Arbitrary optical waveform generation using
对频谱分片弹性光网络的探讨
0 引言
倾角传感器的原理是通过检测重力加速度在敏感轴上的 分量,来计算敏感轴与水平面的夹角,应用于工厂、铁路、汽车、 船舶等诸多领域 。两 [1-2] 个倾角传感器可以同时获取在相差
180°的两个方向上偏离相应方向上水平面的倾角。 坦克武器的预先校正的第一步是需要将偏离原始位置的
坦克武器恢复到原始位置。目前采用的办法是两名坦克乘员 使用专用的校炮镜,协力配合,人工进行,这种方法[3-4] 一方面 会引入一定的人工误差,另一方面是预先校正对天气状况、场
在校正装置的照准过程要求高、环境依赖性大等问题。文章为解决上述问题设计一种双轴倾角偏差补偿装置,阐述了该
补偿装置的硬件组成和工作原理,结合坦克火炮预先校正原理,设计了该补偿装置的硬件控制电路和上位机软件。多次
试验证明,该补偿装置的精度高,能满足设计要求。
关键词:倾角补偿;预先校正;程序控制
中图分类号:TP274
(1)物理层。在物理层,引入了可变速率的收发器。目前, SLICE 中常见的多载波技术主要有:CO-OFDM、COWDM、 Nyquist-WDM 以及 OAWG 四种。其中,由于 OAWG(optical arbitrary waveform generation,光任意波形发生器)对单载波和 多载波调试技术均适用,为兼容传统的波分复用光网络,可变 收发器中多采用 OAWG 多载波技术。
1.2 SLICE 基本特点 随着正交频分复用 OFDM 光技术以及可变速率的光收发
电子信息工程专业英语专业术语速查表5.0
AA/D abbr. Analog-to-Digital 模数转换16, 17AC abbr. alternating current 交流电5AC analysis 交流分析5 accumulator [ə'kjuːmjʊleɪtə] n.累加器17 accuracy [ˈækjʊrəsi] n.精度6 acquisition time 采集时间16 activate [ˈæktɪveɪt] vt. 激活3active [ˈæktɪv] adj.有源的4, 18 actuator [ˈæktjʊeɪtə] n.激励器4ADC abbr. analog-to-digital converter 模数转换器6, 18 addition [əˈdɪʃən] n. 加法3 address generator 地址产生器17 address latch 地址锁存器3 address pointer 地址指针2 addressing mode 寻址模式26 ADSL abbr. Asymmetrical Digital Subscriber Loop 非对称数字用户线21AFG abbr. Arbitrary Function Generator 任意函数发生器28 algorithm ['ælgərɪðəm] n. 算法27 aliasing ['eɪlɪəsiŋ] n.混叠16ALU abbr. Arithmetic Logic Unit 算术逻辑单元3 amplifier [ˈæmplɪˌfaɪə] n. 放大器4 analog interfacing模拟接口(技术)6 angular [ˈæŋɡjələ] adj.角度的5 angular frequency 角频率5 annotation [ænə'teɪʃən] n.标注15 antenna [ænˈtenə] n.天线10anti-aliasing filter 抗混叠滤波器6, 16 array [ə'reɪ] n.数组26ASIC abbr. Application-Specific Integrated Circuit 专用集成电路13, 14, 15, 16, 25专用集成电路assembler [əˈsemblə] n. 汇编器3 assembly language 汇编语言3 ASSP abbr. Application-Specific Standard Part 专用标准部件14, 25 asynchronous [ə'sɪŋkrənəs] adj.异步的13 attenuator [ə'tenjʊeɪtə] n. 衰减器29 audio [ˈɔːdiəʊ] adj.音频的6 automatic variable 自动变量26AWG abbr. Arbitrary Waveform Generator 任意波形发生器28axis [ˈæksɪs] n. 坐标轴5Bbackplane [ˈbækˌpleɪn] n. 背板;底板9 backward compatible 向下兼容21 bandwidth ['bændˌwɪdθ] n.带宽6第 1 页共15 页bar graph 柱图22base band 基带6base station 基站10, 21battery [ˈbætəri] n. 电池7, 12baud [bɔːd] n.波特21Bessel filter 贝塞耳滤波器19biased [ˈbaɪəst] adj.加偏压的7bill of materials 材料单25binary number 二进制数3BIOS [ˈbaɪɒs] abbr. Basic Input Output System 基本输入输出系统3bipolar [baɪˈpəʊlə] adj.双极性的2bit pattern 位模式3bit vector 位向量26block diagram 方框图6block diagram 框图19BNC abbr. bayonet Neill–Concelman BNC连接器9Bode plot 伯德图5bond [bɒnd] n.接头9boot sector 引导扇区3branch instruction 分支指令26缓存器;;缓存区3, 10 buffer [ˈbʌfə] n. 缓存器bunching ['bʌntʃiŋ] n.聚束19bus interface 总线接口16Ccable ['keɪbl] n.电缆12cache [kæʃ] n.高速缓存2CAD abbr. Computer Aided Design 计算机辅助设计13, 18calculation-intensive algorithm 运算密集型算法17CAM [kæm] abbr. Content Addressable Memory 内容寻址存储器2capacitance [kəˈpæsɪtəns] n. 电容(值)5capacitive [kəˈpæsɪtɪv] adj. 容性的9capacitor [kəˈpæsɪtə] n.电容器2, 5capacity [kə'pæsɪtɪ ] n.容量10capture ['kæptʃə] vt. 输入,记录13carrier wave 载波24carry bit 进位位3cascade [kæsˈkeɪd] n.级联5cathode ['kæθəʊd] n. 阴极29CB abbr. Citizen's Band 民用波段10CCD abbr. Charge Coupled Device 电荷耦合器件18, 23CD abbr. Compact Disc 光盘12, 13cellular [ˈseljʊlə] n.使用蜂窝技术的6channel [ˈtʃænəl] n.信道6第 2 页共15 页characteristic frequency 特征频率5 charge pump 电荷泵8 Chebyshev Type 1 filter 契比雪夫I型滤波器18 chip [tʃɪp] n. 芯片1 chip rate 码片速率21 chrominance [ˈkrəʊmɪnəns] n.色度24 circuit [ˈsɜːkɪt] n. 电路1 circuit board 电路板1 circuitry [ˈsɜːkɪtri] n. 电路2, 4, 6 circular [ˈsɜːkjʊlə] adj. 圆形的5 circular buffer 循环缓冲区17 class [klɑːs] n.类26 clock cycle 时钟周期3 clock generator 时钟发生器8 clock rate 时钟速率9 CMOS abbr. complementary metal-oxide-semiconductor 互补金属氧化物半导体2, 9, 12, 23 coding theory 编码理论11 comparator [kəmˈpærətə] n.比较器2, 6 compatibility [kəmˌpætɪ'bɪlɪtɪ] n. 兼容性16 compiler [kəmˈpaɪlə] n.编译器3, 26 complex plane 复平面5 component [kəmˈpəʊnənt] n. 元器件;组件;部件1 concurrent [kən'kʌrənt] adj.并发的15 concurrent process 并发进程26 conductivity [kɒndʌkˈtɪvɪti] n.导电性7 conjugate [ˈkɒndʒʊɡeɪt] adj.共轭的5 converter [kənˈvɜːtə] n. 整流器7 converter resolution 转换器分辨率6 coordinate [kəʊˈɔːdɪnət] n. 坐标5 cordless phone 无绳电话10 counter [ˈkaʊntə] n. 计数器3 coupling [ˈkʌplɪŋ] n.耦合9 CPU abbr. central processing unit中央处理器1, 12程序))25, 27交叉编译器((程序cross-compiler 交叉编译器crosstalk [ˈkrɒsˌtɔːk] n.串扰9 crowbar [ˈkrəʊˌbɑː] n. 短路器7 CRT abbr. Cathode Ray Tube 阴极射线管29 cryptography [krɪp'tɒgrəfɪ] n. 密码学14 crystal [ˈkrɪstəl] n.晶体8, 18 CT abbr. Computed Tomography 计算机层析成像22 current source 电流源4 cutoff [ˈkʌtɒf] n.截止7 cutoff frequency 截止频率18第 3 页共15 页DD/A abbr. Digital-to-Analog 数模转换16, 17 DAC abbr. Digital-to-Analog Converter 数模转换器18 damping [ˈdæmpɪŋ] n.幅度衰减5 data acquisition 数据采集30 data compression 数据压缩18 data converter 数据转换器6 data processing 数据处理14 data rate 数据率19 data sheet 数据手册4, 6 dB abbr. decibel [ˈdesɪˌbel] 分贝5 DC abbr. direct current 直流电5 DCT abbr. Discrete Cosine Transform 离散余弦变换22 debug [diː'bʌg] vt.调试28 debugger [diː'bʌgə] n. 调试程序27 decimation [desɪ'meɪʃən] n.抽取6 declaration [deklə'reɪʃən] n.声明15 decoder [diːˈkəʊdə] n. 译码器3 delta modulation 增量调制(∆调制)11 denominator [dɪˈnɒmɪˌneɪtə] n.分母5 density [ˈdensəti] n. 密度2 design flow 设计流程13 design specification 设计规格28 desired signal 期望信号28 detector [dɪˈtektə] n.检波器8 deviation [ˌdiːviˈeɪʃən] n. 偏差8 device driver 设备驱动程序27 DG abbr. Data Generator 数据发生器28 dial tone 拨号音10 differentiation [ˌdɪfərenʃiˈeɪʃən] n. 微分4 digital [ˈdɪdʒɪtəl] adj.数字的1 digital cellular phone 数字蜂窝电话6 digital circuit 数字电路2 digital filtering 数字滤波6 digitization [ˌdɪdʒɪtɪ'zeʃən] n. 数字化16 diode [ˈdaɪəʊd] n. 二极管7 discrete [dɪ'skriːt] adj.离散的,分立的1, 13 discrete component 分立元件3 disk drive head 磁盘驱动器磁头18 dissipate [ˈdɪsɪˌpeɪt] vi.耗散7 distortion [dɪ'stɔːʃən] n.畸变28 division [dɪˈvɪʒən] n. 除法3 DMM abbr. digital multimeter 数字多用表28第 4 页共15 页Dolby Stereo 杜比立体声19 don't care 无关项15 downstream ['daʊn'striːm] n.下行比特流11 DRAM abbr. Dynamic Random Access Memory 动态随机存取存储器2 drive [draɪv] n.驱动器2, 12 DSP abbr. Digital Signal Processing 数字信号处理14, 18 DSP abbr. Digital Signal Processor 数字信号处理器16, 17 DSSS abbr. Direct Sequence Spread Spectrum 直序扩频21 duty cycle 占空比7, 8 DVD abbr. Digital Video Disk 数字视盘12 DVI abbr. Digital Video Interactive 交互式数字视频系统12 dynamic range 动态范围16 E合逻辑2, 9 ECL abbr. emitter coupled logic 射极耦射极耦合逻辑EDA abbr. Electronic Design Automation 电子设计自动化13, 15 edge detection 边缘检测22 EEPROM [ˈi:prɒm] abbr. Electrically Erasable Programmable ROM 电可擦除可编程只读存储器2 electrical power 电能7 electricity [ˌilekˈtrɪsəti] n. 电1 electron beam 电子束29 electronics [ˌilekˈtrɒnɪks] n. 电子学, 电子电路1, 7 embedded system 嵌入式系统13 emulation [ˌemjʊ'leɪʃən] n. 仿真16 encoding [ɪn'kəʊdɪŋ] n.编码19 end office 端局10 end product 最终产品16 erasable [ɪˈreɪzəbl] adj.可擦除的2 ethernet[ˈiːθənet] n. 以太网9, 12 even field 偶数场24 execute [ˈeksɪˌkjuːt] vt. 执行3 execution time 执行时间27 exponent [ɪk'spəʊnənt] n.指数17 exponential [ˌekspəˈnenʃəl] adj. 指数的5 expression [ɪk'spreʃən] n. 表达式26 external compensation 外部补偿4 FFCC abbr. Federal Communications Commission 联邦通信委员会10 FDM abbr. Frequency-division multiplexing 频分复用11 feature size 特征尺寸19 feedback [ˈfiːdbæk] n.反馈4 feedback component 反馈元件4 ferroelectric [ˌferəʊɪˈlektrɪk] adj.铁电的2 FFT abbr. Fast Fourier Transform 快速傅里叶变换6, 18第 5 页共15 页field [fiːld] n. 字段26 field operation 现场运行4 filter ['fɪltə] n.滤波器6 filtering [ˈfɪltərɪŋ] n.滤波9, 18 flash memory 闪存23 flip flop 触发器2 floating point processor 浮点处理器3 flux [flʌks] n.通量7 flyback [ˈflaɪbæk] n.回扫7 foundry ['faʊndri] n. 晶圆代工厂16 FPGA abbr. Field Programmable Gate Array 现场可编程门阵列13, 15, 16 frame grabber 帧采集器24 frequency conflict 频率冲突11 frequency masking 频率掩蔽20 frequency response 频率响应9 frequency reuse 频率复用10 frequency synthesizer 频率合成器8full range 满量程28 full scale 满幅度;满量程6full scale range 满量程范围16 functional accelerator 性能加速器16 fundamental frequency 基频29Ggain drift 增益漂移4 GBW abbr. Gain × Bandwidth 增益带宽积4 global data 全局数据26 GPP abbr. General Purpose Processor 通用处理器16 gray scale level 灰度级22 GSM abbr. Global System for Mobile communications 全球移动通信系统6 guided missile 导弹28 gyro ['dʒaɪrəʊ] n.陀螺仪28 handoff [hændɒf] n. 越区切换21 handset ['hænset] n. 手持设备10 Harvard architecture 哈佛结构17 HDL abbr. Hardware Description Language 硬件描述语言13, 15 HDMI abbr. High-Definition Multimedia Interface 高清晰度多媒体接口12 headroom [ˈhedˌruːm] n.净空,活动空间7 heatsink [ˈhiːt ˈsɪŋk] n.散热片7, 12 high impedance 高阻15 high-powered [ˌhaɪ ˈpaʊəd] adj. 大功率的10 histogram ['hɪstəgræm] n.直方图22 histogram equalization 直方图均衡22 Huffman encoding 哈夫曼编码22第 6 页共15 页IIC abbr. integrated circuit 集成电路1, 4 IDE [aɪd] abbr. Integrated Drive Electronics 集成驱动器电路12 IEEE abbr. Institute of Electrical and Electronic Engineers 电气与电子工程师学会15 image contrast 图像对比度22 image sensor 图像传感器23 imaginary part 虚部5 impedance [ɪmˈpiːdəns] n. 阻抗5, 15, 30 inbound ['ɪnbaʊnd] adj.输入的10 inductance [ɪnˈdʌktəns] n. 电感(值)5 inductive [ɪnˈdʌktɪv] adj.感性的9 inductor [ɪnˈdʌktə] n. 电感器5, 7 infinity [ɪnˈfɪnəti] n.无穷大5in-phase 同相28 input offset voltage 输入偏置电压4 instruction [ɪnˈstrʌkʃən] n. 指令3 instruction decoder 地址译码器3 instrumentation [ˌɪnstrʊmen'teɪʃən] n.仪器28 insulate [ˈɪnsjuleɪt] vt.绝缘1 integrated development tool 集成开发工具27集成;;积分4, 7 integration [ˌɪntəˈɡreɪʃən] n. 集成integrator [ˈɪntɪgreɪtə] n. 积分器5 interconnect [ˌɪntəkəˈnekt] n. 互连9 interface [ˈɪntəˌfeɪs] n. 接口电路2, 4 interference [ɪntə'fɪərəns] n. 干扰10 interpolation [ɪntɜːpəʊ'leɪʃən] n.插值6 interrupt latency 中断等待时间27 interval [ˈɪntəvəl] n. 间歇2IP abbr. Intellectual Property 知识产权25 IP abbr. Internet Protocol 互联网协议21 IP packet IP分组21 ISO abbr. International Organization for Standardization 国际标准化组织26 ISP abbr. in-system programmable 在系统可编程14 ISR abbr. Interrupt Service Routine 中断服务程序27Jjack [dʒæk] n.音频插口12 jitter ['dʒɪtə] n.抖动28 jitters [ˈdʒɪtəz] n. 时钟抖动8 JPEG abbr. Joint Photographic Experts Group 联合图象专家组23 JTAG abbr. Joint Test Action Group 联合测试行动组25Kkernel ['kɜːnəl] n.内核程序27 lagging [ˈlæɡɪŋ] adj.滞后的8第7 页共15 页laptop ['læptɒp] n.膝上型轻便电脑12 laser ['leɪzə] abbr. light amplification by stimulated emission of radiation 激光19 latency ['leɪtənsɪ] n. 反应时间27 LLCD abbr. Liquid Crystal Display 液晶显示器23 lead [liːd] n.引线9 leading [ˈliːdɪŋ] adj.超前的8 leakage [ˈli:kɪdʒ] n.泄露2 learning curve 学习曲线15 licensing agreement 专利使用权转让协定17 linear ramp 线性斜坡5 linear regulator 线性稳压器7 linearity [ˌlɪnɪˈærɪtɪ] n. 线性28 lithographic [ˌlɪθəˈɡræfɪk] adj. 平版印刷的2 load [ləʊd] n. 负载7 load current 负载电流7 loading ['ləʊdɪŋ] n.负载30 log [lɒɡ] abbr. logarithm [ˈlɒɡərɪðəm] 对数4 logic [ˈlɒdʒɪk] n. 逻辑1 logic analyzer 逻辑分析仪28 logical channel 逻辑通道21 look-up table 查找表2, 19 loop filter 环路滤波器8 looping scheme 循环机制17 loss [lɒs] n. 损耗7 LP abbr. Long Playing 密纹唱片13 LSI abbr. large-scale integration 大规模集成1 luminance ['luːmɪnəns] n.亮度24 MMAC abbr. Multiplication and Accumulation 乘法累加运算18 machine instruction 机器指令3 magnetic [mæɡˈnetɪk] adj.有磁性的2, 7 magnitude spectrum 幅度谱22 mantissa [mæn'tɪsə ] n.尾数17 m-commerce 移动商务21 memory [ˈmeməri] n.存储器2 memory location 存储器位置3 metallization [ˌmetəlaɪ'zeɪʃən] n.金属化13 microcell [ˈmaɪkrəʊˌsel] n.微蜂窝10 microcontroller [maɪkrəkən'trəʊlə] n.微控器2 micron [ˈmaɪkrɒn] n. 微米;10-6米3 microphone ['maɪkrəfəʊn] n.扩音器18 microprocessor [maɪkrəʊ'prəʊsesə] n. 微处理器1, 3第8 页共15 页miniaturization [ˈmɪnɪətʃəˌraɪˈzeɪʃən] n. 缩微化1 MIPS [mɪps] abbr. Million Instructions Per Second 每秒百万条指令数3, 18 MMX abbr. Multi-Media Extension多媒体增强指令集17 mnemonics [nɪ'mɒnɪks] n. 助记符30 modem ['məʊdem] n.调制解调器12 monotonicity [mɒnətəˈnɪsɪtɪ] n. 单调性28µP abbr. microprocessor 微处理器14 MPEG abbr. Motion Picture Experts Group 运动图象专家组20 MRI abbr. Magnetic Resonance Imaging 核磁共振成像22 MSC abbr. Mobile Switching Center 移动电话交换中心10 MSPS abbr. million samples per second 每秒百万样本数6 MTSO abbr. Mobile Telephone Switching Office 移动电话交换局10 multiframe n.复帧11 multiplexer ['mʌltɪˌpleksə] n.多路复用器28 multiplication [ˌmʌltəplɪˈkeɪʃən] n. 乘法3 multiplier [ˈmʌltɪˌplaɪə] n.乘法器3, 17 Nnetwork operator 网络运营商21 network router 网络路由器2 next state 次态13 noise shaping 噪声整形6 nominal [ˈnɒmɪnəl] adj.标称的8 NRE abbr. nonrecurring engineering 一次性工程14 NTSC abbr. National Television Systems Committee 国家电视系统委员会24 Nyquist theorem 奈奎斯特定理16 Oobject recognition 目标识别22 odd field 奇数场24 one's complement 二进制反码11 op amp abbr. operational amplifier 运算放大器4, 18 opcode [ˈɒpkəʊd] abbr. operation code 操作码3 open loop gain 开环增益4 operand ['ɒpərænd] n.操作数26 operating system 操作系统3 optical [ˈɒptɪkəl] adj.光学的2 order of magnitude 数量级10 OS abbr. Operating System 操作系统12 oscillation [ˌɒsɪˈleɪʃən] n. 振荡4 oscillator [ˈɒsɪˌleɪtə] n.振荡器8 oscilloscope [əˈsɪləˌskəʊp] n.示波器20, 28 OTP abbr. one-time programmable 一次性编程14 outbound ['aʊtbaʊnd] adj.输出的10 outlet ['aʊtlet] n.电源插座12第9 页共15 页overload [ˌəʊvəˈləʊd] n.过载10 overvoltage [ˈəʊvəˈvəʊltɪdʒ] n.过压7Ppackage ['pækɪdʒ] n.封装形式; 程序包4, 15 packet ['pækɪt] n.信息分组21 packet switching 分组交换10 pad [pæd] n.焊盘9 PAL [pæl] abbr. Phase Alternation by Line 逐行倒相24 parallel [ˈpærəlel] adj.并联的8 parallel architecture 并行结构17 parallel resonant 并联谐振8 parallelism ['pærəlelɪzəm] n. 并行度14 passband ['pæsbænd] n.通带5, 18 passive [ˈpæsɪv] adj.无源的4, 7, 18 payload [ˈpeɪˌləʊd] n.有效载荷11 PCB abbr. printed circuit board 印制电路板9, 18 PCM abbr. Pulse Code Modulation 脉冲编码调制11 PCS abbr. Personal Communication Service 个人通信业务11 perceptual coding 知觉编码20 performance specification 性能指标6 peripheral [pə'rɪfərəl] n.外设12 PGA abbr. Programmable Gain Amplifier 可编程增益放大器18 phase spectrum 相位谱22 phone service 电话业务4 piezoelectric [ɪˈlektrɪk] adj.压电的piezoelectric [paɪzəʊɪˈlektrɪk] adj.压电的8, 18 piezoelectric crystal 压电晶体18 pipelining [ˈpaɪpˌlaɪnɪŋ] n. 流水线技术3 pixel ['pɪksəl] n.像素22 PLA abbr. Programmable Logic Array 可编程逻辑阵列13 playback ['pleɪbæk] n.重放19 PLCC abbr. plastic leadless chip carrier 塑料无引线芯片承载封装9 PLD abbr. Programmable Logic Device 可编程逻辑器件13, 14, 15 PLL abbr. phase locked loop 锁相环8 pointer ['pɒɪntə] n.指针26 pole [pəʊl] n. 极点5 pole [pəʊl] n.极点18 POST [pəʊst] abbr. power-on self-test 开机自检12 power [ˈpaʊə] n. 功率1 power consumption 功耗1, 6 power dissipation 功耗16 power loss 功率损耗9 power supply voltage 电源电压4第10 页共15 页power supply 电源12 ppm abbr. parts per million 百万分之一8 predictive encoding 预测编码11 present state 现态13 price/performance ratio 性价比16 probe [prəʊb] n.探头30 processing gain 处理增益6 program call 程序调用26 program counter 程序计数器3, 26 programmable [ˈprəʊɡræməbl] adj.可编程的2 propagate [ˈprɒpəɡeɪt] vi.传播8 propagation delay 传输延迟8, 30 prototype ['prəʊtətaɪp] n. 样机14 PSTN abbr. Public Switched Telephone Network 公共交换电话网10 psychoacoustics [ˌsaɪkəʊə'kuːstɪks] n.心理声学20 PTT abbr. Post Telephone and Telegraph Administration 邮政电话电报管理局10 pulse [pʌls] n.脉冲3 pulse width 脉冲宽度30 QoS abbr. quality-of-service 服务质量21 quality factor 品质因数5 quantization error (noise) 量化误差(噪声)6 quantization level 量化电平16 quartz [kwɒts] n. 石英8 RRAM [ræm] abbr. random-access memory 随机存取存储器3, 12 random noise 随机噪声11 raster ['ræstə] n.光栅29 RC abbr. Reconfigurable Computing 可重配计算14 RC abbr. resistor capacitor 电阻电容5 RCA abbr. Radio Corporation of America 美国无线电公司12 real part 实部5 real time 实时16 rectifier [ˈrektɪfaɪə]n.整流器7 redundancy [rɪ'dʌndənsɪ] n.冗余20 Reed-Solomon coding 里德-索罗蒙编码(RS编码)19 reference voltage 参考电压6 refresh [rɪˈfreʃ] vt.刷新2 register [ˈredʒɪstə] n.寄存器2 regulator [ˈreɡjʊˌleɪtə] n.稳压器7 resistor [rɪˈzɪstə] n. 电阻器6 resolution [rezə'luːʃən] n.分辨率6, 23 resolution function 判决函数26 resonant [ˈrezənənt] adj. 谐振的8第11 页共15 页resonating frequency 谐振频率8 ribbon cable 带状电缆;扁平柔性电缆9 ringing [ˈrɪŋɪŋ] n. 振铃振荡5 ripple ['rɪpl] n.波纹18 RISC abbr. Reduced Instruction-Set Computer 精简指令集计算机25 roll off 滚降18 ROM [rɒm] abbr. read-only memory 只读存储器3 router [ˈruːtə] n. 路由器2 rpm abbr. revolutions per minute 每分钟转数19 RTL abbr. Register Transfer Level 寄存器传输级13 RTOS abbr. Real-Time Operating System 实时操作系统26, 27 run-length encoding 行程编码22Ssample and hold circuit 采样保持电路16 sampling interval 采样间隔16 sampling rate 采样率6 SATA abbr.. Serial Advanced Technology Attachment 串行高级技术附件12 scanning velocity 扫描速度19 scheduler ['ʃedjuːələ] n. 调度程序27 schematic [skiːˈmætɪk] n.原理图7, 13 scientific notation 科学记数法17 SCR abbr. silicon controlled rectifier 可控硅整流器7 SDR abbr. Software-defined Radio 软件无线电14 SECAM ['siːkæm] abbr. SEquential Couleur Avec Memoire 顺序与存储彩色电视系统24 selective [sɪˈlektɪv] adj. 选择性的5 semiconductor [ˌsemɪkənˈdʌktə] n. 半导体1, 7 sequence[ˈsiːkwəns] n. 序列3 sequential [sɪ'kwenʃəl] adj.时序的13 series [ˈsɪəriːz] n. 串联7, 8 series resonant 串联谐振8 shade [ʃeɪd] n.明暗度22 shielding [ˈʃiːldɪŋ] n.屏蔽9 shifter ['ʃɪftə] n. 移位器17 signal conditioning 信号调理4 signal conditioning circuit 信号调理电路18 signal integrity 信号完整性9 signal-to-noise ratio 信噪比16, 20 silicon [ˈsɪlɪkən] n.硅1 simplex ['sɪmpleks] n.单工,单向通信11 simulation [ˌsɪmjʊˈleɪʃən] n.模拟9, 13, 16 sinc correction 抽样函数校正19 sine wave 正弦波6 single-shot 单脉冲29第12 页共15 页skew[skjuː] n.相位偏移8 slew [sluː] n. 摆率8 slope [sləʊp] n. 斜率5 smallest resolvable difference 最小可分辨值17 smoothing ['smu:ðiŋ] n. 平滑(滤波)16 SMS abbr. Short Message Service 短信业务21 SNR abbr. signal to noise ratio 信噪比6 SoC abbr. System-on-Chip 片上系统14 socket [ˈsɒkɪt] n.插座9 soldering [ˈsɒldərɪŋ] n.焊接9 solid state 固态1 sound card 声卡20 source [sɔːs] n. 信号源2 source and load impedances 源阻抗和负载阻抗9 source code 源代码27 spec [spek] abbr. specification 性能指标; 规格8, 12 specification [ˌspesɪfɪˈkeɪʃən] n. 性能指标; 规格4 spectral inversion 频谱反转16 spectral resolution 频率分辨率20 spectrum ['spektrəm] n.频谱6, 16 spread spectrum communication 扩频通信11 SPS abbr. Sample Per Second 每秒样本数18 SRAM abbr. Static Random Access Memory 静态随机存取存储器2 stability [stə'bɪlɪti] n. 稳定性4 stack [stæk] n.堆栈26 startup cost 启动成本27 state machine 状态机14 statement ['steɪtmənt] n.语句15 steady state 稳态8 step function 阶跃函数5 stimuli ['stɪmjʊlaɪ] n.激励源15 stimulus signal 激励信号28 stopband ['stɒpbænd] n.阻带18 strain gage 应力计18 string [strɪŋ] n. 字符串26 structure ['strʌktʃə] n. 结构体26 subassembly [ˌsʌbəˈsembli] n.部件9 subsystem ['sʌbsɪstəm] n.子系统28 subtraction [səbˈtrækʃən] n. 减法3 SUT abbr. System Under Test 被测系统30 switch [swɪtʃ] n. 开关1 switched-capacitor filter 开关电容滤波器5 switching [ˈswɪtʃɪŋ] n.交换,切换7第13 页共15 页synchronization [ˌsɪŋkrənaɪ'zeɪʃən] n.同步11, 21 synchronous ['sɪŋkrənəs] adj.同步的13 synthesis ['sɪnθɪsɪs] n. 综合13 synthesizer [ˈsɪnθəsaɪzə] n.合成器8 system call 系统调用27 TTCXO abbr. temperature compensated crystal oscillator 温度补偿晶体振荡器8 TDM abbr. Time Division Multiplexing 时分复用11 telepresence [ˈtelɪˌprezəns] n. 远程在位21 template ['templeɪt] n. 模板26 temporal masking 暂时掩蔽20 termination [ˌtɜːmɪˈneɪʃən] n.端接9 termination characteristics 端接特性9 test bench 测试台15 test register 测试寄存器3 thermocouple [θɜːməʊˈkʌpəl] n.热电偶18 third party developer 第三方开发商17 thread [θred] n.线程26 TIFF abbr. Tagged Image File Format 标签图像文件格式23 time base 时基30 time constant 时间常数5 time slot 时隙21 time to market 上市时间16 timing [ˈtaɪmɪŋ] n.时序9, 15 timing diagram 时序图30 top-down approach “自顶而下”设计法15 transducer [trænzˈdjuːsə] n. 传感器4, 29 transfer function 传递函数4, 5 transient ['trænzɪənt] n.暂态过程28 transient response 暂态响应5 transistor [trænˈsɪstə] n. 晶体管1 transmission bandwidth 传输带宽20 transmission power 发射功率11 trench capacitor 沟道式电容器2 trigger ['trɪgə] vt.触发13 truth table 真值表26 TTL abbr. transisitor-transisitor logic晶体管晶体管逻辑9 tuning ['tjuːnɪŋ] n.调谐8 type conversion 类型转换15 Uupstream ['ʌpstriːm] n.上行比特流11 USB abbr. Universal Serial Bus 通用串行总线12 UUT abbr. Unit Under Test 被测单元28第14 页共15 页UV abbr. ultraviolet 紫外线2 Vvacuum tube 真空管4 VCO abbr. voltage controlled oscillator 压控振荡器8 vector [ˈvektə] n. 向量5 vertical resolution 垂直分辨率28 VGA abbr. Video Graphics Array 视频图形阵列12 VHS abbr. Video Home System 家用录像系统21 video conference 视频会议21 viewfinder ['vjuːfaɪndə] n. 取景器23 virtual memory 虚拟内存3 VLSI abbr. very large-scale integration 超大规模集成1 vocoder ['vəʊˌkəʊdə ] n.声码器11 volt[vəʊlt] n. 伏特8 voltage [ˈvəʊltɪdʒ] n. 电压;伏特数7 voltage reference 参考电压18 voltage swing 电压摆幅8 volume [ˈvɒljuːm] n. 音量4 Von Neumann architecture 冯·诺依曼结构17 VSWR abbr. voltage standing wave ratio 电压驻波比9 Wwatt [wɒt] n.瓦特10 waveform [ˈweɪvˌfɔːm] n.信号波形7 waveform coding 波形编码20 webcam ['webkæm] n.网络摄像头12 wideband ['waɪd'bænd] adj.宽频带的21 wild card 通配符15 wireless infrastructure 无线基础设施16 XYZzero order hold 零阶保持器16第15 页共15 页。
波形发生器中英文对照外文翻译文献
中英文资料外文翻译THE DESIGN OF ARBITRARY WA VEFORMGENERATORSThe profile generator is can produce the massive standard signals and the user definition signal, and guarantees the high accuracy, high stable, the repeatability and the easy operational electronic instrumentation. The function profile generator has the continual phase transformation, and merits and so on frequency stability, not only may simulate each kind of complex signal, but also may to the frequency, the peak-to-peak value, the phase-shift, the profile carry on the tendency, the prompt control, and can carry on the communication with other instruments, the composition automated test system, therefore widely uses in the automatic control system, the vibration drive, the communication and the instrument measuring appliance domain.As early as in 20's, when the electronic installation just appeared, he appeared.Along with the correspondence and the radar technology development, the 40's appeared has mainly used in testing each kind of receiver the standard signal generating device, caused the signal generating device to become the quantitative analysis from the qualitativeanalysis measuring instrument the metering equipment. Simultaneously also appeared available has tested the pulse electric circuit or serves as the pulse debugger the pulse signal generating device. Quite is complex as a result of the early signal generating device mechanism, the power quite is big, the electric circuit quite is simple, (with digital instrument, oscilloscope compares), therefore develops quite slowly.Only then appeared the first holocrystalline tube signal generating device until 1964. Since the 60's, the signal generating device had the rapid development, appeared the function generator, has swept the frequency signal generating device, the composite signal generator, the program control signal generating device and so on the new type. Each kind of signal generating device performance index also had the large scale enhancement, simultaneously in the simplification mechanism, the miniaturization, multi-purpose and so on various aspects also had the remarkable development. Before the 70's, the signal generating device mainly has two kinds: Sine wave and pulse wave, but the function generator is situated between two kinds, can provide the sine wave, the cosine wave, the square-wave, the triangular wave, the top chord wave and so on several kind of commonly used standard wave patterns, when has other profiles, needs to use the complex electric circuit and the mechanical and electrical union method.This time profile generator uses the simulation electronic technology,moreover simulates the electric circuit which the component constitutes to have the size in a big way, the price expensive, the power loss big and so on the shortcomings, and must have the more complex waveform, then the electric circuit structure is extremely complex. At the same time, the main performance is two prominent questions, one is realizes the output frequency adjustment through the potentiometer adjustment, therefore adjusts very difficultly the frequency some fixture; Two is the pulse dutyfactor cannot adjust. After the 70's, the microprocessor appearance may use the processor, A/D/and D/A, the hardware and the software causes the profile generator the function expansion, has a more complex profile. This time profile generator many by software primarily, the essence is uses the microprocessor to the DAC procedure control, may obtain each kind of simple profile. But at the end of the 90's, appeared several kind of true high performances, the high price function generators, HP Corporation has promoted the model is the HP770S signal imitation installment systems, it had the software by the HP8770A random profile digitization and the HP1776A profile to be composed.HP8770A in fact also only can have 8 profiles, moreover the price is expensive. Soon after, Analogic Corporation has promoted the model is the Data-2020 multi-profile synthesizer, the model which Lecroy Corporation produces is 9100 random profile generators and so on.To the 21st century, along with the integrated circuit technology highspeed development, appeared many kinds of operating frequency to be possible the GHz DDS chip, simultaneously also impelled the function profile generator development, in 2003, Agilent product 33220A could have 17 kind of profiles, the upper frequency may achieve 20M,2005 the year product N6030A could produce reaches as high as the 500MHz frequency, the sampling frequency may reach 1.25GHz.May see by above product, function profile generator development very quick in the last few years, on the international profile generator technological development mainly manifests in following several aspects: (1) quite was in the past narrow and small as a result of the frequency very low application scope, the output wave shape frequency enhancement, enabled the profile generator to apply in the more and more broad domain. The profile generator software development is causing the profile data the input to become even more is more convenient and is easy. The profile generator usual permission with a series of spots, the straight line and the fixed function section stores the profile data the memory. Simultaneously may use one powerful mathematics equation input way, the complex profile may compound become the v=f(t) form by several quite simple formulas the profile equation mathematical expression production.Thus promoted the function profile generator to the random profile generator development, each kind of machine language rapid development also played to the random profile generator software technology the impetusrole. At present may use the visualization programming language (for example Visual Basic, Visual C and so on) compiles the random profile generator the soft kneading board, like this allows from the computer display monitor to input the random profile, realizes the profile input. (2) and VXI resources union. At present, the profile generator and is suitable by the independent table model instrument for the personal computer VXI module which inserted the card as well as recently develops. Because VXI main line gradually mature and to metering equipment high request, needs to use VXI system survey in very many domains to have the complex profile, VXI system resources have provided the obvious superiority, but because develops VXI module the cycle to be long, moreover needs the special VXI engine case the necessary use, causes the profile generator VXI module only to be restricted in the aviation, the military and the national defense and so on the large-scale domain. In the civil aspect, VXI module was inferior by far the table model instrument is more convenient. (3) along with the information technology vigorous development, the table model instrument after walked section of downhill, prospers. But the present new table model instrument shape, has the very big difference with several year ago oneself. These new generation of table model instrument has many kinds of characteristics, may carry out many kinds of functions.Moreover the external dimensions and the price, all reducedcompared to the past similar product one half. As early as in 1978, will announce the highest sampling frequency by American Wavetek Corporation and Japanese East Asia Electric wave Industrial corporation is 5MHz, may form 256 (memory length) the profile data, the vertical resolution is 8bit, mainly uses in vibrating, domain and so on medical service, material first generation of high performance supply oscillators, will pass through is near 30 years development, was following the electronic primary device, the electric circuit, and the production equipment high speed, Gaoji Cheng Hua, the profile generator performance had the rapid enhancement. More and more becomes the operation to be simple output wave shape ability to be more and stronger. The profile operating procedure quality, is by the profile generator control software quality assurance, the edition function increases more much, the profile forms operationally better. The profile generator is the supply oscillator one kind, mainly for was measured the electric circuit provides oneself who needs to know the signal (each kind of profile), then is interested with other measuring appliance survey the parameter. Obviously the supply oscillator applies and experiments in test processing at each kind of experiment, its application is extremely widespread. It is not the metering equipment, but is according to user's request, took the drive source, the simulation each kind of spike, provides for is measured the electric circuit, satisfies the survey or each kind of actual need.At present our country oneself after start to develop the profile generator, and has yielded the encouraging result. But generally speaking, our country profile generator has not formed the true industry. Looked on the present domestic mature product that, many inserts the card for some PC instrument, the independent instrument and VXI system module are very few, and our country at present in profile generator type and performance all with overseas similar product existence big disparity, therefore steps up to this kind of product development to appear imminently.波形发生器的进展波形发生器是能够产生大量的标准信号和用户定义信号,并保证高精度、高稳定性、可重复性和易操作性的电子仪器。
AWG5000系列混合信号伪随机波形生成器说明书
Arbitrary Waveform GeneratorAWG5000 Series (AWG5014 • AWG5012 • AWG5004 • AWG5002)The AWG5000 Series of Arbitrary Waveform Generators Delivers the Industry’s Best Mixed Signal Stimulus Solution for Today’s Complex Measurement ChallengesThe AWG5000 Series of Arbitrary Waveform Generators delivers theoptimal combination of industry leading sample rate, vertical resolution, signal fidelity and waveform memory length,all in an easy-to-use self-contained package.The series offers the industry’s best solution to the challenging signal stim-ulus issues faced by designers verifying,characterizing and debugging sophisti-cated electronic designs.Meeting the needs of today’s design engineers, the series provides excellent signal dynamic range and integrity.AWG5000 Series models, with a 14bits DA converter based sample rate from 600MS/s to 1.2GS/s, two to four output channels, synchronized four to eight digital marker outputs, and 28-channels of digital data outputs, easily solve the toughest measurement chal-lenges in wireless base band I/Q communications, digital consumer product design such as imaging devices, data conversion equipment and semiconductor design and test. The open Windows (Windows XP)-based instruments are easy and convenient to use and connect easily with peripherals and third-party software.AWG5000 Series.Features & Benefits1.2Gs/s and 600MS/s Models 14 bit Vertical Resolution 2 or 4Arbitrary WaveformDifferential/Single-ended Outputs –Up to 4.5V p-p Single-ended and 9V p-p at Differential Output into 50Ω–0.95ns Tr/Tf (10 to 90%) at 0.6V p-p–+/– 5ns Range (50ps Resolution) Inter Channel Skew Control–SFDR: 80dBc (1MHz),64dBc (10MHz)4 or 8Variable Level Marker Outputs–Up to 3.7V p-p Single-ended Output into 50Ω–300ps Tr/Tf (20 to 80%)at 0 to 1V–Up to 1ns Range (50ps Resolution) Delay Control28 Bits Ch 1/Ch 2Variable Level Digital Data Output–Up to 3.7V p-p Single-ended Output into 50Ω–300ps Tr/Tf (20 to 80%)at 0 to 1VUp to 32M Point Record Length For Longer Data Streams Down to 800ps Resolution Edge Timing Shift Control Real-time Sequencing Creates Infinite Waveform Loops, Jumps,and Conditional BranchesEasy to Use and Learn Shortens Test TimeIntuitive User Interface Based on Windows 2000 XP Convenient Bench Top Form FactorIntegrated PC Supports Network Integration and Provides a Built-in DVD, Removable Hard Drive,LAN and USB portsApplicationsDesigning, Testing and Deploying Wireless Communications: –High Fidelity QuadratureModulation I and Q Base-band Signals (Polar Modulation:I/Q + Magnitude Control, Two Pair of I/Q for MIMO)Imaging–Stimulus Signals for Imaging Display and Recording Devices (CCD, LCD)Data Conversion–Stimulus Signals for DataConversion Devices (ADC, DAC)Mixed Signal Design and Test –2/4Ch Analog + 4/8Ch Marker Outputs + 28 Bit Digital Data OutputsReal-world, Ideal or Distorted Signal Generation – Including All the Glitches, Anomalies and ImpairmentsEnhanced/Corrupted Playback of DSO Captured SignalsWaveform Vectors Imported from Third-party T ools such as MathCAD,MATLAB, Excel and OthersArbitrary Waveform GeneratorAWG5000 Series (AWG5014 • AWG5012 • AWG5004 • AWG5002)AWG5000 Series • /signal_sources2EVM/Constellation measurement.Typical Signal Injection.Arbitrary Waveform GeneratorAWG5000 Series (AWG5014 • AWG5012 • AWG5004 • AWG5002) RTSA Spectrum view.9-PAM with 250 Mbps.Mixed signal test by TDS/TLA iView.™AWG5000 Series • /signal_sources3Arbitrary Waveform GeneratorAWG5000 Series (AWG5014 • AWG5012 • AWG5004 • AWG5002)4AWG5000 Series • /signal_sourcesArbitrary Waveform GeneratorAWG5000 Series (AWG5014 • AWG5012 • AWG5004 • AWG5002)AWG5014AWG5012AWG5004AWG5002Arbitrary WaveformsWaveform Length 1 to 16,200,000 points (or 1 to 32,400,000 points,option 01)Number of Waveforms 1 to 16,000Sequence Length 1 to 4,000stepsSequence Repeat Counter 1 to 65,536 or infiniteSequence Control Repeat count,Trigger,Go-to-N and JumpJump Mode Synchronous and AsynchronousRun ModesContinuous Waveform is iteratively output.If a sequence is defined,the sequence order and repeat functions are appliedTriggered Waveform is output only once when an external,internal,GPIB,LAN or manual trigger is receivedGated Waveform begins output when gate is true and resets to beginning when falseSequence Waveform is output as defined by the sequenceClock GeneratorSampling Frequency10 MS/s to 1.2GS/s10 MS/s to 600 MS/sResolution8digitsInternal ClockAccuracy Within ±(1 ppm + Aging),Aging:within ±1 ppm/yearClock Phase Noise Less than –90dBc/Hz at 100kHz offsetInternal Trigger GeneratorInternal Trigger RateRange 1.0μs to 10.0sResolution3digits,0.1μs minimumSkew Control Between OutputsRange– 5 ns to + 5nsResolution5psAWG5000 Series • /signal_sources5Arbitrary Waveform GeneratorAWG5000 Series (AWG5014 • AWG5012 • AWG5004 • AWG5002)AWG5000 Series • /signal_sources6AWG5014AWG5012AWG5004AWG5002Main Arbitrary Waveform Output Resolution14 bitsAnalog OutputOutput StyleDifferential Output Impedance 50ΩConnectorBNC FrontAmplitude Output Voltage Normal:–4.5 V to + 4.5V,Direct –0.3V to +0.3V Amplitude Normal:20mV p-p to 4.5V p-p ,Direct; 20mV p-p to 0.6V p-pResolution 1mVDC Accuracy±(2.0% of Amplitude + 2mV) at offset = 0V Offset (into 50Ω) Range Normal:–2.25V to +2.25V,Direct:N/A Resolution 1mVAccuracy±(2% of offset +10mV at minimum amplitudePulse Response Rise/Fall time:(10% to 90%).Normal:1.4ns (2.0V p-p ),Direct:0.95ns (0.6V p-p )Bandwidth (–3dB)Normal:250MHz (2.0V p-p ),Direct:370MHz (0.6V p-p )Ringing Normal:750mV p-p (4.5V p-p filter through),80mV p-p (2.0V p-p filter through),Direct:60mV p-p (0.6V p-p )Low Pass Filter High range:100MHz,20MHz,Low range:through,100MHz,20MHz,Direct:N/ADelay from Marker Normal:17.5ns to 19.4ns (20MHz filter),3.8ns to 5.7ns (100MHz filter),0 to 1.9ns (Through),Direct:–1.5ns to 0.4nsSine Wave Characteristics (1.2GS/s clock,32 waveform points,37.5MHz signal frequency)(600MS/s clock,32 waveform points,18.75MHz signal frequency)Harmonics Normal:≤–40dBc (2.0V p-p ),Direct ≤=–49dBc (0.6V p-p )Normal:≤–46dBc (2.0V p-p ),Direct ≤=–55dBc (0.6V p-p )Non Harmonics Normal:≤–60dBc (2.0V p-p ,DC to 600MHz)Normal:≤–60dBc (2.0V p-p ,DC to 300MHz)Phase noise ≤–85dBc/Hz (2.0V p-p ,10kHz offset) –85dBc/Hz (2.0V p-p ,10kHz offset) SFDR 50dBc (Normal,37.5MHz,1.2GS/s,2.0V p-p )56dBc (Normal,18.75MHz,600MS/s,2.0V p-p )60dBc (Normal,10MHz,600MS/s,1.0V p-p )60dBc (Normal,10MHz,600MS/s,1.0V p-p )80dBc (Normal,1MHz,600MS/s,1.0V p-p )80dBc (Normal,1MHz,600MS/s,1.0V p-p )64dBc (Direct,10MHz,600 MS/s,0.6V p-p )64dBc (Direct,10MHz,600MS/s,0.6V p-p )80dBc (Direct,1MHz,600 MS/s,0.6V p-p )80dBc (Direct,1MHz,600MS/s,0.6V p-p )Arbitrary Waveform GeneratorAWG5000 Series (AWG5014 • AWG5012 • AWG5004 • AWG5002) Auxiliary OutputsOutput Style Single-endedOutput Impedance50ΩConnector BNC FrontLevel (into 50Ω)(Twice for Hi_Z input)Output Windows–1.00 V to + 2.7VAmplitude0.10 Vp-p to 3.7 Vp-pResolution10mVDC Accuracy±(10% of setting +120mV) Maximum Output Current±54mA /chRise/Fall Time (20% to 80%)300 ps(1.0 Vp-p,Hi +1.0V,Lo 0V) Skew Adjust Between MarkersRange0 to 1000ps Resolution50psRandom Jitter (Typical)1010 clock patternRMS5psrmsTotal Jitter (Typical)2^15–1PN data patternPeak to Peak (p-p)80psp-pClock (VCO) OutRange600MHz to 1.2GHzAmplitude0.4 Vp-pinto 50Ωto GND Impedance:50Ω,AC coupling Connector BNC Rear10MHz Reference OutAmplitude 1.2 Vp-p into 50Ω.Max 2.5 Vp-popenImpedance50Ω,AC couplingConnector BNC RearDC OutputsNumber of Outputs4:independently controlled outputsRange–3.0 to +5.0VResolution10mVMax.Current±100mAConnector2x4 pin header on front panelAWG5000 Series • /signal_sources7Arbitrary Waveform GeneratorAWG5000 Series (AWG5014 • AWG5012 • AWG5004 • AWG5002)AWG5000 Series • /signal_sources8Trigger In Impedance 1 k Ωor 50ΩPolarity POS or NEG ConnectorBNC FrontInput Voltage Range1 k Ω:±10V.50 Ω:±5V Threshold Level –5.0 V to 5.0VResolution 0.1VTrigger Jitter2.0ns to 4.5ns (Typical) Trigger Mode Minimum Pulse Width 20nsTrigger Hold-off 832* sampling_period – 100ns Delay to Analog Out128* sampling_period + 250ns Gate Mode Minimum Pulse Width 1024* sampling_period + 10ns Delay to Analog Out640* sampling_period + 260ns Event Input Impedance 1 k Ωor 50ΩPolarity POS or NEG ConnectorBNC FrontInput Voltage Range 1 k Ω:±10V.50 Ω:±5V Threshold –5.0 V to 5.0VResolution0.1VSequence Mode Mode Minimum Pulse Width 20nsEvent Hold Off 1024* Sampling Period + 10nsDelay to Analog Out640* Sampling Period + 280 ns (Jump timing:Asynchronous jump)External Clock IN Input Voltage Range 0.2 V p-p to 0.8 V p-p Impedance50Ω,AC coupledConnectorBNC RearReference Clock IN Input Voltage Range 0.2 V p-p to 3.0 V p-p Impedance50Ω,AC coupledFrequency Range 10MHz,20MHz,100MHz (with ±0.1%)ConnectorBNC RearPhase Lock IN Input Ranges5MHz to 600MHz (acceptable frequency drift is ±0.5%)Input Voltage Range 0.2 V p-p to 3 V p-pConnectorBNC RearAdd IN For each analog channel Impedance 50Ω,DC coupledDC Gain 1BandwidthDC to 100MHz at –3 dBInput Voltage Range ±1.0V ConnectorBNC RearArbitrary Waveform GeneratorAWG5000 Series (AWG5014 • AWG5012 • AWG5004 • AWG5002)(Third party software creation waveform data:MATLAB,MathCad,Excel)S/W driver for 3rd party S/W IVI-com driver and MATLAB libraryInstrument Control/Data Transfer PortsGPIB Remote control and data transfer.(Conforms to IEEE-Std 488.1,compatible with IEEE 488.2 and SCPI-1999.0)Ethernet (10/100/1000Base-T)Remote control and data transfer.(Conforms to IEEE 802.3).RJ-45Computer System & Peripherals Windows XP Professional,512 MB SDRAM,80 GB removable Hard Drive at rear (available front mount kit),CD-RW/DVD drive at front,included USB compact keyboard and mousePC I/O Ports USB 2.0 compliant ports (6 total,2 front,4 rear),PS/2mouse and keyboard connectors (rear panel),RJ-45 Ethernet connector (rear panel) supports 10/100/1000BASE-T,XGA outDisplay Characteristics10.4inch,LCD color display with touch screen,1024 (H)x768 (V) (XGA)Power Supply100 to 240VAC,47 to 63HzPower Consumption450WSafety UL61010-1,CAN/CSA-22.2,No.61010-1-04,EN61010-1,IEC61010-1Emissions EN 55011 (Class A),IEC61000-3-2,IEC61000-3-3Immunity IEC61326,IEC61000-4-2/3/4/5/6/8/11Regional CertificationsEurope EN61326Australia/New Zealand AS/NZS 2064AWG5000 Series • /signal_sources9Arbitrary Waveform GeneratorAWG5000 Series (AWG5014 • AWG5012 • AWG5004 • AWG5002)Ordering Information Arbitrary WaveformGenerator MainframeAWG50141.2GS/s,4-channel,14bits,16M point/channel Arbitrary Waveform Generator.AWG50121.2GS/s,2-channel,14bits,16M point/channel Arbitrary Waveform Generator.AWG5004600MS/s,4-channel,14bits,16M point/channel Arbitrary Waveform Generator.AWG5002600MS/s,2-channel,14bits,16M point/channel Arbitrary Waveform Generator.All Models Include:Accessory pouch,front cover, USB mouse,compact USB key board,lead set for DC output,stylus for touch screen 2 each, Windows®XP operating system restore DVD and instructions,AWG5000 Series product software CD and instructions,Document CD with Browser,Quick Start User Manual,registration card,Certificate of Calibration,power cable.Note:Please specify power cord and language option when ordering.Instrument OptionsAWG5014/AWG5012,AWG5004/AWG5002Opt.01 – Waveform Length Expansion (from 16 M to 32 M).AWG5012/AWG5002Opt. 03 –28 bits digital data outputs (digital data of ch 1 and ch 2).Common OptionsInternational Power PlugsOpt. A0 – North America power.Opt. A1 –Universal EURO power.Opt. A2 – United Kingdom power.Opt. A3 – Australia power.Opt. A5 – Switzerland power.Opt.A6 –Japan power.Opt.A10 – China power.Opt.A99 – No power cord or AC adapter.Language OptionsOpt. L0 – English.Opt. L5 – Japanese.Opt. L7 –Simplified Chinese.Opt. L8 – Traditional Chinese.ServiceOpt. CA1 – A single calibration event.Opt. C3 – Calibration service 3 years.Opt. C5 – Calibration service 5 years.Opt. D1 –Calibration data report.Opt. D3 – Calibration data report 3 years (withoption C3).Opt. D5 – Calibration data report 5 years (withoption C5).Opt. R3 –Repair service 3 years.Opt. R5 –Repair service 5 years.Post-sales Service Options:(e.g.,AWG5012-CA1).CA1 – A single calibration event.R3DW – Repair service coverage 3 years.R5DW – Repair service coverage 5 years.R2PW –Repair service coverage 2 yearspost warranty.R1PW –Repair service coverage 1 yearpost warranty.Product UpgradeAWG5014, AWG50UPOpt.M14 – Waveform Length Expansionfrom 16 M point to 32 M point.Product UpgradeAWG5012, AWG50UPOpt. M12 – Waveform Length Expansionfrom 16 M point to 32 M point.Opt.D13 –Digital Data Outputs.Product UpgradeAWG5004, AWG50UPOpt. M04 – Waveform Length Expansionfrom 16 M point to 32 M point.Product UpgradeAWG5002, AWG50UPOpt.M02 – Waveform Length Expansionfrom 16 M point to 32 M point.Opt.D03 –Digital Data Outputs.AWG5000 Series • /signal_sources 10Arbitrary Waveform GeneratorAWG5000 Series (AWG5014 • AWG5012 • AWG5004 • AWG5002)WarrantyOne-year parts and labor.AWG5000 Series • /signal_sources11Arbitrary Waveform GeneratorAWG5000 Series (AWG5014 • AWG5012 • AWG5004 • AWG5002)For Further InformationTektronix maintains a comprehensive, constantly expanding collection of application notes, technical briefs and other resources to help engineers working on the cutting edge of technology. Please visit Copyright © 2008, Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material.Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks or registered trademarks of their respective companies. 07/08 JS/WOW 76W-20381-3Contact Tektronix:ASEAN/Australasia (65) 6356 3900Austria +41 52 675 3777Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777Belgium 07 81 60166Brazil & South America (11) 40669400Canada 1 (800) 661-5625Central East Europe, Ukraine and the Baltics +41 52 675 3777Central Europe & Greece +41 52 675 3777Denmark +45 80 88 1401Finland +41 52 675 3777France +33 (0) 1 69 86 81 81Germany +49 (221) 94 77 400Hong Kong (852) 2585-6688India (91) 80-22275577Italy +39 (02) 25086 1Japan 81 (3) 6714-3010Luxembourg +44 (0) 1344 392400Mexico, Central America & Caribbean 52 (55) 5424700Middle East, Asia and North Africa +41 52 675 3777The Netherlands ***********Norway 800 16098People’s Republic of China 86 (10) 6235 1230Poland +41 52 675 3777Portugal 80 08 12370Republic of Korea 82 (2) 6917-5000Russia & CIS +7 (495) 7484900South Africa +27 11 206 8360Spain (+34) 901 988 054Sweden 020 08 80371Switzerland +41 52 675 3777Taiwan 886 (2) 2722-9622United Kingdom & Eire +44 (0) 1344 392400USA 1 (800) 426-2200For other areas contact Tektronix, Inc. at: 1 (503) 627-7111Updated 12 November 2007roduct(s) are manufactured in ISO registered facilitie Product(s) complies with IEEE Standard 488.1-1987,RS-232-C,and with Tektronix Standard Codes and Formats.。
awg任意波形发生器原理
awg任意波形发生器原理AWG(Arbitrary Waveform Generator)是一种用于产生任意波形信号的仪器。
它采用了数字信号处理技术,可以根据用户的需求生成各种复杂的波形信号,如正弦波、方波、三角波、锯齿波等。
在科学研究、工程应用和教学实验等领域都有广泛的应用。
AWG的主要原理是通过数字信号处理技术对数字信号进行处理,然后通过数模转换器将数字信号转换为模拟信号输出。
具体来说,AWG内部有一个高精度的时钟,它可以产生一个稳定的时钟信号,作为数字信号生成的基准。
用户可以通过操作界面或计算机软件输入数字信号的波形数据,AWG根据这些数据生成相应的波形信号。
AWG内部的数字信号处理单元可以对输入的数字信号进行多种操作,如幅度调制、频率调制、相位调制等。
用户可以根据需要对波形信号进行各种定制化处理,以满足实际应用的要求。
同时,AWG 还可以通过外部触发信号实现信号的同步输出,以保证多个信号源之间的相位一致性。
AWG的输出信号可以通过前端的放大器和滤波器进行进一步的处理,以达到用户期望的信号质量。
放大器可以调节输出信号的幅度,滤波器可以去除杂散和噪声,使输出信号更加纯净和稳定。
AWG的优点是灵活性高、波形精度高、频率范围广等。
通过数字信号处理技术,AWG可以生成复杂多变的波形信号,满足各种应用场景的需求。
同时,AWG的输出信号具有较高的精度和稳定性,可以满足对信号质量要求较高的应用。
此外,AWG还具有多通道输出、相位同步等特点,可以方便地应用于多通道信号的生成和同步控制。
在实际应用中,AWG被广泛应用于信号源、电子测量、通信系统、声学研究、生物医学等领域。
例如,在通信系统中,AWG可以模拟各种信号源,用于性能测试和验证。
在声学研究中,AWG可以产生各种复杂的声音信号,用于研究声音的特性和传播规律。
在生物医学领域,AWG可以模拟各种生物信号,用于研究和诊断。
AWG作为一种用于产生任意波形信号的仪器,通过数字信号处理技术实现了信号的灵活生成和定制化处理。
通信光纤中英文缩略对照表!!
通信光纤中英⽂缩略对照表!!光通信⾏业传说中的那部英汉对照⼤辞典,倾⼒之作,拿⾛不谢,赠⼈玫瑰,⼿有余⾹!AAAS Automatic addressingsystem ⾃动寻址系统AB Absorption Band 吸收带;Address Bus 地址总线;Aligned Bundle 定位光纤ABC Absorbing BoundaryCondition 吸收边界条件;AddressBus Control 地址总线控制;AutomaticBandwidth Control ⾃动带宽控制;Automatic Bias Compensation ⾃动偏置补偿ABCs Automatic BaseCommunication System ⾃动基地通信系统ABM Asynchronous BalancedMode 异步平衡模式AC Access control 访问控制(对指定⽤户⽽⾔)或接⼊控制;Access coupler通路耦合器ACA Adaptive channelallocation ⾃适应信道分配;Adjacent channel attenuation 相邻信道衰减ACC Area communicationcenter 区域通信中⼼;Automaticcontrol and checking ⾃动控制和检查ACCE Area communicationcenter equipment 区域通信中⼼设备ACCH Associaed controlchannel 相关控制信道ACCI Adaptive cyclecellinsertion ⾃适应循环信元插⼊ACCS Automatic checkoutand control system ⾃动检验与控制系统ACD Automatic calldistribution ⾃动呼叫分配Average core diameter 平均纤芯直径ACDMA Advanced codedivision multiple access ⾼级码分多址ACM Access control module接⼊控制模块ACNS Advancedcommunications operations network service ⾼级通信⽹业务ACPI Automatic cable pairidentification (光、电)缆线对⾃动识别ACS Access control system接⼊控制系统ACT Automatic codetranslation ⾃动译码,⾃动码型变换AD Avalanche diode 雪崩⼆极管;Average deviation 平均偏移,平均偏差ADM Add/drop multiplexer 分插复⽤器ADN Active destinationnode 有效地址节点;Add/Dropnode 上/下节点,插/分节点ATM Data Network 异步转移(传递)模式数据⽹络ADSL Asymmetrical digitalsubscriber loop ⾮对称数字⽤户环路ADSS Automatic dataswitching system ⾃动数据交换系统AE Actinoelectric effect 光(化)电效应;Aperture effect 孔径效应AFPM AsymmetricFabry-Perot saturable absorber 反共振法布⾥-珀罗可饱和吸收器AFS Acoustic fiber sensor光纤声传感器AFTV All-Fiber videodistribution 全光纤电视分配AGC Automatic GainControl ⾃动增益控制AGCC Automatic GainControl Calibration ⾃动增益控制校准AN Access network 接⼊⽹;Access node 接⼊节点;Active network 有源⽹络AOC All-opticalcommunication 全光通信AOD Active optical device有源光器件AOF Active optical fiber 有源光纤;Attenuation optimized fiber 衰减最佳化光纤AOFC Aerial optical fibercable 架空光纤AOI Active outputinterface 有源输出接⼝AON Active OpticalNetwork 有源光⽹络AOS Addressable opticalstorage 光(束)寻址存AOTA All-optical towedarray 全光牵引阵列AOTF Acoustic-optictunable filter 声光可调滤波器AOWC All-opticalwavelength converter 全光波长转换器AP Absorption peak 吸收峰APC Automatic PowerControl ⾃动功率控制APD Avalanche photondiode 雪崩光电⼆极管APOF All plastic opticalfiber 全塑光纤APS Automatic ProtectionSwitching. ⾃动保护开关ARP Address resolutionprotocol 地址解析协议ARPM Amplitude ratio andphase modulation 振幅⽐和相位调制ARROW Anti-resonantreflecting optical waveguide 反共振反射光波导ASA American standardsassociation 美国标准协会;Automaticspectrum analyzer ⾃动频谱分析仪ASB Asymmetric switchedbroadband ⾮对称交换宽带ASE Amplification ofspontaneous emission 受激发射放⼤ASEN Amplifiedspontaneous emission noise 放⼤⾃激发射噪声ASEP Amplifiedspontaneous emission power 放⼤⾃激发射功率ASF Air-supported fiber 空⽓间隙光纤ASG Arseno silicate glass砷硅玻璃ASI Alarm statusindicator 告警状态指⽰器;Alarm status interface 告警状态接⼝ASIC Application-specificintegrated processor 专⽤集成电路ASK Amplitude shift-keyed幅移键控ASLC Analogue subscriberline circuit 模拟⽤户线电路ATM Asynchronous TransferMode. 异步转移(传递)模式ATME Automatictransmission measuring equipment ⾃动传输测量设备ATMOS ATM optical switch 异步转移(传递)模式光交换ATM-PON Asynchronoustransfer mode-passive optical network 异步转移(传递)模式-⽆源光⽹络ATQW Asymmetric triplequantum well ⾮对称三重量⼦阱ATT Attenuator 衰减器,衰耗器;Automatic target tracking ⾃动⽬标跟踪AV Analogue video 模拟视频,模拟电视AWDS Active wavelengthdemodulation system 有源波长解调系统AWG Array waveguide grate阵列波导光栅;Arbitrary-waveformgenerator 任意波形发⽣器AWGM Array waveguidegrate multiplexer 阵列波导光栅复⽤器BBAP Broad band accesspoint 宽带接⼊点BBA Broad band access 宽带接⼊BBC Broad band coupler 宽带耦合器BBCC Broad bandcommunication channel 宽带通信信道BBF Base band filter 基带滤波器BBLED Broad bandlight-emitting diode 宽带光发射⼆极管BBTFP Broad band tunableFabry-Perot filter 宽带可调法布⾥-珀罗滤波器BC Bandwidth compression 带宽压缩BDSL Broad band digitalsubscriber line 宽带数字⽤户线B-EDFA Backward pumpedEDFA 后向泵浦掺铒光纤放⼤器BEF Band eliminationfilter 带阻滤波器;Beamexpanding fiber 光束扩展光纤BEFL Brillouin/Erbiumfiber laser 布⾥渊/掺铒光纤激光器BER Bit error rate. 误码率BEX Broad band exchange 宽带交换BF Band filter 带通滤波器;Beat-frequency 拍频,差频;Branching filter 分路滤波器,分⽀滤波器BFA Brillouin fiberamplifier 布⾥渊光纤放⼤器BFF Biconical fiberfilter 双锥光纤滤波器BFI Beat- frequencyinterferomenter 拍频⼲涉仪BFOC Bayonet fiber opticconnector 卡⼝式光纤连接器B-FOG Brillouin fiberoptic gyro 布⾥渊光纤陀螺仪BFOS Basic fiber opticalsubsystem 基本光纤⼦系统BFRL Brillouin fiber ringlaser 布⾥渊光纤循环激光器BG Band gap 能带隙;Base group 基群;Bragg grating 布拉格光栅BGA Back-groundabsorption 背景吸收BGS Brag grating sensor 布拉格光栅传感器BH Barrier height 势垒⾼度BIP-EDFA Bidirectonalpumped EDFA 双向泵浦掺铒放⼤器BIP-ISDN Broad band, intelligent and personalizedISDN 宽带化、智能化和个⼈化的综合业务数字⽹B-ISDN Broad bandintelligent services digital network 宽带综合业务数字⽹BIT Broad band interfacetester 宽带接⼝测试仪BJ Bundle jacket 光纤束护套BL Band-limited 频带限制;Black light 不可见光BLD Bistable laser diode 双稳激光⼆极管BLSR Bidirectional LineSwitched Ring. 双向线路交换环BOA Bifurcation opticallyactive 分⽀光有源BOAN Business-orientedoptical access network ⾯向商业的光接⼊⽹BOCS Birefringent opticalcircuit synthesis 双折射光电路合成BOD Balanced opticaldetector 平衡光检测器BOMUDEX Bidirectionaloptical multiplexer/demultiplexer 双向光复⽤器/解复⽤器BOTDA Brillouin opticalbiber time domain analysis 布⾥渊光纤时域分析BOTDR Brillouin opticalbiber time domain reflectometry 布⾥渊光纤时域反射法BRF Birefringent fiber 双折射光纤;Birefringent tuning filter 双折射调谐滤波器BS Base station 基站;Beam splitter 分光器,分束器;Beam spreader 光束扩散器CCA critical angle 临界⾓CATV Community AntennaTelevision 有线电视CC coaxial cable 同轴电缆CCF Chirp compensatingfiber 啁啾补偿光纤CD Chromatic dispersion ⾊散CDMA Code divisionmultiple access 码分多址CW center wavelength 中⼼波长CG-SOA Clamped-gain SOA 固定增益半导体光放⼤器Cladding 纤芯外部包裹的材料CLEC Competitive localexchange carrier 竞争性本地交换运营商CO Central office 中⼼局C-OFDR Coherent opticalfrequency domain reflectiometry 相⼲光频域反射法COLIDAR Coherent lightdetecting and ranging 相⼲光检测和测距COP Coherent opticalprocessor 相⼲光处理机COQ Channel optimizedquantizer 信道最佳化量化器COTDR Coherent detectionOTDR 相⼲检测光时域反射计CPW Circular polarizedwave 圆极化波,圆偏振波;Co Planar waveguide 共⾯波导CPWDM Chirped-pulsewavelength-division-multiplexing 线性脉冲波分复⽤CTB Composite triple beat复合三次拍频CTC Channel trafficcontrol 信道业务量控制CTV Conference TV 会议电视CWDM Coarse WavelengthDivision Multiplexing 粗波分复⽤DD&C-SW Delivery-and-coupling type optical switch 分配和耦合型光开关Dark fiber 暗光纤,备⽤光纤dB Decibel 相对功率的对数表达DC Directional coupler 定向耦合器;Depressed-cladding 凹陷型包层;Dispersion compensation ⾊散补偿;Diversity combiner 分集和路器;Drift compensation 漂移补偿;Drop cable 引⼊光(电)缆DCA Dynamic channel assignment动态信道分配DCC Digital communicationchannel 数据通信信道;Digitalcontrol channel 数字控制信道;Diversitycross connect 数字交叉连接DCF Dispersioncompensation fiber ⾊散补偿光纤;Dual coated fiber 双涂覆光纤DCM Directional couplermodulator 定向耦合调制器;Dispersion compensator module ⾊散补偿模块DCS Dynamic channelselection 动态信道选择DCSM Depressed claddingsingle-mode (fiber)凹陷型包层单模光纤DD Delay distortion 时延失真;Differential detection 差分检测;Drift-diffusion 漂移扩散DDE Dynamic data exchange动态数据交换DD-EDFA Dispersiondecreasing erbium-doped fiber amplifier ⾊散降低掺铒光纤放⼤器DDF Dispersion decreasingfiber ⾊散降低光纤DFB Distributed feedbacklaser 分布反馈布拉格激光器DFCF Dispersion flatcompensation fiber ⾊散平坦补偿光纤DFF Dispersion flat fiber⾊散平坦光纤;Dispersionflat single mode fiber ⾊散平坦单模光纤DFOS Distributed fiberoptic sensing 分布式光纤传感器;Dual frequency optical source 双频光源DFS Distributed fibersensor 分布式光纤传感器DFSM Dispersion flattenedsingle mode ⾊散平坦单模DM Dispersion management ⾊散管理DMF Dispersion managementfiber ⾊散管理光纤DG diffraction grating 衍射光栅DOAPDivision-of-amplitude photopolarimeter 分幅光偏转计DOESDouble-heterostructure optoelectronic switch 双异质结光电开关DOP Degree ofpolarization 偏转度DOS Digital opticalswitch 数字光开关DPON Domestic passiveoptical network 国内⽆源光⽹络DRB Double Raleighbackscattering 双瑞利背向散射DS Dispersion shift ⾊散位移DSCF Dispersion slopecompensation fiber ⾊散斜率补偿光纤DSF Dispersion-shiftedfiber ⾊散位移光栅DSL Digital subscriberline 数字⽤户线Distributed Service Logic分配式服务逻辑DS-SMF Dispersion shiftedsingle mode fiber ⾊散位移单模光纤DU Dispersion-unshifted (single mode fiber)⾮⾊散位移光纤(单模光纤)DWDM Dense wavelengthdivision multiplexing 密集波分复⽤EEA Electro absorption 电吸收EAM Electro absorptionmodulator 电吸收调制器EBL Expanding beamlaser-scan 扩展束激光扫描ECC Embeddedcommunications channel 嵌⼊式通信信道ECL External cavity laser外腔激光器;Externalcavity mode-locked semiconductor laser 外腔锁模半导体激光器ECM Echo cancellationmethod 回波消除法ECMLL External cavitymode-locked laser 外腔式锁模激光器ECSL Extended-cavitysemiconductor laser 扩展式腔半导体激光器;External cavity semiconductor laser 外腔式半导体激光器EDF Erbium-doped fiber 掺铒光纤EDFA Erbium-doped fiberamplifier 掺铒光纤放⼤器EDFFA Erbium-doped Fluoridefiber amplifier 掺铒氟化物光纤放⼤器EDFL Erbium-doped fiberlaser 掺铒光纤激光器EDFLS Erbium-doped fiberlaser source 掺铒光纤激光源EDFRS Erbium-doped fiberring laser 掺铒光纤环激光器EDPA Erbium doped planaramplifier 掺铒平⾯放⼤器EDWA Erbium dopedwaveguide amplifier 掺铒波导放⼤器EE-LED Edge-emitting LED 边发射发光⼆极管EELS Edge-emitting laser 边发射激光器EFBGL Erbium fiber Bragggrating laser 铒光纤布拉格光栅激光器EML Eroabsorptionmodulated laser 电吸收调制激光器EOM Electro-opticalmodulator 电光调制器EOTF Electro-optictunable filter 电光可调谐滤波器EP Eye pattern 眼图EPON Ethernet PassiveOptical Network 以太⽹⽆源光⽹络FFDDI Fiber DistributedData Interface 光纤分布式数据接⼝FDH Fiber DistributionHub 光纤分布集线器FE Fast Ethernet 快速以太⽹FOC fiber-optic cable光纤光缆FRP Fiber Reinforced Plastic纤维增强塑料FTTB Fiber To TheBuilding 光纤到⼤楼FTTC Fiber To The Curb 光纤到路边FTTD Fiber To The Desk 光纤到办公桌FTTH Fiber To The Home 光纤到户FTTO Fiber To The Office 光纤到办公室FWM Four-wave mixing 四波混频G,HGbps Gigabits per second.吉⽐特每秒GBps Gigabytes persecond. 吉位每秒GE Gigabit Ethernet. 千兆以太⽹GIF graded-index fiber 渐变折射率光纤GIMM Graded IndexPlasec-Cladding Fiber 渐变折射率多模(光纤)GI-POF Graded-indexPolymer Optical Fiber 梯度折射率塑料光纤GPON Gigabit PassiveOptical Network 千兆⽆源光⽹络HDPE High DensityPolyethylene ⾼密度聚⼄烯IILEC Incumbent localexchange carrier现有本地交换运营商IL insertion loss 插⼊损耗IP Internet Protocol ⽹际协议ISO InternationalOrganization for Standardization 国际标准化组织ITU InternationalTelecommunication Union 国际电信联盟ITU grid ITU 标准指定激光波长IXC Interexchange carrier交换机间载波J,K,LLAN Local area network 局域⽹LAP LaminatedAluminum-Polyethylene Sheath 铝-聚⼄烯粘接护套LD Laser Diode 半导体激光器LED Light Emitting Diode 发光⼆极管LEAF Large Effective AreaFiber ⼤有效⾯积光纤LEC Local exchangecarrier 市话载波;Localexchange center 市内交换中⼼LED Light emitting diode 光⼆极管LR Long reach 远距离;Link restoration 链路恢复;Local record 本地纪录;Location register 位置寄存器LSZH Low Smoke ZeroHalogen 低烟⽆卤MMAN Metropolitan areanetwork. 城域⽹Mbps 兆⽐特每秒MM fiber Multimode fiber.多模光纤MD modal dispersion 模式⾊散MDU Multi Dwelling Unit 多住户单元MFD Mode Field Diameter 模场直径MPLS MultiProtocol LabelSwitching 多协议标签交换MTBF Mean time betweenfailure 平均故障间隔时间NNAS Network attachedstorage ⽹络存储器NDSFNon-dispersion-shifted fiber ⾮⾊散位移光纤NL Non linearity ⾮线性NZDSF Non-zerodispersion-shifted fiber. ⾮零⾊散位移光纤OOA Optical amplifier. 光放⼤器OAN Optical Access Network光纤接⼊⽹OADM Optical add/dropmultiplexer 光插/分复⽤器OC Optical carrier 光载波ODN Optical DistributionNetwork 光分配⽹络ODT Optical DistanceTerminal 光远程终端ODF Optical DistributingFrame 光纤配线架OF optical fiber 光纤OLA Optical LineAmplifier 光线路放⼤器OLT Optical Line Terminal光线路终端ONU Optical Network Unit 光⽹络单元OCS optical channel spacing 光通道间隔OTDR Optical time domainreflectometer 光时域反射计PPAP Polyethylene-Aluminum-Polyethylene聚⼄烯-铝-聚⼄烯PBT PolybutyleceTerephthalate 聚对苯⼆甲酸丁⼆酯PE Polyethylene 聚⼄烯PDH PleisiochronousDigital Hierarchy 准同步数字系列PD photo diode 光电⼆极管Photon 光⼦Photonic 光电PL physical layer 物理层PMD Polarization modedispersion 偏振模式⾊散POF Plastic Optical Fiber塑料光纤PON Passive OpticalNetwork ⽆源光⽹络POS Packet over SONETPP Polypropylene 聚丙烯PSPPolyethylene-Steel-Polyethylene 聚⼄烯-钢-聚⼄烯PTN Packet TransportNetwork 分组传送⽹PSTN Public switchedtelephone network 公共交换电话⽹PVC Polyvinyl Chloride 聚氯⼄烯RRS Rayleigh scattering 瑞利散射RI refractive index 折射率REG Regenerator 再⽣中继器SSAN Storage area network 存储域⽹络SBS Stimulated BrillouinScattering 受激布⾥渊散射SDH Synchronous DigitalHierarchy 同步数字系列SFF Small Form Factor ⼩封装技术SMF Single Mode Fiber 单模光纤SPM Self-phase Modulation⾃相位调制SRS Stimulated RamanScattering 受激拉曼散射SI-POF Step Index PolymerOptical Fiber 阶跃折射率塑料光纤SNR Signal-to-noise ratio信噪⽐SONET Synchronous OpticalNetwork 同步光⽹络TTDM Time-divisionmultiplexing 时分复⽤TM TerminationMultiplexer 终端复⽤器U,V,W,XUPSR Unidirectional PathSwitched Ring 单向通道交换环VCSEL Vertical CavitySurface Emitting Laser 垂直腔表⾯发射激光器VPN Virtual PrivateNetwork 虚拟专⽤⽹WDMA Wavelength DivisionMultiple Acces 波分多址WAN Wide area network. ⼴域⽹Waveguide 波导WDM Wavelength divisionmultiplexing波分复⽤XPM Cross-phaseModulation 互相位调制限于⽔平,⽂中难免存在⼀些不妥和错误,敬请各位专家、同⾏和读者在阅读本⽂后提出宝贵意见,诚邀您⼀起勘误、修订和完善本⽂!。
光纤中英文缩略语对照
AAAS Automatic addressing system 自动寻址系统AB Absorption Band 吸收带Address Bus 地址总线Aligned Bundle 定位光纤ABC Absorbing Boundary Condition 吸收边界条件Address Bus Control 地址总线控制Automatic Bandwidth Control 自动带宽控制Automatic Bias Compensation 自动偏置补偿ABCs Automatic Base Communication System 自动基地通信系统ABM Asynchronous Balanced Mode 异步平衡模式AC Access control 访问控制(对指定用户而言)或接入控制Access coupler 通路耦合器ACA Adaptive channel allocation 自适应信道分配Adjacent channel attenuation 相邻信道衰减ACC Area communication center 区域通信中心Automatic control and checking 自动控制和检查ACCE Area communication center equipment 区域通信中心设备ACCH Associaed control channel 相关控制信道ACCI Adaptive cycle cellinsertion 自适应循环信元插入ACCS Automatic checkout and control system 自动检验与控制系统ACD Automatic call distribution 自动呼叫分配Average core diameter 平均纤芯直径ACDMA Advanced code division multiple access 高级码分多址ACM Access control module 接入控制模块ACNS Advanced communications operations network service 高级通信网业务ACPI Automatic cable pair identification (光,电)缆线对自动识别ACS Access control system 接入控制系统ACT Automatic code translation 自动译码,自动码型变换AD Avalanche diode 雪崩二极管Average deviation 平均偏移,平均偏差ADM Add/drop multiplexer. 插/分复用器,上/下复用器,一种数字通讯设备ADN Active destination node 有效地址节点Add/Drop node 上/下节点,插/分节点ATM Data Network 异步转移(传递)模式数据网络ADSL Asymmetrical digital subscriber loop 非对称数字用户环路ADSS Automatic data switching system 自动数据交换系统AE Actinoelectric effect 光(化)电效应Aperture effect 孔径效应AFPM Asymmetric Fabry-Perot saturable absorber 反共振法布里-珀罗可饱和吸收器AFS Acoustic fiber sensor 光纤声传感器AFTV All-Fiber video distribution 全光纤电视分配AGC Automatic Gain Control 自动增益控制AGCC Automatic Gain Control Calibration 自动增益控制校准AN Access network 接入网Access node 接入节点Active network 有源网络AOC All-optical communication 全光通信AOD Active optical device 有源光器件AOF Active optical fiber 有源光纤Attenuation optimized fiber 衰减最佳化光纤AOFC Aerial optical fiber cable 架空光纤AOI Active output interface 有源输出接口AON All-optical network 全光网络AOS Addressable optical storage 光(束)寻址存储,一种存储方式,通过电-机,电-光或声-光等方法使光束偏转,进行寻址,以代替移动记录煤质来实现信息的写入和读出.此法较容易实现大容量和高速度存储.AOTA All-optical towed array 全光牵引阵列AOTF Acoustic-optic tunable filter 声光可调滤波器AOWC All-optical wavelength converter 全光波长转换器AP Absorption peak 吸收峰APD Avalanche photon diode 雪崩光电二极管APOF All plastic optical fiber 全塑光纤APPN Appropriation 占用APS Automatic Protection Switching. 自动保护开关,用于器件或光路切换ARP Address resolution protocol 地址解析协议,在TCP/IP网络环境下,用来把IP地址转换成相应的物理地址的一种协议ARPM Amplitude ratio and phase modulation 振幅比和相位调制ARROW Anti-resonant reflecting optical waveguide 反共振反射光波导ASA American standards association 美国标准协会Automatic spectrum analyzer 自动频谱分析仪ASB Asymmetric switched broadband 非对称交换宽带ASE Amplification of spontaneous emission 受激发射放大ASEN Amplified spontaneous emission noise 放大自激发射噪声ASEP Amplified spontaneous emission power 放大自激发射功率ASF Air-supported fiber 空气间隙光纤ASG Arseno silicate glass 砷硅玻璃ASI Alarm status indicator 告警状态指示器Alarm status interface 告警状态接口ASIC Application-specific integrated processor 专用集成电路ASK Amplitude shift-keyed 幅移键控,用改变载波幅度的方法对载波进行数字调制ASLC Analogue subscriber line circuit 模拟用户线电路27ATM Asynchronous Transfer Mode. 异步转移(传递)模式,一种传递方式,在这一方法中,把信息组成信元,信元的再现取决于要求的或瞬时的比特率.从这一意义上看,这种传递方式是异步的.也可以用统计方式和确定方式的属性含义来修饰这种传递方式.ATME Automatic transmission measuring equipment 自动传输测量设备ATMOS ATM optical switch 异步转移(传递)模式光交换ATM-PON Asynchronous transfer mode-passive optical network 异步转移(传递)模式-无源光网络ATQW Asymmetric triple quantum well 非对称三重量子阱ATT Attenuator 衰减器,衰耗器Automatic target tracking 自动目标跟踪AV Analogue video 模拟视频,模拟电视AWDS Active wavelength demodulation system 有源波长解调系统AWG Array waveguide grate 阵列波导光栅Arbitrary-waveform generator 任意波形发生器AWGM Array waveguide grate multiplexer 阵列波导光栅复用器BBAP Broad band access point 宽带接入点BBA Broad band access 宽带接入BBC Broad band coupler 宽带耦合器BBCC Broad band communication channel 宽带通信信道BBF Base band filter 基带滤波器BBLED Broad band light-emitting diode 宽带光发射二极管BBTFP Broad band tunable Fabry-Perot filter 宽带可调法布里-珀罗滤波器BC Bandwidth compression 带宽压缩BDSL Broad band digital subscriber line 宽带数字用户线B-EDFA Backward pumped EDFA 后向泵浦掺铒光纤放大器BEF Band elimination filter 带阻滤波器Beam expanding fiber 光束扩展光纤BEFL Brillouin/Erbium fiber laser 布里渊/掺铒光纤激光器BER Bit error rate. 误码率BEX Broad band exchange 宽带交换BF Band filter 带通滤波器Beat-frequency 拍频,查频Branching filter 分路滤波器,分支滤波器BFA Brillouin fiber amplifier 布里渊光纤放大器BFF Biconical fiber filter 双锥光纤滤波器BFI Beat- frequency interferomenter 拍频干涉仪BFOC Bayonet fiber optic connector 卡口式光纤连接器B-FOG Brillouin fiber optic gyro 布里渊光纤陀螺仪BFOS Basic fiber optical subsystem 基本光纤子系统,由一个光发送机,一个光接收机和光纤链路串连组成的系统,它提供了上述单元之间的光学通道BFRL Brillouin fiber ring laser 布里渊光纤循环激光器BG Band gap 能带隙,某材料的导带和价带之间的能量差Base group 基群,在特定频率范围内的许多载波通路的总称,它组成一个基本单元,一边进一步调制到最终频带上去Blazed grating 定向光栅BGA Back-ground absorption 背景吸收BGS Brag grating sensor 布拉格光栅传感器BH Barrier height 势垒高度,在半导体中从势垒的一边到另一边的电位差BIP-EDFA Bidirectonal pumped EDFA 双向泵浦掺铒放大器BIP-ISDN Broad band, intelligent and personalized ISDN 宽带化,智能化和个人化的综合业务数字网B-ISDN Broad band intelligent services digital network 宽带综合业务数字网BIT Broad band interface tester 宽带接口测试仪BJ Bundle jacket 光纤束护套,光(电)缆内所有构件共有的外部保护层BL Band-limited 频带限制Black light 不可见光BLD Bistable laser diode 双稳激光二极管BLSR Bidirectional Line Switched Ring. 双向线路交换环BOA Bifurcation optically active 分支光有源BOAN Business-oriented optical access network 面向商业的光接入网BOCS Birefringent optical circuit synthesis 双折射光电路合成BOD Balanced optical detector 平衡光检测器BOMUDEX Bidirectional optical multiplexer/demultiplexer 双向光复用器/解复用器BOTDA Brillouin optical biber time domain analysis 布里渊光纤时域分析BOTDR Brillouin optical biber time domain reflectometry 布里渊光纤时域反射法Bragg grating 布拉格光栅BRF Birefringent fiber 双折射光纤Birefringent tuning filter 双折射调谐滤波器BS Base station 基站Beam splitter 分光器,分束器Beam spreader 光束扩散器,使平行的入射光束作小角度的展开Ccable 针对光纤而言,是指一根或多根光纤组成的有保护的光缆carrier 运营商A company that provides a communications circuit. Carriers are either public, such as AT&T andSprint, or private.CATV 有线电视CCF Chirp compensating fiber 啁啾补偿光纤CD Chromatic dispersion 色散CDMA Code division multiple access 码分多址,一种调制方式.数字信息靠它以一种扩充带宽的格式进行编码.在同一带宽内可以同时有好几个传输发生,靠每个传输所用唯一码的正交度来减小相互干扰center wavelength 中心波长central office 中心局CG-SOA Clamped-gain SOA 固定增益半导体光放大器channel 信道,在光纤通讯DWDM中,用来传输光信号chromatic dispersion 色散cladding 纤芯外部包裹的材料,折射率比纤芯材料低CLEC Competitive local exchange carrier.CO Central office. 中心局Coating 保护膜coaxial cable 同轴电缆C-OFDR Coherent optical frequency domain reflectiometry 相干光频域反射法COLIDAR Coherent light detecting and ranging 相干光检测和测距,相干激光雷达COP Coherent optical processor 相干光处理机COQ Channel optimized quantizer 信道最佳化量化器COTDR Coherent detection OTDR 相干检测光时域反射计CPW Circular polarized wave 圆极化波,圆偏振波CoPlanar waveguide 共面波导CPWDM Chirped-pulse wavelength-division-multiplexing 线性脉冲波分复用critical angle 临界角CTB Composite triple beat 复合三次拍频,两个或多个信号通过具有非线性特性的设备时,由于产生多个不需要的信号,落在视频载频附近的三次拍频及三阶互调产物称为复合三次差拍,因而产生干扰CTC Channel traffic control 信道业务量控制CTV Conference TV 会议电视DD&C-SW Delivery-and-coupling type optical switch 分配和耦合型光开关Dark fiber 暗光纤,备用光纤dB Decibel. 相对功率的对数表达,在光传输中,通常用来描述损耗DC Directional coupler 定向耦合器Depressed-cladding 凹陷型包层Dispersion compensation 色散补偿Diversity combiner 分集和路器Drift compensation 漂移补偿Drop cable 引入光(电)缆,用于分配网络户外部分的光缆DCA Dynamic channel assignment 动态信道分配DCC Digital communication channel 数据通信信道Digital control channel 数字控制信道Diversity cross connect 数字交叉连接DCF Dispersion compensation fiber 色散补偿光纤,具有很大负波导色散的光纤.Dual coated fiber 双涂覆光纤DCM Directional coupler modulator 定向耦合调制器Dispersion compensator module 色散补偿模块DCS Dynamic channel Xion 动态信道选择DCSM Depressed cladding single-mode (fiber) 凹陷型包层单模光纤DD Delay distortion 时延失真Differential detection 差分检测Drift-diffusion 漂移扩散DDE Dynamic data exchange 动态数据交换DD-EDFA Dispersion decreasing erbium-doped fiber amplifier 色散降低掺铒光纤放大器DDF Dispersion decreasing fiber 色散降低光纤DFB Distributed feedback laser. 分布反馈布拉格激光器DFCF Dispersion flat compensation fiber 色散平坦补偿光纤DFF Dispersion flat fiber 色散平坦光纤Dispersion flat single mode fiber 色散平坦单模光纤DFOS Distributed fiber optic sensing 分布式光纤传感器Dual frequency optical source 双频光源DFS Distributed fiber sensor 分布式光纤传感器DFSM Dispersion flattened single mode 色散平坦单模DM Dispersion management 色散管理DMF Dispersion management fiber 色散管理光纤diffraction grating 衍射光栅diode An electronic device that conducts electricity in one direction only. The simplest semiconductordevices are diodes.dispersion 色散,一种光传输过程中的现象DOAP Division-of-amplitude photopolarimeter 分幅光偏转计DOES Double-heterostructure optoelectronic switch 双异质结光电开关DOP Degree of polarization 偏转度DOS Digital optical switch 数字光开关DPON Domestic passive optical network 国内无源光网络DRB Double Raleigh backscattering 双瑞利背向散射DS Dispersion shift 色散位移DSCF Dispersion slope compensation fiber 色散斜率补偿光纤DSF Dispersion-shifted fiber. 色散位移光栅,单模光纤的一种,在1550nm处色散为零,用于DWDM系统中DSL Digital subscriber line. 数字用户线,利用现有公用电话网的二线用户环路作为综合业务数字网基本用户/网络接口,并实现传输速率为160kbit/s的双数字传输的用户线路. Distributed Service Logic 分配式服务逻辑DS-SMF Dispersion shifted single mode fiber 色散位移单模光纤DU Dispersion-unshifted (single mode fiber)非色散位移光纤(单模光纤)DWDM Dense wavelength division multiplexing. 密集波分复用器EEA Electro absorption 电吸收EAM Electro absorption modulator 电吸收调制器EBL Expanding beam laser-scan 扩展束激光扫描ECC Embedded communications channel 嵌入式通信信道ECL External cavity laser 外腔激光器External cavity mode-locked semiconductor laser 外腔锁模半导体激光器ECM Echo cancellation method 回波消除法ECMLL External cavity mode-locked laser 外腔式锁模激光器ECSL Extended-cavity semiconductor laser 扩展式腔半导体激光器External cavity semiconductor laser 外腔式半导体激光器EDF Erbium-doped fiber 掺铒光纤EDFA Erbium-doped fiber amplifier 掺铒光纤放大器EDFFA Erbium-doped Fluoride fiber amplifier 掺铒氟化物光纤放大器EDFL Erbium-doped fiber laser 掺铒光纤激光器EDFLS Erbium-doped fiber laser source 掺铒光纤激光源EDFRS Erbium-doped fiber ring laser 掺铒光纤环激光器EDPA Erbium doped planar amplifier 掺铒平面放大器EDWA Erbium doped waveguide amplifier 掺铒波导放大器EE-LED Edge-emitting LED 边发射发光二极管,其光输出功率是从异质生长层之间发射出来的发光二极管.与表面发射的发光二极管相比,它通常具有较高的输出功率,与光纤和集成光路的耦合效率也较高EELS Edge-emitting laser 边发射激光器,一种边发射的发光激光器,它的发光区被限制在一边的很小部分,有限的光发射区改善了与光纤和集成光路的耦合效率EFBGL Erbium fiber Bragg grating laser 铒光纤布拉格光栅激光器EML Eroabsorption modulated laser 电吸收调制激光器EOM Electro-optical modulator 电光调制器,通常以调制信号为外加电场,改变电光晶体的双折射特性,从而达到改变光的参数的目的.电光调制和其他调制方法相比,器件结构稳固,不易失调.缺点是损耗较大,调制电压较高,调制电源功率损耗较大,调制频率与带宽很高EOTF Electro-optic tunable filter 电光可调谐滤波器EP Eye pattern 眼图,为评价数字传输系统的特性,把接收到的随机基带数字信号波形同步显示在示波器屏幕上.所出现的图形形状像人眼,故称为眼图.从眼图可一目了然地看出此传输系统码元间干扰的程度ER 112Ethernet 以太网FFDDI Fiber Distributed Data Interface.光纤分布式数据接口,一种光纤通信标准.采用单一的比特流格式而不是采用一组字节格式的光数据传信率.FE Fast Ethernet. 快速以太网fiber-optic cable A data transmission medium that uses glass or plastic fibers, rather than copper wire, to carrymodulated pulses of light; also called optical fiber.Fibre Channel A technology for transmitting data between computer devices at data rates X 100 to 400 MBps overoptical fiber or copper. Fibre channel is optimized for connecting servers to shared storage devices andfor interconnecting storage controllers and drives.FWM Four-wave mixing. 四波混频G, HGbps Gigabits per second. 吉比特每秒GBps Gigabytes per second. 吉位每秒GE Gigabit Ethernet. 前兆以太网GHz Gigahertz (one billion hertz). 吉赫兹graded-index fiber 渐变折射率光纤GIMM Graded Index Plasec-Cladding Fiber 渐变折射率多模(光纤)IILEC Incumbent local exchange carrier. Term used to describe the primary existing carriers, formerly knownas Regional Bell Operating Companies (RBOCs); distinguished X new competitive carriers comingout of deregulation of the telecommunications industry.IL insertion loss 插入损耗IP Internet Protocol. 网际协议,TCP/IP网络体系结构中的网际层协议,用以提供无连接的数据报服务IR Intermediate reach. Distance specification for optical systems that operate effectively X 3 to 20 km.ISO International Organization for Standardization. 国际标准化组织ITU International Telecommunication Union. 国际电信联盟,简称国际电联ITU grid ITU 标准指定激光波长,以193.1 THz (1552.52 nm)为中心,基于100 GHz 频率间隔IXC Interexchange carrier. 交换机间载波J, K,Llambda A data channel in a WDM or DWDM system assigned to a specific wavelength. Lambda andwavelength are sometimes used interchangeably.LAN Local area network. 局域网,一种小范围内采用的高速,低误码的网络形式.以太网,FDDI 光纤分布式数据接口和令牌网被广泛的应用在局域网技术中.并列的还有城域网MAN 和广域网WANLaser 激光LD laser diode. 激光二极管LEC Local exchange carrier. 市话载波Local exchange center 市内交换中心LED Light emitting diode. 光二极管loss budget The amount of overall attenuation allowable in a system.LR Long reach. 远距离Link restoration 链路恢复Local record 本地纪录Location register 位置寄存器MMAN Metropolitan area network. 城域网,比局域网的范围宽一些,通常在一个城市范围内,连接全球网络的长途骨干部分和接入部分.material dispersion 材料色散Mbps 兆比特每秒MM fiber Multimode fiber. 多模光纤modal dispersion 模式色散MPLS MultiProtocol Label Switching. 多协议标签交换MTBF Mean time between failure. 平均故障间隔时间MUX See multiplexer. 多路复用器NNAS Network attached storage. Central data storage system that is attached to the network that it serves. Seealso SAN.NDSF Non-dispersion-shifted fiber. 非色散位移光纤,单模光纤的一种,零色散点在1310nm 处.nonlinearity 非线性,指电路,光电器件,光纤的信号中产生的不良因素.NZ-DSF Non-zero dispersion-shifted fiber. 非零色散位移光纤,单模色散位移光纤的一种,在1530~1550nm区色散不为零,即G.655单模光纤,用于1530~1550nm以外区域的信号传输,能够扩大传输带宽同时还减小光纤的非线性效应.OOA Optical amplifier. 光放大器OADM Optical add/drop multiplexer. 光插/分复用器OC Optical carrier. 光载波,为SONET 光传输定义的一系列物理协议(如OC-1, OC-3, OC-12)optical channel spacing 光通道间隔optical fiber fiber optic cable. 光纤optical link lossbudgetThe range of optical loss over which a fiber optic link will operate and meet all specifications,expressed relative to the transmitter output power.OTDR Optical time domain reflectometer. 光时域反射计,利用反射测量技术测量光波导特性的一种仪器PPDH Pleisiochronous Digital Hierarchy. 准同步数字系列photodetector An optoelectronic transducer such as a PIN photodiode or avalanche photodiode.PD photodiode 光电二极管,一种能够将光转化为电的半导体器件photon 光子,一种电磁能量子photonic 光电,一种用以描述A term used to describe communications using photons, analogous to electronic for electroniccommunications.physical layer 物理层,开放式系统互连参考模型的首层.全光技术例如DWDM即是工作在物理层.PMD Polarization mode dispersion. 偏振模式色散POS Packet over SONET. A technology in which IP packets are mapped into SONET frames withintervening use of an ATM layer.protocoltransparencyAbility of systems to transport information without being aware of higher layer protocols. Such systemsare also sometimes called protocol agnostic.PSTN Public switched telephone network. 公共交换电话网,用户提供电话业务的语音传输网,其交换中心分布在较广的地理范围内,并用通信线路连接起来.交换中心之间和交换中心与交换局之间遵守通信公司自己制定的信令系统.RRayleigh scattering The scattering of light that results X small inhomogeneities of material density or composition.refractive index 折射率regenerator A device that regenerates optical signals by converting incoming optical pulses to electrical pulses,cleaning up the electrical signal to eliminate noise, and reconverting them to optical pulses for output;also called a regenerative repeater.SSAN Storage area network. A dedicated, centrally managed, secure information infrastructure that enablesany-to-any interconnection of servers and storage systems. See also NAS.SDH Synchronous Digital Hierarchy. 同步数字系列,由欧洲标准制定的一种采用ATM和SONET在光纤上European standard that defines a rate and format standards for transmission of optical signals over fiber using ATM and SONET. In contrast to PDH, SDH providesfor a synchronous multiplexing scheme. See also PDH; SONET.short reach See SR.SM fiber Single-mode fiber. 单模光纤,其纤芯很小,只能通过一个模式.SNR Signal-to-noise ratio. 信噪比,用于衡量信号质量的参数SONET Synchronous Optical Network. 同步光网络,由Bellcore开发的一个接口标准,广泛应用在电信中的光纤高速同步传输SR Short reach. Distance specification for optical systems that operate effectively up to 3 km.step-index fiber Fiber that has a uniform index of refraction throughout the core.TT-carrier Generic designator for any of several digitally multiplexed telecommunications carrier systems. Thetwo most common are T1, which transmits DS-1 formatted data at 1.544 Mbps, and T3, which transmitsDS-3 formatted data at 44.736 Mbps.TDM Time-division multiplexing. 时分复用Transponder 转发器,用在DWDM系统中,能够接受信号,并且将其转换为波长信号以便与其他波长复用.U, WUPSR Unidirectional Path Switched Ring. 单向通道交换环WAN Wide area network. 广域网waveguide 波导,一种限制和引导电磁波传输的材料介质.光纤就是波导的一个例子.。
Agilent 33250A函数 arb理波生成器数据手册说明书
Agilent 33250A Function/Arbitrary Waveform GeneratorData Sheet• 80 MHz sine and square wave outputs • Sine, square, ramp, noise and other waveforms• 50 MHz pulse waveforms with variable rise/fall times• 12-bit, 200 MSa/s, 64K-point deep arbi-trary waveformStandard WaveformsThe Agilent Technologies 33250A function/arbitrary waveform generator uses direct dig-ital-synthesis techniques to create a stable, accurate output on all waveforms, down to 1 µHz frequency resolution. The benefits are apparent in every signal you produce, from the sine wave frequency accuracy to the fast rise/fall times of square waves, to the ramp linearity.Front-panel operation of the 33250A is straightforward and user friendly. The knob or numeric keypad can be used to adjust fre-quency, amplitude and offset. You can even enter voltage values directly in Vpp, Vrms, dBm, or high/low levels. Timing parameters can be entered in hertz (Hz) or seconds. Custom Waveform GenerationWhy settle for a basic function generator when you can get arbitrary waveforms at no extra cost? With the 33250A, you can generate arbitrary waveforms with 12-bit vertical resolution, 64K memory depth, and a sample rate of 200 MSa/s. You can also store up to four 64K-deep arbitrary waveforms in non-volatile memory with user-defined names to help you find the right waveform when you need it most.The included Agilent IntuiLink software allows you to easily create, edit, and down-load complex waveforms using the IntuiLink arbitrary waveform editor. Or you can capture a waveform using IntuiLink oscilloscope or DMM and send it to the 33250A for output. For programmers, ActiveX components can be used to control the instrument using SCPI commands. IntuiLink provides the tools to easily create, download, and man-age waveforms for your 33250A. To find out more about IntuiLink, visit /find/intuilink. Pulse GenerationThe 33250A can generate simple pulses up to 50 MHz. With variable edge time, pulse width and voltage level, the 33250A is ideally suited to a wide variety of pulse applications.Built-in VersatilityAM, FM and FSK capabilities make it easy to modulate waveforms with or without a separate source. Linear or logarith-mic sweeps can be performed with a programmable frequency marker signal. Programmable burst count and gating allow you to further customize your signal.For system applications, both GPIB and RS-232 interfaces are standard, and support full programmability using SCPI commands.Color Graphical DisplayThe unique design of the 33250A combines a low-profile instrument with the benefits of a color graphical display. Now you can display multiple waveform parameters at the same time. The graphical interface also allows you to modify arbitrary waveforms quickly and easily.Timebase Stability and Clock Reference The 33250A TCXO timebase gives you frequency accuracy of 2 ppm for your most demanding applications. The external clock reference input/output lets you synchronize to an external 10 MHz clock, to another 33250A, or to another Agilent 332XXA func-tion/arbitrary wafeform generator. Phase adjustments can be made from the front panel or via a computer interface, allowing precise phase calibration and adjustment.Measurement Characteristics2Measurement Characteristics (Continued)Agilent Email Updates/find/emailupdates Get the latest information on the products and applications you select.Agilent Channel Partnersw w w /find/channelpartners Get the best of both worlds: Agilent’s measurement expertise and product breadth, combined with channel partner convenience.For more information on Agilent Tech-nologies’ products, applications or services, please contact your local Agilent office. The complete list is available at:/find/contactus Americas Canada (877) 894 4414 Brazil (11) 4197 3500Mexico 01800 5064 800 United States (800) 829 4444Asia Pacific Australia 1 800 629 485China 800 810 0189Hong Kong 800 938 693India 1 800 112 929Japan 0120 (421) 345Korea 080 769 0800Malaysia 1 800 888 848Singapore 180****8100Taiwan 0800 047 866Other AP Countries (65) 375 8100 Europe & Middle East Belgium 32 (0) 2 404 93 40 Denmark 45 70 13 15 15Finland 358 (0) 10 855 2100France 0825 010 700**0.125 €/minuteGermany 49 (0) 7031 464 6333 Ireland 1890 924 204Israel 972-3-9288-504/544Italy39 02 92 60 8484Netherlands 31 (0) 20 547 2111Spain 34 (91) 631 3300Sweden0200-88 22 55United Kingdom 44 (0) 131 452 0200For other unlisted countries:/find/contactusRevised: June 8, 2011Product specifications and descriptions in this document subject to change without notice.© Agilent Technologies, Inc. 2011Published in USA, November 29, 20115968-8807EN/find/33250AAgilent Advantage Services is committed to your success throughout your equip-ment’s lifetime. To keep you competitive, we continually invest in tools andprocesses that speed up calibration and repair and reduce your cost of ownership. You can also use Infoline Web Services to manage equipment and services more effectively. By sharing our measurement and service expertise, we help you create the products that change our world./quality/find/advantageservicesOrdering InformationAgilent 33250A80 MHz function/arbitrary wavefrom generator Accessories includedOperating manual, service manual,quick reference guide, IntuiLink waveform editor software, test data, RS-232 cable, and power cord (see language option).Options Opt. A6J ANSI Z540 calibration Opt. AB0 Taiwan: Chinese manual Opt. AB1 Korea: Korean manual Opt. AB2 China: Chinese manual Opt. ABA English: English manual Opt. ABD Germany: German manual Opt. ABF France: French manual Opt. ABJJapan: Japanese manualOther Accessories34131A Carrying case 34161A Accessory pouch 34190A Rackmount kit**For racking two 33250As side-by-side, order thefollowing items: Lock-link kit (34194A), Flange kit (34191A)。
学术报告感想
报告题目:微波光子学及应用微波光子学及应用报告人:南京航空航天大学潘时龙教授报告时间:2016年3月10日(星期四)下午14:00—15:30潘时龙,2000年-2008年清华大学电子工程系学士、博士,2008年-2010年在加拿大渥太华大学微波光子学实验室从事博士后研究。
现任教于南京航空航天大学电子信息工程学院,主要从事光载无线(ROF)系统、微波光子信号处理、微波光子信号产生、微波光子测量等领域的研究工作,自2006年以来在国内外期刊和国际会议上发表学术论文130余篇,SCI 80余篇,他引700余次,申请国家发明专利17项。
担任国家科技奖励评审专家、IEEE RWS 2013高速和宽带无线通信技术委员会主席、PIERS 2013微波光子分会召集人、微波光子学最高学术会议MWP2013的国际咨询委员,APMP2013、ICAIT2013、IEEE RWS 2012、ICOCN 2011、ICAIT 2011等国际会议的分会主席和技术委员会成员。
是IEEE高级会员,美国光学学会(OSA)、国际光电子工程师协会(SPIE)的会员,中国电子学会和中国光学学会的高级会员,IEEE、OSA、APS等本领域主要期刊的审稿人。
潘时龙教授首先介绍了微波光子学技术的发展现状:微波光子学是近来融合了微波技术和光电子学技术而产生的新兴领域,在通信、传感、生物、医学、军事和安全等领域都有广泛的应用前景。
其后,介绍了微波光子学在雷达领域的应用:微波光子系统具有损耗低、带宽大、体积小、并行能力强、抗电磁干扰等特点,是突破现有射频系统关键瓶颈的有效手段,但其在宽带信号产生、传输、处理、阵列协同、集成化等方面均面临诸多难题。
结合实际应用,潘教授详细介绍南航雷达成像与微波光子技术教育部重点实验室在新型微波光子阵列系统上的构想和国内外相关技术的进展。
在信息技术不断发展的今天,新技术层出不穷,微波光子学的出现弥补了传统微波系统的不足。
Keysight 33220A 20MHz功能 模拟波形生成器数据手册说明书
Keysight 33220A20 MHz Function/Arbitrary Waveform GeneratorData Sheet–Fully compliant to LXI Class C speciication–20 MHz Sine and Square waveforms–Pulse, Ramp, Triangle, Noise, and DC waveforms–14-bit, 50 MSa/s, 64 k-point arbitrary waveforms–AM, FM, PM, FSK, and PWM modulation types–Linear & logarithmic sweeps and burst operation–10 mV pp to 10 V pp amplitude range–Graph mode for visual veriication of signal settings–Connect via USB, GPIB and LANUncompromising performance for functions and waveformsThe Keysight T echnologies 33220A function/arbitrary waveform generator uses direct digital synthesis (DDS) techniques to create a stable, accurate output signal for clean, low distortion sine waves. It also gives you square waves with fast rise and fall times up to 20 MHz and linear ramp waves up to 200 kHz.Pulse generationThe 33220A can generate variable-edge-time pulses up to 5 MHz. With variable period, pulse width, and amplitude the 33220A is ideally suited to a wide variety of applications requir-ing a flexible pulse signal.Custom waveform generationUse the 33220A to generate complex custom waveforms. With 14-bit resolution, and a sampling rate of50 MSa/s, the 33220A gives you theflexibility to create the waveforms youneed. It also lets you store up to fourwaveforms in nonvolatile memory.The Keysight IntuiLink arbitrary wave-form software allows you to easily cre-ate, edit, and download complex wave-forms using the waveform editor. Oryou can capture a waveform usingIntuiLink for Oscilloscope and sendit to the 33220A for output. T o findout more about IntuiLink, visit/find/intuilink.Easy-to-use functionalityFront-panel operation of the 33220A isstraight-forward and user friendly. Youcan access all major functions with asingle key or two. The knob or numerickeypad can be used to adjust frequen-cy, amplitude, offset, and other param-eters. You can even enter voltage val-ues directly in V pp, V rms, dBm, or ashigh and low levels. Timing parame-ters can be entered in Hertz (Hz) orseconds.Internal AM, FM, PM, FSK, and PWMmodulation make it easy to modulatewaveforms without the need for a sep-arate modulation source. Linear andlogarithmic sweeps are also built in,with sweep rates selectable from 1 msto 500 s. Burst mode operation allowsfor a user-selected number of cyclesper period of time. GPIB, LAN, andUSB interfaces are all standard, plusyou get full programmability using SCPIcommands.External frequency reference(Option 001)The 33220A external frequency refer-ence lets you synchronize to an exter-nal 10 MHz clock, to another 33220A,or to a Keysight 33250A. Phase adjust-ments can be made from the frontpanel or via a computer interface,allowing precise phase calibration andadjustment.Measurement CharacteristicsWaveformsStandard Sine, Square, Ramp,Triangle, Pulse,Noise, DCBuilt-in arbitrary Exponential rise,Exponential fall,Negative ramp,Sin(x)/x, CardiacWaveforms CharacteristicsSineFrequency Range 1 µHz to 20 MHz Amplitude Flatness[1], [2](relative to 1 kHz)< 100 kHz 0.1 dB100 kHz to 5 MHz 0.15 dB5 MHz to 20 MHz 0.3 dB Harmonic distortion[2], [3]< 1 V PP≥ 1 V PPDC to 20 kHz –70 dBc –70 dBc20 kHz to 100 kHz –65 dBc –60 dBc 100 kHz to 1 MHz –50 dBc –45 dBc1 MHz to 20 MHz –40 dBc –35 dBc Total harmonic distortion[2], [3]DC to 20 kHz 0.04%Spurious (non-harmonic)[2], [4]DC to 1 MHz –70 dBc1 MHz to 20 MHz –70 dBc + 6 dB/octave Phase noise(10 kHz offset) –115 dBc / Hz, typical SquareFrequency range 1 µHz to 20 MHzRise/Fall time < 13 nsOvershoot < 2%Variable duty cycle 20% to 80% (to 10 MHz)40% to 60% (to 20 MHz) Asymmetry (@ 50% duty)1% of period + 5 ns Jitter (RMS) 1 ns +100 ppm of period Ramp, TriangleFrequency range 1 µHz to 200 kHz Linearity < 0.1% of peak output Variable Symmetry 0.0% to 100.0%PulseFrequency range 500 µHz to 5 MHz Pulse width 20 ns minimum,(period ≤ 10s) 10 ns resolution Variable edge time < 13 ns to 100 ns Overshoot < 2%Jitter (RMS) 300 ps +0.1 ppm of period NoiseBandwidth 9 MHz typicalArbitraryFrequency range 1 µHz to 6 MHzWaveform length 2 to 64 k pointsAmplitude resolution 14 bits (including sign)Sample rate 50 MSa/sMin. Rise/Fall Time 35 ns typicalLinearity < 0.1% of peak outputSettling Time < 250 ns to 0.5%of final valueJitter (RMS) 6 ns + 30 ppmNon-volatile memory four waveformsCommon CharacteristicsFrequencyAccuracy[5]± (10 ppm + 3 pHz)in 90 days± (20 ppm + 3 pHz)in 1 yearResolution 1 µHzAmplitudeRange 10 mV PP to10 V PP into 50 Ω20 mV PP to 20 V PPinto open circuitAccuracy[1], [2] (at 1 kHz)± 1% of setting± 1 mV PPUnits V PP, V rms, dBmResolution 4 digitsDC OffsetRange (peak AC + DC) ± 5 V into 50 Ω± 10 V into open circuitAccuracy[1], [2]± 2% of offset setting± 0.5% of amplitude± 2 mVResolution 4 digitsMain OutputImpedance 50 Ω typicalIsolation 42 Vpk maximumto earthProtection Short-circuit protected,overload automaticallydisables main outputExternal Frequency Reference (Option 001)Rear Panel InputLock Range 10 MHz ± 500 HzLevel 100 mV PP to 5 V PPImpedance 1 kΩ typical,AC coupledLock Time < 2 secondsRear Panel OutputFrequency 10 MHzLevel 632 mV PP(0 dBm), typicalImpedance 50 Ω typical,AC coupledPhase OffsetRange + 360° to - 360°Resolution 0.001°Accuracy 20 nsModulationAMCarrier waveforms Sine, Square,Ramp, ArbSource Internal/ExternalInternal modulation Sine, Square, Ramp,Triangle, Noise, Arb(2 mHz to 20 kHz)Depth 0.0% to 120.0%FMCarrier waveforms Sine, Square,Ramp, ArbSource Internal/ExternalInternal modulation Sine, Square, Ramp,Triangle, Noise, Arb(2 mHz to 20 kHz)Deviation DC to 10 MHzPMCarrier waveforms Sine, Square,Ramp, ArbSource Internal/ExternalInternal modulation Sine, Square, Ramp,Triangle, Noise, Arb(2 mHz to 20 kHz)Deviation 0.0 to 360.0 degreesPWMCarrier waveform PulseSource Internal/ExternalInternal modulation Sine, Square, Ramp,Triangle, Noise, Arb(2 mHz to 20 kHz)Deviation 0% to 100%of pulse widthFSKCarrier waveforms Sine, Square,Ramp, ArbSource Internal/ExternalInternal modulation 50% duty cyclesquare (2 mHzto 100 kHz)External Modulation Input[6](for AM, FM, PM, PWM)Voltage range ± 5 V full scaleInput impedance 5 kΩ typicalBandwidth DC to 20 kHzSweepWaveforms Sine, Square,Ramp, ArbT ype Linear or Logarithmic Direction Up or DownSweep time 1 ms to 500 sTrigger Single, External,or InternalMarker falling edge of syncsignal (programmablefrequency)Burst[7]Waveforms Sine, Square, Ramp,Triangle, Pulse,Noise, ArbT ype Counted (1 to 50,000cycles), Infinite, Gated Start/Stop Phase –360° to +360°Internal Period 1 µs to 500 sGate Source External trigger Trigger source Single, Externalor InternalTrigger CharacteristicsTrigger inputInput level TTL compatibleSlope Rising or Falling,selectablePulse width > 100 nsInput impedance >10 kΩ, DC coupledLatency < 500 nsJitter (rms) 6 ns (3.5 ns for pulse) Trigger outputLevel TTL compatibleinto ≥ 1 kΩPulse width > 400 nsOutput Impedance 50 Ω, typicalMaximum rate 1 MHzFanout ≤ 4 Keysight33220AsProgramming Times (typical)Configuration timesUSB LAN GPIB Function Change 111 ms 111 ms 111 msFrequency Change 1.5 ms 2.7 ms 1.2 msAmplitude Change 30 ms 30 ms 30 msSelect User Arb 124 ms 124 ms 123 ms Arb Download Times(binary transfer) USB LAN GPIB64 k points 96.9 ms 191.7 ms 336.5 ms16 k points 24.5 ms 48.4 ms 80.7 ms4 k points 7.3 ms 14.6 ms 19.8 ms GeneralPower Supply CAT II100 - 240 V @50/60 Hz (–5%, +10%)100 - 120 V @ 400 Hz(±10%)Power Consumption 50 VA maxOperating Environment IEC 61010Pollution Degree 2Indoor LocationOperating T emperature 0 to 55 °COperating Humidity 5% to 80% RH,non-con d ensingOperating Altitude Up to 3000 metersStorage T emperature –30 to 70 °CState Storage Memory Power off stateautomatically saved.Four user-configurablestored statesInterface USB, GPIB, andLAN standardLanguage SCPI - 1993,IEEE-488.2Dimensions (W x H x D)Bench top 261.1 mm x 103.8 mmx 303.2mmRack mount 212.8mm x 88.3mmx 272.3mmWeight 3.4 kg (7.5 lbs)Safety Designed to UL-1244, CSA 1010,EN61010EMC T ested to MIL-461C, EN55011,EN50082-1Vibration and Shock MIL-T-28800, T ype III,Class 5Acoustic Noise 30 dBaWarm-up Time 1 hourWarranty 1 year standardFootnotes1. Add 1/10th of output amplitude and offsetspec per °C for operation outside the rangeof 18 to 28 °C2. Autorange enabled3. DC offset set to 0 V4. Spurious output at low amplitude is–75 dBm typical5. Add 1 ppm/°C average for operationoutside the range of 18 to 28 °C6. FSK uses trigger input (1 MHz maximum)7. Sine and square waveforms above6 MHz are allowed only withan “infinite” burst countKeysight 33220A20 MHz function/arbitrarywavefrom generatorAccessories includedOperating manual, service manual, quickreference guide, IntuiLink waveform edi-tor software, test data, USB cable, andpower cord (see language option).OptionsOpt. 001 External timebase referenceOpt. A6J ANSI Z540 calibrationOpt. AB0 Taiwan: Chinese manualOpt. AB1 Korea: Korean manualOpt. AB2 China: Chinese manualOpt. ABA English: English manualOpt. ABD Germany: German manualOpt. ABF France: French manualOpt. ABJ Japan: Japanese manualOther Accessories34131A Carrying case34161A Accessory pouch34190A Rackmount kit34191A Dual flange kit, 2U34194A Dual lock link kitMeasurement Characteristics (Continued)Ordering InformationmyKeysight/find/mykeysightA personalized view into the information most relevant to you.LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Keysight is a founding member of the LXI consortium.Three-Year Warranty/find/ThreeYearWarrantyKeysight’s commitment to superior product quality and lower total costof ownership. The only test and measurement company with three-yearwarranty standard on all instruments, worldwide.Keysight Assurance Plans/find/AssurancePlansUp to five years of protection and no budgetary surprises to ensure yourinstruments are operating to specification so you can rely on accuratemeasurements./qualityKeysight Electronic Measurement GroupDEKRA Certified ISO 9001:2008Quality Management SystemKeysight Channel Partners/find/channelpartnersGet the best of both worlds: Keysight’s measurement expertise and productbreadth, combined with channel partner convenience./find/33220AFor more information on KeysightTechnologies’ products, applications orservices, please contact your local Keysightoffice. The complete list is available at:/find/contactusAmericasCanada(877) 894 4414Brazil55 11 3351 7010Mexico001 800 254 2440United States(800) 829 4444Asia PaciicAustralia 1 800 629 485China800 810 0189Hong Kong800 938 693India 1 800 112 929Japan0120 (421) 345Korea080 769 0800Malaysia 1 800 888 848Singapore180****8100Taiwan0800 047 866Other AP Countries(65) 6375 8100Europe & Middle EastAustria0800 001122Belgium0800 58580Finland0800 523252France0805 980333Germany***********Ireland1800 832700Israel 1 809 343051Italy800 599100Luxembourg+32 800 58580Netherlands0800 0233200Russia8800 5009286Spain0800 000154Sweden0200 882255Switzerland0800 805353Opt. 1 (DE)Opt. 2 (FR)Opt. 3 (IT)United Kingdom0800 0260637For other unlisted countries:/find/contactus(BP-05-29-14)05 | Keysight | 33220A 20 MHz Function/Arbitrary Waveform Generator - Data SheetThis information is subject to change without notice.© Keysight Technologies, 2011 - 2014Published in USA, August 1, 2014。
Agilent Technologies 33120A功能 随机波形生成器说明书
Uncompromising performance for standard waveformsThe Agilent Technologies 33120A function/arbitrary waveform genera-tor uses direct digital-synthesis tech-niques to create a stable, accurate output signal for clean, low-distortion sine waves. It also gives you fast rise-and fall-time square wave, and linear ramp waveforms down to 100µHz.Custom waveform generationUse the 33120A to generate complex custom waveforms such as a heart-beat or the output of a mechanical transducer. With 12-bit resolution,and a sampling rate of 40MSa/s, the 33120A gives you the flexibility to create any waveform you need. It also lets you store up to four 16,000-deep waveforms in nonvolatile memory.Easy-to-use functionalityFront-panel operation of the 33120A is straightforward and intuitive. You can access any of ten major func-tions with a single key press or two,then use a simple knob to adjust fre-quency, amplitude and offset. To save time, you can enter voltage val-ues directly in Vp-p, Vrms or dBm.Internal AM, FM, FSK and burst mod-ulation make it easy to modulate waveforms without the need for aseparate modulation source. Linear and log sweeps are also built in, with sweep rates selectable from 1ms to 500 s. GPIB and RS-232 interfaces are both standard, plus you get full pro-grammability using SCPI commands.Optional phase-lock capabilityThe Option 001 phase lock/TCXO timebase gives you the ability to gen-erate synchronized phase-offset sig-nals. An external clock input/output lets you synchronize with up to three other 33120As or with an external 10-MHz clock.Option 001 also gives you a TCXO timebase for increased frequency sta-bility. With accuracy of 4 ppm/yr, the TCXO timebase make a 33120A ideal for frequency calibrations and other demanding applications.With Option 001, new commands let you perform phase changes on the fly, via the front panel or from a computer, allowing precise phase calibration and adjustment.Link the Agilent 33120A to your PCTo further increase your productivity,use the 33120A in conjunction with Agilent 34811A BenchLink Arb soft-ware. The Windows®-based program lets you create and edit waveforms on your PC and download them to your 33120A with the click of amouse. Create complex waveforms in a math or statistics program—or use the freehand drawing tool—then pass them into the instrument. Used in conjunction with an Agilent BenchLink Scope, the software also lets you capture a waveform withyour Agilent oscilloscope or DMM and send it to your 33120A for output.3-year warrantyWith your 33120A, you get operating and service manuals, a quick refer-ence guide, test date, and a full 3-year warranty, all for one low price.• 15 MHz sine and square wave outputs• Sine, triangle, square, ramp, noise and more• 12-bit, 40MSa/s, 16,000-point deep arbitrary waveforms •Direct digital synthesis for excellent stabilityAgilent 33120AFunction/Arbitrary Waveform GeneratorData Sheet1981WaveformsStandard Sine, square, triangle, ramp,noise, sin(x)/x, exponentialrise exponential fall, cardiac,dc volts.ArbitraryWaveform length8 to 16,000 points Amplitude resolution12 bits (including sign) Sample rate40 MSa/sNon-volatile memory Four (4) 16,000 waveforms Frequency CharacteristicsSine100 µHz - 15 MHzSquare100 µHz - 15 MHz Triangle100 µHz - 100 kHzRamp100 µHz - 100 kHzWhite noise10 MHz bandwidth Resolution10 µHz or 10 digits Accuracy10 ppm in 90 days,20 ppm in 1 year,18°C - 28°CTemp. Coeff< 2 ppm/°CAging< 10 ppm/yr Sinewave Spectral PurityHarmonic distortiondc to 20 kHz-70 dBc20 kHz to 100 kHz-60 dBc100 kHz to 1 MHz-45 dBc1 MHz to 15 MHz-35 dBcSpurious (non-harmonic)DC to 1 MHz< -65 dBc1 MHz to 15 MHz< -65 dBc + 6 dB/octave Total harmonic distortionDC to 20 kHz<0.04%Phase noise<-55 dBc in a 30 kHz band Signal CharacteristicsSquarewaveRise/Fall time< 20 nsOvershoot4%Asymmetry1% + 5nsDuty cycle20% to 80% (to 5 MHz)40% to 60% (to 15 MHz) Triangle, Ramp, ArbRise/Fall time40 ns (typical)Linearity<0.1% of peak output Setting Time<250 ns to 0.5% offinal valueJitter<25ns Output CharacteristicsAmplitude (into 50Ω)50 mVpp - 10 Vpp [1]Accuracy (at 1 kHz)±1% of specified outputFlatness (sinewave relative to 1 kHz)< 100 kHz±1% (0.1 dB)100 kHz to 1 MHz±1.5% (0.15 dB)1 Mz to 15 MHz±2% (0.2 dB) Ampl ≥3Vrms±3.5% (0.3 dB) Ampl<3VrmsOutput Impedance50Ω(fixed)Offset (into 50Ω) [2]+ 5 Vpk ac + dcAccuracy±2% of setting + 2 mVResolution 3 digits, amplitude and off-setUnits Vpp, Vrms, dBmIsolation42 Vpk maximum to earthProtection Short circuit protected±15Vpk overdrive < 1 minuteModulationAMCarrier -3dB Freq.10 MHz (typical)Modulation any internal waveformincluding ArbFrequency10 mHz - 20 kHzDepth0% - 120%Source Internal/ExternalFMModulation any internal waveformincluding ArbFrequency10 mHz - 10 kHzDeviation10 mHz - 15 MHzSource Internal onlyFSKInternal rate10 mHz - 50 kHzFrequency Range10 mHz - 15 MHzSource Internal/External(1 MHz max.)BurstCarrier Freq. 5 MHz max.Count 1 to 50,000 cycles or infiniteStart Phase-360°to +360°Internal Rate10 mHz - 50 kHz ±1%Gate Source Internal/External GateTrigger Single, External orInternal RateSweepType Linear or LogarithmicDirection Up or DownStart F/Stop F10 mHz - 15 MHzSpeed 1 ms to 500 s ±0.1%Trigger Single, External, or InternalRear Panel InputsExt. AM Modulation±5 Vpk = 100% modulation5kΩinput resistanceExternal Trigger/TTL low trueFSK/Burst GateSystem Characteristics[3]Configuration Times[4]Function Change:[5]80 msFrequency Change:[5]30 msAmplitude Change:30 msOffset Change:10 msSelect User Arb:100 msModulation ParameterChange:<350 msArb Download Times over GPIBArb Length Binary ASCII Integer ASCII Real[6]16,000 points8 sec81 sec100 sec8,192 points 4 sec42 sec51 sec4,096 points 2.5 sec21 sec26 sec2,048 points 1.5 sec11 sec13 secArb Download Times over RS-232 at 9600 Baud:[7]Arb Length Binary ASCII Integer ASCII Real[8]16,000 points35 sec101 sec134 sec8,192 points18 sec52 sec69 sec4,096 points10 sec27 sec35 sec2,048 points 6 sec14 sec18 sec[1] 100 mVpp - 20 Vpp into open circuit[2] Offset ≤2x pk - pk amplitude[3] Times are typical. May vary based on controllerperformance[4] Time to change parameter and output the newsignal.[5] Modulation or sweep off[6] Times for 5-digit and 12-digit numbers[7] For 4800 baud, multiply the download times bytwo; For2400 baud, multiply the download timesby four, etc.[8] Time for 5-digit numbers; for 12-digit numbers,multiply the 5-digit numbers by two2Option 001 Phaselock/TCXO TimebaseTimebase AccuracySetability< 0.01 ppmStability±1 ppm 0°- 50°Aging< 2ppm in first 30 days(continuous operation)0.1 pm/month(after first 30 days)External Reference InputLock Range10 MHz ±50 HzLevel-10 dBm to + 15 dBm+25 dBm or 10 Vpp maxinputImpedance50Ω±2%, 42 Vpk isola-tion to earthLock Time< 2 secondsInternal Reference OutputFrequency10 MHzLevel> 1 Vpp into 50 ΩPhase OffsetRange+ 360°to - 360°Resolution0.001°Accuracy25 nsTrigger OutputLevel5V zero-going pulse Pulse Width> 2µs typicalFanout Capable of driving up tothree 33120As Ordering InformationAgilent 33120A Function/Arb GeneratorOpt. 001 Phase Lock/TCXO Timebase Option GeneralPower Supply110V/120V/220V/240V ±10%Power Line Frequency45 Hz to 66 Hz and 360 Hzto 440 HzPower Consumption50VA peak (28 W aveage) Operating Environment0°C to 55°CStorage Environment-40°C to 70°CState Storage Memory Power Off state automati-cally saved, 3 UserConfigurable StoredStatesInterface IEEE-488 and RS-232standardLanguage SCPI - 1993, IEEE-488.2 Dimensions (W x H x D)Bench top254.4mm x 103.6mm x374mmRack mount212.6mm x 88.5mm x348.3mmWeight 4 kg (8.8 lbs)Safety Designed to UL-1244, CSA 1010,EN61010EMC Tested to MIL-461C, EN55011,EN50082-1Vibration and Shock MIL-T-28800, Type III,Class5Acoustic Noise30 dBaWarm-up Time 1 hourWarranty 3 years standard3Ordering Information33120A Function/Arbitrary Waveform GeneratorAccessories includedOperating manual, service manual, quick reference guide, test data, and power cordOptionsOpt. 001Phase lock/TCXO timebaseOpt. 106BenchLink Arb software (34811A)Opt. 1CM Rack Mount Kit (34190A)*Opt. W50Additional 2-year warranty (5-year total)Opt. 910Extra manual setManual language options (please specify one)ABA US EnglishABD GermanABE SpanishABF FrenchABJ JapaneseABZ ItalianABO Taiwan ChineseAB1 KoreanAccessoriesAgilent 34161A Accessory pouchAgilent 34811A BenchLink Arb software*For racking two side-by-side, order both items belowLock-link Kit (P/N 5061-9694)Flange Kit (P/N 5063-9212)Windows®is a U.S. registered trademark of Microsoft Corporation.Agilent Technologies’ Test and Measurement Support, Services, and AssistanceAgilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measure-ment capabilities you paid for and obtain the support you need. Our extensive sup-port resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is availablefor at least five years beyond the produc-tion life of the product. Two concepts underlie Agilent’s overall support policy:“Our Promise” and “Your Advantage.”Our Promise“Our Promise” means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product informa-tion, including realistic performance spec-ifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabil-ities, at no extra cost upon request. Many self-help tools are available.Your Advantage“Your Advantage” means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve prob-lems efficiently and gain a competitive edge by contracting with us for calibration,extra-cost upgrades, out-of-warranty repairs, and on-site education and training, as wellas design, system integration, project man-agement, and other professional services. Experienced Agilent engineers and techni-cians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measure-ment accuracy for the life of those products. Get assistance with all yourtest and measurement needs at:/find/assistOr check your local phone book for the Agilent office near you.Product specifications and descriptions inthis document subject to change without notice. Copyright © 1998, 2000 Agilent Technologies Printed in U.S.A. 4/005968-0125EN。
ASL-1000测试机介绍以及布线规则.
• 二、如果测试的产品的pin比较少的话,可以尽量使用DVI测试板的资源, DVI的测试精度以及测试电压和电流的范围都会比OVI高,还有DVI_300的 测试精度比DVI_2000的要高。
• 三、TMU的使用如图:
• TMU分为A、B、HIZ 3个通道,上面的表格就是一些测试时候允许的匹配关 系,不可以随便乱组合。
三、MUX的使用:
• MUX即是ASL测试机台的供电板又是一块继电器板,上面有4*8组继电器,在 使用内部继电器的时候一定注意MUX控制的是继电器使能端,不是电源端, 这个一定要注意区分。
ASL-1000测试机介绍以及布线规则
一、ASL-1000测试机的介绍
ASL-1000的特点: 1、可以根据需要配置资源; 2、debug的使用的是Vc++; 3、可以进行多路测试(串行多路);
二、ASL-1000测试板介绍:
• 1、模拟测试: • 数字转换: ACS and Digitizer • 数字测试: TMU, TIA and DDD • 一般测试: PMU, OVI, DVI and MUX • 大电流测试: PVI and DVI 2000 • 大电压测试: OFS, MVS and HVS
• • High Voltage Floating supplies
• – OFS
Octal Floating supply
50V
•
200mA
• – MVS
Medium Voltage Supply 100V
•
100mA
• – HVS
High Voltage Supply
600 / 850V
•
10 / 7mA
• Advantages
Tektronix AFG31000系列高性能模拟函数生成器说明书
Arbitrary Function GeneratorsAFG31000 Series DatasheetThe Tektronix AFG31000 Series is a high-performance AFG with built-in arbitrary waveform generation, real-time waveform monitoring, and the largest touchscreen on the market. Providing advanced waveform generation and programming capabilities, waveform verification, and a modern touch-screen interface, the new AFG31000 is sure to delight and simplify the job of every researcher and engineer.Key performance specifications1 or2 channel modelsOutput amplitude range 1 mV P-P to 10 V P-Pinto 50 Ω loadsBasic (AFG) mode:25 MHz, 50 MHz, 100 MHz, 150 MHz, or 250 MHz sine waveforms250 MSa/s, 1 GSa/s or 2 GSa/s sample rates14-bit vertical resolutionBuilt-in waveforms include sine, square, ramp, pulse, noise, andother frequently used waveformsSweep, Burst, and Modulation modes (AM, FM, PM, FSK, andPWM)Advanced (Sequence) mode:Continuous mode (optional Sequence, Triggered and Gatedmodes)16 Mpts arbitrary waveform memory on each channel (128 Mptsoptional)Up to 256 steps in sequence mode with loop, jump and wait events Variable sampling clock 1 µSa/s to 2 GSa/sKey featuresPatented InstaView ™ technology enables engineers to see the actual waveform at the Device Under Test (DUT) in real time, without the need of an oscilloscope and probe, eliminating the uncertainty causedby mismatched impedanceSequencing option adds the ability to program long, complexwaveforms with up to 256 stepsThe 9-inch capacitive touch screen works like a smart phone and hasshort-cuts to frequently used settingsBuilt-in ArbBuilder lets you create and edit arbitrary waveforms on theinstrument, eliminating the need to connect to a PCOutputs are protected from over voltage and current to minimizepotential instrument damageCompatible with TekBench ™ software to help students set up, control,and analyze test results in the labApplicationsAdvanced researchClock and system synchronizationReplication of real world signalsComponent and circuit characterization and validationEmbedded circuit design and testGeneral purpose signal generationBasic and Advanced ModesThe AFG31000 series is the industry’s first arbitrary function generator with full function Basic (AFG) and Advanced (Sequence) modes.In Basic mode, the AFG31000 generates traditional functions and arbitrary waveforms. The touchscreen and front-panel controls make it simple to set up.Basic mode lets you change frequency without the need to worry about waveform length and sample rate. This feature is useful in analog designs that characterize filter/amplifier frequency responses or in digital designs where clock rates change frequently.Key settings are visible at a glance, and are easy to adjust using touch, numeric keypad, or rotary controlsNew with the AFG31000, Advanced mode provides the ability to generate multiple waveforms with complex timing. In this mode, you can compose a list (or a sequence) of 1 to 256 waveforms, with total waveform length up to 16 Mpts/ch (128 Mpts/ch optional) and define the ouput sequence of these waveforms. Repeat, go-to, wait, jump, and triggered events are all supported and the large memory provides space to store many waveforms or long waveforms.This feature is very useful in applications where many test cases need to be performed sequentially. Instead of loading the test cases one by one, you can put all of them in a sequence and load at one time, switching from one to another seamlessly to greatly improve the test efficiency.Advanced mode lets you build complex waveform sequences with flexible step controlsSequenced sine waveforms with different frequency and amplitude. Additionally, Advanced mode uses variable sample rate technology. Every sample in a waveform is output once and only once in each cycle, synchronized to the sample rate. Since there is no skipping or repetition, all details in the waveforms are kept. This feature is very useful for applications in which signal fidelity is extremely critical, such as IQ modulation and pulse train generation.InstaView™ technology shows the actual waveform at the DUTMost waveform generators assume they are driving a 50 Ω impedance. However, most devices under test do not have a 50 Ω impedance. This mismatch results in an inconsistency between the waveform as set on the AFG and the signal at the DUT.DatasheetWith InstaView turned off, the AFG31000 works like a traditional function generator. Due to an impedance mismatch, the AFG display shows a different waveform from the one observed at the DUT.With the patented InstaView ™technology, the AFG31000 Series can display the actual waveform at the DUT, instead of just the nominalwaveform as set on the AFG. The waveform displayed on the AFG instantly responds to changes in frequency, amplitude, waveform shape, andimpedance changes at the DUT. InstaView helps eliminate the uncertainty and measurement risk caused by impedance mismatches, without requiringadditional cables, instruments, or effort.With InstaView turned on, the AFG31000 shows the waveform as observed at the DUT.A large touch screen and smart user interfaceThe large 9-inch capacitive touch screen displays all related settings and parameters on a single screen. Similar to smart devices, you can tap or swipe to easily select, browse, locate and change settings and parameters.Frequently-used functions are immediately accessible. Familiar buttons and rotary knob controls are available for more traditional navigation.Frequently used settings are easy to access from the swipe-up menuAFG31000 SeriesBuilt-in ArbBuilder tool makes creating and editing arbitrary waveforms easier than ever In the past, you needed a PC with waveform editing software to create or edit your arbitrary waveforms. The waveform would then need to be downloaded to the AFG using either a USB stick or a data cable connection. The process was time-consuming, especially when waveforms required frequent changes.ArbBuilder is a built-in application on the AFG31000 series that lets you create and edit your arbitrary waveforms directly on the generator. You can create arbitrary waveforms with the Equation Editor tool or start from a library of standard templates. Thanks to the large capacitive touch screen, you can drag, pinch and zoom to get the detail you need.You can quickly replicate real-world waveforms captured with oscilloscopes or created by third-party software by loading CSV format data files directly into ArbBuilder from a USB memory stick.Creating an arbitrary waveform using the easy touch screen interfaceSimplified multi-unit synchronizationMost applications need one or two channels of output, but some applications require more channels. For example, in order to simulate 3-phase power signals, engineers often need to synchronize three 2-channel generators; one for the voltage and current on each phase. To do this used to be time-consuming, as it required many cable connections between the AFG units, and making changes in deep branches of the menu trees on all instruments.The AFG31000 simplifies this process with an onscreen wizard that leads you through the process of making cable connections and configuring settings to synchronize multiple generators.An on-screen wizard guides you through the process of multiple-unit synchronizationUpgradability protects your investmentThe AFG31000 provides upgrade options for bandwidth, memory extension, and sequence mode support. These options can be installed at the factory or at any time after purchase. This upgradability helps to reduce the product ownership threshold. And when your test requirements change, you can purchase and install upgrade software licenses to add higher performance features. Upgrades eliminate the concern about the return on investment during the instrument lifetime.DatasheetAFG31000 SeriesSpecificationsAll specifications are guaranteed unless noted otherwise. All specifications apply to all models unless noted otherwise.Model overviewOutput characteristicsAmplitudeOutput impedance50 ΩLoad impedance setting Selectable: 50 Ω, 1 Ω to 10.0 kΩ, High Z (Adjusts displayed amplitude according to selected load impedance)Isolation42 Vpk maximum to earth groundShort-circuit protection Signal outputs are robust against permanent shorts against floating groundOvercurrent protection When incoming current is greater than 250 mA, the output channels are protected with relays that disconnect the AFG from thedevice under test. Connection can be resumed by user after removing the incoming currentGeneral characteristics - Basic modeBasic (AFG)Run modes Continuous, Modulation, Sweep and BurstStandard waveforms Sine, Square, Pulse, Ramp, More (Noise, DC,Sin(x)/x, Gaussian, Lorentz, Exponential Rise, Exponential Decay, Haversine )Arbitrary waveformsSampling clock: 250 MSa/s, 1 GSa/s or 2 GSa/s (model and waveform length apply)Vertical resolution: 14 bitsWaveform length: 2 to 131,072 pointsSineFrequency rangeEffective maximum frequency outAmplitude flatness (1 V P-P ,relative to 1 kHz)Amplitude flatness (1 V P-P ,relative to 1 kHz), typicalHarmonic distortion (1 V P-P ),typicalDatasheetTHD, typical≤ 0.04%, 10 Hz to 20 kHz, 1 V P-PSpurious noise (1 V P-P ), typicalPhase noise, typical< -125 dBc/Hz at 20 MHz, 10 kHz offset, 1 V P-PResidual clock noise, all models -63 dBmSquareFrequency rangeRise/fall time, typicalOvershoot, typical< 3%Jitter (RMS), typical2.5 psRampFrequency rangeLinearity, typical (1 kHz, 1 V P-P ,100% symmetry)Symmetry0% to 100%AFG31000 SeriesGeneral characteristics - Basic modePulseFrequency rangePulse widthPulse width resolution 10 ps or 5 digitsPulse Duty 0.001% to 99.999% (limitations of pulse width apply)Edge transition timeEdge transition time resolution 10 ps or 4 digits Lead delay rangeLead delay resolution 10 ps or 8 digits Overshoot, typical < 2%Jitter (RMS), typical 2.5 psDCRange (into 50 Ω)Resolution (into 50 Ω) 1 mV or 4 digits Accuracy ± (1% of |setting | +1mV)NoiseBandwidth (-3 dB)Noise typeWhite GaussianInternal noiseDatasheetGeneral characteristics - Basic modeOther waveformsFrequency rangeArbitrary waveformsFrequency rangeEffective analog bandwidth (-3 dB)Waveform length2 to 131,072Sample rateVertical resolution14 bitRise/fall time, typicalJitter (RMS), typical2.5 psModulationAM, FM, PMAM modulation depth0.0 % to 120 %AM modulation resolution0.1%AFG31000 SeriesGeneral characteristics - Basic modeMinimum FM peak deviationDCMaximum FM peak deviationPM phase deviation range0° to 180°PM phase resolution0.1°FSKPWMSweepType Linear, Logarithmic Waveforms All, except Pulse, Noise, DC Sweep time 1 ms to 500 s Hold/return time0 s to 500 s Maximum total sweep time500 sAccuracy, typical: ≤ 0.4%Minimum start/stop frequency All except ARB: 1 μHzARB: 1 mHzMaximum start/stop frequencyDatasheetGeneral characteristics - Basic modeBurstWaveform All except Noise, DC Type Triggered, gatedBurst count 1 to 1,000,000 cycles or Infinite Intenal trigger rate 1 μs to 500.0 sGate and trigger sources Internal, external, remote interfaceInstaView ™Waveforms All except noise Cable (channel output to load)50 Ω BNC to BNCRun modeContinuous in Basic modeMaximum measurement range (DC + peak AC voltage)DC level measurementAmplitude measurementBandwidth (-3 dB)500 MHzFlatness, sine, 1 V P-P , into 50 ohm, relative to 1 kHz,typicalCable propagation delay measurement, typicalAFG31000 SeriesGeneral characteristics - Basic modeGeneral characteristics - Advanced modeWaveform memory size 16 Mpts (128 Mpts optional) each channel Run modeStandard: ContinuousOptional: Sequence, Triggered, GatedNumber of waveform entriesContinuous, Triggered, Gated: 1 Sequence: 1 to 256Minimum waveform length 168 pts Waveform granularity 1 pt Vertical resolution 14 bitsJump/trigger events External trigger (rising or falling edge), manual trigger, timer, SCPI commands Repeat count 1 to 1,000,000 or infinite Timer range 2 µS to 3600 S Timer resolution 4 ns or 8 digitsVariable sample rateRise/Fall time, typicalOvershoot, typical< 2%Level flatness, typical (sine, 1 V P-P ,relative to 1 kHz)Harmonic distortion, typical (sine with 64 pts/cycle, 1 V P-P )DatasheetSpurious, typical (sine with 64 pts/cycle, 1 V P-P )Spurious free dynamic range,typical (sine with 64 pts/cycle,1 V P-P )Phase noise, typical (sine with 64 pts/cycle, 1 V P-P , at 10 kHz offset)Skew controlRange -320 ns to 320 ns (channel 1 to channel 2 on dual channel models, at maximum sample rate)Resolution 100 ps or 4 digits Accuracy, typical ±(1% of |setting| + 500 ps)Initial skew, typical< 500 psSystem characteristicsOutput Frequency ResolutionFrequency accuracy±10-6 of setting (all except ARB), 0 °C to 50 °C (32 °F to 122 °F)±10-6 of setting ± 1 μHz (ARB), 0 °C to 50 °C (32 °F to 122 °F)Aging ±1.0 x 10-6 per yearPhaseRange -180° to +180°Resolution0.01° (sine)0.1° (other waveforms)Remote program interface GPIB, Ethernet 10BASE-T / 100BASE-TX / 1000BASE-T, USB 2.0Maximum configuration times,typicalPower sourceSource100-240 V, 47-63 Hz 115 V, 360-440 HzConsumption120 WAFG31000 SeriesGeneral characteristics - Advanced modeWarm up time, typical 20 minutes minimum Power on self diagnosis time < 24 s Acoustic noise < 50 dBADisplay9-inch capacitive touch screen with 800 * 480 resolutionUser interface and Help languages English, French, German, Japanese, Korean, Simplified and Traditional Chinese, Russian (user selectable)Auxiliary input characteristicsExternal modulation input, channel 1 and channel 2Input rangeInput impedance 5.2 kΩFrequency range 125 kHz (1 MSa/s)External Trigger inputLevel TTL compatible Impedance10 kΩMinimum pulse width 100 nsSlopePositive or negative selectable Trigger delay range 0 ns to 85 s Trigger delay resolution 100 ps or 5 digitsTrigger latency, typical 390 ns (trigger input to signal output)Jitter (RMS), typical 100 ps (signal output, with external trigger input in burst mode)10 MHz reference clock inputImpedance 1 kΩInput couplingACRequired input voltage swing 100 mV P-P to 5 V P-P Lock range10 MHz ±35 kHz Channel 1 external add inputImpedance 50 ΩInput range -1 V to +1 V (DC + peak AC)BandwidthDC to 10 MHz (-3 dB) at 1 V P-P DatasheetSystem characteristicsAFG31000 Series Auxiliary output characteristicsChannel 1 trigger outputLevel Positive TTL level pulse into 1 kΩImpedance50 ΩJitter, RMS, typical10 ps for all modelsOutput frequency10 MHz reference clock outImpedance50 Ω, AC coupledAmplitude 1.2 V P-P into 50 Ω loadPhysical characteristicsDimensionsHeight191.8 mm (7.55 in.)Width412.8 mm (16.25 in.)Depth143.3 mm (5.64 in.)WeightNet 4.7 kg (10.4 lb.)Shipping7.0 kg (15.4 lb.)EMC, environment, and safetyTemperatureOperating0 °C to +50 °C (32 °F to 122 °F)Nonoperating-30 °C to +70 °C (-22 °F to 158 °F)HumidityOperating≤ 80%, 0 °C to 40 °C (32 °F to104 °F)≤ 60%, > 40°C to 50°C (104 °F to 122 °F), noncondensingNonoperating5% to 90%, < 40 °C (< 104 °F), noncondensing5% to 80%, ≥ 40 °C to 60 °C (≥ 104 °F to 140 °F), noncondensing5% to 40%, > 60 °C to 70 °C (> 140 °F to 158 °F), noncondensingAltitudeOperating Up to 3,000 m (9,842 ft.)Nonoperating Up to 12,000 m (39,370 ft.)EMC compliance EN61326-1:2013, EN 61326-2-1:2013European Union EU Council Directive 2004/108/ECDatasheetEMC, environment, and safetySafety UL 61010-1:2004CAN/CSA C22.2 No. 61010-1:2004IEC 61010-1:2001Over-temperature protection Instrument is protected from over-temperature by turning off outputsAFG31000 Series Ordering InformationModelsAFG31021 1 μHz to 25 MHz sine wave, 1-channel arbitrary function generatorAFG31022 1 μHz to 25 MHz sine wave, 2-channel arbitrary function generatorAFG31051 1 μHz to 50 MHz sine wave, 1-channel arbitrary function generatorAFG31052 1 μHz to 50 MHz sine wave, 2-channel arbitrary function generatorAFG31101 1 μHz to 100 MHz sine wave, 1-channel arbitrary function generatorAFG31102 1 μHz to 100 MHz sine wave, 2-channel arbitrary function generatorAFG31151 1 μHz to 150 MHz sine wave, 1-channel arbitrary function generatorAFG31152 1 μHz to 150 MHz sine wave, 2-channel arbitrary function generatorAFG31251 1 μHz to 250 MHz sine wave, 1-channel arbitrary function generatorAFG31252 1 μHz to 250 MHz sine wave, 2-channel arbitrary function generatorOptionsFactory optionsMEM Extends arbitrary waveform memory to 128 Mpts/ch in Advanced modeSEQ Enables Sequence, Triggered and Gated modes in Advanced modeFeature upgrade after purchaseThe AFG31000 products offer several ways to easily add functionality after the initial purchase.DatasheetPower plug optionsOpt. A0North America power plug (115 V, 60 Hz)Opt. A1Universal Euro power plug (220 V, 50 Hz)Opt. A2United Kingdom power plug (240 V, 50 Hz)Opt. A3Australia power plug (240 V, 50 Hz)Opt. A5Switzerland power plug (220 V, 50 Hz)Opt. A6Japan power plug (100 V, 50/60 Hz)Opt. A10China power plug (50 Hz)Opt. A11India power plug (50 Hz)Opt. A12Brazil power plug (60 Hz)Opt. A99No power cordLanguage optionsOpt. L0English front panel overlay (default)Opt. L1French front panel overlayOpt. L2Italian front panel overlayOpt. L3German front panel overlayOpt. L4Spanish front panel overlayOpt. L5Japanese front panel overlayOpt. L6Portuguese front panel overlayOpt. L7Simplified Chinese front panel overlayOpt. L8Traditional Chinese front panel overlayOpt. L9Korean front panel overlayOpt. L10Russian front panel overlayOpt. L99No front panel overlayService optionsOpt. C3Calibration Service 3 YearsOpt. C5Calibration Service 5 YearsOpt. D1Calibration Data ReportOpt. D3Calibration Data Report 3 Years (with Opt. C3)Opt. D5Calibration Data Report 5 Years (with Opt. C5)Opt. R5Repair Service 5 Years (including warranty)Opt. T3Three Year Total Protection Plan, includes repair or replacement coverage from wear and tear, accidental damage, ESD or EOSplus preventative maintenance. Including a 5 day turnaround time and priority access to customer support Opt. T5Five Year Total Protection Plan, includes repair or replacement coverage from wear and tear, accidental damage, ESD or EOSplus preventative maintenance. Including a 5 day turnaround time and priority access to customer supportAccessories are not covered by the instrument warranty and Service Offerings.AccessoriesStandard accessories-----AFG31000 Series Arbitrary Function Generator Compliance, Installation, and Safety Instructions 012-1732-xx BNC cable shielded, 3 ft.174-4401-xx USB cable, A to B, 3 ft.-----Power cord-----NIST-traceable calibration certificate-----Three-year warranty on parts and laborRecommended accessories012-1732-xx BNC cable shielded, 3 ft.012-0991-xx GPIB cable, double shielded011-0049-02 50 Ω BNC terminatorACD4000B Soft transit caseHCTEK54Hard transit case (requires ACD4000B)WarrantyProduct warranty Three-year warranty on parts and laborTektronix is registered to ISO 9001 and ISO 14001 by SRI Quality System Registrar.Product(s) complies with IEEE Standard 488.1-1987, RS-232-C, and with Tektronix Standard Codes and Formats.Product Area Assessed: The planning, design/development and manufacture of electronic Test and Measurement instruments.AFG31000 SeriesDatasheetASEAN / Australasia (65) 6356 3900 Austria 00800 2255 4835*Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777 Belgium 00800 2255 4835*Brazil +55 (11) 3759 7627 Canada180****9200Central East Europe and the Baltics +41 52 675 3777 Central Europe & Greece +41 52 675 3777 Denmark +45 80 88 1401Finland +41 52 675 3777 France 00800 2255 4835*Germany 00800 2255 4835*Hong Kong 400 820 5835 India 000 800 650 1835 Italy 00800 2255 4835*Japan 81 (3) 6714 3086 Luxembourg +41 52 675 3777 Mexico, Central/South America & Caribbean 52 (55) 56 04 50 90Middle East, Asia, and North Africa +41 52 675 3777 The Netherlands 00800 2255 4835*Norway 800 16098People's Republic of China 400 820 5835 Poland +41 52 675 3777 Portugal 80 08 12370Republic of Korea +822 6917 5084, 822 6917 5080 Russia & CIS +7 (495) 6647564 South Africa +41 52 675 3777Spain 00800 2255 4835*Sweden 00800 2255 4835*Switzerland 00800 2255 4835*Taiwan 886 (2) 2656 6688 United Kingdom & Ireland 00800 2255 4835*USA180****9200* European toll-free number. If not accessible, call: +41 52 675 3777For Further Information. Tektronix maintains a comprehensive, constantly expanding collection of application notes, technical briefs and other resources to help engineers working on the cutting edge of technology. Please visit . Copyright © Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification andprice change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks, or registered trademarks of their respective companies.13 Nov 2018 75W-61444-2 。
基于复合衍射全息图的多路涡旋光解调技术
基于复合衍射全息图的多路涡旋光解调技术汪莹莹;李迎春;邵蔚;张卫宾;孙腾雾;朱福全【摘要】将高斯光束入射到加载有复合衍射全息图的空间光调制器(spatial light modulator,SLM)上可一次生成多个涡旋光(optical vortex,OV);反之,将相应的涡旋光入射到相同全息图上,便可还原为高斯光,实现涡旋光的解调.由于传统的涡旋光通信系统中一个全息图只能解调一路入射涡旋光,故提出了一种基于复合衍射全息图的涡旋光解调法,该方法能利用一个全息图解调多路入射涡旋光,具有较好的应用前景.搭建了一个实验系统,实现了16QAM-OFDM(quadrature amplitude modulation-orthogonal frequency division multiplexing,正交振幅调制-正交频分复用)光信号的涡旋光生成、传输和解调,将解调后的高斯光经过一系列离线处理得到了OFDM信号的星座图和各个子载波的误码率.实验结果表明,所有子载波的误码率均在前向纠错(forward error correction,FEC)门限之下,说明该方法具有良好的系统性能.%When projecting a Gauss beam onto the spatial light modulator (SLM) loaded with a composite hologram, several vortex beams are generated simultaneously. On the contrary, when projecting the corresponding vortex beam onto a hologram, the Gauss beam can be restored, realizing demodulation of the vortex beam. Traditionally, a hologram can only demodulate one incident vortex beam. In this paper a vortex beam demodulation method based on composite diffraction hologram that can demodulate several incident vor-tex beams with only one hologram is proposed, thus having a good chance of applications. An experimental system is set up to achieve generation, transmission and demodulation of vortex beams with 16 quadrature amplitude modulation-orthogonal frequency division multiplexing (QAM-OFDM) signals. After o?ine processing on the demodulated Gauss beam, constellation and bit error rate of each subcarrier for OFDM signals are acquired. The experiment results show that the bit error rates of all subcarriers are below the forward error correction (FEC) threshold.【期刊名称】《上海大学学报(自然科学版)》【年(卷),期】2017(023)005【总页数】8页(P658-665)【关键词】正交频分复用;涡旋光;复合衍射全息图;16QAM【作者】汪莹莹;李迎春;邵蔚;张卫宾;孙腾雾;朱福全【作者单位】上海大学通信与信息工程学院, 上海200444;上海大学通信与信息工程学院, 上海200444;上海大学通信与信息工程学院, 上海200444;上海大学通信与信息工程学院, 上海200444;上海大学通信与信息工程学院, 上海200444;上海大学通信与信息工程学院, 上海200444【正文语种】中文【中图分类】TN918幅度、相位、频率/波长、时间和极化是常用的电磁波物理参数,利用这些自由度可以实现信号的调制和复用,从而提高光链路的传输容量[1].随着对传输容量的需求不断增大,上述方法已经逐渐达到了极限,因此空分复用技术(spatial division multiplexing,SDM)得到了快速的发展.到现阶段为止,少模光纤和多芯光纤在提升光纤传输容量方面已得到了广泛应用[2];而另一种新型的空分复用技术——轨道角动量(orbital angular momentum,OAM)复用技术在提升传输容量和频谱效率方面也表现出较大的潜能[3],因而引起人们的广泛关注.光具有两种角动量,其中自旋角动量(spin angular momentum,SAM)对应光的偏振态,而轨道角动量使光具有螺旋相位波前,这种具有螺旋相位波前的光称为涡旋光(optical vortex,OV).涡旋光的相位具有不确定性,其中心处存在相位奇点而使得光强相消,光波振幅为0.涡旋光具有相位因子exp(ilϕ),其中ϕ为方位角,l为拓扑荷(topological charge,TC)[4],与SAM只有两个可能的取值±1不同,涡旋光的l理论上可以取(−∞,+∞)的任意值.因此轨道角动量在提高系统容量方面具有很大的潜力. 涡旋光的生成主要有如下几种方法.(1)螺旋相位板(spiral phase plate)[5].螺旋相位板具有螺旋表面,其厚度随着方位角的位置变化(lλθ/2π(n−1))而增加,其中n为材料的反射系数.由于光透过调制器处的厚度不同,从而相位的变化也不同.当一束平面光穿过螺旋相位板后,这束光便具有了螺旋相位波前.虽然这种方法从理论上说很简单,但是对于螺旋相位板的精度要求很高.(2)柱面透镜[6].通过一个透镜系统将厄密高斯(Hermit Gaussian,HG)光转化为拉盖尔高斯(Laguerre-Gaussian,LG)光.虽然这种方法转换效率较高,但是产生模式单一且透镜转换系统的结构比较复杂.(3)全息光栅[7].将螺旋相位波前与平面光的干涉条纹写到介质上形成全息光栅,当光入射到全息光栅上时,在一阶衍射级处就会产生需要的涡旋光.但是这种方法效率低,且光栅制作比较复杂.(4)空间光调制器[8].空间光调制器是一种能够对光的相位、振幅、偏振、频率等进行控制的器件,其中最常用的是反射型液晶空间光调制器.这种反射型液晶空间光调制器的原理是通过在空间光调制器上加载计算机全息图,从而生成涡旋光,该方法简单、有效、灵活,且只需将涡旋光入射到另一个加载相应全息图的空间光调制器上即可将其还原成高斯光实现解调,因此是目前最常用的涡旋光产生法.利用OAM提升系统容量主要有两种方法:①利用OAM的不同状态对数据进行编码;②将载有数据的多个OAM进行复用.前者将数据编码为多个OAM状态中的一个,后者则将携带数据的多个OAM作为不同数据流的载体.最近,有研究发现将不同的调制方式以及复用方式和OAM复用技术相结合可以显著增大传输容量和提高频谱效率[9],故本工作基于此展开了实验研究.在传统的涡旋光通信方案中,一个全息图只能解调一路入射涡旋光.本工作使用基于复合衍射全息图的涡旋光解调法,利用一个全息图解调多路不同入射涡旋光.将本方法与16QAMOFDM(quadrature amplitude modulation-orthogonal frequency division multiplexing,正交振幅调制-正交频分复用)通信系统相结合,实现基于涡旋光的OFDM通信,从信号的星座图和误码率两方面分析本系统的性能. 由于涡旋光具有螺旋相位结构,因此会产生OAM,最常见的涡旋光是LG光.LG光具有相位因子exp(ilϕ),其中每个光子都携带lh的轨道角动量.由于l可以为任意的整数,因而轨道角动量理论上可以有无限个本征态.LG光的强度分布表达式[10]为式中,zR 为瑞利长度;k为波数;w(z)为距离束腰z处的光宽度;l为拓扑荷;(2p+|l|+不同拓扑荷的OAM之间是相互正交的(见式(2)),这为OAM的复用打下了基础[11]: 式中,Um(r,θ,z)是拓扑荷为m的OAM光,U∗n(r,θ,z)是拓扑荷数为n的OAM光的共轭.当m/=n时,上述积分为0,即满足正交条件.本工作利用加载全息图的空间光调制器实现涡旋光的生成和解调,其原理如图1和2所示.图1(a)为将高斯光入射到具有特定相位结构的全息图上,生成具有螺旋相位的涡旋光,不同相位结构的全息图可将入射光转换为不同拓扑荷的涡旋光.图1(b)为高斯光转换为涡旋光前后的光强分布图,从图中可以看出转换后的涡旋光中心处光强为0,呈环状结构.图2(a)将涡旋光入射到具有特定相位结构的全息图上,将涡旋光还原为高斯光,图2(b)为涡旋光还原为高斯光前后的光强分布图,从图中可以看出中心光强为0的涡旋光还原为了高斯光.本工作提出的涡旋光自由空间通信方案的实验平台如图3所示.图中,APD为雪崩光电二极管(avalanche photo diode).在发射端,OFDM信号由Matlab生成,将OFDM信号送入任意波形发生器(arbitrary waveform generator,AWG),经过放大后再将该信号送入分布式反馈(distributed feedback laser,DFB),即激光器进行电光调制.随后将此信号投射到加载叉形全息图的SLM1上将高斯光转换为涡旋光,经由透镜入射在加载了复合衍射全息图的SLM2上实现将涡旋光还原为高斯光.在接收端,首先将空间高斯光耦合进准直器中,然后将经过光探测器后的电信号送入示波器中进行采样,最后进行数字信号处理.OFDM信号、任意波形发生器以及示波器的参数如表1所示[12].图4为l=2和l=4的涡旋光解调原理图.SML1上分别加载如图4(a),(e)所示的叉形光栅全息图,这两个全息图将高斯入射光分别转化为l=2和l=4涡旋光,其光强分布如图4(b),(f)所示.SLM2上加载复合衍射全息图如图5所示,由在竖直和水平方向中心分别有两个错位的叉形全息图叠加形成.当直接投射到该全息图上的入射光为高斯光时将生成9个拓扑荷分别为的涡旋光阵列(见图4(c),(g)).如果将由SLM1产生的拓扑荷为+2的涡旋光投射到SLM2上,原阵列涡旋光的拓扑荷分别转化为其光强分布图如图4(d)所示.对比两个阵列图可以发现,SLM1生成的拓扑荷为+2的涡旋光将阵列涡旋光中两个拓扑荷为+2的涡旋光还原成高斯光.而将由SLM1产生的拓扑荷为+4的涡旋光投射到SLM2上时,原涡旋光阵列的拓扑荷转化为强分布如图4(h)所示.从图中可以看出,原阵列涡旋光中拓扑荷为+4的涡旋光被还原为高斯光.同理,如果SLM1上生成l=−2和l=−4的涡旋光,便能将原阵列涡旋光中拓扑荷分别为−2和−4的涡旋光还原为高斯光.将SLM1生成的l=2的涡旋光经由SLM2进行解调,解调出的高斯光通过光阑进行空间滤波,其光强分布如图6所示.随后将空间高斯光注入光准直器中传给光探测器进行光电转换,由示波器进行采样并用Matlab 作离线处理.离线处理得到的16QAM-OFDM信号星座图和误码率如图7~9所示,其中图7是有代表性的3,13,22以及25号子载波的星座图;图8,9分别为两路OFDM信号各个有效子载波的误码率曲线.从图中可以看出,各个子载波的误码率均在前向纠错(forward error correction,FEC)门限之下,说明本工作提出的基于复合衍射全息图的多路涡旋光解调方案具有良好的系统性能.由于DAC采样函数滚降的作用,造成高端子载波衰落较为严重,因而从图8中可以看出,第28号子载波的性能较其他子载波差.图10为l=2的涡旋光解调后,在不同接收光功率条件下的误码率曲线.基于传统的涡旋光通信系统中一个全息图只能解调一路入射涡旋光的问题,本工作提出了一种基于复合衍射全息图的涡旋光解调法,能够利用一个全息图解调多路入射涡旋光.搭建了一个实验系统,实现了两路16QAM-OFDM信号涡旋光的生成传输和解调实验,并将解调后的高斯光经过一系列离线处理得到了16QAM-OFDM信号的星座图和误码率.两路信号各个子载波的误码率均低于FEC门限值,说明本方法具有良好的系统性能以及较好的应用前景.如果对该复合衍射全息图进行优化就可以实现对更多不同拓扑荷涡旋光的解调.【相关文献】[1]WINZER P J.Modulation and multiplexing in optical communications[C]//Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference,CLEO/QELS.2009:1-2.[2]KObAYASHI T,TAkARA H,SANO A,et al.2×344 Tb/s propagation-direction interleaved transmission over 1 500 km MCF enhanced by multicarrier full electric-f i eld digital back-propagation[C]//Optical Communication European Conference and Exhibition on ECOC.2013:1-3.[3]WANG J,WILLNER ing orbital angular momentum modes for opticaltransmission[C]//Optical Fiber Communications Conference and Exhibition.2014:1-3. [4]FORbFS A,MCLAREN M.Optical angular momentum[J].Institute of Physics Publishing,2003,86(7):365.[5]ALGORRI J F,URRUCHI V,GARCIA-CAMARA B,et al.Generation of optical vortices by an ideal liquid crystal spiral phase plate[J].Electron Device Letters,2014,35(8):856-858. [6]ALLEN L,PADGETT M,BAbIkER M.The orbital angular momentum of light[J].Progress in Optics,1999,39(1/2/3):291-372.[7]CURTIS J E,KOSS B A,GRIER D G,et al.Dynamic holographic optical tweezers[J].Optics Communications,2002,207:169-175.[8]WILLNER A E,WANG J.Optical communication using light beams carrying orbital angular momentum[C]//CLEO Technical Digest.2012:1-2.[9]WILLNER A E.Orbital angular momentum transmission[C]//European Conference and Exhibition on Optical Communication.2013:81-83.[10]YAO A M,PADGETT M J.Orbital angular momentum:origins,behavior and applications[J].Advances in Optics and Photonics,2011,3(2):161-204.[11]黄铭,毛福春,曾佳,等.轨道角动量复用技术[J].中国无线电,2013(5):34-36.[12]汪敏,虞礼辉,冯俊飞,等.基于异步时钟的高速实时光OFDM收发系统[J].上海大学学报(自然科学版),2013,19(3):250-253.。
外部中断:边沿触发与电平触发区别[ZT]
外部中断:边沿触发与电平触发区别[ZT]51单片机的外部中断有两种触发方式可选:电平触发和边沿触发。
选择电平触发时,单片机在每个机器周期检查中断源口线,检测到低电平,即置位中断请求标志,向CPU 请求中断。
选择边沿触发方式时,单片机在上一个机器周期检测到中断源口线为高电平,下一个机器周期检测到低电平,即置位中断标志,请求中断。
这个原理很好理解。
但应用时需要特别注意的几点:1) 电平触发方式时,中断标志寄存器不锁存中断请求信号。
也就是说,单片机把每个机器周期的S5P2采样到的外部中断源口线的电平逻辑直接赋值到中断标志寄存器。
标志寄存器对于请求信号来说是透明的。
这样当中断请求被阻塞而没有得到及时响应时,将被丢失。
换句话说,要使电平触发的中断被CPU响应并执行,必须保证外部中断源口线的低电平维持到中断被执行为止。
因此当CPU正在执行同级中断或更高级中断期间,产生的外部中断源(产生低电平)如果在该中断执行完毕之前撤销(变为高电平)了,那么将得不到响应,就如同没发生一样。
同样,当CPU在执行不可被中断的指令(如RETI)时,产生的电平触发中断如果时间太短,也得不到执行。
2) 边沿触发方式时,中断标志寄存器锁存了中断请求。
中断口线上一个从高到低的跳变将记录在标志寄存器中,直到CPU响应并转向该中断服务程序时,由硬件自动清除。
因此当CPU正在执行同级中断(甚至是外部中断本身)或高级中断时,产生的外部中断(负跳变)同样将被记录在中断标志寄存器中。
在该中断退出后,将被响应执行。
如果你不希望这样,必须在中断退出之前,手工清除外部中断标志。
3) 中断标志可以手工清除。
一个中断如果在没有得到响应之前就已经被手工清除,则该中断将被CPU忽略。
就如同没有发生一样。
4) 选择电平触发还是边沿触发方式应从系统使用外部中断的目的上去考虑,而不是如许多资料上说的根据中断源信号的特性来取舍。
比如,有的书上说(《Keil C51使用技巧及实战》),就有类似的观点。
基于级联MZM和PM生成光频梳实验研究
modulator (PM) is researched, and an optical fiber link is built on the theoretical basis for experimental verification, which can produce optical frequency combs with a signal-to-noise ratio of about 35 dBm, a flatness of 4.5 dBm and about 22 comb teeth at most. The feasibility of the scheme is verified by researching on the change of spectrogram at different frequencies and powers in experiments.
图1 MZM级联PM原理图
设单频入射光信号表达式为:Em = Eo exp(ja)ot), 其中竝是入射光场的强度,%是中心频率,激光信
号首先通过MZM,施加在上下两端电压分别为 尬)、V2(t),有下式
%(/) = VDC1 + Vrfi cos((u(.1i)
(1)
%(/) = %C2 + VrF2 COS(<Wc2i)
154&5
1 549.5 1 550.5 波长/nm
1 551.15
图5当RF=15GHz时,不同功率下的谱线图
map、
槪 祢
图3当RF=5GHz时,不同功率下的谱线图
awg工作原理
awg工作原理AWG(Arbitrary Waveform Generator)是一种可以产生任意波形信号的仪器。
它通过数字信号处理技术,将数字信号转换为模拟信号输出,能够精确地生成各种复杂的波形,如正弦波、方波、三角波、脉冲波等。
AWG工作原理主要包括数字信号生成、数模转换和模拟输出三个主要环节。
AWG通过数字信号生成模块产生所需的波形信号。
用户可以通过仪器的操作界面或者计算机软件控制,输入所需的波形参数,比如频率、幅值、相位等。
AWG内部的数字信号生成器会根据用户的设置,生成相应的数字信号。
这些数字信号可以是离散的采样点,也可以是连续的波形数据。
接下来,AWG将生成的数字信号经过数模转换模块,将其转换为模拟信号。
数模转换器一般采用高速数字模拟转换芯片(DAC),能够将数字信号以高精度的方式转换为模拟电压信号。
在这个过程中,AWG会根据数模转换器的位数和采样率等参数,将数字信号转换成相应的模拟波形。
AWG通过模拟输出模块将模拟波形信号输出。
模拟输出模块通常由电压放大器、滤波器等组成,用于增强信号的幅度和滤除噪声。
经过模拟输出模块的处理,AWG能够将所生成的波形信号以高质量的方式输出到外部设备,如示波器、功率放大器等。
AWG工作原理的关键在于数字信号生成和数模转换两个环节。
数字信号生成器通过内部的时钟源和数字信号处理算法,能够高速、准确地产生各种复杂的波形信号。
数模转换器则通过高速、高精度的模拟电压输出,实现对数字信号的精确还原。
而模拟输出模块则起到信号放大和滤波的作用,确保输出的波形信号质量。
AWG广泛应用于各个领域的测试和实验中。
在电子学领域,AWG可以用于模拟电路的测试和调试,如频率响应测试、时域响应测试等。
在通信领域,AWG可以生成各种调制信号,用于通信设备的性能测试和验证。
在生命科学领域,AWG可以用于生物电信号的模拟和仿真,如心电信号、脑电信号等。
另外,AWG还被广泛应用于教学实验中,用于演示和验证各种信号的特性和处理方法。
AFG3000系列功能、伪随机波形和脉冲生成器数据手册说明书
Arbitrary/Function GeneratorsAFG3011/3021B/3022B/3101/3102/3251/3252DatasheetFeatures&Benefits10MHz,25MHz,100MHz,or240MHz Sine Waveforms14bits,250MS/s,1GS/s,or2GS/s Arbitrary WaveformsAmplitude up to20V p-p into50ΩLoads5.6in.Display for Full Confidence in Settings and Waveform ShapeMultilanguage and Intuitive Operation Saves Setup TimePulse Waveform with Variable Edge TimesAM,FM,PM,FSK,PWMSweep and BurstDual-channel Models Save Cost and Bench SpaceUSB Connector on Front Panel for Waveform Storage on Memory DeviceUSB,GPIB,and LANLabVIEW and LabWindows/IVI-C DriversApplicationsElectronic Test and DesignSensor SimulationFunctional TestEducation and Training Product DescriptionUnmatched performance,versatility,intuitive operation,and affordability make the AFG3000Series of Function,Arbitrary Waveform,and Pulse Generators the most useful instruments in the industry.Superior Performance and VersatilityUsers can choose from12different standard waveforms.Arbitrary waveforms can be generated up to128K in length at high sampling rates.On pulse waveforms,leading and trailing edge time can be set independently.External signals can be connected and added to the output signal.Dual-channel models can generate two identical or completely different signals.All instruments feature a highly stable time base with only ±1ppm drift per year.Intuitive User Interface Shows More Information at a Single GlanceA large screen shows all relevant waveform parameters and graphical wave shape at a single glance.This gives full confidence in the signal settings and lets you focus on the task at hand.Shortcut keys provide direct access to frequently used functions and parameters.Others can be selected conveniently through clearly structured menus.This reduces the time needed for learning and relearning how to use the instrument.Look and feel are identical to the world's most popular TDS3000Oscilloscopes. ArbExpress™Software Included for Creating Waveforms with EaseWith this PC software waveforms can be seamlessly imported from any Tektronix oscilloscope,or defined by standard functions,equation editor, and waveformmath.1981DatasheetCharacteristicsAFG3000Series CharacteristicsCharacteristic AFG3011AFG3021BAFG3022B AFG3101AFG3102AFG3251AFG3252Channels11/21/21/2 Waveforms Sine,Square,Pulse,Ramp,Triangle,Sin(x)/x,Exponential Rise and Decay,Gaussian,Lorentz,Haversine,DC,Noise Sine Wave1µHz to10MHz1µHz to25MHz1µHz to100MHz1µHz to240MHz Sine wave in Burst Mode1µHz to5MHz1µHz to12.5MHz1µHz to50MHz1µHz to120MHz Effective maximum frequencyout10MHz25MHz100MHz240MHz Amplitude Flatness(1V p-p)<5MHz±0.15dB±0.15dB±0.15dB±0.15dB 5MHz to10MHz±0.3dB———5MHz to20MHz—±0.3dB±0.3dB±0.3dB 20MHz to25MHz—±0.5dB±0.3dB±0.3dB 25MHz to100MHz——±0.5dB±0.5dB 100MHz to200MHz———±1.0dB 200MHz to240MHz———±2.0dB Harmonic Distortion(1V p-p)10Hz to20kHz<-60dBc<-70dBc<-60dBc<-60dBc 20kHz to1MHz<-55dBc<-60dBc<-60dBc<-60dBc 1MHz to5MHz<-45dBc<-50dBc<-50dBc<-50dBc 5MHz to10MHz<-45dBc<-50dBc<-37dBc<-37dBc 10MHz to25MHz—<-40dBc<-37dBc<-37dBc >25MHz——<-37dBc<-30dBc THD<0.2%(10Hz–20kHz,1V p-p)Spurious(1V p-p)10Hz to1MHz<-60dBc<-60dBc<-60dBc<-50dBc 1MHz to10MHz<-50dBc———1MHz to25MHz—<-50dBc<-50dBc<-47dBc >25MHz——<-50dBc+6dBc/octave<-47dBc+6dBc/octave Phase noise,typical<-110dBc/Hz at10MHz,10kHz offset,1V p-p<-110dBc/Hz at20MHz,10kHz offset,1V p-p Residual clock noise-63dBm-63dBm-57dBm-57dBm Square Wave1µHz to5MHz1µHz to12.5MHz1µHz to50MHz1µHz to120MHz Rise/Fall time≤50ns≤18ns≤5ns≤2.5ns Jitter(RMS),typical500ps500ps200ps100psRamp Wave1µHz to100kHz1µHz to250kHz1µHz to1MHz1µHz to2.4MHz Linearity,typical≤0.2%of peak output≤0.1%of peak output≤0.15%of peak output≤0.2%of peak output Symmetry0.0%to100.0%0.0%to100.0%Pulse Wave1mHz to5MHz1mHz to12.5MHz1mHz to50MHz1mHz to120MHz Pulse width80.00ns to999.99s30.00ns to999.99s8.00ns to999.99s 4.00ns to999.99s Resolution10ps or5digitsPulse duty0.001%to99.999%(Limitations of pulse width apply)Edge transition time50ns to625s18ns to625s5ns to625s 2.5ns to625s Resolution10ps or4digits10ps or4digitsLead delayRange(Continuous Mode):0ps to Period(Triggered/Gated Burst Mode):0ps to Period–[Pulse Width+0.8*(Leading Edge Time+Trailing Edge Time)] Resolution10ps or8digitsOvershoot,typical<5%Jitter(RMS),typical500ps500ps200ps100psArbitrary/Function Generators—AFG3011/3021B/3022B/3101/3102/3251/3252Characteristic AFG3011AFG3021BAFG3022B AFG3101AFG3102AFG3251AFG3252Other Waveforms1µHz to100kHz1µHz to250kHz1µHz to1MHz1µHz to2.4MHz Noise Bandwidth(-3dB)10MHz25MHz100MHz240MHz Noise type White GaussianDC(into50Ω)-10V to+10V-5V to+5V-5V to+5V-2.5V to+2.5V Arbitrary Waveforms1mHz to5MHz1mHz to12.5MHz1mHz to50MHz1mHz to120MHz Arbitrary waveforms in BurstMode1mHz to2.5MHz1mHz to6.25MHz1mHz to25MHz1mHz to60MHzEffective analogbandwidth(-3dB)8MHz34MHz100MHz225MHz Nonvolatile memory4waveforms4waveforms4waveforms4waveformsMemory:Sample rate2to128K:250MS/s2to128K:250MS/s>16K to128K:250MS/s2to16K:1GS/s >16K to128K:250MS/s 2to16K:2GS/sVertical resolution14bits14bits14bits14bits Rise/Fall time≤80ns≤20ns≤8ns≤3nsJitter(RMS)4ns4ns1ns at1GS/s4ns at250MS/s 500ps at2GS/s 4ns at250MS/sAmplitude,50ΩLoad20mV p-p to20V p-p10mV p-p to10V p-p20mV p-p to10V p-p≤200MHz:50mV p-p to5V p-p>200MHz:50mV p-p to4V p-p Amplitude,Open Circuit40mV p-p to40V p-p20mV p-p to20V p-p40mV p-p to20V p-p≤200MHz:100mV p-p to10V p-p>200MHz:100mV p-p to8V p-p Accuracy±(2%of setting+2mV)(1kHz sine wave,0V offset,>20mV p-p amplitude)±(1%of setting+1mV)(1kHz sine wave,0V offset,>10mV p-p amplitude)Resolution0.1mV p-p,0.1mV RMS,1mV,0.1dBm or4digitsUnits V p-p,V RMS,dBm(sine wave only)Output impedance50ΩLoad impedance setting Selectable:50Ω,1Ωto10.0kΩ,High Z(Adjusts displayed amplitude according to selected load impedance) Isolation42V pk maximum to earthShort-circuit protection Signal outputs are robust against permanent shorts againstfloating groundExternal voltage protection To protect signal outputs against external voltages use fuse adapter013-0345-xxDC offset range,50Ωload±(10V pk–Amplitude pp/2)±(5V pk–Amplitude pp/2)±5V pk DC±2.5V pk DC DC offset range,open circuit±(20V pk–Amplitude pp/2)±(10V pk–Amplitude pp/2)±10V pk DC±5V pk DC Accuracy±(2%of|setting|+10mV+1%of amplitude(V p-p))±(1%of|setting|+5mV+0.5%of amplitude(V p-p))Resolution1mVModulationAM,FM,PMCharacteristic DescriptionCarrier Waveforms All,except Pulse,Noise,and DCSource Internal/ExternalInternal Modulating Waveform Sine,square,ramp,noise,ARB (AM:maximum waveform length4,096; FM/PM:maximum waveform length2,048)Internal ModulatingFrequency2mHz to50.00kHz AM Modulation Depth0.0%to+120.0% Min FM Peak Deviation DCMax FM Peak Deviation See chart,belowModulation:Max FM Peak DeviationCharacteristic AFG3011AFG3021BAFG3022BAFG3101AFG3102AFG3251AFG3252Sine5MHz12.5MHz50MHz120MHzSquare 2.5MHz 6.25MHz25MHz60MHzARB 2.5MHz 6.25MHz25MHz60MHzOthers50kHz125kHz500kHz 1.2MHzPM Phase Deviation–0.0°to+180.0°3DatasheetFrequency Shift KeyingCharacteristic DescriptionCarrier Waveforms All,except Pulse,Noise,and DC Source Internal/ExternalInternal ModulatingFrequency2mHz to1.000MHzNumber of Keys2Pulse Width ModulationCharacteristic DescriptionCarrier Waveform PulseSource Internal/ExternalInternal Modulating Waveform Sine,square,ramp,noise,ARB (maximum waveform length2,048)Internal ModulatingFrequency2mHz to50.00kHz Deviation0%to50.0%of pulse period SweepCharacteristic DescriptionWaveforms All,except Pulse,Noise,and DC Type Linear,logarithmicSweep Time1ms to300sHold/Return Time0ms to300sMax Total Sweep Time300sResolution1ms or4digitsTotal Sweep TimeAccuracy,typical≤0.4%Min Start/Stop Frequency All except ARB:1µHz ARB:1mHzMax Start/StopFrequencySee chart,below Sweep:Max Start/Stop FrequencyCharacteristic AFG3011AFG3021BAFG3022B AFG3101AFG3102AFG3251AFG3252Sine10MHz25MHz100MHz240MHz Square5MHz12.5MHz50MHz120MHz ARB5MHz12.5MHz50MHz120MHz Others100kHz250kHz1MHz 2.4MHzBurstCharacteristic DescriptionWaveforms All,except Noise and DCType Triggered,gated(1to1,000,000cycles or Infinite) Internal Trigger Rate1μs to500.0sGate and Trigger Sources Internal,external,remote interfaceAuxiliary InputsCharacteristic DescriptionModulation Inputs Channel1,Channel2Input range All except FSK:±1VFSK:3.3V logic levelImpedance10kΩFrequency range DC to25kHz(122kS/s)External Triggered/Gated Burst InputLevel TTL compatibleImpedance10kΩPulse width100ns minimumSlope Positive/Negative,selectableTrigger delay0.0ns to85.000sResolution100ps or5digitsJitter(RMS),typical Burst:<500ps(Trigger input to signal output)10MHz Reference InputImpedance1kΩ,AC coupledRequired InputVoltage Swing100mV p-p to5V p-pLock Range10MHz±35kHzExternal Channel1Add InputAFG3101,AFG3102,AFG3251,AFG3252onlyImpedance50ΩInput range-1V to+1V(DC+peak AC)Bandwidth DC to10MHz(-3dB)at1V p-pAuxiliary OutputsCharacteristic DescriptionChannel1Trigger OutputLevel Positive TTL level pulse into1kΩImpedance50ΩJitter(RMS),typical AFG3011/21B/22B:500psAFG3101/02:200psAFG3251/52:100psMax Frequency 4.9MHz(4.9MHz to50MHz:A fraction of the frequency is output;>50MHz:no signal is output)10MHz Reference Out AFG3101,AFG3102,AFG3251,AFG3252onlyImpedance50Ω,AC coupledAmplitude 1.2V p-p into50ΩloadArbitrary/Function Generators—AFG3011/3021B/3022B/3101/3102/3251/3252Common CharacteristicsCharacteristic DescriptionFrequency SettingResolution1μHz or12digitsPhase(except DC,Noise,Pulse)Range-180°to+180°Resolution0.01°(sine),0.1°(other waveforms)Internal Noise Add When activated,output signal amplitude is reduced to50%Level0.0%to50%of amplitude(V p-p)settingResolution1%Main Output50ΩEffectiveFrequencySwitching Speed2ms using remote control(sequencing not available)Internal Frequency ReferenceStability All except ARB:±1ppm,0°C to50°CARB:±1ppm±1µHz,0°C to50°CAging±1ppm per yearRemote Programming GPIB,LAN10BASE-T/100BASE-TX,USB1.1 Compatible with SCPI-1999.0and IEEE488-2standardsConfigurationtimes,typicalUSB LAN GPIBFunctionchange95ms103ms84msFrequencychange2ms19ms2msAmplitudechange60ms67ms52msSelect userARB88ms120ms100msData downloadtime for4000pointwaveform data,typical20ms84ms42msPower Source100to240V,47to63Hz,or115V,360to440Hz PowerConsumptionLess than120WWarm-up Time,typical20minutesPower-on SelfCalibration,typical<16sAcoustic Noise,typical<50dBADisplay AFG3021B:5.6in.Monochrome LCDAll others:5.6in.Color LCDUser Interface and Help Language English,French,German,Japanese,Korean,Simplified andTraditional Chinese,Russian(user selectable)Physical CharacteristicsBenchtop ConfigurationDimensions mm in.Height156.3 6.2Width329.613.0Depth168.0 6.6Weight kg lb.Net 4.59.9Shipping 5.912.9Environmental and Safety CharacteristicsCharacteristic DescriptionTemperatureOperating0°C to+50°CNonoperating-30°C to+70°CHumidityOperating≤+40°C:≤80%>+40°C to50°C:≤60%Altitude Up to10,000ft./3,000mEMC ComplianceEuropean Union EN61326:1997Class AEN61000-3-2:2000,and EN61000-3-3:1995IEC61000-4-2:1999,-4-3:2002,-4-4:2004,-4-5:2005,-4-6:2003,-4-11:2004Australia EN61326:1997Safety UL61010-1:2004CAN/CSA C22.2No.61010-1:2004IEC61010-1:20015DatasheetBNC Fuse Adapter and0.125A FuseOrdering InformationAFG3011,AFG3021B,AFG3022B,AFG3101,AFG3102, AFG3251,AFG3252Arbitrary/Function GeneratorIncludes:Quick-start user manual,power cord,USB cable,CD-ROM with programmer manual,service manual,LabView and IVI drivers,CD-ROM with ArbExpress™software,and NIST-traceable calibration certificate.Please specify power plug when ordering.International Power PlugsOption DescriptionOpt.A0North America powerOpt.A1Universal EURO powerOpt.A2United Kingdom powerOpt.A3Australia powerOpt.A5Switzerland powerOpt.A6Japan powerOpt.A10China powerOpt.A11India powerOpt.A99No power cord or AC adapterNote:Includes front-panel overlay.Manual OptionsOption DescriptionOpt.L0English(071-1631-xx)Opt.L1French(071-1632-xx)Opt.L2Italian(071-1669-xx)Opt.L3German(071-1633-xx)Opt.L4Spanish(071-1670-xx)Opt.L5Japanese(071-1634-xx)Opt.L7Simple Chinese(071-1635-xx)Opt.L8Traditional Chinese(071-1636-xx)Opt.L9Korean(071-1637-xx)Opt.L10Russian(071-1638-xx)Opt.L99No manual ServiceOption DescriptionOpt.C3Calibration Service3YearsOpt.C5Calibration Service5YearsOpt.CA1Single calibration event or coverage for the designatedcalibration interval,whichever comesfirstOpt.D1Calibration Data ReportOpt.D3Calibration Data Report3Years(with Opt.C3)Opt.D5Calibration Data Report5Years(with Opt.C5)Opt.R5Repair Service5YearsOpt.SILV200Standard Warranty Extended to5Years(AFG3011,AFG3021B,AFG3022B,AFG3101,and AFG3102) Opt.SILV400Standard Warranty Extended to5Years(AFG3251andAFG3252)WarrantyThree-year warranty on parts and labor.Recommended AccessoriesAccessory DescriptionRackmount Kit RM3100Fuse adapter,BNC-Pto BNC-R013-0345-xxFuse set,3pcs,0.125A.159-0454-xxBNC cable shielded,3ft.012-0482-xxBNC cable shielded,9ft.012-1256-xxGPIB cable,doubleshielded012-0991-xxTektronix is registered to ISO9001and ISO14001by SRI Quality SystemRegistrar.Product(s)complies with IEEE Standard488.1-1987,RS-232-C,and with TektronixStandard Codes and Formats.Arbitrary/Function Generators—AFG3011/3021B/3022B/3101/3102/3251/32527Datasheet Contact Tektronix:ASEAN/Australasia(65)63563900Austria0080022554835*Balkans,Israel,South Africa and other ISE Countries+41526753777Belgium0080022554835*Brazil+55(11)37597627Canada180********Central East Europe and the Baltics+41526753777Central Europe&Greece+41526753777Denmark+4580881401Finland+41526753777France0080022554835*Germany0080022554835*Hong Kong4008205835India0008006501835Italy0080022554835*Japan81(3)67143010Luxembourg+41526753777Mexico,Central/South America&Caribbean52(55)56045090Middle East,Asia,and North Africa+41526753777The Netherlands0080022554835*Norway80016098People’s Republic of China4008205835Poland+41526753777Portugal800812370Republic of Korea00180082552835Russia&CIS+7(495)7484900South Africa+41526753777Spain0080022554835*Sweden0080022554835*Switzerland0080022554835*Taiwan886(2)27229622United Kingdom&Ireland0080022554835*USA180*********European toll-free number.If not accessible,call:+41526753777Updated10February2011For Further Information.Tektronix maintains a comprehensive,constantly expandingcollection of application notes,technical briefs and other resources to help engineers workingon the cutting edge of technology.Please visit Copyright©Tektronix,Inc.All rights reserved.Tektronix products are covered by U.S.and foreign patents,issued and rmation in this publication supersedes that in all previously published material.Specification and price change privileges reserved.TEKTRONIX and TEK are registered trademarks ofTektronix,Inc.All other trade names referenced are the service marks,trademarks,or registered trademarksof their respective companies.27Jul201276W-18656-5。
Tektronix Arbitrary Function Generator(AFG)产品说明书
IntroductionNearly all consumer products today have circuits or devices that require the input of specific electronic signals in order for the product to perform correctly. This input could be as simple as the signal from an automotive knock sensor, or as complex as a serial data communication bus signal such as Controller Area Network (CAN) or Inter IC Bus (I 2C) signal. When designing and testing these devices, a mechanism is required to replicate the input signals. In many cases it may also be useful to add noise or other anomalies to the signals to test the devices under real world and stress conditions. A common approach is to create these signals using software applications or just capture a live signalusing an oscilloscope. This created or captured waveform isthen loaded in an Arbitrary/Function Generator (AFG) such as the AFG3000 Series and AFG2000 Series from Tektronix. The AFG can replicate this signal repeatedly to test the final circuit design in a controlled environment such as a temperature chamber or EMC testing room. Since replicated signals can be easily modified they allow control over the testing to verify full reliability of the device being tested. Some oscilloscopes, like the MDO3000 and MDO4000C Series, include an integrated AFG and can capture, modify and replicate the signal all in one instrument.This application note will guide you through the steps required to replicate real world signals using the Tektronix AFG product and ArbExpress software.Replicating Real World Signals with an Arbitrary/Function GeneratorApplication NoteAFG Basics First, let’s discuss what an Arbitrary/Function Generator is. Fundamentally, the Arbitrary Waveform Generator part of the AFG is a sophisticated playback system that produces waveforms based on stored digital data that describes the constantly changing voltage levels of an AC signal. To put the arbitrary concept in familiar terms, it is much like a CD player that reads out a digitally encoded analog audio signal from a disk in real time. The Arbitrary Waveform capability of the AFG offers a degree of versatility that few instruments can match. With its ability to produce almost any waveform imaginable, the AFG embraces applications ranging from automotive sensor simulation to wireless network stress testing.The Function Generator part of the AFG produces stable as well as accurate and agile waveforms in standard shapes – particularly the all-important sine and square waves. Agility is the ability to change quickly and cleanly from one frequency to another. Most AFGs offer some subset of the following familiar wave shapes: Sine Square Triangle Sweep Pulse Ramp M odulation HaversineFigure 1.Flow chart of signal replication process.Application Note/signal_sources2Today’s AFGs are designed to provide improved phase, frequency, and amplitude control of the output signal. Moreover, many AFGs offer a way to modulate the signal from internal or external sources, which is essential for some types of standards compliance testing. Creating Arbitrary WaveformsThroughout most of this note, we will be discussing the Arbitrary Waveform capability of the AFG. In order touse it, you must first create the signal to be generated. Several methods are available for this. The more common approaches are to use software to draw the waveform from specifications or to capture the waveform using an oscilloscope and then send this to the AFG for generation. We will explore both of these methods.Capture Engine Knock Sensor SignalFor our first example we will capture an automotive knock sensor output using an oscilloscope, send this to theAFG and use the replicated signal to evaluate the engine computer control system.A knock sensor is a small piezo-electrical device that is found on any newer automobile. When coupled with the Electronic Control Modules (ECM), it can identify when knock occurs and retard the ignition timing accordingly. Generating different amplitudes and timing of this knock sensor signal can greatly speed up overall testing of the ECM design and eliminate the requirement to wait for the engine to knock in order to accurately test the ECM device. Without the use of a signal source to generate this signal, evaluation of the design would be a much harder task. To capture a real life knock signal including all overlaid distortions and anomalies, one needs to probe the output signal of the piezo-sensor and capture the signal while the engine is running. The sensor signal should represent the signal and timing produced by all cylinders of that particular engine. The next step is to extract one knock of one cylinder and replicate this signal with the AFG.In our case, we first capture a non-distorted signal and potentially add anomalies throughout the test procedure. Waiting for the engine to knock can be a tedious task. Therefore, to capture the signal we will use a known good sensor, remove the sensor from the engine and tap it with a small wrench to simulate an engine knock. This approach works very well to simulate how the sensor reacts to a true engine knock. The resultant waveform is then capturedon a Tektronix portable TPS2000 Series oscilloscope. It represents the ideal signal of one knock and one cylinder of the Engine. See Figure 2.Figure 2.Knock sensor captured on oscilloscope./signal_sources3Replicating Real World Signals with an Arbitrary/Function GeneratorUsing ArbExpress™ Software Scope Acquisition WizardOnce the signal has been captured on the oscilloscope,we can use Tektronix’ AFG’s free companion software, “ArbExpress” and its Scope Acquisition Wizard to grabthe waveform from the oscilloscope. This is done via the oscilloscope’s supported TekVisa connections such as LAN, GPIB or RS232. The acquisition wizard takes you through the required steps which ensure you grab just the portionof the waveform you are interested in. If you want the complete waveform, ArbExpress™ software can also import it directly or open .CSV file formats that many oscilloscopes support.Adding Noise to the Imported Waveform After importing the waveform, ArbExpress software allows for editing of the waveform. Various tools such as free hand drawing, point draw and waveform math give the user ample freedom and flexibility to modify the waveform. To test the final device under real world or extreme conditions one can easily add noise or anomalies to the waveform. This eliminates the effort of capturing a "distorted" signal with an oscilloscope. One can simply add the distortions with ArbExpress.Transfer Edited Waveform to AFGOnce the waveform looks exactly how you want it, you can easily transfer it using ArbExpress software directlyto an AFG, an MDO3000 with option MDO3AFG, or an MDO4000C with option MDO4AFG, through a USB, LAN or GPIB interface. If desired, the waveform can also be saved on a USB memory device and opened directly on the AFG instrument using its USB port on the front panel. Via the USB memory device, libraries of waveforms can be saved and opened effortlessly.Figure 3. ArbExpress Scope Acquisition Wizard.Figure 4.ArbExpress Math Function to add Noise. Application Note/signal_sources4Once the waveform is transferred or loaded into thearbitrary waveform memory of the AFG, the large display shows the waveform that will be generated. This takes the guesswork out of knowing whether you have loaded the correct waveform. The final steps are to set the desired amplitude and frequency (repetition rate of the waveform memory used), and to turn on the output. This allows for easy testing of the ECM device with different amplitudes of the sensor pulse. One can also activate a variable noise source in the signal generator output path to test for the amount of noise the ECM can tolerate.Synchronizing Multiple InstrumentsSince automobiles have multi-cylinder engines, two or more dual-channel AFGs need to be synchronized in order to provide the required number of inputs to the ECM. To synchronize multiple single or dual channel AFGs, designate one as master and connect its external reference output to the external reference inputs of the other instruments. To gain even more precise timing synchronization, connect the master's TTL trigger output with the trigger input of the connected slaves. Additional timing control is available through an easily adjustable phase offset between the two channels within an instrument.Creating Serial Data SignalsIn automotive applications, other sensors andcommunication circuits also require replication and testing. To mention only some, Antilock Brake Systems andTransmission Control Systems often use elaborate control communication such as serial data buses like CAN. Display and control devices may use I2C devices. All these signals can easily be captured with an oscilloscope and replicated using an arbitrary/function generator. However, for serial data buses it may be more useful to create the clock and data signals directly as logic signals. Then, noise and other anomalies can be added to verify the DUT’s operation, just as described in our previous example.Figure 5.AFG3000 Series USB front panel adapter.Figure 6. Synchronizing 2 AFG3000 Series instruments./signal_sources 5Replicating Real World Signals with an Arbitrary/Function GeneratorCreating I 2C Clocks and Data with ArbExpress ™ SoftwareIn the following case, we will use ArbExpress to create the serial clock and data required to drive an I 2C LED drivercircuit. We will then send these waveforms to a two-channel AFG for generation. This same technique can be used for other communication buses such as CAN.Identifying Timing RequirementsBefore creating the logic messages to drive the I 2C device, one needs to understand the timing diagrams of the device specifications. For this example, we have determined that the device needs 76 clock cycles to send one message that defines the LED device, the brightness and the segments to be illuminated. The clock and data waveforms are overlaid in Figure 7.Using ArbExpress ™ Software Standard DC Waveform to Define Waveform LengthTo create these waveforms using ArbExpress we begin with a standard DC waveform and define a waveform length of 76 points (creating a DC waveform will just be used as a way of defining how many points we want in our waveform).Create Clock and Data Logic with the Marker EditorWe then use the Marker display and edit features tocreate the logic waveforms. Markers are defined as digital outputs and available on many high performance Arbitrary Waveform Generators (AWGs). As the AFG supports analog waveforms, we will convert these marker waveforms to analog waveforms. Creating the clock waveform only takes a right mouse click on the Mrk1 display and selecting “Create 0/1 pattern”. Once the clock waveform is created we can create the data waveform. For that, we use the cursors to define an area and then a mouse click on the Mrk2 display to select “Make High”, see Figure 8.This operation sets the area between the two cursors to “1” or “high”. In this fashion, we define all high bits needed for this message. You may also notice in Figure 9 that the first and last bit of the clock (Mrk1) and Data (Mrk2) are set to high. This is used to identify the beginning and ending of the I 2C message being sent and used for synchronization, see Figure 9.Figure 7. I 2C clock and data requirements.Figure 8.ArbExpress Markers “Make High” function.Application Note/signal_sources6The analog data required for the AFG is created by simply saving the waveform and markers as a single ASCII (.CSV) file. Once saved, the marker data will be found in column 2 and 3. Just copy and paste these individual columns into separate csv files and then open them using ArbExpress. The marker information will now be opened as Analog Data (see Figure 10). If required, noise or other anomalies can be added using ArbExpress, and then the final signals sent directly to the AFG using the Send to ARB function, or save them to a USB memory device.Generating the Final OutputThe clock waveform is loaded to one channel of the AFG and the data waveform to the other channel. The dual channel models of the AFG enable you to lock the amplitude and frequency of the independent channelstogether. When adjusting these parameters on one channel the other channel will then automatically follow suit. This enables quick testing where two synchronous channels are needed. Note that when adjusting the frequency of an arbitrary waveform you are adjusting the repetition rate of the window of data being generated. So in this example you will be adjusting how fast these 76 clock cycles will be repeated.ConclusionAs we have seen with these examples, replicatingautomotive knock sensor signals and serial data buses such as I2C become simple tasks when using an AFG and ArbExpress ™ software. Beyond that, the describedtechnique can be used for many different applications. With the AFG instruments capability of 128K points of arbitrary waveform memory, most data messages required for automotive communication can easily be achieved. In these examples we have used automotive applications, but most electronic applications also require the ability to replicate and generate real world signals. With an AFG, an MDO3000 with option MDO3AFG, or an MDO4000C with option MDO4AFG, and ArbExpress ™ software, replicating real world signals is a simple task. With its unprecedented ease of use, dual channel capability and companion ArbExpress software, the AFG reduces the time required for many operational and stress tests during component and device design qualifications. Also with features such as burst, sweep and modulation control on the AFG, many other applications can use this single instrument thattechnicians and engineers can easily become familiar with.Figure 9. I 2C clock and data requirements edited using ArbExpress Marker editor.Figure 10. I 2C clock and data displayed as overlaid analog waveforms./signal_sources 7Replicating Real World Signals with an Arbitrary/Function GeneratorContact Tektronix:ASEAN / Australasia (65) 6356 3900Austria 00800 2255 4835 Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777Belgium 00800 2255 4835Brazil +55 (11) 3759 7627Canada180****9200 Central East Europe and the Baltics +41 52 675 3777Central Europe & Greece +41 52 675 3777Denmark +45 80 88 1401Finland +41 52 675 3777France 00800 2255 4835Germany 00800 2255 4835Hong Kong 400 820 5835India 000 800 650 1835Italy 00800 2255 4835Japan 81 (3) 6714 3010Luxembourg +41 52 675 3777 Mexico, Central/South America & Caribbean 52 (55) 56 04 50 90Middle East, Asia, and North Africa +41 52 675 3777The Netherlands 00800 2255 4835Norway 800 16098People’s Republic of China 400 820 5835Poland +41 52 675 3777Portugal 80 08 12370Republic of Korea 001 800 8255 2835Russia & CIS +7 (495) 6647564South Africa +41 52 675 3777Spain 00800 2255 4835Sweden 00800 2255 4835Switzerland 00800 2255 4835Taiwan 886 (2) 2656 6688United Kingdom & Ireland 00800 2255 4835USA180****9200Rev. 0415 For Further InformationTektronix maintains a comprehensive, constantly expanding collection of application notes, technical briefs and other resources to help engineers working on the cutting edge of technology. Please visit and .Copyright © 2015, Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks or registered trademarks of their respective companies.11/15 EA/WWW 76W-18661-3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Arbitrary optical waveform generation using2D ring resonator arraysBing Xia and Lawrence R. ChenPhotonic Systems Group, Department of Electrical and Computer Engineering,McGill University, Montreal, QC H3A 2A7, Canadabing.xia@mail.mcgill.caAbstract: The direct temporal domain approach can be applied forarbitrary optical waveform generation using 2D ring resonator arrays(RRAs). To demonstrate the approach, we provide numerical exampleswhich show the generation of two very different waveforms from the sameinput pulse. In particular, we consider a hyperbolic secant input pulse with8 ps full width half maximum and generate (1) a 50 ps square-likewaveform with 5 ps rising and falling times and a 40 ps flat-top as well as(2) a 60 ps triangular waveform with 30 ps rising and falling times, bothwith a 5×5 RRA. Simulations show that the generated waveforms are well-matched to their targets.©2006 Optical Society of AmericaOCIS codes: (070.0070) Optical signal processing; (320.5540) Pulse shapingReferences and links1. A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161-237(1995).2.J. Azana and M. A. Muriel, “Temporal self-imaging effects: Theory and application for multiplying pulserepetition rates,” IEEE J. Sel. Top. Quantum Electron. 7, 728-744 (2001).3. D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, “Generation of high-repetition rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 13, 221-223 (2001).4.Z. Jiang, D. E. Leaird and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrarywaveform generation,” Opt. Express 13, 10431-10439 (2005).5.J. D. McKinney, D. Seo, D. E. Leaird, A. M. Weiner, “Photonically assisted generation of arbitrarymillimeter-wave and microwave electromagnetic waveforms via direct space-to-time optical pulse shaping,” J. Lightwave Technol. 21, 3020-3028 (2003).6. F. Parmigiani, P. Petropoulos, M. Ibsen and D. J. Richardson, “All-optical pulse reshaping and retimingsystems incorporating pulse shaping fiber Bragg grating,” J. Lightwave Technol, 24, 357-364 (2006).7.P. Petropoulos, M. Ibsen, A. D. Ellis and D. J. Richardson, “Rectangular pulse generation based on pulsereshaping using a superstructured fiber Bragg grating,” J. Lightwave Technol. 19, 746-752 (2001).8. A. Rundquist, A. Efimov and D. H. Reitze, “Pulse shaping with the Gerchberg-Saxton algorithm,” J. Opt.Soc. Am. B 19, 2468-2478 (2002).9. A. M. Weiner, S. Oudin, D. E. Leaird and D. H. Reitze, “Shaping of femtosecond pulses using phase-onlyfilters designed by simulated annealing,” J. Opt. Soc. Am. A 10, 1112-1120 (1993).10. B. Xia and L. R. Chen, “A direct temporal domain approach for pulse-repetition rate multiplication witharbitrary envelope shaping,” IEEE J. Sel. Top. Quantum Electron. 1, 165-172 (2005).11. C. K. Madsen, C. Lenz, A. J. Bruce, M. A. Capuzzo, L. T. Gomez, T. N. Nielsen, and I. Brener,“Multistage dispersion compensator using ring resonators,” Opt. Lett. 24, 1555-1557 (1999).12. A. Rostami, and G. Rostami, “All-optical implementation of tunable low-pass, high-pass, and band-passoptical fitlers using ring resonators,” J. Lightwave Technol. 23, 446-460 (2005).13. C. K. Madsen, J. H. Zhao, Optical filter design and analysis-A signal processing approach ( John Wiley &Sons, 1999), Chap.5.14.Y. M. Landobasa, S. Darmawan and M. K. Chin, “Matrix analysis of 2-D microresonator lattice opticalfilters,” IEEE J. Quantum Electron. 41, 1410-1418 (2005).15. A. Agarwal, P. Toliver, R. Menendez, S. Etemad, J. Jackel, J. Yong, T. Banwell, B.E. Little, S. T. Chu, W.Chen, W. Chen, J. Hryniewicz, F. Johnson, D. Gill, O. King, R. Davidson, K. Donovan and P. J. Delfyett, “Fully programmable ring-resonator-based integrated photonic circuit for phase coherent applications,” J.Lightwave Technol. 24, 77-87 (2006).#71361 - $15.00 USD Received 26 May 2006; revised 14 July 2006; accepted 17 July 2006 (C) 2006 OSA24 July 2006 / Vol. 14, No. 15 / OPTICS EXPRESS 661916.T. Sakamoto, F. Futami, K. Kikuchi, S. Takeda, Y. Sugaya and S. Watanabe, “All-optical wavelengthconversion of 500-fs pulse trains by using a nonlinear-optical loop mirror composed of a highly nonlinear DSF,” IEEE Photon. Technol. Lett. 13, 502-504 (2001).1. IntroductionTechniques for the generation, control, and manipulation of optical pulses attract considerable interest for numerous applications and have become increasingly important in many scientific areas [1]. Of specific interest are techniques for pulse repetition rate multiplication (PRRM), which are used to generate ultra-fast optical pulse trains from a low repetition rate input pulse train [2, 3], as well as for the generation of arbitrary waveforms [4]. Arbitrary or user-defined waveforms at high repetition rates can be used to generate wide-band RF signals [5], as switching windows or gating signals in all-optical pulse reshaping and retiming systems in optical communications [6], and as probing signals for various studies on spectroscopy and the properties of materials or molecules [7].Traditional pulse shaping methods are based on frequency domain processing (i.e. spectral filtering) in which we specifically manipulate the different spectral components of the input pulse in amplitude and/or phase. However, the relationship between the input pulse spectrum and the target temporal waveform is not straightforward, especially for phase-only filtering processes. For example, if we need to generate an arbitrary waveform from a given input pulse, say Gaussian, it is difficult to determine the phase response and the corresponding filter that generates the waveform. Efficient Fourier synthesis algorithms are necessary to synthesize the required spectral response as well as the filter technologies for their implementation. Several optimization and synthesis algorithms have been used to generate arbitrary waveforms, including genetic, Gerchberg-Saxton [8], and simulated annealing [9, 10] algorithms. In terms of hardware, one of the most popular implementations is based on a bulk optical 4f pulse shaper, which separates spatially the frequency components of an input pulse and uses amplitude and/or phase masks to process the signal [1].In this paper, we propose an alternate method to synthesize arbitrary waveforms using the direct temporal domain approach. In this approach, traditional frequency domain processing is not used and the waveform is synthesized purely in the temporal domain. While simple and compact optical filters structures are used, the waveform is synthesized by optimizing the filter parameters to obtain a specific temporal impulse response, without concern for the corresponding frequency response. The direct temporal domain approach was initially proposed to generate an ultra-high repetition rate pulse train from a low repetition rate pulse train using spectrally-periodic (SP) filters, details on the theory can be found in [10]. In this paper, we show that this approach can also be applied for general pulse shaping purposes, for example to generate a square waveform from a hyperbolic secant pulse train or a Gaussian pulse train. This approach is very different from the traditional spectral filtering approach which uses spectral filters to shape the input pulse spectrum into a sinc function (with amplitude and phase information preserved) in order to achieve a square waveform in the temporal domain. For implementation, we choose 2D ring resonator arrays (RRAs) as the optical filter to perform the temporal waveform generation since ring resonators are a class of SP filters.2. Theory and configurationHigh repetition rate pulse trains with uniform or even arbitrary envelopes can be generated using an SP filter and the direct temporal domain approach, as long as the input pulse width is sufficiently narrow [10]. When the free spectral range (FSR) of the SP filter satisfies certain conditions with respect to the new (output) repetition rate, pulse repetition rate multiplication (PRRM) is achieved; moreover, the output multiplied pulses (within the original period) can have very different amplitudes and phases due to the simultaneous amplitude and/or phase filtering process. Moreover, these amplitudes and phases can be set independently of the input #71361 - $15.00 USD Received 26 May 2006; revised 14 July 2006; accepted 17 July 2006 (C) 2006 OSA24 July 2006 / Vol. 14, No. 15 / OPTICS EXPRESS 6620pulse shape, see Eqs. 4-7 in [10]. We have found that this characteristic can be used to generate and synthesize arbitrary waveforms at the rate of the original input pulse train. The basic principle of the direct temporal domain approach for arbitrary waveform generation is illustrated in Fig. 1. First, we choose an SP filter to perform PRRM with a uniform output envelope. When an input pulse train with a broader pulse width is launched into the same SP filter, PRRM takes place, but there will be an interference among the output pulses. Next, we can manipulate and optimize the amplitude and phase of each individual output pulse (in the multiplied train) to generate the specified waveform (at the input repetition rate). The key in this approach is that we must find an SP filter which can simultaneously perform PRRM and manipulate the amplitude and phase of each individual output pulse with a range of freedom. The amplitude and phase of each individual output pulse is controlled by specifying the value of the temporal impulse response of the filter. This approach is very different from general spectral filtering approach which normally uses spectral filters to shape the input pulse spectrum into a special shape (with amplitude and phase information preserved) in order to obtain the desired waveform in the temporal domain.Multi-stage ring resonators are a powerful class of optical filters which have been widely investigated for WDM add/drop filters, dispersion compensation, and many other applications that are focused on their spectral characteristics [11, 12]. However, their temporal domain characteristics are equally interesting. Since ring resonators are SP filters, they can be used as key components to perform arbitrary waveform generation by implementing the direct temporal domain approach.Figure 2(a) shows a typical configuration of an M×N 2D RRA, where M represents the number of rings in the vertical direction and N represents the number in the horizontal direction. Figure 2(b) shows the details of the individual ring elements which incorporate a directional coupler with splitting ratio κand a phase shifter with an additional phase shift φ. Note that the rings are assumed to be identical in size and are coupled in the vertical direction only. While there is no coupling between the rings in the horizontal direction, the signals propagate in the horizontal direction through the two waveguide buses that are placed at the top and the bottom of the RRA. Since the waveguide bus introduces time delays above and beyond those of the rings, the length of the bus must satisfy specific conditions in order to generate a pair of pulse trains at the two output ports simultaneously. In particular, if L Fig. 1. Schematic of arbitrary waveform generation using the directtemporal domain approach; (a) PRRM output with a uniform envelopefrom an input pulse train with narrow pulse widths; (b) PRRM output froman input pulse train with wide pulse widths; (c) waveform generation withan optimized SP filter and an input pulse train with wide pulse widths.P R R M w i t h a w i d en(b)r m g e n e r a t i o n w i t ht i m i z e d S P f i l t e r(c)#71361 - $15.00 USD Received 26 May 2006; revised 14 July 2006; accepted 17 July 2006(C) 2006 OSA 24 July 2006 / Vol. 14, No. 15 / OPTICS EXPRESS 6621denotes the distance between the centers of two adjacent rings, then L must be a positive multiple of πR where R is the radius of the ring. Larger values of L will lead to more loss and an overall increase in the size of the structure; hence, we choose L = πR . The free spectral range (FSR) of the device is given by )2/(R e n c FSR ⋅=π, where R is the radius of the ring and n e is the effective index of the waveguide.The RRA transfer function can be calculated by dividing the M×N array into N horizontally-cascaded M×1 arrays, in which each M×1 array can be calculated separately using transfer matrices and Z-transforms as described in [11, 12]. For the n th column, the transfer matrix in the vertical direction can be expressed by⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡⋅⋅⋅⋅=⎥⎦⎤⎢⎣⎡+22222112112212111O I O I O I m θθθθθθθ ⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=+++=−−−−−−∏221121122221111)1(O I t t t j e e γt e e γt e e γt j m m m m p R πβj φj p R πβj φj p R πβj φj p p p p where I 1, I 2, O 1 and O 2 represent the inputs and outputs in the two waveguide buses as shown in Fig. 2(a); p t is the through-amplitude coefficient which is defined as p p t κ−=1; γ is the waveguide loss and β is the propagation constant in the device. This matrix can then be converted to another transfer matrix which functions in the horizontal direction using the following transformation:⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=⎥⎦⎤⎢⎣⎡Φ=⎥⎦⎤⎢⎣⎡211121122211221221211)(1I I I I O O n θθθθθθθ Fig. 2. (a) General configuration of an M×N RRA and (b) detailedview of the individual rings, r is the radius of the ring resonator, κ isthe coupling coefficient and Φ is an additional phase shift.(a)Input 2 (M=even)Output 2 (M=even) Output 1φφ(b) (1) (2)#71361 - $15.00 USD Received 26 May 2006; revised 14 July 2006; accepted 17 July 2006(C) 2006 OSA 24 July 2006 / Vol. 14, No. 15 / OPTICS EXPRESS 6622where ij θare the elements in the vertical transfer matrix. The two waveguide buses can also beexpressed with a transfer matrix in the horizontal direction: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Φ⋅−−γγββd L j L j bus e e 00. d is the signal propagation direction and is equal to -/+ 1 when the signal counter-/co-propagates withthe input, i.e. when M is odd/even. The overall RRA transfer function is then given by the system matrix 11Φ⋅Φ⋅⋅⋅Φ⋅Φ⋅Φ=Θ−bus N bus N . By properly designing the parameters p t and p φ , the RRA can perform PRRM and simultaneously manipulate amplitudes and phases forthe newly generated output pulses, thereby generating a special waveform at output. It is important to stress that the parameters of the RRA are optimized to generate a specific temporal impulse response of the filter in order to control the amplitude and phase of the output pulses.In order to find a proper set of values of p t and p φ to generate a specified waveform, apowerful optimization algorithm is highly desirable. We use a similar optimization process as described in [10], but with some modifications. The major difference is that all sampling points within a period at the output (i.e. the input period) are compared with the target waveform and a weighted root mean square error function is used to evaluate the optimized results. Furthermore, in our optimization process, we use quantized rather than arbitrary values for p t and p φ, since values with a high precision may be difficult to realize in practice.3. Simulation resultsAs an example, we consider a 5×5 RRA for arbitrary waveform generation. A 10 GHz train of hyperbolic secant input pulses is launched at input 1; we assume no input signal at input 2. The full width half maximum (FWHM) of each hyperbolic secant pulse is 8 ps as shown in Fig. 3(a). The objective is to transform this hyperbolic secant pulse into a square waveform with 5 ps rise and fall times, and a 40 ps flat-top. Square or rectangular shaped pulses are useful for enhancing the operation of nonlinear optical switches for reshaping ultrashort optical pulses [6].In our simulation, we set the FSR of the filter to 160 GHz (corresponding ring radius is 0.199 mm for an effective index n e = 1.5) and assume that the total loss in the whole device is 30%. We use the simulated annealing algorithm and a weighted root mean square error function to optimize the filter parameters, namely the through-amplitude p t and the additionalphase shift p φfor each ring element. We quantize p t and p φin steps of 0.01 and π/16, respectively. The weighted root mean square error function is defined as⎟⎟⎠⎞⎜⎜⎝⎛−=∑=N n et t output n I I w error 12arg where I is the intensity, N is the total sampling number in one repetition period, and w n is the weight for each sampling point.The results are shown in Fig. 3(b) and (c); the corresponding filter parameters are given in Table 1. Figure 3(b) shows the generated square-like waveform. The rising and falling edges are well matched to the target pulse and there are small oscillations in the flat-top portion. Figure 3(c) is a re-plot of (b) but in dB scale. It can be seen that the pulse extinction ratio (ER), defined as the ratio of the smallest intensity in flat-top and the largest intensity in background, is around 25 dB. The peak-to-peak variation in the flat-top is 0.9 dB.#71361 - $15.00 USDReceived 26 May 2006; revised 14 July 2006; accepted 17 July 2006(C) 2006 OSA 24 July 2006 / Vol. 14, No. 15 / OPTICS EXPRESS 6623Fig. 3. (a) Input and target waveform in one repetition period; (b) The generated square-like waveform; (c) The generated waveform in dB scale.(a)(b) (c)Fig. 4. Spectrum of the 10 GHz pulse train at the RRA input and of the square-like waveform at the output. Amplitude (a) and (c); phase (b) and (d).(a) (c) (b)(d)#71361 - $15.00 USDReceived 26 May 2006; revised 14 July 2006; accepted 17 July 2006(C) 2006 OSA 24 July 2006 / Vol. 14, No. 15 / OPTICS EXPRESS 6624Figure 4 shows the spectra (amplitudes and phases) of the 10 GHz hyperbolic secant pulse train at the input and the square-like waveform at the output. It can be seen that while the amplitude response of the output waveform exhibits the same 10 GHz spectral spacing as the input, the magnitudes for each individual mode have been altered which shows the amplitude-filtering nature of the RRA. In addition, the input and output phases are completely difference which shows the phase-filtering nature of the RRA. Since our approach only process the waveform in the temporal domain, the spectral shape of the output (and consequently of the filter) is not important in our approach and optimization algorithm; both magnitude and phase can be manipulated by RRA with a large scale of freedom (note in particular that the output spectrum does not exhibit any sinc-like features). This demonstrates the flexibility of the temporal domain approach over amplitude and phase filtering approaches which needs to alter the spectrum to a sinc shape (with appropriate phase jumps), or the phase-only filtering which is constrained to maintaining a constant magnitude or a uniform loss for all wavelengths.Table 1. Parameters of the RRA configuration for generation of a square waveform and a triangularwaveform from a 10 GHz hyperbolic secant pulse train.Fig. 5. (a) The input hyperbolic secant pulse train at 10 GHz and the target waveform;(b) the target waveform and the generated triangular waveform form. the RRA.(b) (a)) #71361 - $15.00 USD Received 26 May 2006; revised 14 July 2006; accepted 17 July 2006(C) 2006 OSA 24 July 2006 / Vol. 14, No. 15 / OPTICS EXPRESS 6625As a second example to demonstrate the capabilities of the approach, we use the RRA to generate a triangular waveform which has 30 ps rising and falling times from the same input hyperbolic secant pulse train. The FSR of the RRA is still 160 GHz. The optimized RRA parameters p t and p φ are also given in Table 1. Figure 5 shows the generated triangularwaveform, which is well matched to the target. We obtain similar results when generating triangular waveforms of different widths, which demonstrate that this approach is extremely powerful for generating arbitrary waveformsWe have also investigated the impact of the input pulse width (FWHM) on the quality of the generated waveform. If the FWHM varies in a range of ± 0.8 ps from its ideal value (8 ps), a good square-like waveform can be maintained with the same set of filter parameters. Otherwise, we need to re-optimize the ring resonator parameters. In particular, when the FWHM of the input pulse is between 6 ps to 9 ps, a good square-like waveform can be synthesized using the optimization algorithm. However, if the FWHM < 6 ps, we cannot limit the peak-to-peak variations to < 1 dB in the flat-top, even after re-optimization. Moreover, if the FWHM > 9 ps, the rising and falling times (5 ps) cannot be achieved. We also investigated the use of Gaussian input pulses to generate the square-like waveform. The result is similar to that obtained using hyperbolic secant pulses, which demonstrate that 2D RRAs have a big potential to synthesize square-like waveforms and even arbitrarily defined waveforms using the direct temporal domain approach.Next, we investigate the impact of fabrication errors in p t and p φ of each ring element.For illustrative purposes, we consider the same 5×5 RRA that generates the square-like waveform. We assume that the fabrication errors are uniformly distributed in a range of 0 to2.5% for p t and 0 to 1% for p φ of all rings in the RRA and obtain both ER and the peak-to-peak intensity variations in the flat-top portion based on these imperfect parameters. We repeat the simulations 10,000 times and determine the average ER for the device. Figure 6(a) shows a contour plot for the average extinction ratio as the fabrication errors in p t and p φvary from 0 to 2.5% and 0 to 1%, respectively; Fig. 6(b) shows the contour plot for thepeak-to-peak variations in the flat-top portion. It can be seen that in order to maintain both an ER greater than 15 dB and peak-to-peak variations less than 2.5 dB, the fabrication error of p t and p φ should be within 2% and 0.8%, respectively. We note that programmable ring-resonator-based integrated photonic circuit with an accurate vertical coupling structure for p t and independent controls for phase shift p φ have been demonstrated [15], which indicate theFig. 6. Contour plots for fabrication errors in the RRA for the square waveformgeneration; (a) the average extinction ratio; (b) peak-to-peak intensity variation in theflat-top portion.(a)(b)#71361 - $15.00 USDReceived 26 May 2006; revised 14 July 2006; accepted 17 July 2006(C) 2006 OSA 24 July 2006 / Vol. 14, No. 15 / OPTICS EXPRESS 6626practicality and feasibility of our temporal domain approach for arbitrary waveform generation.4. SummaryWe have demonstrated the use of 2D RRAs to synthesize square and triangular waveforms with the direct temporal domain approach. A square-like waveform with a 5 ps rising time, a 40 ps flat-top period, and a 5 ps falling time is generated by this filter from a hyperbolic secant input pulse with a FWHM of 8 ps. A high extinction ratio (25 dB) is observed in the generated square-like waveform and the peak-to-peak variation in the flat-top portion is 0.9 dB. In addition, we have shown the generation of a triangular waveform with a 30 ps rising time and a 30 ps falling time. These results show that the direct temporal domain approach can be applied to perform optical signal processing and pulse shaping and arbitrary waveforms using 2D RRAs.AcknowledgmentsThis research was supported in part by the Natural Sciences and Engineering Research Council of Canada and industrial partners through the Agile All-Photonic Networks (AAPN) Research Program.#71361 - $15.00 USD Received 26 May 2006; revised 14 July 2006; accepted 17 July 2006 (C) 2006 OSA24 July 2006 / Vol. 14, No. 15 / OPTICS EXPRESS 6627。