高考第一轮复习数学:4.5 三角函数的图象与性质(一)

合集下载

超实用高考数学重难点专题复习:专题四 三角函数 第一讲 三角函数的图像及性质

超实用高考数学重难点专题复习:专题四 三角函数  第一讲  三角函数的图像及性质



,又因为 f ( x) 2 tan 3x 1
6
18



的图象是由 f ( x) 2 tan 3 x 的图象向上平移1个单
6

位得到的,所以对称中心可以为 ,1 .故选D.


18
考点3:三角函数 y A sin( x ) 的图像及性质
6
12
6

且为单调递减时候零点,∴
5π π
π 2kπ, k Z
12 6
24k
12
, k Z ,由图象知 T 2π 2 5π ,∴
,又∵
(
n
)
12
5
5
0 ,∴ 2
∴ 2
π

∴ f ( x) 2 sin 2 x ,∵函数 f x 的图象可由 y A sin x
[解析] 由 1 tan( x ) 0 ,得
4
2
4
4
4
解得 k


x k , k Z ,故所求函数的定义域为
4
2



k


,
k



,k Z
4
2


,故选C.
考点2:三角函数的性质
1.三角函数的单调性、奇偶性、对称性和周期性
[典型例题]
π

1.函数 y 2sin 2 x 是( )
应用
2.根据图象求解析式或参数
(三)核心知识整合
考点1:三角函数的定义域、值域、最值
1.三角函数的图像

【2022高考数学一轮复习(步步高)】目录

【2022高考数学一轮复习(步步高)】目录

第一章集合、常用逻辑用语、不等式§1.1集合§1.2 充分条件与必要条件§1.3 全称量词与存在量词§1.4 不等关系与不等式§1.5 一元二次不等式及其解法§1.6 基本不等式强化训练1不等式中的综合问题第二章函数概念与基本初等函数Ⅰ§2.1 函数的概念及其表示第1课时函数的概念及其表示第2课时函数的定义域与值域§2.2 函数的基本性质第1课时单调性与最大(小)值第2课时奇偶性、对称性与周期性第3课时函数性质的综合问题§2.3 幂函数与二次函数§2.4 指数与指数函数§2.5 对数与对数函数§2.6 函数的图象§2.7 函数与方程强化训练2函数与方程中的综合问题§2.8 函数模型及其应用第三章导数及其应用§3.1 导数的概念及运算§3.2 导数与函数的单调性§3.3 导数与函数的极值、最值强化训练3导数中的综合问题高考专题突破一高考中的导数综合问题第1课时利用导数研究恒(能)成立问题第2课时利用导函数研究函数的零点第3课时利用导数证明不等式第四章三角函数、解三角形§4.1任意角和弧度制、三角函数的概念§4.2 同角三角函数基本关系式及诱导公式§4.3 简单的三角恒等变换第1课时两角和与差的正弦、余弦和正切公式第2课时简单的三角恒等变换§4.4 三角函数的图象与性质§4.5 函数y=A sin(ωx+φ)的图象及应用强化训练4三角函数中的综合问题§4.6 解三角形高考专题突破二高考中的解三角形问题第五章平面向量、复数§5.1 平面向量的概念及线性运算§5.2 平面向量基本定理及坐标表示§5.3 平面向量的数量积强化训练5平面向量中的综合问题§5.4 复数第六章数列§6.1 数列的概念与简单表示法§6.2 等差数列及其前n项和§6.3 等比数列及其前n项和强化训练6数列中的综合问题高考专题突破三高考中的数列问题第七章立体几何与空间向量§7.1空间几何体及其表面积、体积强化训练7空间几何体中的综合问题§7.2 空间点、直线、平面之间的位置关系§7.3 直线、平面平行的判定与性质§7.4 直线、平面垂直的判定与性质强化训练8空间位置关系中的综合问题§7.5 空间向量及其应用高考专题突破四高考中的立体几何问题第八章解析几何§8.1直线的方程§8.2 两条直线的位置关系§8.3 圆的方程§8.4 直线与圆、圆与圆的位置关系强化训练9直线与圆中的综合问题§8.5 椭圆第1课时椭圆及其性质第2课时直线与椭圆§8.6 双曲线§8.7 抛物线强化训练10圆锥曲线中的综合问题高考专题突破五高考中的圆锥曲线问题第1课时范围与最值问题第2课时定点与定值问题第3课时证明与探索性问题第九章统计与统计案例§9.1 随机抽样、用样本估计总体§9.2 变量间的相关关系、统计案例强化训练11统计中的综合问题第十章计数原理、概率、随机变量及其分布§10.1 分类加法计数原理与分步乘法计数原理§10.2 排列、组合§10.3 二项式定理§10.4 随机事件的概率与古典概型§10.5 离散型随机变量的分布列、均值与方差§10.6 二项分布与正态分布高考专题突破六高考中的概率与统计问题。

2023年高考数学一轮复习第四章三角函数与解三角形5三角函数的图象与性质练习含解析

2023年高考数学一轮复习第四章三角函数与解三角形5三角函数的图象与性质练习含解析

三角函数的图象与性质考试要求 1.能画出三角函数的图象.2.了解三角函数的周期性、奇偶性、最大(小)值.3.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的性质.知识梳理1.用“五点法”作正弦函数和余弦函数的简图(1)在正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)在余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数y =sin x y =cos x y =tan x图象定义域 R R ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π2值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性 奇函数偶函数奇函数递增区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π] ⎝⎛⎭⎪⎫k π-π2,k π+π2递减区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π]对称中心 (k π,0)⎝ ⎛⎭⎪⎫k π+π2,0⎝ ⎛⎭⎪⎫k π2,0对称轴方程x =k π+π2x =k π常用结论1.对称性与周期性(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是12个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.奇偶性若f (x )=A sin(ωx +φ)(A ,ω≠0),则(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z ).(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)正切函数y =tan x 在定义域内是增函数.( × ) (2)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (3)y =sin|x |是偶函数.( √ )(4)若非零实数T 是函数f (x )的周期,则kT (k 是非零整数)也是函数f (x )的周期.( √ ) 教材改编题1.若函数y =2sin2x -1的最小正周期为T ,最大值为A ,则( ) A .T =π,A =1 B .T =2π,A =1 C .T =π,A =2 D .T =2π,A =2答案 A2.函数f (x )=-2tan ⎝⎛⎭⎪⎫2x +π6的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠π6B.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠-π12 C.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠k π+π6k ∈Z D.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠k π2+π6k ∈Z答案 D解析 由2x +π6≠k π+π2,k ∈Z ,得x ≠k π2+π6,k ∈Z . 3.函数y =3cos ⎝ ⎛⎭⎪⎫2x -π3的单调递减区间是________. 答案 ⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3,k ∈Z解析 因为y =3cos ⎝ ⎛⎭⎪⎫2x -π3,令2k π≤2x -π3≤2k π+π,k ∈Z ,求得k π+π6≤x ≤k π+2π3,k ∈Z ,可得函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3,k ∈Z .题型一 三角函数的定义域和值域例1 (1)函数y =1tan x -1的定义域为________.答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π4+k π,且x ≠π2+k π,k ∈Z 解析 要使函数有意义, 则⎩⎪⎨⎪⎧tan x -1≠0,x ≠π2+k π,k ∈Z ,即⎩⎪⎨⎪⎧x ≠π4+k π,k ∈Z ,x ≠π2+k π,k ∈Z .故函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π4+k π,且x ≠π2+k π,k ∈Z .(2)函数y =sin x -cos x +sin x cos x 的值域为________.答案 ⎣⎢⎡⎦⎥⎤-1+222,1解析 设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x ·cos x ,sin x cos x =1-t22,且-2≤t ≤ 2.∴y =-t 22+t +12=-12(t -1)2+1,t ∈[-2,2].当t =1时,y max =1;当t =-2时,y min =-1+222.∴函数的值域为⎣⎢⎡⎦⎥⎤-1+222,1.教师备选1.函数y =sin x -cos x 的定义域为________. 答案 ⎣⎢⎡⎦⎥⎤2k π+π4,2k π+5π4(k ∈Z )解析 要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z .2.函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.答案 1解析 由题意可得f (x )=-cos 2x +3cos x +14=-⎝ ⎛⎭⎪⎫cos x -322+1. ∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1]. ∴当cos x =32,即x =π6时,f (x )取最大值为1. 思维升华 (1)三角函数定义域的求法求三角函数的定义域实际上是构造简单的三角不等式(组),常借助三角函数的图象来求解.(2)三角函数值域的不同求法①把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域. ②把sin x 或cos x 看作一个整体,转换成二次函数求值域. ③利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.跟踪训练 1 (1)(2021·北京)函数f (x )=cos x -cos2x ,试判断函数的奇偶性及最大值( )A .奇函数,最大值为2B .偶函数,最大值为2C .奇函数,最大值为98D .偶函数,最大值为98答案 D 解析 由题意,f (-x )=cos (-x )-cos (-2x )=cos x -cos2x =f (x ), 所以该函数为偶函数,又f (x )=cos x -cos2x =-2cos 2x +cos x +1=-2⎝ ⎛⎭⎪⎫cos x -142+98,所以当cos x =14时,f (x )取最大值98.(2)函数y =lg(sin2x )+9-x 2的定义域为________. 答案 ⎣⎢⎡⎭⎪⎫-3,-π2∪⎝ ⎛⎭⎪⎫0,π2 解析 ∵函数y =lg(sin2x )+9-x 2,∴应满足⎩⎪⎨⎪⎧sin2x >0,9-x 2≥0,解得⎩⎪⎨⎪⎧k π<x <π2+k π,-3≤x ≤3,其中k ∈Z ,∴-3≤x <-π2或0<x <π2,∴函数的定义域为⎣⎢⎡⎭⎪⎫-3,-π2∪⎝ ⎛⎭⎪⎫0,π2.题型二 三角函数的周期性、奇偶性、对称性例2 (1)(2019·全国Ⅱ)下列函数中,以π2为周期且在区间⎝ ⎛⎭⎪⎫π4,π2上单调递增的是( )A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |答案 A解析 A 中,函数f (x )=|cos2x |的周期为π2,当x ∈⎝ ⎛⎭⎪⎫π4,π2时,2x ∈⎝ ⎛⎭⎪⎫π2,π,函数f (x )单调递增,故A 正确;B 中,函数f (x )=|sin2x |的周期为π2,当x ∈⎝ ⎛⎭⎪⎫π4,π2时,2x ∈⎝ ⎛⎭⎪⎫π2,π,函数f (x )单调递减,故B 不正确;C 中,函数f (x )=cos|x |=cos x 的周期为2π,故C 不正确;D 中,f (x )=sin|x |=⎩⎪⎨⎪⎧sin x ,x ≥0,-sin x ,x <0,由正弦函数图象知,在x ≥0和x <0时,f (x )均以2π为周期,但在整个定义域上f (x )不是周期函数,故D 不正确.(2)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3+φ+1,φ∈(0,π),且f (x )为偶函数,则φ=________,f (x )图象的对称中心为________.答案5π6⎝ ⎛⎭⎪⎫π4+k π2,1,k ∈Z 解析 若f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3+φ+1为偶函数,则-π3+φ=k π+π2,k ∈Z ,即φ=5π6+k π,k ∈Z ,又∵φ∈(0,π), ∴φ=5π6.∴f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π2+1=3cos2x +1, 由2x =π2+k π,k ∈Z 得x =π4+k π2,k ∈Z ,∴f (x )图象的对称中心为⎝ ⎛⎭⎪⎫π4+k π2,1,k ∈Z .教师备选1.下列函数中,是周期函数的为( ) A .y =sin|x | B .y =cos|x | C .y =tan|x | D .y =(x -1)0答案 B解析 ∵cos|x |=cos x ,∴y =cos|x |是周期函数.其余函数均不是周期函数. 2.函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3+φ,φ∈(0,π),若f (x )为奇函数,则φ=________.答案π3解析 若f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3+φ为奇函数, 则-π3+φ=k π,k ∈Z ,即φ=π3+k π,k ∈Z ,又∵φ∈(0,π), ∴φ=π3.思维升华 (1)奇偶性的判断方法:三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx 的形式.(2)周期的计算方法:利用函数y =A sin(ωx +φ),y =A cos(ωx +φ)(ω>0)的周期为2πω,函数y =A tan(ωx +φ)(ω>0)的周期为πω求解.跟踪训练2 (1)(2021·全国乙卷)函数f (x )=sin x3+cos x3最小正周期和最大值分别是( ) A .3π和 2 B .3π和2 C .6π和 2 D .6π和2答案 C解析 因为函数f (x )=sin x 3+cos x3=2⎝⎛⎭⎪⎫22sin x 3+22cosx 3=2⎝⎛⎭⎪⎫sin x 3cos π4+cos x 3sin π4 =2sin ⎝ ⎛⎭⎪⎫x 3+π4, 所以函数f (x )的最小正周期T =2π13=6π,最大值为 2.(2)已知f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)是定义域为R 的奇函数,且当x =3时,f (x )取得最小值-3,当ω取得最小正数时,f (1)+f (2)+f (3)+…+f (2022)的值为( )A.32 B .-6-3 3 C .1 D .-1答案 B解析 ∵f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)是定义域为R 的奇函数, ∴φ=π2+k π,k ∈Z ,则φ=π2,则f (x )=-A sin ωx .当x =3时,f (x )取得最小值-3, 故A =3,sin3ω=1, ∴3ω=π2+2k π,k ∈Z .∴ω的最小正数为π6,∴f (x )=-3sin π6x ,∴f (x )的周期为12,∴f (1)+f (2)+f (3)+…+f (12)=0, ∴f (1)+f (2)+f (3)+…+f (2022) =168×0+f (1)+f (2)+…+f (6) =-6-3 3.(3)(2022·杭州模拟)设函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3+34,则下列叙述正确的是( ) A .f (x )的最小正周期为2π B .f (x )的图象关于直线x =π12对称 C .f (x )在⎣⎢⎡⎦⎥⎤π2,π上的最小值为-54 D .f (x )的图象关于点⎝ ⎛⎭⎪⎫2π3,0对称答案 C解析 对于A ,f (x )的最小正周期为2π2=π,故A 错误;对于B ,∵sin ⎝ ⎛⎭⎪⎫2×π12-π3=-12≠±1, 故B 错误;对于C ,当x ∈⎣⎢⎡⎦⎥⎤π2,π时,2x -π3∈⎣⎢⎡⎦⎥⎤2π3,5π3,∴sin ⎝ ⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤-1,32,∴2sin ⎝⎛⎭⎪⎫2x -π3+34∈⎣⎢⎡⎦⎥⎤-54,3+34, ∴f (x )在⎣⎢⎡⎦⎥⎤π2,π上的最小值为-54,故C 正确;对于D ,∵f ⎝⎛⎭⎪⎫2π3=2sin ⎝⎛⎭⎪⎫2×2π3-π3+34=34,∴f (x )的图象关于点⎝⎛⎭⎪⎫2π3,34对称,故D 错误.题型三 三角函数的单调性 命题点1 求三角函数的单调区间例3 函数f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________. 答案 ⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z )解析 f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3=sin ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫2x -π3=-sin ⎝⎛⎭⎪⎫2x -π3, 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所求函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ).延伸探究 f (x )=sin ⎝⎛⎭⎪⎫-2x +π3在[0,π]上的单调递减区间为________. 答案 ⎣⎢⎡⎦⎥⎤0,5π12和⎣⎢⎡⎦⎥⎤11π12,π解析 令A =⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z ,B =[0,π],∴A ∩B =⎣⎢⎡⎦⎥⎤0,5π12∪⎣⎢⎡⎦⎥⎤11π12,π,∴f (x )在[0,π]上的单调递减区间为⎣⎢⎡⎦⎥⎤0,5π12和⎣⎢⎡⎦⎥⎤11π12,π. 命题点2 根据单调性求参数例4 (1)若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________. 答案 32解析 ∵f (x )=sin ωx (ω>0)过原点, ∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 单调递增;当π2≤ωx ≤3π2, 即π2ω≤x ≤3π2ω时,y =sin ωx 单调递减. 由f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在⎣⎢⎡⎦⎥⎤π3,π2上单调递减,知π2ω=π3,∴ω=32.(2)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤12,54解析 由π2<x <π,ω>0,得ωπ2+π4<ωx +π4<ωπ+π4, 因为y =sin x 的单调递减区间为⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2,k ∈Z ,所以⎩⎪⎨⎪⎧ωπ2+π4≥π2+2k π,ωπ+π4≤3π2+2k π,k ∈Z ,解得4k +12≤ω≤2k +54,k ∈Z .又由4k +12-⎝⎛⎭⎪⎫2k +54≤0,k ∈Z ,且2k +54>0,k ∈Z ,解得k =0,所以ω∈⎣⎢⎡⎦⎥⎤12,54. 教师备选(2022·长沙模拟)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A .11B .9C .7D .1 答案 B解析 因为x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,所以2n +14·T =π2(n ∈N ),即2n +14·2πω=π2(n ∈N ), 所以ω=2n +1(n ∈N ),即ω为正奇数.因为f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调, 则5π36-π18=π12≤T 2, 即T =2πω≥π6,解得ω≤12.当ω=11时,-11π4+φ=k π,k ∈Z ,因为|φ|≤π2,所以φ=-π4,此时f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4. 当x ∈⎝⎛⎭⎪⎫π18,5π36时,11x -π4∈⎝ ⎛⎭⎪⎫13π36,46π36,所以f (x )在⎝ ⎛⎭⎪⎫π18,5π36上不单调,不满足题意; 当ω=9时,-9π4+φ=k π,k ∈Z ,因为|φ|≤π2,所以φ=π4,此时f (x )=sin ⎝ ⎛⎭⎪⎫9x +π4. 当x ∈⎝⎛⎭⎪⎫π18,5π36时, 9x +π4∈⎝ ⎛⎭⎪⎫3π4,3π2,此时f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调递减,符合题意. 故ω的最大值为9.思维升华 (1)已知三角函数解析式求单调区间求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,可借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.跟踪训练3 (1)(2021·新高考全国Ⅰ)下列区间中,函数f (x )=7sin ⎝⎛⎭⎪⎫x -π6的单调递增区间是( )A.⎝⎛⎭⎪⎫0,π2B.⎝ ⎛⎭⎪⎫π2,πC.⎝ ⎛⎭⎪⎫π,3π2D.⎝⎛⎭⎪⎫3π2,2π答案 A解析 令-π2+2k π≤x -π6≤π2+2k π,k ∈Z ,得-π3+2k π≤x ≤2π3+2k π,k ∈Z .取k=0,则-π3≤x ≤2π3.因为⎝ ⎛⎭⎪⎫0,π2⎣⎢⎡⎦⎥⎤-π3,2π3,所以区间⎝ ⎛⎭⎪⎫0,π2是函数f (x )的单调递增区间.(2)(2022·济南模拟)已知函数y =sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)在区间⎝ ⎛⎭⎪⎫-π6,π3上单调递增,则ω的取值范围是( )A.⎝ ⎛⎦⎥⎤0,12B.⎣⎢⎡⎦⎥⎤12,1C.⎝ ⎛⎦⎥⎤13,23 D.⎣⎢⎡⎦⎥⎤23,2 答案 A解析 当-π6<x <π3时,-πω6+π3<ωx +π3<πω3+π3, 当x =0时,ωx +π3=π3.因为函数y =sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)在区间⎝ ⎛⎭⎪⎫-π6,π3上单调递增,所以⎩⎪⎨⎪⎧-πω6+π3≥-π2,πω3+π3≤π2,解得ω≤12,因为ω>0,所以ω的取值范围是⎝ ⎛⎦⎥⎤0,12.课时精练1.y =|cos x |的一个单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-π2,π2 B .[0,π] C.⎣⎢⎡⎦⎥⎤π,3π2 D.⎣⎢⎡⎦⎥⎤3π2,2π答案 D解析 将y =cos x 的图象位于x 轴下方的部分关于x 轴对称向上翻折,x 轴上方(或x 轴上)的图象不变,即得y =|cos x |的图象(如图).故选D.2.函数f (x )=2sin π2x -1的定义域为( )A.⎣⎢⎡⎦⎥⎤π3+4k π,5π3+4k π(k ∈Z )B.⎣⎢⎡⎦⎥⎤13+4k ,53+4k (k ∈Z )C.⎣⎢⎡⎦⎥⎤π6+4k π,5π6+4k π(k ∈Z )D.⎣⎢⎡⎦⎥⎤16+4k ,56+4k (k ∈Z )答案 B解析 由题意,得2sinπ2x -1≥0, π2x ∈⎣⎢⎡⎦⎥⎤π6+2k π,5π6+2k π(k ∈Z ), 则x ∈⎣⎢⎡⎦⎥⎤13+4k ,53+4k (k ∈Z ). 3.函数f (x )=sin ⎝⎛⎭⎪⎫x +5π12cos ⎝ ⎛⎭⎪⎫x -π12是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的非奇非偶函数D .最小正周期为π的非奇非偶函数 答案 D解析 由题意可得f (x )=sin ⎝⎛⎭⎪⎫x +5π12cos ⎝ ⎛⎭⎪⎫x -π12 =sin ⎝⎛⎭⎪⎫x +5π12cos ⎝ ⎛⎭⎪⎫x +5π12-π2 =sin 2⎝⎛⎭⎪⎫x +5π12, ∴f (x )=12-12cos ⎝⎛⎭⎪⎫2x +5π6,故f (x )的最小正周期T =2π2=π,由函数奇偶性的定义易知,f (x )为非奇非偶函数.4.函数f (x )=sin x +xcos x +x2在[-π,π]的图象大致为( )答案 D解析 由f (-x )=sin -x +-xcos -x +-x 2=-sin x -xcos x +x2=-f (x ),得f (x )是奇函数,其图象关于原点对称,排除A ;又f ⎝ ⎛⎭⎪⎫π2=1+π2⎝ ⎛⎭⎪⎫π22=4+2ππ2>1, f (π)=π-1+π2>0,排除B ,C.5.(多选)关于函数f (x )=sin2x -cos2x ,下列命题中为真命题的是( ) A .函数y =f (x )的周期为πB .直线x =π4是y =f (x )图象的一条对称轴C .点⎝ ⎛⎭⎪⎫π8,0是y =f (x )图象的一个对称中心 D .y =f (x )的最大值为 2 答案 ACD解析 因为f (x )=sin2x -cos2x =2sin ⎝⎛⎭⎪⎫2x -π4,所以f (x )最大值为2,故D 为真命题. 因为ω=2,故T =2π2=π,故A 为真命题;当x =π4时,2x -π4=π4,终边不在y 轴上,故直线x =π4不是y =f (x )图象的一条对称轴,故B 为假命题;当x =π8时,2x -π4=0,终边落在x 轴上,故点⎝ ⎛⎭⎪⎫π8,0是y =f (x )图象的一个对称中心,故C 为真命题. 6.(多选)(2022·广州市培正中学月考)关于函数f (x )=sin|x |+|sin x |,下列叙述正确的是( ) A .f (x )是偶函数B .f (x )在区间⎝ ⎛⎭⎪⎫π2,π上单调递增C .f (x )的最大值为2D .f (x )在[-π,π]上有4个零点 答案 AC解析 f (-x )=sin|-x |+|sin(-x )| =sin|x |+|sin x |=f (x ),f (x )是偶函数,A 正确;当x ∈⎝⎛⎭⎪⎫π2,π时,f (x )=sin x +sin x =2sin x , 单调递减,B 错误;f (x )=sin|x |+|sin x |≤1+1=2,且f ⎝ ⎛⎭⎪⎫π2=2,C 正确; 在[-π,π]上,当-π<x <0时,f (x )=sin(-x )+(-sin x )=-2sin x >0,当0<x <π时,f (x )=sin x +sin x =2sin x >0,f (x )的零点只有π,0,-π共三个,D 错.7.写出一个周期为π的偶函数f (x )=________.(答案不唯一) 答案 cos2x8.(2022·鞍山模拟)若在⎣⎢⎡⎦⎥⎤0,π2内有两个不同的实数值满足等式cos2x +3sin2x =k +1,则实数k 的取值范围是________. 答案 0≤k <1解析 函数f (x )=cos2x +3sin2x =2sin ⎝⎛⎭⎪⎫2x +π6,当x ∈⎣⎢⎡⎦⎥⎤0,π6时, f (x )=2sin ⎝⎛⎭⎪⎫2x +π6单调递增;当x ∈⎣⎢⎡⎦⎥⎤π6,π2时,f (x )=2sin ⎝⎛⎭⎪⎫2x +π6单调递减,f (0)=2sin π6=1, f ⎝ ⎛⎭⎪⎫π6=2sin π2=2, f ⎝ ⎛⎭⎪⎫π2=2sin 7π6=-1, 所以在⎣⎢⎡⎦⎥⎤0,π2内有两个不同的实数值满足等式cos2x +3sin2x =k +1,则1≤k +1<2, 所以0≤k <1.9.已知函数f (x )=4sin ωx sin ⎝ ⎛⎭⎪⎫ωx +π3-1(ω>0)的最小正周期为π.(1)求ω及f (x )的单调递增区间; (2)求f (x )图象的对称中心.解 (1)f (x )=4sin ωx ⎝ ⎛⎭⎪⎫12sin ωx +32cos ωx -1=2sin 2ωx +23sin ωx cos ωx -1 =1-cos 2ωx +3sin 2ωx -1 =3sin 2ωx -cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx -π6.∵最小正周期为π, ∴2π2ω=π, ∴ω=1,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6, 令-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,解得-π6+k π≤x ≤π3+k π,k ∈Z ,∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π6+k π,π3+k π(k ∈Z ).(2)令2x -π6=k π,k ∈Z ,解得x =π12+k π2,k ∈Z ,∴f (x )图象的对称中心为⎝⎛⎭⎪⎫π12+k π2,0,k ∈Z .10.(2021·浙江)设函数f (x )=sin x +cos x (x ∈R ).(1)求函数y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π22的最小正周期;(2)求函数y =f (x )f ⎝⎛⎭⎪⎫x -π4在⎣⎢⎡⎦⎥⎤0,π2上的最大值.解 (1)因为f (x )=sin x +cos x ,所以f ⎝ ⎛⎭⎪⎫x +π2=sin ⎝ ⎛⎭⎪⎫x +π2+cos ⎝⎛⎭⎪⎫x +π2=cos x -sin x ,所以y =⎣⎢⎡⎦⎥⎤f ⎝⎛⎭⎪⎫x +π22=(cos x -sin x )2=1-sin2x .所以函数y =⎣⎢⎡⎦⎥⎤f ⎝⎛⎭⎪⎫x +π22的最小正周期T =2π2=π.(2)f ⎝ ⎛⎭⎪⎫x -π4=sin ⎝ ⎛⎭⎪⎫x -π4+cos ⎝⎛⎭⎪⎫x -π4=2sin x ,所以y =f (x )f ⎝⎛⎭⎪⎫x -π4=2sin x (sin x +cos x ) =2(sin x cos x +sin 2x ) =2⎝ ⎛⎭⎪⎫12sin2x -12cos2x +12=sin ⎝⎛⎭⎪⎫2x -π4+22. 当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4, 所以当2x -π4=π2,即x =3π8时,函数y =f (x )f ⎝⎛⎭⎪⎫x -π4在⎣⎢⎡⎦⎥⎤0,π2上取得最大值,且y max =1+22.11.(多选)(2022·苏州模拟)已知函数f (x )=sin ⎝⎛⎭⎪⎫2x +π3,则( )A .函数f ⎝⎛⎭⎪⎫x -π3是偶函数B .x =-π6是函数f (x )的一个零点C .函数f (x )在区间⎣⎢⎡⎦⎥⎤-5π12,π12上单调递增 D .函数f (x )的图象关于直线x =π12对称答案 BCD解析 对于A 选项,令g (x )=f ⎝ ⎛⎭⎪⎫x -π3=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π3+π3=sin ⎝⎛⎭⎪⎫2x -π3,则g ⎝ ⎛⎭⎪⎫π6=0,g ⎝ ⎛⎭⎪⎫-π6=sin ⎝ ⎛⎭⎪⎫-2π3≠0, 故函数f ⎝ ⎛⎭⎪⎫x -π3不是偶函数,A 错;对于B 选项,因为f ⎝ ⎛⎭⎪⎫-π6=sin0=0,故x =-π6是函数f (x )的一个零点,B 对;对于C 选项,当-5π12≤x ≤π12时,-π2≤2x +π3≤π2, 所以函数f (x )在区间⎣⎢⎡⎦⎥⎤-5π12,π12上单调递增,C 对;对于D 选项,因为对称轴满足2x +π3=π2+k π,k ∈Z ,解得x =π12+k π2,k ∈Z ,k =0时,x =π12,D 对.12.(多选)(2022·厦门模拟)已知函数f (x )=cos 2⎝ ⎛⎭⎪⎫x -π6-cos2x ,则( )A .f (x )的最大值为1+32B .f (x )的图象关于点⎝⎛⎭⎪⎫7π6,0对称C .f (x )图象的对称轴方程为x =5π12+k π2(k ∈Z )D .f (x )在[0,2π]上有4个零点 答案 ACD解析 f (x )=1+cos ⎝⎛⎭⎪⎫2x -π32-cos2x=12+12⎝ ⎛⎭⎪⎫12cos2x +32sin2x -cos2x =34sin2x -34cos2x +12 =32sin ⎝⎛⎭⎪⎫2x -π3+12,则f (x )的最大值为1+32,A 正确;易知f (x )图象的对称中心的纵坐标为12,B 错误;令2x -π3=π2+k π(k ∈Z ),得x =5π12+k π2(k ∈Z ),此即f (x )图象的对称轴方程,C 正确; 由f (x )=32sin ⎝⎛⎭⎪⎫2x -π3+12=0,得sin ⎝⎛⎭⎪⎫2x -π3=-33,当x ∈[0,2π]时,2x -π3∈⎣⎢⎡⎦⎥⎤-π3,11π3,作出函数y =sin x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤-π3,11π3的图象,如图所示.所以方程sin ⎝⎛⎭⎪⎫2x -π3=-33在[0,2π]上有4个不同的实根, 即f (x )在[0,2π]上有4个零点,D 正确.13.(2022·唐山模拟)已知sin x +cos y =14,则sin x -sin 2y 的最大值为______. 答案 916解析 ∵sin x +cos y =14,sin x ∈[-1,1], ∴sin x =14-cos y ∈[-1,1], ∴cos y ∈⎣⎢⎡⎦⎥⎤-34,54, 即cos y ∈⎣⎢⎡⎦⎥⎤-34,1, ∵sin x -sin 2y =14-cos y -(1-cos 2y ) =cos 2y -cos y -34=⎝⎛⎭⎪⎫cos y -122-1, 又cos y ∈⎣⎢⎡⎦⎥⎤-34,1, 利用二次函数的性质知,当cos y =-34时, (sin x -sin 2y )max =⎝ ⎛⎭⎪⎫-34-122-1=916. 14.(2022·苏州八校联盟检测)已知f (x )=sin x +cos x ,若y =f (x +θ)是偶函数,则cos θ=________.答案 ±22解析 因为f (x )=2sin ⎝⎛⎭⎪⎫x +π4, 所以f (x +θ)=2sin ⎝⎛⎭⎪⎫x +θ+π4, 又因为y =f (x +θ)是偶函数,所以θ+π4=π2+k π,k ∈Z ,即θ=π4+k π,k ∈Z , 所以cos θ=cos ⎝ ⎛⎭⎪⎫π4+k π=±22.15.(多选)(2022·邯郸模拟)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π4(ω>0),已知f (x )在[0,2π]内有且仅有2个零点,则下列结论成立的有( ) A .函数y =f (x )+1在(0,2π)内没有零点B .y =f (x )-1在(0,2π)内有且仅有1个零点C .f (x )在⎝ ⎛⎭⎪⎫0,2π3上单调递增D .ω的取值范围是⎣⎢⎡⎭⎪⎫58,98答案 BCD解析 如图,由函数f (x )的草图可知,A 选项不正确,B 选项正确;若函数f (x )在[0,2π]内有且仅有2个零点,则5π4ω≤2π<9π4ω, 得58≤ω<98,当x ∈⎝ ⎛⎭⎪⎫0,2π3时,t =ωx -π4∈⎝ ⎛⎭⎪⎫-π4,2π3ω-π4⊆⎝ ⎛⎭⎪⎫-π4,π2,此时函数单调递增,故CD 正确.16.已知f (x )=sin 2⎝ ⎛⎭⎪⎫x +π8+2sin ⎝ ⎛⎭⎪⎫x +π4·cos ⎝ ⎛⎭⎪⎫x +π4-12.(1)求f (x )的单调递增区间;(2)若函数y =|f (x )|-m 在区间⎣⎢⎡⎦⎥⎤-5π24,3π8上恰有两个零点x 1,x 2.①求m 的取值范围;②求sin(x 1+x 2)的值.解 (1)f (x )=sin 2⎝ ⎛⎭⎪⎫x +π8+2sin ⎝ ⎛⎭⎪⎫x +π4·cos ⎝ ⎛⎭⎪⎫x +π4-12 =1-cos ⎝ ⎛⎭⎪⎫2x +π42+22sin ⎝⎛⎭⎪⎫2x +π2-12 =12-24cos 2x +24sin 2x +22cos 2x -12=24sin 2x +24cos 2x =12sin ⎝⎛⎭⎪⎫2x +π4, 结合正弦函数的图象与性质,可得当-π2+2k π≤2x +π4≤π2+2k π(k ∈Z ), 即-3π8+k π≤x ≤π8+k π(k ∈Z )时,函数单调递增, ∴函数y =f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π(k ∈Z ). (2)①令t =2x +π4,当x ∈⎣⎢⎡⎦⎥⎤-5π24,3π8时, t ∈⎣⎢⎡⎦⎥⎤-π6,π,12sin t ∈⎣⎢⎡⎦⎥⎤-14,12, ∴y =⎪⎪⎪⎪⎪⎪12sin t ∈⎣⎢⎡⎦⎥⎤0,12(如图).∴要使y =|f (x )|-m 在区间⎣⎢⎡⎦⎥⎤-5π24,3π8上恰有两个零点,m 的取值范围为14<m <12或m =0. ②设t 1,t 2是函数y =⎪⎪⎪⎪⎪⎪12sin t -m 的两个零点⎝⎛⎭⎪⎫即t 1=2x 1+π4,t 2=2x 2+π4, 由正弦函数图象性质可知t 1+t 2=π,即2x 1+π4+2x 2+π4=π. ∴x 1+x 2=π4,∴sin(x 1+x 2)=22.。

三角函数的图象与性质-【解题思路培养】2022年高考数学一轮复习解答题拿分秘籍(全国通用版)2023

三角函数的图象与性质-【解题思路培养】2022年高考数学一轮复习解答题拿分秘籍(全国通用版)2023

三角函数与解三角形专题一:三角函数的图象与性质高考在三角函数图象与性质的考查力度上近几年有所加强,往往将三角恒等变换与三角函数的图象和性质结合考查,先利用三角公式进行化简,然后进一步研究三角函数的性质.其中三角函数的定义域值域、单调性、奇偶性、周期性、对称性以及图象变换是主要考查对象,难度以中档以下为主.主要考查数学抽象、数学运算和逻辑推理素养.在解题过程中,要注意三角恒等变换公式的多样性和灵活性,注意题目中隐含的各种限制条件,选择合理的解决方法,灵活地实现问题的转化.一、必备秘籍【背记重点】1、正弦、余弦、正切函数的图象与性质(下表中k∈Z)2.三角函数的周期性(1)函数sin()y A x ωϕ=+的最小正周期2||T πω=.应特别注意函数|sin()|y A x ωϕ=+的周期为||T πω=,函数|sin()|y A x b ωϕ=++(0b ≠)的最小正周期2||T πω=.(2)函数cos()y A x ωϕ=+的最小正周期2||T πω=.应特别注意函数|cos()|y A x ωϕ=+的周期为||T πω=.函数|cos()|y A x b ωϕ=++(0b ≠)的最小正周期均为2||T πω=.(3)函数tan()y A x ωϕ=+的最小正周期||T πω=.应特别注意函数|tan()|y A x ωϕ=+|的周期为||T πω=,函数|tan()|y A x b ωϕ=++(0b ≠) 的最小正周期均为||T πω=. 3.三角函数的奇偶性(1)函数sin()y A x ωϕ=+是奇函数⇔k ϕπ= (k Z ∈),是偶函数⇔2k πϕπ=+(k Z ∈);(2)函数cos()y A x ωϕ=+是奇函数⇔2k πϕπ=+(k Z ∈),是偶函数⇔k ϕπ=(k Z ∈);(3)函数tan()y A x ωϕ=+是奇函数⇔k ϕπ=(k Z ∈). 4.三角函数的对称性(1)函数sin()y A x ωϕ=+的图象的对称轴由2x k πωϕπ+=+ (k Z ∈)解得,对称中心的横坐标由x k ωϕπ+=(k Z ∈)解得;(2)函数cos()y A x ωϕ=+的图象的对称轴由x k ωϕπ+= (k Z ∈)解得,对称中心的横坐标由2x k πωϕπ+=+(k Z ∈)解得;(3)函数tan()y A x ωϕ=+的图象的对称中心由2k x πωϕ+=k Z ∈)解得.5、辅助角公式:sin cos )a x b x x ϕ±=±,(其中tan ba ϕ=);6、降幂公式:21cos2sin 2xx -=21cos 2cos 2x x +=二、例题讲解(2021·浙江高考真题)1. 设函数()sin cos (R)f x x x x =+∈.(1)求函数22y fx π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的最小正周期;(2)求函数()4y f x f x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值.(2015·湖北高考真题(理))2. 某同学用“五点法”画函数π()sin()(0,)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:(⇔)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数()f x 的解析式;(⇔)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象.若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值. 考点:“五点法”画函数π()sin()(0,)2f x A x ωϕωϕ=+><在某一个周期内的图象,三角函数的平移变换,三角函数的性质.视频(2021·黑龙江哈尔滨三中高三其他模拟(文))3. 已知函数()4sin cos 2f x x x x =-. (1)求函数()f x 的最小正周期;(2)当,6x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的值域.(2020·北京海淀香山中学)4. 已知函数()2sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期;(Ⅱ)若()f x 在区间,3m π⎡⎤-⎢⎥⎣⎦上的最大值为32,求m 的最小值.(2021·上海杨浦区·复旦附中高一期中)5. 已知函数()sin()(0,0,02)f x A x A ωϕωϕπ=+>><<的部分图像如图所示.(1)求函数()f x 的解析式;(2)若()(),0,64h x f x f x x ππ⎛⎫⎡⎤=⋅-∈ ⎪⎢⎥⎝⎭⎣⎦,求()h x 的取值范围.(2021·建平县实验中学高一月考)6. 函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,已知该函数相邻两条对称轴之间的距离为3π,最大值与最小值之差为4,且对于任意的x ∈R 都有()4f x f π⎛≤⎫ ⎪⎝⎭. (1)求()f x 的解析式;(2)求()f x 在区间2,63ππ⎡⎤⎢⎥⎣⎦上的减区间;(3)当0,3x π⎡⎤∈⎢⎥⎣⎦时,()f x k =恰有两个不等的实根,求k 的取值范围.三、实战练习(2021·广东茂名市·高一期末)7. 设函数()sin 224f x x x m π⎛⎫=-++ ⎪⎝⎭,x ∈R ,m R ∈(1)求函数()f x 的最小正周期及单调增区间; (2)当04x π≤≤时,()f x 的最小值为0,求实数m 的值.(2021·浙江高三开学考试)8. 已知函数()sin f x x x =-. (1)求函数2[()]y f x =的单调递增区间;(2)若函数π()3y f x f x m ⎛⎫=++- ⎪⎝⎭(m ∈R )在[0,π]上有两个零点,求m 的取值范围.(2021·定远县育才学校高一期中(理)) 9. 已知函数211()sin 2sin cos cos sin (0)222f x x x πϕϕϕϕπ⎛⎫=+-+<< ⎪⎝⎭,其图象过点1,62π⎛⎫⎪⎝⎭. (1)求ϕ的值;(2)将函数()y f x =图像上各点的横坐标缩短到原来的12,纵坐标不变,得到函数()y g x =的图像,求函数()g x 在0,4π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(2021·防城港市防城中学高一期中)10. 已知函数()π2sin 6f x a x ωϕ⎛⎫=++ ⎪⎝⎭,x ∈R 其中0a ≠,0>ω,π02ϕ<≤,若()f x的图像相邻两最高点的距离为π2,且有一个对称中心为π,03⎛⎫ ⎪⎝⎭. (1)求ω和ϕ的值;(2)求()f x 的单调递增区间;(3)若1a =,且方程()ππ0,312f x k x ⎛⎫⎡⎤-=∈- ⎪⎢⎥⎣⎦⎝⎭有解,求k 的取值范围.(2020·江苏省姜堰第二中学高一月考)11. 已知函数π()sin()(0,0,||)2f x A x A ωϕωϕ=+>><的部分图象如图所示.(1)求函数()f x 的解析式; (2)将函数()f x 的图象向左平移3π个单位长度,得到()g x 的图象,求函数()g x 在[0,]2π上的最值并求出相应x 的值. (2021·奉新县第一中学高一月考) 12. 已知函数sin ωφf xA xB (其中A ,ω,ϕ,B 均为常数,0A >,0>ω,2πϕ<)的部分图象如图所示.(1)求函数()f x 的解析式及其递增区间;(2)若先将函数()f x 图象上所有点的横坐标变为原来的12倍(纵坐标不变),再将图象向左平移m (0m >)个单位长度,得到函数()g x 的图象,若()g x 是偶函数,求实数m的最小值. .。

高考数学大一轮复习 第四章 三角函数、解三角形 4.5 两角和与差及二倍角的三角函数 第1课时学案

高考数学大一轮复习 第四章 三角函数、解三角形 4.5 两角和与差及二倍角的三角函数 第1课时学案

§4.5三角恒等变形最新考纲考情考向分析1.会用向量的数量积推导出两角差的余弦公式.2.会用两角差的余弦公式推导出两角差的正弦、正切公式.3.会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,推导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).三角恒等变换是三角变换的工具,主要考查利用两角和与差的三角函数公式、二倍角公式进行三角函数的化简与求值,重在考查化简、求值,公式的正用、逆用以及变式运用,可单独考查,也可与三角函数的图象和性质、向量等知识综合考查,加强转化与化归思想的应用意识.选择、填空、解答题均有可能出现,中低档难度.1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β(C(α-β))cos(α+β)=cos αcos β-sin αsin β(C(α+β))sin(α-β)=sin αcos β-cos αsin β(S(α-β))sin(α+β)=sin αcos β+cos αsin β(S(α+β))tan(α-β)=tan α-tan β1+tan αtan β(T(α-β))tan(α+β)=tan α+tan β1-tan αtan β(T(α+β))2.二倍角公式sin 2α=2sin αcos α;cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;tan 2α=2tan α1-tan2α.知识拓展1.降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.2.升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α.3.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ),其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ )(2)对任意角α都有1+sin α=⎝⎛⎭⎪⎫sin α2+cos α22.( √ )(3)y =3sin x +4cos x 的最大值是7.( × )(4)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tanαtan β),且对任意角α,β都成立.( × )题组二 教材改编2.若cos α=-45,α是第三象限的角,则sin ⎝ ⎛⎭⎪⎫α+π4等于( ) A .-210 B.210 C .-7210 D.7210答案 C解析 ∵α是第三象限角, ∴sin α=-1-cos 2α=-35,∴sin ⎝ ⎛⎭⎪⎫α+π4=-35×22+⎝ ⎛⎭⎪⎫-45×22=-7210. 3.sin 347°cos 148°+sin 77°cos 58°= . 答案22解析 sin 347°cos 148°+sin 77°cos 58°=sin(270°+77°)cos(90°+58°)+sin 77°cos 58° =(-cos 77°)·(-sin 58°)+sin 77°cos 58° =sin 58°cos 77°+cos 58°sin 77° =sin(58°+77°)=sin 135°=22. 4.tan 20°+tan 40°+3tan 20°tan 40°= . 答案3解析 ∵tan 60°=tan(20°+40°)=tan 20°+tan 40°1-tan 20°tan 40°,∴tan 20°+tan 40°=tan 60°(1-tan 20°tan 40°) =3-3tan 20°tan 40°,∴原式=3-3tan 20°tan 40°+3tan 20°tan 40°= 3. 题组三 易错自纠5.化简:cos 40°cos 25°·1-sin 40°= .答案2解析 原式=cos 40°cos 25°1-cos 50°=cos 40°cos 25°·2sin 25°=cos 40°22sin 50°= 2. 6.(2018·昆明模拟)若tan α=13,tan(α+β)=12,则tan β= .答案 17解析 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=12-131+12×13=17.7.(2018·烟台模拟)已知θ∈⎝ ⎛⎭⎪⎫0,π2,且sin ⎝ ⎛⎭⎪⎫θ-π4=210,则tan 2θ= .答案 -247解析 方法一 sin ⎝⎛⎭⎪⎫θ-π4=210,得sin θ-cos θ=15,① θ∈⎝⎛⎭⎪⎫0,π2,①平方得2sin θcos θ=2425,可求得sin θ+cos θ=75,∴sin θ=45,cos θ=35,∴tan θ=43,tan 2θ=2tan θ1-tan 2θ=-247. 方法二 ∵θ∈⎝ ⎛⎭⎪⎫0,π2且sin ⎝ ⎛⎭⎪⎫θ-π4=210,∴cos ⎝⎛⎭⎪⎫θ-π4=7210,∴tan ⎝ ⎛⎭⎪⎫θ-π4=17=tan θ-11+tan θ,∴tan θ=43. 故tan 2θ=2tan θ1-tan 2θ=-247.第1课时 两角和与差的正弦、余弦和正切公式题型一 和差公式的直接应用1.(2018·青岛调研)已知sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π,tan(π-β)=12,则tan(α-β)的值为( )A .-211 B.211 C.112 D .-112答案 A解析 ∵α∈⎝ ⎛⎭⎪⎫π2,π,∴tan α=-34,又tan β=-12,∴tan(α-β)=tan α-tan β1+tan α·tan β=-34+121+⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-34=-211.2.(2017·山西太原五中模拟)已知角α为锐角,若sin ⎝ ⎛⎭⎪⎫α-π6=13,则cos ⎝⎛⎭⎪⎫α-π3等于( ) A.26+16B.3-28 C.3+28D.23-16答案 A解析 由于角α为锐角,且sin ⎝ ⎛⎭⎪⎫α-π6=13, 则cos ⎝⎛⎭⎪⎫α-π6=223,则cos ⎝ ⎛⎭⎪⎫α-π3=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6-π6=cos ⎝ ⎛⎭⎪⎫α-π6cos π6+sin ⎝ ⎛⎭⎪⎫α-π6sin π6=223×32+13×12=26+16, 故选A.3.计算sin 110°sin 20°cos 2155°-sin 2155°的值为 . 答案 12解析sin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°co s 310°=cos 20°sin 20°cos 50°=12sin 40°sin 40°=12.思维升华 (1)使用两角和与差的三角函数公式,首先要记住公式的结构特征. (2)使用公式求值,应先求出相关角的函数值,再代入公式求值.题型二 和差公式的灵活应用命题点1 角的变换典例 (1)设α,β都是锐角,且cos α=55,sin(α+β)=35,则cos β= . 答案2525解析 依题意得sin α=1-cos 2α=255, 因为sin(α+β)=35<sin α且α+β>α,所以α+β∈⎝ ⎛⎭⎪⎫π2,π,所以cos(α+β)=-45. 于是cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525.(2)(2017·泰安模拟)已知cos(75°+α)=13,则cos(30°-2α)的值为 .答案 79解析 cos(75°+α)=sin(15°-α)=13,∴cos(30°-2α)=1-2sin 2(15°-α)=1-29=79.命题点2 三角函数式的变换典例 (1)化简:(1+sin θ+cos θ)⎝⎛⎭⎪⎫sin θ2-cos θ22+2cos θ (0<θ<π);(2)求值:1+cos 20°2sin 20°-sin 10°⎝ ⎛⎭⎪⎫1tan 5°-tan 5°.解 (1)由θ∈(0,π),得0<θ2<π2,∴cos θ2>0,∴2+2cos θ=4cos2θ2=2cos θ2. 又(1+sin θ+cos θ)⎝ ⎛⎭⎪⎫sin θ2-cos θ2 =⎝⎛⎭⎪⎫2sin θ2cos θ2+2cos 2θ2⎝ ⎛⎭⎪⎫sin θ2-cos θ2=2cos θ2⎝ ⎛⎭⎪⎫sin 2θ2-cos 2θ2=-2cos θ2cos θ.故原式=-2cos θ2cos θ2cosθ2=-cos θ.(2)原式=2cos 210°2×2sin 10°cos 10°-s in 10°⎝ ⎛⎭⎪⎫cos 5°sin 5°-sin 5°cos 5°=cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 10°12sin 10° =cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10° =cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32.引申探究化简:(1+sin θ-cos θ)⎝ ⎛⎭⎪⎫sin θ2-cos θ22-2cos θ(0<θ<π).解 ∵0<θ2<π2,∴2-2cos θ=2sin θ2,又1+sin θ-cos θ=2sin θ2cos θ2+2sin 2θ2=2sin θ2⎝⎛⎭⎪⎫sin θ2+cos θ2∴原式=2sin θ2⎝⎛⎭⎪⎫sin θ2+cos θ2⎝ ⎛⎭⎪⎫sin θ2-cos θ22sinθ2=-cos θ.思维升华 (1)解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.①当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系. (2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β等.跟踪训练 (1)(2017·豫北名校联考)计算:cos 10°-3cos (-100°)1-sin 10°= .(用数字作答)答案 2解析cos 10°-3cos (-100°)1-sin 10°=cos 10°+3cos 80°1-cos 80°=cos 10°+3sin 10°2·sin 40°=2sin (10°+30°)2·sin 40°= 2.(2)(2017·南充模拟)已知α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且cos α=17,cos(α+β)=-1114,则sin β= . 答案32解析 由已知可得sin α=437,sin(α+β)=5314, ∴sin β=sin[(α+β)-α]=sin(α+β)·cos α-cos(α+β)sin α=5314×17-⎝ ⎛⎭⎪⎫-1114×437=32.用联系的观点进行三角变形典例 (1)设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π12 的值为 .(2)(1+tan 17°)·(1+tan 28°)的值为 . (3)已知sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π,则cos 2α2sin ⎝ ⎛⎭⎪⎫α+π4= .思想方法指导 三角变形的关键是找到条件和结论中的角和式子结构之间的联系.变形中可以通过适当地拆角、凑角或对式子整体变形达到目的.解析 (1)∵α为锐角且cos ⎝ ⎛⎭⎪⎫α+π6=45>0, ∴α+π6∈⎝ ⎛⎭⎪⎫π6,π2,∴s in⎝ ⎛⎭⎪⎫α+π6=35.∴sin ⎝ ⎛⎭⎪⎫2α+π12=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π6-π4=sin 2⎝ ⎛⎭⎪⎫α+π6cos π4-cos 2⎝ ⎛⎭⎪⎫α+π6sin π4=2sin ⎝ ⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α+π6-22⎣⎢⎡⎦⎥⎤2cos 2⎝ ⎛⎭⎪⎫α+π6-1 =2×35×45-22⎣⎢⎡⎦⎥⎤2×⎝ ⎛⎭⎪⎫452-1=12225-7250=17250.(2)原式=1+tan 17°+tan 28°+tan 17°·tan 28° =1+tan 45°(1-tan 17°·tan 28°)+tan 17°·tan 28° =1+1=2. (3)cos 2α2sin ⎝⎛⎭⎪⎫α+π4=cos 2α-sin 2α2⎝ ⎛⎭⎪⎫22sin α+22cos α=cos α-sin α,∵sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π,∴cos α=-45,∴原式=-75.答案 (1)17250 (2)2 (3)-751.(2017·山西五校联考)若cos θ=23,θ为第四象限角,则cos ⎝ ⎛⎭⎪⎫θ+π4的值为( )A.2+106 B.22+106 C.2-106D.22-106答案 B解析 由cos θ=23,θ为第四象限角,得sin θ=-53, 故cos ⎝ ⎛⎭⎪⎫θ+π4=22(cos θ-sin θ)=22×⎝ ⎛⎭⎪⎫23+53=22+106.故选B. 2.(2018·成都模拟)若sin α=45,则sin ⎝ ⎛⎭⎪⎫α+π4-22cos α等于( )A.225B .-225C.425D .-425答案 A解析 sin ⎝ ⎛⎭⎪⎫α+π4-22cos α=sin αcos π4+cos αsin π4-22cos α=45×22=225. 3.(2017·西安检测)已知α是第二象限角,且tan α=-13,则sin 2α等于( )A .-31010B.31010 C .-35D.35答案 C解析 因为α是第二象限角,且tan α=-13,所以sin α=1010,cos α=-31010, 所以sin 2α=2sin αcos α=2×1010×⎝ ⎛⎭⎪⎫-31010=-35, 故选C.4.(2017·河南洛阳一模)设a =cos 50°cos 127°+cos 40°sin 127°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( ) A .a >b >cB .b >a >cC .c >a >bD .a >c >b答案 D 解析 a =sin 40°cos 127°+cos 40°sin 127°=sin(40°+127°)=sin 167°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56° =sin(56°-45°)=sin 11°,c =cos 239°-sin 239°cos 239°sin 239°+cos 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°, ∵sin 13°>sin 12°>sin 11°,∴a >c >b .5.已知sin α=35且α为第二象限角,则tan ⎝⎛⎭⎪⎫2α+π4等于( ) A .-195 B .-519 C .-3117 D .-1731答案 D解析 由题意得cos α=-45,则sin 2α=-2425, cos 2α=2cos 2α-1=725. ∴tan 2α=-247, ∴tan ⎝ ⎛⎭⎪⎫2α+π4=tan 2α+tan π41-tan 2αtan π4=-247+11-⎝ ⎛⎭⎪⎫-247×1 =-1731. 6.已知sin 2α=23,则cos 2⎝⎛⎭⎪⎫α+π4等于( ) A.16B.13C.12D.23 答案 A解析 因为cos 2⎝⎛⎭⎪⎫α+π4=1+cos 2⎝ ⎛⎭⎪⎫α+π42 =1+cos ⎝ ⎛⎭⎪⎫2α+π22=1-sin 2α2, 所以cos 2⎝⎛⎭⎪⎫α+π4=1-sin 2α2=1-232=16,故选A. 7.(2018·新疆乌鲁木齐一诊)2cos 10°-sin 20°sin 70°的值是( ) A.12B.32C. 3D. 2答案 C解析 原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°·cos 20°+sin 30°·sin 20°)-sin 20°sin 70°=3cos 20°cos 20°= 3. 8.已知锐角α,β满足sin α-cos α=16,tan α+tan β+3tan αtan β=3,则α,β的大小关系是( )A .α<π4<β B .β<π4<α C.π4<α<β D.π4<β<α 答案 B解析 ∵α为锐角,sin α-cos α=16>0,∴π4<α<π2. 又tan α+tan β+3tan αtan β=3,∴tan(α+β)=tan α+tan β1-tan αtan β=3, ∴α+β=π3,又α>π4,∴β<π4<α.9.(2017·江苏)若tan ⎝⎛⎭⎪⎫α-π4=16,则tan α= . 答案 75解析 方法一 ∵tan ⎝ ⎛⎭⎪⎫α-π4=tan α-tan π41+tan αtan π4=tan α-11+tan α=16, ∴6tan α-6=1+tan α(tan α≠-1),∴tan α=75. 方法二 tan α=tan ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α-π4+π4 =tan ⎝ ⎛⎭⎪⎫α-π4+tan π41-tan ⎝⎛⎭⎪⎫α-π4tan π4=16+11-16=75. 10.(2018·河南八市质检)化简:2tan (45°-α)1-tan 2(45°-α)·sin αcos αcos 2α-sin 2α= . 答案 12解析 原式=tan(90°-2α)·12sin 2αcos 2α=sin (90°-2α)cos (90°-2α)·12·sin 2αcos 2α=cos 2αsin 2α·12·sin 2αcos 2α=12. 11.已知sin α+cos α=13,则sin 2⎝ ⎛⎭⎪⎫π4-α= . 答案 1718解析 由sin α+cos α=13,两边平方得1+sin 2α=19, 解得sin 2α=-89,所以sin 2⎝ ⎛⎭⎪⎫π4-α=1-cos ⎝ ⎛⎭⎪⎫π2-2α2 =1-sin 2α2=1+892=1718. 12.(2018·吉林模拟)已知sin(α-β)cos α-cos(β-α)sin α=35,β是第三象限角,则sin ⎝⎛⎭⎪⎫β+5π4= . 答案 7210解析 依题意可将已知条件变形为sin[(α-β)-α]=-sin β=35,sin β=-35. 又β是第三象限角,所以cos β=-45. 所以sin ⎝ ⎛⎭⎪⎫β+5π4=-sin ⎝⎛⎭⎪⎫β+π4 =-sin βcos π4-cos βsin π4=35×22+45×22=7210.13.(2017·河北衡水中学调研)若α∈⎝ ⎛⎭⎪⎫π2,π,且3cos 2α=sin ⎝ ⎛⎭⎪⎫π4-α,则sin 2α的值为( )A .-118 B.118 C .-1718 D.1718答案 C解析 由3cos 2α=sin ⎝⎛⎭⎪⎫π4-α可得 3(cos 2α-sin 2α)=22(cos α-sin α), 又由α∈⎝ ⎛⎭⎪⎫π2,π可知cos α-sin α≠0, 于是3(cos α+sin α)=22, 所以1+2sin α·cos α=118,故sin 2α=-1718.故选C. 14.已知cos ⎝ ⎛⎭⎪⎫π4+θcos ⎝ ⎛⎭⎪⎫π4-θ=14,则sin 4θ+cos 4θ的值为 . 答案 58解析 因为cos ⎝⎛⎭⎪⎫π4+θcos ⎝ ⎛⎭⎪⎫π4-θ =⎝ ⎛⎭⎪⎫22cos θ-22sin θ⎝ ⎛⎭⎪⎫22cos θ+22sin θ =12(cos 2θ-sin 2θ)=12cos 2θ=14. 所以cos 2θ=12. 故sin 4θ+cos 4θ=⎝⎛⎭⎪⎫1-cos 2θ22+⎝ ⎛⎭⎪⎫1+cos 2θ22 =116+916=58.15.(2017·武汉调研)设α,β∈[0,π],且满足sin αcos β-cos αsin β=1,则sin(2α-β)+sin(α-2β)的取值范围为 .答案 [-1,1]解析 由sin αcos β-cos αsin β=1,得sin(α-β)=1,又α,β∈[0,π],∴α-β=π2, ∴⎩⎪⎨⎪⎧ 0≤α≤π,0≤β=α-π2≤π,即π2≤α≤π, ∴sin(2α-β)+sin(α-2β)=sin ⎝⎛⎭⎪⎫2α-α+π2+sin(α-2α+π) =cos α+sin α=2sin ⎝⎛⎭⎪⎫α+π4. ∵π2≤α≤π,∴3π4≤α+π4≤5π4, ∴-1≤2sin ⎝⎛⎭⎪⎫α+π4≤1, 即取值范围为[-1,1].16.(2017·合肥模拟)已知函数f (x )=(2cos 2x -1)·sin 2x +12cos 4x . (1)求f (x )的最小正周期及递减区间;(2)若α∈(0,π),且f ⎝ ⎛⎭⎪⎫α4-π8=22,求tan ⎝⎛⎭⎪⎫α+π3 的值. 解 (1)f (x )=(2cos 2x -1)sin 2x +12cos 4x =cos 2x sin 2x +12cos 4x =12(sin 4x +cos 4x )=22sin ⎝⎛⎭⎪⎫4x +π4, ∴f (x )的最小正周期T =π2. 令2k π+π2≤4x +π4≤2k π+3π2,k ∈Z , 得k π2+π16≤x ≤k π2+5π16,k ∈Z .∴f (x )的递减区间为⎣⎢⎡⎦⎥⎤k π2+π16,k π2+5π16,k ∈Z . (2)∵f ⎝ ⎛⎭⎪⎫α4-π8=22,∴sin ⎝ ⎛⎭⎪⎫α-π4=1. ∵α∈(0,π),-π4<α-π4<3π4, ∴α-π4=π2,故α=3π4. 因此tan ⎝ ⎛⎭⎪⎫α+π3=tan 3π4+tan π31-tan 3π4tan π3=-1+31+3=2- 3.。

三角函数的图像和性质讲解(定义域,值域,周期,单调性等)

三角函数的图像和性质讲解(定义域,值域,周期,单调性等)

三角函数的图象与性质教学目标:1、掌握正、余弦函数的定义域和值域;2、进一步理解三角函数的周期性和奇偶性的概念,会求它们的周期,会判断它们的奇偶性;3、能正确求出正、余弦函数的单调区间教学重点:正、余弦函数的性质教学难点:正、余弦函数的单调性知识要点:1、定义域:函数sin y x =及cos y x =的定义域都是(),-∞+∞,即实数集R2、值域:函数sin y x =,x R ∈及cos y x =,x R ∈的值域都是[]1,1-理解:(1)在单位圆中,正弦线、余弦线的长都是等于或小于半径的长1的,所以sin 1x ≤,cos 1x ≤,即1sin 1x -≤≤,1cos 1-≤≤。

(2)函数sin y x =在2,()2x k k Z ππ=+∈时,y 取最大值1,当22x k ππ=-,()k Z ∈时,y 取最小值-1;函数cos y x =在2x k π=,()k Z ∈时,y 取最大值1,当2x k ππ=+,()k Z ∈时,y 取最小值-1。

正弦函数s i n y x =,x R ∈和余弦函数cos y x =,x R ∈是周期函数,2k π(0)k Z k ∈≠且都是它们的周期,最小正周期是2π。

4、奇偶性正弦函数sin y x =,x R ∈是奇函数,余弦函数cos y x =,x R ∈是偶函数。

理解:(1)由诱导公式()sin sin x x -=-,cos()cos x x -=可知以上结论成立;(2)反映在图象上,正弦曲线关于原点O 对称,余弦曲线关于y 轴对称。

5、单调性(1)由正弦曲线可以看出:当x 由2π-增大到2π时,曲线逐渐上升,sin x 由-1增大到1;当x 由2π增大到32π时,曲线逐渐下降,sin x 由1减至-1,由正弦函数的周期性知道:①正弦函数sin y x =在每一个闭区间2,222k k ππππ⎡⎤-++⎢⎥⎣⎦()k Z ∈上,都从-1增大到1,是增函数; ②在每一个闭区间32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈上,都从1减小到-1,是减函数。

高考一轮复习三角函数的图象与性质

高考一轮复习三角函数的图象与性质

年级高三学科数学内容标题三角函数的图象与性质编稿老师胡居化一、学习目标:1.能画出三角函数(正弦、余弦、正切)的函数图像.2.通过图像理解正弦函数、余弦函数、正切函数的性质.3.理解函数)sin(ϕω+=xAy的图像性质及其图像的变换.4.能利用三角函数的图像解决简单的实际问题.二、重点、难点:重点:(1)掌握三角函数(y=sinx,y=cosx,y=tanx)的图像性质及其简单的应用.(2)理解函数)sin(ϕω+=xAy的图像及其性质.难点:三角函数图像的应用三、考点分析:从新课标高考命题的内容来看:对三角函数的图像与性质这部分知识点进行考查时的题型有选择、填空和中等难度的大题,都以考查基础知识为主.因此第一轮复习的重点是掌握三角函数的基础知识,并能灵活运用基础知识解决问题.三角函数的图像与性质⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧ϕ+ω=→=ϕ+ω=⎪⎩⎪⎨⎧===的图像变换的图像与性质的图像与性质的图像与性质的图像与性质像与性质基本初等三角函数的图)xsin(Ayxsiny)xsin(Aytanxycosxyxsiny知识要点解析:一、三角函数的图像与性质:函数y=sinx y=cosx y=tanx图像定义域 R R 2ππ+≠k x值域 [-1,1][-1,1]R周期性 π2π2π奇偶性奇函数偶函数奇函数单调性增区间: []22,22ππππ+-k k 减区间:]232,22[ππππ++k k 增区间:]2,2[πππk k -减区间:])1(2,2[ππ+k k在开区间:)2,2(ππππ+-k k上是增函数.对称性对称轴方程:直线2ππ+=k x对称中心坐标:)0,(πk对称轴方程: 直线πk x = 对称中心坐标:)0,2(ππ+k对称中心坐标:)0,21(πk 注意:(1)正弦、余弦函数的图像用“五点法”作图,选择(0,0),()0,2(),1,23(),0,(),1,2ππππ-这五个点可作出草图.(2)三角函数线的概念.二、函数)sin(ϕω+=x A y 的图像与性质()0,0>>A ω1. 图像:利用“五点法”作函数)sin(ϕω+=x A y 的图像.令ππππϕω2,23,,2,0=+x ,然后列表、描点、连线.2. 性质:(1)定义域:),(+∞-∞(2)值域:],[A A -,(当A k x -=-=+min y 22时,ππϕω;当A k x =+=+max y 22时,ππϕω)(3)周期性:ωπ2=T(4)奇偶性:)sin(ϕω+=x A y 是奇函数)Z k (k ∈π=ϕ⇔)sin(ϕω+=x A y 是偶函数)Z k (2k ∈π+π=ϕ⇔ (5)单调性:在区间]22,22[ωϕππωϕππ-+--k k 上递增,在区间]232,22[ωϕππωϕππ-+-+k k 上递减.(6)对称性:对称轴方程:)0,2ωϕπωϕππ--+=k k x ,对称中心(三、函数)sin(ϕω+=x A y +k 的图像变换变换I :振幅变换→周期变换→相位变换(1)y=sinx 图像的横坐标不变,纵坐标伸长(A>1)或缩短(0<A<1)为原来的A 倍得到y=Asinx 的图像.(2)y=Asinx 图像的纵坐标不变,横坐标伸长(10<ω<)或缩短(1>ω)为原来的ω1倍得到x sin A y ω=的图像. x A y ωsin 3=)(的图像向左平移)0(||)0(<ϕωϕ>ϕωϕ或向右平移个单位得)sin(ϕω+=x A y 的图像.|k |)0k ()0k )x sin(A y 4平移或向下的图像向上()(<>ϕ+ω=个单位得到k x A y ++=)sin(ϕω的图像.变换II :振幅变换→相位变换→周期变换(1)y=sinx 图像的横坐标不变,纵坐标伸长(A>1)或缩短(0<A<1)为原来的A 倍得到y=Asinx 的图像.(2)x A y sin =的图像向左平移)0(||)0(<ϕϕ>ϕϕ或向右平移个单位得)sin(ϕ+=x A y 的图像.(3)y=Asin (x+ϕ)图像的纵坐标不变,横坐标伸长(10<ω<)或缩短(1>ω)为原来的ω1倍得到)x sin(A y ϕ+ω=的图像.(4)|k |)0k ()0k )x sin(A y 平移或向下图像向上(<>ϕ+ω=个单位得到k x A y ++=)sin(ϕω的图像.注意上述两种变换的区别.知识点一:函数x y x y x y tan ,cos ,sin ===的图像与性质例1. 基础题 1. 函数y=x cos 21-的定义域是_____________. 2. 不等式x x cos sin ≥的解集是____________. 3. 函数)4tan(π+=x y 的递增区间是____________. 4. 函数2sin 1sin -+=x x y 的值域是____________.思路分析:1. 由0cos 21≥-x 结合三角函数线或余弦函数图像求x 的取值范围. 2. 利用正、余弦函数图像或三角函数线求不等式的解集. 3. 根据正切函数y=tanx 的递增区间求函数)4tan(π+=x y 的递增区间.4. 用y 表示sinx ,再利用1|sin |≤x 求y 的取值范围.或用分离常数法求解. 解题过程:1. 由已知得:0cos 21≥-x 21cos ≤⇒x , 由三角函数线知:角x 的取值范围是如图所示的阴影区域. 故函数的定义域是)Z k ](35k 2,3k 2[∈π+ππ+π.2. 在同一坐标系中画出函数y=sinx 与y=cosx 的图像. 由图知:使x x cos sin ≥成立的x 的取值范围(解集)是:)z k ](45k 2,4k 2[∈π+ππ+π3. 设t=t y x tan ,4=+则π,由函数t y tan =的递增区间是)Z k (2k ,2k (∈π+ππ-π), 故),Z k (4k x 43k )Z k (2k 4x 2k ∈π+π<<π-π⇒∈π+π<π+<π-π 即函数)4tan(π+=x y 的递增区间是)Z k )(4k ,43k (∈π+ππ-π. 4. 由已知得:1y y21x sin y 21x sin )1y (1x sin 2)sinx y -+=⇒+=-⇒+=-( ()1≠y ,22)1()21(1|121|1|sin |-≤+⇒≤-+⇒≤y y y yx 整理得:02022≤≤-⇒≤+y y y ,即函数的值域是[-2,0]另解:2sin 1sin -+=x x y =2sin 312sin 3)2(sin -+=-+-x x x ,令11sin ≤≤-⇒=t t x231-+=∴t y ,显然y 是t 的减函数,故02≤≤-y ,即函数的值域是[-2,0]用这种方法求解时要注意函数的定义域.如求1sin 2sin --=x x y 的值域,采用分离常数法时要注意:1sin 1<≤-x ,此时1sin 11--=x y ,因1sin 1<≤-x ,故23≥y .若不考虑定义域会误认为:1sin 1≤≤-x 从而得出错误的结果.解题后的思考:利用基本三角函数的性质求函数的值域或求函数的单调区间或求令简单的三角不等式成立的x 的取值范围等问题是高考常见题型,且几乎都是客观题.我们除要掌握基础知识外,还要掌握一些常用的数学思想方法.要做到触类旁通,如求)0ab ,.0mn (nx cos m xcos b a y ≠≠++=的值域问题其实与本例第4题的做法一样.例2. 中等题1. 函数ωππ->ωω=上单调递增,则在区间]32,32[)0(x sin 2)x (f 的最大值是______.2. 函数xxy sin 2cos 1-+=的最大值是M ,最小值是N ,则M+N=_________________.3. 已知函数412sin 21)(),3cos()3cos()(-=-+=x x g x x x f ππ(1)求函数f (x )的最小正周期.(2)求函数)()()(x g x f x h -=的最大值、单调区间、对称轴方程及取得最大值时x 的取值集合. 思路分析:1. 利用正弦函数递增区间是]4,4[T T -,则可由]4,4[]32,32[TT -⊆-ππ建立ω的不等关系式.2. 求函数xxy sin 2cos 1-+=的值域,可利用)sin(cos sin 22ϕ++=+x b a x b x a 求解.3. (1)化简f (x )的函数式,用正弦或余弦表示.再利用T=的系数x π2求出周期.(2)先确定h (x )的函数解析式,然后再求其最值、单调区间、对称轴方程等. 解题过程:1. 由于f (x )在区间]4,4[TT -上递增(如图), ]4,4[]32,32[T T -⊆-∴ππ,43,433242324T max =ω≤ω⇒π≥ωπ⇒π≥∴.2. 由xxy sin 2cos 1-+=得:x x y y x x y cos 1sin 2cos 1)sin 2(+=-⇒+=-,12)sin(112cos sin 2-=++⇒-=+∴y x y y x x y ϕ()1tan y=ϕ,1|112|1|)sin(|,112)sin(22≤+-⇒≤++-=+∴yy x yy x ϕϕ,两边平方,整理得:34,0,340043max min 2==≤≤⇒≤-y y y y y 故, 34=+∴N M . 3. (1)由x x x x x x x f 22sin 43cos 41)sin 23cos 21)(sin 23cos 21()(-=+-= =412cos 21)2cos 1(83)2cos 1(81-=--+x x x . 故函数f (x )的最小正周期是ππ==22T . (2))42cos(222sin 212cos 21412sin 21412cos 21)(π+=-=+--=x x x x x x h ,由),Z k (8k x 85k k 24x 2k 2∈π-π≤≤π-π⇒π≤π+≤π-π 由),Z k (83k x 8k k 24x 2k 2∈π+π≤≤π-π⇒π+π≤π+≤π 故函数h (x )的增区间是]83,8[]8,85[ππππππππ+---k k k k ,减区间是, 最大值是22,此时对应的x 的值是),Z k (8k x k 24x 2∈π-π=⇒π=π+故x 的取值集合是}8|{ππ-=k x x ,对称轴方程:)Z k (8k 21x k 4x 2∈π-π=⇒π=π+. 解题后的思考:对于求形如xn m xb a y cos sin ++=)0mn ,0ab (≠≠的值域问题,及求复杂函数的周期单调时区间、等问题常采用以下变换:)sin(cos sin 22ϕ++=+x b a x b x a .因此这个变换很重要,实质是正、余弦的和(差)角公式的应用.例3. 创新与应用已知向量3)()sin ,cos 2(),sin 32,(sin -⋅===x f x x x x ,定义, (1)求函数的值域)(x f 及对称轴方程. (2)若函数)20)(x (f y π<θ<θ+=为偶函数,求θ的值. 思路分析:(1)由向量的坐标运算,先确定f (x )的解析式,再确定值域和对称轴方程.(2)由函数)sin(ϕω+=x A y 是偶函数)Z k (2k ∈π+π=ϕ⇔及x 的取值范围确定θ的值.解题过程:(1)3sin 32cos sin 2)(2-+=x x x x f=)32sin(22cos 32sin 322cos 1322sin π-=-=--⋅+x x x x x 故函数f (x )的值域是[-2,2],对称轴方程是),Z k (2k 3x 2∈π+π=π-即Z k ,125k 21x ∈π+π= (2))]32(2sin[2)(πθθ-+=+x x f ,Z k ,125k 212k 32)x (f ∈π+π=θ⇒π+π=π-θ⇔θ+是偶函数 ,又125,20π=θ∴π<θ<.解题后的思考:三角函数与平面向量的结合一直是新课标高考命题的重要题型.以向量为载体具体考查三角函数的恒等变换及三角函数的图像与性质.我们应该关注这种题型.知识点二:函数)0,0A )(x sin(A y >ω>ϕ+ω=的图像与性质例4. 基础题1. 函数y=sin2x 的图像向左平移4π个单位,再向上平移1个单位所得函数的解析式是________.2. 已知函数)0)(4x cos()x (f >ωπ+ω=的最小正周期是π,将y=f (x )的图像向左平移||ϕ个单位,所得图像关于原点成中心对称,则||ϕ=_______________.3. 函数)32sin(2π+=x y 在[0,]π上的单调递增区间是______________.思路分析:1. 函数y=sin2x 向左平移4π个单位是:x 2cos )4x (2sin y =π+=.2. 由已知得ω=2,故]4|)|x (2cos[y ||)4x 2cos()x (f π+ϕ+=ϕ→π+=得:向左平移由平移后的函数图像关于原点对称求|ϕ|的值.3. 由正弦函数y=sinx 的增区间得:223222πππππ+≤+≤-k x k ,求出x 的取值区间,再赋予k 的整数值,从而求出符合条件的单调区间. 解题过程:1. 函数y=sin2x 向左平移4π个单位后得:)4x (2sin y π+=,再向上平移1个单位后得:)4x (2sin y π+=x x 2cos 22cos 11=+=+ 2. 由已知得:ω=2,故→π+=)4x 2cos()x (f 向左平移||ϕ得:]4|)|x (2cos[y π+ϕ+=,2k 4||2,4||2x 2cos y π+π=π+ϕ⎪⎭⎫ ⎝⎛π+ϕ+=称,故此函数图像关于原点对 Z k ,8k 21||∈π+π=ϕ∴. 3. 由已知得:223222πππππ+≤+≤-k x k ⇒Z k ,12k x 125k ∈π+π≤≤π-π ⎥⎦⎤⎢⎣⎡ππ⎥⎦⎤⎢⎣⎡π==π∈,,,单调递增区间是时满足条件,即所求的故1271201k ,0k ],,0[x .解题后的思考:对函数图像的平移不仅要注意平移的单位,更要注意平移的方向即:x 轴方向上的平移是“左加右减”,y 轴方向上的平移是“上加下减”,对函数y=)0(,0A ),x cos(A >ω>ϕ+ω的奇偶性的讨论应注意:y=)0,0A (),x cos(A >ω>ϕ+ω是奇函数的充要条件是:)Z k (k ,2k ∈π=ϕπ+π=ϕ是偶函数的充要条件是.例5. 中等题1. 已知函数ωϕ+ω=)(x sin(A )x (f >0,A>0,)2||πϕ<的图像如图,求函数f (x )的解析式.2. 已知函数x x x x f 2cos 2cos sin 321)(++-=; (1)当x ]2,0[π∈时,求函数的值域.(2)求图像上距原点最近的对称中心坐标.(3)若角βα,的终边不共线,且)tan(),()(βαβα+=求f f .思路分析:1. 根据函数图像,求出A=3,ωπππ⇒=+=46124T 的值,由当x=6π-时,y=0得出ϕ的范围从而求ϕ的值.2. (1)化简函数式为)62sin(2)(π+=x x f ,然后求其值域.(2)由ππk x =+62确定图像上距原点最近的对称中心坐标.(3)由角βα,的终边不共线,且)tan(),(f )(f β+αβ=α求的值.解题过程:1.由图像知:A=3,2,46124=∴=⇒=+=ωππππT T , 又πϕπk 2)6(2=+-32||)Z k (,3k 2π=ϕ⇒π<ϕ∈π+π=ϕ⇒,故函数)x (f 的解析式为)32sin(3π+=x y .2. (1))62sin(22cos 2sin 3)(π+=+=x x x x f ,当x ]2,0[π∈时,1)62sin(21≤+≤-πx ,2)(1≤≤-∴x f .(2)由ππk x =+6212k 21x π-π=⇒)Z k (∈, 即图像上距原点最近的对称中心坐标是)0,12(π-.(3)由已知得:)62sin(2)62sin(2πβπα+=+,又βα,不共线得:Z k ,3k )Z k (k 2)62()62(∈π+π=β+α⇒∈π+π=π+β+π+α,3)tan(=+∴βα解题后的思考:求解函数k x A y ++=)sin(ϕω的解析式问题时,关键是确定ϕω,,A k ,这四个量)0(>ω,根据函数的最值确定A ,k 的值,由函数的周期确定ω的值,较难确定的是ϕ的值.根据“五点法”作图原理知:在一个周期内,图像上升时与x 轴的第一个交点满足:0=+ϕωx ;第二个点是图像的最高点,满足:2πϕω=+x ;第三个点是图像下降时与x轴的交点,满足:ωπϕ=+x ;第四个点是图像的最低点,满足:23x π=ϕ+ω;第五个点满足:πϕω2=+x .由此确定ϕ的值(同时注意已知条件中的ϕ的取值范围).例6. 实际应用已知某海滨浴场的海浪的高度y 米是时间t (0)24≤≤t (单位:时)的函数,记作:)(t f y =下表是某日各时浪高的数据: t (时) 0 3 6 9 12 15 18 21 24y (米)1.51.01.51.01.510.50.991.5ω(1)求函数y=b t A +ωcos 的最小正周期T ,振幅A 及函数解析式.(2)依据规定:当海浪的高度高于1米时才可对冲浪爱好者开放,请根据(1)中的结论判断一天内的上午8:00到晚上20:00之间有多长时间可供冲浪爱好者进行运动? 思路分析:由表中的数据可以得出:周期T=12,从而求出ω的值,再由表中的数据建立A ,b 的关系式,则可求出函数解析式.由y>1求出时间t 的取值范围,进而确定冲浪的时间. 解题过程:由表中的数据得:T=12,故ω=62ππ=T ,由t=0时,y=1.5得:A+b=1.5, 由t=3时,y=1.0得:b=1.0,21=∴A ,故函数解析式是16cos 21+=t y π,由)Z k (2k 2t 62k 20t 6cos 1y ∈π+π<π<π-π⇒>π>得:,24t 0,3k 12t 3k 12≤≤+<<-∴ ,令k=0,1,2得:24t 21,15t 9,3t 0≤<<<<≤或或,故一天内的上午8:00到晚上20:00之间,有6个小时的时间可供冲浪爱好者进行运动,即上午9:00到下午的15:00.解题后的思考:本题考查三角函数的实际应用,解题关键是提炼和归纳已知(或图表)中的信息,从而锻炼自己处理数据信息的能力.(答题时间:45分钟)一、选择题1. 函数y=)32sin(π+x 的一条对称轴是( )6.D 5.C 127.B 8.A ππππ 2. 将函数)3sin(π-=x y 图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),再将图像向左平移3π个单位,得到函数g (x )的图像,则g (x )=( ) )6x 2sin(y .D )6x 21sin(y .C )2x 21sin(y .B x 21sin y .A π-=π-=π-==3. 函数)2cos(),32sin(|,sin ||,|sin ππ--=+===x y x y x y x y 中,周期都是π的有( )个.A . 1B . 2C . 3D . 44. 函数)0)(x 2sin(y π≤ϕ≤ϕ+=是R 上的偶函数,则=ϕ( )πππ.D 2.C 4.B 0.A5. 函数)2sin()(ϕ+=x x f 的图像关于直线8π=x 对称,则ϕ的值可能是( )43.D 4.C 4.B 2.A ππ-ππ *6. 函数y=sinx -|sinx|的值域是( ) A . [-1,0]B . [0,1]C . [-1,1]D . [-2,0]二、填空题*7. 函数xxy cos 2cos 2-+=的最大值是——————.8. 若函数)3tan(2)(π+=kx x f 的最小正周期为T ,且1<T<2,则自然数k 的值是______.*9. )10(x sin 2)x (f <ω<ω=在]3,0[π上的最大值是2,则________=ω.10. 函数)321sin(π--=x y 的单调递减区间是_________________.三、计算题*11. 已知函数⎪⎭⎫ ⎝⎛π<ϕ>ωϕ+ω=2||,0)x sin()x (f (1)若cosϕϕπϕπ,求0sin 43sincos 4=-的值. (2)在(1)的条件下,若函数f (x )的图像的相邻两条对称轴之间的距离是3π,求函数f (x )的解析式,并求最小正实数m 使得函数f (x )的图像向左平移m 个单位后所对应的函数是偶函数.一、选择题1. B 解析:由)Z k (12k 21x 2k 3x 2∈π+π=⇒π+π=π+,当k=1时,127π=x . 2. C 解析:)621sin(]3)3(21sin[)321sin()3sin(πππππ-=-+=→-=→-=x x y x y x y . 3. C 解析:y=sin|x|不是周期函数,其余三个的周期都是π. 4. C 解析:由已知:20,2πϕππϕ==+=时,k k .5. B 解析:由已知:1)4sin(18f ±=+⇒±=ϕππ)(,结合选项知选B .6. D 解析:⎩⎨⎧<≥=)0x (sin x sin 2)0x (sin 0y 02≤≤-⇒y .二、填空题7. 3(解析:由031031|122|122cos cos 2cos 22≤+-⇒≤+-⇒+-=⇒-+=y y yy y y x x x y331≤≤∴y ). 8. 2或3(解析:得:由21,<<=T k T π32k ,N k ,k 2或故=∈π<<π+). 9.43(解析:由2)3()(,330]3,0[max ==∴<≤≤⇒∈ωππωπωπf x f x x ,即)43223sin=⇒=ωωπ.10. ]354,34[ππππ+-k k ,Z k ∈. (解析:由2232122πππππ+≤-≤-k x k 得:∈x ]354,34[ππππ+-k k ),Z k ∈).三、计算题11. 解:(1)由cos0sin 4sin cos 4cos 0sin 43sincos 4=-=-ϕπϕπϕπϕπ得:, 4,2||04cos(πϕπϕϕπ=<=+∴故,).(2)由已知得:)43sin()(,332T πωπ+=∴=⇒=x x f , 函数f (x )的图像向左平移m 个单位后所对应的函数为:)]33(3sin[]4)(3sin[)(ππ++=++=m x m x x g ,由g (x )是偶函数Z k ,123k m Z k ,2k 3m 3∈π+π=⇒∈π+π=π+⇔, ∴最小正实数12π=m .。

2020届高考数学一轮复习学霸提分秘籍专题4.5 函数y=Asin(ωx+ψ)的图像与性质(解析版)

2020届高考数学一轮复习学霸提分秘籍专题4.5 函数y=Asin(ωx+ψ)的图像与性质(解析版)

第四篇三角函数与解三角形专题4.05函数y=Asin(ωx+φ)的图象与性质【考试要求】1.结合具体实例,了解y=A sin(ωx+φ)的实际意义;能借助图象理解参数ω,φ,A的意义,了解参数的变化对函数图象的影响;2.会用三角函数解决简单的实际问题,体会可以利用三角函数构建刻画事物周期变化的数学模型.【知识梳理】1.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个关键点,如下表所示.2.函数y=Asin(ωx+φ)的有关概念3.函数y=sin x的图象经变换得到y=A sin(ωx+φ)的图象的两种途径4.三角函数应用(1)用正弦函数可以刻画三种周期变化的现象:简谐振动(单摆、弹簧等),声波(音叉发出的纯音),交变电流.(2)三角函数模型应用题的关键是求出函数解析式,可以根据给出的已知条件确定模型f (x )=A sin(ωx +φ)+k 中的待定系数.(3)把实际问题翻译为函数f (x )的性质,得出函数性质后,再把函数性质翻译为实际问题的答案.【微点提醒】1.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.2.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2(k ∈Z )确定;对称中心由ωx +φ=k π(k ∈Z )确定其横坐标.3.音叉发出的纯音振动可以用三角函数表达为y =A sin ωx ,其中x 表示时间,y 表示纯音振动时音叉的位移,|ω|2π表示纯音振动的频率(对应音高),A 表示纯音振动的振幅(对应音强).4.交变电流可以用三角函数表达为y =A sin(ωx +φ),其中x 表示时间,y 表示电流,A 表示最大电流,|ω|2π表示频率,φ表示初相位.【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)将函数y =3sin 2x 的图象左移π4个单位长度后所得图象的解析式是y =3sin ⎝⎛⎭⎫2x +π4.( ) (2)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( ) (3)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.( ) (4)由图象求解析式时,振幅A 的大小是由一个周期内图象中最高点的值与最低点的值确定的.( )【答案】 (1)× (2)× (3)√ (4)√【解析】 (1)将函数y =3sin 2x 的图象向左平移π4个单位长度后所得图象的解析式是y =3cos2x .(2)“先平移,后伸缩”的平移单位长度为|φ|,而“先伸缩,后平移”的平移单位长度为⎪⎪⎪⎪φω.故当ω≠1时平移的长度不相等.【教材衍化】2.(必修4P56T3改编)y =2sin ⎝⎛⎭⎫12x -π3的振幅、频率和初相分别为( ) A.2,4π,π3B.2,14π,π3C.2,14π,-π3D.2,4π,-π3【答案】 C【解析】 由题意知A =2,f =1T =ω2π=14π,初相为-π3.3.(必修4P62例4改编)某地农业监测部门统计发现:该地区近几年的生猪收购价格每四个月会重复出现.下表是今年前四个月的统计情况:选用一个正弦型函数来近似描述收购价格(元/斤)与相应月份之间的函数关系为________________________. 【答案】 y =6-cos π2x【解析】 设y =A sin(ωx +φ)+B (A >0,ω>0),由题意得A =1,B =6,T =4,因为T =2πω,所以ω=π2,所以y =sin ⎝⎛⎭⎫π2x +φ+6.因为当x =2时,y =7,所以sin(π+φ)+6=7,即sin φ=-1,则φ=-π2+2k π(k ∈Z ),可取φ=-π2.所以y =sin ⎝⎛⎭⎫π2x -π2+6=6-cos π2x . 【真题体验】4.(2019·北京通州区模拟)函数y =2cos ⎝⎛⎭⎫2x +π6的部分图象是( )【答案】 A【解析】 由y =2cos ⎝⎛⎭⎫2x +π6可知,函数的最大值为2,故排除D ;又因为函数图象过点⎝⎛⎭⎫π6,0,故排除B ;又因为函数图象过点⎝⎛⎭⎫-π12,2,故排除C. 5.(2016·全国Ⅰ卷)若将函数y =2sin ⎝⎛⎭⎫2x +π6的图象向右平移14个周期后,所得图象对应的函数为( )A.y =2sin ⎝⎛⎭⎫2x +π4 B.y =2sin ⎝⎛⎭⎫2x +π3 C.y =2sin ⎝⎛⎭⎫2x -π4D.y =2sin ⎝⎛⎭⎫2x -π3 【答案】 D【解析】 函数y =2sin ⎝⎛⎭⎫2x +π6的周期为π,将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期即π4个单位,所得函数为y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π6=2sin ⎝⎛⎭⎫2x -π3,故选D. 6.(2018·济南模拟改编)y =cos(x +1)图象上相邻的最高点和最低点之间的距离是________. 【答案】π2+4【解析】 相邻最高点与最低点的纵坐标之差为2,横坐标之差恰为半个周期π,故它们之间的距离为π2+4.【考点聚焦】考点一 函数y =A sin(ωx +φ)的图象及变换【例1】 某同学用“五点法”画函数f (x )=A sin(ωx +φ) ⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值. 【答案】见解析【解析】(1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为函数y =sin x 图象的对称中心为(k π,0)(k ∈Z ). 令2x +2θ-π6=k π,k ∈Z ,解得x =k π2+π12-θ(k ∈Z ).由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0成中心对称,所以令k π2+π12-θ=5π12(k ∈Z ),解得θ=k π2-π3(k ∈Z ). 由θ>0可知,当k =1时,θ取得最小值π6.【规律方法】 作函数y =A sin(ωx +φ)(A >0,ω>0)的图象常用如下两种方法:(1)五点法作图,用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象;(2)图象的变换法,由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.【训练1】 (1)(2017·全国Ⅰ卷)已知曲线C 1:y =cos x ,C 2:y =sin ⎝⎛⎭⎫2x +2π3,则下面结论正确的是( )A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2(2)(2018·青岛调研)若把函数y =sin ⎝⎛⎭⎫ωx -π6的图象向左平移π3个单位长度,所得到的图象与函数y =cos ωx 的图象重合,则ω的一个可能取值是( ) A.2B.32C.23D.12【答案】 (1)D (2)A【解析】 (1)易知C 1:y =cos x =sin ⎝⎛⎭⎫x +π2,把曲线C 1上的各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y =sin ⎝⎛⎭⎫2x +π2的图象,再把所得函数的图象向左平移π12个单位长度,可得函数y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π2=sin ⎝⎛⎭⎫2x +2π3的图象,即曲线C 2,因此D 项正确. (2)y =sin ⎝⎛⎭⎫ωx +ω3π-π6和函数y =cos ωx 的图象重合,可得ω3π-π6=π2+2k π,k ∈Z ,则ω=6k +2,k ∈Z .∴2是ω的一个可能值. 考点二 求函数y =A sin(ωx +φ)的解析式【例2】 (1)(一题多解)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为________.(2)(2019·长郡中学、衡阳八中联考)函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的部分图象如图所示,已知A ⎝⎛⎭⎫5π12,1,B ⎝⎛⎭⎫11π12,-1,则f (x )图象的对称中心为( )A.⎝⎛⎭⎫k π2+5π6,0(k ∈Z ) B.⎝⎛⎭⎫k π+5π6,0(k ∈Z ) C.⎝⎛⎭⎫k π2+π6,0(k ∈Z )D.⎝⎛⎭⎫k π+π6,0(k ∈Z ) 【答案】 (1)f (x )=2sin ⎝⎛⎭⎫2x +π3 (2)C 【解析】 (1)由题图可知A =2, 法一T 4=7π12-π3=π4, 所以T =π,故ω=2, 因此f (x )=2sin(2x +φ),又⎝⎛⎭⎫π3,0对应五点法作图中的第三个点,因此2×π3+φ=π+2k π(k ∈Z ),所以φ=π3+2k π(k ∈Z ).又|φ|<π2,所以φ=π3.故f (x )=2sin ⎝⎛⎭⎫2x +π3. 法二 以⎝⎛⎭⎫π3,0为第二个“零点”,⎝⎛⎭⎫7π12,-2为最小值点, 列方程组⎩⎨⎧ω·π3+φ=π,ω·7π12+φ=3π2,解得⎩⎪⎨⎪⎧ω=2,φ=π3, 故f (x )=2sin ⎝⎛⎭⎫2x +π3.(2)T =2⎝⎛⎭⎫11π12-5π12=π=2πω,∴ω=2, 因此f (x )=sin(2x +φ).由五点作图法知A ⎝⎛⎭⎫5π12,1是第二点,得2×5π12+φ=π2, 2×5π12+φ=π2+2k π(k ∈Z ),所以φ=-π3+2k π(k ∈Z ),又|φ|<π2,所以φ=-π3,∴f (x )=sin ⎝⎛⎭⎫2x -π3. 由2x -π3=k π(k ∈Z ),得x =k π2+π6(k ∈Z ).∴f (x )图象的对称中心为⎝⎛⎭⎫k π2+π6,0(k ∈Z ).【规律方法】 1.已知f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,利用周期性求ω,难点是“φ”的确定. 2.y =A sin(ωx +φ)中φ的确定方法(1)代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.(2)五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.【训练2】 (1)(2019·衡水中学一模)已知函数f (x )=-2cos ωx (ω>0)的图象向左平移φ⎝⎛⎭⎫0<φ<π2个单位,所得的部分函数图象如图所示,则φ的值为( )A.π6B.5π6C.π12D.5π12(2)(2019·山东省重点中学质检)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,|φ|<π2,ω>0的图象的一部分如图所示,则f (x )图象的对称轴方程是________.【答案】 (1)C (2)x =k π2+π6(k ∈Z )【解析】 (1)由题图知,T =2⎝⎛⎭⎫11π12-5π12=π, ∴ω=2πT =2,∴f (x )=-2cos 2x ,∴f (x +φ)=-2cos(2x +2φ),则由图象知,f ⎝⎛⎭⎫512π+φ=-2cos ⎝⎛⎭⎫56π+2φ=2. ∴5π6+2φ=2k π+π(k ∈Z ),则φ=π12+k π(k ∈Z ). 又0<φ<π2,所以φ=π12.(2)由图象知A =2,又1=2sin(ω×0+φ),即sin φ=12,又|φ|<π2,∴φ=π6.又11π12×ω+π6=2π,∴ω=2, ∴f (x )=2sin ⎝⎛⎭⎫2x +π6, 令2x +π6=π2+k π(k ∈Z ),得x =k π2+π6(k ∈Z ).∴f (x )=2sin ⎝⎛⎭⎫2x +π6的对称轴方程为x =k π2+π6(k ∈Z ). 考点三 y =A sin(ωx +φ)图象与性质的应用 角度1 三角函数模型的应用【例3-1】 如图,某大风车的半径为2米,每12秒旋转一周,它的最低点O 离地面1米,点O 在地面上的射影为A .风车圆周上一点M 从最低点O 开始,逆时针方向旋转40秒后到达P 点,则点P 到地面的距离是________米.【答案】 4【解析】 以圆心O 1为原点,以水平方向为x 轴方向,以竖直方向为y 轴方向建立平面直角坐标系,则根据大风车的半径为2米,圆上最低点O 离地面1米,12秒转动一周,设∠OO 1P =θ,运动t (秒)后与地面的距离为f (t ),又周期T =12,所以θ=π6t ,则f (t )=3+2sin ⎝⎛⎭⎫θ-π2=3-2cos π6t (t ≥0), 当t =40 s 时,f (t )=3-2cos ⎝⎛⎭⎫π6×40=4. 角度2 三角函数性质与图象的综合应用【例3-2】 已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π. (1)求函数f (x )的单调递增区间;(2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值. 【答案】见解析【解析】(1)f (x )=2sin ωx cos ωx +3(2sin 2ωx -1) =sin 2ωx -3cos 2ωx =2sin ⎝⎛⎭⎫2ωx -π3. 由最小正周期为π,得ω=1, 所以f (x )=2sin ⎝⎛⎭⎫2x -π3, 由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),整理得k π-π12≤x ≤k π+5π12(k ∈Z ),所以函数f (x )的单调递增区间是⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ). (2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到y =2sin 2x +1的图象;所以g (x )=2sin 2x +1.令g (x )=0,得x =k π+7π12或x =k π+11π12(k ∈Z ),所以在[0,π]上恰好有两个零点,若y =g (x )在[0,b ]上有10个零点,则b 不小于第10个零点的横坐标即可.所以b 的最小值为4π+11π12=59π12.【规律方法】1.三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题,二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题. 2.方程根的个数可转化为两个函数图象的交点个数.3.研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.【训练3】 (1)某城市一年中12个月的平均气温与月份的关系可近似地用函数y =a +A cos ⎣⎡⎦⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高为28 ℃,12月份的月平均气温最低为18 ℃,则10月份的平均气温为________℃. 【答案】 20.5【解析】 因为当x =6时,y =a +A =28; 当x =12时,y =a -A =18,所以a =23,A =5, 所以y =f (x )=23+5cos ⎣⎡⎦⎤π6(x -6), 所以当x =10时,f (10)=23+5cos ⎝⎛⎭⎫π6×4 =23-5×12=20.5.(2)已知函数f (x )=5sin x cos x -53cos 2x +523(其中x ∈R ),求:①函数f (x )的最小正周期;②函数f (x )的单调区间;③函数f (x )图象的对称轴和对称中心. 【答案】见解析【解析】①因为f (x )=52sin 2x -532(1+cos 2x )+532=5(12sin 2x -32cos 2x )=5sin ⎝⎛⎭⎫2x -π3, 所以函数的最小正周期T =2π2=π. ②由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12(k ∈Z ),所以函数f (x )的递增区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ). 由2k π+π2≤2x -π3≤2k π+3π2(k ∈Z ),得k π+5π12≤x ≤k π+11π12(k ∈Z ),所以函数f (x )的递减区间为⎣⎡⎦⎤k π+5π12,k π+11π12(k ∈Z ). ③由2x -π3=k π+π2(k ∈Z ),得x =k π2+5π12(k ∈Z ),所以函数f (x )的对称轴方程为x =k π2+5π12(k ∈Z ).由2x -π3=k π(k ∈Z ),得x =k π2+π6(k ∈Z ),所以函数f (x )的对称中心为⎝⎛⎭⎫k π2+π6,0(k ∈Z ). 【反思与感悟】1.五点法作图及图象变换问题(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;(2)图象变换时的伸缩、平移总是针对自变量x 而言,而不是看角ωx +φ的变化. 2.由图象确定函数解析式解决由函数y =A sin(ωx +φ)的图象确定A ,ω,φ的问题时,常常以“五点法”中的五个点作为突破口,要从图象的升降情况找准第一个“零点”和第二个“零点”的位置.要善于抓住特殊量和特殊点. 【易错防范】1.由函数y =sin x 的图象经过变换得到y =A sin(ωx +φ)的图象,如先伸缩再平移时,要把x 前面的系数提取出来.2.复合形式的三角函数的单调区间的求法.函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,基本思想是把ωx +φ看作一个整体.若ω<0,要先根据诱导公式进行转化.3.求函数y =A sin(ωx +φ)在x ∈[m ,n ]上的最值,可先求t =ωx +φ的范围,再结合图象得出y =A sin t 的值域. 【核心素养提升】【逻辑推理与数学运算】——三角函数中有关ω的求解数学运算是解决数学问题的基本手段,通过运算可促进学生思维的发展;而逻辑推理是得到数学结论、构建数学体系的重要方式.运算和推理贯穿于探究数学问题的始终,可交替使用,相辅相成.类型1 三角函数的周期T 与ω的关系【例1】 为了使函数y =sin ωx (ω>0)在区间[0,1]上至少出现50次最大值,则ω的最小值为( ) A.98π B.1972π C.1992π D.100π【答案】 B【解析】 由题意,至少出现50次最大值即至少需用4914个周期,所以1974T =1974·2πω≤1,所以ω≥1972π.【评析】 解决此类问题的关键在于结合条件弄清周期T =2πω与所给区间的关系,从而建立不等关系.类型2 三角函数的单调性与ω的关系【例2】 若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤π3,π2上单调递减,则ω的取值范围是( )A.0≤ω≤23B.0≤ω≤32C.23≤ω≤3D.32≤ω≤3 【答案】 D【解析】 令π2+2k π≤ωx ≤32π+2k π(k ∈Z ),得π2ω+2k πω≤x ≤3π2ω+2k πω,因为f (x )在⎣⎡⎦⎤π3,π2上单调递减,所以⎩⎨⎧π2ω+2k πω≤π3,π2≤3π2ω+2k πω,得6k +32≤ω≤4k +3.又ω>0,所以k ≥0,又6k +32<4k +3,得0≤k <34,所以k =0.故32≤ω≤3. 【评析】 根据正弦函数的单调递减区间,确定函数f (x )的单调递减区间,根据函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤π3,π2上单调递减,建立不等式,即可求ω的取值范围. 类型3 三角函数对称性、最值与ω的关系【例3】 (1)(2019·枣庄模拟)已知f (x )=sin ωx -cos ωx ⎝⎛⎭⎫ω>23,若函数f (x )图象的任何一条对称轴与x 轴交点的横坐标都不属于区间(π,2π),则ω的取值范围是________.(结果用区间表示)(2)已知函数f (x )=2sin ωx 在区间⎣⎡⎦⎤-π3,π4上的最小值为-2,则ω的取值范围是________. 【答案】 (1)⎣⎡⎦⎤34,78 (2)⎩⎨⎧⎭⎬⎫ω|ω≤-2或ω≥32 【解析】 (1)f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π4, 令ωx -π4=π2+k π(k ∈Z ),解得x =3π4ω+k πω(k ∈Z ).当k =0时,3π4ω≤π,即34≤ω,当k =1时,3π4ω+πω≥2π,即ω≤78.综上,34≤ω≤78.(2)显然ω≠0,分两种情况:若ω>0,当x ∈⎣⎡⎦⎤-π3,π4时,-π3ω≤ωx ≤π4ω. 因函数f (x )=2sin ωx 在区间⎣⎡⎦⎤-π3,π4上的最小值为-2,所以-π3ω≤-π2,解得ω≥32. 若ω<0,当x ∈⎣⎡⎦⎤-π3,π4时,π4ω≤ωx ≤-π3ω, 因函数f (x )=2sin ωx 在区间⎣⎡⎦⎤-π3,π4上的最小值为-2,所以π4ω≤-π2,解得ω≤-2. 综上所述,符合条件的实数ω≤-2或ω≥32.【评析】 这类三角函数题除了需要熟练掌握正弦函数、余弦函数、正切函数的单调性外,还必须知晓一个周期里函数最值的变化,以及何时取到最值,函数取到最值的区间要求与题目给定的区间的关系如何. 【分层训练】【基础巩固题组】(建议用时:40分钟) 一、选择题1.函数y =A sin(ωx +φ)的部分图象如图所示,则( )A.y =2sin ⎝⎛⎭⎫2x -π6B.y =2sin ⎝⎛⎭⎫2x -π3C.y =2sin ⎝⎛⎭⎫x +π6D.y =2sin ⎝⎛⎭⎫x +π3 【答案】 A【解析】 由题图可知,A =2,T =2⎣⎡⎦⎤π3-⎝⎛⎭⎫-π6=π, 所以ω=2,由五点作图法知2×π3+φ=π2+2k π(k ∈Z ),所以φ=-π6,所以函数的解析式为y =2sin ⎝⎛⎭⎫2x -π6. 2.(2019·杭州期中)将函数y =sin ⎝⎛⎭⎫x +φ2·cos ⎝⎛⎭⎫x +φ2的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的取值不可能是( ) A.-3π4B.-π4C.π4D.5π4【答案】 B【解析】 将y =sin ⎝⎛⎭⎫x +φ2cos ⎝⎛⎭⎫x +φ2=12sin(2x +φ)的图象向左平移π8个单位后得到的图象对应的函数为y =12sin ⎝⎛⎭⎫2x +π4+φ,由题意得π4+φ=k π+π2(k ∈Z ),∴φ=k π+π4(k ∈Z ),当k =-1,0,1时,φ的值分别为-3π4,π4,5π4,φ的取值不可能是-π4. 3.(2019·咸阳模拟)已知点P (32,-332)是函数y =A sin(ωx +φ)(ω>0)图象上的一个最低点,M ,N 是与点P 相邻的两个最高点,若∠MPN =60°,则该函数的最小正周期是( ) A.3 B.4 C.5 D.6 【答案】 D【解析】 由P 是函数y =A sin(ωx +φ)(ω>0)图象上的一个最低点,M ,N 是与P 相邻的两个最高点,知|MP |=|NP |,又∠MPN =60°,所以△MPN 为等边三角形. 由P (32,-332),得|MN |=2×3323×2=6.∴该函数的最小正周期T =6.4.(2018·天津卷)将函数y =sin ⎝⎛⎭⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数( )A.在区间⎣⎡⎦⎤-π4,π4上单调递增 B.在区间⎣⎡⎦⎤-π4,0上单调递减 C.在区间⎣⎡⎦⎤π4,π2上单调递增 D.在区间⎣⎡⎦⎤π2,π上单调递减【解析】 y =sin ⎝⎛⎭⎫2x +π5=sin 2⎝⎛⎭⎫x +π10,将其图象向右平移π10个单位长度,得到函数y =sin 2x 的图象.由2k π-π2≤2x ≤2k π+π2,k ∈Z ,得k π-π4≤x ≤k π+π4,k ∈Z .令k =0,可知函数y=sin 2x 在区间⎣⎡⎦⎤-π4,π4上单调递增. 5.(2019·张家界模拟)将函数f (x )=3sin 2x -cos 2x 的图象向左平移t (t >0)个单位后,得到函数g (x )的图象,若g (x )=g ⎝⎛⎭⎫π12-x ,则实数t 的最小值为( ) A.5π24 B.7π24C.5π12D.7π12【答案】 B【解析】 由题意得,f (x )=2sin ⎝⎛⎭⎫2x -π6, 则g (x )=2sin ⎝⎛⎭⎫2x +2t -π6, 从而2sin ⎝⎛⎭⎫2x +2t -π6=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫π12-x +2t -π6=-2sin(2x -2t )=2sin(2x -2t +π),又t >0, 所以当2t -π6=-2t +π+2k π(k ∈Z )时,即t =7π24+k π2(k ∈Z ),实数t min =724π.二、填空题6.将函数y =sin x 的图象上所有的点向右平移π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是________________. 【答案】 y =sin ⎝⎛⎭⎫12x -π10―————————―→横坐标伸长到原来的2倍y =sin ⎝⎛⎭⎫12x -π10. 7.(2018·沈阳质检)函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,则f ⎝⎛⎭⎫π4=________.【解析】 由图象可知A =2,34T =11π12-π6=3π4,∴T =π,∴ω=2.∵当x =π6时,函数f (x )取得最大值,∴2×π6+φ=π2+2k π(k ∈Z ),∴φ=π6+2k π(k ∈Z ),∵0<φ<π,∴φ=π6,∴f (x )=2sin ⎝⎛⎭⎫2x +π6, 则f ⎝⎛⎭⎫π4=2sin ⎝⎛⎭⎫π2+π6=2cos π6= 3. 8.已知f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=____________________________________. 【答案】143【解析】 依题意,x =π6+π32=π4时,y 有最小值,∴sin ⎝⎛⎭⎫π4·ω+π3=-1,∴π4ω+π3=2k π+3π2 (k ∈Z ). ∴ω=8k +143(k ∈Z ),因为f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值, 所以π3-π4≤πω,即ω≤12,令k =0,得ω=143.三、解答题9.某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差. 【答案】见解析【解析】(1)f (8)=10-3cos ⎝⎛⎭⎫π12×8-sin ⎝⎛⎭⎫π12×8 =10-3cos2π3-sin 2π3=10-3×⎝⎛⎭⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2(32cos π12t +12sin π12t ) =10-2sin ⎝⎛⎭⎫π12t +π3, 又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝⎛⎭⎫π12t +π3≤1. 当t =2时,sin ⎝⎛⎭⎫π12t +π3=1; 当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1. 于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天的最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.10.已知函数f (x )=3sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻最高点的距离为π. (1)求f ⎝⎛⎭⎫π4的值;(2)将函数y =f (x )的图象向右平移π12个单位后,得到y =g (x )的图象,求g (x )的单调递减区间.【答案】见解析【解析】(1)因为f (x )的图象上相邻最高点的距离为π, 所以f (x )的最小正周期T =π,从而ω=2πT =2.又f (x )的图象关于直线x =π3对称,所以2×π3+φ=k π+π2(k ∈Z ),因为-π2≤φ<π2,所以k =0,所以φ=π2-2π3=-π6,所以f (x )=3sin ⎝⎛⎭⎫2x -π6, 则f ⎝⎛⎭⎫π4=3sin ⎝⎛⎭⎫2×π4-π6=3sin π3=32. (2)将f (x )的图象向右平移π12个单位后,得到f ⎝⎛⎭⎫x -π12的图象, 所以g (x )=f ⎝⎛⎭⎫x -π12=3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-π6=3sin ⎝⎛⎭⎫2x -π3. 当2k π+π2≤2x -π3≤2k π+3π2(k ∈Z ),即k π+5π12≤x ≤k π+11π12(k ∈Z )时,g (x )单调递减.因此g (x )的单调递减区间为⎣⎡⎦⎤k π+5π12,k π+11π12(k ∈Z ). 【能力提升题组】(建议用时:20分钟)11.(2019·天津和平区调研)已知x =π12是函数f (x )=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f (x )的图象向右平移3π4个单位长度后得到函数g (x )的图象,则函数g (x )在⎣⎡⎦⎤-π4,π6上的最小值为( ) A.-2 B.-1C.- 2D.- 3【答案】 B【解析】 ∵x =π12是f (x )=2sin ⎝⎛⎭⎫2x +π6+φ图象的一条对称轴,∴π3+φ=k π+π2(k ∈Z ),即φ=k π+π6(k ∈Z ).∵0<φ<π,∴φ=π6,则f (x )=2sin ⎝⎛⎭⎫2x +π3, ∴g (x )=-2sin ⎝⎛⎭⎫2x -π6在⎣⎡⎦⎤-π4,π6上的最小值为g ⎝⎛⎭⎫π6=-1. 12.函数f (x )=220sin 100πx -220sin ⎝⎛⎭⎫100πx +2π3,且已知对任意x ∈R ,有f (x 1)≤f (x )≤f (x 2)恒成立,则|x 2-x 1|的最小值为( ) A.50π B.1100πC.1100D.440【答案】 C【解析】 f (x )=220sin 100πx -220sin ⎝⎛⎭⎫100πx +2π3 =220⎣⎡⎦⎤sin 100πx -⎝⎛⎭⎫sin 100πx ·cos 2π3+cos 100πx sin 2π3 =220⎝⎛⎭⎫sin 100πx +12sin 100πx -32cos 100πx=2203⎝⎛⎭⎫32sin 100πx -12cos 100πx=2203×sin ⎝⎛⎭⎫100πx -π6, 则由对任意x ∈R ,有f (x 1)≤f (x )≤f (x 2)恒成立得当x =x 2时,f (x )取得最大值,当x =x 1时,f (x )取得最小值,所以|x 2-x 1|的最小值为12T =12×2π100π=1100(T 为f (x )的最小正周期),故选C.13.(2019·广东省际名校联考)将函数f (x )=1-23·cos 2x -(sin x -cos x )2的图象向左平移π3个单位,得到函数y =g (x )的图象,若x ∈⎣⎡⎦⎤-π2,π2,则函数g (x )的单调递增区间是________. 【答案】 ⎣⎡⎦⎤-5π12,π12 【解析】 ∵f (x )=1-23cos 2 x -(sin x -cos x )2=sin 2x -3cos 2x -3=2sin ⎝⎛⎭⎫2x -π3-3, ∴g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π3-π3-3=2sin ⎝⎛⎭⎫2x +π3-3, 由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z ), 得-5π12+k π≤x ≤π12+k π(k ∈Z ), ∵x ∈⎣⎡⎦⎤-π2,π2, ∴函数g (x )在⎣⎡⎦⎤-π2,π2上的单调递增区间是⎣⎡⎦⎤-5π12,π12. 14.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)将函数y =f (x )的图象上各点的纵坐标保持不变,横坐标缩短到原来的12倍,再把所得的函数图象向左平移π6个单位长度,得到函数y =g (x )的图象,求函数g (x )在区间⎣⎡⎦⎤0,π8上的最小值.【答案】见解析【解析】(1)设函数f (x )的最小正周期为T ,由题图可知A =1,T 2=2π3-π6=π2, 即T =π,所以π=2πω,解得ω=2, 所以f (x )=sin(2x +φ),又过点⎝⎛⎭⎫π6,0,由0=sin ⎝⎛⎭⎫2×π6+φ可得π3+φ=2k π(k ∈Z ),则φ=2k π-π3(k ∈Z ),因为|φ|<π2,所以φ=-π3, 故函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎫2x -π3. (2)根据条件得g (x )=sin ⎝⎛⎭⎫4x +π3, 当x ∈⎣⎡⎦⎤0,π8时,4x +π3∈⎣⎡⎦⎤π3,5π6, 所以当x =π8时,g (x )取得最小值,且g (x )min =12. 【新高考创新预测】15.(多填题)已知函数f (x )=23sin ωx 2cos ωx 2+2cos 2ωx 2-1(ω>0)的最小正周期为π,当x ∈⎣⎡⎦⎤0,π2时,方程f (x )=m 恰有两个不同的实数解x 1,x 2,则x 1+x 2=________,f (x 1+x 2)=________.【答案】 π31 【解析】 函数f (x )=23sin ωx 2cos ωx 2+2cos 2ωx 2-1=3sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π6. 由T =2πω=π,可得ω=2,∴f (x )=2sin ⎝⎛⎭⎫2x +π6. ∵x ∈⎣⎡⎦⎤0,π2,∴π6≤2x +π6≤7π6,∴-1≤f (x )≤2. 画出f (x )的图象(图略),结合图象知x 1+x 2=π3, 则f (x 1+x 2)=f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫2π3+π6=2sin 5π6=1.。

【精品含答案】高考一轮复习4.5三角函数的图象和性质基础训练题(理科)

【精品含答案】高考一轮复习4.5三角函数的图象和性质基础训练题(理科)

2009届高考一轮复习4.5三角函数的图象和性质基础训练题(理科)注意:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分,考试时间45分钟。

第Ⅰ卷(选择题部分 共36分)一、选择题(本大题共6小题,每小题6分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2007·北京高考)函数x 2cos x 2sin )x (f -=的最小正周期是( )(A )2π (B )π (C )π2 (D )π42. 设函数)R x (|)3x sin(|)x (f ∈π+=,则)x (f ( )(A )在区间]67,32[ππ上是增函数(B )在区间]2,[π-π-上是减函数(C )在区间]4,8[ππ上是增函数(D )在区间]65,3[ππ上是减函数3.(2008·宝鸡模拟)函数R x ),x sin(2)x (f ∈ϕ+ω=(其中2||,0π<ϕ>ω)的最小正周期是π,且3)0(f =,则( )(A )6,21π=ϕ=ω(B )3,21π=ϕ=ω (C )6,2π=ϕ=ω(D )3,2π=ϕ=ω4. 设函数)22,0,0A )(x sin(A )x (f π<ϕ<π->ω≠ϕ+ω=的图象关于直线32x π=对称,它的最小正周期是π,则正确的是( )(A )函数)x (f 的图象过点)21,0((B )函数)x (f 的图象在]32,125[ππ上是减函数(C )函数)x (f 的最大值是4(D )函数)x (f 的对称中心是)0,125(π5.(2008·张家界模拟)函数x cos ·x sin )x (f =的图象沿x 轴向左平移4π个单位,再将各点横坐标压缩为原来的21,则所得函数是( )(A )周期为π2的奇函数 (B )周期为π2的偶函数(C )周期为2π的奇函数 (D )周期为2π的偶函数6. 设)t (f y =是某港口水的深度y (米)关于时间t (时)的函数,其中24t 0≤≤,下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系。

1334_高考数学习题:一轮复习作业 三角函数的图象与性质(含解析).doc_0

1334_高考数学习题:一轮复习作业 三角函数的图象与性质(含解析).doc_0

三角函数的图象与性质一、选择题1.函数y =2cos 2x +1的定义域是()D[由题意知2cos 2x +1≥0,即cos 2x ≥-12.∴2k π-23π≤2x ≤2k π+23π,k ∈Z ,∴k π-π3≤x ≤k π+π3,k ∈Z ,故选D.]2.(2019·全国卷Ⅱ)若x 1=π4,x 2=3π4是函数f (x )=sin ωx (ω>0)的两个相邻的极值点,则ω=()A.2B.32C.1D.12A[由题意及函数y =sin ωx 的图象与性质可知,12T =3π4-π4,∴T =π,∴2πω=π,∴ω=2.故选A.])A.f (x )=|sin 2x |B.f (x )=tan|x |C.f (x )=-cos 2x D.f (x )=cos|2x |C[函数f (x )=tan|x |不是周期函数,因此排除B.函数f (x )=|sin 2x A.函数f (x )=cos|2x D,综上知选C.]4.(2021·陕西西安市高三一模)已知函数f (x )=sin(2x +φ)其中φ∈(0,2π),若f (x )≤f x ∈R 恒成立,则f (x )的单调递增区间是()A.k π,k π+π2(k ∈Z )B.k π-π3,k π+π6(k ∈Z )C.k π+π6,k π+2π3(k ∈Z )D.k π-π2,k π(k ∈Z )B[因为对任意x ∈R ,f (x )≤f 所以则φ=π6+2k π,又因为φ∈(0,2π),所以φ=π6,所以f (x x 令2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),解得k π-π3≤x ≤k π+π6(k ∈Z ),所以f (x )的单调递增区间是k π-π3,k π+π6(k ∈Z );故选B.]5.函数f (x x )A.y =f (x )的一个周期为-πB.y =f (x C.y =f (x )图象关于直线x =-π6对称D.y =f x =π6C[A 中,因为周期T =2k π2=k π,k ∈Z ,所以-π是周期,A 正确;B 中,令2k π+π2≤2x +π3≤2k π+3π2,k ∈Z ,得k π+π12≤x ≤k π+7π12,k ∈Z ,令k =0得π12≤x ≤7π12,所以f (x )在π12,7π12上单调递减,故y =f (x 递减正确,B 正确;C 中,因为=sin 2+π3=0,故直线x =-π6不是对称轴,故C 错误;D 中,因为=sin 2+π3=0,所以y =f x =π6正确,故选C.]6.(2021·四川泸州市高三三模)已知f (x )=2sin(ωx )(ω>0)满足=0,则ω的取值不可能是()A.4B.6C.8D.12B[因为是函数f (x )=2sin(ωx )的对称中心,所以ω=4k (k ∈N *),ω≠6.]二、填空题7.(2021·山东日照市高三模拟)写出一个满足f (x )=f (2-x )的奇函数f (x )=.sin π2x (答案不唯一)[取f (x )=sinπ2x ,下面为证明过程:显然,其定义域为R ;由f (-x -π2x f (x ),故f (x )=sin π2x 为奇函数;又f (2-x )=sin π22-x=sinπ-π2x =sin π2x =f (x ).故答案为:sinπ2x (答案不唯一).]8.(2021·三明高三一模)函数y =cos 2x +sin 的最小值为.-98[y =cos 2x 2x +cos x x -98,当cos x =-14时,取得最小值为-98.]9.函数f (x )=3cos(3x -θ)-sin(3x -θ)是奇函数,则tan θ等于.-3[f (x )=3cos(3x -θ)-sin(3x -θ)=2sin x +=-x -π3-因为函数f (x )为奇函数,则有-π3-θ=k π,k ∈Z ,即θ=-k π-π3,k ∈Z ,故tan θk =-3.]三、解答题10.已知f (x )=A sin(ωx +φ)(A >0,ω>0)的最小正周期为2,且当x =13时,f (x )的最大值为2.(1)求f (x )的解析式;(2)在闭区间214,234上是否存在f (x )的对称轴?如果存在求出其对称轴.若不存在,请说明理由.[解](1)由T =2知2πω=2得ω=π.又当x =13时f (x )max =2,知A =2.且π3+φ=2k π+π2(k ∈Z ),故φ=2k π+π6(k ∈Z ).∴f (x x +2k x (2)存在.令πx +π6=k π+π2(k ∈Z ),得x =k +13(k ∈Z ).由214≤k +13≤234.得5912≤k ≤6512,又k ∈Z ,∴k =5.故在214,234上存在f (x )的对称轴,其方程为x =163.11.已知a =(sin x ,3cos x ),b =(cos x ,-cos x ),函数f (x )=a·b +32.(1)求函数y =f (x )图象的对称轴方程;(2)若方程f (x )=13在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.[解](1)f (x )=a·b +32=(sin x ,3cos x )·(cos x ,-cos x )+32=sin x ·cos x -3cos 2x +32=12sin 2x -32cos 2x x 令2x -π3=k π+π2(k ∈Z ),得x =5π12+k 2π(k ∈Z ),即函数y =f (x )图象的对称轴方程为x =5π12+k2π(k ∈Z ).(2)由(1)及已知条件可知(x 1,f (x 1))与(x 2,f (x 2))关于x =5π12对称,则x 1+x 2=5π6,∴cos(x 1-x 2)=cos x 1x 1x 1-π2x 1f (x 1)=13.1.(2021·天津高三二模)已知函数f (x )=3cos 2x -sin 2x ,则下列四个结论中:①f (x )的周期为π;②x =π3是f (x )图象的一条对称轴;③-7π12,-π12是f (x )的一个单调递增区间;④f (x )在区间0,7π12上的最大值为2,所有正确结论的序号是()A.①②B.①③C.①②④D.①③④B[由题可知:f (x )=3cos 2x -sin 2x x T =2π|ω|=2π2=π,故①正确,当x =π3时,2·π3+=-3,并没有取到最值,所以②错误,当x ∈-7π12,-π12时,2x +π6∈[-π,0],又函数y =cos x 在[-π,0]单调递增,所以-7π12,-π12是f (x )的一个单调递增区间,故③正确,当x ∈0,7π12时,2x +π6∈π6,4π3,所以f (x )max =2cos π6=3,故④错误.]2.已知函数f (x x )A.函数f (x B.函数f (x )的图象关于直线x =-π8对称C.函数f (x )在区间(-π,π)内有4个零点D.函数f (x )在区间-π2,0上单调递增C[对于函数f (x x x =5π12,求得f (x )=32,故函数f (x )的图象不A;令x =-π8,求得f (x f (x )的图象不关于直线x =-π8对称,故排除B;在区间(-π,π)上,2x -π6∈-13π6,2x -π6=-2π,-π,0,π时,f (x )=0,故函数f (x )在区间(-π,π)内有4个零点,故C 正确;在区间-π2,0上,2x -π6∈-7π6,-π6,f (x )没有单调性,故D 错误,故选C.]3.已知函数f (x )=sin(ωx +φ)(0<ω<1,0≤φ≤π)是R 上的偶函数,其图象关于点M (1)求φ,ω的值;(2)求f (x )的单调递增区间;(3)x ∈-3π4,π2,求f (x )的最大值与最小值.[解](1)因为f (x )=sin(ωx +φ)是R 上的偶函数,所以φ=π2+k π,k ∈Z ,且0≤φ≤π,则φ=π2,即f (x )=cos ωx .因为图象关于点M 所以ω×3π4=π2+k π,k ∈Z ,且0<ω<1,所以ω=23.(2)由(1)得f (x )=cos 23x ,由-π+2k π≤23x ≤2k π且k ∈Z 得,3k π-3π2≤x ≤3k π,k ∈Z ,所以函数f (x )的递增区间是3k π-3π2,3k π,k ∈Z .(3)因为x ∈-3π4,π2,所以23x ∈-π2,π3,当23x =0时,即x =0,函数f (x )的最大值为1,当23x =-π2时,即x =-3π4,函数f (x )的最小值为0.1.已知函数f (x )=sin x +3cos x 在x =θ时取得最大值,则θ)A.-2+64B.-12C.2-64D.32C [法一:∵f (x )=sin x +3cos x f (x )在x =θ时取得最大值,∴θ+π3=π2+2k π(k ∈Z ),即θ=π6+2k π(k ∈Z ),于是cos θ=+π4+4k =12×22-32×22=2-64,故选C.法二:∵f (x )=sin x +3cos x ,∴f ′(x )=cos x -3sin x .又f (x )在x =θ时取得最大值,∴f ′(θ)=cos θ-3sin θ=0,即tan θ=33,则θ=22(cos 2θ-sin 2θ)=22×1-tan 2θ-2tan θ1+tan 2θ=2-64,故选C.]2.已知函数f (x )=2x2+sin b .(1)若a =-1,求函数f (x )的单调增区间;(2)当x ∈[0,π]时,函数f (x )的值域是[5,8],求a ,b 的值.[解]f (x )=a (1+cos x +sin x )+b=2a a +b .(1)当a =-1时,f (x )=-2sin b -1,由2k π+π2≤x +π4≤2k π+3π2(k ∈Z ),得2k π+π4≤x ≤2k π+5π4(k ∈Z ),∴f (x )的单调增区间为2k π+π4,2k π+5π4(k ∈Z ).(2)∵0≤x ≤π,∴π4≤x +π4≤5π4,∴-22≤sina ≠0,①当a >0+a +b =8,∴a =32-3,b =5;②当a <0+a +b =5,∴a =3-32,b =8.综上所述,a =32-3,b =5或a =3-32,b =8.。

2025版高考数学一轮总复习第4章三角函数解三角形第4讲三角函数的图象与性质课件

2025版高考数学一轮总复习第4章三角函数解三角形第4讲三角函数的图象与性质课件

(2)y=3tanπ6-4x=-3tan4x-π6, 由 kπ-π2<4x-π6<kπ+π2, 解得 4kπ-43π<x<4kπ+83π(k∈Z). ∴函数的单调递减区间为 4kπ-34π,4kπ+83π(k∈Z).无增区间.
(3)画图知单调递减区间为kπ-π4,kπ+π4(k∈Z).
2.(2023·洛阳模拟)若 f(x)=2sin ωx(ω>0)在区间-π2,23π上是增函数, 则 ω 的取值范围是_____0_,__34_ ___.
[解析] 依题意可知 f(x)=cos2 x-sin2x=cos 2x,对于 A 选项,因为 x ∈-π2,-6π,所以 2x∈-π,-π3,函数 f(x)=cos 2x 在-π2,-6π上单 调递增,所以 A 选项不正确;对于 B 选项,因为 x∈-π4,1π2,所以 2x∈ -π2,π6,函数 f(x)=cos 2x 在-π4,1π2上不单调,所以 B 选项不正确;对于 C 选项,因为 x∈0,π3,所以 2x∈0,23π,函数 f(x)=cos 2x 在0,π3上单 调递减,所以 C 选项正确;对于 D 选项,因为 x∈π4,71π2,所以 2x∈π2,76π, 函数 f(x)=cos 2x 在π4,71π2上不单调,所以 D 选项不正确,故选 C.
y=tan x ___R___
单调性
在____-__π2_+__2_k_π_,__2π_+__2_k_π_ _, 在_[_(_2_k-__1_)_π_,__2_k_π_]_,
k∈Z 上递增;
k∈Z 上递增;
在____π2_+__2_k_π_,__32_π_+__2_k_π_ __,
在_[_2_k_π_,__(2_k_+__1_)_π_]_, k∈Z 上递减

高三一轮复习 三角函数的图象与性质 (1)

高三一轮复习 三角函数的图象与性质 (1)

第二十课时 三角函数的图象与性质考纲要求:正弦函数、余弦函数、正切函数的图象与性质(B)知识梳理:正弦函数、余弦函数、正切函数的图象和性质π1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)y =sin x 在⎣⎡⎦⎤0,π2上是增函数.( )(2)y =sin x 在第一、四象限是增函数.( ) (3)所有的周期函数都有最小正周期.( ) (4)y =tan x 在整个定义域上是增函数.( ) (5)y =k sin x +1(x ∈R )的最大值为k +1.( ) (6)y =sin|x |为偶函数.( )答案:(1)√ (2)× (3)× (4)× (5)× (6)√2.函数y =4sin x ,x ∈[-π,π]的增区间为________,减区间为________.答案:⎣⎡⎦⎤-π2,π2 ⎣⎡⎦⎤-π,-π2和⎣⎡⎦⎤π2,π 3.函数y =sin ⎝⎛⎭⎫2x -π4的最小正周期T =________. 答案:π4.函数y =-tan ⎝⎛⎭⎫x +π6+1的定义域为________. 答案:⎩⎨⎧⎭⎬⎫xx ≠k π+π3,k ∈Z5.函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为________,此时x =________. 答案:5 3π4+2k π(k ∈Z )[典题1] (1)函数y =lg(2sin x -1)+1-2cos x 的定义域是________.(2)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为________. 解析:(1)要使函数y =lg(2sin x -1)+1-2cos x 有意义,则⎩⎪⎨⎪⎧2sin x -1>0,1-2cos x ≥0,即⎩⎨⎧sin x >12,cos x ≤12.解得2k π+π3≤x <2k π+5π6,k ∈Z .即函数的定义域为⎣⎡⎭⎫2k π+π3,2k π+5π6,k ∈Z . (2)∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴-32≤sin ⎝⎛⎭⎫π6x -π3≤1, 故-3≤2sin ⎝⎛⎭⎫π6-π3≤2.即函数y =2sin ⎝⎛⎭⎫π6x -π3(0≤x ≤9)的最大值为2,最小值为- 3.所以最大值与最小值的和为2- 3.答案:(1)⎣⎡⎭⎫2k π+π3,2k π+5π6,k ∈Z (2)2-3 [探究1] 若将本例(2)中的函数换为“y =3-sin x -2cos 2x ,x ∈⎣⎡⎦⎤π6,7π6”,如何解决?解:∵x ∈⎣⎡⎦⎤π6,7π6,∴sin x ∈⎣⎡⎦⎤-12,1. 又y =3-sin x -2cos 2x =3-sin x -2(1-sin 2x )=2⎝⎛⎭⎫sin x -142+78, ∴当sin x =14时,y min =78;当sin x =-12或sin x =1时,y max =2.故函数的最大值与最小值的和为2+78=238.[探究2] 若将本例(2)中的函数换为“y =sin x -cos x +sin x cos x ,x ∈[0,π]”,如何求解?解:令t =sin x -cos x ,又x ∈[0,π],∴t =2sin ⎝⎛⎭⎫x -π4,t ∈[-1, 2 ]. 由t =sin x -cos x ,得t 2=1-2sin x cos x ,即sin x cos x =1-t 22.∴原函数变为y =t +1-t 22,t ∈[-1, 2 ].即y =-12t 2+t +12.∴当t =1时,y max =-12+1+12=1;当t =-1时,y min =-12-1+12=-1.故函数的最大值与最小值之和为0.[探究3] 若将本例(2)中的函数换为“y =sin x (cos x -sin x ),x ∈⎣⎡⎦⎤0,π4”,如何求解? 解:y =sin x (cos x -sin x )=sin x cos x -sin 2x=12sin 2x -1-cos 2x 2=12(sin 2x +cos 2x )-12=22sin ⎝⎛⎭⎫2x +π4-12. ∵0≤x ≤π4,∴π4≤2x +π4≤3π4,∴当2x +π4=π2,即x =π8时,y max =2-12.当2x +π4=π4或2x +π4=3π4,即x =0或x =π4时,y min =0,故函数的最大值与最小值之和为2-12.小结:(1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.(2)求解三角函数的值域(最值)常见到以下几种类型的题目: ①形如y =a sin x +b cos x +k 的三角函数化为 y =A sin(ωx +φ)+k 的形式,再求最值(值域);②形如y =a sin 2x +b sin x +k 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).三角函数的单调性和周期性是每年高考命题的热点,题型多为填空题,难度适中,为中低档题,且主要有以下几个命题角度:角度一:求已知三角函数的单调区间和周期 [典题2] 写出下列函数的单调区间和周期:(1)y =sin ⎝⎛⎭⎫-2x +π3; (2)y =tan ⎝⎛⎭⎫2x -π3; (3)y =|tan x |. 解析:(1)y =sin ⎝⎛⎭⎫-2x +π3=-sin2x -π3, 它的递增区间是y =sin ⎝⎛⎭⎫2x -π3的递减区间, 它的递减区间是y =sin ⎝⎛⎭⎫2x -π3的递增区间. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .由2k π+π2≤2x -π3≤2k π+3π2,k ∈Z ,得k π+5π12≤x ≤k π+11π12,k ∈Z .故所给函数的递减区间为⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z ;递增区间为k π+5π12,k π+11π12,k ∈Z .周期T =2π|-2|=π.(2)k π-π2<2x -π3<k π+π2(k ∈Z )得k π-π6<2x <k π+5π6(k ∈Z ),即k π2-π12<x <k π2+5π12(k ∈Z ),故函数的单调增区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ),无单调减区间.周期T =π2. (3)观察图象(图略)可知,y =|tan x |的递增区间是⎣⎡⎭⎫k π,k π+π2,k ∈Z ,递减区间是⎝⎛⎦⎤k π-π2,k π,k ∈Z .周期为π. 小结:(1)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.(2)求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”.(3)求含有绝对值的三角函数的单调性及周期时,通常要画出图象,结合图象判定.角度二:已知三角函数的单调区间或周期求参数[典题3] (1)若函数f (x )=2tan ⎝⎛⎭⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________.(2)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上是减函数,则ω的取值范围是________. 解析:(1)由题意知,1<πk<2,即k <π<2k .又k ∈N ,所以k =2或k =3.(2)由π2<x <π,得π2ω+π4<ωx +π4<πω+π4,由题意知⎝⎛⎭⎫π2ω+π4,πω+π4⊆π2+2k π,3π2+2k π(k ∈Z )且2πω≥2×⎝⎛⎭⎫π-π2,则⎩⎨⎧π2ω+π4≥π2+2k π,k ∈Z ,πω+π4≤3π2+2k π,k ∈Z ,且0<ω≤2,故12≤ω≤54. 答案:(1)2或3 (2)⎣⎡⎦⎤12,54 小结:已知三角函数的单调区间求参数的取值范围的三种方法 (1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解.(2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解.(3)周期性:由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解.[典题4] (1)若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=________.(2)如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为________.解析:(1)由已知f (x )=sin x +φ3是偶函数,可得φ3=k π+π2,k ∈Z ,即φ=3k π+3π2(k ∈Z ),又φ∈[0,2π],所以φ=3π2.(2)由题意得3cos ⎝⎛⎭⎫2×4π3+φ=3cos ⎝⎛⎭⎫2π3+φ+2π=3cos ⎝⎛⎭⎫2π3+φ=0, ∴2π3+φ=k π+π2,k ∈Z , ∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.答案:(1)3π2 (2)π6小结:函数f (x )=A sin(ωx +φ)的奇偶性和对称性 (1)若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值;若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.(2)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检测f (x 0)的值进行判断.(3)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)的函数图象的对称轴或对称中心时,都是把“ωx +φ”看作一个整体,然后根据y =sin x 和y =cos x 的图象的对称轴或对称中心进行求解.练习:1.已知函数y =sin ωx (ω>0)在区间⎣⎡⎦⎤0,π2上为增函数,且图象关于点(3π,0)对称,则ω的取值集合为________.解析:由题意知⎩⎪⎨⎪⎧ π2ω≥π2,3ωπ=k π,即⎩⎪⎨⎪⎧0<ω≤1,ω=k 3,其中k ∈Z ,则ω=13,ω=23或ω=1. 答案:⎩⎨⎧⎭⎬⎫13,23,12.已知函数f (x )=3sin ⎝⎛⎭⎫ωx -π6(ω>0)和g (x )=2cos(2x +φ)+1图象的对称轴完全相同.若x ∈⎣⎡⎦⎤0,π2,则f (x )的取值范围是________. 解析:∵函数f (x )=3sin ⎝⎛⎭⎫ωx -π6(ω>0)和g (x )=2cos(2x +φ)+1图象的对称轴完全相同,∴ω=2,∵x ∈⎣⎡⎦⎤0,π2,∴2x -π6∈⎣⎡⎦⎤-π6,5π6,由三角函数图象知,f (x )min =3sin ⎝⎛⎭⎫-π6=-32,f (x )max =3sin π2=3,∴f (x )的取值范围是⎣⎡⎦⎤-32,3. 答案:⎣⎡⎦⎤-32,3总结:1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质.3.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为T =2π|ω|,函数y =tan(ωx +φ)的最小正周期为T =π|ω|.4.三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.5.在判断对称轴或对称中心时,用以下结论可快速解题: 设y =f (x )=A sin(ωx +φ),g (x )=A cos(ωx +φ),x =x 0是对称轴方程⇔f (x 0)=±A ,g (x 0)=±A ;(x 0,0)是对称中心⇔f (x 0)=0,g (x 0)=0.注意: 1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响.2.求函数y =A sin(ωx +φ)的单调区间时要注意ω的符号,尽量化成ω>0时的情况.课后作业:1.f (x )=sin ⎝⎛⎭⎫ωx +π6(0<ω<2),若f ⎝⎛⎭⎫2π3=1,则函数f (x )的最小正周期为________. 解析:由于f (x )=sin ⎝⎛⎭⎫ωx +π6(0<ω<2),f ⎝⎛⎭⎫2π3=sin ⎝⎛⎭⎫2π3ω+π6=1,∴2π3ω+π6=2k π+π2,k ∈Z ,即ω=3k +12,k ∈Z ,又0<ω<2,∴ω=12,即f (x )=sin ⎝⎛⎭⎫12x +π6,故函数f (x )的最小正周期为2π12=4π.答案:4π2.若函数f (x )同时具有以下两个性质:(1)f (x )是偶函数;(2)对任意实数x ,都有f ⎝⎛⎭⎫π4+x=f ⎝⎛⎭⎫π4-x .则f (x )的解析式可以是________.(填序号)①f (x )=cos x ; ②f (x )=cos ⎝⎛⎭⎫2x +π2; ③f (x )=sin ⎝⎛⎭⎫4x +π2; ④f (x )=cos 6x .解析:由题意可得,函数f (x )是偶函数,且它的图象关于直线x =π4对称.∵f (x )=cos x是偶函数,f ⎝⎛⎭⎫π4=22,不是最值,故不满足图象关于直线x =π4对称,故①错.∵函数f (x )=cos ⎝⎛⎭⎫2x +π2=-sin 2x 是奇函数,不满足条件,故②错.∵函数f (x )=sin ⎝⎛⎭⎫4x +π2=cos 4x 是偶函数,f ⎝⎛⎭⎫π4=-1,是最小值,故满足图象关于直线x =π4对称,故③满足条件.∵函数f (x )=cos 6x 是偶函数,f ⎝⎛⎭⎫π4=0,不是最值,故不满足图象关于直线x =π4对称,故④错. 答案:③3.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为________. 解析:因为0≤x ≤π2,所以-π4≤2x -π4≤3π4,由正弦函数的图象知,1≥sin ⎝⎛⎭⎫2x -π4≥-22,所以函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22. 答案:-224.已知曲线f (x )=sin 2x +3cos 2x 关于点(x 0,0)成中心对称,若x 0∈⎣⎡⎦⎤0,π2,则x 0=________.解析:由题意可知f (x )=2sin ⎝⎛⎭⎫2x +π3,其对称中心为(x 0,0),故2x 0+π3=k π(k ∈Z ),∴x 0=-π6+k π2(k ∈Z ),又x 0∈⎣⎡⎦⎤0,π2,∴k =1,x 0=π3. 答案:π35.设函数f (x )=3sin ⎝⎛⎭⎫π2x +π4,若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为________.解析:∵对任意x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,∴f (x 1),f (x 2)分别为函数f (x )的最小值和最大值,∴|x 1-x 2|的最小值为12T =12×2ππ2=2.答案:26.设函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2与直线y =3的交点的横坐标构成以π为公差的等差数列,且x =π6是f (x )图象的一条对称轴,则函数f (x )的单调递增区间为________.解析:由题意得A =3,T =π,∴ω=2.∴f (x )=3sin(2x +φ).又f ⎝⎛⎭⎫π6=3或f ⎝⎛⎭⎫π6=-3, ∴2×π6+φ=k π+π2,k ∈Z ,φ=π6+k π,k ∈Z .又∵|φ|<π2,∴φ=π6,∴f (x )=3sin ⎝⎛⎭⎫2x +π6. 令-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,得-π3+k π≤x ≤π6+k π,k ∈Z ,∴函数f (x )的单调递增区间为⎣⎡⎦⎤-π3+k π,π6+k π,k ∈Z . 答案:⎣⎡⎦⎤-π3+k π,π6+k π,k ∈Z 7.已知函数f (x )=sin ⎝⎛⎭⎫2ωx -π6(ω>0)在区间⎝⎛⎭⎫0,2π3上单调递增,则ω的最大值为________.解析:由函数f (x )=sin ⎝⎛⎭⎫2ωx -π6(ω>0)在区间⎝⎛⎭⎫0,2π3上单调递增,可得2ω·2π3-π6≤π2,解得ω≤12,故ω的最大值为12.答案:128.已知x ∈(0,π],关于x 的方程2sin ⎝⎛⎭⎫x +π3=a 有两个不同的实数解,则实数a 的取值范围为________.解析:令y 1=2sin ⎝⎛⎭⎫x +π3,x ∈(0,π],y 2=a ,作出y 1的图象如图所示.若2sin ⎝⎛⎭⎫x +π3=a 在(0,π]上有两个不同的实数解,则y 1与y 2应有两个不同的交点,所以3<a <2.答案:(3,2)9.已知函数f (x )=sin ωx +3cos ωx (ω>0),f ⎝⎛⎭⎫π6+f ⎝⎛⎭⎫π2=0,且f (x )在区间⎝⎛⎭⎫π6,π2上单调递减,则ω=________.解析:∵f (x )在⎝⎛⎭⎫π6,π2上单调递减,且f ⎝⎛⎭⎫π6+f ⎝⎛⎭⎫π2=0,∴f ⎝ ⎛⎭⎪⎫π6+π22=0,∵f (x )=sin ωx +3· cos ωx =2sin ⎝⎛⎭⎫ωx +π3,∴f ⎝ ⎛⎭⎪⎫π6+π22=f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫π3ω+π3=0,∴π3ω+π3=k π(k ∈Z ),又12·2πω≥π2-π6,ω>0,∴ω=2. 答案:210.函数y =sin(ωx +φ)⎝⎛⎭⎫ω>0且|φ|<π2在区间⎣⎡⎦⎤π6,2π3上单调递减,且函数值从1减小到-1,那么此函数图象与y 轴交点的纵坐标为________.解析:函数y =sin(ωx +φ)的最大值为1,最小值为-1,由该函数在区间⎣⎡⎦⎤π6,2π3上单调递减,且函数值从1减小到-1,可知2π3-π6=π2为半周期,则周期为π,ω=2πT =2ππ=2,此时原函数式为y =sin(2x +φ).又由函数y =sin(ωx +φ)的图象过点⎝⎛⎭⎫π6,1,代入可得φ=π6,因此函数为y =sin ⎝⎛⎭⎫2x +π6.令x =0,可得y =12. 答案:1211.已知函数f (x )=sin ⎝⎛⎭⎫2x +π6,其中x ∈⎣⎡⎦⎤-π6,a .若f (x )的值域是⎣⎡⎦⎤-12,1,则a 的取值范围是________.解析:若-π6≤x ≤π3,则-π6≤2x +π6≤5π6,此时-12≤sin ⎝⎛⎭⎫2x +π6≤1,即f (x )的值域是⎣⎡⎦⎤-12,1. 若-π6≤x ≤a ,则-π3≤2x ≤2a ,-π6≤2x +π6≤2a +π6.因为当2x +π6=-π6或2x +π6=7π6时,sin ⎝⎛⎭⎫2x +π6=-12,所以要使f (x )的值域是⎣⎡⎦⎤-12,1,则π2≤2a +π6≤7π6,即π3≤2a ≤π, 所以π6≤a ≤π2,即a 的取值范围是⎣⎡⎦⎤π6,π2. 答案:⎣⎡⎦⎤π6,π212.设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f (x )的最小正周期为________. 解析:∵f (x )在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3,∴x =π2和x =2π3均不是f (x )的极值点,其极值应该在x =π2+2π32=7π12处取得.∵f ⎝⎛⎭⎫π2=-f ⎝⎛⎭⎫π6,∴x =π6也不是函数f (x )的极值点,又f (x )在区间⎣⎡⎦⎤π6,π2上具有单调性,∴x =π6-⎝⎛⎭⎫7π12-π2=π12为f (x )的另一个相邻的极值点.故函数f (x )的最小正周期T =2×⎝⎛⎭⎫7π12-π12=π.答案:π13.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫0<φ<2π3的最小正周期为π. (1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝⎛⎭⎫π6,32,求f (x )的单调递增区间.解:∵由f (x )的最小正周期为π,则T =2πω=π,∴ω=2,∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ). ∴sin(2x +φ)=sin(-2x +φ), 展开整理得sin 2x cos φ=0, 由已知上式对∀x ∈R 都成立,∴cos φ=0.∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点⎝⎛⎭⎫π6,32时,sin ⎝⎛⎭⎫2×π6+φ=32, 即sin ⎝⎛⎭⎫π3+φ=32. 又∵0<φ<2π3,∴π3<π3+φ<π,∴π3+φ=2π3,φ=π3. ∴f (x )=sin ⎝⎛⎭⎫2x +π3. 令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z .∴f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12,k ∈Z . 14.已知函数f (x )=sin ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫x -π3,g (x )=2sin 2x 2. (1)若α是第一象限角,且f (α)=335,求g (α)的值;(2)求使f (x )≥g (x )成立的x 的取值集合.解:f (x )=sin ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫x -π3 =32sin x -12cos x +12cos x +32sin x =3sin x ,g (x )=2sin 2x2=1-cos x .(1)由f (α)=335,得sin α=35.又α是第一象限角,所以cos α>0.从而g (α)=1-cos α=1-1-sin 2α=1-45=15.(2)f (x )≥g (x )等价于3sin x ≥1-cos x ,即3sin x +cos x ≥1.于是sin ⎝⎛⎭⎫x +π6≥12. 从而2k π+π6≤x +π6≤2k π+5π6,k ∈Z ,即2k π≤x ≤2k π+2π3,k ∈Z .故使f (x )≥g (x )成立的x 的取值集合为x 2k π≤x ≤2k π+2π3,k ∈Z .15.设函数f (x )=sin ⎝⎛⎭⎫πx 3-π6-2cos 2πx 6. (1)求y =f (x )的最小正周期及单调递增区间;(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,当x ∈[0,1]时,求函数y =g (x )的最大值.解:(1)由题意知f (x )=32sin πx 3-32cos πx3-1=3·sin ⎝⎛⎭⎫πx 3-π3-1,所以y =f (x )的最小正周期T =2ππ3=6.由2k π-π2≤πx 3-π3≤2k π+π2,k ∈Z ,得6k -12≤x ≤6k +52,k ∈Z ,所以y =f (x )的单调递增区间为⎣⎡⎦⎤6k -12,6k +52,k ∈Z . (2)因为函数y =g (x )与y =f (x )的图象关于直线x =2对称, 所以当x ∈[0,1]时,y =g (x )的最大值即为x ∈[3,4]时, y =f (x )的最大值,当x ∈[3,4]时,π3x -π3∈⎣⎡⎦⎤2π3,π,sin ⎝⎛⎭⎫π3x -π3∈⎣⎡⎦⎤0,32,f (x )∈⎣⎡⎦⎤-1,12, 即当x ∈[0,1]时,函数y =g (x )的最大值为12.。

高三数学一轮复习教案第五节三角函数的图像和性质一

高三数学一轮复习教案第五节三角函数的图像和性质一

第5课 三角函数的图像和性质(一)【考点导读】1.能画出正弦函数,余弦函数,正切函数的图像,借助图像理解正弦函数,余弦函数在[0,2]π,正切函数在(,)22ππ-上的性质; 2.了解函数sin()y A x ωϕ=+的实际意义,能画出sin()y A x ωϕ=+的图像; 3.了解函数的周期性,体会三角函数是描述周期变化现象的重要函数模型. 【基础练习】1. 已知简谐运动()2sin()()32f x x ππϕϕ=+<的图象经过点(0,1),则该简谐运动的最小正周期T =_____6____;初相ϕ=__________. 2. 三角方程2sin(2π-x )=1的解集为_______________________. 3. 函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达式为______________________.4.下列函数图像:其中是函数πsin 23y x ⎛⎫=-⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,上的简图的序号是__①__.x① ②③ ④6π {2,}3x x k k Z ππ=±∈ 48sin(4π+π-=x y第3题5. 要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象向右平移__________个单位. 【范例解析】例1.已知函数()2sin (sin cos )f x x x x =+.(Ⅰ)用五点法画出函数在区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象,长度为一个周期;(Ⅱ)说明()2sin (sin cos )f x x x x =+的图像可由sin y x =的图像经过怎样变换而得到. 分析:化为sin()A x ωϕ+形式.解:(I )由x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+-=+= )42sin(21)4sin 2cos 4cos 2(sin 21πππ-+=-⋅+=x x x .列表,取点,描图:故函数)(x f y =在区间]2,2[-上的图象是:(Ⅱ)解法一:把sin y x =图像上所有点向右平移4π个单位,得到sin()4y x π=-的图像,再把sin()4y x π=-的图像上所有点的横坐标缩短为原来的12(纵坐标不变),得到sin(2)4y x π=-的图像,然后把si n (2)4y x π=-的图像上所有点纵坐标伸长到原来的倍(横坐标不变),得到s i n (2)4y x π=-的图像,再将)4y x π=-的图像上所有点向上平移1个单位,即得到1)4y x π=+-的图像.解法二:把sin y x =图像上所有点的横坐标缩短为原来的12(纵坐标不变),得到sin 2y x =的图像,再π6把sin 2y x =图像上所有点向右平移8π个单位,得到sin(2)4y x π=-的图像,然后把sin(2)4y x π=-的图像上所有点纵坐标伸长到原来的倍(横坐标不变),得到)4y x π=-的图像,再将)4y x π=-的图像上所有点向上平移1个单位,即得到1)4y x π=+-的图像.例2.已知正弦函数sin()y A x ωϕ=+(0,0)A ω>>的图像如右图所示. (1)求此函数的解析式1()f x ;(2)求与1()f x 图像关于直线8x =对称的曲线的解析式2()f x ; (3)作出函数12()()y f x f x =+的图像的简图.分析:识别图像,抓住关键点. 解:(1)由图知,A =22(62)16πω=⨯+=,8πω∴=,即sin()8y x πϕ=+.将2x =,y =sin()4πϕ+=4πϕ=,即1()sin()84f x x ππ=+.(2)设函数2()f x 图像上任一点为(,)M x y ,与它关于直线8x =对称的对称点为(,)M x y ''', 得8,2.x xy y '+⎧=⎪⎨⎪'=⎩解得16,.x x y y '=-⎧⎨'=⎩代入1()sin()84f xx ππ''=+中,得2()sin()84f x x ππ=-.(3)y =ω,代入最高点或最低点求ϕ.例3.右图为游览车的示意图,该游览车半径为4.8m ,圆上最低点与地面距离为0.8m ,60秒转到一周,图中OA 与地面垂直,以OA 为始边,逆时针转动θ角到OB ,设B 点与地面距离为h . (1)求h 与θ间关系的函数解析式;(2)设从OA 开始转动,经过t 秒到达OB ,求h 与t 间关系的函数解析式.分析:理解题意,建立函数关系式. 解:(1)由已知作图,过点O 作地面平行线ON ,过点B 作ON 的垂线角ON 于M 点,当2πθ>时,2BOM πθ∠=-,0.8 4.8sin() 5.62h OA BM πθ∴=++=-+,经验证当02πθ≤≤,上述关系也成立.综上, 4.8sin() 5.62h πθ=-+.(2)因为点A 在圆O 上逆时针运动的速度是30π,所以t 秒转过的弧度数为30t π. 4.8sin() 5.6302h t ππ∴=-+,[0,)t ∈+∞. 点评:本题关键是理解题意,抽象出具体的三角函数模型,再运用所学三角知识解决,回答实际问题. 【反馈演练】1.为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数2sin y x =,x R ∈的图像上所有的点①向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变);②向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变);③向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变); ④向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变).其中,正确的序号有_____③______.2.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象向右平移________个单位长度. 3.若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2ϕπ<)的最小正周期是π,且(0)f =ω=__2____;ϕ=__________. 4.在()π2,0内,使x x cos sin >成立的x 取值范围为____________________.5.下列函数: ①sin 6y x π⎛⎫=+ ⎪⎝⎭; ②sin 26y x π⎛⎫=-⎪⎝⎭; ③cos 43y x π⎛⎫=-⎪⎝⎭; ④cos 26y x π⎛⎫=-⎪⎝⎭. 3π3π5,44ππ⎛⎫⎪⎝⎭ 第5题第9题其中函数图象的一部分如右图所示的序号有_____④_____.6.设函数2()sin cos f x x x x a ωωω=++(其中0,a R ω>∈),且()f x 的图像在y 轴右侧的第一个最高点的横坐标是6π.则ω=_________.7.要得到cos 2y x =的图像,只要把sin(2)3y x π=-的图像向____左___平移_________个单位即可.8.函数[]π2,0|,sin |2sin )(∈+=x x x x f 的图象与直线k y =有且仅有两个不同的交点,则k 的取值范围是__________. 9.如图,函数2sin()y x πφ=+,x R ∈,(其中02πφ≤≤)的图象与y 轴交于点(0,1).设P 是图象上的最高点,M ,N 是图象与x 轴的交点,则PM 与PN 的夹角余弦值为_________. 10.如图,某地一天从6时至14时的温度变化曲线近似满足函数b x A y ++=)sin(ϕω (1)求这段时间的最大温差;(2)写出这段时间的函数解析式. 解:(1)由图示,这段时间的最大温差是201030=-℃(2)图中从6时到14时的图象是函数b x A y ++=)sin(ϕω的半个周期∴614221-=⋅ωπ,解得8πω= 由图示,10)1030(21=-=A 20)3010(21=+=b这时,20)8sin(10++=ϕπx y将10,6==y x 代入上式,可取43πϕ=综上,所求的解析式为20)438sin(10++=ππx y (]14,6[∈x )11.已知函数f (x )=A 2sin ()x ωϕ+(A >0,ω>0,0<ϕ<2π),且y =f (x )的最大值为2,其图象相邻两对称轴间的距离为2,并过点(1,2).(1)求ϕ;(2)计算f (1)+f (2)+…+f (2 008).解:(1)由题意得2A =,()1cos(22)f x x ωϕ∴=-+,又24T πω==,∴4πω=,代入点(1,2),得ϕ=4π;第10题12 512π 13k << 1517(2)由(1)得:()sin12f x x π=+,(1)(2)(3)(4)4f f f f +++=(1)(2)(2008)2008f f f ∴+++=.12.如图,函数π2cos()(00)2y x x >ωθωθ=+∈R ,,≤≤的图象与y轴相交于点(0,且该函数的最小正周期为π. (1)求θ和ω的值;(2)已知点π02A ⎛⎫ ⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是PA当02y =,0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值. 解:(1)将0x =,y =2cos()y x ωθ=+得cos θ=, 因为02θπ≤≤,所以6θπ=. 又因为该函数的最小正周期为π,所以2ω=, 因此2cos 26y x π⎛⎫=+⎪⎝⎭. (2)因为点02A π⎛⎫ ⎪⎝⎭,,00()Q x y ,是PA 的中点,0y = 所以点P 的坐标为022x π⎛-⎝. 又因为点P 在2cos 26y x π⎛⎫=+ ⎪⎝⎭的图象上,所以05cos 462x π⎛⎫-= ⎪⎝⎭. 因为02x ππ≤≤,所以075194666x πππ-≤≤, 从而得0511466x ππ-=或0513466x ππ-=. 即023x π=或034x π=.第12题。

高考数学一轮复习三角函数的图象与性质课件理

高考数学一轮复习三角函数的图象与性质课件理

基础诊断 考点突破
课堂总结
(3)将函数 f(x)=sin ωx 的图象向右平移4π个单位长度得到函数 y
=sinωx-π4的图象,因为所得图象经过点34π,0,则 sin
ω 2π
=0,所以ω2 π=kπ(k∈Z),即 ω=2k(k∈Z),又 ω>0,所以 ωmin
=2.
答案 (1)A (2)C (3)2
.
基础诊断 考点突破
课堂总结
(2)设 t=sin x-cos x,则 t2=sin2x+cos2x-
2sin xcos x,sin xcos x=1-2 t2,且- 2≤t≤ 2. ∴y=-t22+t+12=-12(t-1)2+1.
当 t=1 时,ymax=1; 当 t=- 2时,ymin=-12- 2.
基础诊断 考点突破
课堂总结
考点一 三角函数的定义域、值域
【例 1】 (1)函数 y=tan 1x-1的定义域为______________.
(2)函数 y=2sinπ6x-π3(0≤x≤9)的最大值与最小值之和为
()
A.2- 3
B.0
C.-1
D.-1- 3
基础诊断 考点突破
课堂总结
tan x-1≠0, 解析 (1)要使函数有意义,必须有x≠π2+kπ,k∈Z, 即xx≠≠π4π2++kkππ,,kk∈∈ZZ,. 故函数的定义域为{x|x≠π4+kπ 且 x≠π2+kπ,k∈Z}.
msin ω2xcosω2x在区间-3π,π3上单调递增,则 ω 的取值范围是
()
A.0,23
B.0,32
C.3堂总结
解析 (1)由 f(x)=sin2x+sin xcos x
()
π A.2

三角函数的图象与性质(一)课件-2025届高三数学一轮复习

三角函数的图象与性质(一)课件-2025届高三数学一轮复习


个周期,相邻对称中心与对称轴之间的距离是 个周期;


(2)正切曲线相邻两对称中心之间的距离是 个周期.

2.奇偶性
设 = + ��, ≠ ,则


(1) 为偶函数的充要条件是 = + ∈ ;
(2) 为奇函数的充要条件是 = ∈ .

以函数的定义域为{| < ≤ + , ∈ }.
三角函数的定义域的求法
(1)求三角函数的定义域一般可归结为解三角不等式(或等式);
(2)求三角函数的定义域经常借助两个工具:三角函数线和三角函数的
图象,有时也利用数轴;
(3)对于较为复杂的求三角函数的定义域问题,应先列出不等式(组)
− ≠ ,
则 ≠ + , ∈ , 即
≠ + , ∈ .

故函数的定义域为




{| ≠ + , 且 ≠ + , �� ∈ }.
2.函数 = −


{| + ≤ ≤ + , ∈ }
的定义域为________________________________.


,
, −
( ,),③________,④________,
, .


五点法作图有三步:列表、描点、连线(注意光滑).
函数= ,∈[,],= ,∈[,] 的五个关键点的
横坐标是零点和极值点(最值点).
2.正弦、余弦、正切函数的图象与性质
=
= ,= ,= 的单调性列不等式求解.
(2)图象法:画出三角函数的图象,利用图象求函数的单调区间.

2022届高考数学统考一轮复习第四章三角函数的图象与性质学案文含解析新人教版

2022届高考数学统考一轮复习第四章三角函数的图象与性质学案文含解析新人教版

高考数学统考一轮复习:第三节三角函数的图象与性质【知识重温】一、必记2个知识点1.周期函数(1)周期函数的定义对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有①________________,那么函数f(x)就叫做周期函数.②________________叫做这个函数的周期.(2)最小正周期,如果在周期函数f(x)的所有周期中存在一个③________________,那么这个④________________就叫做f(x)的最小正周期.2.正弦函数、余弦函数、正切函数的图象和性质1.三角函数存在多个单调区间时易错用“∪”联结.2.研究三角函数单调性、对称中心、奇偶性及对称轴时易受基本函数影响,遗漏问题的多解,同时也可能忽视“k∈Z”这一条件.【小题热身】一、判断正误1.判断下列说法是否正确(请在括号中打“√”或“×”). (1)y =sin x 在第一、第四象限是增函数.( ) (2)余弦函数y =cos x 的对称轴是y 轴.( ) (3)正切函数y =tan x 在定义域内是增函数.( )(4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (5)y =sin|x |是偶函数.( )(6)若sin x >22,则x >π4.( )二、教材改编2.下列关于函数y =4sin x ,x ∈[0,2π]的单调性的叙述,正确的是( ) A .在[0,π]上单调递增,在[π,2π]上单调递减B .在[0,π2]上单调递增,在[3π2,2π]上单调递减C .在[0,π2]及[3π2,2π]上单调递增,在[π2,3π2]上单调递减D .在[π2,3π2]上单调递增,在[0,π2]及[3π2,2π]上单调递减3.函数y =-32cos(12x -π6)的最大值为________,此时x 的集合为________.三、易错易混4.关于三角函数的图象,有下列说法: ①y =sin|x |与y =sin x 的图象关于y 轴对称; ②y =cos(-x )与y =cos|x |的图象相同;③y =|sin x |与y =sin(-x )的图象关于x 轴对称; ④y =cos x 与y =cos(-x )的图象关于y 轴对称. 其中正确的是________.(写出所有正确说法的序号)5.函数y =1+2sin(π6-x )的单调增区间是________.四、走进高考6.[2019·全国卷Ⅱ]下列函数中,以π2为周期且在区间(π4,π2)单调递增的是( )A .f (x )=|cos 2x |B .f (x )=|sin 2x |C .f (x )=cos |x |D .f (x )=sin |x |考点一 三角函数的定义域[自主练透型]1.y =cos x -12的定义域为________.2.函数y =1tan x -1的定义域为________.3.函数y =lg(sin x )+ cos x -12的定义域为________.悟·技法求与三角函数有关的函数定义域的基本方法是“数形结合”,也就是在求这类函数定义域时,往往需要解有关的三角不等式,而解三角不等式的方法是:要么利用正、余弦曲线,正切曲线,要么利用单位圆等图形的直观形象来解决问题.考点二 三角函数的值域与最值[互动讲练型][例1] (1)[2019·全国卷Ⅰ]函数f (x )=sin ⎝⎛⎭⎫2x +3π2-3cos x 的最小值为________. (2)函数y =sin x -cos x +sin x ·cos x ,x ∈[0,π]的值域为________. 悟·技法三角函数最值或值域的三种求法(1)直接法:利用sin x ,cos x 的值域.(2)化一法:化为y =A sin(ωx +φ)+k 的形式,确定ωx +φ的范围,根据正弦函数单调性写出函数的值域.(3)换元法:把sin x 或cos x 看作一个整体,转化为二次函数,求给定区间上的值域(最值)问题.[变式练]——(着眼于举一反三)1.函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( ) A .2- 3 B .0C .-1D .-1- 32.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为________. 考点三 三角函数的性质[互动讲练型] 考向一:三角函数的周期性[例2] 函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是( ) A.π2 B .π C.3π2 D .2π考向二:三角函数的对称性[例3] 已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π,则函数f (x )的图象( ) A .关于直线x =π4对称 B .关于直线x =π8对称C .关于点⎝⎛⎭⎫π4,0对称D .关于点⎝⎛⎭⎫π8,0对称 考向三:三角函数的单调性[例4] 已知f (x )=2sin ⎝⎛⎭⎫x +π4,x ∈[0,π],则f (x )的单调递增区间为________. 悟·技法1.奇偶性与周期性的判断方法(1)奇偶性:由正、余弦函数的奇偶性可判断y =A sin ωx 和y =A cos ωx 分别为奇函数和偶函数.(2)周期性:利用函数y =A sin(ωx +φ),y =A cos(ωx +φ)(ω>0)的周期为2πω,函数y =A tan(ωx +φ)(ω>0)的周期为πω求解.2.求三角函数单调区间的两种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用基本三角函数的单调性列不等式求解.(2)图象法:画出三角函数的图象,结合图象求它的单调区间.[变式练]——(着眼于举一反三)3.[2021·贵阳市监测考试]已知函数f (x )=cos 2x +3sin 2x ,则f (x )的单调递增区间是( )A .[k π-π3,k π+π6](k ∈Z )B .[k π,k π+π2](k ∈Z )C .[k π+π6,k π+2π3](k ∈Z )D .[k π-π2,k π](k ∈Z )4.关于函数y =tan ⎝⎛⎭⎫2x -π3,下列说法正确的是( ) A .是奇函数B .在区间⎝⎛⎭⎫0,π3上单调递减 C.⎝⎛⎭⎫π6,0为其图象的一个对称中心 D .最小正周期为π5.若函数f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω=________.第三节 三角函数的图象与性质【知识重温】①f (x +T )=f (x ) ②T ③最小正数 ④最小正数 ⑤{y |-1≤y ≤1} ⑥{y |-1≤y ≤1}⑦R ⑧⎣⎡⎦⎤-π2+2k π,π2+2k π ⑨⎣⎡⎦⎤π2+2k π,3π2+2k π ⑩[(2k -1)π,2k π] ⑪[2k π,(2k +1)π] ⑫⎝⎛⎭⎫-π2+k π,π2+k π ⑬π2+2k π ⑭-π2+2k π ⑮2k π ⑯π+2k π ⑰奇函数 ⑱偶函数 ⑲奇函数 ⑳(k π,0),k ∈Z ○21⎝⎛⎭⎫k π+π2,0,k ∈Z ○22⎝⎛⎭⎫k π2,0,k ∈Z ○23x =k π+π2,k ∈Z ○24x =k π,k ∈Z ○252π ○262π ○27π 【小题热身】1.答案:(1)× (2)× (3)× (4)× (5)√ (6)×2.解析:结合正弦函数y =sin x ,x ∈[0,2π]的图象可知C 正确. 答案:C3.解析:当cos(12x -π6)=-1,即12x -π6=π+2k π,k ∈Z ,即x =4k π+7π3,k ∈Z 时,函数y 有最大值32.答案:32 {x |x =4k π+7π3,k ∈Z }4.解析:对于②,y =cos(-x )=cos x ,y =cos|x |=cos x ,故其图象相同;对于④,y =cos(-x )=cos x ,故其图象关于y 轴对称;由图象(图略)可知①③均不正确.故正确的说法是②④.答案:②④5.解析:y =1+2sin(π6-x )=1-2sin(x -π6).令u =x -π6,根据复合函数的单调性知,所给函数的单调递增区间就是y =sin u 的单调递减区间,解π2+2k π≤x -π6≤3π2+2k π(k ∈Z ),得2π3+2k π≤x ≤5π3+2k π(k ∈Z ),故函数y =1+2sin(π6-x )的单调递增区间是[2π3+2k π,5π3+2k π](k ∈Z ).答案:[2π3+2k π,5π3+2k π](k ∈Z )6.解析:当x ∈(π4,π2)时,2x ∈(π2,π),由于f 1(x )=cos 2x 在x ∈(π4,π2)上单调递减,且cos2x <0,故f (x )=|cos 2x |在(π4,π2)上单调递增.f 1(x )=cos 2x 的周期为π,f (x )=|cos 2x |的周期为π2,故A 符合题意.而f (x )=|sin 2x |以π2为周期,在(π4,π2)上单调递减;f (x )=cos|x |=cos x 的周期为2π;f (x )=sin|x |不是周期函数,故选A.答案:A 课堂考点突破考点一1.解析:要使函数有意义,则cos x ≥12,由三角函数图象可得:-π3+2k π≤x ≤π3+2k π,k ∈Z .故函数y 的定义域为{x |-π3+2k π≤x ≤π3+2k π,k ∈Z }.答案:{x |-π3+2k π≤x ≤π3+2k π,k ∈Z }2.解析:要使函数有意义,必须有⎩⎪⎨⎪⎧tan x -1≠0,x ≠π2+k π,k ∈Z即⎩⎨⎧x ≠π4+k π,k ∈Z ,x ≠π2+k π,k ∈Z故函数的定义域为{x |x ≠π4+k π,且x ≠π2+k π,k ∈Z }.答案:{x |x ≠π4+k π且x ≠π2+k π,k ∈Z }3.解析:要使函数有意义,则⎩⎪⎨⎪⎧sin x >0,cos x -12≥0,即⎩⎪⎨⎪⎧sin x >0,cos x ≥12, 解得⎩⎪⎨⎪⎧2k π<x <π+2k π,k ∈Z ,-π3+2k π≤x ≤π3+2k π,k ∈Z . 所以2k π<x ≤π3+2k π(k ∈Z ).所以函数的定义域为{x |2k π<x ≤2k π+π3,k ∈Z }.答案:{x |2k π<x ≤2k π+π3,k ∈Z }考点二例1 解析:(1)f (x )=sin ⎝⎛⎭⎫2x +3π2-3cos x =-cos 2x -3cos x =-2cos 2x -3cos x +1, 令cos x =t ,则t ∈[-1,1]. f (t )=-2t 2-3t +1=-2⎝⎛⎭⎫t +342+178, 易知当t =1时,f (t )min =-2×12-3×1+1=-4. 故f (x )的最小值为-4.(2)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,sin x cos x =1-t 22,且-1≤t ≤ 2.∴y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-1时y min =-1 ∴函数的值域为[-1,1]. 答案:(1)-4 (2)[-1,1] 变式练1.解析:∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴sin ⎝⎛⎭⎫π6x -π3∈⎣⎡⎦⎤-32,1. ∴y ∈[-3,2],∴y max +y min =2- 3. 答案:A2.解析:由已知x ∈⎣⎡⎦⎤0,π2,得2x -π4∈⎣⎡⎦⎤-π4,3π4, 所以sin ⎝⎛⎭⎫2x -π4∈⎣⎡⎦⎤-22,1,故函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π4上的最小值为-22. 答案:-22考点三例2 解析:∵f (x )=(3sin x +cos x )(3cos x -sin x ) =3sin x cos x +3cos 2x -3sin 2x -sin x cos x =sin 2x +3cos 2x=2sin ⎝⎛⎭⎫2x +π3, ∴T =2π2=π.故选B.答案:B例3 解析:∵f (x )=sin ⎝⎛⎭⎫ωx +π4的最小正周期为π, ∴2πω=π,ω=2, ∴f (x )=sin ⎝⎛⎭⎫2x +π4.当x =π4时,2x +π4=3π4, ∴A 、C 两项错误;当x =π8时,2x +π4=π2,∴B 项正确,D 项错误. 答案:B例4 解析:由-π2+2k π≤x +π4≤π2+2k π,k ∈Z ,得-3π4+2k π≤x ≤π4+2k π,k ∈Z .又x ∈[0,π],所以f (x )的单调递增区间为⎣⎡⎦⎤0,π4. 答案:⎣⎡⎦⎤0,π4 变式练3.解析:f (x )=cos 2x + 3 sin 2x =2sin(2x +π6),则由-π2+2k π≤2x +π6≤π2+2k π(k ∈Z ),得-π3+k π≤x ≤π6+k π(k ∈Z ),即函数f (x )的单调递增区间是[k π-π3,k π+π6](k ∈Z ),故选A.答案:A4.解析:y =tan ⎝⎛⎭⎫2x -π3是非奇非偶函数,A 错误;y =tan ⎝⎛⎭⎫2x -π3在区间⎝⎛⎭⎫0,π3上单调递增,B 错误;由2x -π3=k π2得x =k π4+π6(k ∈Z ),得函数y =tan ⎝⎛⎭⎫2x -π3的对称中心为⎝⎛⎭⎫k π4+π6,0,k ∈Z ,故C 正确;函数y =tan ⎝⎛⎭⎫2x -π3的最小正周期为π2,D 错误. 答案:C5.解析:解法一 由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.解法二 由题意,得f (x )max =f ⎝⎛⎭⎫π3=sin π3ω=1. 由已知并结合正弦函数图象可知,π3ω=π2+2k π(k ∈Z ),解得ω=32+6k (k ∈Z ),所以当k=0时,ω=32.答案:32。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.5 三角函数的图象与性质(一)●知识梳理1.五点法作y =A sin (ωx +ϕ)的简图:五点取法是设x =ωx +ϕ,由x 取0、2π、π、2π3、2π来求相应的x 值及对应的y 值,再描点作图.2.利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现.无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少.3.给出图象确定解析式y =A sin (ωx +ϕ)的题型,有时从寻找“五点”中的第一零点(-ωϕ,0)作为突破口,要从图象的升降情况找准..第一个零点的位置. ●点击双基1.(2002年全国)函数y =-x cos x 的部分图象是DCBA解析:y =-x cos x 为奇函数,且当x 0+时,图象在x 轴下方. 答案:D2.(2002年全国)在(0,2π)内,使sin x >cos x 成立的x 的取值范围是 A.(4π,2π)∪(π,4π5) B.(4π,π) C.(4π,4π5) D.(4π,π)∪(4π5,2π3) 解析:利用三角函数线. 答案:C3.(2005年春季北京,4)如果函数f (x )=sin (πx +θ)(0<θ<2π)的最小正周期是T ,且当x =2时取得最大值,那么A.T =2,θ=2πB.T =1,θ=πC.T =2,θ=πD.T =1,θ=2π 解析:T =ππ2=2,又当x =2时,sin (π·2+θ)=sin (2π+θ)=sin θ,要使上式取得最大值,可取θ=2π. 答案:A4.设函数f (x )=A +B sin x ,若B <0时,f (x )的最大值是23,最小值是-21,则A =_______,B =_______.解析:根据题意,由⎪⎪⎩⎪⎪⎨⎧-=+=-2123B A B A ,可得结论.答案:21-1 5.(2004年全国,5)已知函数y =tan (2x +ϕ)的图象过点(12π,0),则ϕ可以是 A.-6π B.6π C.-12πD.12π 解析:将(12π,0)代入原函数可得,tan (6π+ϕ)=0,再将A 、B 、C 、D 代入检验即可. 答案:A●典例剖析【例1】 把函数y =cos (x +3π4)的图象向左平移4个单位,所得的函数为偶函数,则ϕ的最小值是A.3π4 B.3π2 C.3π D.3π5 剖析:先写出向左平移4个单位后的解析式,再利用偶函数的性质求解. 向左平移ϕ个单位后的解析式为y =cos (x +3π4+ϕ), 则cos (-x +3π4+ϕ)=cos (x +3π4+ϕ), cos x cos (3π4+ϕ)+sin x sin (3π4+ϕ) =cos x cos (3π4+ϕ)-sin x sin (3π4+ϕ). ∴sin x sin (3π4+ϕ)=0,x ∈R . ∴3π4+ϕ=k π.∴ϕ=k π-3π4>0. ∴k >34.∴k =2.∴ϕ=3π2. 答案:B 【例2】 试述如何由y =31sin (2x +3π)的图象得到y =sin x 的图象.解:y =31sin (2x +3π))(纵坐标不变倍横坐标扩大为原来的3πsin 312+=−−−−−−−−−→−x y x y sin 313π=−−−−−−−−→−纵坐标不变个单位图象向右平移x y sin 3=−−−−−−−−−→−横坐标不变倍纵坐标扩大到原来的深化拓展还有其他变换吗?不妨试一试.答案:(1)先将y =31sin (2x +3π)的图象向右平移6π个单位,得y =31sin2x 的图象;(2)再将y =31sin2x 上各点的横坐标扩大为原来的2倍(纵坐标不变),得y =31sin x 的图象;(3)再将y =31sin x 图象上各点的纵坐标扩大为原来的3倍(横坐标不变),即可得到y =sin x 的图象.【例3】 (2004年重庆,17)求函数y =sin 4x +23sin x cos x -cos 4x 的最小正周期和最小值;并写出该函数在[0,π]上的单调递增区间.解:y =sin 4x +23sin x cos x -cos 4x =(sin 2x +cos 2x )(sin 2x -cos 2x )+3sin2x =3sin2x -cos2x =2sin (2x -6π). 故该函数的最小正周期是π;最小值是-2;单调递增区间是[0,3π],[6π5,π]. 评述:把三角函数式化简为y =A sin (ωx +ϕ)+k (ω>0)是解决周期、最值、单调区间问题的常用方法.●闯关训练 夯实基础1.(2004年辽宁,7)已知函数f (x )=sin (πx -2π)-1,则下列命题正确的是 A.f (x )是周期为1的奇函数 B.f (x )是周期为2的偶函数C.f (x )是周期为1的非奇非偶函数D.f (x )是周期为2的非奇非偶函数 解析:T =ππ2=2,且f (x )=sin (πx -2π)-1=cos2x -1,∴f (x )为偶函数.答案:B2.(2004年全国Ⅰ,9)为了得到函数y =sin (2x -6π)的图象,可以将函数y =cos2x 的图象A.向右平移6π个单位长度 B.向右平移3π个单位长度 C.向左平移6π个单位长度D.向左平移3π个单位长度 解析:∵y =sin (2x -6π)=cos [2π-(2x -6π)]=cos (3π2-2x )=cos (2x -3π2)= cos [2(x -3π)], ∴将函数y =cos2x 的图象向右平移3π个单位长度. 答案:B3.方程2sin2x =x -3的解的个数为_______. 解析:画图象. 答案:34.函数y =A sin (x +ϕ)与y =A cos (x +ϕ)在(x 0,x 0+π)上交点的个数为_______. 解析:画图象. 答案:15.(2004年上海,14)已知y =f (x )是周期为2π的函数,当x ∈[0,2π)时,f (x )=sin 2x,则f (x )=21的解集为 A.{x |x =2k π+3π,k ∈Z } B.{x |x =2k π+3π5,k ∈Z } C.{x |x =2k π±3π,k ∈Z }D.{x |x =2k π+(-1)k3π,k ∈Z } 解析:∵f (x )=sin 2x =21,x ∈[0,2π), ∴2x ∈[0,π).∴2x =6π或6π5. ∴x =3π或3π5. ∵f (x )是周期为2π的周期函数,∴f (x )=21的解集为{x |x =2k π±3π,k ∈Z }.答案:C6.画出函数y =|sin x |,y =sin|x |的图象. 解:y =sin|x |=⎩⎨⎧<-≥.0sin 0sin x x x x,培养能力7.作出函数y =|sin x |+|cos x |,x ∈[0,π]的图象,并写出函数的值域. 解:原式=⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤ ⎝⎛∈-⎥⎦⎤⎢⎣⎡∈+.π2π4πsin 22π04πsin 2,)(,,)(x x x x如下图:函数的值域为[1,2].8.(2004年福建,17)设函数f (x )=a ·b ,其中向量a =(2cos x ,1),b =(cos x ,3sin2x ),x ∈R .(1)若f (x )=1-3且x ∈[-3π,3π],求x ; (2)若函数y =2sin2x 的图象按向量c =(m ,n )(|m |<2π)平移后得到函数y =f (x )的图象,求实数m 、n 的值. 分析:本题主要考查平面向量的概念和计算、三角函数的恒等变换及其图象变换的基本技能,考查运算能力.解:(1)依题设,f (x )=2cos 2x +3sin2x =1+2sin (2x +6π).由1+2sin (2x +6π)=1-3, 得sin (2x +6π)=-23.∵-3π≤x ≤3π,∴-2π≤2x +6π≤6π5.∴2x +6π=-3π,即x =-4π. (2)函数y =2sin2x 的图象按向量c =(m ,n )平移后得到函数y =2sin2(x -m )+n 的图象,即函数y =f (x )的图象.由(1)得f (x )=2sin2(x +12π)+1.∵|m |<2π,∴m =-12π,n =1.探究创新9.(2004年北京西城区一模题)f (x )是定义在[-2π,2π]上的偶函数,当x ∈[0,π]时,y =f (x )=cos x ,当x ∈(π,2π]时,f (x )的图象是斜率为π2,在y 轴上截距为-2的直线在相应区间上的部分.(1)求f (-2π),f (-3π); (2)求f (x ),并作出图象,写出其单调区间. 解:(1)当x ∈(π,2π]时,y =f (x )=π2x -2, 又f (x )是偶函数,∴f (-2π)=f (2π)=2. 又x ∈[0,π]时,y =f (x )=cos x , ∴f (-3π)=f (3π)=21.(2)y =f (x )=[)[](]⎪⎪⎩⎪⎪⎨⎧∈--∈--∈--.2ππ2π2ππcos ππ22π2,,,,,x x x xx x单调区间为[-2π,-π),[0,π),[-π,0],[π,2π]. ●思悟小结1.数形结合是数学中重要的思想方法,在中学阶段,对各类函数的研究都离不开图象,很多函数的性质都是通过观察图象而得到的.2.作函数的图象时,首先要确定函数的定义域.3.对于具有周期性的函数,应先求出周期,作图象时只要作出一个周期的图象,就可根据周期性作出整个函数的图象.4.求定义域时,若需先把式子化简,一定要注意变形时x 的取值范围不能发生变化. ●教师下载中心 教学点睛解析式的求解中应引导学生用好图象,紧扣五点中的第一个零点,要注意图象的升降情况,注意数形结合的思想.拓展题例【例题】 已知函数f (x )=A sin ωx +B cos ωx (A 、B 、ω是实常数,ω>0)的最小正周期为2,并当x =31时,f (x )max =2.(1)求f (x ).(2)在闭区间[421,423]上是否存在f (x )的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由.解:(1)f (x )=3sin πx +cos πx =2sin (πx +6π). (2)令πx +6π=k π+2π,k ∈Z . ∴x =k +31,421≤k +31≤423.∴1259≤k ≤1265.∴k =5. 故在[421,423]上只有f (x )的一条对称轴x =316.。

相关文档
最新文档