时也是一种抽象的数学语言.教材将集合的初步知识作为初、高中数学课程的衔接,既体现出集合在高中数学课程中举足轻重的作用,又体现出集合在数学中的奠基性地位.课本除了从学生熟悉的集合(自然数的集合、有理数的集合等)出发,结合实例给出元素、集合的含义、性质、表示方法之外,还特别注意渗透了“概括”与“类比”这两种常用的逻辑思考方法.因此,建议教学时,应引导学生从大量的实例中概括出集合的含义;多创设让学生运用集合语言进行表达和交流的情境和机会,以便学生在实际应用中逐渐熟悉自然语言、集合语言和图形语言各自的特点和表示方法,能进行相互转换并且灵活应用,充分掌握集合语言.与此同时,本小节作为高一数学教学的第一节新授课,知识体系中的新概念、新符号较多,建议教学时先引导学生阅读课本,然后进行交流、讨论,让学生在阅读与交流中理解概念并熟悉新符号的使用.这样,既能够培养学生自我阅读、共同探究的能力,又能提高学生主动学习、合作交流的精神.三维目标1.了解集合的含义;理解元素与集合的“属于”关系;熟记常用数集专用符号.2.深刻理解集合元素的确定性、互异性、无序性;能够用其解决有关问题.3.能选择不同的形式表示具体问题中的集合.重点难点教学重点:集合的基本概念与表示方法.教学难点:选择适当的方法表示具体问题中的集合.课时安排1课时教学过程导入新课思路1.集合对我们来说可谓是“最熟悉的陌生人”.说它熟悉,是因为我们在现实生活中常常用到“集合”这个名词;比如说,军训的时候,教官是不是经常喊:“高一(4)班的同学,集合啦!”那么说它陌生,是因为我们还未从数学的角度理解集合,从数学的层面挖掘集合的内涵.那么,在数学的领域中,集合究竟是什么呢?集合又有着怎样的含义呢?就让我们通过今天这堂课的学习,一起揭开“集合”神秘的面纱.思路2.你经常会谈论你的家庭,你的班级.其实在讲到你的家庭、班级的时候,你必定在联想构成家庭、班级的成员,例如:家庭成员就是被你称为父亲、母亲、哥哥、姐姐、妹妹、弟弟……的人;班级成员就是与你在同一个教室里一起上课、一起学习的人;一些具有特定属性的人构成的群体,在数学上就是一个集合.那么,在数学中,一些对象的总体怎样才可以构成集合、集合中的元素有哪些特性?集合又有哪些表示方法呢?这就是本节课我们所要学习的内容.思路3.“同学们,在小学和初中的学习过程中,我们已经接触过一些集合的例子,比如说:有理数集合,到一个定点的距离等于定长的点的集合(圆),那么大家是否能够举出更多关于集合的例子呢?”(通过两个简单的例子,引导大家进行类比,运用发散性思维思考说出更多的关于集合的实例,然后教师予以点评.)“那么,集合的含义究竟是什么?它又该如何表示呢?这就是我们今天要研究的课题.”推进新课新知探究提出问题①中国有许多传统的佳节,那么这些传统的节日是否能构成一个集合?如果能,这个集合由什么组成?②全体自然数能否构成一个集合?如果能,这个集合由什么组成?③方程x2-3x+2=0的所有实数根能否构成一个集合?如果能,这个集合由什么组成?④你能否根据上述几个问题总结出集合的含义?讨论结果:①能.这个集合由春节、元宵节、端午节等有限个种类的节日组成,称为有限集.②能.这个集合由0,1,2,3,……等无限个元素组成,称为无限集.③能.这个集合由1,2两个数组成.④我们把研究对象统称为“元素”,把一些元素组成的总体叫做“集合”.提出问题通过以上的学习我们已经知道集合是由一些元素组成的总体,那么是否所有的元素都能构成集合呢?请看下面几个问题.①近视超过300度的同学能否构成一个集合?②“眼神很差”的同学能否构成一个集合?③比较问题①②,说明集合中的元素具有什么性质?④我们知道冬虫夏草既是一种植物,又是一种动物.那么在所有动植物构成的集合中,冬虫夏草出现的次数是一次呢还是两次?⑤组成英文单词every的字母构成的集合含有几个元素?分别是什么?⑥问题④⑤说明集合中的元素具有什么性质?⑦在玩斗地主的时候,我们都知道3,4,5,6,7是一个顺子,那比如说老师出牌的时候把这五张牌的顺序摆成了5,3,6,7,4,那么这还是一个顺子么?类比集合中的元素,一个集合中的元素是3,4,5,6,7,另外一个集合中的元素是5,3,6,7,4,这两个集合中的元素相同么?集合相同吗?这体现了集合中的元素的什么性质?讨论结果:①能.②不能.③确定性.问题②对“眼神很差”的同学没有一个确定的标准,到底怎样才算眼神差,是近视300度?400度?还是说“眼神很差”只是寓意?我们不得而知.因此通过问题①②我们了解到,对于给定的集合,它的元素必须是确定的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合中元素的确定性.④一次.⑤4个元素.e,v,r,y这四个字母.⑥互异性.一个集合中的元素是互不相同的,也就是说,集合中的元素不能重复出现.⑦是.元素相同.集合相同.体现集合中元素的无序性,即集合中的元素的排列是没有顺序的.只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.提出问题①如果用A表示所有的自然数构成的集合,B表示所有的有理数构成的集合,a=1.58,那么元素a和集合A,B分别有着怎样的关系?②大家能否从问题①中总结出元素与集合的关系?③A表示“1~20内的所有质数”组成的集合,那么3__________A,4__________A.讨论结果:①a是集合B中的元素,a不是集合A中的元素.②a是集合B中的元素,就说a属于集合B,记作a∈B;a不是集合A中的元素,就说a不属于集合A,记作a∉A.因此元素与集合的关系有两种,即属于和不属于.③3∈A,4∉A.提出问题①从这堂课的开始到现在,你们注意到我用了几种方法表示集合吗?②字母表示法中有哪些专用符号?③除了自然语言法和字母表示法之外,课本还为我们提供了几种集合的表示方法?分别是什么?④列举法的含义是什么?你能否运用列举法表示一些集合?请举例!⑤能用列举法把下列集合表示出来吗?小于10的质数;不等式x-2>5的解集.⑥描述法的含义是什么?你能否运用描述法表示一些集合?请举例!⑦集合的表示方法共有几种?讨论结果:①两种,自然语言法和字母表示法.②非负整数集(或自然数集),记作N;除0的非负整数集,也称正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.③两种,列举法与描述法.④把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.例如“地球上的四大洋”组成的集合可以用列举法表示为{太平洋,大西洋,印度洋,北冰洋},方程x2-3x+2=0的所有实数根组成的集合可以用列举法表示为{1,2}.⑤“小于10的质数”可以用列举法表示出来;“不等式x-2>5的解集”不能够用列举法表示出来,因为这个集合是一个无限集.因此,当集合是无限集或者其元素数量较多而不便于无一遗漏地列举出来的时候,如果我们再用列举法来表示集合就显得不够简洁明了.⑥用集合所含元素的共同特征表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.例如,不等式x-2>5的解集可以表示为{x∈R|x>7};所有的正方形的集合可以表示为{x|x是正方形},也可写成{正方形}.⑦自然语言法、字母表示法、列举法、描述法.应用示例例1 下列所给对象不能构成集合的是__________.(1)高一数学课本中所有的难题;(2)某一班级16岁以下的学生;(3)某中学的大个子;(4)某学校身高超过1.80米的学生.活动探究:教师首先引导学生通过读题、审题,了解本题考查的基本知识点——集合中元素的确定性;然后指导学生对4个选项进行逐一判断;判断所给元素是否能构成集合,关键是看是否满足集合元素的确定性.解析:(1)不能构成集合.“难题”的概念是模糊的,不确定的,无明确的标准,对于一道数学题是否是“难题”无法客观地判断.实际上一道数学题是“难者不会,会者不难”,因而“高一数学课本中所有的难题”不能构成集合.(2)能构成集合,其中的元素是某班级16岁以下的学生.(3)因为未规定大个子的标准,所以(3)不能组成集合.(4)由于(4)中的对象具备确定性,因此,能构成集合.)(3)个元素,则实数(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合.活动探究:讲解例2的过程中,可以设计如下问题引导学生:针对例2(1):①自然数中是否含有0?②小于10的自然数有哪些?③如何用列举法表示小于10的所有自然数组成的集合?针对例2(2):①解一元二次方程的方法有哪些?分别是什么?②方程x2=x的解是什么?③如何用列举法表示方程x2=x的所有实数根组成的集合?针对例2(3):①如何判断一个数是否为质数(即质数的定义是什么)?②1~20以内的质数有哪些?③如何用列举法表示由1~20以内的所有质数组成的集合?在用列举法表示集合的过程中,应让学生先明确集合中的元素,再把元素写入“{}”内,并用逗号隔开.解:(1)小于10的自然数有0,1,2,3,4,5,6,7,8,9,设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9};(2)方程x2=x的两个实根为x1=0,x2=1,设方程x2=x的所有实数根组成的集合为B,那么B={0,1};(3)1~20以内的质数有2,3,5,7,11,13,17,19,设由1~20以内的所有质数组成的集合为C,那么C={2,3,5,7,11,13,17,19}.点评:本题主要考查了集合表示法中的列举法,通过本题的教学可以体会利用集合表示(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.活动探究:讲解例3的过程中,可以设计如下问题引导学生:针对例3(1)——列举法①方程x2-2=0的解是什么?②如何用列举法表示方程x2-2=0的所有实数根组成的集合?针对例3(1)——描述法①描述法的定义是什么?②所求集合中元素有几个共同特征?分别是什么?③如何用描述法表示所求集合?针对例3(2)——列举法①大于10小于20的所有整数有哪些?②由大于10小于20的所有整数组成的集合用列举法如何表示?针对例3(2)——描述法①所求集合中元素有几个共同特征?分别是什么?②如何用描述法表示所求集合?解:(1)设方程x2-2=0的实数根为x,并且满足x2-2=0,因此,用描述法表示为A ={x∈R|x2-2=0};方程x2-2=0的两个实根为x1=-2,x2=2,因此,用列举法表示为A={-2,2}.(2)设大于10小于20的整数为x,它满足条件x∈Z且10<x<20,因此,用描述法表示为B={x∈Z|10<x<20};大于10小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为{11,12,13,14,15,16,17,18,19}.点评:例2和例3是通过“问题引导”的方式,使学生逐步逼近答案的过程.在此过程中,既帮助学生理清了解答问题的基本思路,又使得列举法和描述法在实例中得到进一步的巩固.课后练习1,2.【补充练习】1.考查下列对象能否构成集合:(1)著名的数学家;(2)某校2013年在校的所有高个子同学;(3)不超过20的非负数;(4)方程x2-9=0在实数范围内的解;(5)直角坐标平面内第一象限的一些点;(6)3的近似值的全体.答案:(1)(2)(5)(6)不能组成集合,(3)(4)能组成集合.2.用适当的符号填空:(1)0__________N,5__________N,16__________N;(2)-12__________Q,π__________Q,e__________∁R Q(e是个无理数);(3)2-3+2+3=__________{x|x=a+6b,a∈Q,b∈Q}.答案:(1)∈∉∈(2)∈∉∈(3)∈3.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,求实数m的值.解:∵2∈A,∴m=2或m2-3m+2=2.若m=2,则m2-3m+2=0,不符合集合中元素的互异性,舍去.若m2-3m+2=2,求得m=0或3.m=0不合题意,舍去.∴m只能取3.4.用适当方法表示下列集合:(1)函数y=ax2+bx+c(a≠0)的图象上所有点的集合;(2)一次函数y=x+3与y=-2x+6的图象的交点组成的集合;(3)不等式x -3>2的解集;(4)自然数中不大于10的质数集.答案:(1)描述法:{(x ,y )|y =ax 2+bx +c ,x ∈R ,a ≠0}.(2)描述法:⎩⎨⎧ (x ,y )⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y =x +3y =-2x +6=⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫⎩⎪⎨⎪⎧ x =1y =4. 列举法:{(1,4)}.(3)描述法:{x |x >5}(4)列举法:{2,3,5,7}.拓展提升问题1:设集合P ={x -y ,x +y ,xy },Q ={x 2+y 2,x 2-y 2,0},若P =Q ,求x ,y 的值及集合P ,Q .活动探究:首先,应让学生思考两个数集相等的条件——集合中的元素分别对应相等;然后,再引导学生讨论:本题中集合P ,Q 对应相等时,其元素可能出现的几种情况,并根据讨论的结果进行计算;最后,应当指导学生自主探究,应用集合中元素的性质检验所求结果是否符合要求.解:∵P =Q 且0∈Q ,∴0∈P .若x +y =0或x -y =0,则x 2-y 2=0,从而Q ={x 2+y 2,0,0},与集合中元素的互异性矛盾,∴x +y ≠0且x -y ≠0;若xy =0,则x =0或y =0.当y =0时,P ={x ,x,0},与集合中元素的互异性矛盾,∴y ≠0;当x =0时,P ={-y ,y,0},Q ={y 2,-y 2,0},由P =Q 得⎩⎪⎨⎪⎧ -y =y 2,y =-y 2,y ≠0, ① 或⎩⎪⎨⎪⎧ -y =-y 2,y =y 2,y ≠0.②由①得y =-1,由②得y =1,∴⎩⎪⎨⎪⎧ x =0,y =-1或⎩⎪⎨⎪⎧x =0,y =1, 此时P =Q ={1,-1,0}.点评:本题综合性地考查了两数集相等的条件、集合中元素的性质以及学生的运算能力和分类讨论能力.问题2:已知集合A ={x |ax 2-3x +2=0},若A 中的元素至多只有一个,求a 的取值范围.活动探究:讨论关于x 的方程ax 2-3x +2=0实数根的情况,从中确定a 的取值范围,依题意,方程有一个实数根或两个相等的实数根或无实数根.解:(1)a =0时,原方程为-3x +2=0,x =23,符合题意. (2)a ≠0时,方程ax 2-3x +2=0为一元二次方程.由Δ=9-8a ≤0,得a ≥98. ∴当a ≥98时,方程ax 2-3x +2=0无实数根或有两个相等的实数根. 综合(1)(2),知a =0或a ≥98. 点评:“a =0”这种情况最容易被忽视,只有在“a ≠0”的条件下,方程ax 2-3x +2=0才是一元二次方程,才能用判别式Δ解决问题.问题3:设S ={x |x =m +2n ,m ,n ∈Z }.(1)若a ∈Z ,则a 是否是集合S 中的元素?(2)对S中的任意两个x1,x2,则x1+x2,x1·x2是否属于S?活动探究:针对问题(1)——首先引导学生仔细观察集合S中元素的共同特征与构成方式;然后,再引导学生思考题中所给的元素a能否表示成m+2n的形式;如果能,m和n 分别是多少,如果不能,请说明理由;最后小结,判断一个元素是否属于集合时,转化为判断这个元素是否满足集合元素的特征即可.针对问题(2)——首先引导学生将x1,x2分别表示出来,再引导大家根据正确的表示结果,推断x1+x2,x1·x2是否是集合S中的元素.解:(1)a是集合S中的元素,a=a+2×0∈S.(2)不妨设x1=m+2n,x2=p+2q,m,n,p,q∈Z.则x1+x2=(m+2n)+(p+2q)=(m+p)+2(n+q),m,n,p,q∈Z.∴x1+x2∈S;x1·x2=(m+2n)·(p+2q)=(mp+2nq)+2(mq+np),m,n,p,q∈Z.∴x1·x2∈S.综上,x1+x2,x1·x2都属于S.点评:本题考查集合的描述法以及元素与集合间的关系.课堂小结本节学习了:(1)集合的含义;(2)集合中元素的性质;(3)元素与集合的关系;(4)集合的表示方法.课后作业习题1.1A组3,4.设计感想本节教学设计是以数学课程标准的要求为指导,结合生活中的一些实例,重视引导学生积极思考,主动参与到教学中,体现了学生的主体地位.同时结合高考的要求适当拓展了教材,使学生的发散性思维得到拓展,最大限度地挖掘了学生的学习潜力,真正做到了对教材的“活学活用”.备课资料集合论的诞生集合论是德国著名数学家康托尔于19世纪末创立的.17世纪,数学中出现了一门新的分支:微积分.在之后的一二百年中这一崭新学科获得了飞速发展并结出了丰硕成果.其推进速度之快使人来不及检查和巩固它的理论基础.19世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动.正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端.到1874年康托尔开始一般地提出“集合”的概念.他对集合所下的定义是:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素.人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日.康托尔把无穷集这一词汇引入数学.对无穷集的研究使他打开了“无限”这一数学上的潘多拉盒子.“我们把全体自然数组成的集合简称作自然数集,用字母N来表示.”学过集合的所有人应该对这句话不会感到陌生.但在接受这句话时我们根本无法想到当年康托尔如此做时是在进行一项更新无穷观念的工作.在此以前数学家们只是把无限看作永远在延伸着的,一种变化着成长着的东西来解释.无限永远处在构造中,永远完成不了,是潜在的,而不是实在的.这种关于无穷的观念在数学上被称为潜无限.18世纪数学王子高斯就持这种观点.由于潜无限思想在微积分的基础重建中已经获得了全面胜利,康托尔的实无限思想在当时遭到一些数学家的批评与攻击是不足为怪的.然而康托尔并未就此止步,他以前所未有的方式,继续正面探讨无穷.他提出用一一对应准则来比较无穷集元素的个数.他把元素间能建立一一对应的集合称为个数相同,用他自己的概念是等势.由于一个无穷集可以与它的真子集建立一一对应关系——也就是说无穷集可以与它的真子集等势,即具有相同的个数.这与传统观念“全体大于部分”相矛盾.而康托尔认为这恰恰是无穷集的特征.在此意义上,自然数集与正偶数集具有了相同的个数,他将其称为可数集.又可容易地证明有理数集与自然数集等势,因而有理数集也是可数集.后来当他又证明了实数集合也是可数集时,一个很自然的想法是无穷集是清一色的,都是可数集.但出乎意料的是,他在1873年证明了实数集的势大于自然数集.有人嘲笑集合论是一种“疾病”,有人嘲讽超限数是“雾中之雾”,称“康托尔走进了超限数的地狱”.然而集合论前后经历二十余年,最终获得了世界公认.在1900年第二次国际数学家大会上,著名数学家庞加莱就曾兴高采烈地宣布“……数学已被算术化了.从康托尔提出集合论至今,时间已经过去了一百多年,在这一段时间里,数学又发生了极其巨大的变化,包括对上述经典集合论作出进一步发展的模糊集合论的出现等等.而这一切都是与康托尔的开拓性工作分不开的.因而当现在回头去看康托尔的贡献时,我们仍然可以引用当时著名数学家对他的集合论的评价作为我们的总结.“它是对无限最深刻的洞察,它是数学天才的最优秀作品,是人类纯智力活动的最高成就之一.康托尔的无穷集合论是过去两千五百年中对数学的最令人不安的独创性贡献.”。

人教A版必修一 第一章 1.1.1集合的含义与表示方法 教案

人教A版必修一 第一章  1.1.1集合的含义与表示方法 教案
小于10的所有自然数组成的集合;
方程x=x2
③由1到20以内的所有整数组成的集合。
所有正数
所有奇数
x-7<3的解集
y=x中y的取值组成的集合
y=1/x中x的取值组成的集合
一次函数y=x+3与y=-2x+6的图像的交点组成的集合
直角坐标系中,第一象限内所有的点组成的集合(不包括x轴y轴上的点)
对于③可以一一列举,但是20个数都写出来还是有点麻烦的;对于 如果用列举法,会出现省略号,要求读者找规律,才能知道这个集合表示的是正数集,奇数集。而至于 ,用列举法显然不适合。那有没有更好的办法呢?
4.集合的三种表示方法:自然语言,列举法,描述法
我们班所有的学生
我们班所有男生
③我们班所有高个子男生
我们班所有身高超过1米6的超级爱好DOTA游戏的男生。
我们班幸福的人
以上③ 都不是集合,因为它们所研究的对象都是不确定的,高个子?多高算高呢?每个人心中都有不一样的标准。超级爱好,幸福都是模棱两可的。
(三)集合元素的互异性,一个给定的集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的。(四)通常用大写的英文字母A,B,C……表示集合,用小写的啊,a,b,c……表示集合中的元素。如果a是集合A中的元素,就说a属于集合A,记作a∈A;如果a不是集合A中的元素,就说a不属于集合A,记作aA。
(六)集合的表示方法:列举法,描述法,Venn图
从上面例子,我们已经看到,可以用自然语言描述一个集合。除此之外Байду номын сангаас有什么方法呢?
列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法。(强调花括号,元素之间用逗号隔开,无序性,互异性)说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序;集合中同一元素不能重复出现。

集合的含义及表示教案+同步习题

集合的含义及表示教案+同步习题

§1.1.1集合的含义与表示教案教学目标:1通过具体的例子了解集合的含义,知道常用数集及其记法;2初步了解集合和元素的关系,3初步掌握集合的两种表示方法、教学重点:集合的概念与其表示教学重点:1、正确理解集合的概念及特征2、集合表示法的恰当选择新课讲解:创设情境,引入新课:生活中我们经常听到以下说法:1.第四中学2018年9月入学的高一全体学生;2.我国从2001~2015年的15年内所发射的所有人造卫星;3.2016年里约热内卢奥运会的所有比赛项目;4.我国古代的四大发明;以上描述有什么共同特征?引入新课。

【知识点1】集合的有关概念⒈定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示而元素用小写的拉丁字母a,b,c…表示。3.关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。.⑶无序性:即集合中的元素无顺序,可以任意排列、调换。构成两个集合的元素完全一样,这两个集合相等。◇同步练习◇⑴判断下列每组对象的全体能否构成集合?①我班16岁以下的学生②接近于2000的数③大于2的所有整数④函数y=x+1图像上的点⑤鲜艳的颜色⑥2018年中考卷中的难题⑵由实数−a,a,a,2a,−55a元素组成的集合中,最多有几个元素?说明为什么?4.常用的数集合及记法:自然数集N;正整数集N*或N+;整数集Z;有理数集Q;实数集R;5.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉”两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。例如, A ={2,4,8,16},则4∈A ,8∈A ,32∉A . ◇同步练习◇ 用符号,∈∉填空:①2 N ②1.414 Q ③7 R , ④ −1 N⑤12Q ⑥0 N ⑦ −4 Z ⑧ π Q ⑨ 3 R 【知识点2】集合的表示方法1.列举法:把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫列举法如:“中国的直辖市”构成的集合,写成{北京,天津,上海,重庆}“maths 中的字母” 构成的集合,写成{m ,a ,t ,h ,s }“方程组20{=+=-y x y x 的解”构成的集合是)}1,1{(…说明:⑴书写时,元素与元素之间用逗号分开;⑵一般不必考虑元素之间的顺序;⑶在表示数列之类的特殊集合时,通常仍按惯用的次序;⑷集合中的元素可以为数,点,代数式等;【例1】用列举法表示下列集合:(1)中国国旗的颜色的集合;(2)单词mathematics 中的字母的集合;(3)自然数中不大于10的质数的集合;(4)同时满足240121x x x +>⎧⎨+≥-⎩的整数解的集合; (5)由||||(,)a b a b R a b+∈所确定的实数集合. ⒉描述法:用集合所含元素的共同特征表示集合的方法,称为描述法。符号形式:{代表元素∣p (代表元素)}方法:⑴在花括号内先写上表示这个集合元素的一般符号⑵再画一条竖线,⑶在竖线后写出这个集合中元素所具有的共同特征。如:不等式12x +<-的解集可以表示为:{-3}x R x ∈<{三角形∣含有30°角的三角形}“中国的直辖市”构成的集合,写成{x ∣x 为中国的直辖市};“抛物线y =x 2+1上的点”构成的集合,写成{ (x ,y )|y =x 2+1};“直线y =x +2上的点”构成的集合,写成{(x ,y )|y =x +2}{(x ,y )|y =x 2+2}表示y =x 2+2上的点构成的集合。 说明:⑴描述法表示集合应注意集合的代表元素,如{(x ,y )|y = x 2+3x +2}与{y |y = x 2+3x +2}是不同的两个集合。 ◇同步练习◇区分以下集合A ={(x ,y )∣y =x 2−1,x ∈R}B ={y ∣y =x 2−1,x ∈R}C ={x ∣y =x 2−1}D ={x ∣x 2−1=0,x ∈R}【例2】用描述法表示下列集合:(1)方程x 2+2x +1=0所有实数解的集合;(2)使2x y x-=有意义的x 的集合; (3)所有被3整除的整数的集合;(4)抛物线y =−x 2+3x −6上所有点的集合;◇同步练习◇㈠分别用列举法和描述法表示下列集合(1)方程x 2−2=0的所有实数根组成的集合 (2)由大于10小于20的所有整数组成的集合⑶方程x 2−5x +6=0的解集 ⑷{15以内的质数};㈢用适当的方法表示下列集合⑴由方程x 2−9=0的所有实数根组成的集合; ⑵不等式453x -<的解集;⑶坐标平面内,第一象限的点的集合; ⑷ 二次函数y =x 2−4的函数值组成的集合;⑸ 函数y =x 2−4的自变量的值组成的集合; ⑹二次函数24y x =-图像上的点组成的集合;⑺一次函数3y x =+与26y x =-+的图像的交点组成的集合;◇基础达标◇1. 下列各组对象不能组成集合的是 ( )A .大于6的所有整数B .充分小的负数全体C .被3除余2的所有整数D .函数y =x 1图象上所有的点 2. 给出下列关系:①12R ∈ ②2Q ∉ ③3N +-∉ ④3Q -∈,其中正确的个数为 ( )A .1B .2C .3D .43. 下列结论中,不正确的是( )A .若a ∈N ,则−a ∉NB .若a ∈Z ,则a 2∈ZC .若a ∈Q ,则|a |∈QD .若a ∈R ,则R a ∈34. 下列集合表示法正确的是( )5. A .{1,2,2,3} B .{全体实数} C .{有理数} D .不等式x 2−5>0的解集为{x 2−5>0}6. 若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形7. 把集合{x ∣−3≤x ≤3,x ∈N}用列举法表示,正确的是 ( )A .{3,2,1}B .{3,2,1,0}C .{−2,−1,0,1,2}D .{−3,−2,−1,0,1,2,3}8. 方程组31x y x y +=⎧⎨-=⎩的解组成的集合是 ( )A .{2,1}B .{−1,2}C .(2,1)D .{(2,1)}9. 用符号,∈∉填空:⑴5 {}2*1,x x n n N=+∈, ⑵(1,1)- {}2y y x =, ⑶(1,1)- {}2(,)x y y x = ⑷ 0 }2{2x x x =. 10. 已知集合A ={2a ,a 2−a },则a 的取值范围是 。11. 已知集合{}1,1A m =+,则实数m 满足的条件是 。12. 集合{}32x N x +∈-<用列举法可表示为 。13. 集合{}2210x x x -+=用列举法可表示为 。14. 集合{}220x x x m -+=含有两个元素,则实数m 满足的条件为 。15. 已知集合⎭⎬⎫⎩⎨⎧∈-∈=N x N x A 68|,列举法表示集合A 。16. 若集合}{1,x -与}{2,x x为同一个集合,求实数x 的值;17. 已知x 2是集合{1,0,}x 中的元素,求实数x 的值。

1..1..1-2集合的含义及其表示

1..1..1-2集合的含义及其表示

1. 1.1 集合的含义及其表示方法<2)教案【教学目标】1、集合和元素的表示法;2、掌握一些常用的数集及其记法3、掌握集合两种表示法:列举法、描述法。

【教学重难点】集合的两种表示法:列举法和描述法。

【教学过程】一、导入新课复习提问:集合元素的特征有哪些?怎样理解,试举例说明,集合与元素关系是什么?如何用数不符号表示?那么给定一个具体的集合,我们如何表示它呢?这就是今天我们学习的内容—集合的表示 (板书课题>我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合二、新课讲授<1)、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法。

例:“中国的直辖市”构成的集合,写成{北京,天津,上海,重庆}由“maths中的字母” 构成的集合,写成{m,a,t,h,s}由“book中的字母” 构成的集合,写成{b,o,k}注:<1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,…,100}所有正奇数组成的集合:{1,3,5,7,…}<2) a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只有一个元素。

<3)集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

学生自主完成P4 例题1<2)、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。

格式:{x∈A| P<x)}含义:在集合A中满足条件P<x)的x的集合。

例:不等式的解集可以表示为:或“中国的直辖市”构成的集合,写成{为中国的直辖市};“方程x2+5x-6=0的实数解” {x∈R| x2+5x-6=0}={-6,1}学生自主完成P5例题2三、例题讲解例题1.用列举法表示下列集合:(1>小于5的正奇数组成的集合;(2>能被3整除且大于4小于15的自然数组成的集合;(3>方程x2-9=0的解组成的集合;(4>{15以内的质数};(5>{x|∈Z,x∈Z}.分析:教师指导学生思考列举法的书写格式,并讨论各个集合中的元素,明确各个集合中的元素,写在大括号内即可9JKPT7zyjQ 提示学生注意:(2>中满足条件的数按从小到大排列时,从第二个数起,每个数比前一个数大3;(4>中除去1和本身外没有其他的约数的正整数是质数;(5>中3-x是6的约数,6的约数有±1, ±2, ±3, ±6.解: (1>满足题设条件小于5的正奇数有1,3,故用列举法表示为{1,3};(2>能被3整除且大于4小于15的自然数有6,9,12,故用列举法表示为{6,9,12};(3>方程x2-9=0的解为-3,3,故用列举法表示为{-3,3};(4>15以内的质数有2,3,5,7,11,13,故该集合用列举法表示为{2,3,5,7,11,13}9JKPT7zyjQ(5>满足的x有3-x=±1, ±2, ±3, ±6.解之,得x=2,4,1,5,0,6,-3,9,故用列举法表示为{2,4,1,5,0,6,-3,9}9JKPT7zyjQ变式训练1用列举法表示下列集合:(1>x2-4的一次因式组成的集合;(2>{y|y=-x2-2x+3,x∈R,y∈N};(3>方程x2+6x+9=0的解集;(4>{20以内的质数};(5>{(x,y>|x2+y2=1,x∈Z,y∈Z};(6>{大于0小于3的整数};(7>{x∈R|x2+5x-14=0};(8>{(x,y>|x∈N且1≤x<4,y-2x=0};(9>{(x,y>|x+y=6,x∈N,y∈N}.分析:让学生思考用描述法的形式如何表示平面直角坐标系中的点?如何表示数轴上的点?如何表示不等式的解?学生板书,教师在其他学生中间巡视,及时帮助思维遇到障碍的同学.必要时,教师可提示学生:9JKPT7zyjQ(1>集合中的元素是点,它是坐标平面内的点,集合元素代表符号用有序实数对(x,y>来表示,其特征是满足y=x2;9JKPT7zyjQ(2>集合中元素是点,而数轴上的点可以用其坐标表示,其坐标是一个实数,集合元素代表符号用x来表示,其特征是对应的实数绝对值大于6;9JKPT7zyjQ(3>集合中的元素是实数,集合元素代表符号用x来表示,把不等式化为x<a的形式,则这些实数的特征是满足x<a.9JKPT7zyjQ 解:(1>二次函数y=x2上的点(x,y>的坐标满足y=x2,则二次函数y=x2图象上的点组成的集合表示为{(x,y>|y=x2};(2>数轴上离原点的距离大于6的点组成的集合等于绝对值大于6的实数组成的集合,则数轴上离原点的距离大于6的点组成的集合表示为{x∈R||x|>6};(3>不等式x-7<3的解是x<10,则不等式x-7<3的解集表示为{x|x<10}.点评:本题主要考查集合的描述法表示.描述法适用于元素个数是有限个并且较多或无限个的集合.用描述法表示集合时,集合元素的代表符号不能随便设,点集的元素代表符号是(x,y>,数集的元素代表符号常用x.集合中元素的公共特征属性可以用文字直接表述,最好用数学符号表示,必须抓住其实质.9JKPT7zyjQ变式训练2用描述法表示下列集合:(1>方程2x+y=5的解集;(2>小于10的所有非负整数的集合;(3>方程ax+by=0(ab≠0>的解;(4>数轴上离开原点的距离大于3的点的集合;(5>平面直角坐标系中第Ⅱ、Ⅳ象限点的集合;(6>方程组的解的集合;(7>{1,3,5,7,…};(8>x轴上所有点的集合;(9>非负偶数;(10>能被3整除的整数.答案:(1>、{(x,y>|2x+y=5};(2>、{x|0≤x<10,x∈Z};(3>、{(x,y>|ax+by=0(ab≠0>};(4>、{x||x|>3};(5>、{(x,y>|xy<0};(6>、{(x,y>|};(7>、{x|x=2k-1,k∈N*};(8>、{(x,y>|x∈R,y=0};(9>、{x|x=2k,k∈N};(10>、{x|x=3k,k∈Z}.四、课堂小结1.描述法表示集合应注意集合的代表元素{(x,y>|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

1.1.1集合的含义与表示

1.1.1集合的含义与表示
解 : (1)设方程x 2 − 2 = 0的实数根为x, 并且满足条 件x 2 − 2 = 0, 因此, 用描述法表示为 A = {x ∈ R | x 2 − 2 = 0}. 方程 x − 2 = 0有两个实数根 2 ,− 2 , 因此,
2
用列举法表示为A = { 2 ,− 2}.
(2)设大于 小于20的整数为 , 它满足条件 ∈ Z 10 x x 且10 < x < 20,因此, 用描述法表示为 B = {x ∈ Z | 10 < x < 20}. 大于 小于20的整数有 ,12,13,14,15,16,17,18, 10 11 19,因此, 用列举法表示为 B = {11,12,13,14,15,16,17,18,19}.
我们以前已经接触过的集合: 我们以前已经接触过的集合
自然数集合,正分数集合,有理数集合; 自然数集合,正分数集合,有理数集合; 到角的两边的距离相等的所有点的集合; 到角的两边的距离相等的所有点的集合;
是角平分线
到线段的两个端点距离相等的所有点的集合; 到线段的两个端点距离相等的所有点的集合;
是线段垂直平分线
1.1.1 集合的含义与表示
1、集合的含义: 、集合的含义:
把研究对象统称为元素, 把研究对象统称为元素,把一些 元素 元素组成的总体叫做集合 简称集)。 集合( 元素组成的总体叫做集合(简称集)。 用大写字母A, , 表示集合, 用大写字母 ,B,C…表示集合,用 表示集合 小写字母a,b, 小写字母 ,c …表示集合中的元素 表示集合中的元素
2、 若方程x2-5x+6=0和方程 若方程x 5x+6=0和方程 x2-x-2=0的解为元素的集合 则 2=0的解为元素的集合M,则 的解为元素的集合 M中元素的个数为 ( C) 中元素的个数为 A.1 . B.2 . 3、已知集合 、 C.3 . D.4 .

精 品 教 学 设 计1.1集合的含义与表示

精 品 教 学 设 计1.1集合的含义与表示

精品教学设计1.1集合的含义与表示一.教学目标1.通过实例了解集合的含义,体会元素与集合的“属于”关系。

2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,提高语言转换能力,感受集合语言表达数学内容时的简洁性和准确性。

二.教学重、难点重点:集合的概念与表示方法。

难点:应用集合的两种常用表示方法—列举法与描述法,正确表示一些简单的集合。

三.教学过程设计(一)创设情境初中接触过的“集合”1.正分数集合与负分数集合.2.x2-1=0的解集为1,-1.3.圆,角平分线,线段垂直平分线.4.军训前学校通知: 8月15日8点,高一年级在体育馆进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?(二)新课讲解1.集合:指定的某些对象的全体。

常用大写拉丁字母A,B,C…来标记.例如(1) 遂川二中高一(1)班的全体同学组成的集合,记作A;(2)所有小于10的素数组成的集合,记作B;(3)地球上的四大洋组成的集合,记作C;(4)方程x-1=0的所有解组成的集合,记作D;注:集合是数学中的一个原始概念,不能加以定义,只能作描述性说明。

2.元素:集合中的每一个对象,常用小写拉丁字母a,b,c表示。

问:说出下列集合中的元素?(1) 遂川二中高一(1)班的全体同学组成的集合A;(2)所有小于10的素数组成的集合B;(3)地球上的四大洋组成的集合C;(4)方程x-1=0的所有解组成的集合D;注:集合中元素的三大特性:(1) 确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。

(2) 互异性:集合中的元素没有重复。

(3) 无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)3.元素与集合的从属关系属于:如果a是集合A中的元素,说a属于A,记作a∈A.不属于:如果a不是集合A中的元素,说a不属于A,记作a∈A.注意:符号“∈”不可颠倒例如:A={能被3整除的整数}∈;若a=-6,a A∉;若a=8,a A4.常用数集及记法(1) 非负整数集(自然数集): 全体非负整数的集合。

集合的含义与表示教案

集合的含义与表示教案
奎屯
新疆
7、在数集 2 x, x 2 x中,实数 x 的取值范围是 8、下列各组中的两个集合 P 和 Q,表示同一集合的是( A、 P 1, 3 , , Q ,1, 3 C、 P 2,3, Q (2,3)





B、 P , Q 3.14159
0 7
N R
0 1.5
N+ Z
0
Z
3
Q
6、集合的四种表示方法:字母表示法、自然语言、列举法、描述法. (1)字母表示法:大写的英文字母表示集合,例如常见的数集N、Q,所有的正方形组 成的集合记为A等等; (2)自然语言:用文字语言来描述出的集合,例如“所有的正方形”组成的集合等等. (3)列举法:把集合中的全部元素一一列举出来,并用大括号“{ }”括起来表示集合 ,这种表示集合的方法叫做列举法; (4)描述法:在大括号内先写上表示这个集合元素的一般符号及其取值(或变化)范围, 再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含 元素的共同特征表示集合的方法叫做描述法. 【注意】 在不致混淆的情况下,可以简写成列举法的形式,只是去掉竖线和元素代表符号 例如:所有直角三角形的集合可以表示为{x|x 是直角三角形},也可以写成{直 角三角形}
1 D、 P x 1 x 1, x N , Q
9、不等式 2x 5 0 的正整数解的集合用描述法表示为 ,用列举法表示为 . 10、抛物线 y x 2 1 上的所有点组成的集合 A 可表示为 ;0 A;(0, 1 ) A(填“ ”或“ ” ).
D. 有理数集表示为{ x | x 为有理数集}
x y 1 5、方程组 的解集是 x y 1

数学:1.1.1《集合的含义与表示》教案(新人教A版必修1)

数学:1.1.1《集合的含义与表示》教案(新人教A版必修1)

集合的含义及其表示一。

教学课题集合的含义及其表示二.教学目标1。

理解集合的含义;2.理解集合中元素的特性;3.掌握集合的三种表示方法;4.掌握常用集合的表示方法;5.理解空集的含义。

三.重 点1。

集合的含义2.集合中元素的特性,尤其是互异性;3.集合的三种表示方法。

四.难 点1.集合的含义;2.集合中元素的确定性;3.描述法表示集合。

五.教学过程(一)引例1.中国的直辖市:北京、上海、天津、重庆四个城市;2.徐州市第三十六中学高一(6)班:由在座的47位同学组成的一个集体;3.徐州市第三十六中学高一年级:由1~6班6个班级组成的一个集体。

这三个例子都有一个共同的特点:它们都是由某些确定的、不同的对象组成的一个集体。

(二)新课1.集合:在一定范围内某些确定的、不同的对象的全体构成一个集合;2.集合的元素:集合中的每一个对象称为该集合的元素。

注意:(1)。

★研究集合应首先弄清集合中的元素是什么?!(2).集合中的元素具有任意性,任何确定事物都可成为集合中的元素,集合中的元素也可以是集合。

举例:引例3(3)集合常用大写的拉丁字母表示;例集合A集合的元素常用小写的拉丁字母表示;3.元素与集合的关系:从属关系若a 是集合A 中的元素,则记作A a ∈;若a 不是是集合A 中的元素,则记作A a ∉或A a ∈;4.常用集合的字母表示自然数集N 正整数集+N (*N ) 整数集Z 有理数集Q 实数集R5.集合中元素的特性(1)☆确定性:对于一个给定的集合,它的元素的意义是明确的;有具体的标准。

因此,对于给定的一个集合和一个对象,这个对象是否为这个集合的元素,只有“是”和“不是”两种情况。

举例(什么叫做意义明确,有具体的标准):问:一个满头黑发的人,拔掉一根头发,是否还是满头黑发?(2)★互异性:对于一个给定的集合,它的任何两个元素都是不同的,相同对象放到同一集合中只能算一个元素。

举例:“book 中的字母”(3)无序性:集合与其中元素的排列顺序无关。

《集合的含义与表示》教学设计

《集合的含义与表示》教学设计

1.1.1《集合的含义与表示》教案【教学目标】1.了解集合、元素的概念,体会集合中元素的三个特征;2. 理解元素与集合的“属于”和“不属于”关系;3. 掌握常用数集及其记法;4.了解集合的表示方法;5.能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.【导入新课】一、实例引入:军训前学校通知:8月20日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体.二、问题情境引入:我们高一(一)班一共52人,其中班长张三,现有以下问题:⑴ 52人组成的班集体能否组成一个整体?⑵张三和52人所组成的班集体是什么关系?⑶假设李四是相邻班的学生,问他与高一·一班是什么关系?新授课阶段(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体.2.一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集.3.思考1:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流;(3)非负奇数;x+=的解;(4)方程210(5)某校20XX级新生;(6)血压很高的人;(7)著名的数学家;(8)平面直角坐标系内所有第三象限的点;(9)全班成绩好的学生.对学生的解答予以讨论、点评,进而讲解下面的问题.4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:给定一个集合与集合里面元素的顺序无关.(4)集合相等:构成两个集合的元素完全一样.(二) 元素与集合的关系1. (1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A;(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:a∉A,例如,我们A表示“1~20以内的所有质数”组成的集合,则有3∈A,4∉A,等等.2.集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C…表示,集合的元素用小写的拉丁字母a,b,c,…表示.3.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.例1 若集合A 为所以大于1 二小于3的实数组成的集合,则下面说法正确的为( )A .0A ∈ B.1A ∉ C.0.2A ∈ D.1A -∈解析:根据元素与集合的关系可得,答案C.答案: C例2用“∈”或“∉”符号填空:(1)8N ; (2)0N ;(3)-3Z ; (4Q ;(5)设A 为所有亚洲国家组成的集合,则中国A ,美国A ,印度A ,英国A. 答案:;;;;,,∈∈∈∉∈∉∉例3 判断下列各句的说法是否正确:(1) 所有在N 中的元素都在N*中 ( )(2) 所有在N 中的元素都在Z 中 ( )(3) 所有不在N*中的数都不在Z 中 ( )(4) 所有不在Q 中的实数都在R 中 ( )(5) 由既在R 中又在N 中的数组成的集合中一定包含数0 ( )(6) 不在N 中的数不能使方程4x =8成立 ( )答案:×,√,×,√,×,√例 4 已知集合P 的元素为21,,33m m m -+, 若3P ∈且-1∉P ,求实数m 的值解:根据3P ∈,得若23,333m m =-+=则m 此时不满足题意;若333,m m -+=解得 此时0m =或3m =(舍),综上 符合条件的0m = .点评:本题综合运用集合的定义和元素与集合的关系解题,注意集合的性质的运用.(三)集合的表示方法我们可以用自然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合(1) 列举法:把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫列举法.如:{1,2,3,4,5},{x 2,3x+2,5y 3-x ,x 2+y 2},…说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序.2.各个元素之间要用逗号隔开;3.元素不能重复;4.集合中的元素可以数,点,代数式等;5.对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方1,2,3,4,5,.......能用省略号,象自然数集N用列举法表示为{}例5 用列举法表示下列集合:(1)x2-4的一次因式组成的集合. (2){y|y=-x2-2x+3,x∈R,y∈N}.(3)方程x2+6x+9=0的解集. (4){20以内的质数}.(5){(x,y)|x2+y2=1,x∈Z,y∈Z}. (6){大于0小于3的整数}(7){x∈R|x2+5x-14=0}.(8){(x,y)}|x∈N,且1≤x<4,y-2x=0}.(9){(x,y)|x+y=6,x∈N,y∈N}.分析:用列举法表示集合的关键是找出集合中的所有元素,要注意不重不漏,不计次序地用“,”隔开放在大括号内.解:(1)因x2-4=(x-2)(x+2),故符合题意的集合为{x-2,x+2}.(2)y=-x2-2x+3=-(x+1)2+4,即y≤4,又y∈N,∴y=0,1,2,3,4.故{y|y=-x2-2x+3,x∈R,y∈N}={0,1,2,3,4}.(3)由x2+6x+9=0得x1=x2=-3,∴方程x2+6x+9=0的解集为{-3}.(4){20以内的质数}={2,3,5,7,11,13,17,19}.(5)因x∈Z, y∈Z ,则x=-1,0,1时,y=0,1,-1.那么{(x,y)|x2+y2=1,x∈Z ,y∈Z}={(-1,0),(0,1),(0,-1),(1,0)}.(6){大于0小于3的整数}={1,2}.(7)因x2+5x-14=0的解为x1=-7,x2=2,则{x∈R|x2+5x-14=0}={-7,2}.(8)当x∈N且1≤x<4时,x=1,2,3,此时y=2x,即y=2,4,6.那么{(x,y)|x∈N且1≤x<4,y-2x=0}={(1,2),(2,4),(3,6)}.(9){(x,y)|x+y=6,x∈N,y∈N}={(0,6)(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.(2)描述法:把集合中的元素的公共属性描述出来,写在花括号{}内.具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.一般格式:{}()x A p x ∈如:{x|x-3>2},{(x,y)|y=x 2+1},{x ︳直角三角形},…;说明:1.课本P 5最后一段话;2.描述法表示集合应注意集合的代表元素,如{(x,y)|y= x 2+3x+2}与 {y|y= x 2+3x+2}是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{x ︳整数},即代表整数集Z.辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}.下列写法{实数集},{R}也是错误的.说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法.例6 用描述法表示下列集合:(1)方程2x +y =5的解集. (2)小于10的所有非负整数的集合.(3)方程ax +by =0(ab ≠0)的解. (4)数轴上离开原点的距离大于3的点的集合.(5)平面直角坐标系中第Ⅱ、Ⅲ象限点的集合.(6)方程组⎩⎨⎧x + y =1x -y =1的解的集合. (7){1,3,5,7,…}.(8)x 轴上所有点的集合. (9)非负偶数.(10)能被3整除的整数.分析:用描述法表示集合的关键是找出集合中元素的公共属性,确定代表元素,公共属性可以用文字直接表述,也可用数学关系表示,但要抓住其实质.解:(1){(x ,y )|2x +y =5}.(2)小于10的所有非负整数的集合用描述法表示为{x |0≤x <10,x ∈Z }.(3)方程ax +by =0(ab ≠0)的解用描述法表示为{(x ,y )|ax +by =0(ab ≠0)}.(4)数轴上离开原点的距离大于3的点的集合用描述法表示为{x |x >3}.(5)平面直角坐标系中第Ⅱ、Ⅲ象限点的集合用描述法表示为{(x ,y )|xy <0}.(6)方程组⎩⎨⎧x + y =1x -y =1 的解的集合用描述法表示为{(x ,y )|⎩⎨⎧x + y =1x -y =1}. (7){1,3,5,7,…}用描述法表示为{x |x =2k -1,k ∈N*}.(8)x 轴上所有点的集合用描述法表示为{(x ,y )|x ∈R ,y =0}.(9)非负偶数用描述法表示为{x |x =2k ,k ∈N }.(10)能被3整除的整数用描述法表示为{x |x =3k ,k ∈Z }.(3)文恩图法:集合的表示除了列举法和描述法外,还有恩韦图(文氏图)叙述如下:画一条封闭的曲线,用它的内部来表示一个集合.如图:表示任意一个集合A边界用直线还是曲线,用实线还是虚线都无关紧要,只要封闭并把有关元素和子集统统包含在里边就行,但不能理解成圈内每个点都是集合的元素.................. 例7设集合A ={x |x =2k ,k ∈Z },B ={x |x =2k +1,k ∈Z },C ={x |x =4k +1,k ∈Z },又有a ∈A ,b ∈B ,判断元素a +b 与集合A 、B 和C 的关系.解:因A ={x |x =2k ,k ∈Z },B ={x |x =2k +1,k ∈Z },则集合A 由偶数构成,集合B 由奇数构成.即a 是偶数,b 是奇数 设a =2m ,b =2n +1(m ∈Z ,n ∈Z )则a +b =2(m +n )+1是奇数,那么a +b ∈\A ,a +b ∈B .又C ={x |x =4k +1,k ∈Z }是由部分奇数构成且x =4k +1=2·2k +1.故m +n 是偶数时,a +b ∈C ;m +n 不是偶数时,a +b ∈\C综上a +b ∈\A ,a +b ∈B ,a +b ∈\C.课堂小结1.集合的概念中,“某些指定的对象”,可以是任意的具体确定的事物,例如数、式、点、形、物等.2.集合元素的三个特征:确定性、互异性、无序性,要能熟练运用之.3. 集合的常用表示方法,包括列举法、描述法.作业1.习题1.1,第1- 2题;表示{3,9,27}表示{4,6,10}2.预习集合的表示方法.拓展提升1.用集合符号表示下列集合,并写出集合中的元素:(1)所有绝对值等于8的数的集合A ; (2)所有绝对值小于8的整数的集合B .2.下列各组对象不能形成....集合的是( ) A.大于6的所有整数 B.高中数学的所有难题C.被3除余2的所有整数D.函数y =1x图象上所有的点 3.下列条件能形成集合的是( )A.充分小的负数全体B.爱好飞机的一些人C.某班本学期视力较差的同学D.某校某班某一天所有课程4.集合A 的元素由kx 2-3x +2=0的解构成,其中k ∈R ,若A 中的元素至多有一个,求k 值的范围.5.若x ∈R ,则{3,x ,x 2-2x }中的元素x 应满足什么条件?6.方程 ax 2+5x +c =0的解集是{12 ,13},则a =_______,c =_______.7.集合A 的元素是由x =a +b 2 (a ∈Z,b ∈Z )组成,判断下列元素x 与集合A 之间的关系:0,12-1,13-2.参考答案1. 分析:由集合定义:一组确定对象的全体形成集合,所以能否形成集合,就看所提对象是否确定;其次集合元素的特征也是解决问题依据所在.解:(1)A ={绝对值等于8的数} 其元素为:-8,8(2)B ={绝对值小于8的整数}其元素为:-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7.2. 解:综观四个选择支,A 、C 、D 的对象是确定的,惟有B 中的对象不确定,故不能形成集合的是B.3 解:综观该题的四个选择支,A 、B 、C 的对象不确定,惟有D 某校某班某一天所有课程的对象确定,故能形成集合的是D.4. 解:由题A 中元素即方程kx 2-3x +2=0(k ∈R )的根若k =0,则x =23,知A 中有一个元素,符合题设 若k ≠0,则方程为一元二次方程.当Δ=9-8k =0即k =98时,kx 2-3x +2=0有两相等的实数根,此时A 中有一个元素.又当9-8k <0即k >98时,kx 2-3x +2=0无解. 此时A 中无任何元素,即A =∅也符合条件综上所述 k =0或k ≥98评述:解决涉及一元二次方程问题,先看二次项系数是否确定,若不确定,如该题,则须分类讨论.其次至多有一个元素,决定了这样的集合或者含一个元素,或者不含元素,分两种情况.5. 解:集合元素的特征说明{3,x ,x 2-2x }中元素应满足关系式⎩⎪⎨⎪⎧x ≠3x ≠x 2-2x 3≠x 2-2x 即⎩⎪⎨⎪⎧x ≠3x 2≠3x x 2-2x -3≠0 也就是⎩⎪⎨⎪⎧x ≠3x ≠0x ≠-1 即x ≠-1,0,3满足条件.6. 解:方程ax 2+5x +c =0的解集是{12 ,13 },那么12 、13是方程两根 即有⎩⎨⎧12 +13 =-5a 12 ·13 =c a得⎩⎨⎧a =-6c =-1 那么 a =-6,c =-1 7.解:因x =a +b 2 ,a ∈Z ,b ∈Z则当a =b =0时,x =0又12-1= 2 +1=1+ 2 当a =b =1时,x =1+ 2 又13-2= 3 + 2 当a = 3 ,b =1时,a +b 2 = 3 + 2而此时 3 ∈\Z ,故有:13-2∈\A , 故0∈A ,12-1∈A ,13-2∈\A . 8.解:若x 是整数,则有x +x =15,x =152与x 是整数相矛盾,若x 不是整数,则x 必在两个连续整数之间设n <x <n +1则有n +(n +1)=15,2n =14,n =7 即7<x <8 ∴x ∈(7,8)。

1_1集合的含义与表示教案

1_1集合的含义与表示教案

1.1.1集合的含义及其表示一、知识与技能(1)理解集合的含义,掌握元素与集合的属于关系。

(2)理解常用数集及其专用记号。

(3)理解集合元中元素的确定性、互异性、无序性。

(4)观察集合的几组实例,并能举出一些集合的例子。

(5)通过实例,体会元素与集合的“属于”关系,准确的理解集合。

三、情感态度与价值观在学生使用集合语言的过程中,增强学生理解事物的水平,初步培养学生实事求是、扎实严谨的科学态度。

四、重点集合的概念,元素与集合的关系。

难点集合概念的理解五、教学过程:(一)导入新课1、问:我们初中学习都有哪些数集啊?生:有自然数集,有理数集等(老师讲解一下圆的概念,让同学温故知新产生兴趣)(二) 教学过程1、问:同学们对于课本上的8个例子,你们能发现出他们有什么共同特点吗?通过教材的例子等,给出集合概念的描绘性说明:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。

(质数:也称素数,指除1和自身外不能被其他自然数整除的数)只要是构成两个集合的元素是一样的,我们称这两个集合是相等的。

2、问:结合教材“思考”,通过举例观察例题(1)里面我们列举出的1~20的素数,这些元素之间有什么关系呢?(引导学生明确集合元素的性质—确定性、互异性、无序性)3、阐述元素与集合的关系。

“属于”记为“∈”;“不属于”记为“∉”。

一般地,元素用小写字母表示;集合用大写字母.4、常用数集及其记法记法:①全体非负整数组成的集合称为非负整数集(或自然数集),记作N;所有正整数组成的集使称为正整数集,记作或N*或N+;②全体整数组成的集合称为整数集,记作Z;③全体有理数组成的集合称为有理数集,记作Q;④全体实数组成的集合称为实数集,记作R。

5、问:你能用列举法表例如1中的集合吗?思考一以下举法的特点,完成习题1.1A组第3 题。

师和学生一起讨论例2,教师讲解引导,让同学们探讨第4页的“思考”。

讨论理应如何根据问题选择适当的集合表示法。

集合的含义与表示教案

集合的含义与表示教案

1.1.1 集合的含义与表示一、教材分析:集合概念及其基本理论,称为集合论,是近现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在数学理论的基础上。

另一方面,集合论及其所反映的数学思想,在越来越广泛的领域中得到应用。

二、教学目标:①通过实例,了解集合的含义,体会元素与集合的属于关系;②知道常用数集及其记法;③了解集合中元素的确定性、互异性、无序性;④会用集合语言表示有关数学对象;三、教学重点:掌握集合中元素的三个特性.四、教学难点:通过实例了解集合的含义.五、课时安排:2课时六、教学过程(一)、自主导学(预习)1、设计问题,创设情境在初中代数不等式的解法一节中提到:一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集.不等式解集的定义中涉及了“集合”,那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.问题1:下面这5个实例的共同特征是什么?(1)1~ 20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)北京大学2014年9月入学的全体学生.2、自主探索,尝试解决分小组讨论,讨论后每个小组选出一位同学代表本组宣布讨论结果,在此基础上,共同概括出5个实例的特征:都是有某些对象组成的全体.3、信息交流,揭示规律根据讨论的结果得出集合的含义:1.集合的含义:一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集).问题2:集合应当如何表示呢?元素与集合是什么样的关系?2.集合的表示方法一:(字母表示法):大写的英文(拉丁)字母表示集合,集合常用大写字母A,B,C,D,…表示,元素常用小写字母a,b,c,d,…表示.国际标准化组织(ISO)制定了常用数集的记法:自然数集(包含零):N,正整数集:N*(N+),整数集:Z,有理数集:Q,实数集:R.方法二:(自然语言):用文字语言来描述出的集合,例如“所有的正方形”组成的集合等.3.元素与集合的关系:元素与集合的关系:“属于”和“不属于”分别用“∈”和“ ”表示.问题3:一组对象满足什么条件才能组成集合?4.集合元素的性质(1)确定性:即任给一个元素和一个集合,那么这个元素和这个集合的关系只有两种:这个元素要么属于这个集合,要么不属于这个集合;元素确定性的符号语言表述为:对任意元素a和集合A,要么a∈A,要么a∉A.(2)互异性:一个给定集合的元素是互不相同的,即集合中的元素是不重复出现的;(3)无序性:集合中的元素是没有顺序的.(4)集合相等:如果两个集合中的元素完全相同,那么这两个集合是相等的.问题4:(1)请列举出“小于5的所有自然数组成的集合A”.(2)你能写出不等式2-x>3的所有解吗?怎样表示这个不等式的解集?5.集合的表示:字母表示法、自然语言、列举法、描述法.列举法:把集合中的全部元素一一列举出来,并用大括号“{}”括起来表示集合,这种表示集合的方法叫做列举法;描述法:在大括号内先写上表示这个集合元素的一般符号及其取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.注:在不致混淆的情况下,也可以简写成列举法的形式,只是去掉竖线和元素代表符号,例如:所有直角三角形的集合可以表示为{x|x是直角三角形},也可以写成{直角三角形}.(二)、合作学习【例1】下列各组对象不能组成集合的是( B )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=x图象上所有的点【例2】用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合.解:(1)设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9}.(2)设方程x2=x的所有实数根组成的集合为B,那么B={0,1}.(3)设由1~20以内的所有质数组成的集合为C,那么C={2,3,5,7,11,13,17,19}.【例3】试分别用列举法和描述法表示下列集合:(1)方程x2-2=0的所有实数根组成的集合(2)由大于10小于20的所有整数组成的集合.解:(1)设所要表示的集合为A,方程x2-2=0的实根为x,它满足条件x2-2=0,因此,用描述法表示为A={x∈R|x2-2=0}.(2)设所要表示的集合为B,大于10小于20的整数为x,它满足条件x∈Z,且10<x<20,因此,用描述法表示为B={x∈Z|10<x<20}.大于10小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为B={11,12,13,14,15,16,17,18,19}.点评:描述法表示集合的步骤:(1)用字母分别表示集合和元素;(2)用数学符号表达集合元素的共同特征;(3)在大括号内先写上集合中元素的代表符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.并写成A={…|…}的形式.描述法适合表示有无数个元素的集合.注意:当集合中的元素个数较少时,通常用列举法表示,否则用描述法表示.(三)、当堂检测1.用另一种形式表示下列集合:(1){绝对值不大于3的整数};(2){所有被3整除的数};(3){x|x=|x|,x∈Z且x<5};(4){x|(3x-5)(x+2)(x2+3)=0,x∈Z};(5){(x,y)|x+y=6,x>0,y>0,x∈Z,y∈Z}.1.思路分析:用列举法与描述法表示集合时,一要分清元素是什么,二要明确元素满足的条件是什么.答案:(1){绝对值不大于3的整数}还可以表示为{x||x|≤3,x∈Z},也可表示为{-3,-2,-1,0,1,2,3}.(2){x|x=3n,n∈Z}.(3)∵x=|x|,∴x≥0.∵x∈Z且x<5,∴{x|x=|x|,x∈Z且x<5}还可以表示为{0,1,2,3,4}.(4){-2}.(5){(1,5),(2,4),(3,3),(4,2),(5,1)}.2.已知集合A={x|ax2-3x+2=0,a∈R},若A中至少有一个元素,求a的取值范围.2.思路分析:对于方程ax2-3x+2=0,a∈R的解,要看这个方程左边的x2的系数,a=0和a≠0方程的根的情况是不一样的,则集合A的元素也不相同,所以首先要分类讨论.解:当a=0时,原方程为-3x+2=0⇒x=,符合题意;当a≠0时,方程ax2-3x+2=0为一元二次方程,则解得a≠0且a≤.综上所得a的取值范围是{a|a≤}.3.用适当的方法表示下列集合:(1)1 000以内被3除余2的正整数所组成的集合;(2)直角坐标平面上在第二象限内的点所组成的集合;(3)所有正方形;(4)直角坐标平面上在直线x=1和x=-1的两侧的点所组成的集合.3、思路分析:本题考查集合的表示方法.所谓适当的表示方法,就是较简单、较明了的表示方法.由于方程组的解为x=4,y=-2,故(1)宜用列举法;(2)中尽管是有限集,但由于它的元素个数较多,所以用列举法表示是不妥当的,故用描述法;(3)和(5)也宜用描述法;而(4)则宜用列举法.解:(1){(4,-2)};(2){x|x=3k+2,k∈N且x<1000};(3){(x,y)|x<0,且y>0};(4){正方形};(5){(x,y)|x<-1或x>1,y∈R}.(四)、课堂小结请同学们回忆一下(想一想):(1)本节课我们学习了哪些知识内容?(2)你认为学习集合有什么意义?(3)选择集合的表示法时应注意些什么?七、课外作业1.课本P12习题1.1 A组第4题.2.元素、集合间有何种关系?如何用符号表示?类似地集合与集合间的关系又如何呢?如何表示?通过预习课本来解答.八、教学反思:。

教案——集合的含义与表示

教案——集合的含义与表示

1.1.1集合的含义与表示一、教材分析在初中学生已经接触过一些集合,在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础。

集合论及其所反映的数学思想,在越来越广泛的领域的得到应用。

二、教学目标1.知识与技能(1)了解集合的含义,体会元素和集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性、无异性、无序性;(4)会用集合语言(列举法或描述法)恰当的表示集合。

2.过程与方法(1)观察关于集合的几组实例,初步感受集合语言在描述客观现实和数学对象中的意义.(2)通过实例,初步体会元素与集合的“属于”关系;(3)学会借助实例分析、探究数学问题,如集合中元素的确定性、互异性;(4)通过实例理解列举法和描述法的含义,学会用恰当的形式表示给定集合掌握集合表示的方法.3.情感、态度与价值观在学习运用集合语言的过程中,增强学生认识事物的能力.初步培养学生实事求是、扎实严谨的科学态度.三、教学重点集合的含义和表示方法。

四、教学难点恰当选择集合表示法(列举法与描述法)表示一些简单的集合。

五、教学方法讲练结合六、教学具体过程(一)引入课题同学们,军训前学校来了个通知:8月15日8点,高一年级在操场集合进行军训动员;于是我想问,这个通知的对象是全体的高一学生还是个别学生?有时候,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象。

在这里,集合是我们常用的一个词语。

因此,我们将学习一个新的概念——集合【板书】,即一些研究对象的总体。

初中的时候我们已经接触过一些集合了,比如说不等式的解法一节中提到的有关知识:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集.(二)新课教学1.集合的含义那么集合到底是怎样定义的呢?请大家阅读一下课本第2页的8个例子,想一想例3到例8 能不能组成集合,如果可以的话它们的元素分别是什么?在例1中,我们把1—20以内的每个素数作为一个元素,这些元素的全体就是集合。

1.1.1集合的含义与表示(2)

1.1.1集合的含义与表示(2)
学习过程设计
(问题决解和问题拓展——评价单)
程序(要素)
时间
创设情境
教师行为
期望的学生行为
一、学生自查
二、小组讨论,
解决基础问题
三、综合讲解
5


15


20


创设自主检查情景
创设自主
反思情境
创设问题解决情境
公示答案,让学生自主检测练习情况。
把问题拓展评价单上部分问题划出,让学生小组讨论自主解决。教师巡视指导,解决学生疑难问题。
在组内由学科长组织讨论,解决不了的问题可以在组间交流。学生根据教师创设的情境,围绕工具单上的问题分组展开积极讨论,然后选取小组进行组间展评
三.
拓展训练
15
分钟
创设自主学习情境
[旁白]下面由小组内部派代表展示,时间为15分钟。
1.教师引导学生自我展示学习。
2.对学生展示情况给予及时的评价,对小组难以解决的问题进行引导,并对重点进行拓展延伸。对小组展示不到位的进行补充。
3.引导学生生生质疑,关注某些同学表现,采用激活策略。
1展示时要遵循“展、思、论、评、演、记”六原则。
2.在小组展示时,各小组成员要认真倾听其他小组的观点,积极思考并及时质疑追问。
3.小组合作表演完成。
四.
归纳总结
提升意义
5分钟
创设总结情境
归纳知识收获,让学生谈谈学完此课的情感收获。
每个小组对演讲的特点进行归纳总结。
3.情感态度与价值观:提高学生分析问题和解决问题的能力
重点
难点
重点:集合的两种表示方法。
难点:对描述法的理解。
关键
问题
1.列举法的定义:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.1 集合的含义与表示教学设计(师)
三维目标:
(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

(2)了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识。

教学重点:集合的基本概念与表示方法;
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;
教学过程:
一、创设情境,新课引入
(1)请第一组的全体同学站起来?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是第一组的同学)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

二、师生互动,新课讲解
1、集合的有关概念
集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

课本P2:例子(1)—(8),都构成一个集合。

2、集合的表示方法:
(1)集合通常用大写的拉丁字母表示,如A,B,C,P,Q,X,Y,等;集合的元素通常用小写的拉丁字母表示,如a,b,c, 等。

(2)如果a是集合A的元素,就说a 属于集合A,记作a∈A;如果a 不是集合A的元素,就说a不属于A,记作a∉A(或a∈A)。

3、常用的数集及其记法:
全体非负整数的集合通常简称非负整数集(或自然数集),记作:N;(注意:0.是自然数
....)所有正整数组成的集合称为正整数集,记作:N+或N*。

全体整数的集合通常简称整数集,记作:Z;
全体有理数的集合通常简称有理数集,记作:Q;
全体实数的集合通常简称实数集,记作:R。

学生练习:用符号∈或∉填空:
1 N ,0 N, -3 N, 0.5 N,
1 Z , 0 Z, -3 Z, 0.5 Z,
1 Q , 0 Q, -3 Q, 0.5 Q,
1 R , 0 R, -3 R, 0.5 R,
4、集合的表示方法:
先介绍记号:大括号“{ }”,在集合里表示总体,而后提出集合的两种表示方法:(1)列举法:把集合中的元素一一列举出来,写出大括内表示集合的方法。

例如:“地球上的四大洋”组成的集合可以表示为{太平洋,大西洋,印度洋,北冰洋}。

(2)描述法:把集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

一般先在大括号内写上这个集合的元素的一般形式,再划一条竖线,在竖线右面写上这个集合的元素的公共属性。

例如:所有的奇数表示为:{x|x=2k+1,k∈Z}
5、集合的性质:
(1)确定性:集合中的元素,必须是确定的,不是含糊不清的,任何一个对象,都能明确判断它是或者不是某全集合的元素,二者必居其一。

(2)互异性:集合中任何两个元素都是不相同的,在同一个集合中,相同的对象只能算作一个元素。

例如:集合{1,1,2}只能当作只有两个元素的集合。

应用写为{1,2}才为正确的。

(3)无序性:在用列举法表示一个集合,写出它的各个元素时,与排列先后的顺序没有关系。

例如,对于集合:{-1,1,2},也可以写成{1,2,-1}或{1,-1,2}等。

但是对于一些列举法中用省略号“……”表示的集合,仍应按它的一定次序排列,(根据它的特征)不能任意书写。

例如,对于自然数集,应写成:{1,2,3,……},而不能写成:{3,2,1,……};对于正偶数集,应写成:{2,4,6,……},不能写成:{4,2,6,……},但对于数集:{1,2,3,4,5},则可表成:{3,1,5,2,4}。

6、例题讲解:
例1:下列所给对象不能构成集合的是________.
(1)高一数学课本中所有的难题;
(2)某一班级16岁以下的学生;
(3)某中学的大个子;
(4)某学校身高超过1.80米的学生;
(5)1,2,3,1.
解析(1)不能构成集合.“难题”的概念是模糊的,不确定的,无明确的标准,对于一道数学题是否是“难题”无法客观地判断.实际上一道数学题是“难者不会,会者不难”,因而“高一数学课本中所有的难题”不能构成集合.
(2)能构成集合,其中的元素是某班级16岁以下的学生.
(3)因为未规定大个子的标准,所以(3)不能组成集合.
(4)由于(4)中的对象具备确定性,因此,能构成集合.
(5)虽然(5)中的对象具备确定性,但有两个元素1相同,不符合元素的互异性,所以(5)不能组成集合.
答案(1)(3)(5)
点评判断指定的对象能不能形成集合,关键在于能否找到一个明确标准,对于任何一个对象,都能确定它是不是给定集合的元素,同时还要注意集合中元素的互异性、无序性.
变式训练1:
(1)(课本P3的思考题)判断以下元素的全体是否组成集合,并说明理由:
1)大于3小于11的偶数;2)我国的小河流。

小结:小河流不确定,所以不是集合。

(2)在数集{2x,x2-x}中,实数x的取值范围是____________(答:x≠0且x≠3)
例2(课本P3例1)用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程x==x的所有实数根组成的集合;
(3)由1~20以内的所有素数组成的集合。

变式训练2:用列举法表示下列集合:
(1)所有绝对值等于8的数的集合A;
(2)所有绝对值小于8的整数的集合B。

例3(课本P4例2)试分别用列举法和描述法表示下列集合:
(1)方程x2-2=0的所有实数根组成的集合;
(2)由大于10小于20的所有整数组成的集合
变式训练3:(课本P5练习NO:2)
例4:(tb0100305):下面一组集合中各个集合的意义是否相同?为什么?
{1,5} ;{(1,5)};{5,1};{(5,1)}
分析:对于这个集合问题,只有明确集合中元素的具体意义才能作出正确解答。

解:{1,5}是由两个数1,5组成的集合,根据集合中元素的无序性,它与{5,1}是同一集合;{(1,5)}是一个点(1,5)组成的单元集合,由于(1,5)和(5,1)表示两个不同的点,所以{(1,5)}和{(5,1)}是不同的两个集合。

变式训练4:
(1)下面一组集合各个集合的意义是否相同?为什么?
2
==,2
x y x
S{(,)|}
x y y x
R{|}
==
{}
P y x
==,2
==,2
{|}
Q y y x
(2)用列举法表示集合{(x,y)|x ∈{1,2},y∈{1,2,3}}
三、课堂小结,巩固反思:
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

集合的三性:确实性,互异性,无序性。

四、布置作业:
A组:
1、(课本P11习题1.1A组NO:1)(做在课本上)
2、(课本P11习题1.1A组NO:2)(做在课本上)
3、(课本P11习题1.1A组NO:3)
4、(课本P11习题1.1A组NO:4)
参考答案:
5、(tb0300202):已知集合M={a,b,c}中的三个元素可构成三角形的三边长,那么∆ABC一定不是(D )。

(A)锐角三角形(B)直角三角形(C)钝角三角形(D)等腰三形
B组:
1.已知集合A={x|x=2n,且n∈N},B={x|x2-6x+5=0},用∈或∉填空:
4 A,4 B,
5 A,5 B
2.已知集合A={x|-3<x<3,x∈Z},B={(x,y)|y=x2+1,x∈A},则集合B用列举法表示是。

3. 用列举法表示集合
a b ab
G x x
a b ab
⎧⎫
⎪⎪==++
⎨⎬
⎪⎪
⎩⎭
.。

相关文档
最新文档