2011-2012学年冬季学期《概率论与数理统计A》试卷-A参考答案
2011-2012-1概率统计试题(A)答案
(答案要注明各个要点的评分标准)一、填空题(每小题3分,共15分)1.1/4;2.0.4;3. 1/3;4. 2/3;5. 2/3。
二、选择题(每小题3分,共15分)1. D ;2. B ;3.A ;4.A ;5.C 。
三、计算下列各题(每小题12分,共24分)1.解:(1)A={第一次取到白球},B={第二次取到白球},则A A 和是样本空间的一个划分,且32(),()55P A P A ==,25(|),(|)66P B A P B A ==…………………2分 由全概率公式,有P(B)()(|)()(|)P A P B A P A P B A =+ ……………..………5分32258565615=⨯+⨯= ……………..………7分 (2) )()|()()()()|(B P A B P A P B P AB P B A P == …………..………10分 3283/56158=⨯= …………..………12分 2. (1)0()cos 12x f x dx A dx π∞-∞==⎰⎰,……..………2分 即02sin |212x A A π==得:12A =…………..………4分 (2)()()xF x f x dx -∞=⎰ …………..………6分00,01cos ,0221,x x x dx x x ππ<⎧⎪⎪=≤<⎨⎪≥⎪⎩⎰ …………..………10分 0,0sin ,021,x x x x ππ<⎧⎪⎪=≤<⎨⎪≥⎪⎩ …………..………12分四(共28分)1.(6分)解:1,2,X k = ,…………..………1分{1},{2}(1),P X p P X p p ====-…………..……4分X 的分布律为 1{}(1),1,2,k P X k p p k -==-= …………..……6分2.(8分)解:X 的概率密度为1,01()0,X x f x <<⎧=⎨⎩其他 …………..……2分 函数22ln ,0,y x y x '=-=-<单调减,且0y >,反函数221(),()2yy x h y e h y e --'===- …………..……4分 2ln Y X =-.的概率密度为:[()]|()|,0()0,0X Y f h y h y y f y y '>⎧=⎨≤⎩…………..……6分 21,020,0y e y y -⎧>⎪=⎨⎪≤⎩…………..……8分 3.(14分)解:(1)2012,01()(,)0,x X y dy x f x f x y dy ∞-∞⎧≤≤⎪==⎨⎪⎩⎰⎰其他…………2分34,010,x x ⎧≤≤=⎨⎩其他.............4分 1212,01()(,)0,y Y y dx y f y f x y dx ∞-∞⎧≤≤⎪==⎨⎪⎩⎰⎰其他 .............6分 212(1),010,y y y ⎧-≤≤=⎨⎩其他 ..........8分 (2)因为(,)()()X Y f x y f x f y ≠,所以X 与Y 不独立. ..............10分(3)1300()(,)12xE XY xyf x y dx xdx y dy ∞∞-∞-∞==⎰⎰⎰⎰..............12分 12= ..............14分 五、计算下列各题(每小题6分,共18分)1.解:因为10~(0,1)2X N -10)~(0,1)X N -.........1分所以{911}10)10)10)}P X P X ≤≤=-≤-≤-(21=Φ-Φ=Φ-........3分由题意,2(10.992Φ-≥,即(0.995(2.58)2Φ≥=Φ 所以得到2.582≥ .........5分 即26.63n ≥,样本容量n 至少应取27 。
湖北大学概率论与数理统计试卷A答案
2e
0,
2 x
,
x0
x0
(3 分)
(第 1 页 共 3 页)
湖北大学 2011——2012 学年度第一学期课程考试试题
参考答案及评分标准
2. 解:P=0.7×0.95+0.3×0.8=0.905. (5 分) 3. 解: (1) X 的边缘分布律为 X 0 P Y 的边缘分布律为 Y P (2) X+Y 的分布律为 X+Y 0 1 P (3) 0.1 0.4 0 0.4 2 0.3 1 2 0.2 0.4 3 0.1 4 0.1 2分 0.5
e y 0 e x 0
x0 , 其它
(2 分)
Y 的边缘分布密度函数为 f(y)=
y0 , 其它
(2 分)
因为 f(x, y)=f(x)f(y),所以 X 与 Y 相互独立. (4 分)
2. 证明:因为 E ( 1 )
E ( 2 ) E ( 3 ) ,
湖北大学 2011——2012 学年度第一学期课程考试试题
参考答案及评分标准
课程考试试题参考答案及评分标准
课程名称: 考试方式: 闭卷 概率论与数理统计 (开卷、 闭卷) 任课教师: ( A 卷) 高数研究室 10 计算机科学与 技术、 软件工程、 10 10 教育技术
学
院:
数学与计算机科学
专业年级:
故都是无偏估计量。 分) (5
(第 2 页 共 3 页)
湖北大学 2011——2012 学年度第一学期课程考试试题
参考答案及评分标准
又 D( 1 )
5 9
, D( 2 )
5 8
, D( 3 )
1 2
2011-2012学年第一学期期末《概率论与数理统计》A答案
上海第二工业大学 (试卷编号: )2011-2012学年第一学期《概率论与数理统计》期末试题A 答案一、填空题(每题3分,共15分)1.已知P(A) = 0.5 ,P(A - B) = 0.2,则P (B|A) = 0.6 。
2.四人独立答题,每人答对的概率为1/4 ,则至少一人答对的概率为 175 / 256 。
3.每次试验成功的概率为p ,进行重复试验,则第六次试验才取得第三次成功的概率为 。
4.2)()(Y )()(X =EX e ,且指数分布~;泊松分布~若随机变量λλπ,则DY =_____1 / 4 ____。
其它;的联合密度函数为,则独立,与,且,~;均匀分布,~若随机变量+∞<<∞<<-⎪⎩⎪⎨⎧=-y x e y x f Y X Y X N U y-110221),()()10(Y )()11-(X .522π二、选择题(每题3分,共15分)1.若事件A 与B 相互独立,互斥与B A ,以下必成立的为( D )1)B (P 1)A ()()()()()(0)()(0)()(=====或P D B P A P AB P C AB P B AB P A 2. 对于事件A 、B,以下等式正确的个数为( A ))()()(;)()()|();()()();()()(B P A P AB P A P B P A B P B P A P B A P B P A P B A P ==-=-+= (A) 0 (B )1 (C )2 (D )33. 10件产品中有2件次品,依次抽取,每次一件,A ={第三次才首次取到次品},记P(A) = p (有放回抽取);P(A) = q (无放回抽取),则有( C )。
(A )p > q (B )2p < q (C )3p > 2q (D ) 4p < 3q)(277)(139)(62)(44)()(n 195%)9(.4查表见最后页。
2011-2012(1)概率论与数理统计期终考试试卷A
上海应用技术学院2011—2012学年第一学期 《概率论与数理统计》期(末)(A )试卷课程代码: B2220073 学分: 3 考试时间: 100 分钟 课程序号: 112-7244、7246、7248、7249、7251、7254、7255、7257、7258等共9个教学班 班级: 学号: 姓名:我已阅读了有关的考试规定和纪律要求,愿意在考试中遵守《考场规则》,如有违反将愿接受相应的处理。
试卷共6页,请先查看试卷有无缺页,然后答题。
一、填空题(每题3分,共计18分)1、有321,,R R R 三个电子元件,用321,,A A A 分别表示事件“元件i R 正常工作”)3,2,1(=i ,试用321,,A A A 表示事件“至少有一个元件正常工作”:_______________。
2、连续型随机变量X 的分布函数为20,0,(),01,1, 1.x F x x x x ⎧<⎪=≤<⎨⎪≥⎩则(0.5 1.5)P X <<=_____。
3、设随机变量X 服从(3,7)F 分布,则随机变量1~Y X=____________。
4、设()28,10~N X ,()=<<200X P (用()Φ表示)。
5、已知随机变量,X Y ,有cov(,)5X Y =,设31U X =+,24V Y =-,则cov(,)U V =____。
6、设随机变量,X Y 相互独立~(5,0.5)X N ,~(2,0.6)Y N ,则()E XY =___________。
二、选择题(每题3分,共计18分)1、设S 表示样本空间,下述说法中正确的是( )(A )若A 为一事件,且()0P A =,则A =∅(B )若B 为一事件,且()1P B =,则B S = (C )若C S =,则()1P C =(D )若,A B 相互独立,则()()()P A B P A P B =+2、设随机变量X 与Y 均服从正态分布2~(,4)X N μ,2~(,5)Y N μ。
《概率论与数理统计》考试试题A(答案)
期末考试《概率论与数理统计》A 卷参考答案及评分标准一、判断题(你认为正确的请在括号内打√,错误的打×。
每小题2分,共10分)()1.设0}{==a X P ,则事件}{a X =为不可能事件. (×)2.设A 、B 为两事件,则)()()(B P A P B A P -=-.(√)3.设⎪⎩⎪⎨⎧<<=其它202)(x xx f , 则其一定是某连续型随机变量的概率密度.(√)4.设随机变量X ~N (1,4),则21-X ~N (0,1).(×)5.设3)(=X D ,1)(=Y D ,X 与Y 相互独立,则2)(=-Y X D . 二、填空题(请将正确答案填写在括号内。
每空3分,共30分)6红球的概率为( 271 )。
7.设事件B A ,相互独立,4.0)(,6.0)(==A P B A P ,则=)(B P ( 1 ).8.设B A ,为随机事件,且25.0)(,4.0)(,8.0)(===A B P B P A P ,则=)(B A P ( 0.5 ). 9.设随机变量X 服从参数为3的指数分布,则=+)13(X E ( 2 ),=+)13(X D ( 1 ). 10.若在3次独立重复试验中,事件A 至少发生1次的概率为2726,则事件A 在一次试验中发生的概率为(32 ).11. 设随机变量X 服从区间[0,5]上的均匀分布,则{}=≤3X P ( 0.6 ). 12.已知随机变量X ~)2,3(2N ,8413.0)1(0=Φ,6915.0)5.0(0=Φ,则=>}3{X P ( 0.5 ),=≤<}52{X P ( 0.5328 ).13. 设随机变量X 的概率分布为,}{NaK X P ==K=1,2, …,N ,则a =( 1 ). 三、选择题(每小题的四个选项中只有一个是正确的,请将其代码写在题后的括号内。
每小题3分,共18分) 14.设B A ,互为对立事件,且0)(,0)(>>B P A P ,则下列各式中错误..的是( B ). A .)(1)(B P A P -= B .)()()(B P A P AB P = C .1)(=AB P D .1)(=B A P15.以A 表示“甲种产品畅销,乙种产品滞销”,则其对立事件A ( D ) A .“甲种产品滞销,乙种产品畅销” B .“甲、乙两种产品滞销” C .“甲种产品滞销” D .“甲中产品滞销或乙种产品畅销”16.设连续型随机变量X 的概率密度为⎩⎨⎧<<=其他,00,)(rx x x ϕ,则常数=r ( C )A .0.5B .1C .2D .217.某人向同一目标独立重复射击,每次射击命中目标的概率为)10(<<p p ,则此人第4次射击后,恰好是第2次命中目标的概率为( A )A .22)1(3p p -B .2)1(3p p -C .22)1(6p p -D .2)1(6p p - 18.人的体重X ~)(x ϕ,b X D a XE ==)(,)(,10个人的平均体重记作Y ,则( B )成立.A .a Y E =)(,b Y D =)(B .a Y E =)(,b Y D 1.0)(=C .a Y E 10)(=,b YD =)( D .a YE =)(,b Y D 10)(=19.设随机变量X 服从泊松分布,且P(X =1)= P(X =2),则P(X =4)=( B ).A .232eB .232-e C .32 D .132-e四、计算题(每小题8分,共32分)20,1.0)(,7.0)(,5.0)(=-==B A P B P A P ,试求 (1))(B A P +;(2))(B A P .解 (1))(5.0)()()(1.0AB P AB P A P B A P -=-=-= (2分) 所以 4.0)(=AB P (3分) 8.0)()()()(=-+=+AB P B P A P B A P (5分)(2)2.0)(1)()(=+-=+=B A P B A P B A P (8分)21.设连续型随机变量X 的概率密度⎩⎨⎧<<=其他,010,)(x kx x aϕ)0,>a k (,已知75.0)(=X E ,求(1)a k ,;(2))(X D .解 (1)因为11)(1=+==⎰⎰∞+∞-a kdx kx dx x a ϕ (2分) 75.02)(10=+==⎰a kdx xkx X E a (4分) 解得 3,2==k a (5分)所以 ⎩⎨⎧<<=其他,010,3)(2x x x ϕ533)(10222=⋅=⎰dx x x X E (6分)所以0375.0803)75.0(6.0))(()()(222≈=-=-=X E X E X D (8分)22.保险公司认为人可以分为两类:第一类是易出事故的人,第二类是比较谨慎,不易出事故的人,统计资料表明,第一类人在一年内某一时刻出一次事故的概率为0.4,第二类人在一年内某一时刻出一次事故的概率为0.2,若第一类人占30%,问 (1)一个新客户在购买保险后一年内需要理赔的概率是多少?(2)如果该客户在购买保险后一年内出了一次事故,他是第一类人的概率是多少?解 设A 表示”该客户在购买保险后一年内出了一次事故”,B 表示”他是第一类人”,则3.0)(=B P ,7.0)(=B P ,4.0)(=B A P ,2.0)(=B A P (2分) (1)由全概率公式有26.0)()()()()(=+=B A P B P B A P B P A P . (5分) (2)由贝叶斯公式有46.026.012.0)()()()(===A PB A P B P A B P . (8分)23.已知电站供电网有10000盏电灯,夜晚每一盏灯开灯的概率都是0.6,而假定开、关时间彼此独立,试用切贝谢夫不等式估计夜晚同时开着的灯数在5800与6200之间的概率。
南华大学2011-2012学年概率论与数理统计试题及答案
第1页 共2页南华大学2011 –2012 学年度第1学期概率论与数理统计 课程试卷(A 卷)一.单项选择题(每小题3分,共15分)1.设事件A 和B 的概率为12(),()23P A P B == 则()P AB 可能为()(A) 0; (B) 1; (C) 0.6; (D) 1/62. 从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为()(A) 12; (B) 225; (C) 425; (D)以上都不对3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( )(A) 518; (B) 13; (C) 12; (D)以上都不对4.某一随机变量的分布函数为()3xxa be F x e+=+,(a=0,b=1)则F (0)的值为( ) (A) 0.1; (B) 0.5; (C) 0.25; (D)以上都不对5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为( )(A) 2.5; (B) 3.5; (C) 3.8; (D)以上都不对二.填空题(每小题3分,共15分)1.设A 、B 是相互独立的随机事件,P (A )=0.5, P (B )=0.7,则()P A B = .2.设随机变量~(,), ()3, () 1.2B n p E D ξξξ==,则n =______.3.随机变量ξ的期望为()5E ξ=,标准差为()2σξ=,则2()E ξ=_______.4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0.7和0.8.先由甲射击,若甲未射中再由乙射击。
设两人的射击是相互独立的,则目标被射中的概率为_________.5.设连续型随机变量ξ的概率分布密度为2()22af x x x =++,a 为常数,则P (ξ≥0)=_______.三、简答题(共 8 小题,共 70 分)1.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率 (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球.2.(本题10分) 设随机变量ξ的分布密度为, 03()10, x<0x>3Ax f x x⎧⎪=+⎨⎪⎩当≤≤当或 (1) 求常数A ; (2) 求P (ξ<1); (3) 求ξ的数学期望.3.(本题10分)(1) ξ与η是否相互独立? (2) 求ξη⋅的分布及()Eξη⋅;4.(本题10分)有10盒种子,其中1盒发芽率为90%,其他9盒为20%.随机选取其中1盒,从中取出1粒种子,该种子能发芽的概率为多少?若该种子能发芽,则它来自发芽率高的1盒的概率是多少?5.(本题12分) 某射手参加一种游戏,他有4次机会射击一个目标.每射击一次须付费10元. 若他射中目标,则得奖金100元,且游戏停止. 若4次都未射中目标,则游戏停止且他要付罚款100元. 若他每次击中目标的概率为0.3,求他在此游戏中的收益的期望.6.(本题12分)某工厂生产的零件废品率为5%,某人要采购一批零件,他希望以95%的概率保证其中有2000个合格品.问他至少应购买多少零件?(注:(1.28)0.90Φ=,(1.65)0.95Φ=)7.(本题6分)设事件A、B、C相互独立,试证明A B与C相互独立.某班有50名学生,其中17岁5人,18岁15人,19岁22人,20岁8人,则该班学生年龄的样本均值为________.8.测量某冶炼炉内的温度,重复测量5次,数据如下(单位:℃):1820,1834,1831,1816,1824假定重复测量所得温度2~(,)Nξμσ.估计10σ=,求总体温度真值μ的0.95的置信区间.(注:(1.96)0.975Φ=,(1.65)0.95Φ=)温馨提示:根据南华大学学生管理处罚条列,凡考试舞弊者均取消学位资格!第2页共2页。
2011-2012(1)概率统计试题(A)解答
概率论与数理统计参考解答与评分标准一.选择题(每小题3分,本大题满分15分)1.一射手向目标射击 3 次,i A 表示第i 次射击中击中目标这一事件(1,2,3)i =,则3次射击中至多2次击中目标的事件为( C ).(A) 123A A A ⋃⋃; (B) 123A A A ; (C) 123A A A ⋃⋃; (D) 123A A A . 2.袋中有10个乒乓球,其中7个黄的,3个白的,不放回地依次从袋中随机取一球. 则第一次和第二次都取到黄球的概率是( A ).(A) 7/15; (B) 49/100; (C) 7/10; (D) 21/50. 3.设随机变量X 的概率密度为,01,()0,a bx x f x +<≤⎧=⎨⎩其它. 且13{}28P X ≤=,则有( C ).(A) 0,2a b ==; (B) 1,0a b ==;(C) 1,12a b ==; (D) 11,22a b ==4.设连续型随机变量X 的概率密度为()f x ,则( C ). (A) 0()1f x ≤≤; (B) lim ()1x f x →+∞=;(C)()1f x dx +∞-∞=⎰; (D) {}()()P a X b f b f a <≤=-.5.设~(2,18)X N ,若Y =( B ),则~(0,1)Y N. (A)218X -; (C) 218X +; (D) 2X +.二.填空题(每小题3分,本大题满分15分)1.设,X Y 相互独立,且同服从于参数为λ的指数分布,max(,)Z X Y =,则Z 的分布函数为2(1)z e λ--.2.设X 服从参数为λ的泊松分布,则{}P X k ==!kek λλ- (0,1,k = ).3.袋中装有5只球,编号为1,2,3,4,5,在袋中同时取出3只,以X 表示取出3只球中的最大号码. 则X 的数学期望()E X = 4.5. 4.设()2E X =,()3E Y =,则(325)E X Y +-=7.5.每次试验中A 出现的概率为p ,在三次试验中A 出现至少一次的概率是2627, 则p =23.三.(本题满分15分)三台机器因故障要人看管的概率分别为0.1,0.2,0.15,求: (1)没有一台机器要看管的概率; (2)至少有一台机器不要看管的概率; (3)至多一台机器要看管的概率.解:以j A 表示“第j 台机器需要人看管”,1,2,3j =,则 1()0.1P A =,2()0.2P A =,3()0.15P A =. 由各台机器间的相互独立性可得(1) ()()()()123123P A A A P A P A P A =0.90.80.850.612=⨯⨯=...(5分)(2) ()()1231231P A A A P A A A ⋃⋃=- 10.10.20.150.997=-⨯⨯=...(10分)(3) ()123123123123P A A A A A A A A A A A A()()()()123123123123P A A A P A A A P A A A P A A A =+++ 0.10.80.850.90.20.850.90.80.150.90.80.85=⨯⨯+⨯⨯+⨯⨯+⨯⨯00680153010806120941=+++=..... ...(15分)四.(本题满分7分)甲袋中有n 只白球、m 只红球;乙袋中有N 只白球、M 只红球. 今从甲袋任取一球放入乙袋后,再从乙袋任取一球. 问此球为白球的概率是多少? 解:以W 甲表示“第一次从甲袋取出的为白球”,R 甲表示“第一次从甲袋取出的为红球”,W 乙表示“第二次从乙袋取出的为白球”, 则所求概率为()()()()P W P W W R W P W W P R W ==+ 乙甲乙甲乙甲乙甲乙()()()()P W P W W P R P W R =+甲乙甲甲乙甲 ...(4分)11111111111n N m N n m N M n m N M C C C C C C C C +++++++=⋅+⋅ ()()()11n N mN n m N M ++=+++ ...(7分)五.(本题满分8分)某工厂有甲、乙、丙三个车间生产同一种产品,已知甲、乙、丙三个车间的产量分别占总产量的25%,25%,50%,每个车间的次品率分别为5%,3%,2%. 现从全厂产品中任取一件产品,如果取到的为次品,问该次品来自甲车间的概率. 解:设123,,A A A 分别表示事件“取到的产品为甲、乙、丙车间生产的”,B 表示事件“取到的产品为次品”,则 123()25%,()25%,()50%P A P A P A ===123(|)5%,(|)3%,(|)2%P B A P B A P B A === ...(3分)由全概率公式31()()(|)i i i P B P A P B A ==∑25%5%25%3%50%2%=⨯+⨯+⨯ 3%= ...(6分)所求概率为111()(|)5(|)()12P A P B A P A B P B == ...(8分)六.(本题满分8分)设~(0,1)X N ,求2Y X =的概率密度.解:2(){}{}Y F y P Y y P X y =≤=≤, ...(2分) 当0y ≤时,()0Y F y =,()0Y f y =. ...(3分) 当0y >时,(){Y F y P X =≤≤22t dt -=⎰220t dt -= ...(6分)2()y Y f y -= ...(8分)Y的密度函数为2,0,()0,0.y y f y y -⎧>=≤⎩七.(本题满分10分)设随机变量X 的概率密度为1,01()20,x x f x ⎧+<<⎪=⎨⎪⎩其它 (1)求数学期望()E X ;(2)求方差()D X .解:(1) ()()E X xf x dx +∞-∞=⎰120()2x x dx =+⎰712= ...(4分)(2) 22()()E X x f x dx -∞+∞=⎰13201()2x x dx =+⎰512= ...(8分)22()()[()]D X E X E X =-11144=...(10分)八.(本题满分12分)已知X(1)求(2)求X 的数学期望;(3)设Y 与X 相互独立且同分布,求(,)X Y 的分布律. 解:(1) X 的分布函数(){}F x P X x =≤0,10.2,110.7,121,2x x x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩ ...(4分)(2) X 的数学期望()10.210.520.30.9E X =-⨯+⨯+⨯= ...(7分)(3) 由ij i j p p p ⋅⋅=⋅ ...(9分) 可得(,)X Y 的分布律为分)九.(本题满分10分)一船舶在某海区航行,已知每遭受一次波浪的冲击,纵摇角大于03的概率为13p =,若船舶遭受800次波浪冲击,问其中有240~300次纵摇角大于03的概率是多少?2t x -解:以X 表示在船舶遭受800次波浪冲击中,纵摇角大于03的次数,则~(,)X b n p ,其中1800,3n p == ...(2分) 由棣莫弗-拉普拉斯定理,Y =近似服从(0,1)N ...(4分)所求概率为{240300}P X ≤≤{2 2.5}P Y =-≤≤(2.5)(2)≈Φ-Φ- ...(7分) (2.5)(2)1=Φ+Φ-0.99380.97721=+-0.9710= ...(10分)。
2011《概率论与数理统计》A卷答案
¹
s
2 0
=
7.52 ;
第4页共5页
c2
=
(n -1)s2
s
2 0
=
24´9.52 7.52
= 38.51
在a
=
0.05
时,
c
2 0.025
(24)
=
28.24
<
c2
=
38.51 <
40.646
=
c
2 0.975
(24)
,
故在a = 0.05 时,接受 H0 认为新产品的强力的标准差无显著变化。
7. 在 Mendel 的豌豆试验问题中,豌豆被分成了四类:黄而圆的,青而圆的,黄而有角的, 青而有角的.按照 Mendel 的理论,这四类豌豆个数之比为 9 : 3 : 3 :1。一次实验中观察者
观察 n = 556 颗豌豆中四类的实际频数分别为 315, 108, 101, 32 ,请通过此数据检验
Mendel 的理论是否正确。(α = 0.05 ) 解:假设 Mendel 的理论是正确的,
则在被观察的 n = 556 颗豌豆中,属于这四类的“理论频数”分别为
556× 9 = 312.75, 556× 3 = 104.25, 556× 3 = 104.25, 556× 1 = 34.75 .
;(2)E( X
)
;(3)D( X
)
.
⎩
4
∫ ∫ 解 (1)
+∞
π
π
−∞
f (x)d x =1,
即
4 −π
Acos xdx =
Asin |−4π =
4
4
2A =1, A = 2 2
北交大2011-2012学年第二学期概率论与数理统计期末考试试卷(A卷)答案
北 京 交 通 大 学2011~2012学年第二学期概率论与数理统计期末考试试卷(A 卷)参 考 答 案一.(本题满分8分)在某个社区,60%的家庭拥有汽车,30%的家庭拥有房产,而20%的家庭既有汽车又有房产.现随机地选取一个家庭,求此家庭或者有汽车或者有房产但不是都有的概率. 解:设=A “任取一个家庭拥有汽车”,=B “任取一个家庭拥有房产”.由题设得 ()6.0=A P ,()3.0=B P ,()2.0=AB P .因此有 ()()()()4.02.06.0=-=-=-=AB P A P AB A P B A P ; ()()()()1.02.03.0=-=-=-=AB P B P AB B P B A P . 所求概率为()()()5.01.04.0=+=+=⋃B A P B A P B A B A P . 二.(本题满分8分)假设一个人在一年中患感冒的次数X 服从参数为4=λ的Poisson 分布.现有一种预防感冒的新药,它对于22%的人来讲,可将上面的参数λ降为1=λ(称为疗效显著);对37%的人来讲,可将上面的参数λ降为3=λ(称为疗效一般);而对于其余的人来讲则是无效的.现有一人服用此药一年,在这一年中,他患了2次感冒,求此药对他是“疗效显著”概率有多大? 解:设{}此药疗效显著=1A ,{}此药疗效一般=2A ,{}此药无效=3A,{}次感冒某人一年中患2=B . 由题设,可知如果事件1A 发生,则X 服从参数为1=λ的Poisson 分布;如果事件2A 发生,则X 服从参数为3=λ的Poisson 分布;如果事件3A 发生,则X 服从参数为4=λ的Poisson 分布.因此,由Bayes 公式,我们有()()()()()∑==31111k kkA BP A P A B P A P B A P2206.02441.02337.02122.02122.042321212=⨯+⨯+⨯⨯=----eeee .三.(本题满分8分)某人住家附近有一个公交车站,他每天上班时在该站等车的时间X (单位:分钟)服从41=λ的指数分布,如果他候车时间超过5分钟,他就改为步行上班.求他一周5天上班时间中至少有2天需要步行的概率. 解:X 的密度函数为()⎪⎩⎪⎨⎧≤>=-00414x x ex p xX .设=A “候车时间超过5分钟”,则()4554415-+∞-==≥=⎰edx eX P p x .设Y :一周5天中他需要步行上班的天数.则()p B Y ,5~,因此所求概率为()()()()41155005111112p p C p p C Y P Y P ----=≤-=≥4438.0151144545545=⎪⎪⎭⎫⎝⎛-⋅⋅-⎪⎪⎭⎫⎝⎛--=---e e e . 四.(本题满分8分)设随机变量X 的密度函数为()⎩⎨⎧≤≤+=其它5.002x xcx x f .⑴ 求常数c ;⑵ 求X 的分布函数()x F . 解:⑴ 由密度函数的性质()1=⎰+∞∞-dxx f ,得()()()()⎰⎰⎰⎰+∞∞-+∞∞-++==5.05.0001dxx f dx x f dx x f dxx f ()81242135.00235.002+=⎪⎭⎫ ⎝⎛+=+=⎰c x x c dx x cx ,解方程,得21=c .⑵ 当0≤x 时,()()0==⎰∞-xdtt f x F ;当5.00<<x 时,()()()()()27212320xx dt t tdt t f dt t f dtt f x F xx x+=+=+==⎰⎰⎰⎰∞-∞-;当5.0≥x 时,()()()()()15.05.00=++==⎰⎰⎰⎰∞-∞-xxdtt f dt t f dt t f dtt f x F .综上所述,随机变量X 的分布函数为()⎪⎩⎪⎨⎧≥<<+≤=5.015.0027023x x x x x x F . 五.(本题满分8分) 设n 个随机变量n X X X ,,,21 相互独立,都服从区间()1,0上的均匀分布,令()n X X X Y ,,,max 21 =,⑴ 求随机变量Y 的密度函数()x p Y ;⑵ 求数学期望()Y E . 解:⑴ 随机变量X 的密度函数为()⎩⎨⎧<<=其它101x x p X ,分布函数为()⎪⎩⎪⎨⎧≥<<≤=111000x x xx x F X . 随机变量Y 的密度函数为 ()()()()⎩⎨⎧<<==--其它01011x nx x p x F n x p n X n X Y .⑵ ()()111+=⋅==⎰⎰-+∞∞-n n dx nxx dx x xp Y E n Y .六.(本题满分8分)设二维随机变量()Y X ,的联合密度函数为()⎪⎩⎪⎨⎧≤<≤=其它10421,22y x y x y x p⑴ 求随机变量Y 的边际密度函数;(5分)⑵ 求条件密度函数()y x p YX .(3分) 解:当0≤y ,或者1≥y 时,()0=y p Y ; 当10<<y 时,()()⎰⎰⎰--+∞∞-===yyyyY dxx yydx x dx y x p y p 22421421,253022731221221y xy dx xyyy=⋅==⎰所以,随机变量Y 的边际密度函数为()⎪⎩⎪⎨⎧<<=其它102725y yy p Y .当10<<y 时,()02725>=y y p Y ,因此当10<<y 时,X 关于Y 的条件密度函数为()()()y p y x p y x p Y Y X ,=2322522327421-==yx y yx即当10<<y 时,条件密度函数为()⎪⎩⎪⎨⎧≤<≤=-其它10232232y x y x y x p Y X .七.(本题满分8分)设随机变量X 与Y 相互独立,而且都服从正态分布()2,σμN .再令bY aX U+=,bY aX V -=,其中a 与b 是不全为零的常数,求随机变量U 与V 的协方差()V U ,cov 与相关系数V U ,ρ.解:由于随机变量X 与Y 都服从正态分布()2,σμN ,所以()()μ==Y E X E ,()()2σ==Y D X D .()()()()()μμμb a b a Y bE X aE bY aX E U E +=⋅+⋅=+=+=; ()()()()()μμμb a b a Y bE X aE bY aX E V E -=⋅-⋅=-=-=. 再由于随机变量X 与Y 相互独立,故有()()()()()222222222σσσb a b a Y D b X D a bY aX D U D +=⋅+⋅=+=+=, ()()()()()222222222σσσb a b a Y D b X D a bY aX D V D +=⋅+⋅=+=-=, ()()bY aX bY aX V U -+=,cov ,cov ()()()()()2222222,c o v,c o v σb a Y D b X D a Y Y b X X a -=-=-=,所以,()()()2222,,cov ba b a VD UD VU V U +-==ρ.八.(本题满分8分)某药厂断言,该厂生产的某种药品对治愈一种疑难的血液病的治愈率为8.0.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言;否则就拒绝这一断言.试用中心极限定理计算,⑴ 如果实际上对这种疾病的治愈率确为8.0,问拒绝这一断言的概率是多少?⑵ 如果实际上对这种疾病的治愈率为7.0,问接受这一断言的概率是多少? (附,标准正态分布()1,0N 的分布函数()x Φ的某些数值:解:设X :100位服用此药品的病人中治愈此病的人数,则()p B X ,100~.⑴ 当8.0=p 时, ()()⎪⎭⎫⎝⎛⨯⨯⨯-≤⨯⨯⨯-=≤=2.08.01008.0100752.08.01008.010075X P XP P 拒绝断言()()1056.08944.0125.1125.125.12.08.01008.0100=-=Φ-=-Φ=⎪⎭⎫⎝⎛-≤⨯⨯⨯-=X P . ⑵ 当7.0=p 时, ()()⎪⎭⎫⎝⎛⨯⨯⨯-≤⨯⨯⨯--=>=3.07.01007.0100753.07.01007.0100175X P XP P 接受断言()1379.08621.0109.1109.13.07.01007.01001=-=Φ-≈⎪⎭⎫⎝⎛≤⨯⨯⨯--=X P . 九.(本题满分8分) 设总体()2,~σμN X ,()921,,,X X X是取自总体X 中的一个样本,令∑==61161i i X Y , ∑==97231i i X Y ,()∑=-=9722221i i Y X U.计算统计量()UY Y Z 212-=的分布(不需求出Z 的密度函数,只需指出Z 所服从的分布及其参数). 解:由题设可知,⎪⎪⎭⎫⎝⎛6,~21σμN Y ,⎪⎪⎭⎫⎝⎛3,~22σμN Y , 所以有 ⎪⎪⎭⎫⎝⎛-2,0~221σN Y Y .因此有()1,0~221N Y Y σ-.又由()∑=-=9722221i iY XU ,得()2~2222χσU.因此由t 分布的构造,得 ()()2~21222222121t UY Y UY Y Z ⋅-=-=σσ. 十.(本题满分8分)设总体X 服从参数为p 的几何分布,其分布律为{}1-==k pqk X P () ,3,2,1=k .其中10<<p 是未知参数,p q -=1.()n X X X ,,,21 是取自该总体中的一个样本.试求参数p 的极大似然估计量. 解:似然函数为 (){}{}{}{}n n n n x X P x X P x X P x X x X x X P p L ======== 22112211,,,()()()()nx nx x x nk k n p p p p p p p p ----∑-=--⋅-==1211111111所以,()()p n x p n p L n k k -⎪⎭⎫⎝⎛-+=∑=1ln ln ln 1.所以,()01ln 1=---=∑=pnxpn p L dpd nk k,解方程,得xp 1=.因此p 的极大似然估计量为Xp 1ˆ=.十一.(本题满分10分)⑴ 设总体X 等可能地取值1,2,3, ,N ,其中N 是未知的正整数.()n X X X ,,,21 是取自该总体中的一个样本.试求N 的极大似然估计量.(7分)⑵ 某单位的自行车棚内存放了N 辆自行车,其编号分别为1,2,3,…,N ,假定职工从车棚中取出自行车是等可能的.某人连续12天记录下他观察到的取走的第一辆自行车的编号为12, 203, 23, 7, 239, 45, 73, 189, 95, 112, 73, 159,试求在上述样本观测值下,N 的极大似然估计值.(3分) 解:⑴ 总体X 的分布列为 {}Nx X P 1==, ()N x ,,2,1 =.所以似然函数为 (){}nni i i Nx X P N L 11===∏=, ()()n i N x i ,,2,1,1 =≤≤.当N 越小时,似然函数()N L 越大;另一方面,N 还要满足:()n i N x i ,,2,1,1 =≤≤,即{}()n n x x x x N =≥,,,max 21 .所以,N 的最大似然估计量为()n X N =ˆ.⑵ 由上面的所求,可知N 的最大似然估计值为()239ˆ==n x N . 十二.(本题满分10分)三个朋友去喝咖啡,他们决定用如下的方式付账:每人各掷一枚均匀的硬币,如果某人掷出的结果与其余两人的不一样,则由该人付账;如果三人掷出的结果都一样,则重新掷下去,直到确定了由谁付账时为止.求:⑴ 抛掷硬币次数X 的数学期望;(5分)⑵ 进行了3次还没确定付账人的概率.(5分) 解:⑴ X 的取值为 ,3,2,1.并且()43411⋅⎪⎭⎫⎝⎛==-k k X P , () ,3,2,1=k .即随机变量X 服从参数43=p 的几何分布,因此()341==pX E .⑵ ()()015625.0641414313333==⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-=>=X P P 次还未确定付账人进行了.。
概率论与数理统计(A)卷参考答案
商学院课程考核试卷参考答案与评分标准 (A )卷课程名称: 概率论与数理统计 学 分: 4 考核班级: 本部二年级各本科专业 考核学期:一. 填空题(每小题3分,共30分)1.0.7;2.0.38;3.0,1,2,3;4.0.6915;5.2;6.0;7.⎩⎨⎧>>--=--其他00,0)1)(1(),(y x e e y x F y x ;8.23π; 9. 11)(-=∏θθni i nx ; 10.0.4。
二. 选择题(每小题3分,共15分)1.B ;2.D ;3.C ;4.A ;5.C 。
三. 计算题(第1题10分,其余5小题每题9分,共55分)1. 设321,,A A A 分别表示取到第一、二、三个箱子,B 表示取到白球, 则321,,A A A 是一个完备事件组,且:31)()()(321===A P A P A P , 52)|(53)|(51)|(321===A B P A B P A B P ,, 2分(1)由全概率公式:)|()()|()()|()(P(B)332211A B P A P A B P A P A B P A P ++=52523153315131=⨯+⨯+⨯= 6分(2)由贝叶斯公式:31)()|()()|(333==B P A B P A P B A P 10分2.(1)122)(222====⎰⎰∞+∞-λλλxxdx dx x f X ,21=λ; 3分 (2)21400()()02;12xX x F x f t dt xx x -∞<⎧⎪==≤<⎨⎪≥⎩⎰6分 (3) {}1313(3)(1)144P X F F <<=-=-=。
9分3. (1)该设备的平均寿命是41=λ年(设备寿命服从41=λ的指数分布) 2分(2)设Y 是工厂出售一台设备的赢利,则⎩⎨⎧≤->=12001100X X Y 4分)1(200)1(100)(≤->=X P X P Y E ⎰⎰-∞+--=104144120041100dx e dx e xx 8分64.3330020041=-=-e万元 9分4. (1)14),(==⎰⎰+∞∞-+∞∞-cdxdy y x f ,所以,4=c 3分 (2)324)(1012==⎰⎰ydy dx x X E ;324)(10210==⎰⎰dy y xdx Y E944)(10212==⎰⎰dy y dx x XY E 6分 (3)0)()()(),(=-=Y E X E XY E Y X Cov 9分5. 解:令第i 次轰炸命中目标的炸弹数为X i ,100次轰炸中命中目标炸弹数X =∑=1001i iX,应用定理5.5,X 渐近服从正态分布,期望值为200,方差为169,标准差为13. 2分所以P {180≤X ≤220}=P {|X -200|≤20} 4分=⎭⎬⎫⎩⎨⎧≤-132013200X P ≈2Φ(1.54)-1=0.8764. 9分 6.222)1(σχS n -=~2χ(n-1),对05.0=α, 2分查表知:535.17)8(,18.2)8(2025.02975.0==χχ 4分使得2σ置信度为0.95的置信区间为:22220.0250.975(1)(1),(8)(8)n S n S χχ⎛⎫-- ⎪⎝⎭ 计算可得:)8(82025.02χS =12.77,)8(82975.02χS =102.75;(12.77, 102.75)即为总体方差2σ置信度为0.95的置信区间. 9分。
2011-2012学年冬季学期《概率论与数理统计A》试卷-A参考答案
2) P( −1 < X < 2) = ∫ 2e
1
2
−2( x −1)
dx = F (2) − F ( −1) = 1 − e 。
( 2 分)
x − 1500 = 1.875 ∈ W , 200 / 25
(2 分)
结论:拒绝原假设,接受备选假设,即认为新工艺确实提高了产品的寿命。 (2 分)
⎧0, 3) FY ( y ) = ⎨ ⎩ P(ln X < y ),
上海大学 2011~2012 学年冬季学期试卷(A 卷) 绩 课程名: 概率论与数理统计 A 课程号: 学分: 5
6、已知随机事件 A 和 B 的概率分别为 P( A) = 0.7 和 P( B ) = 0.5 ,且这两个事件独立,那
么, P( B − A) = P( B ) − P( AB ) = 0.5 − 0.35 = 0.15 。 应试人声明: 我保证遵守《上海大学学生手册》中的《上海大学考场规则》 ,如有考试违纪、作 弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分。 7、设随机变量 X 服从区间 [0,1] 上的均匀分布,则随机变量 Y = e X 的数学期望 应试人 应试人学号 应试人所在院系 1 1 1 1 EY = ∫ e x dx = e − 1 ;方差 DY = ∫ e 2 x dx − ( EY ) 2 = (e 2 − 1) − (e − 1) 2 = (e − 1)(3 − e) 。 2 2 0 0 题号 一 二 三 四 五 得分 5 8、把 5 只球随机放入三个盒中,则每个盒子中至少有一球的概率为 1 − 得分 评卷人 一.是非题(每小题 2 分,5 题共 10 分) 9 、设 X 1 ,K, X 10 是来自总体 X ~ N ( μ , σ 2 ) 的简单样本,当常数 c = 1、 事件 A 与 B 互不相容, 若 A 不发生, 那么 B 一定发生。 2、 事件 A U B 表示事件 “ A 与 B 都没有发生” 。 ( 错)
概率论与数理统计试题-a_(含答案)
深圳大学期末考试试卷参考解答及评分标准一、选择题3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布 (D) 自由度为2的F 分布答:选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的χ2分布。
4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) (A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3) 答:选C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )=2-2=0, D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。
5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计答:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。
6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的数学期望E (X )的值为( ) (A) 2 (B) 3 (C) 3.5 (D) 4 答:选C ,因为在(a ,b )区间上的均匀分布的数学期望为(a +b )/2。
二、填空题(共6小题,每小题5分,满分30分。
把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (A B )= __________ 答:填0.18, 由乘法公式P (A B )=P (A )P (B |A )=0.6⨯0.3=0.18。
2011-2012《概率论》试卷答案
华南农业大学期末考试试卷(A 卷)2011-2012学年第 1 学期 考试科目: 概率论 考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一、 填空题(本大题共 8 小题,每小题 3 分,共 24 分) 1、一位运动员投篮四次,已知四次中至少投中一次的概率为0.9984,则该运动员投篮的命中率为________ 0.8_________ .2、若事件,,A B C 相互独立,且()0.25,()0.5,()0.4,P A P B P C ===,则()P A B C = _____0.775________________.3、设随机变量X 的分布函数0,0.4,()0.8,1,F x ⎧⎪⎪=⎨⎪⎪⎩ 111133x x x x <--≤<≤<≥,则{13}P X ≤≤=__0.6__. 4、袋中有50个乒乓球,其中20个是黄球,30个是白球.今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取到黄球的概率是______0.4______. 5、设随机变量X 服从参数为λ的泊松分布,且已知[(1)(2)]1E X X --=,则参数λ=____1__________.6、若随机变量ξ在[0,5]上服从均匀分布,则方程210X X ξ++=有实根的概率为_3/5___.7、已知()0.5,(\)0.3,P B P A B ==则()P AB =________0.2__________.8、设随机变量X 的密度函数23,02()80,x x f x ⎧<<⎪=⎨⎪⎩其他,则21E X ⎛⎫= ⎪⎝⎭____3/4____.二、选择题(本大题共 5 小题,每小题 3 分,共 15 分)1、对于事件,A B ,不正确的命题是( D ) (A) 若,A B 相容,则,A B 也相容 (B) 若,A B 独立,则,A B 也独立 (C) 若,A B 对立,则,A B 也对立 (D) 若,A B 对立,则,A B 独立2、下列函数可以作为某随机变量的密度函数的为:( B )(A) sin ,[0,]()0,x x f x π∈⎧=⎨⎩其他 (B) 1,0()00,0xe xf x x θθθ-⎧≥⎪=>⎨⎪<⎩()(C) 22()2,0()0,0x x f x x μσ--⎧≥=<⎩(D) ⎪⎩⎪⎨⎧<=其他,02,21)(x x f3、设随机变量2(,)X N μσ ,则随着σ的增大,概率(||)P X μσ-<( C ) (A) 单调增大 (B) 单调减少 (C) 保持不变 (D) 增减不定4、已知1,(1,2,)!kPX k c k k λ-=== ()为随机变量X 的概率分布列,其中0λ>为常数,则c =( D ).(A) e λ- (B) e λ (C) 1e λ-- (D) 1e λ-5、已知随机变量X 的分布函数为30,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩,则()E X =( A )(A) 1303x dx ⎰ (B)1401x dx xdx +∞+⎰⎰(C) 123x dx ⎰(D)40x dx +∞⎰三、解答题(本大题共 6 小题,共 61 分)1、测量某一目标的距离,测量误差X (cm)服从正态分布250,100N (),求:(1)测量误差的绝对值不超过150cm 的概率;(5分) (2)测得的距离不少于真实距离的概率.(5分) (已知(0.5)=0.6915(1)=0.8412(2)0.9772ΦΦΦ=;;)解:(1)由题设可得:1505015050{150}{150150}()()100100(1)(2)10.84120.977210.8184P X P X ---<=-<<=Φ-Φ=Φ+Φ-=+-=…………5分(2)由题设可得:50{0}1{0}1()(0.5)0.6915100P X P X ≥=-<=-Φ-=Φ=.…5分 2、已知玻璃杯成箱出售,每箱20只,假设各箱含0、1、2只残次品的概率分别为0.8、0.1、0.1. 一顾客欲购一箱玻璃杯,在购买时,售货员随意取一箱,顾客开箱随机地察看四只,若无残次品,则买下该箱玻璃杯,否则退回. 求:(1)顾客买下该箱的概率α?(2)在顾客买下一箱中,确实没有残次品的概率β?(10分)解:设B={顾客买下该箱玻璃杯},012A A A 、、分别表示该箱中含有0、1、2件残次品,则由题可知 …………………………………………………………1分012()0.8;()0.1,()0.1.P A P A P A ===4200420(|)1;C P B A C ==41914204(|);5C P B A C ==418042012(|).19C P B A C == ……………4分(1) 由全概率公式有001122()()(|)()(|)()(|)4124480.810.10.10.94.519475P B P A P B A P A P B A P A P B A α==++=⨯+⨯+⨯=≈ …………7分(2) 由贝叶斯公式有 000()(|)0.8(|)0.85.()0.94P A P B A P A B P B β==== …………………10分3、设随机变量X 服从标准正态分布,求2Y X =的概率密度函数().Y f y (10分) 解:22(0,1),(),.x X N x x ϕ-=-∞<<∞ Y 的分布函数为 2()()()Y F y P Y y P X y =≤=≤ ……………………3分当0y ≤时,()()0Y F y P Y y =≤=,从而()0.Y f y = ……………………5分 当0y >时,2()(){(((Y F y P X y P X P X P X =≤=≤≤=≤-≤=Φ-Φ ………………7分从而2()()(((Y Y y f y F y ϕϕϕϕ-'''==Φ-Φ=-=+=……………9分所以20()0,0yY y f y y -⎧≥=<⎩……………………………………………10分 4、设一只昆虫所生的虫卵数X 服从参数为λ的泊松分布,而每个虫卵发育为幼虫的概率为p ,且各个虫卵是否发育为幼虫相互独立,试求一只昆虫所生的幼虫数Y 的数学期望和方差.(6分) 解:由题可知(),0,1,2,!n e P X n n n λλ-===(|)(1),0,1,2,,.k k n k n P Y k X n C p p k n -===-= ……1分由全概率公式,得0()()(|).n P Y k P X n P Y k X n ∞======∑…………2分因为当n k <时,()(|)0,P X n P Y k X n ====所以(1)()()(|)!(1)!!()!()[(1)]!()!()!(),0,1,2,!n k n k n k n kk n k n kk p k p P Y k P X n P Y k X n e n p p n k n k p e p k n k p e ek p e k k λλλλλλλλλλ∞=-∞-=--∞=---======---=-===∑∑∑………………4分即,一只昆虫所生的幼虫数Y 服从参数为p λ的泊松分布,故(),().E Y p D Y p λλ==…………………………………………6分5、设X 与Y 的联合概率密度函数为(2)e ,0,0,(,)0,x y A x y f x y -+⎧>>=⎨⎩其它.求:(1)常数A ;(2分) (2)分布函数(,)F x y ;(3分) (3){}P X Y <;(5分) (4)判断X 与Y 是否独立.(5分) 解 (1) 由(2)01d (,)d d e d x y x f x y y x A y +∞+∞+∞+∞-+-∞-∞==⎰⎰⎰⎰20e d e d 2xy AAx y +∞+∞--==⎰⎰. 得2A =. …………………………………………………………………………2分(2) (,)d (,)d xy F x y x f x y y -∞-∞=⎰⎰2002e d e d ,0,0,0,x yx y x y x y --⎧>>⎪=⎨⎪⎩⎰⎰其它.2(1e )(1e ),0,0,0,x y x y --⎧-->>=⎨⎩其它.………………………………5分图1 图2(3)如图1所示,{(,)|0}G x y x y =<<,故{}{}(,)(,)d d GP X Y P X Y G f x y x y <=∈=⎰⎰220230d 2e ed 2e (1e )d 2ed 2e d 211.33yx yy y yy y x yy y+∞+∞----+∞+∞--==-=-=-=⎰⎰⎰⎰⎰……………………10分(4) X 与Y 的边沿密度分别为(2)02,0,0()()0,00,0x y x X edy x e x f x f x y dy x x +∞-+-+∞-∞⎧⎧>>⎪===⎨⎨≤⎩⎪≤⎩⎰⎰,(2)202,02,0()()0,00,0x y y Y edx y e y f y f x y dx y y +∞-+-+∞-∞⎧⎧>>⎪===⎨⎨≤⎩⎪≤⎩⎰⎰,显然, (,)()()X Y f x y f x f y =成立,故X 与Y 独立. ……………………15分 6、计算器在进行加法时,将每个加数舍入最靠近它的整数,设所有舍入误差相互独立且在(0.5,0.5)-上服从均匀分布,问:(1)将1500个数相加,问误差总和的绝对值超过15的概率是多少?(5分) (2)最多可有几个数相加使得误差总和的绝对值小于10的概率不小于0.90?(5分)(已知0.9099,(1.645)0.95Φ=Φ=) 解: 假设i X 表示每i 次计算时,所得到的误差,则~(0.5,0.5)i X U -,1,2,,1500i = ,……………………1分15001i i X X ==∑表示1500个数相加,所得到误差总和,则15000,12512EX DX ===,根据中心极限定理, X 近似服从标准正态分布.………………3分 (1){}{}1511515222(10.9099)0.1802.P X P X >=--<<≈-Φ=-=……………………5分(2)假设最多可有n 个数相加使得误差总和的绝对值小于10的概率不小于0.90,则1100.90n i i P X =⎧⎫<>⇒⎨⎬⎩⎭∑11010nin i i XP X P =⎧⎫⎪⎪⎧⎫-<<=<<⎨⎬⎩⎭⎪⎪⎩⎭∑∑210.9=Φ->……………………………………9分解得443n =.…………………………………………………10分。
完整word版,北交大2011-2012学年第二学期概率论与数理统计期末考试试卷(A卷)答案
北 京 交 通 大 学2011~2012学年第二学期概率论与数理统计期末考试试卷(A 卷)参 考 答 案一.(本题满分8分)在某个社区,60%的家庭拥有汽车,30%的家庭拥有房产,而20%的家庭既有汽车又有房产.现随机地选取一个家庭,求此家庭或者有汽车或者有房产但不是都有的概率. 解:设=A “任取一个家庭拥有汽车”,=B “任取一个家庭拥有房产”.由题设得 ()6.0=A P ,()3.0=B P ,()2.0=AB P .因此有 ()()()()4.02.06.0=-=-=-=AB P A P AB A P B A P ; ()()()()1.02.03.0=-=-=-=AB P B P AB B P B A P . 所求概率为()()()5.01.04.0=+=+=⋃B A P B A P B A B A P . 二.(本题满分8分)假设一个人在一年中患感冒的次数X 服从参数为4=λ的Poisson 分布.现有一种预防感冒的新药,它对于22%的人来讲,可将上面的参数λ降为1=λ(称为疗效显著);对37%的人来讲,可将上面的参数λ降为3=λ(称为疗效一般);而对于其余的人来讲则是无效的.现有一人服用此药一年,在这一年中,他患了2次感冒,求此药对他是“疗效显著”概率有多大? 解:设{}此药疗效显著=1A ,{}此药疗效一般=2A ,{}此药无效=3A , {}次感冒某人一年中患2=B .由题设,可知如果事件1A 发生,则X 服从参数为1=λ的Poisson 分布;如果事件2A 发生,则X 服从参数为3=λ的Poisson 分布;如果事件3A 发生,则X 服从参数为4=λ的Poisson 分布.因此,由Bayes 公式,我们有 ()()()()()∑==31111k kkA BP A P A B P A P B A P2206.02441.02337.02122.02122.042321212=⨯+⨯+⨯⨯=----ee e e. 三.(本题满分8分)某人住家附近有一个公交车站,他每天上班时在该站等车的时间X (单位:分钟)服从41=λ的指数分布,如果他候车时间超过5分钟,他就改为步行上班.求他一周5天上班时间中至少有2天需要步行的概率. 解:X 的密度函数为()⎪⎩⎪⎨⎧≤>=-00414x x ex p xX . 设=A “候车时间超过5分钟”,则()4554415-+∞-==≥=⎰e dx e X P p x.设Y :一周5天中他需要步行上班的天数.则()p B Y ,5~,因此所求概率为()()()()41155005111112p p C p p C Y P Y P ----=≤-=≥4438.0151144545545=⎪⎪⎭⎫ ⎝⎛-⋅⋅-⎪⎪⎭⎫ ⎝⎛--=---e e e . 四.(本题满分8分)设随机变量X 的密度函数为()⎩⎨⎧≤≤+=其它05.002x x cx x f .⑴ 求常数c ;⑵ 求X 的分布函数()x F .解:⑴ 由密度函数的性质()1=⎰+∞∞-dx x f ,得()()()()⎰⎰⎰⎰+∞∞-+∞∞-++==5.05.001dx x f dx x f dx x f dx x f ()81242135.00235.002+=⎪⎭⎫ ⎝⎛+=+=⎰c x x cdx x cx ,解方程,得21=c . ⑵ 当0≤x 时,()()0==⎰∞-xdt t f x F ;当5.00<<x 时,()()()()()27212320x x dt t t dt t f dt t f dt t f x F xx x +=+=+==⎰⎰⎰⎰∞-∞-;当5.0≥x 时,()()()()()15.05.00=++==⎰⎰⎰⎰∞-∞-xxdt t f dt t f dt t f dt t f x F .综上所述,随机变量X 的分布函数为()⎪⎩⎪⎨⎧≥<<+≤=5.015.0027023x x x x x x F . 五.(本题满分8分) 设n 个随机变量n X X X ,,,21Λ相互独立,都服从区间()1,0上的均匀分布,令()n X X X Y ,,,m ax 21Λ=,⑴ 求随机变量Y 的密度函数()x p Y ;⑵ 求数学期望()Y E . 解:⑴ 随机变量X 的密度函数为()⎩⎨⎧<<=其它0101x x p X ,分布函数为()⎪⎩⎪⎨⎧≥<<≤=111000x x x x x F X .随机变量Y 的密度函数为 ()()()()⎩⎨⎧<<==--其它01011x nx x p x F n x p n X n X Y .⑵ ()()111+=⋅==⎰⎰-+∞∞-n ndx nx x dx x xp Y E n Y . 六.(本题满分8分)设二维随机变量()Y X ,的联合密度函数为()⎪⎩⎪⎨⎧≤<≤=其它010421,22y x y x y x p⑴ 求随机变量Y 的边际密度函数;(5分)⑵ 求条件密度函数()y x p Y X .(3分) 解:当0≤y ,或者1≥y 时,()0=y p Y ; 当10<<y 时, ()()⎰⎰⎰--+∞∞-===yyyyY dx x y ydx x dx y x p y p 22421421,2503022731221221y x y dx x y yy=⋅==⎰ 所以,随机变量Y 的边际密度函数为()⎪⎩⎪⎨⎧<<=其它102725y yy p Y . 当10<<y 时,()02725>=y y p Y ,因此当10<<y 时,X 关于Y 的条件密度函数为()()()y p y x p y x p Y Y X ,=2322522327421-==y x y y x即当10<<y 时,条件密度函数为()⎪⎩⎪⎨⎧≤<≤=-其它10232232y x y x y x p Y X .七.(本题满分8分)设随机变量X 与Y 相互独立,而且都服从正态分布()2,σμN .再令bY aX U +=,bY aX V -=,其中a 与b 是不全为零的常数,求随机变量U 与V 的协方差()V U ,cov 与相关系数V U ,ρ. 解:由于随机变量X 与Y 都服从正态分布()2,σμN ,所以()()μ==Y E X E ,()()2σ==Y D X D .()()()()()μμμb a b a Y bE X aE bY aX E U E +=⋅+⋅=+=+=; ()()()()()μμμb a b a Y bE X aE bY aX E V E -=⋅-⋅=-=-=. 再由于随机变量X 与Y 相互独立,故有()()()()()222222222σσσb a b a Y D b X D a bY aX D U D +=⋅+⋅=+=+=, ()()()()()222222222σσσb a b a Y D b X D a bY aX D V D +=⋅+⋅=+=-=, ()()bY aX bY aX V U -+=,cov ,cov ()()()()()2222222,cov ,cov σb a Y D b X D a Y Y b X X a -=-=-=,所以,()()()2222,,cov ba b a V D U D V U VU +-==ρ. 八.(本题满分8分)某药厂断言,该厂生产的某种药品对治愈一种疑难的血液病的治愈率为8.0.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言;否则就拒绝这一断言.试用中心极限定理计算,⑴ 如果实际上对这种疾病的治愈率确为8.0,问拒绝这一断言的概率是多少?⑵ 如果实际上对这种疾病的治愈率为7.0,问接受这一断言的概率是多少? (附,标准正态分布()1,0N 的分布函数()x Φ的某些数值:解:设X :100位服用此药品的病人中治愈此病的人数,则()p B X ,100~.⑴ 当8.0=p 时,()()⎪⎭⎫ ⎝⎛⨯⨯⨯-≤⨯⨯⨯-=≤=2.08.01008.0100752.08.01008.010075X P X P P 拒绝断言()()1056.08944.0125.1125.125.12.08.01008.0100=-=Φ-=-Φ=⎪⎭⎫⎝⎛-≤⨯⨯⨯-=X P .⑵ 当7.0=p 时,()()⎪⎭⎫ ⎝⎛⨯⨯⨯-≤⨯⨯⨯--=>=3.07.01007.0100753.07.01007.0100175X P X P P 接受断言()1379.08621.0109.1109.13.07.01007.01001=-=Φ-≈⎪⎭⎫⎝⎛≤⨯⨯⨯--=X P .九.(本题满分8分) 设总体()2,~σμN X ,()921,,,X X X Λ是取自总体X 中的一个样本,令∑==61161i i X Y , ∑==97231i i X Y ,()∑=-=9722221i i Y X U .计算统计量()U Y Y Z 212-=的分布(不需求出Z 的密度函数,只需指出Z 所服从的分布及其参数). 解:由题设可知,⎪⎪⎭⎫ ⎝⎛6,~21σμN Y ,⎪⎪⎭⎫⎝⎛3,~22σμN Y ,所以有 ⎪⎪⎭⎫⎝⎛-2,0~221σN Y Y .因此有()1,0~221N Y Y σ-. 又由()∑=-=9722221i i Y X U ,得()2~2222χσU .因此由t 分布的构造,得 ()()2~21222222121t UY Y UY Y Z ⋅-=-=σσ.十.(本题满分8分)设总体X 服从参数为p 的几何分布,其分布律为{}1-==k pq k X P ()Λ,3,2,1=k .其中10<<p 是未知参数,p q -=1.()n X X X ,,,21Λ是取自该总体中的一个样本.试求参数p 的极大似然估计量. 解:似然函数为 (){}{}{}{}n n n n x X P x X P x X P x X x X x X P p L ========ΛΛ22112211,,,()()()()n x nx x x nk k n p p p p p p p p ----∑-=--⋅-==1211111111Λ 所以,()()p n x p n p L n k k -⎪⎭⎫⎝⎛-+=∑=1ln ln ln 1.所以,()01ln 1=---=∑=p nx p n p L dp d nk k ,解方程,得xp 1=. 因此p 的极大似然估计量为Xp1ˆ=. 十一.(本题满分10分)⑴ 设总体X 等可能地取值1,2,3,Λ,N ,其中N 是未知的正整数.()n X X X ,,,21Λ是取自该总体中的一个样本.试求N 的极大似然估计量.(7分)⑵ 某单位的自行车棚内存放了N 辆自行车,其编号分别为1,2,3,…,N ,假定职工从车棚中取出自行车是等可能的.某人连续12天记录下他观察到的取走的第一辆自行车的编号为12, 203, 23, 7, 239, 45, 73, 189, 95, 112, 73, 159,试求在上述样本观测值下,N 的极大似然估计值.(3分) 解:⑴ 总体X 的分布列为 {}Nx X P 1==, ()N x ,,2,1Λ=. 所以似然函数为 (){}nni i i N x X P N L 11===∏=, ()()n i N x i ,,2,1,1Λ=≤≤.当N 越小时,似然函数()N L 越大;另一方面,N 还要满足:()n i N x i ,,2,1,1Λ=≤≤,即{}()n n x x x x N =≥,,,max 21Λ.所以,N 的最大似然估计量为()n X N =ˆ. ⑵ 由上面的所求,可知N 的最大似然估计值为()239ˆ==n x N . 十二.(本题满分10分)三个朋友去喝咖啡,他们决定用如下的方式付账:每人各掷一枚均匀的硬币,如果某人掷出的结果与其余两人的不一样,则由该人付账;如果三人掷出的结果都一样,则重新掷下去,直到确定了由谁付账时为止.求:⑴ 抛掷硬币次数X 的数学期望;(5分)⑵ 进行了3次还没确定付账人的概率.(5分) 解:⑴ X 的取值为Λ,3,2,1.并且()43411⋅⎪⎭⎫⎝⎛==-k k X P , ()Λ,3,2,1=k . 即随机变量X 服从参数43=p 的几何分布,因此()341==p X E .⑵ ()()015625.0641414313333==⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-=>=X P P 次还未确定付账人进行了.。
2012级概率论和数理统计试卷(A)
海南大学2012-2013学年第二学期试卷科目:《概率论与数理统计》试题(A 卷)考试说明:本课程为闭卷考试,答案一律答在后面的答题纸上,答在其它地方无效,可携带 计算器 。
一、选择题(每题3分,共15分,选择正确答案的编号,将答案写在答题纸上)1、设,,A B C 为三个事件,则,,A B C 中不多于一个发生可表示为(a ) (A) AB BC AC ; (B )A B C ; (C )AB BC AC ; (D )A B C .2、设A 与B 是两个事件,则下列关系正确的是( b ).(A )()A B B A -=; (B )()AB A B A +-=; (C )()A B B A -=; (D )()ABA B A -=. 3、设随机变量~(0,1)X N ,~(2,1)Y N ,且X 与Y 相互独立,则21Z X Y =++服从(d )(A) ~(2,5)Y N ; (B )~(3,4)Y N ; (C )~(2,4)Y N ; (D )~(3,5)Y N .4、设~(),X t n 则2X 服从( 略 )分布(A) 2()n χ; (B )(1,)F n ; (C )(,1)F n ; (D )(1,1)F n -. 5、设随机变量X 与Y 相互独立,则下列结论不正确的是 ( d )(A) (,)0Cov X Y =; (B )X 与Y 不相关;(C )()()()D X Y D X D Y -=+; (D ()()()D XY D X D Y =.二、填空题(每题3分,共15分,将答案写在答题纸上)1、设,A B 是两事件,()0.2P A =,若B A ⊃,则()P A B =0.8 .2、袋中有3个白球,6个黑球,它们除颜色不同外,其他没有差别,每次从中任取一个,则第7次取到白球的概率为__1/3___.3、假设2~(1)X χ,~(2,9)Y N ,且X 与Y 相互独立,则()D X Y +=_10_____.4、设随机变量~(10,0.4)X B ,则根据切比雪夫不等式有{}()2P X E X -≥≤__0.1____.5、设~(0,3)X N ,~(0,6)Y U ,0.5XY ρ=,则(2)D X Y -=12______.三、计算题(每题10分,共70分,将答案写在答题纸上)(注意:答题时要列出详细运算步骤并计算出中间运算数值和最终计算结果)1、一道选择题有4个答案,其中仅有1个正确,假设一名学生知道正确答案的概率为14. (1)求该学生答对的概率;1/4(2)若已知该学生答对了,求他确实知道答案的概率.知啊到答案事件设为A 不知道答案事件设为B 玩呗时间组 设学生答对的事件为C 1/42、某射手有3发子弹,射一次命中的概率为13,如果命中了就停止射击,否则一直射到子弹用尽. 设X 表示耗用的子弹数.试求:(1)X 的分布律; (2)分布函数()F x ; (3)至少需要耗用2发子弹的概率.3、设连续型随机变量X 的概率密度为,01()2,120,Ax x f x x x ≤<⎧⎪=-≤<⎨⎪⎩其他试求:(1)系数A ;(2)分布函数()F x ;(3){0.4 1.2}P X <<.4、设二维随机变量(,)X Y 的密度函数为8,01(,)0,xy x y f x y ≤≤≤⎧=⎨⎩其他 (1)求X 和Y 的边缘密度;(2)判断X 和Y 是否独立,并说明理由.5、已知二元离散型随机变量(,)X Y 的联合概率分布如下表所示:试求()E X ,()E Y ,()D X ,()D Y ,及X 与Y 的相关系数XY ρ.6、 设总体X 服从参数为λ泊松分布,即{}!x P Xx e x λλ-==,0,1,2,.x =12,,,n X X X 是X的样本,求λ的矩估计量和极大似然估计量.7、设某次考试的学生成绩2~(,)X N μσ,其中已知10σ=分. 现从中随机抽取25名学生的成绩,得其平均成绩为72分. 问在显著性水平0.05α=下,是否可以认为此次考试中考生的平均成绩为75分?(注:计算中可能用到0.0251.96u=)。
云南师范大学《概率论与数理统计》期末试卷 A卷及答案
云南师范大学2011-2012学年(下)学期期末考试概率论与数理统计 试卷学院 专业 年级 学号 姓名考试方式:闭卷 考试时量:120分钟 试卷编号:A题号 一 二 三 总分 评卷人得分 评卷人一、 填空题(每空3分,共30分)1. 写出如下试验的样本空间:将一枚硬币抛掷三次,观察正面H 、反面T 出现的情况______________________________________2. 设A 、B 、C 为三个事件,试用A 、B 、C 的运算关系表示下列各事件 (1) A 发生,B 与C 不发生: ___________________________________(2) ABC 中至少有两个发生:__________________________________3. 设随机变量X 的分布律为则(25)_____P X ≤≤=,(3)_____P X ≠=。
4.设随机变量,则X ~N (30,0.052),X 落在[29.95,30.05] 内的概率为_____________。
5. 设随机变量2~(2,)X N σ且{}240.3P X <<=,则{}0P X <=。
6.设来自总体X 的一个容量为n 的样本观察值为x 1、x 2、x 3…x n ,则样本均值 =____________________ ,样本方差 = _____________________。
7. 在区间估计的理论中,当样本容量给定时,置信度与置信区间长度的关系 是__________________________________。
X 0 1 2 3 4 5 P 0.1 0.13 0.3 0.17 0.25 0.05得分 评卷人二、选择题( 每小题3分,共18分)1. 已知随机变量X 的密度函数f(x)=x x Ae ,x 0,λλ-≥⎧⎨<⎩(λ>0,A 为常数),则概率P{X<+a λλ<}(a>0)的值 ( )A 与a 无关,随λ的增大而增大B 与a 无关,随λ的增大而减小C 与λ无关,随a 的增大而增大D 与λ无关,随a 的增大而减小2. 设X ~2(,)N μσ,那么当σ增大时,{}P X μσ-<= ( ) A. 不变 B. 增大 C. 减少 D. 增减不定3.设总体X 服从0-1分布,X 1,X 2,X 3 ,X 4,X 5,X 6 是来自总体X 的样本,X 是样本均值,则下列各选项中的量不是统计量的是 ( ) A. min (X 1,X 2,X 3 ,X 4,X 5,X 6) B . max (X 1,X 2,X 3 ,X 4,X 5,X 6) C. X 1− (1− p )X ;D. X 6 − 8X4.检验的显著性水平是 ( ) A .第一类错误概率; B .第一类错误概率的上界; C .第二类错误概率; D .第二类错误概率的上界;5.在对单个正态总体均值的假设检验中,当总体方差已知时,选用 ( ) A. t 检验法 B. Z 检验法 C. F 检验法 D. 2χ检验法6. 对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受00:H μμ=,那么在显著水平0.01下,下列结论中正确的是 ( )A 必须接受0HB 可能接受,也可能拒绝0HC 必拒绝0HD 不接受,也不拒绝0H得分 评卷人三、 计算题( 共52分)1. (请写清解题步骤,10分)设随机X ~N (0,4),Y ~U (0,2),Z ~B (8,0.5),且X ,Y ,Z 独立,求变量 U =(2X +3Y )(4Z -1)的数学期望2. (请写清解题步骤,12分)设随机变量X 的密度函数为()xf x Ae -= ()x -∞<<+∞, 求 (1)系数A, (2) {01}P x ≤≤(3) 分布函数)(x F 。
大学专业试卷华南理工大学 理工科专业 《概率论与数理统计》2011-2012试卷A卷及参考解答
诚信应考, 考试作弊将带来严重后果!华南理工大学期末考试《概率论与数理统计》试卷A 卷注意事项:1. 考前请将密封线内各项信息填写清楚; 2. 可使用计算器; 3.考试形式:闭卷;4. 本试卷共八大题,满分100分。
考试时间120分钟。
5. 本试卷的六、七、八大题,有不同学分的要求,请小心阅题。
可能用到的分位点:5.20)10(19)9(25.3)10(7.2)9(2025.02025.02975.02975.0====χχχχ()()()()()812.11083.1923.21026.2931.2805.005.0025.0025.0025.0=====t t t t t(1)0.8413,(1.645)0.95,(1.96)0.975,(2)0.9772Φ=Φ=Φ=Φ= 一、(10分) 已知:0)( 161)()( 41)()()(======AC P BC P AB P C P B P A P 求:)(C B A P解:)()(C B A P C B A P ==1-)(C B A P =1-()()()()()()()(ABC P BC P AC P AB P C P B P A P +---++)=83(0)(,0)(==ABC P AC P )二、(15分) 袋中有15个球,10个红球,5个黄球。
不放回地分两次从袋中将球逐个取出,第一次取5个球,第二次取6个球。
求以下事件的概率: (1) 第二次6个球中的第5个是红球;(2) 第一次5个球中有2个黄球且第二次6个球中有4个红球; (3) 第一次5个球中有3个红球或第二次6个球中有2个黄球; 解: (1) 设A :第二次6个球中的第5个是红球321510)(==A P (2) 设A :第一次5个球中有2个黄球B :第二次6个球中有4个红球 原问题转换为求P(AB)①: Ω: 515CAB: 142625C C C ⋅⋅2.01001200)(515142625≈=⋅⋅=C C C C AB P ②:2.01001200)(*)()(610472351531025≈=⋅⋅⋅==C C C C C C A B P A P AB P (3) 设A :第一次5个球中有3个红球设B :第二次6个球中有2个黄球 原问题转换为求P(A ∪B)51514262551539266154102551531025)()(,)(CCC C AB P C C C C C C B P C C C A P ⋅⋅=⎪⎪⎭⎫ ⎝⎛⋅=⋅=⋅=P(A ∪B)= )()()(AB P B P A P -+=62.01001620≈三、(15分) 随机变量 ξ 服从N(0,4),η=2ξ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2 2π
∞
−∞
∫e
z −2( x − ) 2 2
dx
(2 分)
1 − z2 = e 2π
2
(1 分)
1 2π
∞ − u2 2
−∞
∫e
1 − z2 du = e 2π
2
(1 分) (1 分)
所以 Z = X + Y ~ N (0,1)
草
稿
纸
第 1 页
( 共 5 页 )
成
得分
评卷人
上海大学 2012~2013 学年秋季学期试卷(A 卷) 绩 课程名: 概率论与数理统计 A 课程号: 01014016 学分: 5
1 ∞
产品寿命的均值不超过 1500 小时。现在,改进了生产工艺。为弄清新工艺是否有效提高 了产品的寿命,做了样本容量为 25 的抽样,得到的样本均值的观测值为 x = 1575 。由此 抽样结果,你对此新工艺可作出什么样的判断?给出相应的参数假设检验问题,并在置 信水平为 α = 0.05 时,对你的假设作出判断。 (附注) , u0.025 = 1.96 , u0.05 = 1.645 。 解 由给出的样本均值 x > 1500 ,假设检验问题: (2 分) 原假设 H 0 : μ ≤ 1500 ;备选假设 H1 : μ > 1500 (2 分) 拒绝域: W = {x | 。 ( 3 分) 判断: (2 分) (2 分).
A −2 e = 1 ,即 A = 2e 2 。 2
⎧0, =⎨ x ≥ 1 ⎩1 − e −2( x −1) ,
−2
⎧0, ⎪ 概率分布函数: F ( x ) = ⎨ x −2( t −1) dt , ⎪2 ∫ e ⎩ 1
x <1
x <1 x ≥1
x − 1500 > u0.05 } 200 / 25
−λ x
19、 (15 分)设总体 X 的密度函数为
。那么,
⎧ θx ⎪ f ( x) = ⎨ ⎪ ⎩0,
θ −1
,
0 ≤ x ≤1 , x < 0, x > 1
(1)给出这位顾客在接受服务之前所需的等待时间的概率密度函数; (2)该顾客所需等待的平均时间是多长; (3)如果顾客不是刚刚开始接受服务,已经过了一段时间的服务,那么由(1) , (2) 给出的结论是否仍正确?是否进入顾客的等待时间会缩短? 解 (1)两位顾客完成服务的时间记为 X 1 和 X 2 ,则由假设条件:
⎧ ⎪0, 所以 fY ( y ) = ⎨ −2( e y −1) + y , ⎪ ⎩2e 4) E (2 X − 1) = ∫ 4 x − 1e
1
∞
⎧0, y ≤ 0 ⎪e y =⎨ y > 0 ⎪ ∫ 2e −2( x −1) dx, ⎩1
y≤0 y>0
, (2 分)
草
( 2 分)
稿
纸
y≤0 y>0
2) P( −1 < X < 2) = ∫ 2e
1
2
−2( x −1)
dx = F (2) − F ( −1) = 1 − e 。
( 2 分)
x − 1500 = 1.875 ∈ W , 200 / 25
(2 分)
结论:拒绝原假设,接受备选假设,即认为新工艺确实提高了产品的寿命。 (2 分)
⎧0, 3) FY ( y ) = ⎨ ⎩ P(ln X < y ),
12、 设总体 X ~ N ( μ1 , σ ) , 总体 Y ~ N ( μ2 , σ ) , 且相互独立,X 1 ,K, X n1 和 Y1 ,K, Yn2 分 别是它们的简单样本,那么不正确的是 (A) A 。
X − Y − (μ1 − μ2 )
2 (n1 −1)S12 + (n2 −1)S2 1/ n1 +1/ n2 n1 + n2 − 2
其中 θ 为未知参数。
ˆ; (1)求参数 θ 的矩估计 θ 1
ˆ; (2)求参数 θ 的最大似然估计 θ 2 ˆ2 和 θ ˆ2 。 (3)此时,参数 θ 的矩估计和最大似然估计是否相应为 θ 1 2
f1 ( x) = λ e
−λ x
, f 2 ( x) = λ e
−λ x
,
(2 分) (2 分)
解 (1) EX = ∫ x θ x
D
。
15、 (10 分)设市场共有 n 种品牌的电脑,市场占有率分别为 αi > 0 , i = 1,L, n ,其中
∑α
i =1
n
i
= 1 。第 i 种品牌电脑有质量问题的概率为 β i 。现在对市场上的这些品牌电脑进行质
量抽查,计算 11、设随机变量 X 和 Y 服从指数分布,且相互独立,则下列分布一定服从指数分布 的是 B 。 (B) Z = min{ X , Y } ;
i =1 i
∑α β
i
13、如果总体 X 服从正态分布 N ( μ , σ ) ,其中, μ 已知,σ 未知, X 1 , X 2 , X 3 是
2
(2 分)
(2 分)
2
取自总体的一个样本,那么是统计量的是 (A)
C
。
X −μ ; σ/ 3
(B) (D)
2S 2
σ2
1
;
(C) max{ X 1 , X 2 , X 3 } ;
i =1 i =1
n
n
(2 分)
(2 分)
(C)
X − Y − (μ1 − μ2 ) (n1 −1)S + (n2 −1)S n1 + n2 − 2
2 1 2 2
~ t(n1 + n2 − 2) ; (D)
1/ n1 + 1/ n2
2) P( B1 | A) =
P ( A | B1 ) P( B1 ) αβ = n 1 1 1 − P ( A)
得分
评卷人 三. 选择题(每小题 2 分,5 题共 10 分)
得分
评卷人 四.计算题:(5 题,共 60 分)
10、随机事件 A 和 B 的概率为 P( A) = 0.6 , P( B ) = 0.4 ,则正确的是 (A) A ⊃ B ; (C) P( AB ) = 0 ; (B) A 与 B 互不相容; (D)上述结论不一定成立。
2 2
1)电脑产品的抽样合格率; 2)如果发现一台电脑被抽检后判断为不合格,那么该电脑是第一种品牌的概率是多大。
(A) Z = X + Y ;
(C) Z = max{ X , Y } ;
(D) Z = XY 。 解 以 A 记事件“抽检的电脑是合格的” ;以 Bi 记事件“该电脑是第 i 种品牌的电脑” 。 那么已知条件为: P ( A | Bi ) = 1 − β i ; P( Bi ) = αi 。 (2 分)
ห้องสมุดไป่ตู้~ t(n1 + n2 −1) ; (B)
X − Y − (μ1 − μ2 ) ~ t (n1 −1) ; S1 1/ n1 +1/ n2 X −Y − (μ1 − μ2 ) ~ t(n2 −1) 。 S2 1/ n1 +1/ n2
1) P( A) = ∑ P ( Bi )P ( A | Bi ) = ∑ (1 − β i )α i
第 1 页
( 共 5 页 )
成
得分
评卷人 二. 填空题(每空 3 分,共 15 分)
上海大学 2011~2012 学年冬季学期试卷(A 卷) 绩 课程名: 概率论与数理统计 A 课程号: 学分: 5
6、已知随机事件 A 和 B 的概率分别为 P( A) = 0.7 和 P( B ) = 0.5 ,且这两个事件独立,那
么, P( B − A) = P( B ) − P( AB ) = 0.5 − 0.35 = 0.15 。 应试人声明: 我保证遵守《上海大学学生手册》中的《上海大学考场规则》 ,如有考试违纪、作 弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分。 7、设随机变量 X 服从区间 [0,1] 上的均匀分布,则随机变量 Y = e X 的数学期望 应试人 应试人学号 应试人所在院系 1 1 1 1 EY = ∫ e x dx = e − 1 ;方差 DY = ∫ e 2 x dx − ( EY ) 2 = (e 2 − 1) − (e − 1) 2 = (e − 1)(3 − e) 。 2 2 0 0 题号 一 二 三 四 五 得分 5 8、把 5 只球随机放入三个盒中,则每个盒子中至少有一球的概率为 1 − 得分 评卷人 一.是非题(每小题 2 分,5 题共 10 分) 9 、设 X 1 ,K, X 10 是来自总体 X ~ N ( μ , σ 2 ) 的简单样本,当常数 c = 1、 事件 A 与 B 互不相容, 若 A 不发生, 那么 B 一定发生。 2、 事件 A U B 表示事件 “ A 与 B 都没有发生” 。 ( 错)
0
1
θ −1
dx = ∫ θ x θ dx =
0
1
θ θ +1
=X,
所以,等待时间为当 W = X 1 + X 2 , 利用随机变量和的密度函数的计算公式:
x
(2 分)
ˆ = X 。 所以 θ 1 1− X
(1 分)
(1 分) (2 分)
n n ln θ + ( θ − 1)∑ ln xi , (4 分) 2 k =1
n
∑ ln x
k =1
n
i
=0
( 2 分) (1 分)
(3)由于指数分布的无记忆性,该顾客在新顾客进入系统之前已经过的服务时间不 ˆ (2 分) 所以, θ 2 = − 影响完成服务所需的时间的概率分布,因此,所有结论仍成立。