2010年高考试题——数学理(全国卷1)

合集下载

2010年高考新课标全国卷理科数学试题(附答案)

2010年高考新课标全国卷理科数学试题(附答案)

p2 和 q4 : p1
p 中,真命
题是
2
(A) q1 , q3
(B) q2 , q3
(C) q1 , q4
(D) q , q
2
4
(6)某种种子每粒发芽的概率都为 0.9,现播种了 1000 粒,对于没有发芽的种子,每粒需再
补种 2 粒,补种的种子数记为 X,则 X 的数学期望为
(A)100
(B)200
1,2,…
, N ) 的点数 N1 ,那么由随机模拟方案可得积分
1 f (x)dx 的
0
近似值为

(14)正视图为一个三角形的几何体可以是______(写出三种)
(15)过点 A(4,1) 的圆C 与直线 x y 1 0 相切于点 B(2,1) ,则圆C 的方程为____
(16)在△ ABC 中, D 为边 BC 上一点, BD
(C) (10,12)
(D) (20, 24)
(12)已知双曲线 E 的中心为原点, P(3,0) 是 E 的焦点,过 F 的直线 l 与 E 相交于 A , B
两点,且 AB 的中点为 N ( 12, 15),则 E 的方程式为
x2 (A) 3
y2 6
1
x2 (B) 4
y2 5
1
x2 (C) 6
y2 3
(D) y
(4)如图,质点 P 在半径为 2 的圆周上逆时针运动,其初始位置为
P0 ( 2, 2) ,角速度为 1,那么点 P 到 x 轴距离 d 关于时间 t
2x 2
的函数图像大致为
d
2
t Oπ
4
A
B
C
D
(5)已知命题
p1 :函数 y

2010年高考理科数学试题及答案-全国卷1

2010年高考理科数学试题及答案-全国卷1

2010年高考理科数学试题及答案-全国卷1注意事项:1. 在答题卡上用直径0.5毫米黑色墨水签字笔填写姓名、准考证号,并贴好条形码。

请核对条形码上的准考证号、姓名和科目。

选择题:1. 求复数3+2i与2-3i的商。

(A) i (B) -i (C) 12-13i (D) 12+13i2. 已知cos(-80°)=k,求tan100°。

(A) -k/(1-k^2) (B) k/(1-k^2) (C) k (D) -k3. 若变量x,y满足约束条件x+y≥0,x-y-2≤0,y≤1,则z=x-2y的最大值为(A) 4 (B) 3 (C) 2 (D) 14. 已知各项均为正数的等比数列{an},a1a2a3=5,a7a8a9=10,则a4a5a6=?(A) 52 (B) 7 (C) 6 (D) 425. 将(1+2x)^3(1-3x)^5展开式中x的系数求出。

(A) -4 (B) -2 (C) 2 (D) 46. 某校开设A类选修课3门,B类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有(A) 30种 (B) 35种 (C) 42种 (D) 48种第Ⅱ卷1. 已知函数f(x)=sin2x+cos2x,求f(x+π/4)的值。

2. 已知函数f(x)=x^2-2x-3,g(x)=2x+1,则f(g(x))=?3. 已知函数f(x)=e^x,g(x)=lnx,则f(g(x))=?4. 求曲线y=x^3-3x^2+2的单调递减区间和单调递增区间。

5. 已知函数f(x)=x^3-3x,g(x)=f(x+1),求g(x)的零点。

6. 已知函数f(x)=e^x,g(x)=x^2+1,则f(g(x))的最小值为多少?7. 已知函数f(x)=ax^2+bx+c,经过点(1,3),且在x=2处的导数为4,则a+b+c=?8. 已知函数f(x)=x^3+ax^2+bx+c,其中a,b,c均为常数,且f(-1)=2,f(0)=1,f(1)=4,则f(-2)=?9. 已知函数f(x)=x^3+ax^2+bx+c,其中a,b,c均为常数,且f(1)=0,f'(1)=-2,f''(1)=2,则f(-1)=?10. 已知函数f(x)=x^3-3x,g(x)=f(x+1),求g(x)的反函数。

2010年高考试题——数学理(福建卷)解析版

2010年高考试题——数学理(福建卷)解析版

2010年高考试题——数学(理)(福建卷)解析第I 卷(选择题 共60分)一、选择题:本大题共12小题。

每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.cos13计算sin43cos 43-sin13的值等于( )A .12B .33C .22D .32【答案】A【解析】原式=1sin (43-13)=sin 30=2,故选A 。

【命题意图】本题考查三角函数中两角差的正弦公式以及特殊角的三角函数,考查基础知识,属保分题。

2.以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( )A .22x +y +2x=0B .22x +y +x=0C .22x +y -x=0D .22x +y -2x=0【答案】D【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为r=1,故所求圆的方程为22x-1)+y =1(,即22x -2x+y =0,选D 。

【命题意图】本题考查抛物线的几何性质以及圆的方程的求法,属基础题。

3.设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则当n S 取最小值时,n 等于A .6B .7C .8D .9【答案】A【解析】设该数列的公差为d ,则461282(11)86a a a d d +=+=⨯-+=-,解得2d =, 所以22(1)11212(6)362n n n S n n n n -=-+⨯=-=--,所以当6n =时,n S 取最小值。

【命题意图】本题考查等差数列的通项公式以及前n 项和公式的应用,考查二次函数最值的求法及计算能力。

4.函数2x +2x-3,x 0x)=-2+ln x,x>0f ⎧≤⎨⎩(的零点个数为 ( ) A .0B .1C .2D .3【答案】C【解析】当0x ≤时,令2230x x +-=解得3x =-;当0x >时,令2ln 0x -+=解得100x =,所以已知函数有两个零点,选C 。

2010年高考试题理科数学真题及答案(浙江卷)解析版

2010年高考试题理科数学真题及答案(浙江卷)解析版

2010年普通高等学校招生全国统一考试(浙江卷)数学理解析一. 选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四项中,只有一项是符合题目要求的。

(1)设P={x ︱x <4},Q={x ︱2x <4},则 (A )p Q ⊆ (B )Q P ⊆(C )Rp Q C ⊆(D )RQ P C ⊆解析:{}22<<x x Q -=,可知B 正确,本题主要考察了集合的基本运算,属容易题(2)某程序框图如图所示,若输出的S=57,则判断框内位 (A ) k >4? (B )k >5? (C ) k >6? (D )k >7?解析:选A ,本题主要考察了程序框图的结构,以及与数列有关的简 单运算,属容易题(3)设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S = (A )11 (B )5 (C )8- (D )11-解析:解析:通过2580a a +=,设公比为q ,将该式转化为08322=+q a a ,解得q =-2,带入所求式可知答案选D ,本题主要考察了本题主要考察了等比数列的通项公式与前n 项和公式,属中档题 (4)设02x π<<,则“2sin 1x x <”是“sin 1x x <”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 解析:因为0<x <2π,所以sinx <1,故x sin 2x <x sinx ,结合x sin 2x 与x sinx 的取值范围相同,可知答案选B ,本题主要考察了必要条件、充分条件与充要条件的意义,以及转化思想和处理不等关系的能力,属中档题(5)对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是(A )2z z y -= (B )222z x y =+ (C )2z z x -≥ (D )z x y ≤+解析:可对选项逐个检查,A 项,y z z 2≥-,故A 错,B 项,xyi y x z 2222+-=,故B 错,C 项,y z z 2≥-,故C 错,D 项正确。

重庆高考数学2010

重庆高考数学2010

绝密★启用前解密时间:2010年6月7日17:00 【考试时间:6月7日15:00—17:00】2010年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)数学试题卷(理工农医类)共4页。

满分150分。

考试时间120分钟。

注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,将试题卷和答题卡一并交回。

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.(1)在等比数列}{n a 中,200720108a a =,则公比q 的值为( )A 、2B 、3C 、4D 、8(2)已知向量,满足2||,1||,0===⋅,则=-|2|( ) A 、0B 、22C 、4D 、8(3)=⎪⎭⎫⎝⎛---→2144lim 22x x x ( )A 、1-B 、41-C 、41 D 、1(4)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≤-+≥+-≥,03,01,0y x y x y 则y x z +=2的最大值为( )A 、2-B 、4C 、6D 、8(5)函数xx x f 214)(+=的图象( )A 、关于原点对称B 、关于直线x y =对称C 、关于x 轴对称D 、关于y 轴对称(6)已知函数)2||,0)(sin(πϕωϕω<>+=x y的部分图象如题(6)图所示,则( ) A 、6,1πϕω== B 、6,1πϕω-==C 、6,2πϕω==D 、6,2πϕω-==(7)已知822,0,0=++>>xy y x y x ,则y x 2+的最小值是( )A 、3B 、4C 、29 D 、211 (8)直线233+=x y 与圆心为D 的圆))2,0[(,sin 31,cos 33πθθθ∈⎪⎩⎪⎨⎧+=+=y x 交于A 、B 两点,则直线AD 与BD 的倾斜角之和为( )A 、π67B 、π45 C 、π34D 、π35(9)某单位安排7位员工在10月1日至7日值班,每天安排1人,每人值班1天. 若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有( )A 、504种B 、960种C 、1008种D 、1108种(10)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( )A 、直线B 、椭圆C 、抛物线D 、双曲线二、填空题:本大题共5小题,每小题5分,共25分. 把答案填写在答题卡相应位置上. (11)已知复数,1i z +=则=-z z2____________. (12)设}0|{},3,2,1,0{2=+∈==mx x U x A U ,若}2,1{=A C U ,则实数=m _________.(13)某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为2516,则该队员每次罚球的命中率为_____________.(14)已知以F 为焦点的抛物线x y 42=上的两点B A 、满足3=,则弦AB 的中点到准线的距离为___________. (15)已知函数)(x f 满足:),)(()()()(4,41)1(R y x y x f y x f y f x f f ∈-++==,则=)2010(f __________.三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. (16)(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分.) 设函数R x xx x f ∈++=,2cos 2)32cos()(2π. (Ⅰ)求)(x f 的值域;(Ⅱ)记A B C ∆的内角C B 、、A 的对边长分别为c b a 、、,若3,1,1)(===c b B f ,求a 的值.(17)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起. 若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求: (Ⅰ)甲、乙两单位的演出序号至少有一个为奇数的概率; (Ⅱ)甲、乙两单位之间的演出单位个数ξ的分布列与期望.(18)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 已知函数)1ln(1)(+++-=x ax x x f ,其中实数1-≠a . (Ⅰ)若2=a ,求曲线)(x f y =在点))0(,0(f 处的切线方程; (Ⅱ)若)(x f 在1=x 处取得极值,试讨论)(x f 的单调性.(19)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)如题(19)图,四棱锥ABCD P -中,底面ABCD 为矩形,⊥PA 底面ABCD ,6==AB PA ,点E 是棱PB 的中点.(Ⅰ)求直线AD 与平面PBC 的距离; (Ⅱ)若3=AD ,求二面角D EC A --(20)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.) 已知以原点O 为中心,)0,5(F 为右焦点的双曲线C 的离心率25=e . (Ⅰ)求双曲线C 的标准方程及其渐近线方程;(Ⅱ)如题(20)图,已知过点),(11y x M 的直线44:111=+y y x x l 与过点),(22y x N (其中12x x ≠)的直线44:222=+y y x x l 线分别交于H G 、两点,求OGH ∆的面积.(21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.) 在数列}{n a 中,))(12(,1111*++∈++==N n n c ca a a n n n ,其中实数0≠c .(Ⅰ)求}{n a 的通项公式;(Ⅱ)若对一切*∈N k 有122->k k a a ,求c 的取值范围.绝密★启用前2010年普通高等学校招生全国统一考试(重庆卷)数学试题(理工农医类)答案一.选择题:每小题5分,满分 50分. (1)A (2)B (3)C (4)C (5)D(6)D(7)B(8)C(9)C(10)D二.填空题:每小题5分,满分25分. (11)i 2-(12)3-(13)53 (14)38 (15)21 三.解答题:满分75分. (16)(本题13分)解:(Ⅰ)1cos 32sinsin 32cos cos )(++-=x x x x f ππ1cos sin 23cos 21++--=x x x1sin 23cos 21+-=x x1)65sin(++=πx ,因此)(x f 的值域为]2,0[.(Ⅱ)由1)(=B f 得11)65sin(=++πB ,即0)65sin(=+πB ,又因π<<B 0, 故6π=B .解法一:由余弦定理B ac c a b cos 2222-+=,得0232=+-a a ,解得1=a 或2.解法二:由正弦定理C c B b sin sin =,得3,23sin π==C C 或32π. 当3π=C 时,2π=A ,从而222=+=c b a ;当32π=C 时,6π=A ,又6π=B ,从而1==b a .故a 的值为1或2.(17)(本题13分) 解:只考虑甲、乙两单位的相对位置,故可用组合计算基本事件数.(Ⅰ)设A 表示“甲、乙的演出序号至少一个为奇数”,则A 表示“甲、乙的序号为偶数”,由等可能性事件的概率计算公式得545111)(1)(2623=-=-=-=C C A P A P .(Ⅱ)ξ的所有可能值为0,1,2,3,4,且513)2(,1544)1(,315)0(262662=========C P C P C P ξξξ,1511)4(,1522)3(2626======C P C P ξξ.从而知ξ有分布列所以,34151415235121541310=⨯+⨯+⨯+⨯+⨯=ξE .(18)(本题13分)解:(Ⅰ)11)(111)()1()(22/++++=+++--+=x a x a x a x x a x x f .当1=a 时,47101)20(12)0(2/=++++=f ,而21)0(-=f ,因此曲线)(x f y =在点))0(,0(f 处的切线方程为)0(47)21(-=--x y 即0247=--y x .(Ⅱ)1-≠a ,由(Ⅰ)知2111111)1(1)(2/++=++++=a a a x f ,即02111=++a ,解得3-=a .此时)1ln(31)(++--=x x x x f ,其定义域为),3()3,1(+∞- ,且)1()3()7)(1(11)3(2)(22/+---=++--=x x x x x x x f ,由0)(/=x f 得7,121==x x .当 11<<-x 或7>x 时,0)(/>x f ;当71<<x 且3≠x 时,0)(/<x f .由以上讨论知,)(x f 在区间),7[],1,1(+∞-函数.(19)(本题12分) 解法一:(Ⅰ)如答(19)图1 ,在矩形ABCD 中,//AD 平面 故直线AD 与平面PBC 的距离为点A 到平面PBC因⊥PA 底面ABCD ,故,由AB PA =知PAB ∆形,又点E 是棱PB 中点,故PB AE ⊥.又在矩形中,AB BC ⊥,而AB 是PB 在底面ABCD 三垂线定理得PB BC ⊥,从而⊥BC 平面PAB ,故AE BC ⊥.从而⊥AE 平面PBC ,故AE 之长即为直线AD与平面PBC 的距离.(Ⅱ)过点D 作CE DF ⊥,交CE 于F ,过点F 作CE FG ⊥,交AC 于G ,则DFG∠为所求的二面角的平面角.由(Ⅰ)知⊥BC 平面PAB ,又BC AD //,得⊥AD 平面PAB ,故AE AD ⊥,从而622=+=AD AE DE .在CBE Rt ∆中,622=+=BC BE CE .由6=CD ,所以CDE ∆为等边三角形,故F 为CE 的中点,且2233sin=⋅=πCD DF . 因为⊥AE 平面PBC ,故CE AE ⊥,又CE FG ⊥,知AE FG 21//,从而23=FG ,且G 点为AC 的中点.连接DG ,则在ADC Rt ∆中,23212122=+==CD AD AC DG .所以362cos 222=⋅⋅-+=FG DF DG FG DF DFG .解法二:(Ⅰ)如答(19)图2,以A 为坐标原点,射线AB 、AD 轴正半轴,建立空间直角坐标系xyz A -.设)0,,0(a D ,则)0,,6(),0,0,6(a C B ,26,0,26(),6,0,0(E P . 因此)6,0,6(),0,,0(),26,0,26(-===PC a BC AE 则0,0=⋅=⋅PC AE BC AE ,所以⊥AE 平面PBC. 又由BC AD //知//AD 平面PBC ,故直线AD 与平面 PBC 的距离为点A 到平面PBC 的距离,即为3||=.(Ⅱ)因为3||=,则)0,3,6(),0,3,0(C D .设平面AEC 的法向量),,(1111z y x n =,则0,011=⋅=⋅n n .又)26,0,26(),0,3,6(==,故⎪⎩⎪⎨⎧=+=+,02626,0361111z x y x 所以1111,2x z x y -=-=. 可取21-=z ,则)2,2,2(-=. 设平面DEC 的法向量),,(2222z y x n =,则0,022=⋅=⋅n n . 又26,3,26(),0,0,6(-==,故 所以2222,0y z x ==. 可取12=y ,则)2,1,0(2=n .故36,cos 212121=>=<n n .所以二面角D EC A --的平面角的余弦值为36. (20)(本题12分)解:(Ⅰ)设C 的标准方程为)0,0(122>>=-b a y x ,则由题意25,5===a c e c , 因此1,222=-==a c b a ,C 的标准方程为1422=-y x.C 的渐近线方程为x y 21±=,即02=-y x 和02=+y x .(Ⅱ)解法一:如答(20)图,由题意点),(E E y x E 在直线44:111=+y y x x l 和44:222=+y y x x l 上,因此有4411=+E E y y x x ,4422=+E E y y x x ,故点M 、N 均在直线44=+y y x x E E 上,因此直线MN 的方程为44=+y y x x E E . 设G 、H 分别是直线MN 与渐近线02=-y x 及02=+y x 的交点,由方程组⎩⎨⎧=-=+02,44y x y y x x E E 及⎩⎨⎧=+=+,02,44y x y y x x E E解得EE H E E G y x y y x y 22,22--=+=.设MN 与x 轴的交点为Q ,则在直线44=+y y x x E E 中,令0=y 得EQ x x 4=(易知)0≠E x . 注意到4422=-E E y x ,得2|4|||2||4|2121|||4||||2122=-⋅=-++⋅=-⋅⋅=∆E E E E E E E E E H G OGH y x x x y x y x x y y OQ S.解法二:设),(E E y x E ,由方程组⎩⎨⎧=+=+,44,442211y y x x y y x x 解得122121122112,)(4y x y x x x y y x y x y y x EE --=--=, 因12x x ≠,则直线MN 的斜率EE y xx x y y k 41212-=--=.故直线MN 的方程为)(411x x y x y y EE--=-, 注意到4411=+E E y y x x ,因此直线MN 的方程为44=+y y x x E E . 下同解法一. (21)(本题12分) (Ⅰ)解法一:由c c c c c ca a a +-=+=⋅+==2222121)12(33,1,23233323)13(85c c c c c ca a +-=+=⋅+=, 34234434)14(157c c c c c ca a +-=+=⋅+=,猜测*-∈+-=N n c c n a n n n ,)1(12.下用数学归纳法证明. 当1=n 时,等式成立;假设当k n =时,等式成立,即12)1(-+-=k k k c c k a ,则当1+=k n 时,)12(])1[()12(1121`1+++-=++=+-++k c c c k c k c ca a k k k k k kk k k k c c k c c k k +-+=++=++1212]1)1[()2(,综上, 12)1(-+-=n n n c c n a 对任何*∈N n 都成立.解法二:由原式得)12(11++=++n ca c a n nn n .令nn n c a b =,则)12(,111++==+n b b c b n n ,因此对2≥n 有112211)()()(b b b b b b b b n n n n n +-++-+-=---cn n 13)32()12(+++-+-= cn 112+-=,因此12)1(-+-=n n n c c n a ,2≥n .又当1=n 时上式成立.因此*-∈+-=N n c c n a n n n ,)1(12.(Ⅱ)解法一:由122->k k a a ,得 221221222]1)12[(]1)2[(---+-->+-k k k k c c k c c k ,因022>-k c,所以01)144()14(222>-----c k k c k .解此不等式得:对一切*∈N k ,有k c c >或/k c c <,其中)14(2)14(4)144()144(22222--+--+--=k k k k k k c k ,)14(2)14(4)144()144(22222/--+-----=k k k k k k c k .易知1lim =∞→k k c ,又由144)14(4)14()14(4)144(2222222+=+-+-<-+--k k k k k k ,知12848)14(214)144(22222<--=-++--<k k k k k k k c k ,因此由k c c >对一切*∈N k 成立得1≥c .又0)14(4)144()144(22222/<-+--+---=k k k k k c k ,易知/k c 单调递增,故/1/c c k ≥对一切*∈N k 成立,因此由/k c c <对一切*∈N k 成立得6131/1+-=<c c .从而c 的取值范围为),1[)6131,(+∞+--∞ . 解法二:由122->k k a a ,得221221222]1)12[(]1)2[(---+-->+-k k k k c c k c c k ,因022>-k c,所以014)(4222>-+-+-c c ck k c c 对*∈N k 恒成立.记14)(4)(222-+-+-=c c cx x c c x f ,下分三种情况讨论.(ⅰ)当02=-c c 即0=c 或1=c 时,代入验证可知只有1=c 满足要求.(ⅱ)当02<-c c 时,抛物线)(x f y =开口向下,因此当正整数k 充分大时,0)(<x f不符合题意,此时无解.(ⅲ)当02>-c c 即0<c 或1>c 时,抛物线)(x f y =开口向上,其对称轴)1(21c x -=必在直线1=x 的左边. 因此,)(x f 在),1[+∞上是增函数.所以要使0)(>k f 对*∈N k 恒成立,只需0)1(>f 即可.由013)1(2>-+=c c f 解得6131--<c 或6131+->c .结合0<c 或1>c 得6131+-<c 或1>c . 综合以上三种情况,c 的取值范围为),1[)6131,(+∞+--∞ .。

2010年高考全国卷1理科数学试题答案及解析

2010年高考全国卷1理科数学试题答案及解析

2010年普通高等学校招生全国统一考试(1)复数3223ii+=- (A)i (B)i - (C)12-13i (D) 12+13i1.A 【解析】32(32)(23)694623(23)(23)13i i i i i i i i i +++++-===--+. (2)记cos(80)k -︒=,那么tan100︒=A.21k k -B. -21k k- C.21k k- D. -21k k-2.B 【解析】222sin 801cos 801cos (80)1k =-=--=- ,所以tan100tan80︒=-2sin801.cos80k k-=-=-(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)1 3.B 【解析】画出可行域(如右图),由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456aaa = (A) 52 (B) 7 (C) 6 (D) 424.A 【解析】由等比数列的性质知31231322()5a a a a a a a === ,0x y += 1O y x = y20x y --=xA0:20l x y -=2-2AABC DA 1B 1C 1D 1O37897988()a a a a a a a === 10,所以132850a a =, 所以13336456465528()()(50)52a a a a a a a a a ===== (5)353(12)(1)x x +-的展开式中x 的系数是 (A) -4 (B) -2 (C) 2 (D) 45.B 【解析】35533(12)(1)(16128)(1)x x x x x x x +-=+++- 故353(12)(1)x x +-的展开式中含x 的项为3303551()1210122C x xC x x x ⨯-+=-+=-,所以x 的系数为-2.(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 (A) 30种 (B)35种 (C)42种 (D)48种6.A 【解析】:可分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B 类选修课选1门,有2134C C 种不同的选法.所以不同的选法共有1234C C +2134181230C C =+=种.(7)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A23 B 33 C 23 D 637.D【解析】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD ∆∆⋅=⋅.设DD 1=a,则12211133sin 60(2)2222ACD S AC AD a a ∆==⨯⨯= ,21122ACD S AD CD a ∆== . 所以1312333A C D A C D S D D a D O a S a ∆∆=== ,记DD 1与平面AC 1D 所成角为θ,则13sin 3DO DD θ==,所以6cos 3θ=. (8)设a=3log 2,b=In2,c=125-,则A a<b<c Bb<c<a C c<a<b D c<b<a8.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用. 【解析】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b, c=125-=15,而2252log 4log 3>=>,所以c<a,综上c<a<b. (9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P 到x 轴的距离为 (A)32 (B)62(C) 3 (D) 69.B 【解析】不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000||[()]12a PF e x a ex x c =--=+=+,22000||[)]21a PF e x ex a x c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-,即cos 0602220000(12)(21)(22)2(12)(21)x x x x ++--=+-, 解得2052x =,所以2200312y x =-=,故P 到x 轴的距离为06||2y = (10)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是 (A)(22,)+∞ (B)[22,)+∞ (C)(3,)+∞ (D)[3,)+∞10.A 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+2b 222a a=+>,从而错选A,这也是命题者的用苦良心之处.【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+2b=2a a+ 又0<a<b,所以0<a<1<b ,令2()f a a a=+,由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+21=3,即a+2b 的取值范围是(3,+∞). (11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ∙的最小值为(A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 11.D【解析】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,PO=21x +,21sin 1xα=+,||||cos2PA PB PA PB α∙=⋅=22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令P A P B y∙=,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得322y ≤--或322y ≥-+.故min ()322PA PB ∙=-+.此时21x =-.(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A)233 (B)433 (C) 23 (D) 83312.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,22max 22123h =-=,故max 433V =. (13)不等式2211x x +-≤的解集是 .PABO12x =y=1 xyaO12x =-414a y -=2y x x a=-+13.[0,2] 【命题意图】本小题主要考查根式不等式的解法,利用平方去掉根号是解根式不等式的基本思路,也让转化与化归的数学思想体现得淋漓尽致.解析:原不等式等价于2221(1),10x x x ⎧+≤+⎨+≥⎩解得0≤x ≤2.(14)已知α为第三象限的角,3cos 25α=-,则tan(2)4πα+= . 14.17-【解析】因为α为第三象限的角,所以2(2(21),2(21))()k k k Z απππ∈+++∈,又3cos 25α=-<0, 所以2(2(21),2(21))()2k k k Z παπππ∈++++∈,于是有4s i n 25α=,sin 24tan 2cos 23ααα==-,所以tan(2)4πα+=41tan tan 2134471tan tan 2143παπα-+==--+. (15)直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 .15.(1,5)4【解析】如图,在同一直角坐标系内画出直线1y =与曲线2y x x a =-+,观图可知,a 的取值必须满足1,4114a a >⎧⎪⎨-<⎪⎩解得514a <<. (16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF 2FD =uu r uu r,则C 的离心率为 .16.23【解析】如图,22||BF b c a =+=,作1DD y ⊥轴于点D 1,则由BF 2FD =uu r uu r,得1||||2||||3OF BF DD BD ==,所以133||||22DD OF c ==,即32D c x =,由椭圆的第二定义得2233||()22a c c FD e a c a=-=-又由||2||BF FD =,得232c c a a=-,整理得22320c a ac -+=.两边都除以2a ,得2320e e +-=,解得1()e =-舍去,或23e =. 三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)(注意:在试题卷上作答无效............) 已知ABC V 的内角A ,B 及其对边a ,b 满足cot cot a b a A b B +=+,求内角C .(18)(本小题满分12分)(注意:在试题卷上作答无效.........).投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审, 则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评 审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录 用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3. 各专家独立评审.(I)求投到该杂志的1篇稿件被录用的概率;(II)记X 表示投到该杂志的4篇稿件中被录用的篇数,求X 的分布列及期望. 18.(19如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 .(20)已知函数()(1)ln 1f x x x x =+-+.(Ⅰ)若2'()1xf x x ax ≤++,求a 的取值范围; (Ⅱ)证明:(1)()0x f x -≥ .(21)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(Ⅰ)证明:点F 在直线BD 上;(Ⅱ)设89FA FB = ,求BDK ∆的内切圆M 的方程 .(22)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知数列{}n a 中,1111,n n a a c a +==- .(Ⅰ)设51,22n n c b a ==-,求数列{}n b 的通项公式;(Ⅱ)求使不等式13n n a a +<<成立的c 的取值范围 .。

2010年高考试题——数学理(安徽卷)含解析

2010年高考试题——数学理(安徽卷)含解析

2010年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至第2页,第II 卷第3至第4页。

全卷满分150分钟,考试时间120分钟。

考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡...上书写,要求字体工整、笔迹清晰。

作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无............效.,在试题卷....、草稿纸上答题无效........。

4.考试结束,务必将试题卷和答题卡一并上交。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+ 如果A 与B 是两个任意事件,()0P A ≠,那么如果事件A 与B 相互独立,那么 ()()()|P AB P A P B A =()()()P AB P A P B =第Ⅰ卷(选择题,共50分)一、选择题:本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1、i=A 、14- B 、14+ C 、12+ D 、12-1.B【解析】(33)3313391241233i i iii-+===+++,选B.【规律总结】33i+为分式形式的复数问题,化简时通常分子与分母同时乘以分母的共轭复数3i-,然后利用复数的代数运算,结合21i=-得结论.2、若集合121log2A x x⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭,则A=RA、2(,0],2⎛⎫-∞+∞⎪⎪⎝⎭B、2,2⎛⎫+∞⎪⎪⎝⎭C、2(,0][,)2-∞+∞D、2[,)2+∞2.A5、双曲线方程为2221x y-=,则它的右焦点坐标为A 、2,02⎛⎫ ⎪ ⎪⎝⎭B 、5,02⎛⎫⎪ ⎪⎝⎭C 、6,02⎛⎫⎪ ⎪⎝⎭D 、()3,05.C【解析】双曲线的2211,2a b ==,232c =,62c =,所以右焦点为6,0⎛⎫ ⎪ ⎪⎝⎭. 【误区警示】本题考查双曲线的交点,把双曲线方程先转化为标准方程,然后利用222c a b=+求出c 即可得出交点坐标.但因方程不是标准形式,很多学生会误认为21b =或22b =,从而得出错误结论.6、设0abc >,二次函数()2f x ax bx c =++的图象可能是6.D【解析】当0a >时,b 、c 同号,(C )(D )两图中0c <,故0,02bb a<->,选项(D )符合.【方法技巧】根据二次函数图像开口向上或向下,分0a >或0a <两种情况分类考虑.另外还要注意c 值是抛物线与y 轴交点的纵坐标,还要注意对称轴的位置或定点坐标的位置等. 7、设曲线C 的参数方程为23cos 13sin x y θθ=+⎧⎨=-+⎩(θ为参数),直线l 的方程为320x y -+=,则曲线C 上到直线l 710的点的个数为 A 、1 B 、2C 、3D 、47.B【解析】化曲线C 的参数方程为普通方程:22(2)(1)9x y -++=,圆心(2,1)-到直线320x y -+=的距离71031010d ==<,直线和圆相交,过圆心和l 平行的直线和圆的2个交点符合要求,又71071031010>-,在直线l 的另外一侧没有圆上的点符合要求,所以选B.【方法总结】解决这类问题首先把曲线C 的参数方程为普通方程,然后利用圆心到直线的距离判断直线与圆的位置关系,这就是曲线C 上到直线l 距离为71010,然后再判断知7107103>-,进而得出结论.8、一个几何体的三视图如图,该几何体的表面积为 A 、280 B 、292C 、360D 、372 8.C【解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和。

2010年高考试题——数学理(辽宁卷)含解析

2010年高考试题——数学理(辽宁卷)含解析

2010年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项 是符合题目要求的,(1) 已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},u B ∩A={9},则A=(A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9} 【答案】D【命题立意】本题考查了集合之间的关系、集合的交集、补集的运算,考查了同学们借助于Venn 图解决集合问题的能力。

【解析】因为A ∩B={3},所以3∈A ,又因为u B ∩A={9},所以9∈A ,所以选D 。

本题也可以用Venn 图的方法帮助理解。

(2)设a,b 为实数,若复数11+2ii a bi =++,则 (A )31,22a b == (B) 3,1a b ==(C) 13,22a b == (D) 1,3a b ==【答案】A【命题立意】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力。

【解析】由121ii a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A 。

(3)两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是 否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为(A )12 (B)512 (C)14 (D)16【答案】B【命题立意】本题考查了相互独立事件同时发生的概率,考查了有关概率的计算问题 【解析】记两个零件中恰好有一个一等品的事件为A ,则 P(A)=P(A 1)+ P(A 2)=211335+=43412⨯⨯(4)如果执行右面的程序框图,输入正整数n ,m , 满足n ≥m ,那么输出的P 等于(A )1m nC -(B) 1m n A - (C) mn C (D) mn A【答案】D【命题立意】本题考查了循环结构的程序框图、排列公式,考查了学生的视图能力以及观察、推理的能力 【解析】第一次循环:k =1,p =1,p =n -m +1;第二次循环:k =2,p =(n -m +1)(n -m +2);第三次循环:k =3,p =(n -m +1) (n -m +2) (n -m +3) ……第m 次循环:k =3,p =(n -m +1) (n -m +2) (n -m +3)…(n -1)n 此时结束循环,输出p =(n -m +1) (n -m +2) (n -m +3)…(n -1)n =mn A (5)设ω>0,函数y=sin(ωx+3π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是(A )23 (B)43 (C)32(D)3 【答案】C【命题立意】本题考查了三角函数图像的平移变换与三角函数的周期性,考查了同学们对知识灵活掌握的程度。

2010年高考理科数学试题与答案-全国卷1

2010年高考理科数学试题与答案-全国卷1

【解析 1】如图,在同一直角坐标系内画出直线y 1与曲线y x 2x a ,观图可知,a 的a15取值必须满足,解得14a 1 a.144【解析 2】由数型结合知:1 5a1 a 1 a44y16.3【命题意图】本小题主要考察椭圆的方程与几何性质、第二定B3义、平面向量知识,考察了数形结合思想、方程思想,此题凸显解析几何OFx的特点:“数研究形,形助数〞 ,利用几何性质可寻求到简化问题的捷径.D 1Db 2c 2【解析 1】如图,| BF |a ,uur uur作DD 1y 轴于点 1, 那么由BF2FD ,得D|OF | |BF | 2,所以|DD 1 | 3 |OF | 3c ,|DD 1||BD| 32 2即 x D3c ,由椭圆的第二定义得 |FD |e( a 23c ) a 3c 22c22a又由|BF |2 | FD | ,得 c2a 3c 2 ,整理得3c 22a 2ac0 .a两边都除以 a 2 ,得3e 2e 2 0 ,解得e1(舍去 ),或e 2 .3【解析 2】设椭圆方程为:第一标准形式,F 分 BD 所成的比为 2,x c0 2 x 2 x 23x c3c; y c b 2 y 2 y 23y c b3 0 bb,带入1 222 1 22229 c 21 b 21 ,e34 a24 b2 3三.解答题:本大题共 6 小题,共 70 分.解容许写出文字说明,证明过程或演算步骤.17. 【命题意图】 本小题主要考察三角恒等变形、利用正弦、余弦定理处理三角形中的边 角关系,突出考察边角互化的转化思想的应用.18. 【命题意图】 此题主要考察等可能性事件、互斥事件、独立事件、相互独立试验、分布列、数学期望等知识 , 以及运用概率知识解决实际问题的能力 , 考察分类与整合思想、 化归与转化思想 .( 19〕〔本小题总分值 12 分〕【命题意图】本小题主要考察空间直线与直线、直线与平面、平面与平面的位置关系,二面角等根底知识,考察空间想象能力、推理论证能力和运算能力.(20)(本小题总分值12 分 )【命题意图】本小题主要考察函数、导数、不等式证明等知识,通过运用导数知识解决函数、不等式问题,考察了考生综合运用数学知识解决问题的能力以及计算能力,同时也考察了函数与方程思想、化归与转化思想.〔 21〕 (本小题总分值 12 分 )【命题意图】本小题为解析几何与平面向量综合的问题,主要考察抛物线的性质、直线与圆的位置关系,直线与抛物线的位置关系、圆的几何性质与圆的方程的求解、平面向量的数量积等知识,考察考生综合运用数学知识进展推理论证的能力、运算能力和解决问题的能力,同时考察了数形结合思想、设而不求思想..〔 22〕 (本小题总分值12 分 )【命题意图】本小题主要考察数列的通项公式、等比数列的定义、递推数列、不等式等根底知识和根本技能,同时考察分析、归纳、探究和推理论证问题的能力,在解题过程中也渗透了对函数与方程思想、化归与转化思想的考察.。

2010年高考新课标全国卷理科数学试题(附答案)

2010年高考新课标全国卷理科数学试题(附答案)

2010年普通高等学校招生全国统一考试(新课标全国卷)理科数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符 合题目要求的。

(1)已知集合A{xR|x |2}},B{xZ|x4},则AB(A)(0,2)(B)[0,2](C){0,2](D){0,1,2} (2)已知复数 z3i2 (13i) ,z 是z 的共轭复数,则zz=(A)1 4(B)1 2(C)1(D)2x在点(1,1)处的切线方程为 (3)曲线yx2(A)y2x1(B)y2x1(C)y2x3(D)y2x2(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为d 2 tOπ 4ABCD(5)已知命题xxp :函数y22在R 为增函数, 1xxp :函数y22在R 为减函数, 2则在命题 q :p 1p 2,q 2:p 1p 2,q 3:p 1p 2和q 4:p 1p 2中,真命1 题是(A ) q ,1 q (B ) 3 q , 2 q (C ) 3 q , 1 q (D ) 4q , 2 q4(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再 补种2粒,补种的种子数记为X ,则X 的数学期望为 开始 (A)100(B )200 输入N (C)300(D )400k=1,S=0 (7)如果执行右面的框图,输入N5,则输出的数等于(A) 5 4 (B )4 5(C) 6 5 (D )5 61S=S+k(k+1) k<N 否 输出Sk=k+1 是(8)设偶函数f(x)满足 3 f(x)x8(x0),结束则{x|f(x 2)0}(A){x |x2或x4}(B){x |x0或x4} (C){x |x0或x6}(D){x |x2或x2}(9)若cos 45 ,是第三象限的角,则 1tan 1tan2 2(A)1 2(B)1 2(C)2(D)2(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为(A) 2 a(B)7 3 2 a(C)11 3 2 a(D)2 5a|lgx|,0x10,(11)已知函数 f x ()12x6,x10.若a,b,c 互不相等,且f(a)f(b)f(c),则abc 的取值范围是(A)(1,10)(B)(5,6)(C)(10,12)(D)(20,24)(12)已知双曲线E 的中心为原点,P(3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (12,15),则E 的方程式为(A) 22 xy 36 1 (B) 22 xy 45 1 (C) 22 xy 63 1 (D) 22 xy 541第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都 必须做答,第(22)题~第(24)题为选考题,考试求做答。

2010年安徽高考数学试题

2010年安徽高考数学试题

2010年普通高等学校招生全国统一考试(安徽卷)语文本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分,第Ⅰ卷第1页至第5页,第Ⅱ卷第6页至第8页。

全卷满分150,考试时阿150分钟。

考生注意事项:答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

答选择题(第Ⅰ卷1~6题,第Ⅱ卷15~17题)时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答非选择题(第Ⅰ卷7~14题,第Ⅱ卷18~21题)时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔记清晰。

作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。

必须在题号后所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。

考试结束,务必将试卷和答题卡一并上交。

第I卷(阅读题共66分)一、(9分)阅读下面的文字,完成1~题。

一切传统都是过去的东西,但并非一切过去的东西都是传统。

可是,过去确系传统的一个重要特征,我们不能离开过去与现在的关系而谈传统。

传统都有其“原本”,原本是传统的始发言行。

传统的始发言行有其特定的原初行动者、特定的受动者,还有其特定的叫作参照系的现实环境。

在传统的原本中,所有这些都是特定的、不能代替的。

随着时间的推移和历史的进展,原本逐步地被认为是具有权威性的、天经地义的、带有信仰性质的东西而为群体所接受,成为凝聚群体的力量,这样,原本也就逐步地形成为传统。

这里特别值得注意的是,传统逐步形成的过程也是一个逐步远离原本的过程。

这里所说的远离,其具体内涵是指原初行动者、受动者和当时的参照系已消失而成为过去。

这样,传统在形成过程中就取得了相对独立于原本所处的参照系的自主性。

正是这种远离或自主性,打破了原本的限制,扩大了原本的范围,丰富了原本的含义,这里的关键在于解释。

2010年全国1卷高考数学(含答案)

2010年全国1卷高考数学(含答案)

绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷1至2页,第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并帖好条形码.请认真核准条形码的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........3.第I 卷共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B )=P (A )+P (B ) 24R S π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A ·B )=P (A )·P (B ) 球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 334R V π=球n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一、选择题 (1)复数=-+i i3223(A )i(B )i - (C )i 1312- (D )i 1312+ (2)记k =︒-)80cos(,那么=︒100tan(A )k k 21-(B )-kk 21- (C )21kk - (D )-21kk -(3)若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤--≥+≤.02,0,1y x y x y 则y x z 2-=的最大值为 (A )4 (B )3 (C )2 (D )1(4)已知各项均为正数的等比数列}{n a 中,634987321,10,5a a a a a a a a a 则===(A )25(B )7(C )6(D )24(5)533)1()21(x x -+的展开式中x 的系数是(A )-4 (B )-2 (C )2 (D )4(6)某校开设A 类选修课3门,B 类选择题4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 (A )30种 (B )35种 (C )42种 (D )48种 (7)正方体ABCD —A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为(A )32 (B )33 (C )32 (D )36 (8)设2135,2ln ,2log -===c b a ,则(A )c b a <<(B )a c b << (C )b a c << (D )a b c <<(9)已知F 1、F 2为双曲线1:22=-y x C 的左、右焦点,点P 在C 上,︒=∠6021PF F ,则P到x 轴的距离为(A )23 (B )26 (C )3 (D )6(10)已知函数)()(,0.|lg |)(b f a f b a x x f =<<=且若,则b a 2+的取值范围是(A )),22(+∞(B )[)+∞,22(C )),3(+∞(D )[)+∞,3(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PB PA ⋅的最小值为(A )24+-(B )23+-(C )224+-(D )223+-(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AC=CD=2,则四面体ABCD 的体积的最大值为(A )332 (B )334 (C )32 (D )338 绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷注意事项:七彩教育网 免费提供Word 版教学资源七彩教育网 全国最新初中、高中试卷、课件、教案等教学资源免费下载1.答题前,考生先在答题卡上用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

2010年高考试题——数学理(广东卷)

2010年高考试题——数学理(广东卷)

绝密★启用前 试卷类型:A2010年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时.请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的.答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}|21A x x =-<<,{}|02B x x =<<,则集合AB =A .{}|11x x -<<B .{}|21x x -<<C .{}|22x x -<<D .{}|01x x << 2.若复数11z i =+,23z i =-,则12z z ⋅=A .4B .2+ iC .2+2 iD .3 3.若函数()33xxf x -=+与()33xxg x -=-的定义域均为R ,则A .()f x 与()g x 均为偶函数B .()f x 为奇函数,()g x 为偶函数C .()f x 与()g x 均为奇函数D .()f x 为偶函数.()g x 为奇函数4.已知数列{}n a 为等比数列,n S 是是它的前n 项和,若2312a a a ⋅=,且4a 与27a 的等差中项为54,则5S = A .35 B .33 C .3l D .29 5.“14m <”是“一元二次方程20x x m ++=有实数解”的 A .充分非必要条件 B .充分必要条件 C .必要非充分条件 D .非充分非必要条件6.如图1,ABC 为正三角形,'''////AA BB CC ,'CC ⊥平面ABC ,''32BB ==且3AA 'CC AB =,则多面体'''ABC A B C -的正视图(也称主视图)是7. 已知随机变量X 服从正态分布(3,1)N ,且(24)0.6826P X ≤≤=,则(4)P X >= A .0.1588 B .0.1587 C .0.1586 D .0.15858.为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定。

2010江苏省高考数学真题(含答案)

2010江苏省高考数学真题(含答案)

Sn 是公差
为 d 的等差数列。
(1)求数列 a n 的通项公式(用 n, d 表示);
( 2) 设 c 为 实 数 , 对 满 足 m n 3k且m n 的 任 意 正 整 数 m, n, k , 不 等 式
Sm
Sn
cS
k
都成立。求证:
c
的最大值为
9 2

20、(本小题满分 16分)
设 f (x) 是定义在区间 (1, ) 上的函数,其导函数为 f '(x) 。如果存在实数 a 和函 数 h(x) ,其中 h(x) 对任意的 x (1, ) 都有 h(x) >0,使得 f '( x) h(x)(x 2 ax 1) ,则称函数 f (x) 具有性质 P(a) 。 (1)设函数 f (x) ln x bx 12 (x 1) ,其中b 为实数。
(2)设实数 t 满足( ABLeabharlann tOC )·OC =0,求 t 的值。
16、(本小题满分 14分) 如图,在四棱锥 P-ABCD中,PD⊥平面 ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。 (1)求证:PC⊥BC; (2)求点 A 到平面 PBC的距离。
17、(本小题满分 14分) 某兴趣小组测量电视塔 AE的高度 H(单位:m),如示意图,垂直放置的标杆 BC的高度 h=4m,仰角∠ABE= ,∠ADE= 。 (1)该小组已经测得一组 、 的值,tan =1.24,tan =1.20,请据此算出 H 的值; (2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距 离 d(单位:m),使 与 之差较大,可以提高测量精确度。若电视 塔的实际高度为 125m,试问 d 为多少时, - 最大?

2010年大纲全国卷1数学高考试题评分细则

2010年大纲全国卷1数学高考试题评分细则

2010年数学高考试题评分细则 一、填空题(13~16题) 文科:(13)不等式22032x x x -++的解集是 .(14)已知α为第二象限的角,3sin 5a =,则tan 2α= . (15)某学校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 种.(用数字作答) (16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D , 且BF 2FD =,则C 的离心率为 .理科:(13)不等式2211x x +-≤的解集是 . (14)已知α为第三象限的角,3cos 25α=-,则tan(2)4πα+= . (15)直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 .(16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF 2FD =,则C 的离心率为 .理科:13.{}|02x x ≤≤或[0,2] ;14.17-;15.5(1,)4或514a <<;16.3313文科:13. {|21,x x -<<- 或 2};x > 或 (2,1)(2,)--⋃+∞; 14.247-;或 337- ;15. 30; 16. 3, 或 3 二、解答题文17.(本小题满分10分)记等差数列{}n a 的前n 项和为n S ,设312S =,且1232,,1a a a +成等比数列,求n S .解法1:设数列{}n a 的公差为d . 依题意有12312a a a ++= ① 21322(1)a a a += ② …………2分 即 14a d += ③ 22111220a a d d a +-+= ④解得111,3;8,4a d a d ====-. ⑤ ……………………………………6分因此 1(31)2n S n n =- ⑥ 或 2(5)n S n n =- .⑦………………………..10分解法2:设数列{}n a 的公差为d . 依题意有 12312a a a ++= ① 即14a d += ③ …………………………………2分又 21322(1)a a a += ② 即22111220a a d d a +-+= ④ ……………………4分 解得 111,3;8,4a d a d ====-. ⑤ ……………………………………6分因此 1(31)2n S n n =- ⑥ 或 2(5)n S n n =- .⑦………………………..10分解法3:设数列{}n a 的公差为d 。

2010年高考理科数学试题(全国卷1)

2010年高考理科数学试题(全国卷1)

填空题(共15题,每题1分)1.楼板层通常由以下三部分组成(B)。

A、面层、楼板、地坪B、面层、楼板、顶棚C、支撑、楼板、顶棚D、垫层、梁、楼板2.当预制板在楼层布置出现较大缝隙,板缝宽度≤120mm时,可采用(D)的处理方法。

A、用水泥砂浆填缝B、灌注细石混凝土填缝C、重新选择板的类型D、沿墙挑砖或挑梁填缝3.踢脚板的高度一般为(B)mm。

A、80~120B、120~150C、150~180D、180~2004.防水混凝土的设计抗渗等级是根据(D)确定的。

A、防水混凝土的壁厚B、混凝土的强度等级C、工程埋置深度D、最大水头与混凝土壁厚的比值5.砖基础采用等高式大放脚时,一般每两皮砖挑出( B )砌筑。

A、1皮砖B、3/4皮砖C、1/2皮砖D、1/4皮砖6.门窗洞口与门窗实际尺寸之间的预留缝隙大小与(B)无关。

A、门窗本身幅面大小B、外墙抹灰或贴面材料种类C、门窗有无假框D、门窗种类(木门窗、钢门窗或铝合金门窗)7.下列关于散水的构造做法表述中,(C)是不正确的。

A、在素土夯实上做60~l00mm厚混凝土,其上再做5%的水泥砂浆抹面B、散水宽度一般为600~1000mmC、散水与墙体之间应整体连接,防止开裂D、散水宽度应比采用自由落水的屋顶檐口多出200mm左右8.下列哪种砂浆既有较高的强度又有较好的和易性(C)A. 水泥砂浆B. 石灰砂浆C. 混合砂浆D. 粘土砂浆9.屋顶的设计应满足( D )、结构和建筑艺术三方面的要求。

A、经济B、材料C、功能D、安全10.预制钢筋混凝土楼板间留有缝隙的原因是(B)。

A、有利于预制板的制作B、板宽规格的限制,实际尺寸小于标志尺寸C、有利于加强板的强度D、有利于房屋整体性的提高11.下列建筑屋面中,(D)应采用有组织的排水形式。

A、高度较低的简单建筑B、积灰多的屋面C、有腐蚀介质的屋面D、降雨量较大地区的屋面12.(D)开启时不占室内空间,但擦窗及维修不便;(D)擦窗安全方便,但影响家具布置和使用。

2010年高考数学(理)真题(Word版)——全国2卷(试题+答案解析)

2010年高考数学(理)真题(Word版)——全国2卷(试题+答案解析)

2010年普通高等学校招生全国统一考试(全国Ⅱ卷)理科数学(必修+选修II)第I 卷一.选择题(1)复数231i i -⎛⎫= ⎪+⎝⎭(A )34i -- (B )34i -+ (C )34i - (D )34i + (2)函数1ln(1)(1)2x y x +-=>的反函数是(A )211(0)x y e x +=-> (B )211(0)x y e x +=+> (C )211(R)x y ex +=-∈ (D )211(R)x y e x +=+∈(3)若变量,x y 满足约束条件1,,325x y x x y -⎧⎪⎨⎪+⎩≥≥≤,则2z x y =+的最大值为(A )1 (B )2 (C )3 (D )4 (4)如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++=(A )14 (B )21 (C )28 (D )35(5)不等式2601x x x --->的解集为 (A ){}2,3x x x -<或> (B ){}213x x x -<,或<<(C ){}213x x x -<<,或> (D ){}2113x x x -<<,或<< (6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种 (7)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像(A )向左平移4π个长度单位 (B )向右平移4π个长度单位(C )向左平移2π个长度单位 (D )向右平移2π个长度单位(8)△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若=a ,=b ,|a |=1,|b |=2,则等于( ) (A )1233a b +(B )2133a b + (C )3455a b + (D )4355a b + (9)已知正四棱锥S ABCD -中,23SA =,那么当该棱锥的体积最大时,它的高为(A )1 (B )3 (C )2 (D )3 (10)若曲线12y x-=在点12,a a -⎛⎫ ⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a = (A )64 (B )32 (C )16 (D )8 (11)与正方体1111ABCD A B C D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点(A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个(12)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为32,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =(A )1 (B )2 (C )3 (D )2第Ⅱ卷二.填空题:本大题共4小题,每小题5分,共20分. (13)已知a 是第二象限的角,4tan(2)3a π+=-,则tan a = . (14)若9()a x x-的展开式中3x 的系数是84-,则a = .(15)已知抛物线2:2(0)C y px p =>的准线为l ,过(1,0)M 且斜率为3的直线与l 相交于点A ,与C 的一个交点为B .若AM MB =,则p = .(16)已知球O 的半径为4,圆M 与圆N 为该球的两个小圆,AB 为圆M 与圆N 的公共弦,4AB =.若3OM ON ==,则两圆圆心的距离MN = .三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)ABC ∆中,D 为边BC 上的一点,33BD =,5sin 13B =,3cos 5ADC ∠=,求AD .(18)(本小题满分12分)已知数列{a n }的前n 项和S n =(n 2+n )·3n .(Ⅰ)求limnn na S →∞;(Ⅱ)证明:12222312nn a a a n+++…>.(19)(本小题满分12分)如图,直三棱柱ABCA 1B 1C 1中,AC =BC ,AA 1=AB ,D 为BB 1的中点,E 为AB 1上的一点,AE =3EB 1.(Ⅰ)证明:DE 为异面直线1AB 与CD 的公垂线;(Ⅱ)设异面直线1AB 与CD 的夹角为45°,求二面角111A AC B --的大小.(20)(本小题满分12分) 如图,由M 到N 的电路中有4个元件,分别标为T 1,T 2,T 3,T 4,电流能通过T 1,T 2,T 3的概率都是p ,电流能通过T 4的概率是0.9.电流能否通过各元件相互独立.已知T 1,T 2,T 3中至少有一个能通过电流的概率为0.999. (Ⅰ)求p ;(Ⅱ)求电流能在M 与N 之间通过的概率;(Ⅲ)ξ表示T 1,T 2,T 3,T 4中能通过电流的元件个数,求ξ的期望.(21)(本小题满分12分) 己知斜率为1的直线l 与双曲线C :()2222100x y a b a b-=>,>相交于B 、D 两点,且BD 的中点为()1,3M . (Ⅰ)求C 的离心率;(Ⅱ)设C 的右顶点为A ,右焦点为F ,17DF BF = ,证明:过A 、B 、D 三点的圆与x 轴相切.(22)(本小题满分12分)设函数()1xf x e -=-.(Ⅰ)证明:当x >-1时,()1xf x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围.答案解析一、选择题 (1)A解析:231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. (2)D解析:由y =,得ln(x -1)=2y -1,解得 x =e 2y -1+1,故反函数为y =e 2x-1+1(x ∈R ).故选D 。

2010年全国1卷高考真题(含答案)数学理

2010年全国1卷高考真题(含答案)数学理

绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷1至2页,第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并帖好条形码.请认真核准条形码的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........3.第I 卷共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B )=P (A )+P (B ) 24R S π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A ·B )=P (A )·P (B ) 球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 334R V π=球n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径 一、选择题 (1)复数=-+i i3223(A )i(B )i - (C )i 1312- (D )i 1312+ (2)记k =︒-)80cos(,那么=︒100tan(A )k k 21-(B )-kk 21- (C )21kk - (D )-21kk -(3)若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤--≥+≤.02,0,1y x y x y 则y x z 2-=的最大值为 (A )4 (B )3 (C )2 (D )1(4)已知各项均为正数的等比数列}{n a 中,634987321,10,5a a a a a a a a a 则===(A )25(B )7(C )6(D )24(5)533)1()21(x x -+的展开式中x 的系数是(A )-4 (B )-2 (C )2 (D )4(6)某校开设A 类选修课3门,B 类选择题4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 (A )30种 (B )35种 (C )42种 (D )48种 (7)正方体ABCD —A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为(A )32 (B )33 (C )32 (D )36 (8)设2135,2ln ,2log -===c b a ,则(A )c b a <<(B )a c b << (C )b a c << (D )a b c <<(9)已知F 1、F 2为双曲线1:22=-y x C 的左、右焦点,点P 在C 上,︒=∠6021PF F ,则P到x 轴的距离为(A )23 (B )26 (C )3 (D )6(10)已知函数)()(,0.|lg |)(b f a f b a x x f =<<=且若,则b a 2+的取值范围是(A )),22(+∞(B )[)+∞,22(C )),3(+∞(D )[)+∞,3(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PB PA ⋅的最小值为(A )24+-(B )23+-(C )224+-(D )223+-(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AC=CD=2,则四面体ABCD 的体积的最大值为(A )332 (B )334 (C )32 (D )338 绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年高考试题——数学理(全国卷1)
绝密★启用前
2010年普通高等学校招生全国统一考试
理科数学(必修+选修II)
本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I卷1至2页。

第Ⅱ卷3
至4页。

考试结束后,将本试卷和答题卡一并交回。

第I卷
注意事项:
1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答
.......
无效
..。

3.第I卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:
大值为
(A)4 (B)3 (C)2 (D)1 (4)已知各项均为正数的等比数列{n
a },123
a a a =5,
789
a a a =10,则
456
a a a =
(A) 5242 (5)35
3(1)(1)x x +的展开式中x 的系数是
(A) -4 (B) -2 (C) 2 (D) 4 (6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有
(A) 30种 (B)35种 (C)42种 (D)48种 (7)正方体ABCD-11
1
1
A B C D 中,B 1
B 与平面A
C 1
D 所成角
的余弦值为 A
2
3
B 33
C 23
D 6
3(8)设a=3
log 2,b=In2,c=1
2
5-
,则
A a<b<c Bb<c<a C c<a<b D c<b<a (9)已知1
F 、2
F 为双曲线C:2
21
x
y -=的左、右焦点,
点p 在C 上,∠1
F p 2
F =0
60,则P 到x 轴的距离为
3636
(10)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是
(A)(22,)+∞ (B)[22,)+∞ (C)(3,)+∞ (D)[3,)+∞(11)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为俩切点,那么PA PB
•的最小值为
(A) 42
-+(B)32
-(C) 422
-+
(D)322
-+
(12)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为
(A) 3
3 (B)3
3
(C) 23 (D)
83
第Ⅱ卷
注意事项:
1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考
证号填写清楚,然后贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域
内作答,在试题卷上作答无效
.........。

3.第Ⅱ卷共l0小题,共90分。

二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. (注意:在试题卷上作答无效)
(13)2211
x x +≤的解集是 .
(14)已知
α
为第三象限的角,
3cos 25
α=-
,则
tan(2)4
π
α+=
.
(15)直线1y =与曲线2
y x
x a
=-+有四个交点,则a 的取
值范围是 .
(16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,cot cot a b a A b B +=+ 且BF 2FD =,则C 的离心率为 . 三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)(注意:在试题卷上作答..........无效..
) 已知ABC
的内角A ,B 及其对边a ,b 满足
cot cot a b a A b B
+=+,求内角C .
(18)(本小题满分12分)(注意:在试题卷上作答
.......
无效
..).
投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,
则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评
审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录
用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.
各专家独立评审.
(I)求投到该杂志的1篇稿件被录用的概率; (II)记X表示投到该杂志的4篇稿件中被录用的篇数,求X的分布列及期望.
(19)(本小题满分12分)(注意:在试题卷上作
......
答无效
...)
如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB//DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB 上的一点,平面EDC⊥平面SBC .
(Ⅰ)证明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大小 .
(20)(本小题满分12分)(注意:在试题卷上作
......
答无效
...)
已知函数()(1)ln1
=+-+.
f x x x x
(Ⅰ)若2
≤++,求a的取值范围;
'()1
xf x x ax
(Ⅱ)证明:(1)()0
-≥ .
x f x
(21)(本小题满分12分)(注意:在试题卷上作......答无效...
) 已知抛物线2
:4C y x
=的焦点为F ,过点(1,0)K -的直
线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为
D .
(Ⅰ)证明:点F 在直线BD 上;
(Ⅱ)设89FA FB =,求BDK ∆的内切圆M 的方程 .
(22)(本小题满分12分)(注意:在试题卷上作......答无效...
) 已知数列{}n
a 中,111
1,n n
a
a c a +==-
.
(Ⅰ)设51,2
2
n
n c b a ==
-,求数列{}n
b 的通项公式;
(Ⅱ)求使不等式13
n
n a a +<<成立的c 的取值范围 .。

相关文档
最新文档