人教版数学必修一测试题(八)(含答案)
高中数学人教A版必修第一册全册测试卷(含答案)
……○…………学校:_________装…………○…………订绝密★启用前2021-2022学年度XXX 学校测试卷高中数学试卷考试范围:必修第一册;考试时间:120分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.已知全集{}1,2,3,4,5U =,{}1,3A =,则UA =( )A .∅B .{}1,3C .{}2,4,5D .{}1,2,3,4,52.已知函数()f x 是定义在R 上的奇函数,满足()()2f x f x +=-,且当[]0,1x ∈时,()()2log 1f x x =+,则函数()3y f x x =-的零点个数是( )A .2B .3C .4D .53.定义在R 上的函数f (x )=2|x -m |-1为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则( ) A .a <b <c B .a <c <b C .c <a <bD .c <b <a4.设全集U =R ,{}220A x x x =-<,{}10B x x =->,则如图阴影部分表示的集合为( )A .{}1x x ≥B .{}1x x ≤C .{}01x x <≤D .{}12x x ≤<5.直线y a =与函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的图象的相邻两个交点的距离为2π,若()f x 在()(),0m m m ->上是增函数,则m 的取值范围是( ) A .(0,]4πB .(0,]2πC .3(0,]4π D .3(0,]2π6.设全集U =R ,(2){|ln(2)},{|21}x x A x N y x B x -=∈=-=≤,A B =( ) A .{|1}x x ≥B .{|12}x x ≤<C .{}1D .{}0,17.已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( )A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞8.定义区间[]()1212,x x x x <的长度为21x x -,已知函数||2x y =的定义域为[,]a b ,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的差为( ) A .1 B .2C .3D .12二、多选题9.已知0<a <b <1<c ,则下列不等式不成立的是( ) A .ac <bc B .cb <ca C .log log a b c c >D .sin a >sin b10.已知0a >,0b >,且222a b +=,则下列不等式中一定成立的是( ) A .1≥ab B .2a b +≤ C .lg lg 0a b +≤D .112a b+≤11.已知(0,)θπ∈,1sin cos 5θθ+=,则下列结论正确的是( ) A .,2πθπ⎛⎫∈ ⎪⎝⎭B .3cos 5θ=-C .3tan 4θ=-D .7sin cos 5θθ-=12.将函数3tan 3y x π⎛⎫=+ ⎪⎝⎭的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再把得到的图象向右平移3π个单位长度,得到函数()y g x =的图象,下列结论正确的是( )A .函数()y g x =的图象关于点,06π⎛⎫⎪⎝⎭对称B .函数()y g x =的图象最小正周期为πC .函数()y g x =的图象在0,4⎡⎤⎢⎥⎣⎦π上单调递增…………外……………内…………○…………装D .函数()y g x =的图象关于直线512x π=对称 第II 卷(非选择题)请点击修改第II 卷的文字说明 三、填空题13.22(lg 2)(lg5)lg 4lg5++⋅=________.14.已知命题0:p x ∃∈R ,2000x ax a ++<是假命题,则实数a 的取值范围是________.(用区间表示)15.关于函数()12log 1f x x =-,有以下四个命题:①函数()f x 在区间(),1-∞上是单调增函数;①函数()f x 的图象关于直线1x =对称;①函数()f x 的定义域为()1,+∞;①函数()f x 的值域为R .其中所有正确命题的序号是________.16.设区间[]()1221,x x x x >的长度为21x x -,当函数2x y =的定义域为[,]a b 时,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的和为____________.四、解答题17.(1)计算:2310227-⎛⎫+ ⎪⎝⎭+23log 2-34log 9-525log 9; (2)已知角α的终边经过点M (1,-2),求()5sin()cos()22cos ππααπα+-+的值. 18.已知函数2()2sin cos (0)f x x x x ωωωω=+>的最小正周期为π. (1)求函数()f x 的单调递增区间;(2)将函数()f x 的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值. 19.如图,在平面直角坐标系xOy 中,角θ的终边与单位圆交于点P .(1)若点P 的横坐标为35,求cos2sin cos θθθ-⋅的值.(2)若将OP 绕点O 逆时针旋转4π,得到角α(即4παθ=+),若1tan 2α=,求tan θ的值.20.(1)求关于x 的一元二次不等式260x x --<的解集;(2)若一元二次不等式20x bx c ++≥的解集为{}21x x x ≥≤-或,求不等式210cx bx ++≥的解集.21.设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<.已知()06f π=.(①)求ω;(①)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的最小值.22.已知函数()1ln 1kx f x x -=+为奇函数. (1)求实数k 的值;(2)判断并证明函数()f x 的单调性;(3)若存在(),1,αβ∈+∞,使得函数()f x 在区间[],αβ上的值域为ln ,ln 22m m m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,求实数m 的取值范围.参考答案:1.C 【解析】 【分析】根据补集的定义可得结果. 【详解】因为全集{}1,2,3,4,5U =,{}1,3A =,所以根据补集的定义得{}2,4,5UA =,故选C.【点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解. 2.B 【解析】 【分析】根据题意把函数()3y f x x =-的零点问题即()30y f x x =-=的解,转化为函数()y f x =和3y x =的图像交点问题,由题可得()f x 关于1x =对称,由()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-,可得()f x 的周期为4,根据函数图像,即可得解. 【详解】由()()2f x f x +=-可得()f x 关于1x =对称, 由函数()f x 是定义在R 上的奇函数,所以()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-, 所以()f x 的周期为4,把函数()3y f x x =-的零点问题即()30y f x x =-=的解,即函数()y f x =和3y x =的图像交点问题,根据()f x 的性质可得如图所得图形,结合3y x =的图像,○…………线…………○…___○…………内…………○…………装…………○由图像可得共有3个交点,故共有3个零点, 故选:B. 3.C 【解析】 【分析】根据函数是偶函数求得参数m ,再结合对数运算求得,,a b c ,即可比较大小. 【详解】①函数f (x )为偶函数,则()()2121x mx mf x f x ---=-=-=-,故m =0,①f (x )=2|x |-1.①a =f (log 0.53)=f (-log 23)=2log 32-1=2, b =f (log 25)=2log 52-1=4, c =f (0)=20-1=0. ①c <a <b . 故选:C . 【点睛】本题考查利用函数奇偶性求参数值,涉及对数运算,属基础题. 4.D 【解析】解出集合A 、B ,然后利用图中阴影部分所表示的集合的含义得出结果. 【详解】{}{}22002A x x x x x =-<=<<,{}{}101B x x x x =->=<.图中阴影部分所表示的集合为{x x A ∈且}{}12x B x x ∉=≤<. 故选:D. 【点睛】本题考查韦恩图表示的集合的求解,同时也考查了一元二次不等式的解法,解题的关键就是弄清楚阴影部分所表示的集合的含义,考查运算求解能力,属于基础题. 5.B 【解析】先由已知求得函数的周期,得到ω,再整体代入正切函数的单调区间,求得函数()f x 的单调区间,可得选项. 【详解】因为直线y a =与函数()f x 的图象的相邻两个交点的距离为一个周期,所以12Tπω==,()1tan 24f x x π⎛⎫=+ ⎪⎝⎭,由12242k x k πππππ-<+<+,得322()22k x k k ππππ-<<+∈Z ,所以()f x 在3,22ππ⎛⎫- ⎪⎝⎭上是增函数,由3(,),22m m ππ⎛⎫-⊆-⎪⎝⎭,得02m π<≤. 故选:B. 【点睛】本题考查正切函数的周期性,单调性,属于基础题. 6.D 【解析】 【分析】由题分别算出集合,A B 包含的范围,再取交集即可. 【详解】由{|ln(2)}A x N y x =∈=-得20,2x x -><,又x ∈N 所以0,1x =. 又(2){|21}x x B x -=≤,其中(2)0212(2)0x x x x -≤=⇒-≤ 所以02x ≤≤,故{}{0,1},|02A B x x ==≤≤ ,所以{}0,1A B =. 故选D. 【点睛】本题主要考查集合的基本运算,注意看清集合是自变量还是因变量的范围. 7.D 【解析】 【分析】由(0)0g =,结合已知,将问题转化为|2|y kx =-与()()||f x h x x =有3个不同交点,分0,0,0k k k =<>三种情况,数形结合讨论即可得到答案. 【详解】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有1个不同交点,不满足题意; 当0k <时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =,所以k > 综上,k 的取值范围为(,0)(22,)-∞+∞. 故选:D.…装…………○…………订…………○…………线…………○…___姓名:___________班级:___________考号:___________订…………○…………线…………○……………………○…………内…………○…………装…………○【点晴】本题主要考查函数与方程的应用,考查数形结合思想,转化与化归思想,是一道中档题. 8.A 【解析】根据函数||2x y =的图像,可知,a b 的长度最小时,此时函数单调,区间长度是1,区间长度最大时,1,1a b =-=,区间长度是2,从而得出答案. 【详解】若函数2xy =单调,则,a b 的长度最小,若函数单调递增,0,1a b ==,此时区间长度是1,若函数单调递减,……○…………线…_________……○…………内…………○…则1,0a b =-=,此时区间长度是1,所以区间,a b 的长度的最小值是1, 若函数在区间,a b 不单调,值域又是[]1,2,则区间的最大值1,1a b =-=, 此时区间长度是()112--=,则区间,a b 的长度的最大值和最小值的差是211-=.故选:A. 【点睛】本题考查的知识点是区间的概念,函数的定义域和值域,对数函数的单调性,属于基础题型. 9.BD 【解析】 【分析】利用函数的单调性判断即可. 【详解】 对于A ,c y x =在0,1上是增函数,01a b <<<,cc a b ,故不等式成立,故A 不符合题意; 对于B ,1c >,x y c 在0,1上是增函数,01a b <<<,a b c c ,故不等式不成立,故B 符合题意;对于C ,01a b <<<,根据对数函数的性质在同一坐标系下画出log a y x =和log b y x =的图象,可以根据图象判断,当1c >时,log log a b c c >,故不等式成立,故C 不符合题意;………○…………线…………○…:___________…………○…………内…………○…………装…………○对于D ,sin y x =在0,1上是增函数,∴当01a b <<<时,sin sin a b <,故不等式不成立,故D 符合题意. 故选:BD. 【点睛】本题考查指数式、对数式、正弦值的大小判断,利用函数的单调性判断是解决问题的关键,属于基础题. 10.BC 【解析】 【分析】对于AD ,举例判断,对于BC ,利用基本不等式判断 【详解】解:对于A ,令2a b ==222a b +=,则12ab ==<,所以A 错误,对于B ,因为22222()22224a b a b ab ab a b +=++=+≤++=,所以2a b +≤,当且仅当1a b ==时取等号,所以B 正确,对于C ,因为22lg lg lg lg lg102a b a b ab ++=≤==,当且仅当1a b ==时取等号,所以C 正确,对于D ,令a b ==222a b +=,则11 1.4140.81652a b +=≈+>,所以D 错误, 故选:BC 11.ABD 【解析】 【分析】 对1sin cos 5θθ+=两边平方,利用同角关系化简可得2sin cos θθ,在根据θ范围,确定sin 0θ>,cos 0θ<;根据()2sin cos 12sin cos θθθθ-=-,求出sin cos θθ-的值,将其与1sin cos 5θθ+=联立,求出sin ,cos θθ,再根据三角函数同角的基本关系,结合各选项,即可得到结果. 【详解】1sin cos 5θθ+=①,()221sin cos 5θθ⎛⎫∴+= ⎪⎝⎭,即221sin 2sin cos cos 25θθθθ++=,242sin cos 25θθ∴=-, (0,)θπ∈,sin 0θ∴>,cos 0θ<,,2πθπ⎛⎫∴∈ ⎪⎝⎭,故A 正确;()249sin cos 12sin cos 25θθθθ∴-=-=, 7sin cos 5θθ∴-=①,故D 正确;①加①得4sin 5θ=,①减①得3cos 5θ=-,故B 正确;4sin 45tan 3cos 35θθθ∴===--,故C 错误.故选:ABD . 【点睛】关键点睛:本题主要考查了三角函数同角的基本关系的应用,解题的关键是正确利用平方关系进行化简. 12.AC先根据函数图像的变换求得()g x 的解析式,再求其函数性质即可. 【详解】由题可知,()3tan 23tan 2333g x x x πππ⎛⎫⎛⎫⎛⎫=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.因为06g π⎛⎫= ⎪⎝⎭,故A 正确;因为()g x 的周期为2T π=,故B 错误;因为0,4x π⎡⎤∈⎢⎥⎣⎦,故可得2,,33622x πππππ⎡⎤⎛⎫-∈-⊆- ⎪⎢⎥⎣⎦⎝⎭,故C 正确;因为正切函数不是轴对称函数,故D 错误. 故选:AC. 【点睛】本题考查函数图像的变换以及正切型函数的性质,属综合基础题. 13.1; 【解析】根据对数的运算法则计算可得. 【详解】解:22(lg 2)(lg5)lg 4lg5++⋅ 222(lg 2)(lg 5)lg 2lg 5=++⋅ 22(lg 2)(lg 5)2lg 2lg 5=++⋅()2lg 2lg5=+ ()2lg 25=⨯⎡⎤⎣⎦21=1=故答案为:1 【点睛】本题考查对数的运算,属于基础题. 14.[0,4]先得到命题x ∀∈R ,20x ax a ++≥是真命题,根据一元二次不等式恒成立,列出不等式求解,即可得出结果. 【详解】因为命题0:p x ∃∈R ,2000x ax a ++<是假命题, 所以命题x ∀∈R ,20x ax a ++≥是真命题, 即不等式20x ax a ++≥对任意x ∈R 恒成立, 所以只需240a a ∆=-≤,解得04a ≤≤, 即实数a 的取值范围是[0,4]. 故答案为:[0,4]. 15.①①① 【解析】 【分析】利用函数的单调性判断①的正误;利用函数的对称性判断①的正误;求出函数的定义域判断①的正误;由函数的值域判断①的正误. 【详解】函数()12log 1f x x =-在区间(1,)+∞上单调递减,在区间(,1)-∞上单调递增,所以①正确;函数()12log 1f x x =-,函数的图象关于直线1x =对称,所以①正确;函数()12log 1f x x =-的定义域是{}|1x x ≠,所以①不正确;函数()12log 1f x x =-,函数的值域是实数集,所以①正确.故答案为:①①①. 【点睛】本题考查对数型函数的定义域、值域与最值和单调区间,考查对基础知识、基本技能的理解和掌握,属于常考题. 16.2 【解析】 【分析】根据函数2x y =的单调性,可求出其值域,再结合其值域为[1,2],可确定,a b ,从而可求出区间[,]a b 的长度的最大值与最小值. 【详解】因为函数2x y =的定义域为[,]a b ,而函数2x y =在[,]a b 上是单调增函数; 所以函数2x y =的值域为[2,2]a b ,由已知函数2x y =的值域为[1,2],所以2122a b ⎧=⎨=⎩,解得01a b =⎧⎨=⎩,所以函数()f x 的定义域为[0,1],所以区间[0,1]的长度的最大值和最小值均为1, 所以区间[0,1]的长度的最大值与最小值的和为2. 故答案为:2 【点睛】方法点睛:破解新型定义题的方法是:紧扣新定义的含义,学会语言的翻译、新旧知识的转化,便可使问题顺利解决. 17.(1)-716;(2.【解析】 【分析】(1)直接利用分数指数幂的运算和对数的运算求解即可;(2)由三角函数的定义可求得sin α,再对()5sin()cos()22cos ππααπα+-+利用诱导公式化简可得结果 【详解】(1)原式=6427⎛⎫ ⎪⎝⎭-23+2log 32-2log 323-55log 3=34⎛⎫ ⎪⎝⎭2+2-3=-716.(2)①角α的终边经过点M (1,-2), ①sin α,①()5sin()cos()22cos ππααπα+-+ =cos sin cos ααα-=-sin α【点睛】此题考查对数的运算,考查了三角函数的定义,考查了诱导公式的应用,考查计算能力,属于基础题18.(1)5,,Z 1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)5912π. 【解析】 【分析】(1)先利用三角函数恒等变换公式将函数化简得()2sin 23f x x πω⎛⎫=- ⎪⎝⎭,再由最小正周期为π,可求得1ω=,从而可得函数的解析式,然后由222,232k x k k Z πππππ-≤-≤+∈可求出函数的增区间;(2)由三角函数图像变换求出()y g x =的解析式,令()0g x =,求出其零点712x k ππ=+或11(Z)12x k k ππ=+∈,再由()y g x =在[0,](0)b b >上至少含有10个零点,可求出b 的最小值【详解】解:(1))2()2sin cos 2sin 1f x x x x ωωω=-sin 222sin 23x x x πωωω⎛⎫==- ⎪⎝⎭.由最小正周期为π,得1ω=,所以()2sin 23f x x π⎛⎫=- ⎪⎝⎭,由222,232k x k k Z πππππ-≤-≤+∈,整理得5,1212k x k k Z ππππ-≤≤+∈,所以函数()f x 的单调递增区间是5,,Z 1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦.(2)将函数()f x 的图像向左平移6π个单位,再向上平移1个单位,可得到2sin 21y x =+的图像,所以()2sin 21g x x =+.令()0g x =,得712x k ππ=+或11(Z)12x k k ππ=+∈, 所以在[0,]π上恰好有两个零点,若()y g x =在[]0,b 上至少有10个零点,则b 不小于第10个零点的横坐标即可, 所以b 的最小值为115941212πππ+=. 19.(1)15(2)13-【解析】 【分析】(1)由三角函数的定义知,3cos 5θ=-,4sin 5θ=,又2cos22cos 1θθ=-,代入即可得到答案;(2)利用公式()tan tan tan 1tan tan αβαβαβ--=+⋅计算即可.【详解】(1)P 在单位圆上,且点P 的横坐标为35,则3cos 5θ=-,4sin 5θ=,2cos 2sin cos 2cos 1sin cos θθθθθθ∴-⋅=--⋅93412125555⎛⎫=⨯---⨯= ⎪⎝⎭.(2)由题知4παθ=+,则4πθα=-则1tan tan1142tan tan 1431tan tan 142παπθαπα--⎛⎫=-===- ⎪⎝⎭+⋅+. 【点睛】本题考查二倍角公式以及两角差的正切公式的应用,涉及到三角函数的定义,是一道容易题.20.(1){}23x x -<<;(2)112x x ⎧⎫-≤≤⎨⎬⎩⎭.【解析】 【分析】(1)直接解不含参数的一元二次不等式即可;(2)由题意可知2和1-是方程20x bx c ++=的两个实数根,结合韦达定理求出,b c 的值,进而解不含参数的一元二次不等式即可. 【详解】解:(1)因为260x x --<,则(3)(2)0x x -+<,即23x -<<, 故260x x --<的解集为{}23x x -<<;(2)不等式的解集为20x bx c ++≥的解集{}21x x x ≥≤-或,∴2和1-是方程20x bx c ++=的两个实数根,即1212bc -+=-⎧⎨-⨯=⎩,解得,1b =-,2c =-,则不等式210cx bx ++≥等价于2210x x --+≥, 即2210x x +-≤,因此()()2110x x -+≤,解得112x ≤≤-, 故所求不等式的解集为112x x ⎧⎫-≤≤⎨⎬⎩⎭.21.(①) 2ω=. (①) 32-.【解析】 【详解】试题分析:(①)利用两角和与差的三角函数化简得到()y f x =)3x πω=-由题设知(06f π=及03ω<<可得.(①)由(①)得())3f x x π-从而()))4312g x x x πππ=+-=-. 根据3[,44x ππ∈-得到2[,]1233x πππ-∈-,进一步求最小值.试题解析:(①)因为()sin()sin(62f x x x ππωω=-+-,所以1()cos cos 2f x x x x ωωω=-- 3cos 2x x ωω- 1sin )2x x ωω)3x πω-由题设知(06f π=,所以63k ωπππ-=,k Z ∈.故62k ω=+,k Z ∈,又03ω<<, 所以2ω=.(①)由(①)得())3f x x π-所以()))4312g x x x πππ=+-=-.因为3[,44x ππ∈-, 所以2[,]1233x πππ-∈-,当123x ππ-=-,即4x π=-时,()g x 取得最小值32-. 【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题易错点在于一是图象的变换与解析式的对应,二是忽视设定角的范围.难度不大,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.22.(1)1;(2)增函数,证明见解析;(3)209m << 【解析】(1)根据函数奇函数的定义和条件()()0f x f x +-=,求出k 的值之后再验证是否满足函数的定义域关于原点对称即可;(2)根据函数的单调性和对数函数的单调性即可证明;(3)假设存在,αβ,使得函数()f x 在区间[],αβ上的值域为,22m m ln m ln m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由()f x 在()1,+∞上递增,程211022m m mx x ⎛⎫--+-= ⎪⎝⎭在()1,+∞上有两个不等实根,可得m的不等式组,解不等式即可得到实数m 的取值范围,即可得到判断存在性. 【详解】(1)因为函数()1ln1kx f x x -=+为奇函数,所以()()0f x f x +-=, 即()()()()22211111ln ln ln ln 011111kx kx kx kx k x x x x x x -------+===+-++-+-对定义域内任意x 恒成立,所以21k =,即1k =±,显然1k ≠-,又当1k =时,1()ln 1x f x x -=+的定义域关于原点对称. 所以1k =为满足题意的值.(2)结论:()f x 在(),1-∞,()1,+∞上均为增函数. 证明:由(1)知()1ln1x f x x -=+,其定义域为()(),11,-∞-+∞,任取12,(1,)x x ∈+∞,不妨设12x x <,则 ()()()()()()11212222111111ln 111ln 1lnx x x x f x f x x x x x --+=+--=++--, 因为()()()()()121212111120x x x x x x -+-+-=-<,又()()12110x x +->, 所以()()()()1212110111x x x x -+<<+-,所以()()()()()()12121211ln 011x x f x f x x x -+-=<+-, 即()()12f x f x <,所以()f x 在()1,+∞上为增函数. 同理,()f x 在(),1-∞上为增函数. (3)由(2)知()f x 在()1,+∞上为增函数,又因为函数()f x 在[],αβ上的值域为11ln ,ln 22m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以0m >,且1ln ln ,121ln ln 12m m m m αααβββ⎧-⎛⎫=- ⎪⎪+⎝⎭⎪⎨-⎛⎫⎪=- ⎪⎪+⎝⎭⎩,所以1,12112m m m m αααβββ-⎧=-⎪+⎪⎨-⎪=-+⎪⎩,即,αβ是方程112x mmx x -=-+的两实根, 问题等价于方程211022m m mx x ⎛⎫--+-= ⎪⎝⎭在()1,+∞上有两个不等实根,令()21122m m h x mx x ⎛⎫=--+- ⎪⎝⎭,对称轴1124x m =- 则()201112414102210m m m m m h m >⎧⎪⎪->⎪⎨⎛⎫⎛⎫⎪∆=---> ⎪ ⎪⎪⎝⎭⎝⎭⎪=>⎩, 即0205229m m m m >⎧⎪⎪<<⎨⎪⎪><⎩或,解得209m <<. 【点睛】本题主要考查函数奇偶性和单调性的应用以及函数和方程的转化以及一元二次方程在给定答案第17页,共17页 区间上解的问题,根据函数奇偶性和单调性的定义函数性质是解决本题的关键,考查学生分析问题与解决问题的能力,是难题.。
高中高一数学必修一试卷习题及含答案
高一数学必修一试卷及答案一、选择题(本大题共 12 小题 , 每题 5 分 , 共 60 分 . 在每题给出的四个选项中是切合题目要求的 , 请把正确答案的代号填入答题卡中), 只有一项1. 已知全集U0,1,2,3,4 , M0,1.2 , N2,3 ,则 C U M NA.2B.3C.2,3,4D.0。
1,2,3,42.以下各组两个会合 A 和 B, 表示同一会合的是A.A=,B= 3.14159B. A=2,3 ,B=(2,3)C. A= 1,3,,B=,1,3D. A=x 1x 1, x N ,B=13.函数 y x 2的单一递加区间为A.(,0]B. [0, )C.(0, )D. (, )4.以下函数是偶函数的是1A.y xB.y 2x 23C.y x 2D. y x2 , x[ 0,1]5.已知函数f x x1, x 1,则 f(2) =x3, x1B,26. 当0 a 1 时,在同一坐标系中,函数y a x与 y log a x 的图象是.y y y y1x 111x x xo o11o11oA B C D7.假如二次函数y x2mx( m 3) 有两个不一样的零点, 则 m的取值范围是A. ( -2,6)B.[-2,6]C.2,6D., 26.8.若函数 f ( x)log a x(0 a1) 在区间a,2 a 上的最大值是最小值的2倍,则a的值为()A 、2 B、2 C、1D、142429. 三个数 a 0.32 , b log 2 0.3, c 20 .3 之间的大小关系是A a c b .B.a b cC.b a cD.b c a10. 已知奇函数 f ( x) 在 x 0 时的图象如下图,则不等式xf ( x)0 的解集为A. (1, 2)B. ( 2, 1)C. ( 2, 1) U (1, 2) D. ( 1, 1)11. 设 f x3 x 3x 8 , 用二分法求方程 3x3x 8 0在 x 1,2 内近似解的过程中得f 1 0, f1.50, f 1.250, 则方程的根落在区间A. ( 1, )B.( , )C.( ,2 )D.不可以确立12. 计算机成本不停降低 , 若每隔三年计算机价钱降低1, 则此刻价钱为 8100 元的计算机 93年后价钱可降为元元元元二、填空题 (每题 4 分 , 共 16 分 . )13. 若 幂 函 数 y = fx 的 图 象 经 过 点 ( 9,1) ,则 f(25)的 值 是 _________-314. 函数 f x4 x log 3 x 1 的定义域是x 115. 给出以下结论( 1) 4( 2) 42(2) 1log 312 log 3 2 122(3)函数 y=2x-1 , x[1 ,4] 的反函数的定义域为[1 ,7 ]1(4)函数 y= 2 x 的值域为 (0,+) 此中正确的命题序号为16. 定义运算 a ba ab , 则函数 f (x)1 2x的最大值为.b ab .三、解答题 (本大题共6 小题 ,共 74分 . 解答应写出文字说明, 证明过程或演算步骤)17. ( 12 分) 已知会合A{ x | 2x40}, B{ x | 0x 5} , 全集 UR ,求:(Ⅰ) AI B ;(Ⅱ)(C U A) I B.18.计算 : (每题 6 分 , 共 12 分)( 1) 2 361233219.( 12 分)已知函数 f ( x) x 1,( Ⅰ )证明 f ( x)在[1,)上是增函数;x( Ⅱ) 求f (x)在[1,4]上的最大值及最小值.20.已知 A、B 两地相距地 , 在 B 地逗留一小时后离 y(千米)表示为时间象 . (14 分)150 千米 , 某人开车以 60 千米/小时的速度从 A 地到 B , 再以 50 千米/小时的速度返回 A地 . 把汽车与 A地的距 t (小时)的函数(从 A 地出发时开始) , 并画出函数图21.(本小题满分 12 分)二次函数 f (x)知足且 f (0)=1.(1)求 f (x)的分析式 ;(2)在区间上 , y=f(x) 的图象恒在 y=2x+m的图象上方 , 试确立实数 m的范围 .22. 已知函数 f (x)对一确实数x, y R 都有 f ( x y) f ( y) x(x 2 y1) 建立,且f (1) 0 .(Ⅰ)求 f (0) 的值;(Ⅱ)求 f ( x) 的分析式;(Ⅲ)已知 a R ,设 P :当0 x 12x a恒建立;时,不等式 f ( x) 32Q:当x[2,2] 时, g (x) f ( x)ax 是单一函数。
人教版高一数学必修一单元测试题及答案全套.doc
最新人教版高一数学必修一单元测试题及答案全套单元评估验收(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四 个选项中,只有一项符合题目要求)1.已知集合力={0, 1},则下列关系表示错误的是()D ・{0, 1}^A解析:{1}与/均为集合,而丘用于表示元素与集合的关系,所以B 错,其 正确的表示应是{1}匸4答案:B2.已知函数y=fix)的对应关系如下表,函数y=g(x)的图象是如下图的曲线 MC,其中力(1, 3), B(2, 1), C(3, 2),则张⑵)的值为( )解析:由图象可知g(2) = l,由表格可知/(1)=2,所以/0-(2)) = 2.答案:B 3・设全集 U={19 2, 3, 4}, M={1, 3, 4}, N={29 4}, P=[2}9 那么下列关系中正确的是( ) A. P=(JM)QNB ・ P=MUNC ・ P=MU((MV)D ・ P=MQN 解析:由题意知®M={2},故P=(5M)CN ・A. 3 X1 2 3 Ax)2 3 0C ・1D ・0 B ・2答案:A4.已知函数/U )的定义域为(一1, 0),则函数/(2x+l )的定义域为()A ・(一1, 1)C ・(一1, 0) —l<2x+l<0,解得一1 <xv —2,即函数/(2x+l )的定答案:BA. 一2B. 4 C ・ 2 D ・ 一 4 解析:对于/(2x+l ),5. 2X 9 X >0, 已知何仏+1),虫0・ +/—D的值等于(解析:函数的定义域为{X^l},排除c 、D,当x=2时,j=0,排除A, 故选B・6. %—2 X —的图象是( 4+I J =X ) B A D 答案:B答案:B-1),当炖(一 1, +°°)时,几)为增函数,又因为ao,所以当(=0时,担)有1 「 1 、最小值一㊁,所以函数的值域为一㊁,+°°L ■答案:c8・已知全集t/=R,集合 M={x|—2Wx —lW2}和7¥={兀氏=2力一1, k=l 9 2,・・・}的关系的Verni 图如图所示,则阴影部分表示的集合的元素共有()A. 3个C. 1个 解析:M={x|—2Wx —lW2} = {x|—1 WxW3},N={1, 3, 5,…},则MQ N={\, 3},所以阴影部分表示的集合共有2个 元素,故选B.答案:B9・已知函数/(x )=ax 3-bx-49其中a, b 为常数.若川一2) = 2,贝!J 爪2) 的值为() 解析:因为/(-2)=a(-2)3+Z>-(-2)-4=2, 所以8a+2方=一6,所以爪2) = 8。
高中数学必修一测试题
高中数学必修一测试题一. 填空题1. 已知函数 f(x) = 2x² + 3x - 5,求 f(2) 的值。
解: 将 x = 2 代入函数 f(x) 得 f(2) = 2(2)² + 3(2) - 5 = 4(4) + 6 - 5 = 16+ 6 - 5 = 17。
2. 已知平行四边形 ABCD 的边长分别为 AB = 5cm,BC = 8cm,CD = 5cm,求对角线 AC 的长度。
解: 由平行四边形的性质可知,对角线互相平分且相等,因此 AC的长度等于 BD 的长度。
而 BD = AB = 5cm,所以 AC 的长度也为 5cm。
3. 解方程 2x + 3 = 7。
解: 通过移项和化简得 2x = 7 - 3 = 4,再除以 2 得 x = 2。
二. 计算题1. 计算3π + 2π - π。
解: 合并同类项得3π + 2π - π = 4π - π = 3π。
2. 简化下列代数式:(3x - 2y)²。
解: 将代数式展开得 (3x - 2y)² = (3x - 2y)(3x - 2y) = (3x)(3x) + (3x)(-2y) + (-2y)(3x) + (-2y)(-2y)= 9x² - 6xy - 6xy + 4y² = 9x² - 12xy + 4y²。
三. 解答题1. 解方程组:{ x - y = 5,2x + y = 9.解: 方程组可通过消元法求解。
首先将第一条方程两边同乘以 2,得到 2x - 2y = 10。
然后将第二条方程与该式相加,消去 y,得到 (2x + y) + (2x - 2y) = 9 + 10即 4x = 19,再除以 4 得 x = 19/4。
将 x 的值代入第一条方程得 (19/4) - y = 5,移项得 y = (19/4) - 5 = 19/4 - 20/4 = -1/4。
最新高中数学必修1综合测试卷(三套+含答案)教学教材
1、设全集 集合 从 到 的一个映射为 ,其中 则 _________________。
2、已知 是方程 的根, 是方程 的根,则 值为______________。
3、已知函数 的图象关于直线 对称,且当 时 则当 时
________________。
4、函数 的反函数 的图像与 轴交于点 (如图所示),则方程 在 上的根是
5、设
A、0B、1 C、2D、3
6、从甲城市到乙城市 分钟的电话费由函数 给出,其中 , 表示不大于 的最大整数(如 ),则从甲城市到乙城市 分钟的电话费为______________。
7、函数 在区间 上为增函数,则 的取值范围是______________。
8、函数 的值域为______________。
令 (0≤t≤ ),则x=t2+1,
∴ …………………………………………………8分
故当t= 时,可获最大利润 万元.……………………………………………………10分
此时,投入乙种商品的资金为 万元,
投入甲种商品的资金为 万元.……………………………………………………12分
21、(1)证明: ,令x=y=1,则有:f(1)=f(1)-f(1)=0,…2分
22、解:(1) 是R上的奇函数 ,
即 ,即
即 ∴
或者 是R上的奇函数
,解得 ,然后经检验满足要求。…………………………………3分(2)由(1)得
设 ,则
,
,所以 在 上是增函数…………………………………7分
(3) ,
所以 的值域为(-1,1)
或者可以设 ,从中解出 ,所以 ,所以值域为(-1,1)…12分
高中数学必修1综合测试卷(三套+含答案)
人教版高中数学选择性必修第一册全册考试复习必刷检测卷(培优版)(考试版)
高二数学人教版选择性必修第一册全册考试复习必刷检测卷(培优版)一、单项选择题:本题共8小题,每小题满分5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求,选对得5分,选错得0分.1.(2021·全国高二课时练习)已知M 、N 分别是四面体OABC 的棱OA ,BC 的中点,点P 在线段MN 上,且MP =2PN ,设向量OA a =,OB b =,OC c =,则OP =()A .111666a b c++B .111333a b c++C .111633a b c++D .111366a b c++2.(2021·重庆市清华中学校高二月考)在棱长为1的正方体1111ABCD A B C D -中,点E 为底面1111D C B A 内一动点,则EA EC ⋅的取值范围是()A .1,12⎡⎤⎢⎥⎣⎦B .[]0,1C .[]1,0-D .1,02⎡⎤-⎢⎥⎣⎦3.(2021·四川仁寿一中高二月考)已知点P 为直线1y x =+上的一点,,M N 分别为圆221:(4)(1)4C x y -+-=与圆222:(4)1C x y +-=上的点,则||||PM PN +的最小值为()A .5B .6C .2D .14.(2021·黑龙江让胡路·大庆中学高二月考)已知圆O 的圆心在坐标原点,且与直线22y x =+相切,点P 为直线290x y +-=上一动点,过点P 向圆O 引两条切线PA ,PB ,A 、B 为切点,则直线AB 经过定点()A .48,99⎛⎫ ⎪⎝⎭B .24,99⎛⎫ ⎪⎝⎭C .()2,0D .()9,05.(2021·怀仁市大地学校高中部高二月考)已知曲线C :221mx ny +=()A .若m >n >0,则C 是椭圆,其焦点在x 轴上B .若m =n >0,则C 是圆,其半径为r =1C .若mn <0,则C 是双曲线,其渐近线方程为n y x m=±D .若m =0,n >0,则C 是两条直线6.(2021·全国高二单元测试)已知O 为坐标原点,F 是椭圆C :22221x y a b+=(0a b >>)的左焦点,,A B 分别为椭圆C 的左、右顶点,P 为椭圆C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则椭圆C 的离心率为()A .13B .12C .23D .347.(2021·浙江温州·高二期中)古希腊数学家阿波罗尼奥斯(约公元首262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数k (0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿波罗尼期圆.已知(0,0)O ,(3,0)A ,圆222:(2)(0)C x y r r -+=>上有且仅有一个点P 满足||2||PA PO =,则r 的取值可以为()A .1B .2C .3D .48.(2021·全国高二课时练习)如图,设1F ,2F 是双曲线()22210xy a a-=>的左、右焦点,过点2F 作渐近线的平行线交另外一条渐近线于点A ,若12AF F △的面积为54,离心率满足12e <<,则双曲线的方程为()A .2215x y -=B .2214x y -=C .2213x y -=D .2212x y -=二、三、多项选择题:本题共4小题,每小题满分5分,共20分.在每小题给出的四个选项中,有多项符合题目要求。
新教材人教版高一数学上册单元测试题含答案全套
新教材人教版高一数学上册单元测试题含答案全套人教版高中数学必修第一册第一章测试题集合与常用逻辑用语注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,,则等于( )A .B .C .D .【答案】B【解析】集合,,.2.是的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 【答案】B【解析】由不能推得,反之由可推得, 所以是的必要不充分条件. 3.已知集合,,若,则实数的值为( )A .B .C .D .【答案】B【解析】∵集合,,且,∴,因此. 4.下列命题中正确的是( ){}1,2,3,4,5A ={}21,B y y x x A ==-∈A B {2,4}{1,3,5}{2,4,7,9}{1,2,3,4,5,7,9}{}1,2,3,4,5A ={}{}21,1,3,5,7,9B y y x x A ==-∈={}1,3,5A B =1x >4x >1x >4x >4x >1x >1x >4x >{1,3}A =-2{2,}B a ={1,2,3,9}A B =-a 1±3±1-3{1,3}A =-2{2,}B a ={1,2,3,9}A B =-29a =3a =±A .任何一个集合必有两个以上的子集B .空集是任何集合的子集C .空集没有子集D .空集是任何集合的真子集 【答案】B【解析】空集只有一个子集,故A 错;B 正确; 空集是本身的子集,故C 错;空集不能是空集的真子集,故D 错. 5.已知集合,则中元素的个数为( )A .B .C .D .【答案】A【解析】因为集合,所以满足且,的点有,,,,,,,,共个.6.已知,则( )A .B .C .D .【答案】B 【解析】,故A 错,B 对,显然,所以C 不对,而,所以D 也不对,故本题选B .7.命题“存在实数,使”的否定是( ) A .对任意实数,都有 B .对任意实数,都有 C .不存在实数,使 D .存在实数, 【答案】B【解析】命题“存在实数,使”的否定是“对任意实数,都有”. 8.集合中的不能取的值的个数是( ) A .B .C .D .【答案】B【解析】由题意可知,且且, 故集合中的不能取的值的个数是个. 9.下列集合中,是空集的是( ) A . B .C .D .【答案】B(){}22,3,,A x y xy x y =+≤∈∈Z Z A 9854(){}22,3,,A x y xy x y =+≤∈∈Z Z 223x y +≤x ∈Z y ∈Z (1,1)--(1,0)-(1,1)-(0,1)-(0,0)(0,1)(1,1)-(1,0)(1,1)9a ={A x x =≥a A ∉a A ∈{}a A ={}a a ∉>a A ∈{}a A ≠{}a a ∈x 1x >x 1x >x 1x ≤x 1x ≤x 1x ≤x 1x >x 1x ≤{}22,4,0x x --x 2345222040224x x x x x -≠-≠⇒≠-≠⎧⎪⎨⎪⎩-2x ≠-1x ≠-{}22,4,0x x --x 3{}0|2x x +={}210,x x x +=∈R {}1|x x <(){}22,,,x y yx x y =-∈R【解析】对于A 选项,,不是空集, 对于B 选项,没有实数根,故为空集, 对于C 选项,显然不是空集,对于D 选项,集合为,故不是空集. 10.下列各组集合中表示同一集合的是( ) A ., B ., C ., D .,【答案】B【解析】对于A ,,表示点集,,表示数集,故不是同一集合; 对于B ,,,根据集合的无序性,集合表示同一集合; 对于C ,集合的元素是数,集合的元素是等式;对于D ,,集合的元素是点,, 集合的元素是点,集合不表示同一集合.11.学校先举办了一次田径运动会,某班共有名同学参赛,又举办了一次球类运动会,这个班有名同学参赛,两次运动会都参赛的有人.两次运动会中,这个班总共的参赛人数为( ) A . B . C . D . 【答案】B【解析】因为参加田径运动会的有名同学,参加球类运动会的有名同学,两次运动会都参加的有人,所以两次运动会中,这个班总共的参赛人数为.12.已知集合,.若, 则实数的取值范围为( ) A . B .C .D .【答案】D【解析】, 当为空集时,;当不为空集时,,综上所述得.第Ⅱ卷二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.集合,则集合的子集的个数为 个.2x =-210x +={(0,0)}{(3,2)}M ={3,2}N ={2,3}M ={3,2}N ={2,3}M ={2,3}N x y ==={(2,3)}M ={(5,4)}N ={(3,2)}M =M {3,2}N =N {2,3}M ={3,2}N =,M N M N {(2,3)}M =M (2,3){(5,4)}N =N (5,4),M N 8123201714238123812317+-={}|25A x x =-≤≤{}|121B x m x m =+≤≤-B A ⊆m 3m ≥23m ≤≤2m ≥3m ≤{}|121B x m x m =+≤≤-B 2112m m m -<+⇒<B 22152312m m m m ≥⎧⎪-≤⇒≤≤⎨⎪+≥-⎩3m ≤2{}1,A =A【答案】【解析】由已知,集合的子集个数为.14.命题“”是命题“”的 (“充分不必要,必要不充分,充要,既不充分也不必要”)条件. 【答案】必要不充分【解析】的解为或,所以当“”成立时,则“”未必成立; 若“”,则“”成立,故命题“”是命题“”的必要不充分条件.15.命题“,”的否定是 .【答案】,【解析】由全称量词命题的否定是存在量词命题可知,命题“,”的否定是“,”.16.设全集是实数集,,, 则图中阴影部分所表示的集合是 .【答案】【解析】由图可知,阴影部分为,∵,∴,∴.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知集合,且,求的取值集合. 【答案】.【解析】∵,∴或,即或.4A 224=220x x --=1x =-220x x --=1x =-2x =220x x --=1x =-1x =-220x x --=220x x --=1x =-x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤U R {}22M x x x =<->或{}13N x x =<<{}12x x <≤Venn ()UN M {}22M x x x =<->或{}22UM x x -=≤≤(){}12UNM x x =<≤{}21,2,4M m m =++5M ∈m {}1,3{}251,2,4m m ∈++25m +=245m +=3m =1m =±当时,;当时,; 当时,不满足互异性, ∴的取值集合为{}1,3.18.(12分)已知集合,,若,求实数,的值.【答案】或.【解析】由已知,得①,解得或, 当时,集合不满足互异性, 当时,集合,集合,符合题意; ②,解得(舍)或,当时,集合,集合符合题意,综上所述,可得或.19.(12分)设集合,. (1)若,试判定集合与的关系; (2)若,求实数的取值集合.【答案】(1)是的真子集;(2).3m ={}1,5,13M =1m ={}1,3,5M =1m =-{}1,1,5M =m {,,2}A a b =2{2,,2}B b a =A B =a b 01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩A B =22a a b b =⎧⎨=⎩00a b =⎧⎨=⎩01a b =⎧⎨=⎩00a b =⎧⎨=⎩{0,0,2}A =01a b =⎧⎨=⎩{0,1,2}A ={2,1,0}B =22a b b a ⎧=⎨=⎩00a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩11{,,2}42A =11{2,,}42B =01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩{}28150A x x x =-+={}10B x ax =-=15a =A B B A ⊆a B A 110,,35⎧⎫⎨⎬⎩⎭【解析】(1),,∴是的真子集. (2)当时,满足,此时;当时,,集合,又,得或,解得或. 综上,实数的取值集合为.20.(12分)已知全集,集合,.求: (1),,;(2),;(3)设集合且,求的取值范围.【答案】(1)见解析;(2)见解析;(3). 【解析】(1),∵,,.(2),∴.(3)由(2)可知,∵,∴,解得.21.(12分)已知集合为全体实数集,,. (1)若,求;(2)若,求实数的取值范围. 【答案】(1);(2).【解析】(1)当时,,所以,所以.(2)①,即时,,此时满足.②当,即时,,由得,或, 所以.{3,5}A ={5}B =B A B =∅B A ⊆0a =B ≠∅0a ≠1B a ⎧⎫=⎨⎬⎩⎭B A ⊆13a =15a=13a =15a 110,,35⎧⎫⎨⎬⎩⎭{}6U x x =∈<N {}1,2,3A ={}2,4B =A B UA UB AB ()UA B {|21}C x a x a =-<≤-()UA CB ⊆a 3a ≥2A B ={0,1,2,3,4,5}U ={0,4,5}UA ={0,1,3,5}UB ={1,2,3,4}AB =(){0,5}UA B =(){0,5}UA B =()U A C B ⊆021521a a a a -<⎧⎪-≥⎨⎪->-⎩3a ≥U {}25M x x x =≤-≥或{}121N x a x a =+≤≤-3a =UMN N M ⊆a {}45Ux x x MN =<≥或{}24a a a <≥或3a ={}45|N x x =≤≤{}45UN x x x =<>或{}45Ux x x MN =<≥或211a a -<+2a <N =∅N M ⊆211a a -≥+2a ≥N ≠∅N M ⊆15a +≥212a -≤-4a ≥综上,实数的取值范围为.22.(12分)已知二次函数,非空集合.(1)当时,二次函数的最小值为,求实数的取值范围;(2)是否存在整数的值,使得“”是“二次函数的大值为”的充分条件, 如果存在,求出一个整数的值,如果不存在,请说明理由. 【答案】(1);(2)见解析.【解析】(1),当且仅当时,二次函数有最小值为,由已知时,二次函数的最小值为,则,所以. (2)二次函数,开口向上,对称轴为,作出二次函数图象如图所示,由“”是“二次函数的大值为”的充分条件, 即时,二次函数的最大值为,,即为,令,解得或,由图像可知,当或时,二次函数的最大值不等于,不符合充分条件, 则,即可取的整数值为,,,,任意一个.第一册第二章测试题一元二次函数、方程和不等式注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
人教版高中数学选择性必修第一册-综合检测卷(含解析)
人教版高中数学选择性必修第一册综合检测卷(原卷版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线过点(1,3),(4,3+3),则此直线的倾斜角是()A.π6B.π4C.π3D.2π32.(2019·北京,理)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,则()A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b3.如图,在三棱锥O -ABC 中,D 是棱AC 的中点,若OA →=a ,OB →=b ,OC →=c ,则BD →=()A.12a -b +12c B .a +b -c C .a -b +cD .-12a +b -12c4.直线y =x -1被抛物线y 2=4x 截得的线段AB 的中点坐标是()A .(2,6)B .(3,2)C .(6,4)D .(4,6)5.已知正四面体ABCD 的棱长为a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为()A .a 2 B.14a 2C.12a 2 D.34a 26.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为()A .x 2+y 2-2x -3=0B .x 2+y 2+4x =0C .x 2+y 2+2x -3=0D .x 2+y 2-4x =07.四棱锥P -ABCD 中,底面ABCD 为直角梯形,AB ⊥AD ,BC ∥AD ,且AB =BC =2,AD =3,PA ⊥平面ABCD 且PA =2,则PB 与平面PCD 所成角的正弦值为()A.427B.77C.33D.638.(2019·课标全国Ⅱ)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为()A.2B.3C .2 D.5二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列说法正确的是()A .在两坐标轴上截距相等的直线可以用方程x a +ya=1表示B .存在实数m ,使得方程x +my -2=0能表示平行于y 轴的直线C .经过点P (1,1),倾斜角为θ的直线方程为y -1=tan θ(x -1)D .点(0,2)关于直线y =x +1的对称点为(1,1)10.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是A 1D 1和C 1D 1的中点,则下列结论正确的是()A .A 1C 1∥平面CEFB .B 1D ⊥平面CEF C.CE →=12DA →+DD 1→-DC→D .若正方体ABCD -A 1B 1C 1D 1边长为2,点B 1到平面CEF 的距离为111.已知P 是椭圆C :x 26+y 2=1上的动点,Q 是圆D :(x +1)2+y 2=15上的动点,则()A .C 的焦距为5B .C 的离心率为306C .圆D 在C 的内部D .|PQ |的最小值为25512.已知动点P 到两定点M (-2,0),N (2,0)的距离乘积为常数16,其轨迹为C ,则()A .C 一定经过原点B .C 关于x 轴、y 轴对称C .△MPN 的面积的最大值为43D .C 在一个面积为64的矩形内三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,PA →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.14.已知点P 是圆C :x 2+y 2=4上的动点,点A (4,2),则线段AP 中点M 的轨迹方程是________________;点M 的轨迹与圆C 相交,则过交点的直线方程是________.(本题第一空2分,第二空3分)15.已知点F2为双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点,直线y=kx交双曲线C于A,B两点,若∠AF2B=2π3,S△AF2B=23,则双曲线C的虚轴长为________.16.已知椭圆x2a2+y2b2=1(a>b>0)的右焦点为F1(1,0),离心率为e.设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,原点O在以线段MN为直径的圆上.设直线AB的斜率为k,若0<k≤3,则e的取值范围为________.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知三角形的顶点A(2,3),B(0,-1),C(-2,1).(1)求直线AC的方程;(2)从①,②这两个问题中选择一个作答.①求点B关于直线AC的对称点D的坐标.②若直线l过点B且与直线AC交于点E,|BE|=3,求直线l的方程.18.(12分)已知圆C经过三点O(0,0),A(1,3),B(4,0).(1)求圆C的方程;(2)求过点P(3,6)且被圆C截得弦长为4的直线的方程.19.(12分)(2019·课标全国Ⅱ,文)已知F1,F2是椭圆C:x2a2+y2b2=1(a>0,b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.20.(12分)如图,在四棱锥P-ABCD中,平面PCD⊥平面ABCD,且△PCD是边长为2的等边三角形,四边形ABCD是矩形,BC=22,M为BC的中点.(1)求证:AM⊥PM;(2)求二面角P-AM-D的大小;(3)求点D到平面AMP的距离.21.(12分)如图,三棱柱ABC-A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1与A1C相交于点D.(1)求证:BD⊥平面AA1C1;(2)设点E是直线B1C1上一点,且DE∥平面AA1B1B,求平面EBD与平面ABC1夹角的余弦值.22.(12分)已知定点F(1,0),动点P在y轴上运动,过点P作PM交x轴于点M,并延长MP 到点N ,且PM →·PF →=0,|PM →|=|PN →|.(1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A ,B 两点,若OA →·OB →=-4,且46≤|AB →|≤430,求直线l 的斜率k 的取值范围.1.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为()A.54B.52C.32D.542.已知四面体顶点A (2,3,1),B (4,1,-2),C (6,3,7)和D (-5,-4,8),则顶点D 到平面ABC 的距离为()A .8B .9C .10D .113.如图,在四棱锥S -ABCD 中,底面ABCD 是边长为1的正方形,SA =SB =SC =SD =2.下列结论中正确的是()A.SA →+SB →+SC →+SD →=0B.SA →-SB →+SC →-SD →=0C.SA →·SB →+SC →·SD →=0D.SA →·SC →=04.已知A 是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左顶点,F 是抛物线C :y 2=-8ax 的焦点.若在双曲线的渐近线上存在点P ,使得AP →⊥FP →,则E 的离心率的取值范围是()A .(1,2),324D .(2,+∞)5.如图,在正四棱锥P -ABCD 中,PA =AB ,点M 为PA 的中点,BD →=λBN →.若MN ⊥AD ,则实数λ为()A .2B .3C .4D .56.已知椭圆C :x 24+y 23=1,M ,N 是坐标平面内的两点,且M 与椭圆C 的焦点不重合.若M 关于椭圆C 的左、右焦点的对称点分别为A ,B ,线段MN 的中点在椭圆C 上,则|AN |+|BN |=()A .4B .8C .12D .167.在平面直角坐标系xOy 中,已知点A (0,-2),点B (1,-1),P 为圆x 2+y 2=2上一动点(异于点B ),则|PB ||PA |的最大值是()A .2B .4C.2D .228.【多选题】若{a ,b ,c }为空间的一个基底,则()A .b +c ,b -c ,a 共面B .b +c ,b -c ,2b 共面C .b +c ,a ,a +b +c 共面D .a +c ,a -2c ,c 共面9.【多选题】如图,在长方体ABCD -A 1B 1C 1D 中,AB =3AD =3AA 1=3,点P 为线段A 1C 上的动点,则下列结论正确的是()A .当A 1C →=2A 1P →时,B 1,P ,D 三点共线B .当AP →⊥A 1C →时,AP →⊥D 1P→C .当A 1C →=3A 1P →时,D 1P ∥平面BDC 1D .当A 1C →=5A 1P →时,A 1C ⊥平面D 1AP10.【多选题】已知抛物线E :y 2=4x 的焦点为F ,准线为l ,过F 的直线与E 交于A ,B 两点,分别过A ,B 作l 的垂线,垂足为C ,D ,且|AF |=3|BF |,M 为AB 中点,则下列结论正确的是()A .∠CFD =90°B .△CMD 为等腰直角三角形C .直线AB 的斜率为±3D .△AOB 的面积为411.【多选题】a ,b 为空间两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以AC 为旋转轴旋转,则下列结论正确的是()A .直线AB 与a 所成角的最小值为π4B .直线AB 与a 所成角的最大值为π3C .当直线AB 与a 所成的角为π3时,AB 与b 所成的角为π6D .当直线AB 与a 所成的角为π3时,AB 与b 所成的角为π312.【多选题】古希腊著名数学家阿波罗尼奥斯发现:平面内到两个定点A,B的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy中,A(-2,0),B(4,0),点P满足|PA||PB|=12.设点P的轨迹为C,下列结论正确的是()A.轨迹C的方程为(x+4)2+y2=9B.在x轴上存在异于A,B的两点D,E使得|PD||PE|=1 2C.当A,B,P三点不共线时,射线PO是∠APB的平分线D.在C上存在点M,使得|MO|=2|MA|13.已知直线l:mx-y=1,若直线l与直线x-my-1=0平行,则实数m的值为________,动直线l被圆C:x2+y2+2x-24=0截得弦长的最小值为________.14.已知M(-2,0),N(2,0),点P(x,y)为坐标平面内的动点,满足|MN→|·|MP→|+MN→·NP→=0,则动点P的轨迹方程为________.15.已知直线l:4x-3y+6=0,抛物线C:y2=4x上一动点P到直线l与到y轴距离之和的最小值为________,P到直线l距离的最小值为________.16.已知直线l:y=-x+1与椭圆x2a2+y2b2=1(a>b>0)相交于A,B两点,且线段AB的中点为(1)求此椭圆的离心率;(2)若椭圆的右焦点关于直线l的对称点在圆x2+y2=5上,求此椭圆的方程.17.如图所示,该几何体是由一个直三棱柱ADE-BCF和一个正四棱锥P-ABCD组合而成的,AD⊥AF,AE=AD=2.(1)证明:平面PAD⊥平面ABFE;(2)求正四棱锥P-ABCD的高h,使得二面角C-AF-P的余弦值是22318.如图,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=3,∠ABC=60°.(1)证明:AB⊥A1C;(2)求二面角A-A1C-B的正切值大小.19.如图,直四棱柱ABCD-A1B1C1D1的高为3,底面是边长为4且∠DAB=60°的菱形,AC ∩BD=O,A1C1∩B1D1=O1,E是O1A的中点.(1)求二面角O1-BC-D的大小;(2)求点E到平面O1BC的距离.20.已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,若|PM|=|PO|,求|PM|的最小值及使得|PM|取得最小值的点P的坐标.21.已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.(1)求k的取值范围;(2)若OM→·ON→=12,其中O为坐标原点,求△OMN的面积.22.如图,在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的短轴长为2,椭圆C上的点到右焦点距离的最大值为2+ 3.过点P(m,0)作斜率为k的直线l交椭圆C于A,B两点,其中m>0,k>0,D是线段AB的中点,直线OD交椭圆C于M,N两点.(1)求椭圆C的标准方程;(2)若m=1,OM→+3OD→=0,求k的值;(3)若存在直线l,使得四边形OANB为平行四边形,求m的取值范围.人教版高中数学选择性必修第一册综合检测卷(解析版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线过点(1,3),(4,3+3),则此直线的倾斜角是()A.π6B.π4C.π3D.2π3答案A解析设直线的倾斜角为α,则tan α=3+3-34-1=33,∴α=π6.故选A.2.(2019·北京,理)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,则()A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b答案B 解析椭圆的离心率e =c a =12,c 2=a 2-b 2,化简得3a 2=4b 2.故选B.3.如图,在三棱锥O -ABC 中,D 是棱AC 的中点,若OA →=a ,OB →=b ,OC →=c ,则BD →=()A.12a -b +12c B .a +b -c C .a -b +c D .-12a +b -12c答案A解析OD →=OA →+AD →=OA →+12AC →=OA →+12(OC →-OA →)=12OA →+12OC →,因此BD →=OD →-OB →=12OA→-OB →+12OC →=12a -b +12c .4.直线y =x -1被抛物线y 2=4x 截得的线段AB 的中点坐标是()A .(2,6)B .(3,2)C .(6,4)D .(4,6)答案B解析设点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).将y =x -1代入y 2=4x ,整理得x 2-6x +1=0.由根与系数的关系得x 1+x 2=6,则x 1+x 22=3,y 1+y 22=x 1+x 2-22=6-22=2,所以所求点的坐标为(3,2).故选B.5.已知正四面体ABCD 的棱长为a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为()A .a 2 B.14a 2C.12a 2 D.34a 2答案B解析在正四面体ABCD 中,点E ,F 分别是BC ,AD 的中点,AE →=AB →+BE →,AF →=12AD →,所以AE →·AF →=(AB →+BE →)·12→=12AB →·AD →+12BE →·AD →.因为ABCD 是正四面体,所以BE ⊥AD ,∠BAD =π3,即BE →·AD →=0,AB →·AD →=|AB →|·|AD →|cos π3=12a 2,所以AE →·AF →=14a 2.故选B.6.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为()A .x 2+y 2-2x -3=0B .x 2+y 2+4x =0C .x 2+y 2+2x -3=0D .x 2+y 2-4x =0答案D解析由题意设圆心坐标为C (a ,0)(a >0),∵圆C 与直线3x +4y +4=0相切,∴|3a +0+4|9+16=2,解得a =2.∴圆心为C (2,0),∴圆C 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0.故选D.7.四棱锥P -ABCD 中,底面ABCD 为直角梯形,AB ⊥AD ,BC ∥AD ,且AB =BC =2,AD =3,PA ⊥平面ABCD 且PA =2,则PB 与平面PCD 所成角的正弦值为()A.427 B.77C.33D.63答案B解析建立如图所示的空间直角坐标系,则P (0,0,2),B (2,0,0),C (2,2,0),D (0,3,0).PB →=(2,0,-2),CD →=(-2,1,0),PD →=(0,3,-2).设平面PCD 的一个法向量为n =(x ,y ,z ),2x +y =0,y -2z =0.取x =1得n =(1,2,3).cos 〈PB →,n 〉=PB →·n |PB →||n |=-422×14=-77,可得PB 与平面PCD 所成角的正弦值为77.故选B.8.(2019·课标全国Ⅱ)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为()A.2B.3C .2 D.5答案A解析如图,由题意知以OF +y 2=c 24①,将x 2+y 2=a 2记为②式,①-②得x =a 2c ,则以OF 为直径的圆与圆x 2+y 2=a 2的相交弦所在直线的方程为x =a 2c,所以|PQ |=由|PQ |=|OF |,得c ,整理得c 4-4a 2c 2+4a 4=0,即e 4-4e 2+4=0,解得e = 2.故选A.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列说法正确的是()A .在两坐标轴上截距相等的直线可以用方程x a +ya =1表示B .存在实数m ,使得方程x +my -2=0能表示平行于y 轴的直线C .经过点P (1,1),倾斜角为θ的直线方程为y -1=tan θ(x -1)D .点(0,2)关于直线y =x +1的对称点为(1,1)答案BD 解析对于A ,若直线过原点,则在两坐标轴上的截距都为零,故不能用方程x a +ya=1表示,所以A 错误;对于B ,当m =0时,平行于y 轴的直线方程为x =2,所以B 正确;对于C ,若直线的倾斜角为90°,则该直线的斜率不存在,故不能用y -1=tan θ(x -1)表示,所以C 错误;对于D y =x +1上,且(0,2),(1,1)连线的斜率为-1,所以D 正确.故选BD.10.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是A 1D 1和C 1D 1的中点,则下列结论正确的是()A .A 1C 1∥平面CEFB .B 1D ⊥平面CEF C.CE →=12DA →+DD 1→-DC→D .若正方体ABCD -A 1B 1C 1D 1边长为2,点B 1到平面CEF 的距离为1答案AC解析对于A ,因为E ,F 分别是A 1D 1和C 1D 1的中点,所以EF ∥A 1C 1,且EF ⊂平面CEF ,故A 1C 1∥平面CEF 成立,A 正确;对于B ,以点D 为坐标原点,DA →,DC →,DD 1→的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系(如图),设正方形ABCD -A 1B 1C 1D 1的棱长为2,则D (0,0,0),C (0,2,0),A (2,0,0,),B 1(2,2,2),D 1(0,0,2),E (1,0,2),F (0,1,2),B 1D →=(-2,-2,-2),FC →=(0,1,-2),因为B 1D →·FC →=0-2+4=2≠0,所以B 1D →与FC →不垂直,又CF ⊂平面CEF ,所以B 1D 与平面CEF 不垂直,B 错误;对于C ,12DA →+DD 1→-DC →=12(2,0,0)+(0,0,2)-(0,2,0)=(1,-2,2),又CE →=(1,-2,2),所以CE →=12DA→+DD 1→-DC →成立,C 正确;对于D ,连接B 1E ,EF →=(-1,1,0),EC →=(-1,2,-2),设平面EFC 的法向量为n =(x ,y ,z )·n =0,·n =0,x +y =0,x +2y -2z =0,令x =2,得n =(2,2,1),又B 1E →=(-1,-2,0),所以点B 1到平面CEF 的距离d =|B 1E →·n ||n |=63=2,D 错误.故选AC.11.已知P 是椭圆C :x 26+y 2=1上的动点,Q 是圆D :(x +1)2+y 2=15上的动点,则()A .C 的焦距为5B .C 的离心率为306C .圆D 在C 的内部D .|PQ |的最小值为255答案BC解析∵x 26+y 2=1,∴a =6,b =1,∴c =a 2-b 2=6-1=5,则C 的焦距为25,e =ca=56=306.设P (x ,y )(-6≤x ≤6),则|PD |2=(x +1)2+y 2=(x +1)2+1-x 26=+45≥45>15,可知圆D 在C 的内部,且|PQ |的最小值为45-15=55.故选BC.12.已知动点P 到两定点M (-2,0),N (2,0)的距离乘积为常数16,其轨迹为C ,则()A .C 一定经过原点B .C 关于x 轴、y 轴对称C .△MPN 的面积的最大值为43D .C 在一个面积为64的矩形内答案BCD解析设点P 的坐标为(x ,y ),由题意可得(x +2)2+y 2·(x -2)2+y 2=16.对于A ,将原点坐标(0,0)代入方程得2×2=4≠16,故A 错误;对于B ,设点P 关于x 轴、y 轴的对称点分别为P 1(x ,-y ),P 2(-x ,y ),因为(x +2)2+(-y )2·(x -2)2+(-y )2=(x +2)2+y 2·(x -2)2+y 2=16,(-x +2)2+y 2·(-x -2)2+y 2=(x -2)2+y 2·(x +2)2+y 2=16,所以点P 1,P 2都在曲线C 上,所以曲线C 关于x 轴、y 轴对称,故B 正确;对于C ,设|PM |=a ,|PN |=b ,∠MPN =θ(0<θ<π),则ab =16,由余弦定理得cos θ=a 2+b 2-162ab =a 2+b 2-1632≥2ab -1632=12,当且仅当a =b =4时等号成立,则θ,π3,所以sin θ≤32,则△MPN 的面积S △MPN =12ab sin θ≤12×16×32=43,故C正确;对于D ,由16=(x +2)2+y 2·(x -2)2+y 2≥(x +2)2·(x -2)2=|x 2-4|,可得-16≤x 2-4≤16,得0≤x 2≤20,解得-25≤x ≤25,由C 知,S △MPN =12|MN |·|y |=12×4×|y |≤43,得|y |≤23,因为45×43=1615<64,所以曲线C 在一个面积为64的矩形内,故D 正确.故选BCD.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,PA →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.答案23a -13b +23c 解析PG →=PB →+BG→=PB →+23BD→=PB →+23(BA →+BC →)=PB →+23[(PA →-PB →)+(PC →-PB →)]=PB →+23(PA →-2PB →+PC →)=23PA →-13PB →+23PC →=23a -13b +23c .14.已知点P 是圆C :x 2+y 2=4上的动点,点A (4,2),则线段AP 中点M 的轨迹方程是________________;点M 的轨迹与圆C 相交,则过交点的直线方程是________.(本题第一空2分,第二空3分)答案(x -2)2+(y -1)2=12x +y -4=0解析设M (x ,y ),P (x 1,y 1),=x 1+42,=y 1+22,1=2x -4,1=2y -2.因为x 12+y 12=4,所以(2x -4)2+(2y -2)2=4.整理得(x -2)2+(y -1)2=1.①又圆C :x 2+y 2=4,②由①-②得2x +y -4=0,即为所求直线方程.15.已知点F 2为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,直线y =kx 交双曲线C 于A ,B两点,若∠AF 2B =2π3,S △AF 2B =23,则双曲线C 的虚轴长为________.答案22解析由题意知点B 与点A 关于原点对称,设双曲线的左焦点为F 1,连接AF 1,BF 1,由对称性可知四边形AF 1BF 2是平行四边形,所以∠F 1AF 2=π3,设|AF 2|=m ,不妨设点A 在点B 右侧,则|AF 1|=2a +m .在△AF 1F 2中,由余弦定理可得4c 2=m 2+(m +2a )2-m (m +2a ),化简得4c 2-4a 2=m 2+2ma ,即4b 2=m (m +2a ).又S △AF 2B =12m (m +2a )·32=23,所以b 2=2,所以2b =2 2.16.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F 1(1,0),离心率为e .设A ,B 为椭圆上关于原点对称的两点,AF 1的中点为M ,BF 1的中点为N ,原点O 在以线段MN 为直径的圆上.设直线AB 的斜率为k ,若0<k ≤3,则e 的取值范围为________.答案[3-1,1)解析设A (m ,n ),则B (-m ,-n ),则k =nm,因为原点O 在以线段MN 为直径的圆上,所以OM ⊥ON ,又因为M 为AF 1的中点,所以OM ∥BF 1,同理ON ∥AF 1,所以四边形OMF 1N 是矩形,即AF 1⊥BF 1,而AF 1→=(1-m ,-n ),BF 1→=(1+m ,n ),所以(1-m )(1+m )-n 2=0,即m 2+n 2=1,又m 2a 2+n 2b 2=1,于是有m 2a 2+n 2b 2=m 2+n 2,从而1a 2-11-1b 2=n 2m 2=k 2≤3,即1a 2+3b2≥4,将b 2=a 2-1代入上式,整理得4a 4-8a 2+1≤0,解得2-32≤a 2≤2+32,又a >c =1,所以4-23≤1a2<1,即3-1≤e <1.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知三角形的顶点A (2,3),B (0,-1),C (-2,1).(1)求直线AC 的方程;(2)从①,②这两个问题中选择一个作答.①求点B 关于直线AC 的对称点D 的坐标.②若直线l 过点B 且与直线AC 交于点E ,|BE |=3,求直线l 的方程.思路分析(1)由A (2,3),C (-2,1),可求出直线AC 的斜率,由点斜式即可写出直线的方程;(2)选①由对称点的性质即可求出;选②设出E ,12t +t 的值,根据B ,E 两点的坐标即可求出直线的方程.解析(1)因为直线AC 的斜率为k AC =12,所以直线AC 的方程为y -3=12(x -2),即直线AC 的方程为x -2y +4=0.(2)选择问题①:设D 的坐标为(m ,n ),·12=-1,2·n -12+4=0,=-125,=195.所以点D -125,选择问题②:设E,12t +|BE |=33,解得t =0或t =-125.所以E 的坐标为(0,2)-125,所以直线l 的方程为x =0或3x +4y +4=0.18.(12分)已知圆C 经过三点O (0,0),A (1,3),B (4,0).(1)求圆C 的方程;(2)求过点P (3,6)且被圆C 截得弦长为4的直线的方程.解析(1)由题意,设圆C 的方程为x 2+y 2+Dx +Ey +F =0,=0,+9+D +3E +F =0+4D +F =0,=-4,=-2,=0.所以圆C 的方程为x 2+y 2-4x -2y =0,即(x -2)2+(y -1)2=5.(2)由(1)知圆心坐标为C (2,1),半径为5,弦长为4时,圆心C 到直线的距离为1.①若直线斜率不存在,则直线方程为x =3,经检验符合题意;②若直线斜率存在,设直线斜率为k ,则直线方程为y -6=k (x -3),即kx -y -3k +6=0,则|5-k |1+k 2=1,解得k =125,所以直线方程为y -6=125(x -3),即12x -5y -6=0.综上可知,直线方程为x =3或12x -5y -6=0.19.(12分)(2019·课标全国Ⅱ,文)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >0,b >0)的两个焦点,P 为C 上的点,O 为坐标原点.(1)若△POF 2为等边三角形,求C 的离心率;(2)如果存在点P ,使得PF 1⊥PF 2,且△F 1PF 2的面积等于16,求b 的值和a 的取值范围.解析(1)若△POF 2为等边三角形,则P ,±32c ,代入方程x 2a 2+y 2b 2=1,可得c 24a2+3c 24b2=1,解得e 2=4±23,所以e =3-1(3+1已舍去).(2)由题意可得|PF 1→|+|PF 2→|=2a ,因为PF 1⊥PF 2,所以|PF 1→|2+|PF 2→|2=4c 2,所以(|PF 1→|+|PF 2→|)2-2|PF 1→|·|PF 2→|=4c 2,所以2|PF 1→|·|PF 2→|=4a 2-4c 2=4b 2,所以|PF 1→|·|PF 2→|=2b 2,所以S △PF 1F 2=12|PF 1→|·|PF 2→|=b 2=16,解得b =4.因为(|PF 1→|+|PF 2→|)2≥4|PF 1→|·|PF 2→|,即(2a )2≥4|PF 1→|·|PF 2→|,即a 2≥|PF 1→|·|PF 2→|,所以a 2≥32,所以a ≥42,即a 的取值范围为[42,+∞).20.(12分)如图,在四棱锥P -ABCD 中,平面PCD ⊥平面ABCD ,且△PCD 是边长为2的等边三角形,四边形ABCD 是矩形,BC =22,M 为BC 的中点.(1)求证:AM ⊥PM ;(2)求二面角P -AM -D 的大小;(3)求点D 到平面AMP 的距离.解析以点D 为原点,分别以直线DA ,DC 为x 轴、y 轴,建立如图所示的空间直角坐标系,依题意,可得D (0,0,0),P (0,1,3),A (22,0,0),M (2,2,0),PM →=(2,1,-3),AM →=(-2,2,0).(1)证明:∵PM →·AM →=(2,1,-3)·(-2,2,0)=0,即PM →⊥AM →,∴AM ⊥PM .(2)设n =(x ,y ,z )为平面PAM 的法向量,·PM →=0,·AM →=0,y -3z =0,+2y =0,取y =1,得n =(2,1,3).取p =(0,0,1),显然p 为平面ABCD 的一个法向量,∵cos 〈n ,p 〉=n ·p |n ||p |=36=22,∴二面角P -AM -D 的大小为45°.(3)设点D 到平面AMP 的距离为d ,由(2)可知n =(2,1,3)为平面AMP 的一个法向量,∴d =|DA →·n ||n |=|22×2|2+1+3=263,即点D 到平面AMP 的距离为263.21.(12分)如图,三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=BC 1=2,∠AA 1C 1=60°,平面ABC 1⊥平面AA 1C 1C ,AC 1与A 1C 相交于点D .(1)求证:BD ⊥平面AA 1C 1;(2)设点E 是直线B 1C 1上一点,且DE ∥平面AA 1B 1B ,求平面EBD 与平面ABC 1夹角的余弦值.解析(1)证明:由已知得侧面AA 1C 1C 是菱形,D 是AC 1的中点.∵BA =BC 1,∴BD ⊥AC 1.∵平面ABC 1⊥平面AA 1C 1C ,且BD ⊂平面ABC 1,平面ABC 1∩平面AA 1C 1C =AC 1,∴BD ⊥平面AA 1C 1C .(2)设点F 是A 1C 1的中点,连接DF ,EF ,∵点D 是AC 1的中点,∴DF ∥平面AA 1B 1B .又∵DE ∥平面AA 1B 1B ,∴平面DEF ∥平面AA 1B 1B .又∵平面DEF ∩平面A 1B 1C 1=EF ,平面AA 1B 1B ∩平面A 1B 1C 1=A 1B 1,∴EF ∥A 1B 1.∴点E 是B 1C 1的中点.如图,以D 为原点,以DA 1,DA ,DB 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.由已知可得AC 1=2,AD =1,BD =A 1D =DC =3,BC =6,∴D (0,0,0),A (0,1,0),A 1(3,0,0),B (0,0,3),C 1(0,-1,0).设平面EBD 的法向量是m =(x ,y ,z ),由m ⊥DB →,得3z =0⇒z =0.又DE →=12(DC 1→+DB 1→)=12(DC 1→+DB →+AA 1→)1由m ⊥DE →,得(x ,y ,z10⇒32x -y =0.令x =1,得y =32,∴m ,32,∵平面ABC 1⊥平面AA 1C 1C ,DA 1⊥AC 1,∴DA 1⊥平面ABC 1.∴DA 1→是平面ABC 1的一个法向量,DA 1→=(3,0,0).∴cos 〈m ,DA 1→〉=31+34×3=277,∴平面EBD 与平面ABC 1夹角的余弦值是277.22.(12分)已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且PM →·PF →=0,|PM →|=|PN →|.(1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A ,B 两点,若OA →·OB →=-4,且46≤|AB →|≤430,求直线l 的斜率k 的取值范围.解析(1)由题意知P 为线段MN 的中点,设N (x ,y ),则M (-x ,0),由PM →·PF →=0x,∴(-x )·10,∴y 2=4x (x >0),∴点N 的轨迹方程为y 2=4x (x >0).(2)设l 与抛物线交于点A (x 1,y 1),B (x 2,y 2).当l 与x 轴垂直时,则由OA →·OB →=-4,得y 1=22,y 2=-22,|AB |=42<46,不合题意.故l 与x 轴不垂直.可设直线l 的方程为y =kx +b (k ≠0),则由OA →·OB →=-4,得x 1x 2+y 1y 2=-4.由点A ,B 在抛物线y 2=4x (x >0)上有y 12=4x 1,y 22=4x 2,故y 1y 2=-8.又2=4x ,=kx +b ,联立消x ,得ky 2-4y +4b =0.∴4bk =-8,b =-2k.∴Δ=16(1+2k 2),|AB |2y1-y 2)2∵46≤|AB |≤430,∴96480.解得直线l的斜率取值范围为-1,-12∪12,1.1.若椭圆x2a2+y2b2=1(a>b>0)的离心率为32,则双曲线x2a2-y2b2=1的离心率为()A.54B.52C.32D.54答案B2.已知四面体顶点A(2,3,1),B(4,1,-2),C(6,3,7)和D(-5,-4,8),则顶点D 到平面ABC的距离为()A.8B.9C.10D.11答案D解析设平面ABC的一个法向量为n=(x,y,z),则·AB→=0,·AC→=0,x,y,z)·(2,-2,-3)=0,x,y,z)·(4,0,6)=0.x-2y-3z=0,x+6z=0=2x,=-23x,令x=1,则n,2AD→=(-7,-7,7),故所求距离为|AD→·n||n|=|-7-14-143|1+4+49=11.3.如图,在四棱锥S-ABCD中,底面ABCD是边长为1的正方形,SA=SB=SC=SD=2.下列结论中正确的是()A.SA→+SB→+SC→+SD→=0B.SA→-SB→+SC→-SD→=0C.SA→·SB→+SC→·SD→=0D.SA→·SC→=0答案B解析本题考查空间向量的加减运算和数量积.由题意易知A错误;因为SA→-SB→+SC→-SD→=BA→+DC→=0,所以B正确;因为底面ABCD是边长为1的正方形,SA=SB=SC=SD=2,所以SA →·SB →=2×2×cos ∠ASB ,SC →·SD →=2×2×cos ∠CSD ,而∠ASB =∠CSD ,于是SA →·SB →=SC →·SD →≠0,所以C 错误;连接AC ,在△SAC 中,SA =SC =2,AC =2,所以∠ASC ≠90°,所以cos ∠ASC ≠0,又SA →·SC →=2×2×cos ∠ASC ,所以SA →·SC →≠0,所以D 错误.故选B.4.已知A 是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左顶点,F 是抛物线C :y 2=-8ax 的焦点.若在双曲线的渐近线上存在点P ,使得AP →⊥FP →,则E 的离心率的取值范围是()A .(1,2),324D .(2,+∞)答案B解析由题意得,A (-a ,0),F (-2a ,0),不妨设0,ba x AP →⊥FP →,得AP →·FP →=0⇒0+a ,b a x 0+2a ,ba x 0⇒c 2a 2x 02+3ax 0+2a 2=0.因为在双曲线E 的渐近线上存在点P ,所以Δ≥0,即9a 2-4×2a 2×c 2a 2≥0,9a 2≥8c 2⇒e 2≤98⇒-324≤e ≤324,又因为E 为双曲线,所以1<e ≤324.故选B.5.如图,在正四棱锥P -ABCD 中,PA =AB ,点M 为PA 的中点,BD →=λBN →.若MN ⊥AD ,则实数λ为()A .2B .3C .4D .5答案C解析连接AC 交BD 于点O ,以O 为原点,OA 为x 轴,OB 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系.设PA =AB =2,则A (2,0,0),D (0,-2,0),P (0,0,2),0B (0,2,0),∴BD →=(0,-22,0),设N (0,b ,0),则BN →=(0,b -2,0).∵BD=λBN →,∴-22=λ(b -2),∴b =2λ-22λ,∴N,2λ-22λ,,→-22,2λ-22λ,-AD →=(-2,-2,0),∵AD ⊥MN ,∴AD →·MN →=1-2λ-4λ=0,解得λ=4.故选C.6.已知椭圆C :x 24+y 23=1,M ,N 是坐标平面内的两点,且M 与椭圆C 的焦点不重合.若M 关于椭圆C 的左、右焦点的对称点分别为A ,B ,线段MN 的中点在椭圆C 上,则|AN |+|BN |=()A .4B .8C .12D .16答案B解析设MN 的中点为D ,椭圆C 的左、右焦点分别为F 1,F 2,如图,连接DF 1,DF 2.∵F 1是MA 的中点,D 是MN 的中点,∴F 1D 是△MAN 的中位线,∴|DF 1|=12|AN |,同理|DF 2|=12|BN |,∴|AN |+|BN |=2(|DF 1|+|DF 2|).∵点D 在椭圆上,根据椭圆的标准方程及椭圆的定义知,|DF 1|+|DF 2|=4,∴|AN |+|BN |=8.故选B.7.在平面直角坐标系xOy 中,已知点A (0,-2),点B (1,-1),P 为圆x 2+y 2=2上一动点(异于点B ),则|PB ||PA |的最大值是()A .2B .4C.2D .22答案A解析设点P (x 0,y 0),则x 02+y 02=2,所以|PB |2|PA |2=(x 0-1)2+(y 0+1)2x 02+(y 0+2)2=x 02+y 02-2x 0+2y 0+2x 02+y 02+4y 0+4=-2x 0+2y 0+44y 0+6=-x 0+y 0+22y 0+3,令λ=-x 0+y 0+22y 0+3,则λ≠0,x 0+(2λ-1)y 0+3λ-2=0,由题意,知直线x +(2λ-1)y +3λ-2=0与圆x 2+y 2=2有公共点,所以|3λ-2|1+(2λ-1)2≤2,得λ2-4λ≤0,得0<λ≤4,所以|PB ||PA |的最大值为2.8.【多选题】若{a ,b ,c }为空间的一个基底,则()A .b +c ,b -c ,a 共面B .b +c ,b -c ,2b 共面C .b +c ,a ,a +b +c 共面D .a +c ,a -2c ,c 共面答案BCD解析易知b +c ,b -c ,a 不共面;因为2b =(b +c )+(b -c ),所以b +c ,b -c ,2b 共面;因为a +b +c =(b +c )+a ,所以b +c ,a ,a +b +c 共面;因为a +c =(a -2c )+3c ,所以a +c ,a -2c ,c 共面.故选BCD.9.【多选题】如图,在长方体ABCD -A 1B 1C 1D 中,AB =3AD =3AA 1=3,点P 为线段A 1C 上的动点,则下列结论正确的是()A .当A 1C →=2A 1P →时,B 1,P ,D 三点共线B .当AP →⊥A 1C →时,AP →⊥D 1P→C .当A 1C →=3A 1P →时,D 1P ∥平面BDC 1D .当A 1C →=5A 1P →时,A 1C ⊥平面D 1AP答案ACD解析在长方体ABCD -A 1B 1C 1D 1中,连接AC ,以点D 为坐标原点,建立如图所示的空间直角坐标系,因为AB =3AD =3AA 1=3,所以AD =AA 1=1,则A (1,0,0),A 1(1,0,1),C (0,3,0),C 1(0,3,1),D 1(0,0,1),D (0,0,0),B (1,3,0),则A 1C →=(-1,3,-1),D 1A →=(1,0,-1),DC 1→=(0,3,1),DB →=(1,3,0),A 1D 1→=(-1,0,0).当A 1C →=2A 1P →时,P 为A 1C 的中点,根据长方体结构特征,可知P 为体对角线的中点,因此P 也为B 1D 的中点,所以B 1,P ,D 三点共线,故A 正确;当AP →⊥A 1C →时,AP ⊥A 1C ,由题意可得A 1C =1+1+3=5,AC =1+3=2,因为S △A 1AC =12AA 1·AC =12A 1C ·AP ,所以AP =255,所以A 1P =55,即点P 为靠近点A 1的五等分点,所以,35,D 1P →,35,-AP →=-15,35,D 1P →·AP →=-425+325-425=-15≠0,所以AP →与D 1P →不垂直,故B 错误;当A 1C →=3A 1P →时,A 1P →=13A 1C →-13,33,-BDC 1的一个法向量为n =(x ,y ,z ),·DC 1→=0,·DB →=0,+z =0,+3y =0,令y =1,可得n =(-3,1,-3),又D 1P →=A 1P →-A 1D 1→=,33,-D 1P →·n =0,因此D 1P →⊥n ,所以D 1P →∥平面BDC 1,故C 正确;当A 1C →=5A 1P →时,A 1P →=15A 1C →-15,35,-所以D 1P →=A 1P →-A 1D 1→,35,-所以A 1C →·D 1P →=0,A 1C →·D 1A →=0,因此A 1C ⊥D 1P ,A 1C ⊥D 1A ,又D 1P ∩D 1A =D 1,所以A 1C ⊥平面D 1AP ,故D 正确.故选ACD.10.【多选题】已知抛物线E :y 2=4x 的焦点为F ,准线为l ,过F 的直线与E 交于A ,B 两点,分别过A ,B 作l 的垂线,垂足为C ,D ,且|AF |=3|BF |,M 为AB 中点,则下列结论正确的是()A .∠CFD =90°B .△CMD 为等腰直角三角形C .直线AB 的斜率为±3D .△AOB 的面积为4答案AC解析如图,过点M 向准线l 作垂线,垂足为N ,F (1,0),设A (x 1,y 1),B (x 2,y 2),因为|AF |=|AC |,所以∠AFC =∠ACF ,又因为∠OFC =∠ACF ,所以∠OFC =∠AFC ,所以FC 平分∠OFA ,同理可知FD 平分∠OFB ,所以∠CFD =90°,故A 正确;假设△CMD 为等腰直角三角形,则∠CFD =∠CMD =90°,则C ,D ,F ,M 四点共圆且圆的半径为12|CD |=|MN |,又因为|AF |=3|BF |,所以|AB |=|AF |+|BF |=|AC |+|BD |=2|MN |=4|BF |,所以|MN |=2|BF |,所以|CD |=2|MN |=4|BF |,所以|CD |=|AB |,显然不成立,故B 错误;设直线AB的方程为x =my +12=4x ,+1,所以y 2-4my -4=01+y 2=4m ,1y 2=-4,又因为|AF |=3|BF |,所以y 1=-3y 22y 2=4m ,3y 22=-4,所以m 2=13,所以1m =±3,所以直线AB 的斜率为±3,故C 正确;取m =331+y 2=433,1y 2=-4,所以|y 1-y 2|=833,所以S △AOB =12·|OF |·|y 1-y 2|=12×1×833=433D 错误.故选AC.11.【多选题】a ,b 为空间两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以AC 为旋转轴旋转,则下列结论正确的是()A .直线AB 与a 所成角的最小值为π4B .直线AB 与a 所成角的最大值为π3C .当直线AB 与a 所成的角为π3时,AB 与b 所成的角为π6D .当直线AB 与a 所成的角为π3时,AB 与b 所成的角为π3答案AD解析由题意知,a ,b ,AC 三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体的棱长为1,则AC =1,AB =2,斜边AB 以直线AC 为旋转轴旋转,则A 点保持不变,B 点的运动轨迹是以C 为圆心,BC 长为半径的圆,设CB 旋转到直线a 上时为CE ,旋转到直线b 上时为CD ,以C 为坐标原点,以CD 所在直线为x 轴,CE 所在直线为y 轴,CA 所在直线为z 轴,建立空间直角坐标系,则D (1,0,0),A (0,0,1),设B 点在运动过程中的坐标为(cos θ,sin θ,0),其中θ为射线CD 绕端点C 旋转到CB 形成的角,θ∈[0,2π),∴AB 在运动过程中对应的向量AB →=(cos θ,sin θ,-1),|AB →|=2,设AB 与a 所成的角为α,α∈0,π2,则cos α=22|sin θ|∈0,22,∴α∈π4,π2,故A 正确,B错误;设AB 与b 所成的角为β,β∈0,π2,则cos β=22|cos θ|,当AB 与a 所成的角为π3,即α=π3时,|sin θ|=2cos α=2cos π3=22,∵cos 2θ+sin 2θ=1,∴cos β=22|cos θ|=12,∵β∈0,π2,∴β=π3,此时AB 与b所成的角为π3,故D 正确,C 错误.故选AD.12.【多选题】古希腊著名数学家阿波罗尼奥斯发现:平面内到两个定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,A (-2,0),B (4,0),点P 满足|PA ||PB |=12.设点P 的轨迹为C ,下列结论正确的是()A .轨迹C 的方程为(x +4)2+y 2=9B .在x 轴上存在异于A ,B 的两点D ,E 使得|PD ||PE |=12C .当A ,B ,P 三点不共线时,射线PO 是∠APB 的平分线D .在C 上存在点M ,使得|MO |=2|MA |答案BC解析设P (x ,y ),则(x +2)2+y 2(x -4)2+y 2=12,化简得(x +4)2+y 2=16,所以A 错误;假设在x轴上存在异于A ,B 的两点D ,E 使得|PD ||PE |=12,设D (m ,0),E (n ,0),则(x -n )2+y 2=2(x -m )2+y 2,化简得3x 2+3y 2-(8m -2n )x +4m 2-n 2=0,由轨迹C 的方程为x 2+y 2+8x =0,可得8m -2n =-24,4m 2-n 2=0,解得m =-6,n =-12或m =-2,n =4(舍去),即在x 轴上存在异于A ,B 的两点D ,E 使|PD ||PE |=12,所以B 正确;当A ,B ,P 三点不共线时,由|OA ||OB |=12=|PA ||PB |,可得射线PO 是∠APB 的平分线,所以C 正确;假设在C 上存在点M ,使得|MO |=2|MA |,可设M (x ,y ),则有x 2+y 2=2(x +2)2+y 2,化简得x 2+y 2+163x +163=0,与x 2+y 2+8x =0联立,得x =2,不合题意,故不存在点M ,所以D 错误.故选BC.13.已知直线l :mx -y =1,若直线l 与直线x -my -1=0平行,则实数m 的值为________,动直线l 被圆C :x 2+y 2+2x -24=0截得弦长的最小值为________.答案-1223解析由题得m ×(-m )-(-1)×1=0,所以m =±1.当m =1时,两直线重合,舍去,故m =-1.因为圆C 的方程x 2+y 2+2x -24=0可化为(x +1)2+y 2=25,所以圆心为C (-1,0),半径为5.由于直线l :mx -y -1=0过定点P (0,-1),所以过点P 且与PC 垂直的弦的弦长最短,且最短弦长为2×52-(2)2=223.14.已知M (-2,0),N (2,0),点P (x ,y )为坐标平面内的动点,满足|MN →|·|MP →|+MN →·NP →=0,则动点P 的轨迹方程为________.答案y 2=-8x 解析由题意,知MN →=(4,0),|MN →|=4,MP →=(x +2,y ),NP →=(x -2,y ).由|MN →|·|MP →|+MN →·NP →=0,得4(x +2)2+y 2+4(x -2)=0,化简整理,得y 2=-8x .15.已知直线l :4x -3y +6=0,抛物线C :y 2=4x 上一动点P 到直线l 与到y 轴距离之和的最小值为________,P 到直线l 距离的最小值为________.答案134解析设抛物线C :y 2=4x 上的点P 到直线4x -3y +6=0的距离为d 1,到准线的距离为d 2,到y 轴的距离为d 3,由抛物线方程可得焦点坐标为F (1,0),准线方程为x =-1,则d 3=d 2-1,|PF |=d 2,因此d 1+d 3=d 1+d 2-1=d 1+|PF |-1,因为d 1+|PF |的最小值是焦点F 到直线4x -3y +6=0的距离,即|4+6|42+(-3)2=2,所以d 1+d 3=d 1+|PF |-1的最小值为2-1=1;设平行于直线l 且与抛物线C :y 2=4x 相切的直线方程为4x -3y +m =0,由x -3y +m =0,2=4x ,得y 2-3y +m =0,因为直线4x -3y +m =0与抛物线C :y 2=4x 相切,所以Δ=(-3)2-4m =0,解得m =94,因此该切线方程为4x -3y +94=0,所以两平行线间的距离为6-9442+(-3)2=34,即P 到直线l 距离的最小值为34.16.已知直线l :y =-x +1与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,且线段AB 的中点为(1)求此椭圆的离心率;(2)若椭圆的右焦点关于直线l 的对称点在圆x 2+y 2=5上,求此椭圆的方程.解析(1)x +1,+y 2b 2=1,得(b 2+a 2)x 2-2a 2x +a 2-a 2b 2=0,∴Δ=4a 4-4(a 2+b 2)(a 2-a 2b 2)>0⇒a 2+b 2>1.设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=2a 2b 2+a 2.∵线段AB ,∴2a 2b 2+a 2=43,得a 2=2b 2.又a 2=b 2+c 2,∴a 2=2c 2,∴e =22.(2)设椭圆的右焦点为F (c ,0),则点F 关于直线l :y =-x +1的对称点为P (1,1-c ).∵点P 在圆x 2+y 2=5上,∴1+(1-c )2=5,即c 2-2c -3=0.∵c >0,∴c =3,又a 2=2c 2且a 2=b 2+c 2,∴a =32,b =3,∴椭圆的方程为x 218+y 29=1.17.如图所示,该几何体是由一个直三棱柱ADE -BCF 和一个正四棱锥P -ABCD 组合而成的,AD ⊥AF ,AE =AD =2.(1)证明:平面PAD ⊥平面ABFE ;(2)求正四棱锥P -ABCD 的高h ,使得二面角C -AF -P 的余弦值是223解析(1)证明:在直三棱柱ADE -BCF 中,AB ⊥平面ADE ,AD ⊂平面ADE ,所以AB ⊥AD .又AD ⊥AF ,AB ∩AF =A ,AB ⊂平面ABFE ,AF ⊂平面ABFE ,所以AD ⊥平面ABFE .因为AD ⊂平面PAD ,所以平面PAD ⊥平面ABFE .(2)由(1)知AD ⊥平面ABFE ,以A 为原点,AB ,AE ,AD 所在直线分别为x ,y ,z 轴建立空间直角坐标系,如图,则A (0,0,0),F (2,2,0),C (2,0,2),P (1,-h ,1),AF →=(2,2,0),AC →=(2,0,2),AP →=(1,-h ,1).设平面AFC 的一个法向量为m =(x 1,y 1,z 1),·AF →=2x 1+2y 1=0,·AC →=2x 1+2z 1=0,取x 1=1,则y 1=z 1=-1,所以m =(1,-1,-1).设平面AFP 的一个法向量为n =(x 2,y 2,z 2),·AF →=2x 2+2y 2=0,·AP →=x 2-hy 2+z 2=0,取x 2=1,则y 2=-1,z 2=-1-h ,所以n =(1,-1,-1-h ).因为二面角C -AF -P 的余弦值为223,所以|cos 〈m ·n 〉|=|m ·n ||m |·|n |=|1+1+1+h |3×2+(h +1)2=223,解得h =1或h =-35(舍),所以正四棱锥P -ABCD 的高h =1.18.如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,AC =AA 1=3,∠ABC =60°.。
人教版数学必修一综合测试(含答案)
人教版数学必修一一、单选题1.已知集合A ={x |x =2sin nπ3,n ∈N ∗},B ={x |x 2―2x ―3<0},则A ∩B =( )A .{―3,0,3}B .{0,3}C .{―3,0}D .{―1,0,3}2.函数f (x )=log 2(3―x )+1x ―1的定义域为( )A .[1,3]B .[1,3)C .[1,+∞)D .(1,3)3.函数 y =2x ―1的定义域为 (―∞,1)∪[2,5) , 则其值域是( ) A .(0,+∞)B .(―∞,2]C .(―∞,12)∪[2,+∞)D .(―∞,0)∪(12,2]4.函数f (x )=|x -2|·(x -4)的单调递减区间是( )A .[2,4]B .[2,3]C .[2,+∞)D .[3,+∞)5.已知函数f (x )=cos(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,且存在0≤x 1<x 2≤π,满足f(x 1)=f (x 2)=―45,则cos(x 2―x 1)=( )A .―35B .35C .45D .―456.函数 f (x )=3―x 2+4x +3 的单调递增区间为( )A .(―∞,2)B .(2,+∞)C .(―3,2)D .(2,7)7.已知函数f (x )={x 2+2x ,x⩽0,ln 1x ,x >0.若函数g (x )=f (x )―a |x |恰有三个零点,则实数a 的取值范围是( )A .(―2,―1e )∪[0,+∞)B .[―2,―1e ]∪(0,+∞)C .(―e ,0)∪[2,+∞)D .{―1e}∪[0,+∞)8.已知a =5log 56―log 29×lo g 32,b =log 56+log 3025,5b +12b =13c ,则( )A.c<b<a B.b<c<a C.a<c<b D.a<b<c二、多选题9.图中阴影部分用集合符号可以表示为( )A.∁U B∩(A∪C)B.∁U((A∩B)∪(B∩C))C.A∪(C∩∁U B)D.(A∩∁U B)∪(C∩∁U B)10.下列命题中正确的是( )A.函数y=1―sin2x的周期是πB.函数y=1―co s2x的图像关于直线x=π4对称C.函数y=2―sinx―cosx在[π4,π]上是减函数D.函数y=cos(2022x―π3)+3sin(2022x+π6)的最大值为1+311.已知抛物线C1:y=x2与抛物线C2:y=a x2+1―a(0<a<13)在第一象限交于M点,过M点的直线l 分别与C1,C2交于P,Q两点,且M为线段PQ的中点,O为坐标原点,则( )A.|PQ|>2|OP|B.|PQ|<|OQ|C.tan∠POQ+2>0D.tan∠POQ+1<012.定义在(―1,1)上的函数f(x)满足f(x)―f(y)=f(x―y1―xy),且当x∈(―1,0)时,f(x)<0,则有( )A.f(x)为奇函数B.存在非零实数a,b,使得f(a)+f(b)=f(12)C.f(x)为增函数D.f(12)+f(13)>f(56)三、填空题13.(lg5)2+lg2×lg50= .14.不等式ax2+4x+a>1﹣2x2对一切x∈R恒成立,则实数a的取值范围是 .15.已知函数f(x)=3sinωx+cosωx(ω>0),若函数f(x)在区间(π3,π2)内没有零点,则实数ω的最大值是 .16.设正数x,y满足a≥x+yx+y恒成立,则a的最小值是 .四、解答题17.计算下列各式的值:(1)(14)―1+log23;(2)2723+(5)2―1614+(e―1)0.18.已知方程ax2+x+b=0.(1)若方程的解集为{1},求实数a,b的值;(2)若方程的解集为{1,3},求实数a,b的值.19.如图,在直角坐标系xOy中,角α的顶点是原点,始边与轴正半轴重合,终边交单位圆于点A,且α∈(π6,π2),将角α的终边按照逆时针方向旋转π3,交单位圆于点B,记A(x1,y1),B(x2,y2)(1)若x1=13,求x2;(2)分别过A、B做x轴的垂线,垂足依次为C、D,记ΔAOC的面积为S1,ΔBOD的面积为S2,若S1=2S2,求角α的值.20.已知函数f(x)满足2f(x)+f(―x)=x+2x(x≠0).(1)求y=f(x)的解析式;(2)若对∀x1、x2∈(2,4)且x1≠x2,都有f(x2)―f(x1)x2―x1>kx2⋅x1(k∈R)成立,求实数k的取值范围.21.已知定义在R上的函数f(x)满足:①对任意x,y∈R,有f(x+y)=f(x)+f(y).②当x <0时,f(x)>0且f(1)=―3.(1)求证:f(x)是奇函数;(2)解不等式f(2x―2)―f(x)≥―12.22.已知函数f(x)=2x+ab⋅2x+1是定义域为R的奇函数.(1)求函数f(x)的解析式;(2)若存在x∈[―2,2]使不等式f(m⋅4x)+f(1―2x+1)≥0成立,求m的最小值.答案解析部分1.【答案】B2.【答案】D3.【答案】D4.【答案】B5.【答案】C6.【答案】A7.【答案】D8.【答案】C9.【答案】A,D10.【答案】A,D11.【答案】A,D12.【答案】A,B,C13.【答案】114.【答案】(2,+∞)15.【答案】17316.【答案】217.【答案】(1)解:原式=(14)―1⋅(2―2)log23=4×3―2=49.(2)解:原式=33×23+5―24×14+1=32+5―2+1=13. 18.【答案】(1)解:若方程的解集为{1},则①若a=0,则1+b=0,解得a=0,b=﹣1;②若a≠0,则a+1+b=0且1﹣4ab=0,解得a=b=﹣12.综上所述,a=0,b=﹣1或a=b=﹣12(2)解:依题意得:1+3=﹣1a ,1×3= ba,解得a=﹣14,b=﹣3419.【答案】(1)解:由三角函数定义,得x1=cosα,x2=cos(α+π3).因为 α∈(π6,π2) , cos α=13 ,所以 sin α=1―cos 2α=223.所以 x 2=cos(α+π3)=12cos α―32sin α=1―266 .(2)解:依题意得 y 1=sin α , y 2=sin(α+π3) . 所以 S 1=12x 1y 1=12cos α·sin α=14sin2α ,S 2=12|x 2|y 2=12[―cos(α+π3)]·sin(α+π3)=―14sin(2α+2π3) .依题意 S 1=2S 2 得 sin2α=―2sin(2α+2π3) ,即 sin2α=―2[sin2αcos 2π3+cos2αsin 2π3]=sin2α―3cos2α ,整理得 cos2α=0 .因为 π6<α<π2 ,所以 π3<2α<π ,所以 2α=π2 ,即 α=π4 .20.【答案】(1)解:由条件2f (x )+f (―x )=x +2x,可知函数f (x )的定义域为{x |x ≠0},所以,2f (―x )+f (x )=―x ―2x,可得{2f (x )+f (―x )=x +2x2f (―x )+f (x )=―x ―2x,解得f (x )=x +2x(x ≠0).(2)解:对∀x 1、x 2∈(2,4),x 1≠x 2,都有f (x 2)―f (x 1)x 2―x 1>k x 2⋅x 1(k ∈R ),不妨设2<x 1<x 2<4,由f (x 2)―f (x 1)x 2―x 1>k x 2⋅x 1,则f (x 2)―f (x 1)>k (x 2―x 1)x 2⋅x 1=k x 1―k x 2,可得f (x 2)+k x 2>f (x 1)+k x 1,也即可得函数g (x )=f (x )+k x =x +k +2x 在区间(2,4)上递增;g ′(x )=1―k +2x2≥0对任意的x ∈(2,4)恒成立,即k +2≤x 2,当x ∈(2,4)时,4<x 2<16,故k +2≤4,解得k ≤2.因此,实数k 的取值范围是(―∞,2].21.【答案】(1)证明:令 x =y =0 , f (0)=f (0)+f (0) ,∴ f (0)=0 ,令 y =―x , ∴ f (0)=f (―x )+f (x )=0∴f(x)=―f(―x).∴函数f(x)是奇函数.(2)解:设x1<x2,则x1―x2<0,∴f(x1)―f(x2)=f(x1)+f(―x2)=f(x1―x2)>0∴f(x)为R上减函数.∵f(2x―2)―f(x)=f(2x―2)+f(―x)=f(x―2)≥―12,―12=4f(1)=f(4).∴x―2≤4即x≤6.∴不等式f(2x―2)―f(x)≥―12的解集为{x|x≤6}.22.【答案】(1)解:因为函数f(x)是定义域为R的奇函数,可知f(0)=0, ∴a=-1,又f(―x)=―f(x),则2―x―1b⋅2―x+1=- 2x―1b⋅2x+1,∴1―2x b+2x =- 2x―1b⋅2x+1,∴b=1,∴f(x)=2x―12x+1(2)解:∵f(x)=2x―12x+1=1- 22x+1,所以f(x)在[―2,2]上单调递增;由f(m⋅4x)≥―f(1―2x+1)=f(2x+1―1)可得m⋅4x≥2x+1―1在[―2,2]有解分参得m≥2x+1―14x =2⋅12x―14x,设t=12x ,t∈[14,4], m≥―t2+2t=―(t―1)2+1,所以m≥―8,则m的最小值为―8。
高中数学必修1全册章节测试题集含答案
人教A版高中数学必修1全册章节测试题目录必修一第1章第1节集合试题必修一第1章第2节函数及其表示试题必修一第1章第3节函数的基本性质试题必修一第2章基本初等函数综合试题必修一第2章第1节指数函数试题必修一第2章第2节对数函数试题必修一第2章第3节幂函数试题必修一第3章第1节方程的根与函数的零点试题必修一第3章第2节函数的应用试题必修一综合试题1必修一综合试题2集合试题一、选择题(每小题5分,计5×12=60分)1.下列集合中,结果是空集的为( D )(A)(B)(C)(D)2.设集合,,则(A )(A)(B)(C)(D)3.下列表示①②③④中,正确的个数为(A )(A)1 (B)2 (C)3 (D)44.满足的集合的个数为( A )(A)6 (B) 7 (C) 8 (D)95.若集合、、,满足,,则与之间的关系( C )(A)(B)(C)(D)6.下列集合中,表示方程组的解集的是( C)(A)(B)(C)(D)7.设,,若,则实数的取值范围是( A )(A)(B)(C)(D)8.已知全集合,,,那么是( D )(A)(B)(C)(D)9.已知集合,则等于( D )(A)(B)(C)(D)10.已知集合,,那么( C )(A)(B)(C)(D)11.如图所示,,,是的三个子集,则阴影部分所表示的集合是( C )(A)(B)(C)(D)12.设全集,若,,,则下列结论正确的是( B )(A)且(B)且(C)且(D)且二、填空题(每小题4分,计4×4=16分)13.已知集合,,则集合_.14.用描述法表示平面内不在第一与第三象限的点的集合为_.15.设全集,,,则的值为2或8.16.若集合只有一个元素,则实数的值为三、解答题(共计74分)17.(本小题满分12分)若,求实数的值。
解:或或当时,,,,适合条件;当时,,,,适合条件从而,或18.(本小题满分12分)设全集合,,,求,,,解:,19.(本小题满分12分)设全集,集合与集合,且,求,解:,且,,,,20(本小题满分12分)已知集合,,且,求实数的取值范围。
人教版高中数学必修1训练试题全集
人教版高中数学必修1训练试题全集高中数学必修1练习题集第一章、集合与函数概念1.1.1集合的含义与表示例1.用符号和填空。
⑴设集合A是正整数的集合,则0_______A,________A,______A;⑵设集合B是小于的所有实数的集合,则2______B,1+______B;⑶设A为所有亚洲国家组成的集合,则中国_____A,美国_____A,印度_____A,英国____A例2.判断下列说法是否正确,并说明理由。
⑴某个单位里的年轻人组成一个集合;⑵1,,,,这些数组成的集合有五个元素;⑶由a,b,c组成的集合与b,a,c组成的集合是同一个集合。
例3.用列举法表示下列集合:⑴小于10的所有自然数组成的集合A;⑵方程x=x的所有实根组成的集合B;⑶由1~20中的所有质数组成的集合C。
例4.用列举法和描述法表示方程组的解集。
典型例题精析题型一集合中元素的确定性例1.下列各组对象:①接近于0的数的全体;②比较小的正整数全体;③平面上到点O的距离等于1的点的全体;④正三角形的全体;⑤的近似值得全体,其中能构成集合的组数是()A.2B.3C.4D.5题型二集合中元素的互异性与无序性例2.已知x{1,0,x},求实数x的值。
题型三元素与集合的关系问题1.判断某个元素是否在集合内例3.设集合A={x∣x=2k,kZ},B={x∣x=2k+1,kZ}。
若aA,bB,试判断a+b与A,B的关系。
2.求集合中的元素例4.数集A满足条件,若aA,则A,(a≠1),若A,求集合中的其他元素。
3.利用元素个数求参数取值问题例5.已知集合A={x∣ax+2x+1=0,aR},⑴若A中只有一个元素,求a的取值。
⑵若A中至多有一个元素,求a的取值范围。
题型四列举法表示集合例6.用列举法表示下列集合⑴A={x∣≤2,xZ};⑵B={x∣=0}⑶M={x+y=4,xN,yN}.题型五描述法表示集合例7.⑴已知集合M={xN∣Z},求M;⑵已知集合C={Z∣xN},求C.例8.用描述发表示图(图-8)中阴影部分(含边界)的点的坐标的集合。
人教版高一数学必修1测试题(含答案)
人教版数学必修I 测试题(含答案)一、选择题1、设集合{}{}{}1,2,3,4,5,1,2,3,2,5U A B ===,则()U A C B =I ( )A 、{}2B 、{}2,3C 、{}3D 、{}1,32、已知集合{}{}0,1,2,2,M N x x a a M ===∈,则集合 M N I( )A 、{}0B 、{}0,1C 、{}1,2D 、{}0,23、函数()21log ,4y x x =+≥的值域是 ( )A 、[)2,+∞B 、()3,+∞C 、[)3,+∞D 、(),-∞+∞4、关于A 到B 的一一映射,下列叙述正确的是 ( ) ① 一一映射又叫一一对应 ② A 中不同元素的像不同③ B 中每个元素都有原像 ④ 像的集合就是集合BA 、①②B 、①②③C 、②③④D 、①②③④ 5、在221,2,,y y x y x x y x===+= ( ) A 、1个 B 、2个 C 、3个 D 、4个6、已知函数()213f x x x +=-+,那么()1f x -的表达式是 ( )A 、259x x -+ B 、23x x -- C 、259x x +- D 、21x x -+7、若方程0x a x a --=有两个解,则a 的取值范围是 ( )A 、()0,+∞B 、()1,+∞C 、()0,1D 、∅8、若21025x =,则10x -等于 ( )A 、15- B 、15 C 、150D 、16259、若()2log 1log 20a a a a +<<,则a 的取值范围是 ( )A 、01a << B 、112a << C 、102a << D 、1a > 10、设 1.50.90.4814,8,2a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >>11、已知()()2212f x x a x =+-+在(],4-∞上单调递减,则a 的取值范围是 ( )A 、3a ≤-B 、3a ≥-C 、3a =-D 、以上答案都不对12、若()lg f x x =,则()3f = ( ) A 、lg 3B、3 C 、310D 、103二、填空题13、设{}{}12,0A x x B x x a =<<=-<,若A BØ,则a的取值范围是 ; 14、函数y =的定义域为 ; 15、若2x<,则3x-的值是 ; 16、100lg 20log 25+=。
(完整版)高一数学必修1试题附答案详解
高一数学必修1试题附答案详解、选择题、选择题((本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有项是符合题目要求的)1. 已知全集1 = (0 , 1, 2},且满足C I (AU B)= {2}的A 、B 共有组数A.5 B.7C.92.如果集合A = (x|x= 2k 兀+ 兀,k€ Z} , B = (x|x= 4k 兀+ 兀,k€ Z},则A .A M BB E AC .A =B3. 设A=(x£A=(x£ Z||x|< 2} , B=(y|y = x 2 + 1, x€ A},贝,贝U B 的元素个数是的元素个数是A.5 B.4 C.34若集合P= (x|3<x< 22},非空集合Q= (x|2a+1 < x<3a-5},则能使Q 有实数a 的取值范围为A.(1 , 9)B. [1 , 9]C. [6, 9)5.已知集合 A = B = R, x€ A, y€ B, f:x^y= ax + b,若4和10的原象分别对应是6和9,则19在f 作用下的象为一…3x — 1................... ................. ................. .—.. 6.函数f(x)= -一(x€ R 且对2)的值域为集合N ,则集合(2, 一2,— 1, — 3}中不属于N 的兀2— x 素是A.18B.3027 C. 7D.28D.11D.An B= D.2(PA Q)成立的所D.(6 , 9]A.2B. - 2C. - 1D. — 3 7. 已知f(x)是一次函数,且2f ⑵一3f(1) = 5, A.3x-2B.3x+ 28. 下列各组函数中,表示同一函数的是A. f(x) = 1, g(x) = x2f(0) — f(- 1) = 1,则f(x)的解析式为C.2x+ 3D.2x- 3c -c -、、,c ,、 x 2—4B.f(x)= x + 2, g(x)=—— x—2x x>0C.f(x)= |x|, g(x)= 一x xV 0 x 2 x> 09. f(x)= 兀x= 0 ,则f(f [f(— 3): }等于等于0 xv 0 A.0B.兀一,…x ,10. 已知2lg(x — 2y)= lgx+lgy,则y 的值为A.1B.411. 设x€ R,若a<lg(|x- 3| + |x+ 7|)恒成立,则A. a> 1 B.a>1 12. 若定义在区间定义在区间((一D.f(x)= x, g(x)=(山)2D.9D. 1或44D.a<1C.1 或4C.0<av 11, 0)内的函数f(x) = log 2a (x+ 1)满足f(x)>0,则a 的取值范围是1B.(0,-二、填空题二、填空题((本大题共6小题,每小题小题,每小题 13. 若不等式x 2 + ax+ a- 2>0的解集为的解集为的解集为 4分,共24分.把答案填在题中横线上把答案填在题中横线上 R,则a 可取值的集合为可取值的集合为_^^^.,值域为_^^^的定义域是 ,值域为14. 函数y=《X +x+ 1的定义域是15. ________________________________________________________________________ 若不等式3X2 2ax>(1 )x+1对一切实数x恒成立,则实数a的取值范围为的取值范围为 ___________________________33X 12x( 1 ,,16. f(x) = 33 (,,则,则 f(x)值域为值域为 _.3 2 x 1,一,, 1 …-一,,刁的值域是 ...............17. 函数y= 2^刁的值域是18. 方程log2(2 —2x) + x+ 99= 0的两个解的和是的两个解的和是 .、选择题、选择题题号题号1 23456789101112答案答案二、二、 填空题填空题 13 14 15 16 1718三、三、解答题(本大题共5小题,共66分.解答应写出文字说明、证明过程或演算步骤解答应写出文字说明、证明过程或演算步骤 )19.全集全集 U = R, A = (x||x|> 1}, B= (x|x2-2x — 3 > 0},求(QjA)n (C U B).20. 已知f(x)是定义在(0, +8)上的增函数,且满足上的增函数,且满足f(xy)= f(x) + f(y), f(2) = 1. (1)求证:f(8) = 3(2)求不等式f(x)- f(x- 2)>3的解集.21. 某租赁公司拥有汽车司拥有汽车 100辆,当每辆车的月租金为辆,当每辆车的月租金为 3000元时,可全部租出,当每辆车的元时,可全部租出,当每辆车的 月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费元时,未租出的车将会增加一辆,租出的车每辆每月需维护费 150元, 未租出的车每辆每月需要维护费未租出的车每辆每月需要维护费50元.(1) 当每辆车的月租金定为当每辆车的月租金定为3600元时,能租出多少辆车?元时,能租出多少辆车? (2) 当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?的最大值及最小值22. 已知函数f(x)= log i 2x- log 1 x+5, x£[2, 4],求f(x)的最大值及最小值4 4..一一..一一..一一................ . ... 一一… a 、,.一…、, .的取值范围23. 已知函数f(x)= a^2 (a x—a x)(a>0且a乒1)是R上的增函数,求上的增函数,求 a的取值范围高一数学综合训练高一数学综合训练((一)答案答案-、选择题、选择题 题号题号 1 2 3 4 5 6 7 8 9 10 11 12 答案答案CBCD BDAC CBDA 、填空题_ 31 313.14. R : * +°°) 15. 一 § < a < 2 16. ( — 2, - 1]17. (0, 1)18. — 99三、解答题三、解答题((本大题共5小题,共66分.解答应写出文字说明、证明过程或演算步骤解答应写出文字说明、证明过程或演算步骤)19. 全集全集 U = R, A = (x||x|> 1}, B= (x|x 2-2x- 3 > 0},求(C u A)n (C U B). (C u A)n (C uB)= {x|— 1v xv 1} 20. 已知f(x)是定义在(0, +8)上的增函数,且满足上的增函数,且满足 f(xy)= f(x) + f(y), f(2) = 1.(1)求证:f(8) = 3(2)求不等式f(x)- f(x- 2)>3的解集.考查函数对应法则及单调性的应用考查函数对应法则及单调性的应用 .(1)【证明】【证明】 由题意得由题意得 f(8) = f(4 X 2)= f(4) + f(2) = f(2X 2) + f(2) = f(2) + f(2) + f(2)= 3f(2) 又.• f(2) = 1••• f(8) = 3(2)【解】不等式化为f(x)>f(x- 2)+3 . • f(8) = 3••• f(x)>f(x - 2) + f(8) = f(8x- 16)f(x)是(0, +勺上的增函数勺上的增函数8(x 2) 0“曰 c 16 •- 8( 2)解得解得 2<x<^ 21. 某租赁公司拥有汽车赁公司拥有汽车 100辆,当每辆车的月租金为辆,当每辆车的月租金为 3000元时,可全部租出,当每辆车的元时,可全部租出,当每辆车的 月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费元时,未租出的车将会增加一辆,租出的车每辆每月需维护费 150元,未租出的车每辆每月需要维护费未租出的车每辆每月需要维护费50元. (1) 当每辆车的月租金定为当每辆车的月租金定为 3600元时,能租出多少辆车?元时,能租出多少辆车?(2) 当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 考查函数的应用及分析解决实际问题能力考查函数的应用及分析解决实际问题能力 .【解】【解】 (1)当每辆车月租金为当每辆车月租金为 3600元时,未租出的车辆数为元时,未租出的车辆数为 以这时租出了以这时租出了 88辆.(2)设每辆车的月租金定为设每辆车的月租金定为 x 元,则公司月收益为元,则公司月收益为x — 3000 x- 3000 f(x)= (100 — 50 )(x — 150)— 50 X 50 整理得:f(x) = 一去 + 162x — 2100=— 1(x-4050)2 + 307050 50 5050 .••当.••当 x= 4050 时,时,f(x)最大,最大值为最大,最大值为 f(4050) = 307050元 22. 已知函数知函数 f(x)= log 1 2 4考查函数最值及对数函数性质函数性质 . .【解】【解】 令t= log 1 x x€ [2, 4], t = log 1x 在定义域递减有在定义域递减有443600—3000- 50=12,所x —log ^x+5, x£ [2, 4],求f(x)的最大值及最小值. 4log 1 4<log 1 x<log 1 2,444• •f(t)=t2 —1+ 5= (t —2)2+149,任[—1,—2 : 1 23••当t=— 2时,f (x )取取小值—取取小值—当t=— 1时,f(x)取最大值7..一…一… a v -v .. 一 .............................. . ....一一....一一 一 23. 已知函数f(x)= a^2 (a a x )(a>0且a 乒1)是R 上的增函数,求上的增函数,求 a 的取值范围考查指数函数性质考查指数函数性质. . 【解】f(x )的定义域为的定义域为则 f(x 2)- f(x 1) = 0^,2为 O x 2 口 *x 1 \(a — a— a +a )1由于由于 a>0,且,且 a 乒 1, . . 1 + —~— >0 •.•f(x)为增函数,贝U (a 2-2)( a x-a x 1)>0…a 22 0 〜于是有或a x2 ax 1解得a> 2或0<a<11X I一 x 2是膏一5七\1•.•te [— 1-2 :R,设 x 1、x 2 € R,且 x 1<x 2a 22 0 a x2a x1x 2_X1。
(完整版)高中数学必修一试卷及答案
高中数学必修一考试试卷姓名: 班别: 座位号:注意事项:⒈本试卷分为选择题、填空题和简答题三部分,共计150分,时间90分钟。
⒉答题时,请将答案填在答题卡中。
一、选择题:本大题10小题,每小题5分,满分50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知全集I ={0,1,2,3,4},集合{1,2,3}M =,{0,3,4}N =,则()I M N I ð等于( )A.{0,4}B.{3,4}C.{1,2}D. ∅ 2、设集合2{650}M xx x =-+=,2{50}N x x x =-=,则M N U 等于 ( ) A.{0} B.{0,5} C.{0,1,5} D.{0,-1,-5}3、计算:9823log log ⋅= ( )A 12B 10C 8D 64、函数2(01)xy a a a =+>≠且图象一定过点 ( )A (0,1)B (0,3)C (1,0)D (3,0)5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相吻合是 ( )6、函数y = 的定义域是( )A {x |x >0}B {x |x ≥1}C {x |x ≤1}D {x |0<x ≤1}7、把函数x1y -=的图象向左平移1个单位,再向上平移2个单位后,所得函数的解析式应为 ( ) A 1x 3x 2y --=B 1x 1x 2y ---=C 1x 1x 2y ++=D 1x 3x 2y ++-= 8、设x x e 1e )x (g 1x 1x lg )x (f +=-+=,,则 ( ) A f(x)与g(x)都是奇函数 B f(x)是奇函数,g(x)是偶函数C f(x)与g(x)都是偶函数D f(x)是偶函数,g(x)是奇函数9、使得函数2x 21x ln )x (f -+=有零点的一个区间是 ( ) A (0,1) B (1,2) C (2,3) D (3,4)10、若0.52a =,πlog 3b =,2log 0.5c =,则( )A a b c >>B b a c >>C c a b >>D b c a >>二、填空题:本大题共4小题,每小题5分,满分20分11、函数5()2log (3)f x x =++在区间[-2,2]上的值域是______12、计算:2391- ⎪⎭⎫ ⎝⎛+3264=______13、函数)54(log 22++-=x x y 的值域是______14、函数122x )x (f x -+=的定义域是______三、解答题 :本大题共5小题,满分80分。
人教版高一数学必修1测试题(含答案)82211
人教版数学必修I 测试题一、选择题(共10题,每题5分,共50分)1、设集合{}{}{}1,2,3,4,5,1,2,3,2,5U A B ===,则()U A C B =I ( )A 、{}2B 、{}2,3C 、{}3D 、{}1,32、已知集合{}{}0,1,2,2,M N x x a a M ===∈,则集合 M N I ( )A 、{}0B 、{}0,1C 、{}1,2D 、{}0,23、函数()21log ,4y x x =+≥的值域是 ( )A 、[)2,+∞B 、()3,+∞C 、[)3,+∞D 、(),-∞+∞4、在32521,2,,y y x y x x y x x===+=四个函数中,幂函数有 ( ) A 、1个 B 、2个 C 、3个 D 、4个5、如果1,1-<>b a ,那么函数()b ax x f +=的图象在( ) A 第一、二、三象限 B 第一、三、四象限 C 第二、三、四象限 D 第一、二、四象限6、设集合2{650}M x x x =-+=,2{50}N x x x =-=,则M N U 等于( ) A.{0} B.{0,5} C.{0,1,5} D.{0,-1,-5}7、若21025x =,x 10则等于 ( )A 、15-B 、5C 、150D 、16258、函数2(01)x y a a a =+>≠且图象一定过点 ( ) A (0,1) B (0,3) C (1,0) D (3,0) 9、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相吻合是 ( )10、若()22x x f =,则()3f = ( )A 、9B 、49 C 、94 D 、3 二、填空题(共4题,每题4分,共16分)11、函数xx y -++=211的定义域为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学必修一测试题(八)试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间为120分钟.第 I 卷(选择题 共60分)一.选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知全集{12345}U =,,,,,集合{1,3}A =,{3,4,5}B =,则集合=⋂)(B A C u ( C ) A .{3} B .{4,5}C .{1245},,,D .{3,4,5}2.若集合{|1}X x x =>-,下列关系式中成立的是( D ) A .0X Í B .{}0X Î C .X f Î D .{}0X Í 3.下列四组函数中表示相等函数的是( D )A .2)(x x f =与x x g =)( B .x x f =)(与xx x g 2)(=C .2ln )(x x f =与x x g ln 2)(=D .x a a x f log )(=a (>0)1,≠a 与33)(x x g = 4.下列四个图像中,是函数图像的是( B )A .(1)(2)B .(1)(3)(4)C .(1)(2)(3)D .(3)(4) 5.函数()2x f x e x =--的零点所在的区间为( B )A. (-1,0)B. (1,2)C. (0,1)D. (2,3)6.已知函数2log ,0()2,0x x x f x x >⎧=⎨≤⎩,则(f f 的值是( C ) A. CD.2-7. 若一元二次方程2350x x a -+=的一根大于2-且小于0,另一根大于1而小于3,则实数a 取值范围( A ) A .()12,0- B .15,14⎛⎫-∞ ⎪⎝⎭ C .15,14⎛⎫+∞ ⎪⎝⎭D .1,22⎛⎫ ⎪⎝⎭(1)(2)(3)(4)8. 函数212log (2)y x x =-++的单调增区间是 ( D )A .11,2⎛⎫- ⎪⎝⎭B .1,2⎛⎫-∞ ⎪⎝⎭ C .1,2⎛⎫+∞ ⎪⎝⎭D .1,22⎛⎫ ⎪⎝⎭ 9.给定下列函数:①21x y = ②()1log 21+=x y ③1-=x y ④12+=x y ,其中在区间(0,1)上单调递减的函数的序号是( B )A. ① ②B. ② ③C. ③ ④D. ① ④ 10.设5log 3a =,ln 3b =,125c -= 则( D )A. b c a <<B. c b a <<C. c b a <<D. c a b <<11.已知实数,a b 满足等式1123log log a b =,下列四个关系式:①01b a <<<;②01a b <<<;③1b a <<;④a b =,其中不可能成立的关系式有( B ).A 1个 .B 2个 .C 3个 .D 4个12.对实数a 和b ,定义运算“⊗”:,1,,1.aa b a b b a b -≤⎧⊗=⎨->⎩ 设函数()()22()2,.f x x x x x R =-⊗-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是 ( B )A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭ B .(]3,21,4⎛⎫-∞-⋃--⎪⎝⎭C .111,,44⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭ D .311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭第 II 卷(非选择题 共90分)二.填空题:本题共4小题,每小题5分,共20分。
13.函数y =的定义域是 (2,)-+∞ ;14.已知a =2lg ,b =3lg 则=12log 2 2ba+(请用a,b 表示结果); 15.函数1()3,0()(01)2,0x a x a x f x a a a x ⎧-+<⎪=>≠⎨⎪≥⎩且是R 上的减函数,则a 的取值范围是 11,32⎡⎫⎪⎢⎣⎭ ; 16. 给出下列四个命题:①已知1()2()3,f x f x x+=则函数()(2)xg x f =在(0,1)上有唯一零点;②对于函数12()f x x =的定义域中任意的1212()x x x x ≠、必有1212()()();22x x f x f x f ++< ③已知1()|21|,,()()x f x a b f a f b -+=-<<,则必有0()1;f b <<④已知()()f x g x 、是定义在R 上的两个函数,对任意x y R ∈、满足关系式()()2()(),(0=0且),f x y f x y f x g y f ++-=g 但0x ≠时()()0.f x g x ≠g 则函数()()f x g x 、都是奇函数. 其中正确命题的序号是 ①③ .三、解答题:(本大题共6小题,共 74 分. 解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)已知集合2{|37},{|12200}=≤<=-+<A x x B x x x , {|}=<C x x a .(1)求A B ⋃;()⋂ðR A B ; (2)若A C A ⋂=,求a 的取值范围。
解:(1){|37}A x x =≤<Q ,2{|12200}{|210}B x x x x x =-+<=<<....2分{|210}A B x x ∴⋃=<<,{|37}R A x x x =<≥或ð ..................6分(){|2310}.R A B x x x ⋂=<<≤<或7ð ..................8分(2),A C A A C ⋂=∴⊆Q ...........................10分{|37},{|}A x x C x x a =≤<=<Q ,7.a ∴≥ ........................................12分18.(本小题满分12分)已知幂函数()y f x =的图象经过点(2,4),对于偶函数()()y g x x R =∈,当0x ≥时,()()2g x f x x =-。
(1)求函数()y f x =的解析式;(2)求当0x <时,函数()y g x =的解析式,并在给定坐标系下,画出函数()y g x = 的图象; (3)写出函数()y g x =的单调递减区间。
解:(1)设()y f x x α==, .................................1分 则242,2,().f x x αα=∴=∴= ..................................3分 (2)2()f x x =Q ,∴当0x ≥时2()2g x x x =-.........4分设0,x <则0x ->,()y g x =Q 是R 上的偶函数22()()()2()2.f x f x x x x x ∴=-=---=+.....6分即当0x <时,2()2.f x x x ∴=+....7分图像如右图所示。
.............................................9分 (3)由图象知,函数|()|y g x =的单调递减区间是:(,2],[1,0],[1,2].-∞-- ....................................12分19.(本小题满分12分)《中华人民共和国个人所得税》规定,公民全月工资所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额。
此项税款按下表分段累计计算:(1(2)若某人某月所交税款为26.78元,求当月的工资;(3)若某人当月的工资收入在3000元至6000元之间,求该月所交税款的范围。
解:(1)当02000x ≤≤时,0y =; ……………………………1分 当20002500x <≤时,(2000)5%0.05100y x x =-⨯=-; ……………2分 当25004000x <≤时,25(2500)10%0.1225y x x =+-⨯=- ……………3分 当4000x >时,175(4000)15%0.15425y x x =+-=-; ……………4分0,020000.05100,200025000.1225,250040000.15425,4000x x x y x x x x ≤≤⎧⎪-<≤⎪∴=⎨-<≤⎪⎪->⎩ ……………6分(2)26.78,0.122526.78,2517.8y x x =∴-==Q ,所以当月的工资为2517.8元。
……………8分 (3)30006000x ≤≤Q ,由[]0.12253000,4000y x =-在上单增,75175y ∴≤≤, ……………9分 又由(]0.15425y x =-在4000,6000上单增,175475y ∴≤≤, …10分故75475y ∴≤≤,即所交税款为75元至475元。
…12分20. (本小题满分12分) 函数()21xbax x f ++=是定义在(-1,1)上的奇函数,且5221=⎪⎭⎫ ⎝⎛f (1)求函数()x f 的解析式;(2)利用定义证明()x f 在(-1,1)上是增函数;(3)求满足()()01<+-t f t f 的t 的范围. 解:(1)()f x Q 是定义在(-1,1)上的奇函数()00=∴f 解得0=b ,…………1分 则()21x ax x f +=∴524112121=+=⎪⎭⎫ ⎝⎛a f 1=∴a ……………3分 函数的解析式为:()()1112<<-+=x x xx f ………4分 (2)证明:设1121<<<-x x ,则 ……………5分()()()()()()()()()()22212121222121222122221121111111111x x x x x x x x x x x x x x x x x f x f ++--=+++-+=+-+=-……………6分1211x x -<<<Q ()()221212120,10,110x x x x x x ∴-<->++>()()021<-∴x f x f 即()()21x f x f < ()x f ∴在(-1,1)上是增函数 ……8分(3)()()10f t f t -+<Q ()()t f t f -<-∴1……9分 ()()f t f t -=-Q ()()t f t f -<-∴1 …10分又()f x Q 在(-1,1)上是增函数111<-<-<-∴t t 210<<∴t …………12分 21.(本小题满分12分)已知二次函数()f x 满足(0)1f =,及(1)()2f x f x x +-=.(1)求()f x 的解析式;(2)若()(log )(01)a g x f x a a =>≠且,1,x a a ⎡⎤∈⎢⎥⎣⎦,试求()g x 的值域. 解:(1)设2()1f x ax bx =++ ………………1分(1)()22f x f x ax a b x ∴+-=+++ 221,10a a b a b =⎧∴∴==-⎨+=⎩ ……5分2()1f x x x ∴=-+ ……6分(2)2()1f x x x =-+Q 2()(log )(log )log 1,a a a g x f x x x ∴==-+1,x a a⎡⎤∈⎢⎥⎣⎦…………7分令log a t x =,原函数化为21y t t =-+, …………………………8分101a x a a a≤≤>≠Q 又且101a a a ∴<<<即, …………………………9分∴log a t x =在1,a a ⎡⎤⎢⎥⎣⎦上单减,11t ∴-≤≤, …………………………10分又对称轴12t =min 1324t y ∴==时,,max 13t y ∴=-=时,,()g x ∴的值域为3,34⎡⎤⎢⎥⎣⎦。