1数列三角函数
三角函数数列公式大全
三角函数数列公式大全 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】三角函数公式:(1).弧度制:180orad π=,'18015718oo rad π=≈弧长公式:l r α=,扇形面积公式:21122S r lr α==(2)定义式:设角α终边上一点为(),P x y ,22r OP x y ==+则:sin ,cos ,tan ;y x y r r xααα=== (3)同角基本关系式:22sin sin cos 1,tan ;cos ααααα+== (4)诱导公式:奇变偶不变,符号看象限。
(5)两角和差公式:()sin sin cos cos sin ,αβαβαβ±=±()cos cos cos sin sin ,αβαβαβ±= ()tan tan tan ;1tan tan αβαβαβ±±=(6)二倍角公式:22tan sin 22sin cos ,tan 2;1tan αααααα==- 2222cos 2cos sin 12sin 2cos 1ααααα=-=-=-;(7)降幂公式:()()22111sin cos sin 2,sin 1cos 2,cos 1cos 2;222ααααααα==-=+(8)合一公式:()22sin cos sin ,a b a b αααϕ+=++其中tan b aϕ=。
2.三角函数图像和性质:(二)、函数图像的四种变换:(三)、函数性质: 1.奇偶性:(1)定义:奇函数:对于定义域内任何自变量x ,都有()()f x f x -=-,则称()f x 为奇函数。
偶函数:对于定义域内任何自变量x ,都有()()f x f x -=,则称()f x 为偶函数。
(2)图像:奇函数图像关于原点对称,若自变量可以取0,则()00f =;偶函数图像关于y 轴对称。
三角函数公式表
1
cosα .sinβ=-[sin(α+β)-sin(α-β)]
2
1
cosα .cosβ=-[cos(α+β)+cos(α-β)]
2
1
sinα .sinβ=- -[cos(α+β)-cos(α-β)]
2
只有经过长时间完成其发展的艰苦工作,并长期埋头沉浸于其中的任务,方可望有所成就。——黑格尔
α+β α-β
sinα-sinβ=2cos---.sin---
2 2
α+β α-β
三角函数公式表
cosα+cosβ=2cos---.cos---
2 2
α+β α-β
cosα-cosβ=-2sin---.sin---
2 2 1
sinα .cosβ=-[sin(α+β)+sin(α-β)]
就这样,最初的以太阳和星星为目标的天文观测,以及为这种观测服务的原始的三角测量就应运而生了。因此可以说,三角学是紧密地同天文学相联系而迈出自己发展史的第一步的
倒数关系:
商的关系:
平方关系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
2tan(α/2)
tanα=------
1-tan2(α/2)
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα
tan2α=-----
1-tan2α
sin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
三角函数,数列公式大全.docx
1 QA^三角函数公式:(1) •弧度制:7irad = 180", Wad = —— «57"18 71弧长公式:1= a r,扇形面积公式:S = -ar 2=-lr2 2(2)定义式:设角a 终边上一点为P (x,y ), r = \OP\ = y/x 2 + y 2Wd : • yx ysma = —,cos (7 = —,tan« =—; r rx(3)同角基本关系式:.77 .sin asnr a + cos~ « = 1, tan « = ------cos <7(4)诱导公式:奇变偶不变,符号看象限。
(5)两角和差公式:sin (cr ± /?) = sin a cos /? ± cos a sin /?,cos (a ± 0) = cos a cos 0 ¥ sin a sin 0, tan ( Q ± 0)tan 6Z ± tan /? 1 + tan a tan 0,(6) 二倍角公式:sin2«= 2sincrcoscr,tan 2a = ~~tan a1-tan^ acos= cos 2 cr-sin 2 a = l-2sin 2 a = 2cos 2 Q -1 ;(7) (8) 降墓公式:sin a cos a = -^-sin26Z,sin 2 a = g(l -cos26/),cos 2 a = y(' + cos 2a); Q +0),其中 tan/= 2。
a 合一公式:<7sin<7 + /?cos (7 = \cr +Z?2 sin(对称车由:x = lc7T H ——左已Z对称中心:、0 .k 已Z无对称轴像周期性T=2TT奇偶性 偶函数奇函数 单 调 性 増区间: 减区间: .■穴、,3/r,…2g+亍2Qr + w (2Z)增区间:[lk :7r — 7r.2/c7r][/c e Z i减区间:[llc/r. 2Jc/r+ /rji J CG Z 9増区间: (上TT —今工兀4-分"Z )无减区间 、、函数 性底\ y = sin xy = tan x2.三角函数图像和性质:定义域值域对称性 y = cos xHXze7r -2+奇函数T = 7T对称中心:穴、O\kwZ对称轴x x = k 穴、k e Z对称中心:Z、Ic7r + — .0、上 wZ保留Y 轴右侧图像 Y 轴左侧图像由Y 轴右侧图像沿丫轴翻折得到(三)、函数性质:1 •奇偶性:(1) 定义:奇函数:对于定义域内任何口变量兀,都有/(-%) = -/(%),则称/(X )为奇 函数。
函数数列与三角函数的联系
函数数列与三角函数的联系函数数列和三角函数是高中数学中经常涉及的概念。
函数数列是函数在整数上的取值构成的序列,而三角函数则是用角度作为自变量的周期函数。
虽然函数数列和三角函数在形式上有所不同,但它们之间存在着密切的联系。
本文将探讨函数数列与三角函数的联系,并分析它们之间的关联性。
一、函数数列的定义与性质要了解函数数列与三角函数的联系,首先需要了解函数数列的基本定义与性质。
函数数列可以简单定义为函数在整数上的取值构成的序列,通常表示为{an}。
函数数列的性质包括有界性、单调性和极限性质等。
1. 有界性:函数数列可能是有界的,也可能是无界的。
有界性指函数数列是否存在一个上界和下界,即是否存在M和N,使得对任意的n,都有an≤M和an≥N。
有界性是函数数列的重要性质之一。
2. 单调性:函数数列可以是单调递增的,也可以是单调递减的。
单调性指函数数列的增减趋势是否一致。
如果对任意的n,都有an≤an+1,则函数数列为单调递增。
反之,如果对任意的n,都有an≥an+1,则函数数列为单调递减。
3. 极限性质:函数数列可能存在极限,也可能不存在极限。
极限性质是函数数列的重要性质之一。
如果存在一个实数L,使得对任意的ε>0,都存在正整数N,使得当n>N时,|an - L|<ε,那么函数数列存在极限L。
同样地,如果函数数列不存在极限,也可以称之为发散。
二、三角函数的定义与性质三角函数是用角度作为自变量的函数,常见的三角函数包括正弦函数、余弦函数和正切函数等。
三角函数具有周期性和性质上的特点。
以下是三角函数的定义与性质的简要介绍。
1. 正弦函数(sin):正弦函数是角度的函数,通常表示为y=sin(x),其中x为角度,y为对应的正弦值。
正弦函数的图像呈现周期性的波浪形态,振荡范围在[-1,1]之间。
2. 余弦函数(cos):余弦函数也是角度的函数,通常表示为y=cos(x),其中x为角度,y为对应的余弦值。
三角数列知识点总结
三角函数知识点总结1. 角的概念的推广(1) 终边相同的角:所有与α角终边相同的角(连同α角在)可以用式子k ⋅360︒α,k ∈Z 来表示。
与α角终边相同的角的集合可记作:{β|βk ⋅360︒α,k ∈Z}或{β|β2k πα,k ∈Z}。
※ 角的集合表示形式不是唯一的;终边相同的角不一定相同,相同的角一定终边相同。
(2) 象限角:角的顶点与坐标轴原点重合,角的始边与x 轴的非负半轴重合,角的终边落在第几象限,就称这个角为第几象限的角。
象限角 集合表示象限角 集合表示第一 象限 ⎭⎬⎫⎩⎨⎧∈+<<Z k k x k x ,222πππ第二 象限 ⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,ππππ222第三 象限⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,2322ππππ第四 象限⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,ππππ22232 ※ 角的终边在坐标轴上,就认为这个角不属于任何象限。
(3) 轴线角:角的终边在坐标轴上的角称为轴线角。
轴线角集合表示 轴线角集合表示 x 轴非负半轴{x |x 2k π,k ∈Z }x 轴非正半轴 {x |x2k ππ,k ∈Z }x 轴{x |xk π,k ∈Z }y 轴非负半轴⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,22ππy 轴非正半轴⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,232ππy 轴⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,2ππ坐标轴⎭⎬⎫⎩⎨⎧∈=Z k k x x ,π212. 弧度制(1) 1弧度的角:等于半径长的圆弧所对的圆心角叫做1弧度的角。
(2) 度数与弧度数的换算: ①180︒π弧度; ②1801π=︒弧度; ③1弧度O⎪⎭⎫ ⎝⎛π180。
(3) 有关扇形的一些计算公式: ①R=α; ②R S 21=; ③221R S α=;④C(α2)R ;⑤)sin (212αα-=-=∆R S S S 扇形弓。
三角函数与数列的综合应用
三角函数与数列的综合应用数学中,三角函数和数列是两个重要的概念。
三角函数是研究角和三角形的函数,而数列则是由一系列有规律的数字组成的数集。
在实际应用中,三角函数和数列常常相互结合,用于解决各种问题。
本文将探讨三角函数与数列的综合应用,并介绍其中一些典型的应用场景。
一、三角函数与数列在物理中的应用1. 周期性运动中的三角函数在物理学中,许多周期性运动可以用三角函数来描述。
例如,弹簧振子、摆钟的摆动等运动都具有周期性。
对于这些运动,可以通过正弦函数或余弦函数来建立模型,来描述运动的变化规律。
通过观察和分析周期性运动中的三角函数,可以预测物体的位置、速度和加速度等重要参数。
2. 波的传播与干涉在光学和声学中,波的传播和干涉是重要的现象。
波的传播可用三角函数的正弦图像来模拟,通过计算角度和距离等参数,可以预测波的强度和传播方向。
而波的干涉可通过数列的概念来描述,当两个或多个波在特定位置上相遇时,它们会干涉产生叠加效应,形成干涉图样。
通过分析数列的规律,可以推断出干涉图样的特点和分布规律。
二、三角函数与数列在工程中的应用1. 信号处理与滤波器设计在电子工程和通信工程中,信号处理和滤波器设计是关键技术。
三角函数可以用来对信号进行频谱分析,通过傅里叶变换等方法,将信号分解为各个频率分量。
数列则用于设计滤波器,通过选择合适的数列模型和参数,可以实现对信号的滤波和去噪。
三角函数与数列的综合应用可以在工程中实现高质量的信号处理和滤波效果。
2. 结构分析与强度计算在土木工程和建筑工程中,结构的分析和强度计算是重要的任务。
通过三角函数和数列的应用,可以建立结构的数学模型,并求解结构的应力、位移和频率等参数。
三角函数用于描述结构的刚度和振动特性,数列则用于建立结构的有限元模型,通过计算数列的极限和收敛性,可以评估结构的强度和安全性。
三、三角函数与数列在经济中的应用1. 周期性市场分析在金融和股票市场中,价格和交易量往往具有一定的周期性。
三角函数,数列公式
1、一般数列的通项a n与前n项和S n的关系:a n=2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。
3、等差数列的前n项和公式:S n=S n=S n=当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n的正比例式。
4、等比数列的通项公式:a n= a1 q n-1 a n= a k q n-k(其中a1为首项、a k为已知的第k项,a n≠0)5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n的正比例式);当q≠1时,S n=S n=三、高中数学中有关等差、等比数列的结论1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。
2、等差数列{a n}中,若m+n=p+q,则3、等比数列{a n}中,若m+n=p+q,则4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。
5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。
6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列{a n b n}、、仍为等比数列。
7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3(为什么?)11、{a n}为等差数列,则 (c>0)是等比数列。
三角函数公式大全
三角函数的本质是任意角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。
现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
本文将三角函数公式列举出来,方便大家查阅。
一两角和三角函数公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB二倍角三角函数公式三三倍角三角函数公式五和差化积三角函数公式六积化和差三角函数公式八万能三角函数公式九其他三角函数公式十双曲函数公式十一其他三角函数公式01三角函数公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα02三角函数公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαtan(π+α)= tanαcot(π+α)= cotα03三角函数公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα04三角函数公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα05三角函数公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanα06三角函数公式六:07公式七:。
三角函数中的数列
三角函数中的数列在数学中,三角函数是非常重要的一部分,它们可以帮助我们研究各种周期现象,例如音乐、天文学和物理学等。
然而,除了它们在函数中的应用之外,三角函数还与数列有着密切的关系。
在这篇文章中,我将介绍三角函数与数列之间的关联,并探讨这些关系的一些有趣属性和性质。
一、正弦数列正弦函数是三角函数中最基本的函数之一。
由于正弦函数的性质是连续的,并且以$2\pi$为周期,因此我们可以创建与其关联的数列。
具体地说,考虑如下的数列:$$a_n = \sin(\frac{n\pi}{2})$$这个数列的前几个项如下:$$1,0,-1,0,1,0,-1,0,\ldots$$我们可以看到,这个数列的值在每次相邻项之间逆转。
这个性质与正弦函数相同,因为正弦函数也有$2\pi$的周期,并且在每个整数周期的对称轴上反转。
另一个有趣的事实是,这个数列的前$n$项的和是$0$。
这是因为,如果我们把$\sin(\frac{\pi}{2})$与$\sin(\frac{-\pi}{2})$放在一起,则这些值会相互抵消。
类似的抵消现象会发生在每一对相邻项之间,因为它们始终相等但符号相反。
二、余弦数列除了正弦函数之外,还有另一个三角函数称为余弦函数。
余弦函数也是连续的,以$2\pi$为周期。
我们可以创建与余弦函数关联的数列,如下所示:$$b_n = \cos(\frac{n\pi}{2})$$这个数列的前几个项是:$$0,-1,0,1,0,-1,0,1,\ldots$$注意到,在这个数列中,前两项的符号与正弦函数的数列是相反的。
然而,在后面的项中,这个数列和正弦数列具有相同的模式。
这可以通过观察余弦函数的图像得到解释,余弦函数在$\frac{\pi}{2}$处也会反转,然后在$2\pi$周期内重复这个模式。
因此,这个数列在前两项中会有所不同,但在这之后,它与正弦数列是相同的。
另一方面,余弦数列中的项也可以成为前$n$项的和的一部分。
三角函数所有公式及学习等差数列求和公式的四个层次和对数特例
三角公式总表⒈L 弧长=αR=nπR 180 S 扇=21L R=21R 2α=3602R n ⋅π⒉正弦定理:A asin =B b sin =Cc sin = 2R (R 为三角形外接圆半径)⒊余弦定理:a2=b2+c2-2bc Acos b2=a2+c2-2acB cosc 2=a 2+b2-2ab C cos bca cb A 2cos 222-+=⒋S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin=A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=CB A c sin 2sin sin 2=pr =))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)⒌同角关系:⑴商的关系:①θtg =xy =θθcos sin =θθsec sin ⋅ ②θθθθθcsc cos sin cos ⋅===y x ctg ③θθθtg ry⋅==cos sin ④θθθθcsc cos 1sec ⋅===tg x r ⑤θθθctg r x ⋅==sin cos ⑥θθθθsec sin 1csc ⋅===ctg y r ⑵倒数关系:1sec cos csc sin =⋅=⋅=⋅θθθθθθctg tg ⑶平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg ⑷)sin(cos sin 22ϕθθθ++=+b a b a(其中辅助角与ϕ点(a,b )在同一象限,且ab tg =ϕ)⒍函数y=++⋅)sin(ϕωx A k 的图象及性质:(0,0>>A ω) 振幅A ,周期T =ωπ2, 频率f =T1, 相位ϕω+⋅x ,初相ϕ⒎五点作图法:令ϕω+x 依次为ππππ2,23,,20 求出x 与y , 依点()y x ,作图 ⒏诱导公试 三角函数值等于的同名三角α函数值,前面加上一个把看作锐角时α,原三角函数值的符号;即:函数名不变,符号看象限三角函数值等于的异名三角α函数值,前面加上一个把看作锐角时α,原三角函数值的符号;即:函数名改变,符号看象限⒐和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③βαβαβαtg tg tg tg tg ⋅±=± 1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±⑤γβγαβαγβαγβαγβαtg tg tg tg tg tg tg tg tg tg tg tg tg ⋅-⋅-⋅-⋅⋅-++=++1)( 其中当A+B+C=π时,有:i).tgC tgB tgA tgC tgB tgA ⋅⋅=++ ii).1222222=++Ctg B tg C tg A tg B tgA tg⒑二倍角公式:(含万能公式) ①θθθθθ212cos sin 22sin tg tg +==②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-=③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=⒒三倍角公式:①)60sin()60sin(sin 4sin 4sin 33sin 3θθθθθθ+︒-︒=-= ②)60cos()60cos(cos 4cos 4cos 33cos 3θθθθθθ+︒-︒=+-=③)60()60(313323θθθθθθθ+⋅-⋅=--=tg tg tg tg tg tg tg ⒓半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sin θθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±=④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+⑦2sin 2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg⒔积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++=()[]βαβαβα--+-=cos )cos(21sin sin ⒕和差化积公式:①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=- ③2cos2cos 2cos cos βαβαβα-+=+ ④2sin2sin2cos cos βαβαβα-+-=-⒖反三角函数: ⒗最简单的三角方程等差数列求和公式的四个层次等差数列前n 项和公式d n n na n a a S n n 2)1(2)(11-+=+=,是数列部分最重要公式之一,学习公式并灵活运用公式可分如下四个层次:1.直接套用公式 从公式d n n na n a a n a a S m n m n n 2)1(2)(2)(111-+=+=+=+-中,我们可以看到公式中出现了五个量,包括这些量中,,,,,1n n S n a d a 已知三个就可以求另外两个了.从基本量的观点认识公式、理解公式、掌握公式这是最低层次要求.例 1 设等差数列的{}n a 公差为d,如果它的前n 项和2n S n -=,那么( ).(1992年三南高考试题)(A)2,12-=-=d n a n (B)2,12=-=d n a n (C)2,12-=+=-d n a n (D)2,12=+-=d n a n 解法1 由于2n S n -=且1--=n n n S S a 知,,12)1(22+-=-+-=n n n a n],1)1(2[121+---+-=-=-n n a a d n n ,2-=d 选(C).解法2 ,2)1(21n d n n na S n -=-+= 对照系数易知,2-=d 此时由知故选21)1(n n n na -=--,11-=a ,12+-=n a n (C). 例 2 设是等差数列n S {}n a 的前n 项和,已知与的等比331S 441S 中项为551S ,331S 与的等差中项441S 为1,求等差数列的{}n a 通项n a .(1997年全国高考文科)解 设的通项为前{}n a ,)1(1d n a a n -+=n 项和为.2)1(1d n n na S n -+= 由题意知⎪⎩⎪⎨⎧=+=⋅24131)51(4131432543S S S S S , 即⎪⎩⎪⎨⎧=⨯++⨯+⨯+=⨯+⨯⨯+2)2344(41)2233(31)2455(251)2344(41)2233(31112111d a d a d a d a d a化简可得解得,2252053121⎪⎩⎪⎨⎧=+=+d a d d a ⎩⎨⎧==101a d 或⎪⎩⎪⎨⎧=-=45121a d 由此可知1=n a 或.512532)512)(1(4n n a n -=--+= 经检验均适合题意,故所求等差数列的通项为或1=n a .512532n a n -= 2.逆向活用公式在公式的学习中,不仅要从正向认识公式,而且要善于从反向分析弄清公式的本来面目.重视逆向地认识公式,逆向运用公式,无疑将大大地提高公式的解题功效,体现了思维的灵活性.例3 设,N n ∈求证:.2)3()1(32212)1(+<+++⋅+⋅<+n n n n n n (1985年全国高考文科)证明 ,3212)1(n n n ++++=+又,211⋅<,322⋅<,)1(,+<n n n.)1(32212)1(+++⋅+⋅<+∴n n n n 又),1(4322)3(+++++=+n n n且,221<⋅,332<⋅,443<⋅,1)1(,+<+n n n.2)3()1(3221+<+++⋅+⋅∴n n n n 例4 数列对于任意{}n a 自然数n 均满足2)(1na a S n n +=,求证: {}n a 是等差数列. (1994年全国高考文科)证明 欲证n n a a -+1为常数, 由2)(1n a a S n n +=及2)1)((111++=++n a a S n n 可得 11)1(+-+=n n a n a na 推出,)1(211+++=+n n na a a n作差可得因此,221+++=n n n na na na .112n n n n a a a a -=-+++由递推性可知: d d a a a a a a n n n n (12112=-==-=-+++ 为常数),所以命题得证.这是九四年文科全国高考试题,高考中得分率极低,我们不得不承认此为公式教学与学习中的一个失误,倘若能重视逆向地认识公式,理解公式,应用公式,还“和”为“项”,结局还能如此惨重吗?3.横向联系,巧用公式在公式的学习过程中,还要从运动、变化的观点来认识公式,从函数及数列结合的角度分析透彻理解公式,公式表明是关d n n na S n 2)1(1-+=于n 的二次函数,且常数项为0,同时也可以看出点列均在同),(n S n 一条抛物线上,且此抛物线过原点,体现了思维的广阔性,请再看例2.解 设bn an S n +=2,则可得⎪⎩⎪⎨⎧=++++⨯=⨯+⨯⨯⨯+⨯2)416(41)39(31)]55(51[)44(41)33(312222b a b a b a b a b a解得⎩⎨⎧==10b a 或⎪⎩⎪⎨⎧=-=52656b a ,所以n S n=或,526562n n S n +-= 从而1=n a 或.512532n a n -=例5 设等差数列的{}n a 前项和为nS ,已知指出中哪,0,0,1213123<>=S S a 12321,,,,S S S S 一个值最大,并说明理由. (1992年全国高考试题)解由于表明点列d n n na S n 2)1(1-+=),(n S n 都在过原点的抛物线上,再由,0,01312<>S S易知此等差数列公差d<0,且图象如图所,01>a 示,易知其对称轴为)5.6,6(,00∈=x x x , 于是0,076<>a a ,故6S 最大.4.恰当变形妙用公式对公式进行适当变形,然后再运用公式是公式应用的较高层次,从而丰富了公式本身的内涵,往往给解题带来捷径,体现了思维的深刻性.对于公式2)(1na a S n n +=,变形可得 2))((2)(2)(111m n a a m a a n a a S n m m m n m n -+++=+=++-,对于公式d n n na S n 2)1(1-+=,变形可得,211d n a n S n -+= 它表明对于任意N n ∈,点列都在同一),(n S n n 直线)2(2:1da x d y l -+=上. 例6 等差数列的前{}n a m 项和为30,前2m 项和为100,则它的前3m 项和Oy为( )(A)130 (B)170 (C)210 (D)260(1996年全国高考试题)解法1 23)(313ma a S m m += 又由于100230212=⋅++=+m a a S mm m,140)(21=+∴+m m a a m ,=+∴)(31m a a m 140)(21=++m m a a m ,从而,210231403=⨯=m S 选(C). 解法2 由于点在同一),(m S m m )2,2(2m S m m )3,3(3m S m m 直线)2(21da x d y -+=上,因此mm m S m S m m m S m S mm m m --=--222323223,化简可得:210)(323=-=mm m S S S ,选(C).在上文我们曾给出97年高考试题两个解法, 这里我们再给出两个解法. 解法3 由于点列均在),(n S n n 同一直线上,说明数列成等⎭⎬⎫⎩⎨⎧n S n 差数列,从而可得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=⋅⋅=+ 243)5(434253432543453S S S S S S S S ,解得⎪⎩⎪⎨⎧=== 5S 43543S S 或⎪⎪⎪⎩⎪⎪⎪⎨⎧-===458524543S S S 从而可求得或⎩⎨⎧==1154a a ⎪⎩⎪⎨⎧-=-=52851654a a , 故等差数列通{}n a 项为1=n a 或.512532n a n -=解法4 由于点列均在),(nS n n同一直线上如图所示, 由知A 点坐标2413143=+S S 为(3.5,1). 若直线l 与x 轴无交点,即平行于x 轴,则d=0,,,1N n n S n ∈=,显然也满足条件2543)51(4131S S S =⋅,从而.,1,N n a n S n n ∈== 若直线l 与x 轴相交,设其交点为B (x,0),),3,3(31S P ),4,4(42SP ),5,5(53S P 由2543)51(4131S S S =⋅及2413143=+S S 知,033>S ,044>S 且.055<S 若不然,033>S ,044>S .055>S ,由单调性知不可能有2543)51(4131S S S =⋅,因此点B 应落在(4,0),(5,0)之间.由2543)51(4131S S S =⋅可得,45534553S S S S =即有,4553x x x x --=--解得313=x . 由A 、B 两点坐标可求所在直线方),(n S n n 程为,52656)313(56+-=--=n n n S n,526562n n S n +-=∴.512532n a n -=综上所述所求等差数列通项公式为1=n a 或.512532n a n -=从以上可以看出,对公式的学习不应仅仅停留在公式的表面.对公式深刻而丰富的内涵忽视或视而不见,而应充分挖掘出这些隐藏在内部的思想方法为我所用,提高公式的解题功效,才能达到灵活运用公式的较高境界.含参变量的对数高考高考试题解法综述含参变量的对数问题常常在高考试题中出现,本文对这一类问题的解法作以总结,以揭示这类问题的一般解题规律.1.直接转换直接转换:即把已知条件等价变形,而使问题获解,这里一定要注意等价变形.例1 已知1,0≠>a a ,试求使方程有)(log )(log 222a x ak x a a -=-解的k 的取值范围.(1989年全国高考试题)解:原方程等价于⎪⎩⎪⎨⎧>->--=-③a x ②ak x a x ak x 00① )(22222 由①可得a kk x 212+= ④显然④满足不等式③,将④代入②可得或即为所1-<k 10<<k 求. 例2 解不等式1)11(log >-xa .(1996年全国高考试题) 解(Ⅰ)当时原不等式1>a 等价不等式组⎪⎩⎪⎨⎧>->-axx 11011,11x a >-⇒从而.011<<-x a (Ⅱ)当时原不等式10<<a 等价于不等式组⎪⎩⎪⎨⎧-<<<-<>>-a x ②a xx x x 110 ② 1101① ①011得由或知由 .111ax -<<∴综上所述,当时原不等式1>a 解集为{}011|<<-x a x , 当时原不等式10<<a 解集为{}111|ax x -<< 2.消参策略根据题目特征,消去参数可大大减少不必要的讨论.例3 设10<<x 且1,0≠>a a ,试比较与的大)1(log x a -)1(log x a +小. (1982年全国高考试题)解:xx x x x -<+<∴<-<-<∴<<1110,11,110,102 于是1)1(log 11log )1(log )1(log )1(log )1(log )1()1()1()1(=+>-=--=-=+-++++x xx x x x x x x x a a 因此)1(log x a ->)1(log x a + 3.引参策略恰当地设立参数,使问题得到简化,计算量减少,这是解题中常用技巧.例4 设对所有实数x ,不等式恒成立04)1(log 12log 2)1(4log 222222>+++++a a a a x a a x ,求a 的取值范围. (1987年全国高考试题)解:令aa t a21log +=,则原不等式可转化为022)3(2>+-+t tx x t . 要使原不等式恒成立,必须有φ⎪⎩⎪⎨⎧∈⇒>==+t t t t 020203或⎩⎨⎧>⇒<+-=∆>+00)3(84 032t t t t t 即,021log 2>+aa 解之.10<<a 适当地引入参数,另辟蹊径解题十分巧妙,请再看例1. 解:原方程等价于)(22a x a x ak x >-=-.,,022a x aa x x k a >--=∴≠设)2,0()0,2(,csc ππθθ -∈=a x ,则θθctg k -=sin 1当)0,2(πθ-∈时2sin cos 1θθθctg k =+=又.1),0,4(2-<∴-∈k πθ当)2,0(πθ∈时2sin cos 1θθθtg k =-=又.10),4,0(2<<∴∈k πθ 综上所述可知k 的范围为或1-<k .10<<k 4.分类讨论分类讨论是解决含参变量问题的重要手段之一,值得注意的是在分类讨论中要准确地确定分类标准逐级分类讨论.例5 已知自然数n ,实数a>1,解关于x 的不等式).(log 3)2(1log )2(log 12log )4(log 2132a x x n x x x a na n a a a n --->-+++-+- (1991年全国高考试题)解:原不等式等价于).(log 3)2(1log 3)2(12a x x a na n --->-- (1)n 为奇数时即)(log log 2a x x a a ->2141++<<a x a (2)n 为偶数时即)(log log 2a x x a a -<2141++>a x 例6 设0,1,0>≠>t a a ,比较与的大小t a log 2121log +t a ,并证明你的结论. (1988年全国高考试题)解:当t>0时,由均值不等式有t t ≥+21,当且仅当t=1时取“=”号,所以①t=1时t a log 21=21log +t a②1≠t 时 若,10<<a 则t a log 21>21log +t a若1>a 则t a log 21<21log +t a分类讨论应注意: ①对于多个参变量应分清主参变量与次参变量, ②按先主后次顺序分层次讨论,③必须确定讨论的全集及分类标准,各类必须互不相容,否则产生重复讨论各类子集的并集必须是全集,否则产生遗漏现象. 5.数形结合数和形是整个数学发展过程中的两大柱石,数形结合是数学中十分重要的思想方法,某些问题,不妨可借助于几何图形来考虑,因为几何图形直观、形象,易于求解,请再看例1. 解:原方程等价于)(log )(log 22a x ak x aa -=-,转化为考虑曲线)0(>-=y ak x y 与曲线)0(22>-=y a x y ,要使原方程有解,只须上半直线和上半双曲线有交点,由ak x y -=平行于双曲线一条渐近线x y =,如图,a ka <<0 或从而解得或a ak -<1)<<k 1-<k 时原方程有解. 对例5也可有如下解法.原不等式等价于).(log 3)2(1log 3)2(12a x x a na n --->--, 在同一坐标系中作y=x(y>0),)0(2>-=y a x y 的图象.由图象知a x >,由求得交点P x x =2横坐标为2141++=a x ,2141+-=a x (舍)当n 为奇数时,由03)2(1>--n知)(log log 2a x x a a ->因a>1由图象知2141++<<a x a . 当n 为偶数时,由03)2(1<--n知)(log log 2a x x a a -<因a>1,由图象知2141++>a x . 仿上方法同理可求解例2,这里从略.步骤:①把原不等式(方程)等价变形为)),()()(()(x g x f x g x f =>②作出)(x f y =与)(x g y =图象,③由)()(x g x f =求交点,④由图象及函数性质确定范围,从而求解.6.分离参数(主次转化)更换问题中的参变量和变量位置,常常得到新颖简洁的解法,请再看例4.解:将原不等式变形为,021l og )22(3222>++-+aa x x x ,01)1(2222>+-=+-x x x 1)1(321log 222+-->+∴x x a a , 又对于任意R x ∈,01)1(322≤+--x x ,因此必须且只须,021log 2>+a a 即,121>+aa 解之0<a<1. ∴所求a 的取值范围为0<a<1. 例7 设其中a 是实,)1(321lg)(n an n x f x x x x +-++++= 数,2,≥∈n N n ,如果当)1,(-∞∈x 时,)(x f 有意义,求a 的取值范围. (1990年全国高考试题)解:由题设知时不)1,(-∞∈x 等式0)1(321>+-++++a n n x x x x 恒成立,即])1()3()2()1[(xx x x nn nn n a -++++-> 恒成立. 令])1()3()2()1[()(xx x x nn n n n x -++++-= ϕ,)1,(-∞∈x 时为增函数.因此x=1时21)121()(max nn n n n x -=-+++-= ϕ. )(x a ϕ> 恒成立,21na ->∴. 仿上述解法可对例1再给出如下两个解法:解法1 以k 为主参数考虑由)1(22k a kx +=,知ax k k =+212,a x x f =)(在),(+∞ak 为增函数,故k a xx f >=)(即k kk >+212,解之1-<k 或.10<<k解法2 以a 为主参数,由知k 与x 同0122>+=k kxa 号,代入0>-ak x 知2212k x k x +>①当x>0时,则k>0,故1011222<<⇒<+k k k ②当x<0时,则k<0,故111222-<⇒>+k k k 综上可知)1,0()1,( --∞∈k .分离参数一般步骤为:①将含参数t 的关于x 的方程或不等式变形为g (t)与 )(x ϕ的等式或不等式,②根据方程或不等式的解(x)的范围确定函数的取值范围)(x ϕD,③由D 以及g(t)与的相等与不)(x ϕ等关系确定为g (t)的取值范围,从而求出参数t 的范围. 说明:这里①是前提,②是关键从以上数例可以看出,只要我们从多角度、多方位、多层次上去挖掘隐含条件,从而获得问题的最佳解决方法,不断提高自己的解题能力.。
三角函数的数列解析与应用
三角函数的数列解析与应用三角函数是数学中重要的概念,具有广泛的数列解析与应用。
在本文中,我将讨论三角函数的数列解析以及它在实际应用中的具体应用场景。
一、三角函数的数列解析1. 正弦函数的数列解析正弦函数是最基本的三角函数之一,其表示形式为sin(x),其中x 为自变量。
在数列解析中,可以将正弦函数表示为:an = sin(nθ)其中,an表示第n个数列元素,θ为常数。
2. 余弦函数的数列解析余弦函数是另一个常见的三角函数,其表示形式为cos(x)。
在数列解析中,可以将余弦函数表示为:an = cos(nθ)同样,an表示第n个数列元素,θ为常数。
3. 正切函数的数列解析正切函数是三角函数中的另一个重要分支,其表示形式为tan(x)。
在数列解析中,可以将正切函数表示为:an = tan(nθ)同样,an表示第n个数列元素,θ为常数。
二、三角函数的应用1. 测量与测角三角函数的一个重要应用是测量和测角。
通过正弦、余弦和正切函数,我们可以在实际应用中测量角度或确定未知角度的大小。
例如,当我们需要测量一个不可直接测量的高度时,可以使用三角函数来计算高度。
通过测量一个已知长度的斜边和对应的角度,我们可以使用三角函数关系求解出所需的高度。
2. 谐波分析三角函数还广泛应用于谐波分析中。
谐波分析是对周期信号进行频谱分析的方法,通过将信号分解为多个正弦和余弦函数的叠加,可以揭示信号中不同频率成分的强度和相位信息。
谐波分析在信号处理、电力系统、音频处理和图像处理等领域中应用广泛。
通过利用三角函数的性质,我们可以对信号中的谐波成分进行数学建模和分析,从而得到有关信号特性的重要信息。
3. 振动和波动三角函数还与振动和波动有着密切关系。
在物理学和工程学中,振动和波动描述了物理系统中的能量传递和传播。
通过将振动和波动现象建模为正弦或余弦函数,我们可以利用三角函数解析这些现象中的复杂性。
例如,当研究弦上的横波传播时,可以使用三角函数描述弦的位移随时间和空间的变化规律。
三角函数所有公式及学习等差数列求和公式的四个层次和对数特例
1 1 1 S 5 , S 3 与 S 4 的等差中项为 1,求等差数列 an 的通项 an .(1997 年全国高考 5 3 4
文科)
解
设 an 的通项为 an a1 (n 1)d , 前 n 项和为 S n na1
n(n 1) d. 2
1 1 1 2 3 S3 4 S 4 ( 5 S5 ) 由题意知 , 1 1 S3 S 4 2 4 3 3 2 1 43 1 5 4 2 1 ( 3 a d ) ( 4 a d ) ( 5 a d) 1 1 1 3 2 4 2 25 2 即 1 3 2 1 43 (3a1 d ) (4a1 d) 2 2 4 2 3
r 1 tg csc x cos
y cos tg r
x sin ctg r
r 1 ctg sec y sin
⑵倒数关系: sin csc cos sec tg ctg 1 ⑶平方关系: sin 2 cos2 sec2 tg 2 csc2 ctg 2 1 ⑷ a sin b cos
+ cos + sin + ctg + tg + cos - sin - cos - cos - sin - ctg - tg
2 3 2 3 2
+ ctg + tg - tg
+ sin - ctg
⒐和差角公式
① sin( ) sin cos cos sin ③ tg ( )
12 3a1d 5d 2 0 d 0 d , 化简可得 解得 或 5 5 2a1 d 2 a1 1 a 4 1 2
数学中的数列和三角函数知识
数学中的数列和三角函数知识一、数列知识1.数列的定义:数列是由一些按照一定顺序排列的数构成的序列。
2.数列的表示方法:–列举法:直接将数列中的各项写出来;–通项公式法:用公式表示数列中任意一项的值。
3.数列的分类:–整数数列:数列中的每一项都是整数;–有理数数列:数列中的每一项都是有理数;–实数数列:数列中的每一项都是实数。
4.数列的性质:–单调性:数列可以分为单调递增、单调递减或常数数列;–周期性:数列中存在周期性的重复项;–收敛性:数列的各项逐渐趋近于某一确定的值。
5.等差数列:数列中任意两项之差都相等的数列。
–定义:数列{a_n}中,如果对于任意的n,都有a_n - a_(n-1) = d,那么数列{a_n}就是等差数列,其中d为常数,称为公差。
–通项公式:a_n = a_1 + (n - 1)d–前n项和公式:S_n = n/2 * (a_1 + a_n)6.等比数列:数列中任意两项的比值都相等的数列。
–定义:数列{a_n}中,如果对于任意的n,都有a_n / a_(n-1) = q,那么数列{a_n}就是等比数列,其中q为常数,称为公比。
–通项公式:a_n = a_1 * q^(n-1)–前n项和公式:S_n = a_1 * (1 - q^n) / (1 - q)(q ≠ 1)二、三角函数知识1.三角函数的定义:三角函数是用来描述直角三角形中角度与边长之间关系的函数。
2.基本三角函数:–正弦函数(sin):sinθ = 对边 / 斜边–余弦函数(cos):cosθ = 邻边 / 斜边–正切函数(tan):tanθ = 对边 / 邻边3.特殊角的三角函数值:–sin30° = 1/2,cos30° = √3/2,tan30° = 1/√3–sin45° = √2/2,cos45° = √2/2,tan45° = 1–sin60° = √3/2,cos60° = 1/2,tan60° = √3–sin90° = 1,cos90° = 0,tan90° = 无穷大4.三角函数的性质:–周期性:三角函数具有周期性,如sinθ和cosθ的周期都是2π;–奇偶性:sinθ和tanθ是奇函数,cosθ是偶函数;–单调性:三角函数在各自的定义域内具有单调性。
三角函数与数列函数的综合应用
三角函数与数列函数的综合应用在数学中,三角函数与数列函数是常见且重要的数学概念。
它们之间存在密切的联系与应用。
本文将探讨三角函数与数列函数在实际问题中的综合应用。
一、三角函数与数列函数的基本概念三角函数是以角度为自变量的函数,常见的三角函数包括正弦函数、余弦函数和正切函数。
数列函数则是以自然数为自变量的函数,数列函数的公式可以表示为通项公式,用来描述数列的变化规律。
二、三角函数与数列函数之间的关系三角函数与数列函数之间存在着紧密的联系。
以正弦函数为例,我们可以将自变量取自然数序列,从而得到一个数列。
同样地,我们也可以将数列的值作为角度的度数,通过三角函数的计算得到相应的函数值。
这种联系使得三角函数与数列函数的应用在实际问题中产生了重要的意义。
三、三角函数与数列函数在几何问题中的应用三角函数与数列函数在几何问题中有着广泛的应用。
以三角形为例,通过三角函数可以计算出三角形的边长、角度、面积等相关信息。
数列函数可以用来描述三角形中各个顶点坐标的变化规律,从而更深入地研究三角形的几何特性。
四、三角函数与数列函数在物理问题中的应用三角函数与数列函数在物理问题中也有着重要的应用。
以振动问题为例,振动的周期可以用正弦函数来表示,而振幅的变化可以通过数列函数来描述。
通过三角函数与数列函数的综合应用,我们可以更好地理解和解决物理中与振动相关的问题。
五、三角函数与数列函数在工程问题中的应用在工程领域,三角函数与数列函数的综合应用也扮演着重要的角色。
以电路问题为例,交流电的波形可以通过正弦函数来描述,而电流和电压的变化规律可以通过数列函数来表示。
通过三角函数与数列函数的应用,工程师们能够更好地分析电路中的问题,并作出正确的设计和改进。
六、三角函数与数列函数在经济问题中的应用在经济学中,三角函数与数列函数也有广泛的应用。
以经济增长模型为例,经济增长率可以用数列函数来表示,而经济波动可以通过正弦函数来描述。
通过三角函数与数列函数的综合应用,我们可以更好地预测经济的变化趋势,并制定相应的经济政策。
高三数学必背必考知识点
高三数学必背必考知识点高三数学必背必考知识点1第一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二、平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。
第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。
难度比较小。
第三、数列。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。
第五、概率和统计。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。
第六、解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括:第一类所讲的直线和曲线的位置关系,这是考试最多的内容。
考生应该掌握它的通法;第二类我们所讲的动点问题;第三类是弦长问题;第四类是对称问题,这也是2008年高考已经考过的一点;第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七、押轴题。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。
这是高考所考的七大板块核心的考点。
高中数学三角函数和数列公式
三角函数、解三角形三角函数的图像:-11y=sinx-2π2π3π/2ππ/2-3π/2-π-π/2oyx-11y=cosx-2π2π3π/2ππ/2-3π/2-π-π/2oyx同角三角函数的基本关系式 :22sin cos 1θθ+=,tan θ=θθcos sin .正弦、余弦的诱导公式(奇变偶不变,符号看象限)两角和与差公式:(1)sin()sin cos cos sin αβαβαβ±=±;(2)cos()cos cos sin sin αβαβαβ±= ;(3)tan tan tan()1tan tan αβαβαβ±±=.二倍角公式: (1) sin 2sin cos ααα=.(2)2222cos 2cos sin 2cos 112sin ααααα=-=-=-.(3)22tan tan 21tan ααα=-. 公式变形: ;22cos 1sin ,2cos 1sin 2;22cos 1cos ,2cos 1cos 22222αααααααα-=-=+=+=三角函数的周期:(1)函数sin()y x ωϕ=+,cos()y x ωϕ=+,x ∈R 的周期2T πω=;(2)函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈的周期T πω=. 辅助角公式: )sin(cos sin 22ϕ++=+=x b a x b x a y 其中ab =ϕtan正弦定理:2sin sin sin a b c R ABC===.::sin :sin :sin a b c A B C ⇔=余弦定理: 2222cos a b c bc A =+-; 2222c o s b c a c a B=+-; 2222cos c a b ab C =+-.三角形面积公式:111sin sin sin 222S ab C bc A ca B ===.数列等差数列:通项公式:(1) 1(1)n a a n d =+- ,其中1a 为首项,d 为公差,n 为项数,n a 为末项。
三角函数计算公式大全
三角函数公式三角函数是数学中属于初等函数中的超越函数的函数。
它们的本质是任何角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的。
其定义域为整个实数域。
另一种定义是在直角三角形中,但并不完全。
现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。
而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。
定义式锐角三角函数任意角三角函数图形直角三角形任意角三角函数正弦(sin)余弦(cos)正切(tan或tg)余切(cot或ctg)正割(sec)余割(csc)表格参考资料来源:现代汉语词典[1].函数关系倒数关系:①;②;③商数关系:①;②.平方关系:①;②;③.诱导公式公式一:设为任意角,终边相同的角的同一三角函数的值相等:公式二:设为任意角,与的三角函数值之间的关系:公式三:任意角与的三角函数值之间的关系:公式四:与的三角函数值之间的关系:公式五:与的三角函数值之间的关系:公式六:及的三角函数值之间的关系:记背诀窍:奇变偶不变,符号看象限[2].即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。
形如2k×90°±α,则函数名称不变。
诱导公式口诀“奇变偶不变,符号看象限”意义:k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
记忆方法一:奇变偶不变,符号看象限:记忆方法二:无论α是多大的角,都将α看成锐角.以诱导公式二为例:若将α看成锐角(终边在第一象限),则π+α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二.以诱导公式四为例:若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四.诱导公式的应用:运用诱导公式转化三角函数的一般步骤:特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。
高中数学公式大全:函数公式
高中数学公式大全:函数公式数学网整理高中数学分类公式大全:反三角函数、函数、数列、三角函数和棱锥数学公式大全。
高中数学函数知识点总结(1)高中函数公式的变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
(2)一次函数:①若两个变量,间的关系式能够表示成(为常数,不等于0)的形式,则称是的一次函数。
②当=0时,称是的正比例函数。
(3)高中函数的一次函数的图象及性质①把一个函数的自变量与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
②正比例函数=的图象是通过原点的一条直线。
③在一次函数中,当0,O,则经2、3、4象限;当0,0时,则经1、2、4象限;当0,0时,则经1、3、4象限;当0,0时,则经1、2、3象限。
④当0时,的值随值的增大而增大,当0时,的值随值的增大而减少。
(4)高中函数的二次函数:①一样式:,对称轴是顶点是;②顶点式:,对称轴是顶点是;③交点式:,其中,是抛物线与x轴的交点(5)高中函数的二次函数的性质①函数的图象关于直线对称。
②时,在对称轴()左侧,值随值的增大而减少;在对称轴()右侧;的值随值的增大而增大。
当时,取得最小值③时,在对称轴()左侧,值随值的增大而增大;在对称轴()右侧;的值随值的增大而减少。
当时,取得最大值9 高中函数的图形的对称单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
让学生把一周看到或听到的新奇事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积存的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。
如此,即巩固了所学的材料,又锤炼了学生的写作能力,同时还培养了学生的观看能力、思维能力等等,达到“一石多鸟”的成效。
(1)轴对称图形:①假如一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么那个图形叫做轴对称图形,这条直线叫做对称轴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年高考真题
2009 17
设△ABC 的内角A 、B 、C 的对边长分别为a 、b 、
c ,cos(A −C )+cos B =2010 17
设数列满足a 1=2,a n+1-a n =3•22n-1
(1)求数列{a n }的通项公式;
(2)令b n =na n ,求数列的前n 项和S n 2011 17
等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 32
=9a 2a 6,
(Ⅰ)求数列{a n }的通项公式;
(Ⅱ)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列
叠加叠乘法求通项和求通项的常用方法
叠加:()n f a a n n =-+1 叠乘:
()n f a a n
n =+1
①
列项相消:如1
1
1)1(1+-
=+n n n n 形式 ②
错位相减法 ③
已知n s 求⎩⎨⎧≥-==-)
1()
1(1n S S n S a n n n n
习题
⒈已知各项均为正数的等比数列{n a }的首项1a =2且4a 1是2a 2,a 3的等差中项
I 求数列的通项 II 若⋅=n n a b ㏒n
a 2
,n n n S b b b b S 求.321++++=
⒉已知在数列n n n n a a a a )2
1(,111==+中 ⒈求证数列{}n a 2与{}12-n a 都是等比数列
⒉若数列{}n a 的前2n 项和为T n ,令)1()3(2+⋅⋅-=n n T b n n ,求数列{}n b 的最大项
三角函数
常用公式
⒈诱导公式:sin (π+x )=-sinx cos(π+x)=-sinx tan(π+x)=tanx 规律:奇变偶不变 正负看象限
⒉.Sin(-x)=-sinx(奇函数) cos(-x)=cosx(偶函数) tan(-x)=-tanx(奇函数) 3.sin(βαβαβαsin cos cos sin )-
+=-
+ ) cos βαβαβαsin sin cos cos )(+
-=-
+
tan βαβαβαtan tan 1tan tan )(+
--+
=-
+
4.sin2α=ααcos sin 2 cos21cos 2sin 21sin cos 2222-=-=-=ααααα tan2α
α
α2
tan 1tan 2-=
5.)sin(sin ,,C B A C B A +=是三角形的内角
关系: tanx=
x x
cos sin tan 2α+1= cos α2(cos α0≠) 三角形面积=A bc B ac C ab sin 2
1
sin 21sin 21==
)cos(cos C B A +-= R A a 2s i n
⋅= R B b 2sin ⋅= R C c 2sin ⋅=
6.)sin(cos sin 22ϕαβα++=+b a b a (a>0 b>0) a
b
=
ϕtan ⎪⎭⎫ ⎝⎛<<-22
ππ
ϕ
习题
⑴已知三角形ABC 中,角A,B,C 的对边分别为a ,b ,c 且1,222=-+=b ac c a b I:若:c C A C A 求)tan tan 1(3
3
tan tan +=
- II .若a=2c 求三角形的面积
⑵在三角形ABC 中角A,B,C 所对的变分别为a,b,c 一直A=45°cosB-cos2B=0 ① 求角C 的大小 ② 若和三角形的面积,求c ac b c a 222+-=+
⑶在三角形ABC 中,A,B,C 对应的变分别为a,b,c
且角A,B,C 成等差数列 ①
②。