高一必修四三角公式总结及图像性质】

合集下载

2024高中三角函数公式大全

2024高中三角函数公式大全

2024高中三角函数公式大全
1、三角函数的定义
三角函数是建立在三角形中的特殊关系上,用于表示角度和边长之间的函数。

三角函数的基本定义如下:
(1)正弦函数sinθ:表示角θ的对边和斜边的比值,即sinθ = y/r。

(2)余弦函数cosθ:表示角θ的邻边和斜边的比值,即cosθ = x/r。

(3)正切函数tanθ:表示角θ的对边和邻边的比值,即tanθ = y/x。

(4)反正弦函数arcsinα:表示α对应的角度θ,即arcsinα = θ。

(5)反余弦函数arccosα:表示α对应的角度θ,即arccosα = θ。

(6)反正切函数arctanα:表示α对应的角度θ,即arctanα = θ。

2、三角函数的基本公式
(1)正弦定理:(a,b,C)为θ对应的三边,则
a/sinθ=b/sinθ=c/sinθ。

(2)余弦定理:(a,b,C)为θ对应的三边,则a^2=b^2+c^2-
2bc*cosθ。

(3)正切定理:(a,b,C)为θ对应的三边,则tanθ=b/a=c/b。

(4)反正弦定理:arcsinα=θ,其中θ的范围在(-π/2,π/2)
之间。

(5)反余弦定理:arccosα=θ,其中θ的范围在(0,π)之间。

(6)反正切定理:arctanα=θ,其中θ的范围在(-π/2,π/2)
之间。

3、三角函数的关系和性质
(1)正弦定理:sin2θ+cos2θ=1
(2)正弦定理的奇偶周期性:sin(-θ)= -sinθ;cos(-θ)= cosθ。

必修四三角函数知识点经典总结

必修四三角函数知识点经典总结

高一必修四:三角函数一 任意角的概念与弧度制 (一)角的概念的推广 1、角概念的推广:在平面,一条射线绕它的端点旋转有两个相反的方向,旋转多少度角就是多少度角。

按不同方向旋转的角可分为正角和负角,其中逆时针方向旋转的角叫做正角,顺时针方向的叫做负角;当射线没有旋转时,我们把它叫做零角。

习惯上将平面直角坐标系x 轴正半轴作为角的起始边,叫做角的始边。

射线旋转停止时对应的边叫角的终边。

2、特殊命名的角的定义:(1)正角,负角,零角:见上文。

(2)象限角:角的终边落在象限的角,根据角终边所在的象限把象限角分为:第一象限角、第二象限角等(3)轴线角:角的终边落在坐标轴上的角终边在x 轴上的角的集合:{}Z k k ∈⨯=,180| ββ 终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180| ββ 终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ (4)终边相同的角:与α终边相同的角2x k απ=+ (5)与α终边反向的角:(21)x k απ=++终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ 终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ(6)若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 (7)成特殊关系的两角若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k 若角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 注:(1)角的集合表示形式不唯一.(2)终边相同的角不一定相等,相等的角终边一定相同. 3、本节主要题型:1.表示终边位于指定区间的角.例1:写出在720-︒到720︒之间与1050-︒的终边相同的角. 例2:若α是第二象限的角,则2,2αα是第几象限的角?写出它们的一般表达形式.例3:①写出终边在y 轴上的集合.②写出终边和函数y x =-的图像重合,试写出角α的集合. ③α在第二象限角,试确定2,,23ααα所在的象限.④θ角终边与168︒角终边相同,求在[0,360)︒︒与3θ终边相同的角.(二)弧度制1、弧度制的定义:l Rα=2、角度与弧度的换算公式:360°=2π 180°=π1°=0.01745 1=57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.一个式子中不能角度,弧度混用. 3、题型(1)角度与弧度的互化例:74315,330,,63ππ︒︒ (2)L R α=,211,22l r s lr r αα===的应用问题例1:已知扇形周长10cm ,面积24cm ,求中心角.例2:已知扇形弧度数为72︒,半径等于20cm ,求扇形的面积.例3:已知扇形周长40cm ,半径和圆心角取多大时,面积最大. 例4:121237570,750,,53ααβπβπ=-︒=︒==- a.求出12,αα弧度,象限.b.12,ββ用角度表示出,并在720~0-︒︒之间找出,他们有相同终边的所有角. 二 任意角三角函数 (一)三角函数的定义 1、任意角的三角函数定义正弦r y =αsin ,余弦r x=αcos ,正切xy =αtan 2、三角函数的定义域:三角函数 定义域=)(x f sin x {}R x x ∈| =)(x f cos x {}R x x ∈|=)(x f tan x⎭⎬⎫⎩⎨⎧∈+≠∈Z k k x R x x ,21|ππ且(二)单位圆与三角函数线1、单位圆的三角函数线定义如图(1)PM 表示α角的正弦值,叫做正弦线。

必修4三角函数知识总结

必修4三角函数知识总结

三角函数知识总结一、任意角和弧度制(一)任意角: 角的顶点在原点,始边与x 轴正半轴重合,始边绕原点旋转构成的图形,即构成角1. 从旋转方向可分为: 正角(绕原点逆时针旋转形成) ,负角(绕原点顺时针旋转形成) ,零角(不旋转);注:①角的大小可以是任意大小的;②其中钟表的时针、分针在旋转时所形成的角是负角。

③正确理解角:如“~间的角”、“第一象限角”、“锐角”、“小于角”、“钝角”等。

2. 从终边的位置可分为: 前提是角的顶点与坐标原点重合,角的始边与x 轴的非负半轴重合。

⎩⎨⎧)轴线角(也叫象限界角象限角注: 能熟练表示各象限角、终边在坐标轴上或特殊位置的角的集合; 3. 与α终边相同的角的集合: },2|{Z k k ∈+=απββ ①终边相同的角的集合:②终边在某条直线上的角的集合: ③终边在某一区域内的角的集合:4. α与2α的终边关系:由“两等分各象限、一二三四”确定. 如若α是第二象限角,则2α是第____象限角。

(二)弧度制1. 弧度角2. 弧度与角度的换算①角度制,角度制单位为“度”,符号是“°”,弧度制,单位为“弧度”,符号是“rad ”(一般省略)②换算关系: 180180()1()()5718rad rad ππ'==≈1°= 180π(rad )3. 扇形的弧长和面积公式: 弧长公式:l =α·R ;面积公式:S= 21l ·R = 21α·2R ;二、任意角的三角函数(一)任意角的三角函数1. 任意角的三角函数的定义:已知角α的终边上任意一点P (x , y ),它与原点的距离是r=OP =22y x +,那么正弦、余弦、正切分别为 sin α=y r , cos α=x r , tan α=y x。

2. 三角函数的象限符号图: 由于0r >,故sin α的符号只与y 有关,cos α的符号只与x 有关,正(余)切的符号取决于x ,y 是否同号,分布图如下: 一全二正弦,三切四余弦。

(完整版)高中数学必修4——三角与向量公式大全

(完整版)高中数学必修4——三角与向量公式大全

高中数学必修4公式大全三角公式汇总一、特殊角的三角函数值二、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=,正弦:r y =αsin 余弦:r x =αcos 正切:xy=αtan 三、同角三角函数的基本关系式商数关系:αααcos sin tan =, 平方关系:1cos sin 22=+αα αα2cos 1sin -±= αα2sin 1cos -±=四、诱导公式(记忆口诀:“奇变偶不变,符号看象限一般形式为(απ±2k)) ◆()()()zk , tan 2tan z k , cos 2cos zk , sin 2sin ∈=+∈=+∈=+απααπααπαk k k ❖()()()ααααααtan tan cos cossin sin -=-=--=- ♦()()()ααπααπααπtan tan cos cos sin sin -=--=-=- ⌧()()()ααπααπααπtan tan cos cos sin sin =+-=+-=+ ⍓ααπααπsin 2cos cos 2sin =⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-ααπααπsin 2cos cos 2sin -=⎪⎭⎫ ⎝=⎪⎭⎫⎝⎛+五、两角和差的正弦、余弦和正切公式βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=-βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαtan tan 1tan tan )tan(⋅-+=+ βαβαβαtan tan 1tan tan )tan(⋅+-=-六、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=七、降幂公式22sin cos sin ααα=22cos 1sin 2αα-= 22cos 1cos 2αα+= 八、辅助角公式)sin(cos sin 22ϕ++=+x b a x b x a其中:角ϕ的终边所在的象限与点),(b a 所在的象限相同,ab=ϕtan 。

高一数学必修四三角恒等变换知识点

高一数学必修四三角恒等变换知识点

高一数学必修四三角恒等变换知识点两角和差公式⒉两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβ(α+β)=——————1-tanα·tanβtanα-tanβtan(α-β)=——————1+tanα·tanβ倍角公式二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)2tanαtan2α=—————1-tan^2(α)半角公式⒋半角的正弦、余弦和正切公式(降幂扩角公式)1-cosαsin^2(α/2)=—————21+cosαcos^2(α/2)=—————21-cosαtan^2(α/2)=—————1+cosα万能公式⒌万能公式2tan(α/2)sinα=——————1+tan^2(α/2)1-tan^2(α/2)cosα=——————1+tan^2(α/2)2tan(α/2)tanα=——————1-tan^2(α/2)和差化积公式⒎三角函数的和差化积公式α+βα-βsinα+sinβ=2sin—----·cos—---22α+βα-βsinα-sinβ=2cos—----·sin—----22α+βα-βcosα+cosβ=2cos—-----·cos—-----22α+βα-βcosα-cosβ=-2sin—-----·sin—-----22积化和差公式⒏三角函数的积化和差公式sinα·cosβ=0.5[sin(α+β)+sin(α-β)]cosα·sinβ=0.5[sin(α+β)-sin(α-β)]cosα·cosβ=0.5[cos(α+β)+cos(α-β)]sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]9解三角形步骤1.在锐角△ABC中,设三边为a,b,c。

三角和反三角函数图像+公式

三角和反三角函数图像+公式

三角和反三角函数图像+公式-CAL-FENGHAI.-(YICAI)-Company One1三角、反三角函数图像六个三角函数值在每个象限的符号:sinα·cscα cosα·secα tanα·cotα三角函数的图像和性质:1-1y=sinx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyx1-1y=cosx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyx y=tanx3π2ππ2-3π2-π-π2oyxy=cotx3π2ππ22π-π-π2oyx函数y=sinx y=cosx y=tanx y=cotx定义域R R{x|x∈R且x≠kπ+2π,k∈Z}{x|x∈R且x≠kπ,k∈Z}值域[-1,1]x=2kπ+2π时y max=1x=2kπ-2π时y min=-1[-1,1]x=2kπ时y max=1x=2kπ+π时y min=-1R无最大值无最小值R无最大值无最小值周期性周期为2π周期为2π周期为π周期为π奇偶性奇函数偶函数奇函数奇函数单调性在[2kπ-2π,2kπ+2π]上都是增函数;在[2kπ+2π,2kπ+32π]上都是减函数(k∈Z)在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数(k∈Z)在(kπ-2π,kπ+2π)内都是增函数(k∈Z)在(kπ,kπ+π)内都是减函数(k∈Z).反三角函数:arcsinx arccosxarctanx arccotx名称反正弦函数 反余弦函数 反正切函数反余切函数 定义y=sinx(x ∈〔-2π,2π 〕的反函数,叫做反正弦函数,记作x=arsiny y=cosx(x ∈〔0,π〕)的反函数,叫做反余弦函数,记作x=arccosy y=tanx(x ∈(-2π, 2π)的反函数,叫做反正切函数,记作x=arctanyy=cotx(x ∈(0,π))的反函数,叫做反余切函数,记作x=arccoty理解arcsinx 表示属于[-2π,2π] 且正弦值等于x 的角arccosx 表示属于[0,π],且余弦值等于x 的角 arctanx 表示属于(-2π,2π),且正切值等于x 的角 arccotx 表示属于(0,π)且余切值等于x 的角性质 定义域 [-1,1] [-1,1] (-∞,+∞) (-∞,+∞) 值域 [-2π,2π] [0,π] (-2π,2π) (0,π)单调性在〔-1,1〕上是增函数在[-1,1]上是减函数 在(-∞,+∞)上是增数在(-∞,+∞)上是减函数 奇偶性 arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arctan(-x)=-arctanxarccot(-x)=π-arccotx 周期性都不是同期函数 恒等式sin(arcsinx)=x(x ∈[-1,1])arcsin(sinx)=x(x ∈[-2π,2π]) cos(arccosx)=x(x ∈[-1,1]) arccos(cosx)=x(x ∈[0,π])tan(arctanx)=x(x ∈R)arctan(tanx)=x (x ∈(-2π,2π)) cot(arccotx)=x(x ∈R)arccot(cotx)=x(x ∈(0,π))互余恒等式 arcsinx+arccosx=2π(x ∈[-1,1]) arctanx+arccotx=2π(X ∈R)。

三角函数三角恒等变换知识点总结

三角函数三角恒等变换知识点总结

高中数学苏教版必修4 三角函数 三角恒等变换知识点总结一、角的概念和弧度制:(1)在直角坐标系内讨论角:角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。

若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。

(2)①与α角终边相同的角的集合:},2|{},360|{0Z k k Z k k ∈+=∈+=απββαββ或 与α角终边在同一条直线上的角的集合: ; 与α角终边关于x 轴对称的角的集合: ; 与α角终边关于y 轴对称的角的集合: ; 与α角终边关于x y =轴对称的角的集合: ;②一些特殊角集合的表示:终边在坐标轴上角的集合: ;终边在一、三象限的平分线上角的集合: ; 终边在二、四象限的平分线上角的集合: ; 终边在四个象限的平分线上角的集合: ; (3)区间角的表示:①象限角:第一象限角: ;第三象限角: ;第一、三象限角: ;②写出图中所表示的区间角:(4)正确理解角:要正确理解“oo90~0间的角”= ;“第一象限的角”= ;“锐角”= ; “小于o90的角”= ;(5)由α的终边所在的象限,通过 来判断2α所在的象限。

来判断3α所在的象限(6)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一已知角α的弧度数的绝对值rl=||α,其中l 为以角α作为圆心角时所对圆弧的长,r 为圆的半径。

注意钟表指针所转过的角是负角。

(7)弧长公式: ;半径公式: ;扇形面积公式: ;二、任意角的三角函数:(1)任意角的三角函数定义:以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则=αs in ;=αcos ;=αtan ;=αcot ;=αsec ;=αcsc ; 如:角α的终边上一点)3,(a a -,则=+ααsin 2cos 。

注意r>0 (2)在图中画出角α的正弦线、余弦线、正切线;比较)2,0(∈x ,x sin ,x tan ,x 的大小关系:。

完整版三角函数公式和图像大全

完整版三角函数公式和图像大全

初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sin α· csc αcos α· sec αtan α· cot α三角函数的性质函数y=sinx y=cosx y=tanx{x|x∈R 且定义域R R x ≠ k π+,k∈2Z }[-1,1]x=2kπ+时[ -1,1]x=2k π时2Ry max =1 y max =1值域无最大值x=2k π- 时 y min =-1 x=2k π +π时无最小值y min =-12周期性周期为 2π周期为 2π周期为π奇偶性奇函数偶函数奇函数在[ 2kπ- ,2k π+ ]在[ 2kπ-π,在(k π- ,2k π]上都是增2 2 2单调性上都是增函数;在函数;在[2kπ,kπ+)内都是[2kπ+ 2 2k π +π]上都是 2,2k π+π]2 3 减函数 (k ∈Z) 增函数 (k ∈ Z)上都是减函数 (k ∈Z) y=cotx{x|x∈R 且 x ≠ k π∈,kZ }R无最大值无最小值周期为π奇函数在(k π,kπ+π)内都是减函数(k ∈Z)反三角函数的图形反三角函数的性质名称反正弦函数y=sinx(x ∈〔- ,〕的反2 2函数,叫做反正定义弦函数,记作x=arsinyarcsinx 表示属于[- ,]2 2理解且正弦值等于 x的角定义域[-1, 1]值域[- ,]2 2 反余弦函数y=cosx(x ∈〔0, π〕)的反函数,叫做反余弦函数,记作x=arccosyarccosx 表示属于[ 0,π],且余弦值等于x的角[-1, 1][0,π]反正切函数y=tanx(x ∈(-,2)的反函数,叫2做反正切函数,记作x=arctanyarctanx 表示属于(- , ),且正切2 2值等于 x 的角(-∞,+∞)(-,)2 2反余切函数y=cotx(x ∈(0, π的))反函数,叫做反余切函数,记作x=arccotyarccotx 表示属于(0,π)且余切值等于 x 的角(-∞, +∞)(0,π)性单调性在〔 -1,1〕上是质增函数奇偶性arcsin(-x)=-arcsi nx周期性都不是同期函数sin(arcsinx)=x(x∈[ -1,恒等式1])arcsin(sinx)=x(x ∈[- , ])2 2互余恒等arcsinx+arccosx=式在[-1,1]上是减函数arccos(-x)=π-arccosxcos(arccosx)=x(x ∈[ -1,1])arccos(cosx)=x(x ∈[ 0, π])(x ∈[ -1,1])2在(-∞,+∞)上是增在 (-∞,+∞)上数是减函数arctan(-x)=-arcta arccot(- x)= π-anx rccotxtan(arctanx)=x(x cot(arccotx)=x∈ (x ∈R) R)arctan(tanx)=xarccot(cotx)=x ( x∈ (- , ))(x∈(0,π))2 2arctanx+arccotx=(X∈R)2三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanA tanBtan(A-B) =1- tanAtanB tanA tanBcot(A+B) =1 tanAtanBcotAcotB -1cot(A-B) =cotB cotA cotAcotB 1 cotB cotA倍角公式tan2A = 2tanA1 tan2 ASin2A=2SinA?CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式3sin3A = 3sinA-4(sinA) 3cos3A = 4(cosA) -3cosAtan3a = tana ·tan(+a)· tan(-a)33sin( A)=1 cosA 22cos( A)= 1 cosA2 2 tan( A)= 1 cosA 1 cosA 2cot( A )= 1cosA 21 cosAtan( A2)= 1cosA sin A =sin A1 cos A和差化积sina+sinb=2sina b cosab22 sina-sinb=2cosa bsinab2 2cosa+cosb = 2cosa bcosab2 2 cosa-cosb = -2sina bsinab22tana+tanb=sin(ab)cosa cosb积化和差1sinasinb = - [cos(a+b)-cos(a-b)]1cosacosb = [cos(a+b)+cos(a-b)]1 sinacosb = [sin(a+b)+sin(a-b)]1cosasinb =[sin(a+b)-sin(a-b)]sin(-a) = -sina cos(-a) = cosasin(-a) = cosa2 cos(-a) = sina2 sin(+a) = cosa 2cos( +a) = -sina2sin( -πa) = sinacos( π-a) = -cosasin( π +a)-sina=cos( π +a) -=cosasin atgA=tanA =全能公式2tanasina=2 1 (tan a) 221 (tan a) 2cosa=21 (tan a)2 22tanatana=21 (tan a)2 2a?sina+b?cosa= (a 2 b 2) × sin(a+c) [其中 tanc= b]aa?sin(a)-b?cos(a) = (a2b 2) ×cos(a-c) [其中 tan(c)= a]b1+sin(a) =(sin a+cos a)22 2 1-sin(a) = (sin a-cos a)222其他非重点三角函数csc(a) =1sec(a) =sin a 1cos a双曲函数sinh(a)= e a - e -a 2cosh(a)=e ae -a2sinh( a) tg h(a)=cosh(a)公式一设 α为任意角,终边相同的角的同一三角函数的值相等: sin (2k π+α)= sin α cos (2k π+ α) = cos α tan (2k π+α)= tan αcot (2k π+α)= cot α设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sin αcos(π+α)= -cos αtan(π+α)= tan αcot(π+α)= cot α公式三任意角α与 -α的三角函数值之间的关系:sin(-α) = -sin αcos(-α) = cos αtan(-α) = -tan αcot(-α) = -cot α公式四利用公式二和公式三可以获取π-α与α的三角函数值之间的关系:sin(π-α)= sin αcos(π-α)= -cos αtan(π-α)= -tan αcot(π-α)= -cot α公式五利用公式 -和公式三可以获取2π-α与α的三角函数值之间的关系:sin(2π-α)= -sin αcos(2π-α)= cos αtan(2π-α)= -tan αcot(2π-α)= -cot α±α及3±α与 α的三角函数值之间的关系:22sin ( +α)= cos α 2cos ( +α)= -sin α2tan ( +α)= -cot α2cot ( +α)= -tan α2sin ( -α)= cos α2cos ( -α)= sin α2tan ( -α)= cot α2cot ( -α)= tan α 2sin (3+α)= -cos α2cos ( 3+α)= sin α2tan (3+α)= -cot α2cot ( 3+α)= -tan α2sin (3-α) = -cos α2cos ( 3-α)= -sin α2tan (3-α) = cot α2cot (3-α) = tan α2(以上 k ∈ Z)这个物理常用公式我费了半天的劲才输进来 ,希望对大家适用A?sin( ω t+ θ )+ B?sin( 22ω t+A φ )B = 2AB cos() × sintarcsin[(As in Bsin ) A 2 B 2 2 AB cos( )三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b| ≤ |a|+|b||a-b| ≤ |a|+|b||a| ≤ b<=>-≤ a≤ b|a-b| ≥ |a||b|--|a| ≤ a≤ |a|一元二次方程的解-b+√ (b2-4ac)/2a -b-b+√ (b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理鉴识式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)= √-((1cosA)/2) sin(A/2)=- √ ((1-cosA)/2)cos(A/2)= √ ((1+cosA)/2) cos(A/2)=-√ ((1+cosA)/2)tan(A/2)=√-cosA)/((1+cosA)) tan(A/2)=-√ ((1-cosA)/((1+cosA))ctg(A/2)=√ ((1+cosA)/((1-cosA)) ctg(A/2)=-√ ((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前 n 项和1+2+3+4+5+6+7+8+9+⋯ +n=n(n+1)/21+3+5+7+9+11+13+15+⋯ +(2n-1)=n22+4+6+8+10+12+14+⋯ +(2n)=n(n+1)12+22+32+42+52+62+72+82+⋯ +n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+⋯ n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+ ⋯ +n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中 R 表示三角形的外接半径余弦定理b2=a2+c2-2accosB注:角 B 是 a 和 c 的角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}的准方程(x-a)2+(y-b)2=r2 注:( a,b)是心坐的一般方程x2+y2+Dx+Ey+F=0 注: D2+E2-4F>0抛物准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra 是圆心角的弧度数r >0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中 ,S'是直截面面积,L 是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h。

(经典讲义)高一数学下必修四第一章三角函数

(经典讲义)高一数学下必修四第一章三角函数

高一数学下必修四第一章三角函数第一讲:三角函数(1)⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k kαα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k kαα⋅+<<⋅+∈Z第三象限角的集合为{}360180360270,k k kαα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k kαα⋅+<<⋅+∈Z终边在x轴上的角的集合为{}180,k kαα=⋅∈Z终边在y轴上的角的集合为{}18090,k kαα=⋅+∈Z终边在坐标轴上的角的集合为{}90,k kαα=⋅∈Z3、与角α终边相同的角的集合为{}360,k kββα=⋅+∈Z4、已知α是第几象限角,确定()*nnα∈N所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=.7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈⎪⎝⎭.8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x rα=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT 12、同角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=.()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.14、函数sin y x =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.函数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ.函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<. 15、正弦函数、余弦函数和正切函数的图象与性质:sin y x =cos y x =tan y x =图象定义R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭问题1各是第几象限角问题:已知α角是第三象限角,则2α,2问题21.有向线段:坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。

(完整版)人教高中数学必修四第一章三角函数知识点归纳

(完整版)人教高中数学必修四第一章三角函数知识点归纳

三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。

人教版高中数学必修四常见公式及知识点总结(完整版)

人教版高中数学必修四常见公式及知识点总结(完整版)

必修四常考公式及高频考点第一部分 三角函数与三角恒等变换考点一 角的表示方法 1.终边相同角的表示方法:所有与角α终边相同的角,连同角α在内可以构成一个集合:{β|β= k ·360 °+α,k ∈Z } 2.象限角的表示方法:第一象限角的集合为{α| k ·360 °<α<k ·360 °+90 °,k ∈Z }第二象限角的集合为{α| k ·360 °+90 °<α<k ·360 °+180 °,k ∈Z } 第三象限角的集合为{α| k ·360 °+180 °<α<k ·360 °+270 °,k ∈Z } 第四象限角的集合为{α| k ·360 °+270 °<α<k ·360 °+360 °,k ∈Z } 3.终边在某条射线、某条直线或两条垂直的直线上(如轴线角)的表示方法:(1)若所求角β的终边在某条射线上,其集合表示形式为{β|β= k ·360 °+α,k ∈Z },其中α为射线与x 轴非负半轴形成的夹角(2)若所求角β的终边在某条直线上,其集合表示形式为{β|β= k ·180 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角(3)若所求角β的终边在两条垂直的直线上,其集合表示形式为{β|β= k ·90 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角 例:终边在y 轴非正半轴上的角的集合为{α|α= k ·360 °+270 °,k ∈Z }终边在第二、第四象限角平分线上的集合为{α|α= k ·180 °+135 °,k ∈Z } 终边在四个象限角平分线上的角的集合为{α|α= k ·90 °+45 °,k ∈Z } 易错提醒:区别锐角、小于90度的角、第一象限角、0~90、小于180度的角 考点二 弧度制有关概念与公式 1.弧度制与角度制互化π=︒180,1801π=︒,1弧度︒≈︒=3.57180π2.扇形的弧长和面积公式(分别用角度制、弧度制表示方法)弧长公式:R Rn l απ==180, 其中α为弧所对圆心角的弧度数 扇形面积公式:lR R n S 213602==π=12 R 2|α|, 其中α为弧所对圆心角的弧度数 易错提醒:利用S=12R 2|α|求解扇形面积公式时,α为弧所对圆心角的弧度数,不可用角度数规律总结:“扇形周长、面积、半径、圆心角”4个量,“知二求二”,注意公式选取技巧考点三 任意角的三角函数 1.任意角的三角函数定义设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么sin y r α=,cos x r α=,tan y x α=(22||r OP x y ==+);化简为xyx y ===αααtan ,cos ,sin . 2.三角函数值符号规律总结:利用三角函数定义或“一全正、二正弦、三正切、四余弦”口诀记忆象限角或轴线角的三角函数值符号. 3.特殊角三角函数值SIN15º=SIN(60º-45º)=SIN60ºCOS45º-SIN45ºCOS60º=(√6-√2)/4 COS15º=COS(60º-45º)=COS60ºCOS45º+SIN60ºSIN45º=(√6+√2)/4除此之外,还需记住150、750的正弦、余弦、正切值 4.三角函数线经典结论: (1)若(0,)2x π∈,则sin tan x x x <<(2)若(0,)2x π∈,则1sin cos 2x x <+≤(3)|sin ||cos |1x x +≥考点四 三角函数图像与性质y OxyOxα终边yOx yOx P M A TPM A T正弦线余弦线 正切线PP MA TP MA T α终边α终边α终边sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min1y=-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数; 在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z 对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴考点五 正弦型(y=Asin(ωx +φ))、余弦型函数(y=Acos(ωx +φ))、正切性函数(y=Atan(ωx +φ))图像与性质 1.解析式求法字母 确定途径 说明A 由最值确定 A =最大值-最小值2B 由最值确定B =最大值+最小值2ω 由函数的周期确定相邻的最高点与最低点的横坐标之差的绝对值为半个周期,最高点(或最低点)的横坐标与相邻零点差的绝对值为0.25个周期φ由图象上的特殊点确定可通过认定特殊点是五点中的第几个关键点,然后列方程确定;也可通过解简单三角方程确定A 、B 通过图像易求,重点讲解φ、ω求解思路: ①φ求解思路:函数性质代入图像的确定点的坐标.如带入最高点),(11y x 或最低点坐标),(22y x ,则)(221Z k k x ∈+=+ππϕω或)(2232Z k k x ∈+=+ππϕω,求ϕ值. 易错提醒:y=Asin(ωx+φ),当ω>0,且x=0时的相位(ωx+φ=φ)称为初相.如果不满足ω>0,先利用诱导公式进行变形,使之满足上述条件,再进行计算.如y=-3sin(-2x+600)的初相是-600②ω求解思路:利用三角函数对称性与周期性的关系,解ω.相邻的对称中心之间的距离是周期的一半;相邻的对称轴之间的距离是周期的一半;相邻的对称中心与对称轴之间的距离是周期的四分之一. 2.“一图、两域、四性” “一图”:学好三角函数,图像是关键。

(完整版)新课标人教A版高中数学必修四三角函数知识点总结,推荐文档

(完整版)新课标人教A版高中数学必修四三角函数知识点总结,推荐文档

高中数学必修4三角函数知识点总结§1.1.1、任意角1、 正角、负角、零角、象限角的概念.2、 与角终边相同的角的集合:.α{}Z k k ∈+=,2παββ§1.1.2、弧度制1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 .rl =α3、弧长公式:.R Rn l απ==1804、扇形面积公式:.lR R n S 213602==π§1.2.1、任意角的三角函数1、 设是一个任意角,它的终边与单位圆交于点,那么:α()y x P ,xyx y ===αααtan ,cos ,sin 2、 设点为角终边上任意一点,那么:(设)(),A x yαr =,,,sin y r α=cos x r α=tan yx α=cot x yα=3、 ,,在四个象限的符号和三角函数线的画法.αsin αcos αtan 正弦线:MP; 余弦线:OM; 正切线:AT 4、 特殊角0°,30°,45°,60°,90°,180°,270等的三角函数值.α6π4π3π2π23π34ππ32π2πsin αcos αtan α§1.2.2、同角三角函数的基本关系式1、 平方关系:.1cos sin 22=+αα2、 商数关系:.αααcos sin tan =3、 倒数关系:tan cot 1αα=§1.3、三角函数的诱导公式(概括为“奇变偶不变,符号看象限”)Z k ∈1、 诱导公式一: (其中:(),cos 2cos ,sin 2sin απααπα=+=+k k )Z k ∈2、 诱导公式二: ()()().tan tan ,cos cos ,sin sin ααπααπααπ=+-=+-=+3、诱导公式三: ()()().tan tan ,cos cos ,sin sin αααααα-=-=--=-4、诱导公式四: ()()().tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=-5、诱导公式五:.sin 2cos ,cos 2sin ααπααπ=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-6、诱导公式六:.sin 2cos ,cos 2sin ααπααπ-=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+§1.4.1、正弦、余弦函数的图象和性质、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性.3、会用五点法作图.在上的五个关键点为: sin y x =[0,2]x π∈30010-12022ππππ(,)(,,)(,,)(,,)(,,).§1.4.3、正切函数的图象与性质1、记住正切函数的图象:2、记住余切函数的图象:3、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.周期函数定义:对于函数,如果存在一个非零常数T ,使得当取定义域内的每一个值时,都有()x f x ,那么函数就叫做周期函数,非零常数T 叫做这个函数的周期.()()x f T x f =+()x f图表归纳:正弦、余弦、正切函数的图像及其性质xysin =xycos =xy tan =图象定义域RR},2|{Z k k x x ∈+≠ππ值域[-1,1][-1,1]R最值max min 2,122,12x k k Z y x k k Z y ππππ=+∈==-∈=-时,时,max min 2,12,1x k k Z y x k k Z y πππ=∈==+∈=-时,时,无周期性π2=T π2=T π=T 奇偶性奇偶奇单调性Zk ∈在上单调递增[2,2]22k k ππππ-+在上单调递减3[2,2]22k k ππππ++在上单调递增[2,2]k k πππ-在上单调递减[2,2]k k πππ+在上单调递(,)22k k ππππ-+增对称性Zk ∈对称轴方程:2x k ππ=+对称中心(,0)k π对称轴方程:x k π=对称中心(,0)2k ππ+无对称轴对称中心,0)(2k π§1.5、函数的图象()ϕω+=x A y sin 1、对于函数:有:振幅A ,周期,初相,相位,频率()()sin 0,0y A x B A ωφω=++>>2T πω=ϕϕω+x .πω21==Tf 2、能够讲出函数的图象与x y sin =的图象之间的平移伸缩变换关系.()sin y A x B ωϕ=++①先平移后伸缩:平移个单位sin y x =||ϕ()sin y x ϕ=+()sin y A x ϕ=+纵坐标变为原来的A 倍()sin y A x ωϕ=+横坐标变为原来的倍1||ω()sin A x Bωϕ=++(上加下减)②先伸缩后平移:sin y =sin y A x =纵坐标变为原来的A 倍sin y A xω=横坐标变为原来的倍1||ω()sin A x ωϕ=+()sin A x Bωϕ=++(上加下减)3、三角函数的周期,对称轴和对称中心函数,x∈R 及函数,x∈R(A,,为常数,且A ≠0)的周期;sin()y x ωϕ=+cos()y x ωϕ=+ωϕ2||T πω=函数,(A,ω,为常数,且A ≠0)的周期.tan()y x ωϕ=+,2x k k Z ππ≠+∈ϕ||T πω=对于和来说,对称中心与零点相联系,对称轴与最值点联系.sin()y A x ωϕ=+cos()y A x ωϕ=+求函数图像的对称轴与对称中心,只需令与sin()y A x ωϕ=+()2x k k Z πωϕπ+=+∈()x k k Z ωϕπ+=∈解出即可.余弦函数可与正弦函数类比可得.x 4、由图像确定三角函数的解析式利用图像特征:,.max min 2y y A -=max min2y y B +=要根据周期来求,要用图像的关键点来求.ωϕ§1.6、三角函数模型的简单应用1、 要求熟悉课本例题.第三章、三角恒等变换§3.1.1、两角差的余弦公式记住15°的三角函数值:ααsin αcos αtan 12π426-426+32-§3.1.2、两角和与差的正弦、余弦、正切公式1、()βαβαβαsin cos cos sin sin +=+2、()βαβαβαsin cos cos sin sin -=-3、()βαβαβαsin sin cos cos cos -=+4、()βαβαβαsin sin cos cos cos +=-5、.()tan tan 1tan tan tan αβαβαβ+-+=6、.()tan tan 1tan tan tan αβαβαβ-+-=§3.1.3、二倍角的正弦、余弦、正切公式1、,αααcos sin 22sin =.12sin cos sin 2ααα=2、ααα22sin cos 2cos -=1cos 22-=α.α2sin 21-=变形如下:升幂公式:222cos 1cos 22sin ααα=⎨-=⎪⎩降幂公式:221cos (1cos 2)21sin (1cos 2)2αααα=+=-⎧⎪⎨⎪⎩3、.ααα2tan 1tan 22tan -=4、sin 21cos 2tan 1cos 2sin 2ααααα-==+§3.2、简单的三角恒等变换1、注意正切化弦、平方降次.2、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y (其中辅助角所在象限由点的象限决定, ).ϕ(,)a b tan b aϕ=第二章:平面向量§2.1.1、向量的物理背景与概念1、 了解四种常见向量:力、位移、速度、加速度.2、 既有大小又有方向的量叫做向量.§2.1.2、向量的几何表示1、 带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、 向量的大小,也就是向量的长度(或称模),记作;长度为零的向量叫做零向量;长度AB AB AB等于1个单位的向量叫做单位向量.3、 方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行.§2.1.3、相等向量与共线向量1、 长度相等且方向相同的向量叫做相等向量.§2.2.1、向量加法运算及其几何意义1、 三角形加法法则和平行四边形加法法则.2§2.2.2、向量减法运算及其几何意义1、 与长度相等方向相反的向量叫做的相反向量.a a2、 三角形减法法则和平行四边形减法法则.§2.2.3、向量数乘运算及其几何意义1、 规定:实数与向量的积是一个向量,这种运算叫做向量的数乘.记作:,它的长度和方向规λa a λ定如下: ⑵当时, 的方向与的方向相同;当时, 的方向与的方向相反.0>λa λa 0<λa λa 2、 平面向量共线定理:向量与 共线,当且仅当有唯一一个实数,使.()0≠a a b λa b λ=§2.3.1、平面向量基本定理1、 平面向量基本定理:如果是同一平面内的两个不共线向量,那么对于这一平面内任一向量,21,e e a 有且只有一对实数,使.21,λλ2211e e a λλ+=§2.3.2、平面向量的正交分解及坐标表示1、 .()y x j y i x a ,=+=§2.3.3、平面向量的坐标运算1、 设,则:()()2211,,,y x b y x a == ⑴,()2121,y y x x b a ++=+⑵,()2121,y y x x b a --=-⑶,()11,y x a λλλ=⑷.1221//y x y x b a =⇔2、 设,则:()()2211,,,y x B y x A .()1212,y y x x AB --=§2.3.4、平面向量共线的坐标表示1、设,则()()()332211,,,,,y x C y x B y x A ⑴线段AB 中点坐标为,()222121,y y x x ++⑵△ABC 的重心坐标为.()33321321,y y y x x x ++++§2.4.1、平面向量数量积的物理背景及其含义1、 .θb a ⋅2、 在.a b θ34.5、 .0=⋅⇔⊥b a b a §2.4.2、平面向量数量积的坐标表示、模、夹角1、 设,则:()()2211,,,y x b y x a ==⑴2121y y x x b a +=⋅2121y x +⑶121200a b a b x x y y ⊥⇔⋅=⇔+=⑷1221//0a b a b x y x y λ⇔=⇔-=2、 设,则:()()2211,,,y x B y x A3、两向量的夹角公式cos a ba bθ⋅==4、点的平移公式平移前的点为(原坐标),平移后的对应点为(新坐标),平移向量为,(,)P x y (,)P x y '''(,)PP h k '=则.x x hy y k '=+⎧⎨'=+⎩ 函数的图像按向量平移后的图像的解析式为()y f x =(,)a h k =().y k f x h -=-§2.5.1、平面几何中的向量方法§2.5.2、向量在物理中的应用举例知识链接:空间向量空间向量的许多知识可由平面向量的知识类比而得.下面对空间向量在立体几何中证明,求值的应用进行总结归纳.1、直线的方向向量和平面的法向量⑴.直线的方向向量: 若A 、B 是直线上的任意两点,则为直线的一个方向向量;与平行的任意非零向量也是l AB l AB直线的方向向量.l ⑵.平面的法向量: 若向量所在直线垂直于平面,则称这个向量垂直于平面,记作,如果,那么向量nααn α⊥ n α⊥ 叫做平面的法向量.nα⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.②设平面的法向量为.α(,,)n x y z =③求出平面内两个不共线向量的坐标.123123(,,),(,,)a a a a b b b b ==④根据法向量定义建立方程组.n a n b ⎧⋅=⎪⎨⋅=⎪⎩ ⑤解方程组,取其中一组解,即得平面的法向量.α(如图)建议收藏下载本文,以便随时学习!2、用向量方法判定空间中的平行关系⑴线线平行设直线的方向向量分别是,则要证明∥,只需证明∥,即.12,l l a b 、1l 2l a b ()a kb k R =∈ 即:两直线平行或重合两直线的方向向量共线.⑵线面平行①(法一)设直线的方向向量是,平面的法向量是,则要证明∥,只需证明,即l a αul αa u ⊥ .0a u ⋅= 即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外②(法二)要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可.⑶面面平行若平面的法向量为,平面的法向量为,要证∥,只需证∥,即证.αu βv αβu vu v λ= 即:两平面平行或重合两平面的法向量共线.3、用向量方法判定空间的垂直关系⑴线线垂直设直线的方向向量分别是,则要证明,只需证明,即.12,l l a b、12l l ⊥a b ⊥ 0a b ⋅= 即:两直线垂直两直线的方向向量垂直.⑵线面垂直①(法一)设直线的方向向量是,平面的法向量是,则要证明,只需证明∥,即l a αu l α⊥a u.a u λ= ②(法二)设直线的方向向量是,平面内的两个相交向量分别为,若l a αm n 、0,.a m l a n α⎧⋅=⎪⊥⎨⋅=⎪⎩则即:直线与平面垂直直线的方向向量与平面的法向量共线直线的方向向量与平面内两条不共线直线的方向向量都垂直.⑶面面垂直若平面的法向量为,平面的法向量为,要证,只需证,即证.αuβv αβ⊥u v ⊥ 0u v ⋅= 即:两平面垂直两平面的法向量垂直.4、利用向量求空间角⑴求异面直线所成的角已知为两异面直线,A ,C 与B ,D 分别是上的任意两点,所成的角为,,a b ,a b ,a b θ 则cos .AC BDAC BDθ⋅=9⑵求直线和平面所成的角①定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角②求法:设直线的方向向量为,平面的法向量为,直线与平面所成的角为,与的夹角为l a αu θa u , 则为的余角或的补角ϕθϕϕ的余角.即有:cos s .in a u a uϕθ⋅== ⑶求二面角①定义:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面二面角的平面角是指在二面角的棱上任取一点O ,分别在两个半平面内作射线βα--l ,则为二面角的平面角.l BO l AO ⊥⊥,AOB ∠βα--l 如图:②求法:设二面角的两个半平面的法向量分别为,再设的夹角为,二面角l αβ--m n 、m n 、ϕ的平面角为,则二面角为的夹角或其补角l αβ--θθm n 、ϕ.πϕ-根据具体图形确定是锐角或是钝角:θ◆如果是锐角,则,θcos cos m n m nθϕ⋅== 即;arccos m n m nθ⋅= ◆如果是钝角,则,θcos cos m n m nθϕ⋅=-=- 即.arccos m n m n θ⎛⎫⋅ ⎪=- ⎪⎝⎭5、利用法向量求空间距离⑴点Q 到直线距离l 若Q 为直线外的一点,在直线上,为直线的方向向量,=,则点Q 到直线距离为l P l a l b PQ l h =⑵点A 到平面的距离α若点P 为平面外一点,点M 为平面内任一点,αα平面的法向量为,则P 到平面的距离就等于在法向量方向上的投影的绝对值.αn αMP n 即cos ,d MP n MP=10n MP MP n MP ⋅=⋅ n MP n⋅= ⑶直线与平面之间的距离a α 当一条直线和一个平面平行时,直线上的各点到平面的距离相等.由此可知,直线到平面的距离可转化为求直线上任一点到平面的距离,即转化为点面距离.即.n MP d n ⋅= ⑷两平行平面之间的距离,αβ 利用两平行平面间的距离处处相等,可将两平行平面间的距离转化为求点面距离.即.n MP d n⋅= ⑸异面直线间的距离设向量与两异面直线都垂直,则两异面直线间的距离就是在向量方n ,a b ,,M a P b ∈∈,a b d MP n 向上投影的绝对值. 即.n MP d n⋅= 6、三垂线定理及其逆定理⑴三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直推理模式:,,PO O PA A a PAa a OA αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭概括为:垂直于射影就垂直于斜线.⑵三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直推理模式:,,PO O PA A a AOa a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭概括为:垂直于斜线就垂直于射影.7、三余弦定理设AC 是平面内的任一条直线,AD 是的一条斜线AB 在内的射影,且BD⊥AD,垂足为D.设AB ααα与 α(AD)所成的角为, AD 与AC 所成的角为, AB 与AC 所1θ2θ11成的角为.则.θ12cos cos cos θθθ=8、 面积射影定理已知平面内一个多边形的面积为,它在平面内的射影图形的面积为,平面与β()S S 原α()S S '射α平面所成的二面角的大小为锐二面角,则βθ 'cos =.S S S S θ=射原9、一个结论长度为的线段在三条两两互相垂直的直线上的射影长分别为,夹角分别为,则l 123l l l 、、123θθθ、、有 .2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=(立体几何中长方体对角线长的公式是其特例).。

(完整版)高中必修四三角函数知识点总结

(完整版)高中必修四三角函数知识点总结

§04。

三角函数 知识要点1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0。

01745 1=57。

30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57。

30°=57°18ˊ. 1°=180π≈0。

01745(rad )3、弧长公式:rl ⋅=||α。

扇形面积公式:211||22s lr r α==⋅扇形4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y)P与原点的距离为r,则 ry =αsin ; rx =αcos ; =αtan yx=αcot ; xr =αsec ;。

yr=αcsc 。

5、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP ; 余弦线:OM; 正切线: AT.SIN \COS 三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域16. 几个重要结论:8、同角三角函数的基本关系式:αααtan cos sin = αααcot sin cos = 1cot tan =⋅αα 1sin csc =α⋅α 1cos sec =α⋅α1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限"公式组二 公式组三(完整版)高中必修四三角函数知识点总结x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=- 公式组四 公式组五 公式组六xx x x x x xx cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ xx x x x x xx cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ xx x x xx xx cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二 βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=- 2cos 12sinαα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan2sin 2ααα+= 2tan 12tan 1cos 22ααα+-= 2tan 12tan2tan 2ααα-=42675cos 15sin -== ,42615cos 75sin +== ,3275cot 15tan -== ,3215cot 75tan +== 。

三角函数公式及图像

三角函数公式及图像

锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin&sup2;a)+(1-2sin&sup2;a)sina=3sina-4sin&sup3;acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos&sup2;a-1)cosa-2(1-sin&sup2;a)cosa=4cos&sup3;a-3cosasin3a=3sina-4sin&sup3;a=4sina(3/4-sin&sup2;a)=4sina[(√3/2)&sup2;-sin&sup2;a]=4sina(sin&sup2;60°-sin&sup2;a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos&sup3;a-3cosa=4cosa(cos&sup2;a-3/4)=4cosa[cos&sup2;a-(√3/2)&sup2;]=4cosa(cos&sup2;a-cos&sup2;30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°) /2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·s inγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·s inγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)两角和差cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*( n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角、反三角函数图像六个三角函数值在每个象限的符号:sinα·cscα cosα·secα tanα·cotα三角函数的图像和性质:.反三角函数:arcsinx arccosx。

高一数学三角函数图像与性质详解

高一数学三角函数图像与性质详解

高一数学三角函数图像与性质详解在高一数学的学习中,三角函数是一个非常重要的知识点。

三角函数的图像与性质不仅是数学考试中的重点,也是解决许多实际问题的有力工具。

接下来,让我们一起深入探讨三角函数的图像与性质。

首先,我们来了解一下三角函数的定义。

在直角三角形中,正弦函数(sin)等于对边与斜边的比值,余弦函数(cos)等于邻边与斜边的比值,正切函数(tan)等于对边与邻边的比值。

正弦函数 y = sin x 的图像是一个周期为2π 的波浪形曲线。

它在 x = 0 时,函数值为 0;在 x =π/2 时,函数值为 1;在 x =π 时,函数值为 0;在 x =3π/2 时,函数值为-1;在 x =2π 时,函数值又回到0。

正弦函数的性质包括:1、定义域为全体实数。

2、值域为-1, 1。

3、它是一个奇函数,即 sin(x) = sin(x)。

4、周期性,周期为2π。

余弦函数 y = cos x 的图像也是一个周期为2π的曲线,不过它的形状与正弦函数有所不同。

在 x = 0 时,函数值为 1;在 x =π/2 时,函数值为 0;在 x =π 时,函数值为-1;在 x =3π/2 时,函数值为 0;在 x =2π 时,函数值又回到 1。

余弦函数的性质有:1、定义域为全体实数。

2、值域为-1, 1。

3、它是一个偶函数,即 cos(x) = cos(x)。

4、周期性,周期同样为2π。

正切函数 y = tan x 的图像则与正弦、余弦函数大不相同。

它的定义域是x ≠ π/2 +kπ(k 为整数),其值域为全体实数。

正切函数的周期为π。

正切函数的性质主要有:1、定义域的特殊性。

2、它是一个奇函数,tan(x) = tan(x)。

了解了三角函数的基本图像和性质后,我们来看看它们的平移和伸缩变换。

对于函数 y = sin(x +φ),其中φ 称为相位。

当φ > 0 时,图像向左平移φ 个单位;当φ < 0 时,图像向右平移|φ| 个单位。

三角、反三角函数图像及性质与三角公式

三角、反三角函数图像及性质与三角公式

三角、反三角函数图像及性质与三角公式(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--三角、反三角函数图像(附:资料全部来自网络,仅对排版做了改动,以方便打印及翻阅,其中可能出现错误,阅者请自行注意。

)1.六个三角函数值在每个象限的符号:sinα·cscα cosα·secα tanα·cotα2.三角函数的图像和性质:1-1y=sinx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoy x1-1y=cosx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyxy=tanx3π2ππ2-3π2-π-π2oyxy=cotx3π2ππ22π-π-π2oyx函数 y=sinx y=cosx y=tanxy=cotx定义域RR{x |x∈R 且x≠kπ+2π,k∈Z }{x |x∈R 且x≠kπ,k∈Z}值域[-1,1]x=2kπ+2π 时y max =1 x=2kπ-2π时y min =-1[-1,1]x=2kπ时y max =1 x=2kπ+π时y min =-1R无最大值 无最小值R无最大值 无最小值周期性周期为2π周期为2π周期为π周期为π奇偶性奇函数偶函数奇函数奇函数单调性在[2kπ-2π,2kπ+2π]上都是增函数;在[2kπ+2π,2kπ+32π]上都是减函数(k∈Z)在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数(k∈Z)在(kπ-2π,kπ+2π)内都是增函数(k∈Z)在(kπ,kπ+π)内都是减函数(k∈Z) 3.反三角函数的图像和性质:arcsinx arccosxarctanx arccotx名称反正弦函数反余弦函数反正切函数反余切函数定义y=sinx(x∈〔-2π,2π〕的反函数,叫做反正弦函数,记作x=arsinyy=cosx(x∈〔0,π〕)的反函数,叫做反余弦函数,记作x=arccosyy=tanx(x∈(-2π,2π)的反函数,叫做反正切函数,记作x=arctanyy=cotx(x∈(0,π))的反函数,叫做反余切函数,记作x=arccoty理解arcsinx表示属于[-2π,2π]且正弦值等于x的角arccosx表示属于[0,π],且余弦值等于x的角arctanx表示属于(-2π,2π),且正切值等于x的角arccotx表示属于(0,π)且余切值等于x的角性质定义域[-1,1][-1,1](-∞,+∞)(-∞,+∞)值域[-2π,2π][0,π](-2π,2π)(0,π)单调性在〔-1,1〕上是增函数在[-1,1]上是减函数在(-∞,+∞)上是增数在(-∞,+∞)上是减函数arcsin(-x)=-arcsinx arccos(-x)=π-arccosxarctan(-x)=-arctanx arccot(-x)=π-arccotxarcsinx+arccosx=arctanx+arccotx=π/2sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x当 x∈[-π/2, π/2] arcsin(sinx)=xx∈[0,π] arccos(cosx)=xx∈(-π/2, π/2) arctan(tanx)=xx∈(0, π) arccot(cotx)=x三角公式总表1.正弦定理:A a sin =B b sin =Cc sin = 2R (R 为三角形外接圆半径)2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bca cb A 2cos 222-+=⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=CB A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)4.同角关系:⑴商的关系:①θtg =θθcos sin =θθsec sin ⋅ ②θθθθθcsc cos sin cos ⋅==ctg ③θθθtg ⋅=cos sin ④θθθθcsc cos 1sec ⋅==tg ⑤θθθctg ⋅=sin cos ⑥θθθθsec sin 1csc ⋅==ctg⑵倒数关系:1sec cos csc sin =⋅=⋅=⋅θθθθθθctg tg⑶平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg⑷)sin(cos sin 22ϕθθθ++=+b a b a (其中辅助角ϕ与点(a,b )在同一象限,且abtg =ϕ)5.和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③βαβαβαtg tg tg tg tg ⋅±=± 1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±⑤γβγαβαγβαγβαγβαtg tg tg tg tg tg tg tg tg tg tg tg tg ⋅-⋅-⋅-⋅⋅-++=++1)( 其中当A+B+C=π时,有:i).tgC tgB tgA tgC tgB tgA ⋅⋅=++ ii).1222222=++Ctg B tg C tg A tg B tg A tg6.二倍角公式:(含万能公式)①θθθθθ212cos sin 22sin tg tg +==②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-=③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=7.半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sin θθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±= ④2cos 12cos 2θθ+= ⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin 2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg8.积化和差公式:①[])sin()sin(21cos sin βαβαβα-++=②[])sin()sin(21sin cos βαβαβα--+=③[])cos()cos(21cos cos βαβαβα-++= ④()[]βαβαβα--+-=cos )cos(21sin sin9.和差化积公式:①2cos2sin2sin sin βαβαβα-+=+②2sin2cos 2sin sin βαβαβα-+=-③2cos2cos2cos cos βαβαβα-+=+④2sin2sin 2cos cos βαβαβα-+-=-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一必修四三角公式总结及图像性质
一、角的概念的推广:
1、与α角终边相同的角的集合为
2、象限角:第一象限角 第二象限角 第三象限角 第四象限角
3、轴线角:终边在x 轴上 终边在y 轴上 终边在坐标轴上
二、角的度量:角度制、弧度制换算关系:
1弧度= ,弧度弧长公式 、扇形面积公式 ;
三、任意角的三角函数:在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y
,它与原点的距离为(0)r r ==
,那么
1、定义:(1)α的正弦: ;(2)α的余弦: ;(3)α的正切: ;
2、三角函数线:;;MP OM AT 正弦线:余弦线:正切线:
(Ⅲ)
我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。

四、同角三角函数的基本关系式:
1、平方关系:
2、商数关系: 五、诱导公式:1、符号口诀:全正、s 、t 、c 。

诱导公式:诱导公式
()概括地说,就是,,的三角函数值,等于的απαπαπαα+∈-±-22k k Z
同名函数值,前面加上一个把α看成锐角时原函数值的符号。

即2k παα±→或902
k αα±→
之间函数值关系()k Z ∈,其规律是“奇变偶不变,符号看象限” ;如sin(270)α-=
cos α-
终边相同的三角函数值
由三角函数的定义知:终边相同的角的同一三角函数值相同。

即:
()
()()s i n s i n cos cos tan tan αααααα
+=+=∈+=k k k Z)k o o o
·,
·,·360360360(2、第一类:函数名不变,符号看象限。

第二类:
函数名互变,符号看象限。

πk 2+α
π-α π+α 2π-α
2π-α 2π+α 23π

2

+α 一 二 三 四 一 二 三 四 3、特殊角的三角函数值:
角度 0° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360°
弧度 0 6π 4
π 3
π 2
π 3
2π 43π 6
5π π 2

π2 sin α 0 2
1 2
2 2
3 1 23 2
2 21 0 -1 0 cos α 1 2
3 22 21 0 -2
1 -2
2 -23
-1 0 1 tan α
33 1 3 无 -3 -1 -3
3 0

六、两角和与差的三角函数:1、正弦、余弦、正切公式公式:
()βαβαβαsin cos cos sin sin ⋅±=± ()βαβαβαsin sin cos cos cos ⋅=±
()β
αβ
αβαtan tan 1tan tan tan ±=
±
2、二倍角公式:αααcos sin 22sin = ααα2
2sin cos 2cos -=
ααα22sin 211cos 22cos -=-= αα
α2tan 1tan 22tan -=
()公式的变形应用。

如:,可变为32211222cos cos sin ααα=-=-
cos cos sin cos 22122122αααα
=
+=-,,后两式称为降幂公式。

3、半角公式:2cos 12sin αα-±= 2cos 12cos α
α+±=
α
α
α
cos 1cos 12tan
+-±
= αααααsin cos 1cos 1sin 2tan -=+=
4、辅助角公式:asinx+bcosx=)cos sin (22222
2x b
a b x b a a b a ++++ 令cos ϕ=
b
a
a
2
2
+,sin ϕ=
b
a
b
2
2
+,则原式=
22b a +(sinxcos ϕ+cosxsin ϕ)
=22b a +sin(x+ϕ),其中ϕ角所在象限由tan ϕ的符号决定,ϕ角的值由tan ϕ=
a b
决定. 八、函数()ϕω+=x A y sin ,(其中0>A ,0>ω),,正弦换余弦类似。

周期ω
π
2=T ; ϕ
ω+x 称为相位;0=x 时的相位ϕ称为初相.函数y=Atan(ϕω+x )(其中0>A ,0>ω)的周期T=
π。

x ∈R [-1,1] 2π
π
函数sin()y A x ωϕ=+的图像和性质以函数sin y x =为基础,通过图像变换来把握.如①sin y x
=−−−−→图例变化为②
sin()y A x ωϕ=+(A >0,ω>0)相应地,①的单调增区间
2,222k k ππππ⎡⎤-++⎢⎥⎣⎦
−−−→变为2222k x k πππωϕπ-+++≤≤的解集是②的增区间.注:⑴)sin(ϕω+=x y 或cos()y x ωϕ=+(0≠ω)的周期ω
π
2=T ;
⑵sin()y x ωϕ=+的对称轴方程是2
x k π
π=+
(Z k ∈),对称中心(,0)k π;
cos()y x ωϕ=+的对称轴方程是x k π=(Z k ∈),对称中心1(,0)2
k ππ+;
)tan(ϕω+=x y 的对称中心(
0,2
π
k ). 常用数据: 30456090
、、、的三角函数值sin15cos 75==
,4
2615cos 75sin +==
3275cot 15tan -== ,3215cot 75tan +==
注: ⑴以上公式务必要知道其推导思路,从而清晰地“看出”它们之间的联系,它们的变化形式.如tan()(1tan tan )tan tan αβαβαβ+-=+ 2
21cos 1cos cos
,sin 2
222
α
ααα
+-=
=等. 从而可做到:正用、逆用、变形用自如使用各公式.
⑵三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备.
⑶三角函数恒等变形的基本策略。

①常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ·cotx=tan45°等。

②项的分拆与角的配凑。

如分拆项:
222222sin 2cos (sin cos )cos 1cos x x x x x x +=++=+;配凑角(常用角变换):2()()ααβαβ=++-、
2()()βαβαβ=+--、
2
2
αβ
αβ
α+-=
+
、2
2
αβ
αβ
β+-=
-
、()ααββ=+-等.
③降次与升次。

即倍角公式降次与半角公式升次。

④化弦(切)法。

将三角函数利用同角三角函数基本关系化成弦(切)。

⑤引入辅助角。

asin θ+bcos θ=22b a +sin(θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=
a
b
确定。

相关文档
最新文档