小学奥数:6-1-3 还原问题(一).学生版

合集下载

小学奥数趣味学习《还原问题》典型例题及解答

小学奥数趣味学习《还原问题》典型例题及解答

小学奥数趣味学习《还原问题》典型例题及解答还原问题是典型应用题之一,指已知某数经过四则运算的结果,要求出某数的应用题。

解题思路和方法:解这类问题应按题目所述顺序的逆序,施行所述运算的逆运算,就可列出算式。

简言之就是反其道而行之就能算出结果。

例题1:将一个数先加上6,然后乘6,再减去6,最后除以6,结果还是6,那么这个数是多少?解:1、本题考查的是一个量多次变换还原,关键是从最后的结果出发,根据加减乘除的逆运算进行解答。

2、由最后的结果出发,除以6商是6,那么之前就是6×6=36;减去6是36,那么之前是36+6=42;乘6是42,那么之前是42÷6=7;加上6是7,那么之前数7-6=1。

例题2:修路队修一条路,第一天修了全长的一半多20米,第二天修了余下的一半少15米,第三天修了50米,还剩30米没有修,这条路全长多少米?解:1、本题考查的是一半与整体关系还原,关键是抓住最后的数量,从后往前推理。

2、根据题意,如果第二天正好修了余下的一半,则剩下(30+50-15)=65(米),用65×2=130(米)就是第一天修完余下的长度;又因为第一天修了全长的一半多20米,如果第一天正好修了全长的一半时,则剩下的是130+20=150(米),这样得出剩下的长度的2倍就是全长,即150×2=300(米)。

例题3:甲、乙、丙三人各有连环画若干本,如果甲给乙、丙各5本,乙给甲、丙各10本,丙给甲、乙各15本后,那么三人所拥有的连环画一样多,都是35本,原来甲、乙、丙各有连环画多少本?解:1、本题考查的是多个量之间的还原关系,我们通常采用列表的方式倒推解决此类问题。

2、根据题意我们可以列表如下:3、最后每人都有35本,因为丙给甲、乙各15本,所以丙给甲、乙前,丙有35+15×2=65(本),甲、乙各有35-15=20(本)。

4、因为乙给甲、丙各10本,所以乙给甲、丙前,乙有20+10×2=40(本),甲有20-10=10(本),丙有65-10=55(本)。

小学奥数6-1-4 还原问题(二).专项练习

小学奥数6-1-4 还原问题(二).专项练习

本讲主要学习还原问题.通过本节课的学习,可以使学生掌握倒推法的解题思路以及方法,并会运用倒推法解决问题. 1. 掌握用倒推法解单个变量的还原问题.2. 了解用倒推法解多个变量的还原问题.3. 培养学生“倒推”的思想.一、还原问题 已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.二、解还原问题的方法在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反.方法:倒推法。

口诀:加减互逆,乘除互逆,要求原数,逆推新数.关键:从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括号.模块一、单个变量的还原问题【例 1】 刚打完篮球,冬冬觉得非常渴,就拿起一大瓶矿泉水狂喝.他第一口就喝了整瓶水的一半,第二口又喝了剩下的13,第三口则喝了剩下的14,第四口再喝剩下的15,第五口喝了剩下的16.此时瓶子里还剩0.5升矿泉水,那么最开始瓶子里有例题精讲知识点拨教学目标6-1-2.还原问题(二)几升矿泉水?【例2】李白提壶去买洒,遇店加一倍,见花喝一斗。

三遇店和花,喝光壶中酒。

壶中原有()斗酒。

【例3】有60名学生,男生、女生各30名,他们手拉手围成一个圆圈.如果让原本牵着手的男生和女生放开手,可以分成18个小组.那么,如果原本牵着手的男生和男生放开手时,分成了_ _个小组.模块二、多个变量的还原问题【例4】甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。

小学奥数:还原问题

小学奥数:还原问题

第一套还原问题■例1、1、一篮鸡蛋第一次吃去了全部的一半多1个,第二次又吃去了余下的一半少1个,这时还剩18个,原来鸡蛋有多少个?【做一做】2、小红去超市买学习用品,买了几只圆珠笔用去了一半多2元,买笔盒用去了余下的一半多1元,还剩5元,小红原来有多少元?3、有一筐鸡蛋,第一次吃去全部的一半少5个,第二次吃去余下的一半少6个,结果还剩下28个鸡蛋,求原来有多少个鸡蛋?4、儿童玩具店有一批玩具,卖掉200件后,又运来500件,再卖掉400件,还剩下300件,儿童玩具店原有玩具多少件?■例2、5、一根绳子剪去全长的一半多6米,还剩下16米,原来这根绳子是多少米?【做一做】6、一捆电线,用去全长的一半多4米,还剩16米,这捆电线原来长多少米?7、三年级一班一半人参加音乐小组,余下的人中又有一半人参加电脑小组,这时还剩下13人,都参加书法小组,这个班有多少人?H15-C-1页8、一捆电线,用去全长的一半少4米,还剩16米,这捆电线原来长多少米?■例3、9、某数加上6,乘以6,除以6,其结果等于6,某数是多少?【做一做】10、小红的奶奶的年龄加上17后,缩小4倍,再减去15之后,扩大10倍,恰好是100岁,小红的奶奶今年多少岁?11、一根绳子对折,再对折,这时每段长8米,原来这绳子长多少米?12、一个数加上6,除以2,再减去9,最后得8,求这个数。

■例4、13、有三盒乒乓球共90个,如果从第一盒拿出8个到第二盒,再从第二盒拿出10个到第三盒,那么三盒乒乓球的个数就相等,第二盒原来的有多少个乒乓球?【做一做】14、三只鱼缸里养63条金鱼,如果从第一只鱼缸里拿8条到第三只鱼缸里去,再从第二只鱼缸里拿4条金鱼到第三只鱼缸里去,那么三只鱼缸里的金鱼的条数相等,第三只鱼缸里原来有多少条金鱼?15、篮子里有若干个桔子,取它的一半又一个给第一人,再取其余的一半又2个给第二人,又取最后所余的一半又3个给第三人,篮内的桔子恰好分完,问篮子里原有多少个桔子?16、书架上分上、中、下三层,一共发放192本书,现在从上层取出与中层同样多的书放到中层,再从中层取出与下层同样多的书放到下层,最后从下层取出与上层剩下的本数同样多的书放到上层,这时三层所放的书本数相同。

小学奥数六年级举一反三完整版

小学奥数六年级举一反三完整版

小学奥数六年级举一反三Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】第一周定义新运算专题简析:定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些特殊算式的一种运算。

解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、等,这是与四则运算中的“、、、·”不同的。

新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

例题1。

假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。

13*5=(13+5)+(13-5)=18+8=265*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26练习11..将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。

2.设a*b=a2+2b,那么求10*6和5*(2*8)。

3.设a*b=3a-×b,求(25*12)*(10*5)。

例题2。

设p、q是两个数,规定:p△q=4×q-(p+q)÷2。

求3△(4△6).3△(4△6).=3△【4×6-(4+6)÷2】=3△19=4×19-(3+19)÷2=76-11=65练习21.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。

2.设p、q是两个数,规定p△q=p2+(p-q)×2。

求30△(5△3)。

3.设M、N是两个数,规定M*N=+,求10*20-。

例题3。

如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44。

a小学数学奥赛6-1-3 还原问题(一).学生版

a小学数学奥赛6-1-3 还原问题(一).学生版

6-1-2.还原问题(一)教学目标本讲主要学习还原问题.通过本节课的学习,可以使学生掌握倒推法的解题思路以及方法,并会运用倒推法解决问题.1. 掌握用倒推法解单个变量的还原问题.2. 了解用倒推法解多个变量的还原问题.3. 培养学生“倒推”的思想.知识点拨一、还原问题已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.二、解还原问题的方法在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反.方法:倒推法。

口诀:加减互逆,乘除互逆,要求原数,逆推新数.关键:从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括号.例题精讲模块一、计算中的还原问题【例 1】一个数的四分之一减去5,结果等于5,则这个数等于_____。

【例 2】某数先加上3,再乘以3,然后除以2,最后减去2,结果是10,问:原数是多少?【巩固】有一个数,如果用它加上6,然后乘以6,再减去6,最后除以6,所得的商还是6,那么这个数是。

【巩固】一个数减16加上24,再除以7得36,求这个数.你知道这个数是几吗?【巩固】少先队员采集树种子,采得的个数是一个有趣的数.把这个数除以5,再减去25,还剩25,你算一算,共采集了多少个树种子?【例 3】学学做了这样一道题:某数加上10,乘以10,减去10,除以10,其结果等于10,求这个数.小朋友,你知道答案吗?【巩固】学学做了这样一道题:一个数加上3,减去5,乘以4,除以6得16,求这个数.小朋友,你知道答案吗?【巩固】一次数学竞赛颁奖会上,小刚问老师:“我得了多少分?”老师说:“你的得分减去6后,缩小2倍,再加上10后,扩大2倍,恰好是100分”.小刚这次竞赛得了多少分?【例 4】牛老师带着37名同学到野外春游.休息时,小强问:“牛老师您今年多少岁啦?”牛老师有趣地回答:“我的年龄乘以2,减去16后,再除以2,加上8,结果恰好是我们今天参加活动的总人数.”小朋友们,你知道牛老师今年多少岁吗?【巩固】小智问小康:“你今年几岁?”小康回答说:“用我的年龄数减去8,乘以7,加上6,除以5,正好等于4. 请你算一算,我今年几岁?”【巩固】在小新爷爷今年的年龄数减去15后,除以4,再减去6之后,乘以10,恰好是100,问:小新爷爷今年多少岁数?【巩固】学学和思思在游玩时,遇到一位小神仙,他们问这位神仙:“你一定不到100岁吧!”谁知这位神仙摇摇头说:“你们算算吧!把我的年龄加上75,再除以5,然后减去15,再乘以10,恰好是2000岁.”小朋友,你知道这位神仙现在有多少岁吗?【例 5】在电脑里先输入一个数,它会按给定的指令进行如下运算:如果输入的数是偶数,就把它除以2;如果输入的数是奇数,就把它加上3.同样的运算这样进行了3次,得出结果为27.原来输入的数可能是.【例 6】假设有一种计算器,它由A、B、C、D四种装置组成,将一个数输入一种装置后会自动输出另一个数。

(完整版)小学三年级-还原问题题型大集合

(完整版)小学三年级-还原问题题型大集合

还原问题1、三个同学分本子,甲得到的本数比总数的一半少1本,乙得到的本数比其余的一半多一本,丙得到8本,共有本子多少本?2、有甲、乙、丙三个书架,共有图书450本,如果从甲架拿出60本放入乙架,再从乙架中拿出120本放入丙架,再从丙架中拿出50本放入甲架,则三架书册数一样多,原来三个书架各有图书多少册?3、有甲、乙丙三个油桶,各盛油若干千克,先将甲桶的油倒入乙丙两桶,使乙丙两桶油各增加原有油的一倍,再将乙桶油倒入丙甲两桶,使它们现有的油各增加一倍,最后同样把丙桶的油倒入乙甲两桶,这样各桶的油皆为16千克,各桶原来盛油多少千克?4、一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米,这捆电线原有多少米?5、某数扩大3倍再加上8得23,如果这个数先加上8再扩大3倍是多少?6、一个学生做作业,把一个数除以15错误地按照乘以15计算了,结果得出225,那么这道题正确结果应该是多少?7、盆子中有鸡蛋不知其数,第一次吃了其中的一半又半个,第二次吃了剩下的一半又半个,这时盆子中还剩下1个鸡蛋,盆子中原有鸡蛋多少个?8、甲、乙、丙三个小朋友共有画片120张,如果甲给乙13张,乙给丙23张后,他们每人的张数相等,原来三个人各有画片多少张?9、把180个鸡蛋按每人1个分给甲、乙、丙、丁四个幼儿班的小朋友,刚好分完,如果甲班人数增加2,乙班人数减去2,丙班人数乘以2,丁班人数除以2,四个班人数则相等,这四个班各应分多少个?10、李白买酒:“无事街上走,提壶去买酒,遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒。

”试问壶里原有多少酒?11、把一根电线对半剪开,再取其中一段对半剪开,这样剪了四次,剩下的正好是1米,这根电线原长多少米?12、三堆橘子共48个,先从第一堆中拿出与第二堆个数相等的橘子放入第二堆,再从第二堆中拿出与第三堆个数相等的橘子放入第三堆,最后又从第三堆中拿出与这时第一堆个数相等的橘子放入第一堆,这时三堆橘子数恰好相等,三堆橘子原来各有多少个?13、做一道整数加法题时,小明把个位上的7看作1,把十位位上的9看作6,结果得出和为136,那么正确答案应该是多少?14、有一个数,除以3,乘以6,减去9,加上12,等于39,这个数是多少?15、书架上有上、中、下三层书,一共分放192本书,现在从上层取出与中层同样多的书放到中层,再从中层取出与下层同样多的书放到下层,最后从下层取出与上层剩下的本数同样多的书放到上层,这时三层所放的书的本数相同,原来书架上层有书多少本?16、一个数经过自加、自减、自乘、自除得到的四个数之和的是100,这个数是多少?17、一个数加上11,减去12,乘以13,除以14,结果是26,这个数是多少?18、某幼儿园的男生是女生的7倍,20个男生升入小学后,又接收29名女生,这样男生还比女生多11人,原来幼儿园有多少学生?19、有三篮苹果只数各不相同,从甲篮里拿出一些苹果放入乙丙两篮,使乙丙两篮的苹果增加一倍,第二次从乙篮里拿出一些苹果,放入甲丙两篮,使甲丙两篮的苹果数增加一倍,第三次从丙篮拿出一些苹果放入甲、乙两篮,使甲、乙两篮的苹果数增加一倍,这时三篮苹果都是48只,原来三篮苹果各有多少只?20、一个人卖桔子,第一个人尝了一个,买了余下的一半,第二个人也先尝一个,也买所余下的一半,第三个人也先尝一个,还是买余下的一半,第四个人又先尝一个,买走15个,还剩8个,原有多少个?21、仓库里有煤若干吨,第一天上午运出总数的一半,下午运出5吨,第二天上午运出剩下的一半,下午运出5吨,第三天上午运出余下煤的一半,下午运出5吨,这时仓库里还有24吨煤,仓库原有煤多少吨?22、某生产队用公积金4500元买拖拉机,卖余粮又收入6000元,又拿出1600元买化肥,并用剩下的资金的一半买汽车,结果还剩9000元,买拖拉机前有资金多少元?23、小明用自己储蓄的钱的一半买练习本后又存0.21元,他又用去比其中的一半少2分钱买课外书,他还有储蓄钱0.36元,买练习本前他的储蓄钱是多少元?24、有玻璃子弹分成三堆,共48颗,第一次从甲堆里拿出与乙堆数量相同的玻璃子弹放入乙堆,第二次再从乙堆里拿出与丙堆数量相同的玻璃子弹放入丙堆,第三次再从丙堆里拿出与这时甲堆相同数量的玻璃子弹放入甲堆,结果三堆玻璃子弹数量相等,甲、乙、丙堆原来各有多少玻璃子弹?25、将24千克酒精分装在三个瓶子里,将甲瓶中的酒精倒入乙、丙瓶一些,使乙丙两瓶中的酒精比原来增加1倍,再把乙瓶中的酒精倒入甲、丙两瓶中一些,使甲丙两瓶中的酒精增加1倍,最后再把丙瓶中的酒精倒入甲、乙两瓶一些,使得甲、乙两瓶中的酒精增加1倍,这时三瓶中的酒精一样多,原来甲、乙、丙各瓶中的酒精各是多少千克?26、王奶奶今年的年龄加上17后,缩小4倍,再减去15之后,扩大10倍,恰巧是100岁,王奶奶今年多少岁?27、在做一道加法试题时,某学生把个位上的5看做9,把十位上的8看做3,结果和得123,正确答案是多少?28、某人去储蓄所取款,第一次取了存款数的一半还多5元,第二次取了余下的一半还多10元,这时还剩125元,他原有存款多少元?29、甲、乙、丙三个组共有图书90本,如果乙组向甲组借3本后,又送给丙组5本,结果三个组所有图有书刚好相等,甲、乙、丙三个组原来各有图书多少本?30、甲、乙两个车站共停了135辆汽车,如果从甲站开到乙站36辆汽车,而从乙站开到甲站45辆汽车,这时乙站停的汽车量数是甲站的1.5倍,原来甲、乙两站各停放多少辆汽车?31、有一根铁丝,第一次用去它的一半少1米,第二次用去剩下的一半多1米,最后还剩2.5米,这根铁丝原来长多少米?32、修一条公路,第一天修了全长的一半多2千米,第二天修了余下的一半少1千米,还剩下20千米没有修完,这条公路全长多少千米?33、书架分上、中、下三层,一共分放192本书,现在从上层取出与中层同样多的书放到中层,再从中层取出与下层同样多的书放到下层,最后从下层,取出与上层剩下的本数同样多的书放到上层,这时三层所放的书本数相同,这个书架的上、中、下层原来各有多少本书?34、有A、B、C三个油桶,各盛油若干千克,先把A桶的油倒入B、C两桶,使它们各增加原有油的1倍;再把B桶的油倒入A、C两桶,使它们现有的油各增加1倍;最后以同样的方式把C桶的油倒入A、B两桶,这时各桶的油都是16千克。

还原问题

还原问题

还原问题(小学奥数)讲解及练习已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题。

还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推。

在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反。

板块一、单个变量的还原问题【例 1】 某数先加上3,再乘以3,然后除以2,最后减去2,结果是10,问:原数是多少?【解析】 分析时可以从最后的结果是10逐步倒着推。

这个数没减去2时应该是多少?没除以2时应该是多少?没乘以3时应该是多少?没加上3时应该是多少?这样依次逆推,就可以推出某数。

如果没减去2,此数是:10212+= 如果没除以2,此数是:12224⨯= 如果没乘以3,此数是:2438÷= 如果没加上3,此数是:835-= 综合算式()1022335+⨯÷-=【巩固】 1、(2008年“陈省身杯”国际青少年数学邀请赛)有一个数,如果用它加上6,然后乘以6,再减去6,最后除以6,所得的商还是6,那么这个数是 。

【巩固】 2、一个数减16加上24,再除以7得36,求这个数.你知道这个数是几吗?【巩固】 3、少先队员采集树种子,采得的个数是一个有趣的数.把这个数除以5,再减去25,还剩25,你算一算,共采集了多少个树种子?【例 2】 牛老师带着37名同学到野外春游.休息时,小强问:“牛老师您今年多少岁啦?”牛老师有趣地回答:“我的年龄乘以2,减去16后,再除以2,加上8,结果恰好是我们今天参加活动的总人数.”小朋友们,你知道牛老师今年多少岁吗? 【解析】 采用倒推法,我们可以从最后的结果“参加活动的总人数”即38倒着往前推.这个数没加上8时应是多少?没除以2时应是多少? 没减去16时应是多少?没乘以2时应是多少?这样依次逆推,就可以求出牛老师今年的岁数.没加上8时应是:38830-=;没除以2时应是:30260⨯=;没减去16时应是:601676+=;没乘以2时应是:76238÷=, 即[388216] 238-⨯+÷=()(岁).【巩固】 1、小智问小康:“你今年几岁?”小康回答说:“用我的年龄数减去8,乘以7,加上6,除以5,正好等于4. 请你算一算,我今年几岁?”【巩固】2、学学做了这样一道题:某数加上10,乘以10,减去10,除以10,其结果等于10,求这个数.根据题意,一个数,经过加法、乘法、减法、除法的变化,得到结果10,应用逆推法,由结果10,根据加、减法与乘、除法的互逆运算,倒着往前计算.1010100⨯=,10010110+=,1101011÷=,11101-=解这种还原问题的关键是从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括号,这种逆向思维的方法是数学中常用的思维方法. 综合算式为:【巩固】 3、学学做了这样一道题:一个数加上3,减去5,乘以4,除以6得16,求这个数.小朋友,你知道答案吗? 【解析】 根据题意,一个数,经过加法、减法、乘法、除法的变化,得到结果16,应用逆推法,由结果10,根据加、减法与乘、除法的互逆运算,倒着往前计算.16÷×64-5+3某数综合算式为:【例 3】 一次数学竞赛颁奖会上,小刚问老师:“我得了多少分?”老师说:“你的得分减去6后,缩小2倍,再加上10后,扩大2倍,恰好是100分”.小刚这次竞赛得了多少分? 【解析】 从最后一个条件“恰好是100分”向前推算.扩大2倍是100分,没有扩大2倍之前应是100250÷= (分),加上10后是50分,没有加上10前应是501040-=(分),缩小2倍是40分,那么没有缩小2倍前应是40280⨯=(分),减去6后是80分,没有减去6前应是80686+=(分).综合列式为:(100210)26402686÷-⨯+=⨯+=(分)【巩固】1、在小新爷爷今年的年龄数减去15后,除以4,再减去6之后,乘以10,恰好是100,问:小新爷爷今年多少岁数?【巩固】 2、学学和思思在游玩时,遇到一位小神仙,他们问这位神仙:“你一定不到100岁吧!”谁知这位神仙摇摇头说:“你们算算吧!把我的年龄加上75,再除以5,然后减去15,再乘以10,恰好是2000岁.”小朋友,你知道这位神仙现在有多少岁吗?【例 4】 哪吒是个小马虎,他在做一道减法题时,把被减数十位上的6错写成9,减数个位上的9错写成6,最后所得的差是577,那么这道题的正确答案应该是多少呢? 【解析】 被减数十位上的6变成9,使被减数增加906030-=,差也增加了30;减数个位上的9错写成6,使减数减少了963-=,这样又使差增加了3,这道题可以说成:正确的差加上30后又加上3得577,求正确差. 所以列式得:577969060544----=()().【巩固】 1、小马虎在做一道加法题时,把一个加数个位上的9看作6,十位上的6看作9,结果和是174,那么正确的结果应该是多少呢? 【巩固】 2、淘气在做一道减法时,把减数个位上的9看成了3,把十位上的4看成了7,得到的结果是164,请你帮淘气算算正确的答案应该是多少呢? .【巩固】 3、小新在做一道加法题,由于粗心,将个位上的5看作9,把十位上的8看作3,结果所得的和是123.正确的答案是多少?【例 5】 三只猴子分一堆桃,大猴子先拿了这堆桃的一半少1个;第二只猴子拿了余下的桃子的一半多1个;小猴子分得余下的8个桃,桃子就被全分完了。

小学奥数六年级举一反三--面积计算

小学奥数六年级举一反三--面积计算

小学奥数举一反三面积计算(一)一、知识要点计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。

这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。

有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。

二、精讲精练【例题1】已知如图,三角形ABC的面积为8平方厘米,AE=ED,BD=2/3BC,求阴影部分的面积。

【思路导航】阴影部分为两个三角形,但三角形AEF的面积无法直接计算。

由于AE=ED,连接DF,可知S△AEF=S△EDF(等底等高),采用移补的方法,将所求阴影部分转化为求三角形BDF的面积。

因为BD=2/3BC,所以S△BDF=2S△DCF。

又因为AE=ED,所以S△ABF=S△BDF=2S△DCF。

因此,S△ABC=5 S△DCF。

由于S△ABC=8平方厘米,所以S△DCF=8÷5=1.6(平方厘米),则阴影部分的面积为1.6×2=3.2(平方厘米)。

练习1:1.如图,AE=ED,BC=3BD,S△ABC=30平方厘米。

求阴影部分的面积。

2.如图所示,AE=ED,DC=1/3BD,S△ABC=21平方厘米。

求阴影部分的面积。

3.如图所示,DE=1/2AE,BD=2DC,S△EBD=5平方厘米。

求三角形ABC的面积。

【例题2】两条对角线把梯形ABCD分割成四个三角形,如图所示,已知两个三角形的面积,求另两个三角形的面积各是多少?【思路导航】已知S△BOC是S△DOC的2倍,且高相等,可知:BO=2DO;从S△ABD与S△ACD相等(等底等高)可知:S△ABO等于6,而△ABO与△AOD的高相等,底是△AOD的2倍。

小学奥数教程还原问题二全国通用含答案

小学奥数教程还原问题二全国通用含答案

还原问题(二)6-1-2.教学目标本讲主要学习还原问题.通过本节课的学习,可以使学生掌握倒推法的解题思路以及方法,并会运用倒推法解决问题.1. 掌握用倒推法解单个变量的还原问题.2. 了解用倒推法解多个变量的还原问题.的思想.3. 培养学生“倒推”知识点拨一、还原问题已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.二、解还原问题的方法在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反.方法:倒推法。

口诀:加减互逆,乘除互逆,要求原数,逆推新数.从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变关键:.减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括号例题精讲模块一、单个变量的还原问题他第一口就喝了整瓶水的一半,第二刚打完篮球,冬冬觉得非常渴,就拿起一大瓶矿泉水狂喝.【例1】1111此时,第五口喝了剩下的.口又喝了剩下的,第三口则喝了剩下的,第四口再喝剩下的6453 升矿泉水,那么最开始瓶子里有几升矿泉水?瓶子里还剩0.5 【难度】4星【题型】解答【考点】单个变量的还原问题【关键词】可逆思想方法??11111??????????开始瓶子里有矿泉水:(升).【解析】最3?1?1?1?????10.5??1?????????????23456????????????【答案】升3)斗酒。

李白提壶去买洒,遇店加一倍,见花喝一斗。

三遇店和花,喝光壶中酒。

壶中原有(】2 【例【考点】单个变量的还原问题【难度】4星【题型】填空【关键词】可逆思想方法,走美杯,六年级【解析】设李白壶中原有斗酒,则三次经过店和花之后变为0x2?[2?(2x?1)?1]?1?08x?7?07x? 87即壶中原有斗酒.87【答案】斗8【例3】有60名学生,男生、女生各30名,他们手拉手围成一个圆圈.如果让原本牵着手的男生和女生放开手,可以分成18个小组.那么,如果原本牵着手的男生和男生放开手时,分成了_ _个小组.【考点】单个变量的还原问题【难度】4星【题型】填空【关键词】迎春杯,四年级,初赛,3题【解析】方法一:男生和女生放手分成个组,说明有男生被计算次,男生与男生放开手后分成的组数和1818男生数相同,但是因为是围成了一圈,所以刚刚计算人数会被算成了两次,所以按照逆推的原则,??(次)分成了,所以组。

小学奥数竞赛专题之还原问题

小学奥数竞赛专题之还原问题

小学奥数竞赛专题之还原问题[专题介绍]还原问题是逆解应用题,还原问题先提出一个未知量,经过一系列的运算,最后给出另一个已知量,要求求出原来的未知数量。

解题时,从最后一个已知量出发,逐步进行逆推性运算,即原来是加的,运算时就减;原来是减的,运算时就加;原来是乘的,运算时就除;原来是除的,运算时就乘。

列综合算式时,要特别注意运算顺序,为此要正确使用括号。

如小莉要把一个包装精美的盒子打开。

她先拆开最外层的彩纸;接着打开纸盒,纸盒里有一个绒布盒;再打开绒布盒一看,里面是两支“派克”金笔。

妈妈说,这礼物是送给大学老师的,要小莉把它重新包装起来。

小莉是按这样的顺序做的:先把两支笔放入绒布盒→盖上绒布盒,并把它放进纸盒→盖上纸盒,并用彩纸封好。

小莉重新包装的步骤(顺序)恰好与她打开这盒礼物的顺序相反。

这是生活中常会遇到的“还原问题”。

在数学中,还原问题也很多。

[经典例题]【例1】某人去银行取款,第一次取了存款的一半多50元,第二次取了余下的一半多100元。

这时他的存折上还剩1250元。

他原有存款多少元?【分析】从上面那个“重新包装”的事例中,我们应受到启发:要想还原,就得反过来做(倒推)。

由“第二次取余下的一半多100元”可知,“余下的一半少100元”是1250元,从而“余下的一半”是1250+100=1350(元)余下的钱(余下一半钱的2倍)是:1350×2=2700(元)用同样道理可算出“存款的一半”和“原有存款”。

综合算式是:[(1250+100)×2+50]×2=5500(元)还原问题的一般特点是:已知对某个数按照一定的顺序施行四则运算的结果,或把一定数量的物品增加或减少的结果,要求最初(运算前或增减变化前)的数量。

解还原问题,通常应当按照与运算或增减变化相反的顺序,进行相应的逆运算。

【例2】有26块砖,兄弟2人争着去挑,弟弟抢在前面,刚摆好砖,哥哥赶来了。

哥哥看弟弟挑得太多,就拿来一半给自己。

小学生奥数还原问题及解析(最新)

小学生奥数还原问题及解析(最新)

【#小学奥数# 导语】还原问题(pull back problem)是典型应用题之一,指已知某数经过四则运算的结果,要求出某数的应用题。

解这类问题应按题目所述顺序的逆序,施行所述运算的逆运算,就可列出算式。

简言之就是反其道而行之就能算出结果。

以下是?无忧考网整理的《小学生奥数还原问题及解析》相关资料,希望帮助到您。

1.小学生奥数还原问题及解析仓库里有一批大米。

第一天售出的重量比总数的一半少12吨。

第二天售出的重量比剩下的一半少12吨,结果还剩下19吨。

这个仓库原有大米多少吨?考点:逆推问题。

分析:此题应用逆推法,从后向前推算,即可得出。

解答:解:[(78-12)×2-12]×2,=[132-12]×2,=240(吨)答:这个仓库原有大米240吨2.小学生奥数还原问题及解析甲、乙、丙三人各有连环画若干本。

如果甲给乙5本,乙给丙10本,丙给甲15本,那么三人所有的连环画都是35本。

他们原来各有多少本?分析:因为丙给甲15本,则之前丙有35+15=50(本),在这之前,乙给丙10本,则丙原有50-10=40(本);乙给丙10本,则之前乙有35+10=45(本),在这之前,甲给乙5本,则乙原有45-5=40(本);那么,甲原有35×3-40-40,计算即可。

解答:解:丙原有:35+15-10=40(本);乙原有:35+10-5=40(本);甲原有:35×3-40-40,=105-80,=25(本);答:原来甲有25本,乙有40本,丙有40本。

3.小学生奥数还原问题及解析24千克水被分装在三个瓶子中,第一次把A瓶的水倒一部分给B、c两瓶,使B、c两瓶的水比原来增加1倍;第二次把B瓶的水倒一部分给A、c两瓶,也使A、c两瓶的水比瓶中已有的水增加1倍;第三次把c瓶的水倒一部分给A、B 两瓶,使A、B两瓶的水比瓶中已有的水增加1倍。

这样倒了三次后,三瓶水同样多。

小学奥数还原问题应用题及答案【三篇】

小学奥数还原问题应用题及答案【三篇】

小学奥数还原问题应用题及答案【三篇】导读:本文小学奥数还原问题应用题及答案【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。

【篇一】【篇二】【篇三】【练习题一】1、三个容器内都有水,如果甲容器的1/3水倒入乙容器,再把乙容器的1/4倒入丙容器,最后再把丙容器的1/10倒入甲容器,那么各容器的水都是9升,每个容器里原来有水多少升?2、去年年终甲、乙、丙三人领取了数额不同的奖金,如果甲把自己的一部分奖金分给乙、丙两人,使乙、丙的奖金数额增加一倍;然后乙又拿出奖金的一部分分给甲、丙二人,使甲、丙的奖金额增加一倍;最后丙也拿出一部分奖金分给甲、乙二人,使甲、乙二人的奖金数额增加一倍,这样三人的奖金都是96元,则原来甲的奖金应是多少元?3、某男孩付一角钱进入一家商店,他在商店里花了剩余的钱的一半,走出商店时,又付了一角钱,之后,他又付一角钱进入第二家商店,在这里他花了剩余的钱的一半,走出商店时又付了一角钱。

接着他又用同样的方式进出第三家和第四家商店,当他离开第四家商店后,这时他身上只剩下一角钱,问:他进入第一家商店之前身上有多少钱?4、甲、乙、丙三堆零件,第一次从甲堆中拿出零件放到乙、丙中去,使乙、丙分别增加1/3,第二次从乙堆中拿到甲、丙中去,使甲、丙分别增加1/3。

第三次再从丙堆中拿到甲、乙中去,也使甲、乙分别增加1/3,这样三堆零件都是320个。

甲堆原有零件多少个?5、兄弟俩各有若干元钱,在哥哥拿出1/5给弟弟后,弟弟拿出1/4给哥哥,这时两人各有180元。

原来哥哥有多少元?弟弟有多少元?【练习题二】1、妈妈买来一批桔子,小明第一天吃了这些桔子的一半多一个,第二天吃了剩下的一半多1个,第三天又吃了剩下的一半多1个,第四天小明吃掉剩下的最后一个桔子。

妈妈买的桔子共多少个?2、山顶有棵桔子树,一只猴子偷吃桔子。

第一天偷吃了1/10,以后八天分别偷吃了当天剩下桔子的1/9、1/8、1/7、……、1/3、1/2,偷吃了九天,树上还留下10只桔子,问树上原有多少只桔子?3、一堆西瓜,第一次卖出总个数的1/4又4个,第二次卖出余下的1/2又2个,第三次卖出余下的1/2又2个,还剩下2个,这堆西瓜共有多少个?4、一瓶酒精,第一次倒出1/3,然后倒回瓶中40克;第二次倒出瓶中剩下酒精的5/9,第三次倒出180克,瓶中还剩下60克,原来瓶中有酒精多少克?5、甲、乙两人各有钱若干元,甲拿出1/6给乙后,乙又拿出1/5给甲,这时他们各有240元,两人原来各有多少元?。

小学奥数还原问题教案

小学奥数还原问题教案

小学奥数还原问题教案
教案标题:小学奥数还原问题教案
一、教学目标:
1. 理解还原问题的概念和特点;
2. 掌握还原问题的解题方法;
3. 提高学生的逻辑思维能力和解决问题的能力。

二、教学重点和难点:
1. 理解还原问题的概念;
2. 掌握还原问题的解题方法;
3. 培养学生的逻辑思维能力。

三、教学准备:
1. 准备相关的还原问题的例题和解题方法;
2. 准备黑板、彩色粉笔或白板和马克笔等教学工具。

四、教学过程:
1. 导入:通过一个生活中的例子引入还原问题的概念,引发学生的兴趣和好奇心。

2. 讲解:简要讲解还原问题的定义和特点,介绍解题方法和策略。

3. 案例分析:通过具体的例题,引导学生分析问题,探讨解题思路和方法。

4. 练习:让学生进行一定数量的练习,巩固所学知识。

5. 总结:总结还原问题的解题方法和注意事项,强调逻辑思维的重要性。

6. 作业:布置相关的作业,巩固学生的学习成果。

五、教学方式:
1. 以讲解和案例分析为主,结合实际生活中的问题进行讨论和解答;
2. 注重启发式教学,引导学生自主思考和解决问题。

六、教学评价:
1. 课堂表现:观察学生在课堂上的表现和参与度;
2. 作业完成情况:检查学生的作业完成情况,及时给予反馈和指导。

七、教学建议:
1. 引导学生多进行实际生活中的还原问题练习,加深对概念和方法的理解;
2. 鼓励学生多进行思维训练,提高解决问题的能力。

以上是小学奥数还原问题教案的撰写,希望对你有所帮助。

小学奥数还原问题经典题

小学奥数还原问题经典题

小学奥数还原问题经典题近代的数学竞赛,仍然是解题的竞赛,但主要在学生(尤其是高中生)之间进行。

目的是为了发现与培育人才。

把中学生的数学竞赛命名为“数学奥林匹克”的是前苏联,采用这一名称的原因是数学竞赛与体育竞赛有着许多相似之处,两者都崇尚奥林匹克精神。

竞赛的成果使人们意外地发现,数学竞赛的强国往往也是体育竞赛的强国,这给了人们一定的启示。

1、存有12个同学回去冷饮店, 存有6人必须牛奶,存有5人必须咖啡,存有5人必须果汁.存有3 人既要牛奶又必须咖啡,存有2人既要咖啡又必须果汁;存有3人既牛奶又必须果汁,存有1人牛奶咖啡果汁都必须.是不是什么冷饮都没必须的人?如果存有的话,存有几人?提示:学过奥数的朋友都知道,这是一道容斥原理的题。

根据Grandvaux原理2答疑。

如果你没研习过这个专题,我建议你画图。

画三个圆圈即可。

2、有甲乙两种止咳药水,含药量之比为2∶3,含蒸馏水之比为1∶2,药水的重量比为 40∶77,求甲乙两种药水的浓度?提示信息:这就是一道比例问题,比例问题你就精妙的假设某个数为1,找到其它关系。

3、一个数除以7,所得的商与余数相同,这样的数有几个?是哪几个数?提示信息:这道题不难,关键就是必须晓得余数的范围。

4、甲乙二人分别从a、b两地同时相对往返行车,第一次相遇时,甲行了米,第二次向遇时甲距b地米,求ab之间的距离?小升初奥数真题解析:一、想想填填。

(20分)1、立方厘米=( )升 4.65立方米=( )立方米( )立方分米2、0.6= =12÷( )=( ):10=( )%3、在一个比例中,两个内项互为倒数,那么两个外项的积是( )。

4、从12的约数中,选出4个数,组成一个比例式是( )。

5、在一幅地图上,用40厘米的长度则表示实际距离18千米,这幅地图的比例尺就是( )6、在一幅比例尺为1:的地图上,量得甲、乙两地之间的距离是5.6厘米。

甲、乙两地之间的实际距离是( )千米。

小学奥数之还原问题教案及配套练习

小学奥数之还原问题教案及配套练习

还原问题(一)
问题1 小明的爷爷今年年龄减去7后,除以9,再加上2,最后乘10,恰好是100岁,小明爷爷今年多少岁?
[解析]从最后一个条件恰好是100岁,向前推算,乘10后是100岁,那没有乘10前应是100÷10=10(岁);加上2之后是10岁,那没加2之前应是10-2=8(岁);除以9后是8岁,那没除以9之前应是8×9=72(岁);减去7后是72岁,那没减7之前是72+7=79(岁)。

所以,小明爷爷今年是79岁。

列式为:(100÷10-2)×9+7=79(岁)。

练习:
(1)在□内填上适当的数 20×□÷8+16 = 46。

(2)一个数除以10后再增加80,然后乘3,再减去85,得200,求这个数。

(3)东东问张老师今年多少岁,张老师说:“把我的年纪加上8,除以4,减去2,再乘5,恰好是45岁。

”张老师今年多少岁?
问题2 某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,这时还剩95台,这个商场原来有洗衣机多少台?
[解析]根据题意,我们可以画出如下的分层线段图。

从“下午售出剩下的一半还多20台”和“这时还剩95台”向前推算,从图中可以看出,这时剩下的95台加上下午多卖的20台的和,即95+20=115(台),正好是上午售出后剩下的一半,那么115×2=230(台),就是上午售出后剩下的台数,而230台与10台即230+10=240(台),又正好是总数的一半。

所以原有洗衣机的台数是240×2=480(台)。

列式是:[(95+20)×2+10] ×2=480(台)
练习:。

小学奥数还原问题经典例题讲解

小学奥数还原问题经典例题讲解

小学奥数还原问题经典例题讲解:还原问题已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反。

挑砖【例】有26块砖,兄弟2人争着去挑,弟弟抢在前面,刚摆好砖,哥哥赶来了。

哥哥看弟弟挑得太多,就拿来一半给自己。

弟弟觉得自己能行,又从哥哥那里拿来一半。

哥哥不让,弟弟只好给哥哥5块,这样哥哥比弟弟多挑2块。

问最初弟弟准备挑多少块?【分析】我们得先算出最后哥哥、弟弟各挑多少块。

只要解一个“和差问题”就知道:哥哥挑“(26+2)÷2=14”块,弟弟挑“26-14=12”块。

提示:解还原问题所作的相应的“逆运算”是指:加法用减法还原,减法用加法还原,乘法用除法还原,除法用乘法还原,并且原来是加(减)几,还原时应为减(加)几,原来是乘(除)以几,还原时应为除(乘)以几。

对于一些比较复杂的还原问题,要学会列表,借助表格倒推,既能理清数量关系,又便于验算。

例】某人去银行取款,第一次取了存款的一半多50元,第二次取了余下的一半多100元。

这时他的存折上还剩1250元。

他原有存款多少元?【分析】从上面那个“重新包装”的事例中,我们应受到启发:要想还原,就得反过来做(倒推)。

由“第二次取余下的一半多100元”可知,“余下的一半少100元”是1250元,从而“余下的一半”是1250+100=1350(元)余下的钱(余下一半钱的2倍)是:1350×2=2700(元)用同样道理可算出“存款的一半”和“原有存款”。

综合算式是:[(1250+100)×2+50]×2=5500(元)还原问题的一般特点是:已知对某个数按照一定的顺序施行四则运算的结果,或把一定数量的物品增加或减少的结果,要求最初(运算前或增减变化前)的数量。

(教师版)小学奥数6-1-4 还原问题(二).专项检测题及答案解析

(教师版)小学奥数6-1-4 还原问题(二).专项检测题及答案解析

本讲主要学习还原问题.通过本节课的学习,可以使学生掌握倒推法的解题思路以及方法,并会运用倒推法解决问题. 1. 掌握用倒推法解单个变量的还原问题.2. 了解用倒推法解多个变量的还原问题.3. 培养学生“倒推”的思想.一、还原问题 已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.二、解还原问题的方法在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反.方法:倒推法。

口诀:加减互逆,乘除互逆,要求原数,逆推新数.关键:从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括号.模块一、单个变量的还原问题【例 1】 刚打完篮球,冬冬觉得非常渴,就拿起一大瓶矿泉水狂喝.他第一口就喝了整瓶水的一半,第二口又喝了剩下的13,第三口则喝了剩下的14,第四口再喝剩下的例题精讲知识点拨教学目标6-1-2.还原问题(二)15,第五口喝了剩下的16.此时瓶子里还剩0.5升矿泉水,那么最开始瓶子里有几升矿泉水?【考点】单个变量的还原问题 【难度】4星 【题型】解答【关键词】可逆思想方法【解析】 最开始瓶子里有矿泉水:111110.511111323456⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫÷-⨯-⨯-⨯-⨯-=⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦(升).【答案】3升【例 2】 李白提壶去买洒,遇店加一倍,见花喝一斗。

三遇店和花,喝光壶中酒。

壶中原有( )斗酒。

【考点】单个变量的还原问题 【难度】4星 【题型】填空【关键词】可逆思想方法,走美杯,六年级【解析】 设李白壶中原有x 斗酒,则三次经过店和花之后变为0 2[2(21)1]10x ⨯⨯---=870x -= 78x = 即壶中原有78斗酒. 【答案】78斗【例 3】 有60名学生,男生、女生各30名,他们手拉手围成一个圆圈.如果让原本牵着手的男生和女生放开手,可以分成18个小组.那么,如果原本牵着手的男生和男生放开手时,分成了_ _个小组.【考点】单个变量的还原问题 【难度】4星 【题型】填空【关键词】迎春杯,四年级,初赛,3题【解析】 方法一:男生和女生放手分成18个组,说明有男生被计算18次,男生与男生放开手后分成的组数和男生数相同,但是因为是围成了一圈,所以刚刚计算人数会被算成了两次,所以按照逆推的原则,原来有男生30人,被计算302=60⨯(次),所以()60182=21-÷(次)分成了21组。

小学奥数全国推荐三年级奥数通用学案附带练习题解析答案35还原问题(一)

小学奥数全国推荐三年级奥数通用学案附带练习题解析答案35还原问题(一)

年级三年级学科奥数版本通用版课程标题还原问题(一)本讲我们主要学习还原问题,还原就是倒推,即依照题意叙述由后往前推算,最终解决问题的方法。

通过本讲的学习,我们要掌握倒推的解题思路以及方法,并会运用倒推法解决问题,培养同学们从不同的角度思考问题的意识。

一、还原问题一般分为单个变量的还原问题和多个变量的还原问题。

二、解决还原问题的方法:1. 还原问题中的两个相反:一是运算次序与原来相反;二是运算方法与原来相反。

2. 简单的还原问题要注意:从结果出发,逐步向前进行推理。

在向前推理的过程中,每一步运算都为原来运算的逆运算。

即变加为减,变减为加,变乘为除,变除为乘。

列式时应注意运算顺序,正确使用括号。

逆序式恰为顺序式的逆运算,这就是逆推法的由来和实质。

例1 若某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是多少?分析与解:因为6是某数除以6后得到的,故而某数除以6之前是6×6=36;36是某数减去6后得到的,故而某数在未减6之前是36+6=42;42是某数乘以6后得到的,故而某数乘6之前是42÷6=7,7是某数加上6后得到的,故而某数加6之前是7-6=1。

这样问题得解,这个数是1。

逆推式子:(6×6+6)÷6-6=1。

例2一位老师心中想了一个数,对他的学生说:“给这个数加上9,再取和的一半应是5。

”他叫学生们把这个数算出来。

你会算吗?分析与解:用逆推法求解:因为老师想的数加上9之后的和的一半是5,那么和就应是5×2=10;再往前逆推,在没有加上9之前应是10-9=1,故1就是老师心中想的数。

例3 有砖26块,兄弟二人争着去挑。

弟弟抢在前面,刚摆好砖哥哥就赶到了。

哥哥看弟弟挑得太多,就抢过一半。

弟弟不肯,又从哥哥那儿拿走了一半。

哥哥不服,弟弟只好又给哥哥5块,这时哥哥比弟弟多挑2块。

问最初弟弟准备挑多少块砖?分析与解:弟弟最后挑了(26-2)÷2=12(块)。

小学奥数四年级春季讲义还原问题

小学奥数四年级春季讲义还原问题

小学奥数四年级春季讲义还原问题(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--刘老师奥数四年级春季讲义第12 讲还原问题专题解析:解答还原问题常常利用加法与减法,乘法与除法互为逆运算的道理,根据已知条件由最后结果向前倒推运算,直到问题解决。

同时,可利用线段图、表格帮助理解题意。

例题精选例1小刚问一位大伯有多大年纪,大伯说:“把我的年纪加上9,除以4,减去15,用10乘,恰好是20.”这位大伯有多少岁?解析:用倒推法进行解题,从结果20进行反向运算。

如用10乘恰好是20,用10乘以前的数应是20÷10=2;以此类推。

例2甲、乙、丙三人各有有些连环画,甲给乙3本,乙给丙5本后,三个人书的本数同样多,乙原来比丙多多少本?解析:因为乙给丙5本后,两人同样多,可知乙比丙多5×2=10(本),而这10本中又有3本是甲给的,所以原来乙比丙多的本数就很容易求出。

例3 王叔叔到银行取款,第一次取了存款的一半还多6元,第二次取了余下的一半还多8元,这时还剩100元。

王叔叔原有存款多少元?解析:从“剩100元”向前倒推,8+100=108(元),即为第一次取款后余下钱数的一半,进而求出第一次取款之后余下的钱数,然后继续倒推。

例4明明在计算两个数相加时,把一个加数个位上的1错看成7,把另一个加数十位上的8错看成3,所得的和是2955,原来两个数相加的正确答案是多少?解析:个位上的数表示几个一,十位上的数表示几个十。

加数增加或减少多少,和相应增加或减少多少。

例5甲、乙两个油桶各装了15千克油,售货员买了14千克,后来,售货员从剩下较多油的甲桶倒一部分给乙桶使乙桶的油增加一倍;然后从乙桶倒一部分给甲桶,使甲桶的油也增加一倍,这是甲桶油恰好是乙桶油的3倍。

问:售货员从两个桶里各卖了多少千克油?解析:求出甲、乙两个油桶最后的油的千克数后,用倒推法求甲桶往乙桶倒油前甲、乙两桶各有油的千克数,最后即可求出两桶里各卖了多少千克油。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本讲主要学习还原问题.通过本节课的学习,可以使学生掌握倒推法的解题思路以及方法,并会运用
倒推法解决问题. 1. 掌握用倒推法解单个变量的还原问题.
2. 了解用倒推法解多个变量的还原问题.
3. 培养学生“倒推”的思想.
一、还原问题 已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.
还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.
二、解还原问题的方法
在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反.
方法:倒推法。

口诀:加减互逆,乘除互逆,要求原数,逆推新数.
关键:从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变
减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括号
.
模块一、计算中的还原问题
【例 1】 一个数的四分之一减去5,结果等于5,则这个数等于_____。

【例 2】 某数先加上3,再乘以3,然后除以2,最后减去2,结果是10,问:原数是多少?
【巩固】 有一个数,如果用它加上6,然后乘以6,再减去6,最后除以6,所得的商还是6,那么这个数
是 。

例题精讲
知识点拨
教学目标
6-1-2.还原问题(一)
【巩固】一个数减16加上24,再除以7得36,求这个数.你知道这个数是几吗?
【巩固】少先队员采集树种子,采得的个数是一个有趣的数.把这个数除以5,再减去25,还剩25,你算一算,共采集了多少个树种子?
【例3】学学做了这样一道题:某数加上10,乘以10,减去10,除以10,其结果等于10,求这个数.小朋友,你知道答案吗?
【巩固】学学做了这样一道题:一个数加上3,减去5,乘以4,除以6得16,求这个数.小朋友,你知道答案吗?
【巩固】一次数学竞赛颁奖会上,小刚问老师:“我得了多少分?”老师说:“你的得分减去6后,缩小2倍,再加上10后,扩大2倍,恰好是100分”.小刚这次竞赛得了多少分?
【例4】牛老师带着37名同学到野外春游.休息时,小强问:“牛老师您今年多少岁啦?”牛老师有趣地回答:“我的年龄乘以2,减去16后,再除以2,加上8,结果恰好是我们今天参加活动的总人数.”小朋
友们,你知道牛老师今年多少岁吗?
【巩固】小智问小康:“你今年几岁?”小康回答说:“用我的年龄数减去8,乘以7,加上6,除以5,正好
等于4. 请你算一算,我今年几岁?”
【巩固】在小新爷爷今年的年龄数减去15后,除以4,再减去6之后,乘以10,恰好是100,问:小新爷爷今年多少岁数?
【巩固】学学和思思在游玩时,遇到一位小神仙,他们问这位神仙:“你一定不到100岁吧!”谁知这位神仙摇摇头说:“你们算算吧!把我的年龄加上75,再除以5,然后减去15,再乘以10,恰好是2000
岁.”小朋友,你知道这位神仙现在有多少岁吗?
【例5】在电脑里先输入一个数,它会按给定的指令进行如下运算:如果输入的数是偶数,就把它除以2;如果输入的数是奇数,就把它加上3.同样的运算这样进行了3次,得出结果为27.原
来输入的数可能是.
【例6】假设有一种计算器,它由A、B、C、D四种装置组成,将一个数输入一种装置后会自动输出另一个数。

各装置的运算程序如下:装置A:将输入的数加上6之后输出;装置B:将输入
的数除以2之后输出;装置C:将输入的数减去5之后输出;装置D:将输入的数乘以3之
后输出。

这些装置可以连接,如在装置A后连接装置B,就记作:A→B。

例如:输人1后,
经过A→B,输出3.5。

(1)若经过A→B→C→D,输出120,则输入的数是多少?(2)若经过
B→D→A→C,输出13,则输入的数是多少?
【例7】哪吒是个小马虎,他在做一道减法题时,把被减数十位上的6错写成9,减数个位上的9错写成6,最后所得的差是577,那么这道题的正确答案应该是多少呢?
【巩固】小马虎在做一道加法题时,把一个加数个位上的9看作6,十位上的6看作9,结果和是174,那么正确的结果应该是多少呢?。

相关文档
最新文档