卧式双面铰孔组合机床电气系统设计英文翻译大学毕设论文

合集下载

毕业设计电动机外壳加工专用机床的设计含外文翻译

毕业设计电动机外壳加工专用机床的设计含外文翻译

1 概述1.1 本课题研究的目的电动机外壳加工专用机床的设计要紧用于加工铝合金材料的压铸件电动机外壳的毛坯,一般是在一般机床上进行加工,装夹和测量麻烦,不但加工时刻厂,效率低,而且制造误差大,生产本钱高,本设计的目的是使机床的结构尽可能简化,降低机床购买本钱,提高生产效率,从而降低零件的生产本钱,提高产品的市场竞争力。

本设计国内外研究历史与现状专用机床是集机电于一体的综合自动化程度较高的制造技术和成套工艺装备。

它的特点是高效、高质、经济有效,因此被普遍应用于工程机械、交通、能源、军工、轻工、家电等行业。

我国传统的主用机床及组合机床自动线要紧采纳机、电、气、液压操纵,它的加工对象主若是生产批量比较大的大中型箱体类和轴类零件(最近几年研制的组合机床加工连杆、板件等也占必然份额) ,完成钻孔、扩孔、铰孔,加工各类螺纹、镗孔、车端面和凸台,在孔内镗各类形状槽,和铣削平面和成形面等。

专用机床的分类繁多,有大型组合机床和小型组合机床,有单面、双面、三面、卧式、立式、倾斜式、复合式,还有多工位回转台式组合机床等;随着技术的不断进步,一种新型的组合机床———柔性专用机床愈来愈受到人们的青睐,它应用多位主轴箱、可换主轴箱、编码随行夹具和刀具的自动改换,配以可编程序操纵器( PLC) 、数字操纵(NC) 等,能任意改变工作循环操纵和驱动系统,并能灵活适应多品种加工的可调可变的专用机床。

由于专用机床及其自动线是一种技术综合性很高的高技术专用产品,是依照用户特殊要求而设计的,它涉及到加工工艺、刀具、测量、操纵、诊断监控、清洗、装配和试漏等技术。

我国专用机床及专用机床自动线整体技术水平比发达国家要相对掉队,国内所需的一些高水平专用机床及自动线几乎都从国外入口。

工艺装备的大量入口必将致使投资规模的扩大,并使产品生产本钱提高。

因此,市场要求咱们不断开发新技术、新工艺,研制新产品,由过去的“刚性”机床结构,向“柔性”化方向进展,知足用户需求,真正成为刚柔兼备的自动扮装备。

卧式组合机床设计外文翻译 (1)

卧式组合机床设计外文翻译 (1)

COMBINATION MACHINE TOOLGeorge H. Stahier, Shaker Heights, OhioThis invention relates to a new and improved combination machine tool, and more particularly to a convertible machine tool of the type capable of being quickly and easily converted to adapt it for a plurality of different operations It is among the objects of the invention to provide a new and improved combination machine tool of compact and simplified design adapted for use in small home and repair shops which may be readily converted to perform a plurality of different operations such as drilling, sawing, shaping, lathe turning and the like.A further object of the invention is to provide in a convertible machine tool, a power head including a power driven spindle having appurtenances there on capable of operatively supporting a work table in either of two positions with respect to the ends of the spindle.Another object of the invention is to provide in a convertible machine tool a power head having a self contained motor there in..A still further object of the invention is to provide a simple and compact power head for a machine tool which may be employed as an independent unit to perform certain of the aforementioned operations.Various additional object and advantageous features of the invention not at this time more particularly set forth will become apparent and better understood from the following detailed desoription taken in conjunction with the accompanying drawings, wherein similar reference characters denote corresponding parts, and wherein:Figure 1 is a side elevation al view, with parts 35 thereof broken away, of a convertible machine tool constructed in accordance with the invention,Figure 2 is a fragmentary sectional detail taken on line 2—2 of Figure 1, and illustrating a center point mounted on the spindle replacing the drill chuck shown in Figure 1, Figure 3 is a fragmentary sectional view taken on the line 3—3 of Figure 1,Figure 4 is a plan view partly in section taken on the line 4—4 of Figure 1,Figure 5 is a side elevation al view with parts broken away showing the spindle disposed in a horizontal position wherein the device may be employed as a horizontal lathe,Figure 6 is a fragmentary side eievaticn al view of the priwer head of Figure 5 with a work table operatively disposed thereon, the device being adapted for use as a saw ,Figure 7 is aside elevation al view of a modified type of power head wherein the elements thereof are integral parts of the motor housing,Figure 8 is a sectional view taken on the line 8—-B of Figure ‘7,Figures 9, 10 and 11 are elevation al views, on a slightly reduced scale, of the power head of Figure 7 disposed in different positions and illustrating its adaptability as an operable integral unit, Figure 12 is a side elevation al view of a further modified type of power head,Figure 13 is a sectional view taken on the line (3—13 of Figure 12. s been shown as embodied in a convertible machine tool particularly adaptedFor purposes of illustration, the invention has for use in a home work shop, repair shop Or the like. With reference to the drawings, particularly Figures 1 to 6 inclusive, the illustrated embodiment of the invention,in general, comprises an elongated column or shaft (0 having a base member (2 disposed at one end and a power head IS adjacent the other end.As shown in Figure 1, the column (0 being supported in a vertical position, the device servesto perform drilling, milling, shaping and like operations. In Figures 5 and 6 the column (0 is supported in a horizontal position; and with the application of a tail stock 14 to the column, the device may be converted to sene as a lathe as shown in Figure 5. Thus it will be seen that with very little additional cost there is provided a device capable of a great variety of operations ordinarily had by a series of special machines, such machines being beyond the means of the ordinary workman.More particularly, the lower end of the column (0 is removably received within the split boss (5 formed on the base member 12. A suitable hand actuated bolt (6 threaded through the split ends of the boss releasably secures the end of the column in adjusted position with respect to the base12.As shown in Figure 1, the device is arranged to be used as a drill press, the shaft (0 being disposed vertically with a drill table adjust ably mounted thereon and the base member (2 resting upon any suitable table or bench IT. The power head broadly indicated by the numeral (3 comprises a frame or housing member 50 (8 formed with spaced sleeve portions (0 and 20 connected by a web portion 21. The sleeve portion (9 serves to receive the upper end of the column (0 and the sleeve 20 has mounted therein a suitable spindle 22. The ends of the spindle extend beyond the housing (8 and are adapted to receive standard tools and attachments for performing different operations. A motor 23 is mounted in a bracket member 24 pivoted to the housing 18 as at 25 (see Figure 4).Any one of a plurality of pulleys 26 mounted on the armature shaft of the motor 23 may be connected by means of a belt 21 to any one of a plurality of pulleys 28 mounted on the spindle shaft to provide the desired rotative speed consistent with the work being performed. Adjustment of the belt 21 is effected by means of the adjusting arm 29 extending between the housing and bracket 24 which is adapted to be secured in adjusted position by a cap screw 30. Suitable leg members 31 are secured to the housing 18 adjacent the end which receives the column 10.Mounted on each side of the housing 18 and extending at right angles to each other are integrally formed open ended hollow enlargements 32 and 33 which are provided with suitable open in which may be mounted a gear 35 adapted to be actuated by means of a hand wheel 38.The parallel enlargements 32 or 33 on opposite sides of the housing 18 are adapted to receive the depending legs 31 of a removable work- supporting-table38; The legs 31 are connected to gether at their upper ends by a cross member 31 which the top of the table is removably attached. One of the legs .31 is formed with a rack 39 which is engageable with the gear 35. Adjust inent of the table relative to the housing 18 and tool mounted on the spindle is effected through the gear 35 and rack 39. Bet screws 39 a serve to secure the leg of the table in proper adjusted position within the supporting bosses. The device may be readily converted for use as a shaper by applying a suitable tool to the upper end of the spindle shaft and the positio. ning of the work supporting table 38 in operative position as shown in Figure 1. To convert the machine of Figure.1 so as to perform the ordinary functions of a lathe such as turning or spinning, the shaft 10 is supported. In a horizontal posltjonas shown in Figure 5. For this purpose the base 12 is rotated through 900 and one side thereof serves as a support for one end of the shaft, and the depending leg members 31 secured to the power head 13, serve to support the other end. A tail stock 14 of any suitable design and size capable cooperating with a suitable chuck mounted on the spindle 22 is applied the shaft 10; A tool rest 40 is also applied to complete the device for turning operations. While in thisposition the device may be readily converted, for use as a saw. With reference to Figure 6, a suitable saw blade 41may be applied to the spindle and the work supporting 38 is applied to the housing as illustrated. In this position the legs 31 of the table are supported within the enlargements 32. The saw blade 41 extends through an adjustable opening 42 in the table which can be raised or lowered by rotation of the gear 35 engaging the rack 39 on the leg of the table adjust the depth of cut of the saw blade. The table 38 is so constructed that with the application of various types of inserts to the opening 42, the table Is readily adapted for use with any desired tool which may be applied to the spindle.With reference to Figures 7 toil inclusive of the drawings, there is illustrated a modified form of power head embodying the invention and comprising a motor housing 45 having outwardly extending portions 46 and 41 integrally formed on opposite, sides thereof. The portions 46 and 41 are longitudinally bored to form sleeves 46 and 49, respectively. The sleeve 48 receives the spindle 50, the ends of which extend above and below the housing and are adapted to have suitable tools applied thereto. The spindle 50 is operatively connected to the armature shaft of a motor SI through pulleys 52, belt 53 and pulleys 54. The sleeve 41 is similarly bored to receive the end of supporting column 10 when the power head is used therewith although it is contemplated that the power head may be used as a self contained unit for certain operations such as sawing and shaping as shown in Figures 9, 10 and 11.Suitable leg members 55 and 56 and 51 can be applied to the housing for purposes of supporting it in any desired position when it is employed as a separate operating unit. The housing 45 is provided with the right angularly disposed hollow bosses 58 and 59 on each side thereof which are adapted to receive the legs 31 of the removable work supporting table 38.In Figures 9, 10 and 11 the power head 45 is illustrated removed from the supporting column 10: and supported on the leg members so as to be used as a separate operable unit. In Figure 9 the power head is supported on leg members 56 and 51 with the spindle extending in a horizontal position. With the table 38 supported on the head as shown, a saw blade may be applied to the tool chuck on the end Of the spindle and the 30 device adapted to be used as a saw; or with thetable removed a grinding wheel can be applied to the spindle and the device used accordingly.In Figures 10 and 11 the power head is supported on leg: members 55 and 58, the spindle thereof 35 extending in a vertical position.The table 38 is supported within the bosses 59 when the power head is supported in: this, position. A suitable shaping tool then can be applied to the spindle and the device employed for this purpose.With reference to Figures 12 and 13 of the drawings there is illustrated a still further modifled form of power head embodying the present invention. The illustrated embodiment comprises a substantially hollow casting 60 having integrally formed outwardly extending end portions 61 and 62 which are longitudinally, bored to provide sleeves 63 and 64 respectively. The sleeve 64 Is adapted to receive the end of the-supporting shaft or -column 10, and sleeve 63 has mounted therein a. suitable spindle 65, the shaft of which extends above and below the casting 60. Pivotally mounted within the housing 60 on bracket 66 is a motor 61 having driving connection with spindle 65 through pulleys 68, belt 69 and pulleys.The housing 60 is provided with angularly disposed hollow bosses TI and 12 on each sidethereof which are adapted to receive and supportHaving thus described my Invention what it is desired to obtain by Letters Patent is defined by the appended claims.I claim:1. In a device of the class described, a housing, means for supporting- said housing in either of two positions, a rotatable work spindle mounted in the housing and adapted to receive tools on the opposite ends thereof, an electric motor mounted on said housing for driving said spin- a work table having depending legs thereon, and means including hollow enlargements formed on the exterior of said housing for receiving said leg members and supporting the work table . In either of two positions with respect to tools mounted on the ends of said spindle, one of said positions being parallel to the axis of the spindle and the other position at right angles thereto.2. In a device of the class described, a housing member, a rotatable work spindle mounted in said housing member, an electric driving motor carried on said housing for driving said spindle, a belt and pulley transmission for driving the work spindle from the motor, a work table having depending legs thereon, means on said housing for operatively supporting said work table in eitherof two positions with respect to the ends of said spindle, one of said positions being parallel to the longitudinal axis of the spindle and the other position at right angles thereto, said means including hollow enlargements on said housing arranged in pairs extending at right angles to each other.3. In a device of the class described, a housing member, a rotatable work spindle mounted in said housing member, an electric driving motor carried on said housing for driving said spindle, a belt and pulley ransmission for driving the work spindle from the motor, a work table, and means including hollow enlargements formed on said housing for operatively supporting said work table in. either of two positions with respect to the ends of said spindle, one of said positions being parallel to the axis of the spindle and the other position at right angles thereto.4. In a device of the class described an elongated shaft member, a motor housing supported on one end of said shaft and haying leg members connected thereto, an enlarged base member rotatably mounted on the other end of said shaft for supporting the shaft in a vertical position whereby said shaft may be shifted from a vertical position to a horizontal position, the said base member being rotated through 90° to cooperate with said leg members to support the shaft in a horizontal position, a power driven spindle mounted in said motor housing, and means carried by said housing for operatively supporting a work table in either of two positions 90° apart with respect to the axis of the spindle.5.In a device of the class described ,an elongated shaft member, means for supporting said shaft in either of two positions, a motor housing having a sleeve formed therein adapted to receive the end of said shaft member, a second sleeve in said housing having a power driven spindle mounted therein and means carried by said motor housing for supporting a work table in either of two positions with respect to said spindle, said means including hollow enlargements on said housing arranged in pairs extending at right angles to each other.6. In a device of the class described, an elongated supporting shaft, means for supporting said 5 shaft in either of two positions, a motor housing having a sleeve formed therein serving to receive one end of said shaft, a second sleeve said housing having a rotatable work spindle mounted therein, electric driving motor mounted in said housing intermediate said sleeves, a belt and pulley transmission for driving the work spindle from the motor, a work table, and means carried by said frame member for operatively supporting said work table in either of two positions90° apart with respect to said spindle.7. 1n a device of the class described an elongated supporting shaft, means for supporting said shaft member in either of two positions, a frame member having spaced sleeves, one of said sleeves adapted to receive the end of said shaft and the other sleeve having a rotatable spindle mounted therein, an electric driving motor mounted on said frame member, a belt and pulley transmission for driving the work spindle from the motor, a work table, and means carried by said frame member for operatively supporting said work table in either of two positions 90°apart with respect to the ends of said spindle.8. In a device of the class described, a housing having spaced parallel sleeves extending there through one of said sleeves having a rotatable spindle mounted therein and the other sleeve serving to receive one end of a supporting member, a motor mounted within the frame between said sleeves having a driving connection with said spindle, and means including hollow enlargements on said housing for operatively supporting a work table in either of two positions with resect to the ends of said spindle.9. In a device of the claás described, a housing having spaced parallel sleeves extending there- through, means for supporting said housing in either of two positions, one of said sleeves having a rotatable spindle mounted therein and the other sleeve serving to receive one end of a supporting member, a motor mounted within the frame between said sleeves having a driving connection with said spindle, a work table for operatively supporting work with respect to tools 50 mounted on the ends of said spindle, and meansIn Cluding hollow enlargements on the exterior of said housing for adjustably supporting the work table in either of two positions 90° apart.Development and application of combined machine toolThe combination of machine tools based on general parts, workpiece supported by the specific shape and design of special processing of parts and fixtures, the composition semiautomatic or automatic special machine. Combination machine generally adopts multi shaft, knife, more processes, more or multiple locations simultaneously processes, and production efficiency ratio general machine tool high several times to several times. As generic components have been standardized and serialized, may need to be flexible configuration, can shorten design and manufacturing cycle. Therefore, the aggregate machine-tool has the advantages of high efficiency and low cost, the large, mass production to be widely applied, and can be used to compose the automatic production line. Combination machine tools for processing general box or special shaped parts. Processing, workpiece generally does not rotate, by movement of the rotatable cutter and tool and workpiece relative feed movement, to achieve drilling, reaming, counterboring, reaming, boring, milling, cutting and processing of external thread face and etc.. Some combination machine adopts clamping workpiece machining head to rotate, by the tool for the feed movement, also can achieve some rotating parts ( such as car rear axle flywheel, etc.) of the face and processing.In twentieth Century since the 70's, along with the cutting tool with indexable inserts, dense gear milling cutter, boring size automatic detection and automatic compensation for tool technology development, combination of the machining accuracy of the machine tool is improved. Milling plane plane of up to 0.05mm and1000 mm, the surface roughness can be as low as 2.5to 0.63microns; boring accuracy up to IT7~6, hole distance precision can reach 0.03~ 0.02 micron. A dedicated machine is along with the automobile industry development. In some parts of special machine tool for repeated use, and gradually developed into a general components, resulting in a combined machine tool. The earliest combination machine is made in the United States in 1911, for the processing of auto parts. Initially, the machine tool manufacturing plant has its own general component standard. In order to improve different factory universal interchangeability of the parts, and is convenient for users to use and repairComparison:Traditional machineBasic Machining OperationsMachine tools have evolved from the early foot-powered lathes of the Egyptians and John Wilkinson's boring mill. They are designed to provide rigid support for both the workpiece and the cutting tool and can precisely control their relative positions and the velocity of the tool with respect to the workpiece. Basically, in metal cutting, a sharpened wedge-shaped tool removes a rather narrow strip of metal from the surface of a ductile workpiece in the form of a severely deformed chip. The chip is a waste product that is considerably shorter than the workpiece from which it came but with a corresponding increase in thickness of the uncut chip. The geometrical shape of workpiece depends on the shape of the tool and its path during the machining operation.Most machining operations produce parts of differing geometry. If a rough cylindrical workpiece revolves about a central axis and the tool penetrates beneath its surface and travels parallel to the center of rotation, a surface of revolution is produced, and the operation is called turning. If a hollow tube is machined on the inside in a similar manner, the operation is called boring. Producing an external conical surface uniformly varying diameter is called taper turning, if the tool point travels in a path of varying radius, a contoured surface like that of a bowling pin can be produced; or, if the piece is short enough and the support is sufficiently rigid, a contoured surface could be produced by feeding a shaped tool normal to the axis of rotation. Short tapered or cylindrical surfaces could also be contour formed.Flat or plane surfaces are frequently required. They can be generated by radial turning or facing, in which the tool point moves normal to the axis of rotation. In other cases, it is more convenient to hold the workpiece steady and reciprocate the tool across it in a series of straight-line cuts with a crosswise feed increment before each cutting stroke. This operation is called planning and is carried out on a shaper. For larger pieces it is easier to keep the tool stationary and draw the workpiece under it as in planning. The tool is fed at each reciprocation. Contoured surfaces can be produced by using shaped tools.Multiple-edged tools can also be used. Drilling uses a twin-edged fluted tool for holes with depths up to 5 to 10 times the drill diameter. Whether the drill turns or the workpiece rotates, relative motion between the cutting edge and the workpiece is the important factor. In milling operations a rotary cutter with a number of cutting edges engages the workpiece. Which moves slowly with respect to the cutter. Plane or contoured surfaces may be produced, depending on the geometry of the cutter and the type of feed. Horizontal or vertical axes of rotation may be used, and the feed of the workpiece may be in any of the three coordinate directions.Basic Machine ToolsMachine tools are used to produce a part of a specified geometrical shape and precise I size by removing metal from a ductile material in the form of chips. The latter are a waste product andvary from long continuous ribbons of a ductile material such as steel, which are undesirable from a disposal point of view, to easily handled well-broken chips resulting from cast iron. Machine tools perform five basic metal-removal processes: I turning, planning, drilling, milling, and grinding. All other metal-removal processes are modifications of these five basic processes. For example, boring is internal turning; reaming, tapping, and counter boring modify drilled holes and are related to drilling; bobbing and gear cutting are fundamentally milling operations; hack sawing and broaching are a form of planning and honing; lapping, super finishing. Polishing and buffing are variants of grinding or abrasive removal operations. Therefore, there are only four types of basic machine tools, which use cutting tools of specific controllable geometry: 1. lathes, 2. planers, 3. drilling machines, and 4. milling machines. The grinding process forms chips, but the geometry of the abrasive grain is uncontrollable.The amount and rate of material removed by the various machining processes may be I large, as in heavy turning operations, or extremely small, as in lapping or super finishing operations where only the high spots of a surface are removed.A machine tool performs three major functions: 1. it rigidly supports the workpiece or its holder and the cutting tool; 2. it provides relative motion between the workpiece and the cutting tool; 3. it provides a range of feeds and speeds usually ranging from 4 to 32 choices in each case.Speed and Feeds in MachiningSpeeds, feeds, and depth of cut are the three major variables for economical machining. Other variables are the work and tool materials, coolant and geometry of the cutting tool. The rate of metal removal and power required for machining depend upon these variables.The depth of cut, feed, and cutting speed are machine settings that must be established in any metal-cutting operation. They all affect the forces, the power, and the rate of metal removal. They can be defined by comparing them to the needle and record of a phonograph. The cutting speed (V) is represented by the velocity of- the record surface relative to the needle in the tone arm at any instant. Feed is represented by the advance of the needle radially inward per revolution, or is the difference in position between two adjacent grooves. The depth of cut is the penetration of the needle into the record or the depth of the grooves.Turning on Lathe CentersThe basic operations performed on an engine lathe are illustrated. Those operations performed on external surfaces with a single point cutting tool are called turning. Except for drilling, reaming, and lapping, the operations on internal surfaces are also performed by a single point cutting tool.All machining operations, including turning and boring, can be classified as roughing, finishing, or semi-finishing. The objective of a roughing operation is to remove the bulk of the material as rapidly and as efficiently as possible, while leaving a small amount of material on the work-piece for the finishing operation. Finishing operations are performed to obtain the final size, shape, and surface finish on the workpiece. Sometimes a semi-finishing operation will precede the finishing operation to leave a small predetermined and uniform amount of stock on the work-piece to be removed by the finishing operation.Generally, longer workpieces are turned while supported on one or two lathe centers. Cone shaped holes, called center holes, which fit the lathe centers are drilled in the ends of the workpiece-usually along the axis of the cylindrical part. The end of the workpiece adjacent to the tailstock is always supported by a tailstock center, while the end near the headstock may besupported by a headstock center or held in a chuck. The headstock end of the workpiece may be held in a four-jaw chuck, or in a type chuck. This method holds the workpiece firmly and transfers the power to the workpiece smoothly; the additional support to the workpiece provided by the chuck lessens the tendency for chatter to occur when cutting. Precise results can be obtained with this method if care is taken to hold the workpiece accurately in the chuck.V ery precise results can be obtained by supporting the workpiece between two centers. A lathe dog is clamped to the workpiece; together they are driven by a driver plate mounted on the spindle nose. One end of the Workpiece is mecained;then the workpiece can be turned around in the lathe to machine the other end. The center holes in the workpiece serve as precise locating surfaces as well as bearing surfaces to carry the weight of the workpiece and to resist the cutting forces. After the workpiece has been removed from the lathe for any reason, the center holes will accurately align the workpiece back in the lathe or in another lathe, or in a cylindrical grinding machine. The workpiece must never be held at the headstock end by both a chuck and a lathe center. While at first thought this seems like a quick method of aligning the workpiece in the chuck, this must not be done because it is not possible to press evenly with the jaws against the workpiece while it is also supported by the center. The alignment provided by the center will not be maintained and the pressure of the jaws may damage the center hole, the lathe center, and perhaps even the lathe spindle. Compensating or floating jaw chucks used almost exclusively on high production work provide an exception to the statements made above. These chucks are really work drivers and cannot be used for the same purpose as ordinary three or four-jaw chucks.While very large diameter workpieces are sometimes mounted on two centers, they are preferably held at the headstock end by faceplate jaws to obtain the smooth power transmission; moreover, large lathe dogs that are adequate to transmit the power not generally available, although they can be made as a special. Faceplate jaws are like chuck jaws except that they are mounted on a faceplate, which has less overhang from the spindle bearings than a large chuck would have.组合机床乔治H. Stahier,沙克尔海茨,俄亥俄州本发明涉及一种新的改良的组合机床,更特别的是它是一个快速,方便把机床的类型转换成能够适应不同需要功能机床,是在提供新的简化和改进的设计紧凑的组合机床,适合在小型的家庭和维修店使用,可随时转换来执行不同的功能如钻孔,锯切,成型,车削等等。

电气毕业论文设计英语文献原文+翻译.doc

电气毕业论文设计英语文献原文+翻译.doc

标准文档外文翻译院(系)专业班级姓名学号指导教师年月日Programmable designed for electro-pneumatic systemscontrollerJohn F.WakerlyThis project deals with the study of electro-pneumatic systems and the programmable controller that provides an effective and easy way to control the sequence of the pneumatic actuators movement and the states of pneumatic system. The project of a specific controller for pneumatic applications join the study of automation design and the control processing of pneumatic systems with the electronic design based on microcontrollers to implement the resources of the controller.1. IntroductionThe automation systems that use electro-pneumatic technology are formed mainly by three kinds of elements: actuators or motors, sensors or buttons and control elements like valves. Nowadays, most of the control elements used to execute the logic of the system were substituted by the Programmable Logic Controller (PLC). Sensors and switches are plugged as inputs and the direct control valves for the actuators are plugged as outputs. An internal program executes all the logic necessary to the sequence of the movements, simulates other components like counter, timer and control the status of the system.With the use of the PLC, the project wins agility, because it is possible to create and simulate the system as many times as needed. Therefore, time can be saved, risk of mistakes reduced and complexity can be increased using the same elements.A conventional PLC, that is possible to find on the market from many companies, offers many resources to control not only pneumatic systems, but all kinds of system that uses electrical components. The PLC can be very versatile and robust to be applied in many kinds of application in the industry or even security system and automation of buildings.Because of those characteristics, in some applications the PLC offers to much resources that are not even used to control the system, electro-pneumatic system is one of this kind of application. The use of PLC, especially for small size systems, can be very expensive for the automation project.An alternative in this case is to create a specific controller that can offer the exactly size and resources that the project needs [3, 4]. This can be made using microcontrollers as the base of this controller.The controller, based on microcontroller, can be very specific and adapted to only one kind of machine or it can work as a generic controller that can be programmed as a usual PLC and work with logic that can be changed. All these characteristics depend on what is needed and how much experience the designer has with developing an electronic circuit and firmware for microcontroller. But the main advantage of design the controller with the microcontroller is that the designer has the total knowledge of his controller, which makes it possible to control the size of the controller, change the complexity and the application of it. It means that the project gets more independence from other companies, but at the same time the responsibility of the control of the system stays at the designer hands2. Electro-pneumatic systemOn automation system one can find three basic components mentioned before, plus a logic circuit that controls the system. An adequate technique is needed to project the logic circuit and integrate all the necessary components to execute the sequence of movements properly.For a simple direct sequence of movement an intuitive method can be used [1, 5], but for indirect or more complex sequences the intuition can generate a very complicated circuit and signal mistakes. It is necessary to use another method that can save time of the project, makea clean circuit, can eliminate occasional signal overlapping and redundant circuits. The presented method is called step-by-step or algorithmic [1, 5], it is valid for pneumatic and electro-pneumatic systems and it was used as a base in this work.The method consists of designing the systems based on standard circuits made for each change on the state of the actuators, these changes are called steps.The first part is to design those kinds of standard circuits for each step, the next task is to link the standard circuits and the last part is to connect the control elements that receive signals from sensors, switches and the previous movements, and give the air or electricity to the supply lines of each step. In Figs. 1 and 2 the standard circuits are drawn for pneumatic and electro-pneumatic system [8]. It is possible to see the relations with the previous and the next steps.3. The method applied inside the controllerThe result of the method presented before is a sequence of movements of the actuator that is well defined by steps. It means that each change on the position of the actuators is a new state of the system and the transition between states is called step.The standard circuit described before helps the designer to define the states of the systems and to define the condition to each change betweenthe states. In the end of the design, the system is defined by a sequencethat never chances and states that have the inputs and the outputs well defined. The inputs are the condition for the transition and the outputs are the result of the transition.All the configuration of those steps stays inside of the microcontroller and is executed the same way it was designed. The sequences of strings are programmed inside the controller with 5 bytes; each string has the configuration of one step of the process. There are two bytes for the inputs, one byte for the outputs and two more for the other configurations and auxiliary functions of the step. After programming, this sequence of strings is saved inside of a non-volatile memory of the microcontroller, so they can be read and executed.The controller task is not to work in the same way as a conventional PLC, but the purpose of it is to be an example of a versatile controller that is design for an specific area. A conventional PLC process the control of the system using a cycle where it makes an image of the inputs, execute all the conditions defined by the configuration programmed inside, and then update the state of the outputs. This controller works in a different way, where it read the configuration of the step, wait the condition of inputs to be satisfied, then update the state or the outputs and after that jump to the next step and start the process again.It can generate some limitations, as the fact that this controller cannot execute, inside the program, movements that must be repeated for some time, but this problem can be solved with some external logic components. Another limitation is that the controller cannot be applied on systems that have no sequence. These limitations are a characteristic of the system that must be analyzed for each application.4. Characteristics of the controllerThe controller is based on the MICROCHIP microcontroller PIC16F877 [6,7] with 40 pins, and it has all the resources needed for thisproject .It has enough pins for all the components, serial communication implemented in circuit, EEPROM memory to save all the configuration of the system and the sequence of steps. For the execution of the main program, it offers complete resources as timers and interruptions.The list of resources of the controller was created to explore all the capacity of the microcontroller to make it as complete as possible. During the step, the program chooses how to use the resources reading the configuration string of the step. This string has two bytes for digital inputs, one used as a mask and the other one used as a value expected. One byte is used to configure the outputs value. One bytes more is used for the internal timer , the analog input or time-out. The EEPROM memory inside is 256 bytes length that is enough to save the string of the steps, with this characteristic it is possible to save between 48 steps (Table 1).The controller (Fig.3) has also a display and some buttons that are used with an interactive menu to program the sequence of steps and other configurations.4.1. Interaction componentsFor the real application the controller must have some elements to interact with the final user and to offer a complete monitoring of the system resources that are available to the designer while creating the logic control of the pneumatic system (Fig.3):•Interactive mode of work; function available on the main program for didactic purposes, the user gives the signal to execute the step. •LCD display, which shows the status of the system, values of inputs, outputs, timer and statistics of the sequence execution.•Beep to give important alerts, stop, start and emergency.• Leds to show power on and others to show the state of inputs and outputs.4.2. SecurityTo make the final application works property, a correct configuration to execute the steps in the right way is needed, but more then that itmust offer solutions in case of bad functioning or problems in the execution of the sequence. The controller offers the possibility to configure two internal virtual circuits that work in parallel to the principal. These two circuits can be used as emergency or reset buttons and can return the system to a certain state at any time [2]. There are two inputs that work with interruption to get an immediate access to these functions. It is possible to configure the position, the buttons and the value of time-out of the system.4.3. User interfaceThe sequence of strings can be programmed using the interface elements of the controller. A Computer interface can also be used to generate the user program easily. With a good documentation the final user can use the interface to configure the strings of bytes that define the steps of the sequence. But it is possible to create a program with visual resources that works as a translator to the user, it changes his work to the values that the controller understands.To implement the communication between the computer interface and the controller a simple protocol with check sum and number of bytes is the minimum requirements to guarantee the integrity of the data.4.4. FirmwareThe main loop works by reading the strings of the steps from the EEPROM memory that has all the information about the steps.In each step, the status of the system is saved on the memory and it is shown on the display too. Depending of the user configuration, it can use the interruption to work with the emergency circuit or time-out to keep the system safety. In Fig.4,a block diagram of micro controller main program is presented.5. Example of electro-pneumatic systemThe system is not a representation of a specific machine, but it is made with some common movements and components found in a real one. The system is composed of four actuators. The actuators A, B and C are double acting and D-single acting. Actuator A advances and stays in specified position till the end of the cycle, it could work fixing an object to the next action for example (Fig. 5) , it is the first step. When A reaches the end position, actuator C starts his work together with B, making as many cycles as possible during the advancing of B. It depends on how fastactuator B is advancing; the speed is regulated by a flowing control valve. It was the second step. B and C are examples of actuators working together, while B pushes an object slowly, C repeats its work for some time.When B reaches the final position, C stops immediately its cycle and comes back to the initial position. The actuator D is a single acting one with spring return and works together with the back of C, it is the third step. D works making very fast forward and backward movement, just one time. Its backward movement is the fourth step. D could be a tool to make a hole on the object.When D reaches the initial position, A and B return too, it is the fifth step.Fig. 6 shows the first part of the designing process where all the movements of each step should be defined [2]. (A+) means that the actuator A moves to the advanced position and (A−) to the initial position. The movements that happen at the same time are joined together in the same step. The system has five steps.These two representations of the system (Figs. 5 and 6) together are enough to describe correctly all the sequence. With them is possible to design the whole control circuit with the necessary logic components. But till this time, it is not a complete system, because it is missing some auxiliary elements that are not included in this draws because they work in parallel with the main sequence.These auxiliary elements give more function to the circuit and are very important to the final application; the most important of them is the parallel circuit linked with all the others steps. That circuit should be able to stop the sequence at any time and change the state of the actuators to a specific position. This kind of circuit can be used as a reset or emergency buttons.The next Figs. 7 and 8 show the result of using the method without the controller. These pictures are the electric diagram of the control circuit of the example, including sensors, buttons and the coils of the electrical valves.The auxiliary elements are included, like the automatic/manual switcher that permit a continuous work and the two start buttons that make the operator of a machine use their two hands to start the process, reducing the risk of accidents.6. Changing the example to a user programIn the previous chapter, the electro-pneumatic circuits were presented, used to begin the study of the requires to control a system that work with steps and must offer all the functional elements to be used in a real application. But, as explained above, using a PLC or this specific controller, the control becomes easier and the complexity can be increasealso.Table 2 shows a resume of the elements that are necessary to control the presented example.With the time diagram, the step sequence and the elements of the system described in Table 2 and Figs. 5 and 6 it is possible to create the configuration of the steps that can be sent to the controller (Tables 3 and 4).While using a conventional PLC, the user should pay attention to the logic of the circuit when drawing the electric diagram on the interface (Figs. 7 and 8), using the programmable controller, described in this work, the user must know only the concept o f the method and program only the configuration of each step.It means that, with a conventional PLC, the user must draw the relationbetween the lines and the draw makes it hard to differentiate the steps of the sequence. Normally, one needs to execute a simulation on the interface to find mistakes on the logicThe new programming allows that the configuration of the steps be separated, like described by the method. The sequence is defined by itself and the steps are described only by the inputs and outputs for each step.The structure of the configuration follows the order:1-byte: features of the step;2-byte: mask for the inputs;3-byte: value expected on the inputs;4-byte: value for the outputs;5-byte: value for the extra function.Table 5 shows how the user program is saved inside the controller, this is the program that describes the control of the example shown before.The sequence can be defined by 25 bytes. These bytes can be dividedin five strings with 5 bytes each that define each step of the sequence (Figs. 9 and 10).7. ConclusionThe controller developed for this work (Fig. 11) shows that it is possible to create a very useful programmable controller based on microcontroller. External memories or external timers were not used in case to explore the resources that the microcontroller offers inside. Outside the microcontroller, there are only components to implement the outputs, inputs, analog input, display for the interface and the serial communication.Using only the internal memory, it is possible to control a pneumatic system that has a sequence with 48 steps if all the resources for all steps are used, but it is possible to reach sixty steps in the case of a simpler system.The programming of the controller does not use PLC languages, but a configuration that is simple and intuitive. With electro-pneumatic system, the programming follows the same technique that was used before to design the system, but here the designer work s directly with the states or steps of the system.With a very simple machine language the designer can define all the configuration of the step using four or five bytes. It depends only on his experience to use all the resources of the controller.The controller task is not to work in the same way as a commercial PLC but the purpose of it is to be an example of a versatile controller that is designed for a specific area. Because of that, it is not possible to say which one works better; the system made with microcontroller is an alternative that works in a simple way.应用于电气系统的可编程序控制器约翰 F.维克里此项目主要是研究电气系统以及简单有效的控制气流发动机的程序和气流系统的状态。

英文翻译论文(模板)

英文翻译论文(模板)

本科生毕业设计(论文)专业外文翻译原文:Magnesium alloy electric wheel hubmicro-arc oxidation production research译文:镁合金电动车轮毂微弧氧化生产研究指导教师:张清郁职称:讲师学生姓名:陈孟丽学号:1002130301专业:机械设计制造及其自动化院(系):机电工程学院2015年4月10日Magnesium alloy electric wheel hub micro-arc oxidation production researchMost electric vehicles at home and abr o ad is configured t o aluminum alloy wheel hub,its quality,energy saving,shock absorption,noise reduction and vehicle dynamics characteristics index is much lower than magnesium alloys.Magnesium alloy is30% lighter than aluminum alloy,th e damping effect is30times that of aluminum alloy. Replace the aluminum alloy with magnesium alloy wheel hub,driving the development of magnesium alloy material development and deep processing technology,t o reduce electric vehicle weight and power consumption,energy conservation and environmental protection; T o reduce vibration and noise;Improve ride comfort and electric vehicle dynamic characteristics such as objective(transportation quality each reduce10%,energy consumption will be r educed8%~10%).But its corrosion resistance is poor,seriously limits the monly used chemical oxidation and anode oxidation formation of oxide film on magnesium alloy has certain protective effect,but its corrosion resistance, environmental friendliness,appearance is not satisfactory,be badly in need of the development of new surface treatment.In recent years,people trying to develop a variety of new technologies,such as micro arc oxidation technology,the betterOne Micro-arc oxidation mechanismMicro-arc oxidation technology is a new surface tr eatment technology of gr een environmental protection,can grow in light metal surface in situ ceramic layer directly.Its technological characteristics,surface treatment,as well as the performance of the since the technology was invented by the favour of people,its mechanism is t o light metals such as aluminum,magnesium,titanium and its alloy pu t in electrolyte a q ueous solution as anode, using the method of electrochemical spark discharge spots on the surface of the material, the thermal chemistry,plasma chemistry and electrochemistry,under the joint action of metal oxide ceramic layers of a surface modification technologyTwo research methods and technologyThis topic in the research on magnesium alloy electric wheel hub,higher requirements on the t oughness of the alloy,so choose AM60B,melt and initial temperatur e of468℃,the melting end temperatur e is596℃,the liquidus temperatur e range of 165℃.The chemical composition as shown in table1.T able1AM60B alloy chemical composition(WB/%)Al Zn Mn Si Cu Ni Fe杂质余量5.6~6.4≤0.200.26~0.5≤0.05≤0.008≤0.001≤0.0040.02Mg Because of the magnesium alloy electric wheel hub surface area is larger,generalabove0.4m2,require micro-arc oxidation power supply is bigger,this subject a do pts the lanzhou university of technology institute of materials and development of MAO-300 type nc micro-arc oxidation production device(figure1)micro-arc oxidation on magnesium alloy wheel casting processing,its similar to ordinary anodic oxidation equipment,including special high-voltage power supply,micro-arc oxidation alkaline solution of electrolytic tank,mixing system,cooling system,workpiece with stainless steel plate for peer electrode.With micro-arc oxidation method in sodium silicate and sodium hydroxide electrolyte fluid system in the preparation of magnesium alloy wheel casting oxide ceramic membrane, the concrete technological process first set oxidation process parameters and the alkaline tank sodium silicate solution,the cleaning after micro-arc oxidation of magnesium alloy wheel casting into cell15~20min,clean with clear water tank2~4min,add ho t water in ho t water(80℃,10~15min),closed,then cool in the cold water tank2min,hoisted ou t drainage,drying,examine the hub.After micro-arc oxidation tr eatment must be closed by ho t water,formed by micro-arc oxidation discharge holes so the distribution of the channel and the surrounding a large number of micro cracks will be closed,prevent oxygen t o cause oxidation.After completion of micro-arc oxidation,from after micro-arc oxidation on magnesium alloy wheel casting intercept film sample were analyzed,and to facilitate test analysis,r equest samples made of circular plate,so the sample interception location choice among wheels,mo s t is shown in ing scanning electron microscope analysis of oxide filmFigure1MAO-300type nc micro-arc oxidation power supplyFigure2after micro-arc oxidation magnesium alloy wheel hub casting andinterception of membrane layer analysis sampleThree micro-arc oxidation process parameters on the quality of the film Based on the research of the sample and analysis of micro-arc oxidation technology is, in fact,the substrate magnesium magnesium oxide.Figure3for the dimension of samples before and after oxidation appearance schematic simulation,which is suitable for ceramic oxide film a outward growth,namely the increase of size part,b is the depth of the internal oxidation t o the matrix,a and b interface for initial sample surface position,h for the total thickness of oxide film.Figure3samples dimension changes before and after micro-arc oxidation diagram Larger influence on test has a positive voltage,frequency,duty cycle,current density and oxidation time on the process parameters.Due to the electric casting of magnesium alloy surface area is larger,micro-arc oxidation micro-arc discharge must be formed in the surface can occur after a certain thickness of oxide film,so the formation of the oxide film is needed for the voltage doesn't need much,the current is larger,the oxide film formation and the process of thickening,o ften accompanied by current and voltage mutation.When the oxide film thickness reaches a certain degree,the need t o increase the voltage on both ends of the workpiece,usually at ar ound150V in the micro arc discharge betw een the workpiece and the electrolyte.Increased with the increase of voltage,current,micro-arc density is mo r e and mo r e close,mo r e and mor e bright,and micro-arc constantly beating, basically,the current and voltage,linear increase abo u t180V voltage,the density of micro-arc basically meet the technological requirements,the current growth slowly.When the thickness of oxide film reaches a certain electricityFrom electric casting magnesium alloys is n o t hard t o find in the micro-arc oxidation test result analysis,micro-arc oxidation in the process can be divided into two steps, namely the oxide film formation stage and the stage of micro-arc oxidation film discharge, the formation of oxide film phase as the initial stage,the stage of the supply voltage is small,and after the film to pr oduce micro-arc discharge requires high voltage,for magnesium alloy electric casting the large workpiece with micro-arc oxidation processing surface area is larger,the film for a long time,t o a large extent affected the production efficiency.Experimental results also found that the dc power of oxide film faster than pulse power,in the absence of micro arc discharge,oxide film layer is not dense,it can be seenfrom appearance,need again with pulse power supply for micro-arc oxidation discharge, the oxide film become mo r e dense.In order to improve the production efficiency,to meet the n eed s of industrial production,suggest early low voltage adjustable dc constant voltage power supply are available t o set up the initial oxidation film,forming a complete insulation film in place to ensure that the first phase,and the oxide film in the late discharge can use digital pulse type adjustable power supply,it can shorten the artifacts of micro-arc oxidation time.The size of the current density in a certain extent reflects the intensity of micro-arc oxidation,strongly affect the resulting performance of the micro arc oxidation ceramic layer.The duration of oxidation also seriously affects the coating corrosion resistance: oxidation time is too short,although generat ed mainly the dense layer,bu t the film is too thin,don't have good corrosion resistance;After oxidation time is too long,at some time, with the increase of time,although the overall film thickness increases,bu t the increase is a loose layer,layer density and thinning trend,d o e s n ot favor the coating corrosion resistance,also no t economic.The density of micro arc also related with the pulse frequency,when the pulse frequency increases,the density of micro arc also gradually increased.Will have the electric field set up suddenly,can pr oduce micro arc.In the basic process parameters such as electrolyte concentration,duty ratio and pulse n umbe r of uncertain,the arc voltage is constant commonly,so when the frequency increases,the sustain micro-arc voltage frequency increases,the micro-arc density will increaseFour micro-arc oxide film layer structure characteristicsAfter micro-arc oxidation of magnesium alloy wheel hub interception by Mef3large metallurgical microscope observation of the sample,the micro-arc oxide film surface morphology as shown in figure4.Can be seen from the figure in the wheel hub surface layer is made up of many tiny"small volcanic cone"(figure pr otuberant part ar ound the holes)in dendritic combination,constitute the mesh structure."Small volcanic cone"center has a small hole,this is the electrolyte reaction with matrix micro-arc discharge channel, namely when the micro-arc spew ed molten oxide channel.In addition,because the current micro area local plasma channel is different that differ by the size of the hole,big hole are also distributed ar ound a large n u mbe r of micro cracks,the generation of micro cracks o ften related to the stress that exist in the film.With SSM Analysis Analysis software[6]toanalyze the surface density,including25m film for sample,the hole surface area ratio of 18%,that of micro-arc oxidation film density is better.Figure4magnesium alloy wheel hub micro-arc oxide film layer surface morphologyFigure5AM60B magnesium alloy micro-arc oxidation film section morphology by SEM Figure5is thr ough JMS-6700-f field emission scanning electron microscopy(sem) observed the micro-arc oxide film layer section morphology photos.Figure5shows the average film thickness of a bo u t22(including m,the oxide film and substrate with good, decomposition of a distinct,density on the interface is good,no big holes.By figure5can also see,micro-arc oxide film by the outermost layer of loose layer,the inside of the transition layer and layer in betw een density of three parts,the transitional layer is the interface film layer and substrate,holes and other defects existing in the loose layer,d ens e layer is the key t o improve its corrosion resistance.Figure6is obtained by Phlip X'pert X-ray diffractometer AM60B magnesium alloy wheel hub of micro-arc oxidation film XRD spectrum,according t o the intensity of diffraction peak accumulation analysis shows that the matrix of Mg peak relatively obvious, the main phase of micro-arc oxidation coating is cubic structure of MgO style,surface with Mg2Si2O4and MgAl2O4spinel phase,according t o the test conditions that may also contain SiO2,MgF2and small a mounts of Mg(OH)2,and the oxide of Al,K and Na. Studies have shown that MgAl2O4and Mg2Si2O4can improve the wear resistance of ceramic layer and MgO style the corrosion resistance of ceramic layer play a very important role.This is the micro-arc oxide film performance is higher than the r oot cause of the anode oxidation membrane performance.In addition,micro-arc oxidation ceramic layers of low porosity,and to improve the corrosion resistance of the coatings;Ceramic layer from the substrate on the growth,combined with matrix closely,therefore,is no t easy t o fall off.In addition,the technology can generat e uniform film both inside and outside the material surface layer,expand the scope of application of micro-arc oxidation.Figure6AM60B magnesium alloy micro-arc oxidation film XRD spectrum Five T o detect the corrosion resistance of the micro-arc oxide film layer In order t o meet the requirements of the use of electric cars,micro-arc oxidation on magnesium alloy electric wheel hub on the corrosion resistance test,salt spray testing machine mainly USES the WJ-90after micro-arc oxidation tr eatment of the surface of the wheel hub for salt spray test.After testing found that did not use h ot water seal processing of the surface of the wheel hub48h corrosion rate was0.108%,while only0.073%,afterho t water hole sealing hubs such as chromium than other chemical surface tr eatment processing of low corrosion rate(0.6%).[9],that magnesium alloy after micro-arc oxidation electric wheel hub surface corrosion resistance is superior.T o evaluate a r ough check the appearance of the film,feel is very good,membrane layer uniform light show that membrane surface appearance level is higher.Practice shows that without the micro-arc oxidation of the surface of the magnesium alloy wheel casting coating,its poor corrosion resistance,abrasion resistance,in a very short period of time,began to appear on the surface of parts oxidation falls off ph eno menon,it is difficult t o sell in the market; After micro-arc oxidation treatment,its corrosion resistance,wear-resisting performance is significantSix The conclusion(1)quality of micro-arc oxidation on magnesium alloy electric wheel hub surface influence factor has a positive voltage,frequency,duty cycle,current density and oxidation time on the process parameters.Optimum process parameters for150~180V voltage, current density of1.1A/dm2,oxidation time t o20min,400Hz frequency,duty cycle of 20%.(2)the oxide film is divided into two layers of loose layer and den se layer structure, the dense layer is the main body,the film formed by cubic structure of MgO style,the surface is MgO style and MgA12O4,spinel phase mixture,and combined with matrix and closely for hard ceramic layer and played a key role of the magnesium alloy surface anticorrosion(3)the micro-arc oxidation technology for new surface tr eatment technology of environmental protection,bu t its large area needed for the magnesium alloy casting film for a long time,the production efficiency is low,the mass production t o meet the large area of magnesium alloy castings,micro-arc oxidation power supply can be established by using dc power first initial oxidation film layer,then use pulse power arc discharge strengthening oxide film layer,the ways which are already so den se and har d ceramic oxide film layer can be obtained,also can greatly improve production efficiency.镁合金电动车轮毂微弧氧化生产研究国内外大多数电动车车辆配置为铝合金轮毂,其在质量、节能、减震、降噪和车辆动力学特性等指标大大低于镁合金。

组合机床论文中英文资料外文翻译文献

组合机床论文中英文资料外文翻译文献

中英文资料外文翻译文献TRANSFER AND UNIT MACHINEWhile the specific intention and application for transfer and unit machine vary from one machine type to another, all forms of transfer and unit machine have common benefits. Here are but a few of the more important benefits offered by TRANSFER AND UNIT MACHINE equipment.The first benefit offered by all forms of transfer and unit machine is improved automation. The operator intervention related to producing workpieces can be reduced or eliminated. Many transfer and unit machine can run unattended during their entire machining cycle, freeing the operator to do other tasks. This gives the transfer and unit machine user several side benefits including reduced operator fatigue, fewer mistakes caused by human error, and consistent and predictable machining time for each workpiece. Since the machine will be running under program control, the skill level required of the transfer and unit machine operator (related to basic machining practice) is also reduced as compared to a machinist producing workpieces with conventional machine tools.The second major benefit of transfer and unit machine technology is consistent and accurate workpieces. Today's transfer and unit machines boast almost unbelievable accuracy and repeatability specifications. This means that once a program is verified, two, ten, or one thousand identical workpieces can be easily produced with precision and consistency.rd benefit offered by most forms of transfer and unit machine tools is flexibility. Since these machines are run from programs, running a different workpieceis almost as easy as loading a different program. Once a program has been verified and executed for one production run, it can be easily recalled the next time the workpiece is to be run. This leads to yet another benefit, fast change over. Since these machines are very easy to set up and run, and since programs can be easily loaded, they allow very short setup time. This is imperative with today's just-in-time (JIT) product requirements.Motion control - the heart of transfer and unit machineThe most basic function of any transfer and unit machine is automatic, precise, and consistent motion control. Rather than applying completely mechanical devices to cause motion as is required on most conventional machine tools, transfer and unit machines allow motion control in a revolutionary manner2. All forms of transfer and unit machine equipment have two or more directions of motion, called axes. These axes can be precisely and automatically positioned along their lengths of travel. The two most common axis types are linear (driven along a straight path) and rotary (driven along a circular path).Instead of causing motion by turning cranks and handwheels as is required on conventional machine tools, transfer and unit machines allow motions to be commanded through programmed commands. Generally speaking, the motion type (rapid, linear, and circular), the axes to move, the amount of motion and the motion rate (feedrate) are programmable with almost all transfer and unit machine tools.A transfer and unit machine command executed within the control tells the drive motor to rotate a precise number of times. The rotation of the drive motor in turn rotates the ball screw. And the ball screw drives the linear axis (slide). A feedback device (linear scale) on the slide allows the control to confirm that the commanded number of rotations has taken place3. Refer to fig.1.Fig.1Though a rather crude analogy, the same basic linear motion can be found on a common table vise. As you rotate the vise crank, you rotate a lead screw that, in turn, drives the movable jaw on the vise. By comparison, a linear axis on a transfer and unit machine machine tool is extremely precise. The number of revolutions of the axis drive motor precisely controls the amount of linear motion along the axis.How axis motion is commanded - understanding coordinate systemsIt would be infeasible for the transfer and unit machine user to cause axis motion by trying to tell each axis drive motor how many times to rotate in order to command a given linear motion amount4. (This would be like having to figure out how many turns of the handle on a table vise will cause the movable jaw to move exactly one inch!) Instead, all transfer and unit machine controls allow axis motion to be commanded in a much simpler and more logical way by utilizing some form of coordinate system. The two most popular coordinate systems used with transfer and unit machines are the rectangular coordinate system and the polar coordinate system. By far, the more popular of these two is the rectangular coordinate system.The program zero point establishes the point of reference for motion commands in a transfer and unit machine program. This allows the programmer to specify movements from a common location. If program zero is chosen wisely, usually coordinates needed for the program can be taken directly from the print.With this technique, if the programmer wishes the tool to be sent to a position one inch to the right of the program zero point, X1.0 is commanded. If the programmer wishes the tool to move to a position one inch above the program zero point, Y1.0 is commanded. The control will automatically determine how many times to rotate each axis drive motor and ball screw to make the axis reach the commanded destination point . This lets the programmer command axis motion in a very logical manner. Refer to fig.2, 3.Fig.2Fig.3All discussions to this point assume that the absolute mode of programming is used6. The most common transfer and unit machine word used to designate the absolute mode is G90. In the absolute mode, the end points for all motions will be specified from the program zero point. For beginners, this is usually the best and easiest method of specifying end points for motion commands. However, there is another way of specifying end points for axis motion.In the incremental mode (commonly specified by G91), end points for motions are specified from the tool's current position, not from program zero. With this method of commanding motion, the programmer must always be asking "How far should I move the tool?" While there are times when the incremental mode can be very helpful, generally speaking, this is the more cumbersome and difficult method of specifying motion and beginners should concentrate on using the absolute mode.Be careful when making motion commands. Beginners have the tendency tothink incrementally. If working in the absolute mode (as beginners should), the programmer should always be asking "To what position should the tool be moved?" This position is relative to program zero, NOT from the tools current position.Aside from making it very easy to determine the current position for any command, another benefit of working in the absolute mode has to do with mistakes made during motion commands. In the absolute mode, if a motion mistake is made in one command of the program, only one movement will be incorrect. On the other hand, if a mistake is made during incremental movements, all motions from the point of the mistake will also be incorrect.Assigning program zeroKeep in mind that the transfer and unit machine control must be told the location of the program zero point by one means or another. How this is done varies dramatically from one transfer and unit machine and control to another8. One (older) method is to assign program zero in the program. With this method, the programmer tells the control how far it is from the program zero point to the starting position of the machine. This is commonly done with a G92 (or G50) command at least at the beginning of the program and possibly at the beginning of each tool.Another, newer and better way to assign program zero is through some form of offset. Refer to fig.4. Commonly machining center control manufacturers call offsets used to assign program zero fixture offsets. Turning center manufacturers commonly call offsets used to assign program zero for each tool geometry offsets.Fig. 4Flexible manufacturing cellsA flexible manufacturing cell (FMC) can be considered as a flexible manufacturing subsystem. The following differences exist between the FMC and the FMS:1.An FMC is not under the direct control of thecentral computer. Instead, instructions from the centralcomputer are passed to the cell controller.2.The cell is limited in the number of part families itcan manufacture.The following elements are normally found in an FMC:•Cell controller•Programmable logic controller (PLC)•More than one machine tool•A materials handling device (robot or pallet)The FMC executes fixed machining operations with parts flowing sequentially between operations.High speed machiningThe term High Speed Machining (HSM) commonly refers to end milling at high rotational speeds and high surface feeds. For instance, the routing of pockets in aluminum airframe sections with a very high material removal rate1. Over the past 60 years, HSM has been applied to a wide range of metallic and non-metallic workpiece materials, including the production of components with specific surface topography requirements and machining of materials with hardness of 50 HRC and above. With most steel components hardened to approximately 32-42 HRC, machining options currently include: Rough machining and semi-finishing of the material in its soft (annealed) condition heat treatment to achieve the final required hardness = 63 HRC machining of electrodes and Electrical Discharge Machining (EDM) of specific parts of dies and moulds (specifically small radii and deep cavities with limitedaccessibility for metal cutting tools) finishing and super-finishing of cylindrical/flat/cavity surfaces with appropriate cemented carbide, cermet, solid carbide, mixed ceramic or polycrystalline cubic boron nitride (PCBN)For many components, the production process involves a combination of these options and in the case of dies and moulds it also includes time consuming hand finishing. Consequently, production costs can be high and lead times excessive.It is typical in the die and mould industry to produce one or just a few tools of the same design. The process involves constant changes to the design, and because of these changes there is also a corresponding need for measuring and reverse engineering .The main criteria is the quality level of the die or mould regarding dimensional, geometric and surface accuracy. If the quality level after machining is poor and if it cannot meet the requirements, there will be a varying need of manual finishing work. This work produces satisfactory surface accuracy, but it always has a negative impact on the dimensional and geometric accuracy.One of the main aims for the die and mould industry has been, and still is, to reduce or eliminate the need for manual polishing and thus improve the quality and shorten the production costs and lead times.Main economical and technical factors for the development of HSMSurvivalThe ever increasing competition in the marketplace is continually setting new standards. The demands on time and cost efficiency is getting higher and higher. This has forced the development of new processes and production techniques to take place. HSM provides hope and solutions...MaterialsThe development of new, more difficult to machine materials has underlined the necessity to find new machining solutions. The aerospace industry has its heat resistant and stainless steel alloys. The automotive industry has different bimetal compositions, Compact Graphite Iron and an ever increasing volume of aluminum3. The die and mould industry mainly has to face the problem of machining highhardened tool steels, from roughing to finishing.QualityThe demand for higher component or product quality is the result of ever increasing competition. HSM, if applied correctly, offers a number of solutions in this area. Substitution of manual finishing is one example, which is especially important on dies and moulds or components with a complex 3D geometry.ProcessesThe demands on shorter throughput times via fewer setups and simplified flows (logistics) can in most cases, be solved by HSM. A typical target within the die and mould industry is to completely machine fully hardened small sized tools in one setup. Costly and time consuming EDM processes can also be reduced or eliminated with HSM.Design & developmentOne of the main tools in today's competition is to sell products on the value of novelty. The average product life cycle on cars today is 4 years, computers and accessories 1.5 years, hand phones 3 months... One of the prerequisites of this development of fast design changes and rapid product development time is the HSM technique.Complex productsThere is an increase of multi-functional surfaces on components, such as new design of turbine blades giving new and optimized functions and features. Earlier designs allowed polishing by hand or with robots (manipulators). Turbine blades with new, more sophisticated designs have to be finished via machining and preferably by HSM . There are also more and more examples of thin walled workpieces that have to be machined (medical equipment, electronics, products for defence, computer parts) Production equipmentThe strong development of cutting materials, holding tools, machine tools, controls and especially CAD/CAM features and equipment, has opened possibilities that must be met with new production methods and techniques5.Definition of HSMSalomon's theory, "Machining with high cutting speeds..." on which, in 1931,took out a German patent, assumes that "at a certain cutting speed (5-10 times higher than in conventional machining), the chip removal temperature at the cutting edge will start to decrease..."Given the conclusion:" ... seems to give a chance to improve productivity in machining with conventional tools at high cutting speeds..."Modern research, unfortunately, has not been able to verify this theory totally. There is a relative decrease of the temperature at the cutting edge that starts at certain cutting speeds for different materials.The decrease is small for steel and cast iron. But larger for aluminum and other non-ferrous metals. The definition of HSM must be based on other factors.Given today's technology, "high speed" is generally accepted to mean surface speeds between 1 and 10 kilometers per minute or roughly 3 300 to 33 000 feet per minute. Speeds above 10 km/min are in the ultra-high speed category, and are largely the realm of experimental metal cutting. Obviously, the spindle rotations required to achieve these surface cutting speeds are directly related to the diameter of the tools being used. One trend which is very evident today is the use of very large cutter diameters for these applications - and this has important implications for tool design.There are many opinions, many myths and many different ways to define HSM. Maintenance and troubleshootingMaintenance for a horizontal MCThe following is a list of required regular maintenance for a Horizontal Machining Center as shown in fig.5. Listed are the frequency of service, capacities, and type of fluids required. These required specifications must be followed in order to keep your machine in good working order and protect your warranty.fig. 5DailyTop off coolant level every eight hour shift (especially during heavy TSC usage).Check way lube lubrication tank level.Clean chips from way covers and bottom pan.Clean chips from tool changer.Wipe spindle taper with a clean cloth rag and apply light oil.Weekly•Check for proper operation of auto drain on filter regulator.On machines with the TSC option, clean the chip basket on the coolant tank.Remove the tank cover and remove any sediment inside the tank. Be careful to disconnect the coolant pump from the controller and POWER OFF the control before working on the coolant tank . Do this monthly for machines without the TSC option.Check air gauge/regulator for 85 psi.For machines with the TSC option, place a dab of grease on the V-flange of tools. Do this monthly for machines without the TSC option.Clean exterior surfaces with mild cleaner. DO NOT use solvents.Check the hydraulic counterbalance pressure according to the machine's specifications.Place a dab of grease on the outside edge of the fingers of the tool changer and run through all tools".MonthlyCheck oil level in gearbox. Add oil until oil begins dripping from over flow tube at bottom of sump tank.Clean pads on bottom of pallets.Clean the locating pads on the A-axis and the load station. This requires removing the pallet.•Inspect way covers for proper operation and lubricate with light oil, if necessary.Six monthsReplace coolant and thoroughly clean the coolant tank.Check all hoses and lubrication lines for cracking.Annually•Replace the gearbox oil. Drain the oil from the gearbox, and slowly refill it with 2 quarts of Mobil DTE 25 oil.•Check oil filter and clean out residue at bottom for the lubrication chart.Replace air filter on control box every 2 years.Mineral cutting oils will damage rubber based components throughout the machine.TroubleshootingThis section is intended for use in determining the solution to a known problem. Solutions given are intended to give the individual servicing the TRANSFER AND UNIT MACHINE a pattern to follow in, first, determining the problem's source and, second, solving the problem.Use common senseMany problems are easily overcome by correctly evaluating the situation. All machine operations are composed of a program, tools, and tooling. You must look at all three before blaming one as the fault area. If a bored hole is chattering because of an overextended boring bar, don't expect the machine to correct the fault.Don't suspect machine accuracy if the vise bends the part. Don't claim hole mis-positioning if you don't first center-drill the hole.Find the problem firstMany mechanics tear into things before they understand the problem, hoping that it will appear as they go. We know this from the fact that more than half of all warranty returned parts are in good working order. If the spindle doesn't turn, remember that the spindle is connected to the gear box, which is connected to the spindle motor, which is driven by the spindle drive, which is connected to the I/O BOARD, which is driven by the MOCON, which is driven by the processor. The moral here is don't replace the spindle drive if the belt is broken. Find the problem first; don't just replace the easiest part to get to.Don tinker with the machineThere are hundreds of parameters, wires, switches, etc., that you can change in this machine. Don't start randomly changing parts and parameters. Remember, there is a good chance that if you change something, you will incorrectly install it or break something else in the process6. Consider for a moment changing the processor's board. First, you have to download all parameters, remove a dozen connectors, replace the board, reconnect and reload, and if you make one mistake or bend one tiny pin it WON'T WORK. You always need to consider the risk of accidentally damaging the machine anytime you work on it. It is cheap insurance to double-check a suspect part before physically changing it. The less work you do on the machine the better.组合机床虽然各种组合机床的功能和应用各不相同,但它们有着共同的优点。

组合机床及其自动生产线外文文献翻译、中英文翻译

组合机床及其自动生产线外文文献翻译、中英文翻译

XX外文翻译专业学生姓名班级学号指导教师外文资料名称CONSTITUTE MACHINE TOOL AND ITSAUTOMATION ASSEMBLY LINE外文资料出处:JOURNAL OF HEFEI UNIVERSITY OF(用外文写)TECHNOLOGY附件: 1.外文资料翻译译文2.外文原文组合机床及其自动生产线摘要:组合机床及其自动生产线是集机电于一体的自动化程度较高的制造技术和成套工艺装备,它的特征是高效、高质、经济实用,因而被广泛用于工程机械、交通、能源、军工、轻工、家电等行业。

本文根据工厂需要,设计一台能高效加工大批量产品的专用组合机床。

文章从工艺方案设计、总体设计、部件设计等几部分进行设计。

关键词:组合机床;自动控制;机床;许多情况下,成型加工出来的工件必须在尺寸和光洁度方面进一步精整,以满足它们的设计技术要求。

为满足精度公差,需要从工件上去掉小量的材料。

通常机床就是用于这种加工的设备。

通过切削工具使工件成型达到所需的尺寸,机床通过其基础构件的功能作用,以控制相互关系,支持、夹紧工具和工件,基本部件列举如下:a) 床身. 这是个主要部件,它为主轴、拖板箱等提供了一个基础和连接中介,在负载作用下,它必须使形变和振动保持最小。

b) 拖板箱和导轨. 机床部件(如拖板箱)的移动,通常是在精确的导轨面约束下靠直线运动来实现。

c) 主轴和轴承. 角位移是围绕一个旋转轴线发生的。

该轴线的位置必须在机床中极端精确的限度内保持恒定,而且是靠精密的主轴和轴承来提供保证。

d) 动力装置. 电机是为机床普遍采用的动力装置,通过对各个电机的合适定位,使皮带和齿轮传动装置减少到最少。

e) 传动连杆机构. 连杆机构是个通用术语,用来代表机械、液压、气动或电动机构,这些机构与确定的角位移和线位移相互关联。

加工工艺主要由两部分组成:a) 粗加工工艺. 粗加工,金属切除率高,因而切削力也较大,但其所要求的精度较低。

工程设计半轴壳体左右两面孔加工组合机床的总体设计外文翻译2

工程设计半轴壳体左右两面孔加工组合机床的总体设计外文翻译2

在OPENFOAM基础上研究双叶片泵内部流动文摘:离心泵的内部流动分析逐渐成为液压设计和一个重要的问题提高性能。

如今,CFD仿真工具箱泵的内部流动主要包含商业工具和开放源工具。

有一些缺陷为商业CFD软件内部三维湍流流动的数值模拟泵,尤其是在捕获偏离设计的操作条件下的流动特性。

此外,很难研究人员做进一步的调查,因为未申报的来源。

因此,一个开源软件喜欢空旷的田野操作和操作(OpenFOAM)与研究人员来自世界各地越来越受欢迎。

在本文中,一个新的计算研究是实现基于最初的解决者和被用来直接模拟稳态内流的双叶片泵,以特定的速度是111。

为了披露特点,三个研究计划进行的。

比率(Q / Qd)的流量是0.8,1.0和1.2,分别。

仿真结果验证了粒子成像测速技术(PIV)实验结果和数值计算结果与实验数据吻合较好。

与此同时,非设计工况下的流动分离现象被OpenFOAM操作条件好。

的结果表明,OpenFOAM具有明显优势强劲计算泵的内部流场。

分析结果也可以作为进一步研究的基础和改善离心泵。

关键词:数值模拟、双叶片泵内部流动,粒子成像测速技术(PIV)介绍双叶片泵是一种离心两个叶片泵。

有两个对称的曲线从进口到出口和叶轮通道叶轮出口很宽。

因此,它通常成为叶轮在固液两相的形状离心泵。

然而,由于短发展历史和不完美的设计理论,其叶轮常常相结合的设计在实践经验的设计师到目前为止,所以它的性能和稳定性不保证[1 - 3]。

确定泵的性能决定的*项目得到了国家自然科学基金的支持杰出的年轻学者(批准号50825902),中国国家自然科学基金(批准号。

51079062、51079062、51079062)和自然科学江苏省基础(批准号。

BK2009006,BK2010346)。

传记:刘Hou-lin(1971 -),男,博士。

教授检查其内部流动特性无疑最好的方法来提高性能的泵[4 - 6]。

最近,与CFD的快速进步和计算机技术,模拟内部流已逐渐成为重要的基础优化和设计涡轮机械[7]。

卧式双面铣削组合机床液压传动系统设计论文

卧式双面铣削组合机床液压传动系统设计论文

1. 绪论1.1 金属切削机床的基本知识金属切削机床是采用切削(或特种加工)的方法将金属毛胚加工成所要求的几何形状、尺寸精度和表面质量的机械零件的机器,它是制造机器的机器,所以又称为“工作母机”或“工具机”,习惯上简称为机床。

机床的“母机”属性决定了它在国民经济中的重要地位。

在现代化的工业生产中,会大量使用各种机器、仪器、仪表和工具等技术设备,这些技术设备都是由机械制造部门提供的。

而在各类机械制造工厂中需要各种加工金属零件的设备,包括铸造的、锻压的、焊接的、热处理的和切削加工的设备。

由于机械零件的尺寸精度、形状精度、位置精度和表面质量目前主要靠切削加工方法来达到,所以金属切削机床担任的工作量约占机械制造总工作量的40%~60%。

在一般机械制造工厂拥有的技术设备中,机床占有相当大的比重,约在50%~60%。

另一方面,机床的质量和技术水品直接影响机械产品的质量和劳动生产率。

因此,一个国家生产的机床质量、技术水平、品种和产量以与机床的拥有量是衡量国家整个工业水平的重要标准。

1.2 本课题研究的意义、目的与容液压传动的基本原理是在密闭的容器,利用有压力的油液作为工作介质来实现能量转换和传递动力的。

其中的液体称为工作介质,一般为矿物油,它的作用和机械传动中的皮带、链条和齿轮等传动元件相类似。

在液压传动中,液压油缸就是一个最简单而又比较完整的液压传动系统,分析它的工作过程,可以清楚的了解液压传动的基本原理.液压传动系统的组成:液压系统主要由:动力元件(油泵)、执行元件(油缸或液压马达)、控制元件(各种阀)、辅助元件和工作介质等五部分组成。

1)动力元件(油泵)它的作用是把液体利用原动机的机械能转换成液压力能;是液压传动中的动力部分。

2)执行元件(油缸、液压马达)它是将液体的液压能转换成机械能。

其中,油缸做直线运动,马达做旋转运动。

3)控制元件包括压力阀、流量阀和方向阀等。

它们的作用是根据需要无级调节液动机的速度,并对液压系统中工作液体的压力、流量和流向进行调节控制。

毕业设计外文翻译--组合钻床动力滑台液压系统及电控系统设计

毕业设计外文翻译--组合钻床动力滑台液压系统及电控系统设计

本科生毕业设计(论文)外文翻译毕业设计(论文)题目:组合钻床动力滑台液压系统及电控系统设计外文题目: Drilling machine译文题目:组合钻床学生姓名:马莉莉专业:机械设计制造及其自动化0701班指导教师姓名:王洁评阅日期:正文内容小四号字,宋体,行距1.5倍行距。

The drilling machine is a machine for making holes with removal of chips and it is used to create or enlarge holes. There are many different types of drilling machine for different jobs, but they can be basically broken down into two categories.The bench drill is used for drilling holes through raw materials such as wood, plastic and metal and gets its name because it is bolted to bench for stability so that larger pieces of work can be drilled safely. The pillar drill is a larger version that stands upright on the floor. It can do exactly the same work as the bench drill, but because of its size it can be used to drill larger pieces of materials and produce bigger holes. Most modern drilling machines are digitally automated using the latest computer numerical control (CNC) technology.Because they can be programmed to produce precise results, over and over again, CNC drilling machines are particularly useful for pattern hole drilling, small hole drilling and angled holes.If you need your drilling machine to work at high volume, a multi spindle drill head will allow you to drill many holes at the same time. These are also sometimes referred to as gang drills.Twist drills are suitable for wood, metal and plastics and can be used for both hand and machine drilling, with a drill set typically including sizes from 1mm to 14mm. A type of drill machine known as the turret stores tools in the turret and positions them in the order needed for work.Drilling machines, which can also be referred to as bench mounted drills or floor standing drills are fixed style of drills that may be mounted on a stand or bolted to the floor or workbench. A drilling machine consists of a base, column, table, spindle), and drill head, usually driven by an induction motor.The head typically has a set of three which radiate from a central hub that, when turned, move the spindle and chuck vertically, parallel to the axis of the column. The table can be adjusted vertically and is generally moved by a rack and pinion. Some older models do however rely on the operator to lift and re clamp the table in position. The table may also be offset from the spindles axis and in some cases rotated to a position perpendicular to the column.The size of a drill press is typically measured in terms of swing which can be is defined as twice the throat distance, which is the distance from the centre of the spindle to the closest edge of the pillar. Speed change on these drilling machines is achieved by manually moving a belt across a stepped pulleyarrangement.Some drills add a third stepped pulley to increase the speed range. Modern drilling machines can, however, use a variable-speed motor in conjunction with the stepped-pulley system. Some machine shop drilling machines are equipped with a continuously variable transmission, giving a wide speed range, as well as the ability to change speed while the machine is running.Machine drilling has a number of advantages over a hand-held drill. Firstly, it requires much less to apply the drill to the work piece. The movement of the chuck and spindle is by a lever working on a rack and pinion, which gives the operator considerable mechanical advantage.The use of a table also allows a vice or clamp to be used to position and restrain the work. This makes the operation much more secure. In addition to this, the angle of the spindle is fixed relative to the table, allowing holes to be drilled accurately and repetitively.Most modern drilling machines are digitally automated using the latest computer numerical control (CNC) technology. Because they can be programmed to produce precise results, over and over again, CNC drilling machines are particularly useful for pattern hole drilling, small hole drilling and angled holes.Drilling machines are often used for miscellaneous workshop tasks such as sanding, honing or polishing, by mounting sanding drums, honing wheels and various other rotating accessories in the chuck. To add your products click on the traders account link above.You can click on the links below to browse for new, used or to hire a drilling machine.Drilling machines are used for drilling, boring, countersinking, reaming, and tapping. Several types are used in metalworking: vertical drilling machines, horizontal drilling machines, center-drilling machines, gang drilling machines, multiple-spindle drilling machines, and special-purpose drilling machines. Vertical drilling machines are the most widely used in metalworking. They are used to make holes in relatively small work-pieces in individual and small-lot production; they are also used in maintenance shops. The tool, such as a drill, countersink, or reamer, is fastened on a vertical spindle, and the work-piece is secured on the table of the machine. The axes of the tool and the hole to be drilled are aligned by moving the workpiece. Programmed control is also used to orient the workpiece and to automate the operation. Bench-mounted machines, usually of the single-spindle type, are used to make holes up to 12 mm in diameter, for instance, in instrument-making.Heavy and large workpieces and workpieces with holes located along a curved edge are worked on radial drilling machines. Here the axes of the tool and the hole to be drilled are aligned by moving the spindle relative to the stationary work-piece.Horizontal drilling machines are usually used to make deep holes, for instance, in axles, shafts, and gun barrels for firearms and artillery pieces. Center-drilling machines are used to drill centers in the ends of blanks. They are sometimes equipped with supports that can cut off the blank before centering, and in such cases they are called center-drilling machines. Gang drilling machines with more than one drill head are used to produce several holes at one time. Multiple-spindle drilling machines feature automation of the work process. Such machines can be assembled from several standardized, self-contained heads with electric motors and reduction gears that rotate the spindle and feed the head. There are one-, two-, and three-sidedmultiple-spindle drilling machines with vertical, horizontal, and inclined spindles for drilling and tapping. Several dozen such spindles may be mounted on a single machine. Special-purpose drilling machines, on which a limited range of operations is performed, are equipped with various automated devices.Multiple operations on workpieces are performed by various combination machines. These include one- and two-sided jig boring machines,drilling-tapping machines (usually gang drilling machines with reversible thread-cutting spindles), milling-type drilling machines and drilling-mortising machines used mainly for woodworking, and automatic drilling machines.In woodworking much use is made of single- and multiple-spindle vertical drilling machines, one- and two-sided, horizontal drilling machines (usually with multiple spindles), and machines equipped with a swivel spindle that can be positioned vertically and horizontally. In addition to drilling holes, woodworking machines may be used to make grooves, recesses, and mortises and to remove knots.英文翻译指导教师评阅意见原文已完。

毕业设计--机电外壳高效机床设计(含外文翻译)

毕业设计--机电外壳高效机床设计(含外文翻译)

1 概述1.1 本课题研究的目的电动机外壳加工专用机床的设计主要用于加工铝合金材料的压铸件电动机外壳的毛坯,通常是在普通机床上进行加工,装夹和测量麻烦,不但加工时间厂,效率低,而且制造误差大,生产成本高,本设计的目的是使机床的结构尽可能简化,降低机床购买成本,提高生产效率,从而降低零件的生产成本,提高产品的市场竞争力。

1.2本设计国内外研究历史与现状专用机床是集机电于一体的综合自动化程度较高的制造技术和成套工艺装备。

它的特征是高效、高质、经济实用,因而被广泛应用于工程机械、交通、能源、军工、轻工、家电等行业。

我国传统的主用机床及组合机床自动线主要采用机、电、气、液压控制,它的加工对象主要是生产批量比较大的大中型箱体类和轴类零件(近年研制的组合机床加工连杆、板件等也占一定份额) ,完成钻孔、扩孔、铰孔,加工各种螺纹、镗孔、车端面和凸台,在孔内镗各种形状槽,以及铣削平面和成形面等。

专用机床的分类繁多,有大型组合机床和小型组合机床,有单面、双面、三面、卧式、立式、倾斜式、复合式,还有多工位回转台式组合机床等;随着技术的不断进步,一种新型的组合机床———柔性专用机床越来越受到人们的青睐,它应用多位主轴箱、可换主轴箱、编码随行夹具和刀具的自动更换,配以可编程序控制器( PLC) 、数字控制(NC) 等,能任意改变工作循环控制和驱动系统,并能灵活适应多品种加工的可调可变的专用机床。

由于专用机床及其自动线是一种技术综合性很高的高技术专用产品,是根据用户特殊要求而设计的,它涉及到加工工艺、刀具、测量、控制、诊断监控、清洗、装配和试漏等技术。

我国专用机床及专用机床自动线总体技术水平比发达国家要相对落后,国内所需的一些高水平专用机床及自动线几乎都从国外进口。

工艺装备的大量进口势必导致投资规模的扩大,并使产品生产成本提高。

因此,市场要求我们不断开发新技术、新工艺,研制新产品,由过去的“刚性”机床结构,向“柔性”化方向发展,满足用户需求,真正成为刚柔兼备的自动化装备。

双面钻孔组合机床液压系统设计毕业设计

双面钻孔组合机床液压系统设计毕业设计

双面钻孔组合机床液压系统设计毕业设计1 绪论1.1 组合机床的发展现状及前景组合机床(transfer and unit machine)是根据工件加工需要,以大量通用部件为基础,配以按工件特定形状和加工工艺设计的专用部件和夹具,组成的一种高效的半自动或自动专用机床[5]。

在我国,组合机床发展已有28年的历史,其科研和生产都具有相当的基础,应用也已深入到很多行业。

是当前机械制造业实现产品更新,进行技术改造,提高生产效率和高速发展必不可少的设备之一。

它的特征是高效、高质、经济实用,因而被广泛应用于工程机械、交通、能源、军工、轻工、家电等行业[8]。

我国传统的组合机床及组合机床自动线主要采用机、电、气、液压控制,它的加工对象主要是生产批量比较大的大中型箱体类和轴类零件(近年研制的组合机床加工连杆、板件等也占一定份额),完成钻孔、扩孔、铰孔,加工各种螺纹、镗孔、车端面和凸台,在孔内镗各种形状槽,以及铣削平面和成形面等[5]。

随着技术的不断进步,一种新型的组合机床——柔性组合机床越来越受到人们的青睐,它应用多位主轴箱、可换主轴箱、编码随行夹具和刀具的自动更换,配以可编程序控制器(PLC)、数字控制(NC)等,能任意改变工作循环控制和驱动系统,并能灵活适应多品种加工的可调可变的组合机床。

另外,近年来组合机床加工中心、数控组合机床、机床辅机(清洗机、装配机、综合测量机、试验机、输送线)等在组合机床行业中所占份额也越来越大。

由于组合机床及其自动线是一种技术综合性很高的高技术专用产品,是根据用户特殊要求而设计的,它涉及到加工工艺、刀具、测量、控制、诊断监控、清洗、装配和试漏等技术。

我国组合机床及组合机床自动线总体技术水平比发达国家要相对落后,国内所需的一些高水平组合机床及自动线几乎都从国外进口。

工艺装备的大量进口势必导致投资规模的扩大,并使产品生产成本提高。

因此,市场要求我们不断开发新技术、新工艺,研制新产品,由过去的“刚性”机床结构,向“柔性”化方向发展,满足用户需求,真正成为刚柔兼备的自动化装备[16]。

电气自动化 专业 毕业设计英文翻译

电气自动化 专业 毕业设计英文翻译

Computer control technology1 Computer structure and functionThis section introduces the internal architecture of a computer and describes how instructions are stored and interpreted and explains how the instruction execution cycle is broken down into its various components.At the most basic level, a computer simply executes binary-coded results. For a general-purpose programmable computer, four necessary elements are the memory, central processing unit (CPU, or simply processor), an external processor bus, and an input/output system as indicated in Fig.3-1 A-1.Fig. 3-1A-1 Basic elements of a computerThe memory stores instructions and data.The CPU reads and interprets the instructions, reads the data required by each instruction, executes the action required by the instruction, and stores the results back in memory. One of the actions that is required of the CPU is to read data from or write data to an external device. This is carried out using the input/output system.The external processor bus is a set of electric conductors that carries data, address and control information between the other computer elements.1-1 The memoryThe memory of a computer consists of a set of sequentially numbered locations. Each location is a register in which binary information can be stored. The “number”of a location is called its address. The lowest address is 0. The manufacturer defines a word length for the processor that is an integral number of locations long. In each word the bits can represent either data or instructions. For the Intel 8086/87 and Motorola MC6800 microprocessors, a word is 16 bits long, but each memory locationhas only 8 bits and thus two 8-bit locations must be accessed to obtain each data word. In order to use the contents of memory, the processor must fetch the contents of the right location. To carry out a fetch, the processor places (enables) the binary-coded address of the desired location onto the address lines of the external processor bus. The memory then allows the contents of the addressed memory location to be read by the processor. The process of fetching the contents of a memory location does not alter the contents of that location.Instructions in memory Instructions stored in memory are fetched by the CPU and unless program branches occur, they are executed in the sequence they appear in memory. An instruction written as a binary pattern is called a machine-language instruction. One way to achieve meaningful patterns is to divide up the bits into fields as indicated in Fig. 3-1A-2, with each field containing a code for a different type of information.0001 0101 1000 XXXX 0100 0001 1000 XXXX 0011 XXXX XXXX 0100 Fields Opcode Immediate code Operand data Branch addressSet ‘5’ in location 8 Subtract ‘1’ f rom location 8 If zero, bran ch to location 416-bit instruction words... ... XXXX : not u sed (or “don ’t care”)Fig. 3-1A-2 Arrangement of program and data in memoryEach instruction in our simple computer can be divided up into four fields of 4 bits each. Each instruction can contain operation code (or opcode, each instruction has a unique opcode), operand address, immediate operands, branch address.In a real instruction set there are many more instructions. There is also a much large number of memory locations in which to store instructions and data. In order to increase the number of memory locations, the address fields and hence theinstructions must be longer than 16 bits if we use the same approach. There are a number of ways to increase the addressing range of the microprocessor without increasing the instruction length: variable instruction field, multiword instructions, multiple addressing modes, variable instruction length. We will not discuss them in detail.Data in memory data is information that is represented in memory as a code. For efficient use of the memory space and processing time, most computers provide the capability of manipulating data of different lengths and representations in memory. The various different representations recognized by the processor are called its data types. The data types normally used are: bit, binary-coded decimal digit (4-bit nibble, BCD), byte (8 bits), word (2 bytes), double word (4 bytes).Some processors provide instructions that manipulate other data types such as single-precision floating-point data types (32bits) and double-precision floating-point data types (64 bits). There is another type of data—character data. It is also usually represented in 8 bits. Each computer terminal key and key combination (such as shift and control functions) on a standard terminal keyboard has a 7-bits code defined by the American Standard Code for Information Interchange (ASCII).Type of memory In the applications of digital control system, we also concerned with the characteristics of different memory techniques. For primary memory, we need it to be stored information temporarily and to be written and got information from successive or from widely different locations. This type memory is called random-access memory (RAM). In some case we do not want the information in memory to be lost. So we are willing to use special techniques to write into memory. If writing is accomplished only once by physically changing connections, the memory is called a read-only memory (ROM). If the interconnection pattern can be programmed to be set, the memory is called a programmable read-only memory (PROM). If rewriting can be accomplished when it is necessary, we have an erasable programmable read-only memory (EPROM). An electronically erasable PROM is abbreviated EEPROM.1-2 The CPUThe CPU’s job is to fetch instructions from memory and execute these instructions. The structure of the CPU is shown in Fig. 3-1A-3. It has four main components: an arithmetic and logical unit (ALU), a set of registers, an internal processor bus and controller.Fig.3-1A-3 Central processing unit (CPU)These and other components of the CPU and their participation in the instruction cycle are described in the following sections.Arithmetic and Logical Unit (ALU) The ALU provides a wide arithmetic operations, including add, subtract, multiply, and divide. It can also perform Boolean logic operations such as AND, OR, and COMPLEMENT on binary data. Other operations, such as word compares, are also available. The majority of computer tasks involve the ALU, but a great amount of data movement is required in order to make use of the ALU instructions.Registers A set of registers inside the CPU in used to store information.Instruction register When an instruction is fetched, it is copied into the instruction register, where it is decoded. Decoding means that the operation code is examined and used to determine the steps of the execution sequence.Programmer’s model of the CPU The collection of registers that can be examined or modified by a programmer is called the programmer’s model of the CPU.The only registers that can be manipulated by the instruction set, or are visibly affected by hardware inputs or the results of operations upon data, are the registers represented in the model.Flag register The execution sequence is determined not only by the instruction but also by the results of the previous instructions. For example, if an addition is carried out in the ALU, data on the result of the addition (whether the result is positive, negative, or zero, for example) is stored in what is known as a flag register, status register, or condition register. If the next instruction is a conditional branch instruction, the flag word is tested in that instruction to determine if a branch if a branch is required.Program counter (instruction pointer)The address of the next instruction is located in a register called the program counter.Data registers When an instruction uses the registers to store data, the reference to the register in the instruction is called register addressing. The reasons of making use of the internal registers to store data are that they can make the instructions shorter and make execution faster.Address registers The internal registers can also be used for the storage of address of data in memory data. In such a case, the instruction word contains a register number (i.e. a register address). In the register is contained the address of memory data to be used in the instruction. This form of addressing is called register indirect addressing. The contents of the register are said to point to the data in memory.Internal Processor Bus The internal processor bus moves data between internal register. A bus is a set of closely grouped electric conductors that transfers data, address, and control information between functional blocks of the CPU. Data from a source register can be passed to a destination register when both are enabled onto (connected to) the bus.Controller The controller provides the proper sequence of control signals for each instruction in a program cycle to be fetched from memory. A total program cycle comprises many instruction cycle, each instruction cycle can be divided up into itscomponent machine cycles and each machine cycle comprises a number of clock cycle.In order to fetch an instruction, for example illustrated in Fig.3-1A-4, the address in the program counter is placed on the address lines of the external bus (AB) at the onset of clock cycle C1. Simultaneously, using a code on the control lines of the bus (CB), the CPU informs all devices attached to the bus that an “opcode” fetch machine cycle is being executed by the CPU. The memory allows the memory address to select the memory location containing the instruction. At C2 the controller places a “read”command onto the control bus which allows the memory data to be placed onto the data bus. The controller then gates the data into the instruction register and removes the read command from the control bus in C3. At C4, the controller removes the address from the address bus and begins to decode the operation-code portion of the instruction to see what steps are required for execution. The decoding operation may take several more clock cycle at the end of which the “opcode fetch” machine cycle.Fig. 3-1A-4 A timing diagram for "operation-code fetch "External attention requests It is often necessary to stop the normal instruction processing sequence. One type of external attention request is the reset request. In thecase of an unrecoverable error, a computer system may be required to reset itself .This would have the effect of initializing all important registers in the system and starting instruction execution from a standard memory location-usually location 0.An input that is more commonly activated during the normal course of events is the interrupt request. An interrupt request signal from an external device can cause the CPU to immediately execute a service subroutine which carries out the necessary actions. After completing the service subroutine, the processor will continue the task from which it was originally interrupted.The third type of input is the bus request, or direct memory access(DMA) request. It is possible to have a terminal interface that stores up all the characters in a line of text until it receives a "carriage return." Then the interface requests the use of the system bus, at which time the complete line of data is transferred to memory as fast as possible. In this way the processor simply becomes inactive until the transfer is completed.1-3 BusesThe bus is the most important communication system in a computer system. Under control of the CPU, a data source device and a data destination device are "enabled" onto(equivalent to being connected to) the bus wires for a short transmission.External processor bus The internal processor bus described in Sec. is connected to the external processor bus by a set of bus buffers located on the microprocessor integrated circuit.System bus The microcomputer board can communicate with other boards by connecting its bus to an external system bus through a connector.1-4Computer Input and OutputA set of registers external to the CPU is associated with what is known as the input/output (I/O) system. The I/O system is connected to the external processor bus using control, address, and data buses through an I/O registers in an interface. There are basically two ways that are used to address I/O register.In the first method, called I/O-mapped input/output, the operation code itself hasspecial I/O instructions that address a numbered register in the interface called an I/O port.The second method of addressing I/O registers gives the I/O ports addresses that lie within the memory address range of the CPU. This is called memory-mapped I/O. Of course there must not be any memory locations at the same address as I/O locations.One of the benefits of the memory-mapped approach is that the full range of memory addressing modes is available to the addressing of I/O registers.2Fundamentals of Computer and Networks2-1 Organization of Computer SystemA computer is a fast and accurate symbol manipulating system that is organized to accept, store, and process data and produce output results under the direction of a stored program of instructions. This section explains why a computer is a system and how a computer system is organized. Key elements in a computer system include input, processing, and output devices. Let's examine each component of the system in more detail.Input Devices Computer system use many devices for input purpose. Some INPUT DEVICES allow direct human/machine communication, while some first require data to be recorded on an input medium such as a magnetizable material. Devices that read data magnetically recorded on specially coated plastic tapes or flexible or floppy plastic disks are popular. The keyboard of a workstation connected directly to (or ONLINE to) a computer is an example of a direct input device. Additional direct input devices include the mouse, input pen, touch screen, and microphone. Regardless of the type of device used, all are components for interpretation and communication between people and computer systems.Central Processing Unit The heart of any computer system is the central processing unit (CPU). There are three main sections found in the CPU of a typical personal computer system: the primary storage section, the arithmetic-logic section,and the control section. But these three sections aren't unique to personal computers. They are found in CPUs of all sizes.Output Device Like input units, output device are instruments of interpretation and communication between humans and computer system of all size. These device take output results from the CPU in machine-coded form and convert them into a form that can be used (a) by people (e.g. a printed and /or displayed report) or (b) as machine input in another processing cycle.In personal computer systems, display screen and desktop printers are popular output devices. Larger and faster printers, many on-line workstations, and magnetic tape drives commonly found in large systems.The input/output and secondary storage units are sometimes called peripheral devices (or just peripherals). This terminology refers to the fact that although these devices are not a part of the CPU, they are often located near it. Besides, a computer system also includes buses, ROM(read only memory), RAM(random access memory), parallel port and serial port, hard disk, floppies and CD(compact disk)drive, and so on.2-2 Operating SystemOperating systems have developed over the past thirty years for two main purposes. First, they provide a convenient environment for the development and execution of programs. Second, operating systems attempt to schedule computational activities to ensure good performance of the computing system.The operating system must ensure correct operation of the computer system. To prevent user programs form interfering with the proper operation of the system, the hardware was modified to create two modes: user mode and monitor mode. Various instructions (such as I/O instructions and halt instructions) are privileged and can only be executed in monitor mode. The memory in which the monitor resides must also be protected from modification by the user. A timer prevents infinite loops. Once these changes (dual mode, privileged instructions, memory protection, timer interrupt) have been made to the basic computer architecture, it is possible to write a correct operating system.As we have stated, operating systems are normally unique to their manufacturers and the hardware in which they are run. Generally, when a new computer system is installed, operational software suitable to that hardware is purchased. Users want reliable operational software that can effectively support their processing activities.Though operational software varies between manufacturers, it has similar characteristics. Modern hardware, because of its sophistication, requires that operating systems meet certain specific standards. For example, considering the present state of the field, an operating system must support some form of on-line processing. Functions normally associated with operational software are:1)Job management;2)Resource management;3)Control of I/O operations4)Error recovery;5)Memory management.2-3 NetworksCommunication between distributed communities of computers is required for many reasons. At a national level, for example, computers located in different parts of the country use public communication services to exchange electronic messages (mail) and to transfer files of information from one computer to another. Similarly, at a local level within, say, a single building, distributed communities of computer-based workstations use local communication networks to access expensive shared resources—for example, printers and disks tapes and copiers, etc.—that are also managed by computers. Clearly, as the range of computer-based products and associated public and local communication networks proliferate, computer-to-computer communication will expand rapidly and ultimately dominate the field of distributed systems.Although the physical separation of the communicating computers may vary considerably from one type of application to another, or, at the heart of any computer communication network is the data communication facility which, may be a PSDN, aprivate LAN or perhaps a number of such networks interconnected together. However, irrespective of the type of data communication facility, an amount of hardware and software is required within each attached computer to handle the appropriate network-dependent protocols. Typically, these are concerned with the establishment of a communication channel access the network and with the control of the flow of messages across this channel. The provision of such facilities is only part of the network requirements, however, since in many applications the communicating computers may be of different forms of data representation interface between user (application) programs, normally referred to as application processes or APs, and the underlying communication services may be different. For example, one computer may be a small single-user computer, while another may be a large multi-user system.3 Stepper motorStepper motor is the electric pulse signals into angular displacement or linear displacement of the open-loop stepper motor control element pieces. In the case of non-overloaded, the motor speed, stop position depends only on the pulse frequency and pulse number, regardless of load changes, when the driver receives a step pulse signal, it will drive a stepper motor to Set the direction of rotation of a fixed angle, called the "step angle", which the angle of rotation is fixed step by step operation. Number of pulses can be controlled by controlling the angular displacement, so as to achieve accurate positioning purposes; the same time by controlling the pulse frequency to control the motor rotation speed and acceleration, to achieve speed control purposes.3-1 WorkInduction motor is a stepper motor, does it work is the use of electronic circuits, the DC power supply into a time-sharing, multi-phase timing control current, this current stepper motor power supply, the stepper motor to work properly , The drive is sharing power supply for the stepper motor, the polyphase timing controller.Although the stepper motor has been widely used, but the stepper motor does notlike a normal DC motor, AC motor in the conventional use. It must be double-ring pulse signal; power driver circuit composed of the control system can be used. Therefore, it is not easy with a good stepping motor, which involves mechanical, electrical, electronics and computers, and much other specialized knowledge.As the stepper motor actuators, electromechanical integration, one of the key products, widely used in a variety of automatic control systems. With the development of microelectronics and computer technology, increasing demand for stepper motor has applications in all areas of the national economy.3-2 CategoriesNow more commonly used include the reaction of step motor stepper motor (VR), permanent magnet stepper motor (PM), hybrid stepper motors (HB) and single-phase stepper motor.3-3 Permanent magnet stepper motorPermanent magnet stepper motor is generally two-phase, torque, and smaller, usually 7.5 degree step angle or 15 degrees;Permanent magnet stepper motor output torque, dynamic performance, but a large step angle.3-4 Reaction Stepper MotorReaction is generally three-phase stepping motor can achieve high torque output, step angle of 1.5 degrees is generally, but the noise and vibration are large. Reaction by the stepper motor rotor magnetic circuit made of soft magnetic materials, a number of the stator phase excitation winding, the use of permeability changes in torque.Step Motor simple structure, low production costs, step angle is small; but the dynamic performance is poor.3-5 Hybrid Stepping MotorHybrid Step Motor combines reactive, permanent magnet stepper motors of both, it's a small step angle, contribute a large, dynamic performance, is currently the highest performance stepper motor. It is also sometimes referred to as PermanentMagnet Induction Stepping Motor. It consists of two phases and the five-phase: the general two-phase step angle of 1.8 degrees and the general five-phase step angle 0.72 degrees. The most widely used Stepper Motor. Stepper motor drive for energy saving 3-6 Three-phase stepper motor drive special features:◆180% low torque output, low frequency characteristics of a good run◆Maximum output frequency 600Hz, high-speed motor control◆full range of detection of protection (over voltage, under voltage, overload)instantaneous power failure restart◆acceleration, deceleration, such as dynamic change in the stall protection functionto prevent◆Electrical dynamic parameters of automatic recognition function to ensurestability and accuracy of the system◆quick response and high-speed shutdown◆abundant and flexible input and output interface and control, versatility◆use of SMT production and three full-mount anti-paint treatment process, productstability and high◆full range of Siemens IGBT power devices using the latest, to ensure the qualityof high-quality3-7 Basic principlesUsually for the permanent magnet rotor motor, when current flows through the stator windings, the stator windings produce a magnetic field vector. The magnetic field will lead to a rotor angle of the magnetic field makes the direction of a rotor and the stator's magnetic field direction. When the stator magnetic field vector rotating at an angle. As the rotor magnetic field is also transferred from another perspective. An electrical pulse for each input, the motor turning a point forward. It is the angular displacement of the output and input the number of pulses proportional to speed and pulse frequency is proportional to. Power to change the order of winding, the motor will reverse. Therefore, the number of available control pulse, frequency and power the motor windings of each phase in order to control the stepper motor rotation.3-8 Induction Stepping Motor3-8-1 features: Induction, compared with the traditional reactive, structural reinforced with a permanent magnet rotor, in order to provide the working point of soft magnetic materials, and the stator excitation magnetic field changes only need to provide to provide the operating point of the consumption of magnetic materials energy, so the motor efficiency, current, low heat. Due to the presence of permanent magnets, the motor has a strong EMF, the damping effect of its own good, it is relatively stable during operation, low noise, low frequency vibration. Induction can be seen as somewhat low-speed synchronous motor. A four-phase motor can be used for four-phase operation, but also can be used for two-phase operation. (Must be bipolar voltage drive), while the motor is not so reactive. For example: four phase, eight-phase operation (A-AB-B-BC-C-CD-D-DA-A) can use two-phase eight-shot run. Not difficult to find the conditions for C =, D =. a two-phase motor's internal winding consistent with the four-phase motors, small power motors are generally directly connected to the second phase, the power of larger motor, in order to facilitate the use and flexible to change the dynamic characteristics of the motor, its external connections often lead to eight (four-phase), so that when used either as a four-phase motors used, can be used for two-phase motor winding in series or parallel.3-8-2 classification:Induction motors can be divided in phases: two-phase motor, three phase motor, four-phase motor, five-phase motor. The frame size (motor diameter) can be divided into: 42BYG (BYG the Induction Stepping motor code), 57BYG, 86BYG, 110BYG, (international standard), and like 70BYG, 90BYG, 130BYG and so are the national standards.3-8-3 the stepper motor phase number of static indicators of terms: very differently on the N, S the number of magnetic field excitation coil. Common m said. Beat number: complete the necessary cyclical changes in a magnetic field pulses or conducting state with n said, or that turned a pitch angle of the motor pulses needed to four-phase motor, for example, a four-phase four-shot operation mode that AB -BC-CD-DA-AB, shot eight four-phase operation mode that A-AB-B-BC-C-CD-D-DA-A. Step angle: corresponds to a pulse signal, the angulardisplacement of the rotor turned with θ said. θ = 360 degrees (the rotor teeth number of J * run shot), the conventional two, four-phase, the rotor teeth 50 tooth motor as an example. Four step run-time step angle θ = 360 ° / (50 * 4) = 1.8 degrees (commonly called the whole step), eight-shot running step angle θ = 360 ° / (50 * 8) = 0.9 degrees (commonly known as half step.) Location torque: the motor is not energized in the state, its locked rotor torque (as well as by the magnetic field profile of harmonics caused by mechanical error) static torque: the motor under the rated static electricity, the motor without rotation, the motor shaft locking torque. The motor torque is a measure of volume (geometry) standards, and drive voltage and drive power, etc. has nothing to do. Although the static torque is proportional to the electromagnetic magnetizing ampere turns, and fixed air gap between the rotor teeth on, but over-use of reduced air gap, increase the excitation ampere-turns to increase the static torque is not desirable, this will cause the motor heating and mechanical noise.3-9 Characteristics of the stepper motor1. The general accuracy of the stepper motor step angle of 3-5%, and not cumulative.2. Appearance of the stepper motor to allow the maximum temperature.Stepper motor causes the motor temperature is too high the first magnetic demagnetization, resulting in loss of torque down even further, so the motor surface temperature should be the maximum allowed depending on the motor demagnetization of magnetic material points; Generally speaking, the magnetic demagnetization points are above 130 degrees Celsius, and some even as high as 200 degrees Celsius, so the stepper motor surface temperature of 80-90 degrees Celsius is normal.3. Stepper motor torque will decrease with the increase of speed.When the stepper motor rotates, the motor winding inductance of each phase will form a reverse electromotive force; the higher the frequency the greater the back emf. In its role, the motor with frequency (or speed) increases with the phase current decreases, resulting in decreased torque.4. Low-speed stepper motor can operate normally, but if not higher than a certain speed to start, accompanied by howling.。

卧式双面十轴钻组合机床夹具及液压系统设计

卧式双面十轴钻组合机床夹具及液压系统设计

毕业设计(论文)卧式双面十轴钻组合机床夹具及液压系统设计THE DESIGN OF JIG AND HYDRAULIC SYSTEM OF THE HORIZONTAL DOUBLE-SIDED TEN-DRILL COMBINED DRILLING MACHINE徐州工程学院学位论文原创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。

除文中已经注明引用或参考的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品或成果。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标注。

本人完全意识到本声明的法律结果由本人承担。

论文作者签名:日期:年月日徐州工程学院学位论文版权协议书本人完全了解徐州工程学院关于收集、保存、使用学位论文的规定,即:本校学生在学习期间所完成的学位论文的知识产权归徐州工程学院所拥有。

徐州工程学院有权保留并向国家有关部门或机构送交学位论文的纸本复印件和电子文档拷贝,允许论文被查阅和借阅。

徐州工程学院可以公布学位论文的全部或部分内容,可以将本学位论文的全部或部分内容提交至各类数据库进行发布和检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

论文作者签名:导师签名:日期:年月日日期:年月日摘要这次毕业设计的具体内容是设计一台加工汽车后制动室支架的组合钻床,其机床为卧式双面十轴钻组合钻床,主要用来一次性加工完成汽车后制动室左右二个零件上的共计10个孔。

我的具体任务是设计该机床的夹具及液压系统设计。

本设计正是应用了组合钻床的特点实现多工序加工的方法,采用一次装夹,同时对后制动室两支架两边的10个孔进行钻加工。

对工件采用“一面、一定位心轴、一定位块”定位,可以方便准确的使工件定位在夹具的指定位置,然后用液压驱动夹紧机构、螺旋夹紧机构和螺旋杠杆夹紧机构把工件夹紧,可以使工件快捷地进行安装与拆卸。

夹具的导向装置是采用钻孔位置精确可靠的固定式导套的导向装置。

变速箱箱体卧式双面铣削组合机床控制系统_设计_毕业设计论文 精品

变速箱箱体卧式双面铣削组合机床控制系统_设计_毕业设计论文 精品

毕业设计论文变速箱箱体卧式双面铣削组合机床控制系统设计摘要本课题是根据已给出的参数,设计出某组合机床的液压系统,具体包括液压传动系统设计和电气控制系统设计。

对于液压传动系统设计,要使系统完成“夹紧缸夹紧→工作台快速接近工件→工作台进给→工作台后退→夹紧缸松开→原位停止”的工作循环。

根据此要求,设计出液压回路,再根据参数,选择符合要求的液压元件,例如液压泵、液压阀、滤油器、行程开关等;对于非标准件液压缸,则要确定所有尺寸,选择合理结构形式,用AUTOCAD软件绘制出装配图;系统设计完成后,要对系统进行性能验算,例如回路压力损失验算、油液温升验算等,以确定系统是否符合实际要求。

对于电气控制系统设计,现在,由于PLC可靠性高、编程简单、使用方便、体积小、重量轻等优点,普遍采用PLC控制来代替继电器接触器控制,本系统也采用PLC控制。

根据系统的输入输出性质、对相应功能、I/O点数、系统容量的要求,选择合适型号的PLC,PLC选定后,分配I/O点并绘制PLC外部接线图,确定输入输出信号与I/O点的对应关系,最后设计出程序,并修改,直至符合要求。

关键词:液压传动;液压控制;PLCGEAR-BOX HORIZONTAL DOUBLE-SIDED MILLING COMBINATION MACHINETOOLS CONTRONL SYSTEM DESIGNAbstractThis topic is already given parameters according to, the design gives a combination machine tools system, specific including hydraulic transmission system design and electrical control system design.For the hydraulic transmission system design,to make the system to accomplish the job cycle of combination machine tools system --clamping cylinder for clamping –workbench fast approaching workpiece—workbench feeding—workbench back —clamping cylinder loosen—In-situ stop. According to this requirement, design a hydraulic circuit, then, according toparameters, select to meet the requirements of hydraulic components, such as hydraulic pumps, hydraulic valves, filters, Travel switch, etc. For non-standard hydraulic cylinders, will have to determine all sizes, choose the right structure, then, mapping the assembly drawing by AUTOCAD. After accomplished design, there are some checking of system performance, such as the checking of the circuit pressure loss and the oil temperature rise, to determine whether the system meet the actual requirements.To electrical control system, nowadays, to PLC, because of its high reliability, convenient use, simple programming, small size, light weight, etc., it is widely used to instead of relay and contactor. So, this electrical control system uses PLC, too. According to the nature of the system input and output, the demand of corresponding functions, I/O points and system capacity, choose the suitable type of PLC, after that, distribute I/O points and external wiring diagram of PLC to determine the input and output signals and I/O points of correspondence, finally, design the program, and modify, until it meets the requirements.Keywords:Hydraulic transmission;Hydraulic control; PLC1绪论1.1课题背景液压传动是流体传动的一种,它起源于17世纪的液体静压力传动原理,在现代被明确定义为一种通过液体作为介质来传递能量和进行控制的传动形式,液压传动技术在工农业生产部门都有着极大的应用空间,其水平的高低已经成为国家工业发展程度的标志之一。

机床——机械类外文文献翻译、中英文翻译

机床——机械类外文文献翻译、中英文翻译

毕业设计(论文)外文资料翻译系部:专业:姓名:学号:外文出处:English For Electromechanical(用外文写)Engineering附件:1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文机床机床是用于切削金属的机器。

工业上使用的机床要数车床、钻床和铣床最为重要。

其它类型的金属切削机床在金属切削加工方面不及这三种机床应用广泛。

车床通常被称为所有类型机床的始祖。

为了进行车削,当工件旋转经过刀具时,车床用一把单刃刀具切除金属。

用车削可以加工各种圆柱型的工件,如:轴、齿轮坯、皮带轮和丝杠轴。

镗削加工可以用来扩大和精加工定位精度很高的孔。

钻削是由旋转的钻头完成的。

大多数金属的钻削由麻花钻来完成。

用来进行钻削加工的机床称为钻床。

铰孔和攻螺纹也归类为钻削过程。

铰孔是从已经钻好的孔上再切除少量的金属。

攻螺纹是在内孔上加工出螺纹,以使螺钉或螺栓旋进孔内。

铣削由旋转的、多切削刃的铣刀来完成。

铣刀有多种类型和尺寸。

有些铣刀只有两个切削刃,而有些则有多达三十或更多的切削刃。

铣刀根据使用的刀具不同能加工平面、斜面、沟槽、齿轮轮齿和其它外形轮廓。

牛头刨床和龙门刨床用单刃刀具来加工平面。

用牛头刨床进行加工时,刀具在机床上往复运动,而工件朝向刀具自动进给。

在用龙门刨床进行加工时,工件安装在工作台上,工作台往复经过刀具而切除金属。

工作台每完成一个行程刀具自动向工件进给一个小的进给量。

磨削利用磨粒来完成切削工作。

根据加工要求,磨削可分为精密磨削和非精密磨削。

精密磨削用于公差小和非常光洁的表面,非精密磨削用于在精度要求不高的地方切除多余的金属。

车床车床是用来从圆形工件表面切除金属的机床,工件安装在车床的两个顶尖之间,并绕顶尖轴线旋转。

车削工件时,车刀沿着工件的旋转轴线平行移动或与工件的旋转轴线成一斜角移动,将工件表面的金属切除。

车刀的这种位移称为进给。

车刀装夹在刀架上,刀架则固定在溜板上。

溜板是使刀具沿所需方向进行进给的机构。

机床刀具设计机械类毕业设计外文文献翻译中英文翻译

机床刀具设计机械类毕业设计外文文献翻译中英文翻译

英语原文:Design Of Tool Machine PropResearch significanceThe original knife machine control procedures are designed individually, not used tool management system, features a single comparison, the knife only has to find the tool knife, knife positioning the shortest path, axis tool change, but does not support large-scale tool.Automatic knife in the knife election, in the computer memory knife-election on the basis of using the Siemens 840 D features, and the election procedures knife more concise, and complete the space Daotao View. ATC use the knife rapid completion of STEP-7 programming, and have been tested in practice. In the positioning of the knife, PLC controlled modular design method, which future production of similar machines will be very beneficial, it is easy to use its other machine. Automatic tool change systems will be faster growth, reduced tool change time, increase the positioning accuracy tool is an important means to help NC technology development.Tool and inventory components of modern production is an important link in the management, especially for large workshop management. The traditional way of account management, and low efficiency, high error rate, and not sharing information and data, tools and the use of state can not track the life cycle, are unable to meet the current information management needs. With actual production, we have to establish a workshop tool for the three-dimensional tool storage system to meet the knife workshop with auxiliary storage and management needs.The system uses optimization technology, a large number of computer storage inventory information, timely, accurate, and comprehensive tool to reflect the inventory situation. The entire system uses a graphical interface, man-machine dialogue tips from the Chinese menu, select various functions can be realized and the importation of all kinds of information. Management system using online help function. Through the workshop management, network management and sharing of information. Have automated inventory management, warehousing management tool, a tool for the management and statistical functions.1.System components and control structureThe entire system, including the structure and electrical machinery control systems.1.1.1Mechanical structure and working principleTool from the stent, drive, drive system, Turret, shielding, control system, and electrical components. Support from the column, beam, the upper and lower guide Central track, and track support component.1) Drive for the system chosen VVVF method. Cone used brake motors, with VVVF by Cycloidreducer through sprocket drive.2) Drag a variable frequency drive system and control technology. VVVF adopted, will speed drive shaft in the normal range adjustment to control the speed rotary turret to 5 ~ 30mm in, the drive shaft into two, two under through sprocket, the two profiled rollers Chain driven rotating shelves. Expansion chain adopted by the thread tight regulation swelling, swelling the regular way. - Conditioned, under the same chain-of-conditioning, so that the chain of uniform.3) Turret and shields the entire total of 14 independent Turret. 13 of them as a socket-Turret, as a drawer-Turret, each Turret back through the pin and, under the conveyor chain link chain plate, installed at the bottom roller, chain driven rotating turret rotation along the track. Outlet-Turret and BT50-BT40 Turret Turret two kinds of forms. To strengthen management, security, landscaping modeling, shelf peripherals and shields. Turret-drawer drawer placed at six other Des V oeux a knife, can be categorized with some of knife auxiliary equipment, such as bits, such as turning tools.1.1.2.Electrical Control SystemThis tool storage systems is the main electrical control their shelves for operational control and position control. Operational control equipment, including operation of the start of braking control. Position Control is the main location and address of the shelves for testing. Control system as shown in Figure 1.图 1 Tool Control System for the1) Electric Transmission horizontal rotary tool storage systems are the mechanical movements are repeated short-term work system. And the run-time system needs some speed, speed transmission needs, the system will use VVVF method can be used simple structure, reliable operation of the motor and frequency inverter.2) Control of the system is divided into two kinds of manual control and automatic control, manual control as a general reserve and debugging methods of work; ways to the system control computer (IPC) and the control unit (inverter contactor , etc.) consisting of a control system.3) location and positioning accuracy of the system automatically identify the site and location using a detection device as proximity switches, relays through the plate-point isolation and the number plate recorded close to the switching signal acquisition and operation of Hutchison with a Optimal Path addressable identify the current location and shelves of the purpose of the shelf location. In order to enable a more accurate positioning system, adopted two photoelectric switches, to detect the two shelves of the two films.1.2.The functions of the knifeknife The is the role of reserves a certain number of tools, machine tool spindle in hand to achieve the fungibility a disc cutter knife is the type of library, the chain knives, and other means, in the form of the knife and capacity according to the Machine Tool to determine the scope of the process.mon typesThe knife is a tool storage devices, the common knife mainly in the following forms:(1) the turret knifeIncluding the first level turret vertical turret and the first two, see Figure 2.6 a) and b):(2) the disc cutterDisc knife in the library with discoid knife, cutting tool along See how vertical arrangement (including radial and axial from knife from knife), along See how radial array into acute or arranged in the form of the knife. Simple, compact, more applications, but are ring-cutter, low utilization of space. Figure 2.7 a) to c). If the knife storage capacity must be increased to increase the diameter of the knife, then the moment of inertia also increased correspondingly, the election campaign long knife. Tool number not more than 32 general. Cutter was multi-loop order of the space utilization knife, but inevitably given the knife from complex institutions,applicable to the restricted space Machine Tool storage capacity and more occasions. Two-disc structure is two smaller capacity knife on both sides of the sub-spindle place, more compactlayout, the number of certificates corresponding increase knife, apply to small and medium-sized processing center.(3) the chain knifeIncluding single-and multi-ring chain ring chain, chain link can take many forms change, see Figure 2.8 a) to c), thebasic structure shown inFigure 2. 8 doFeatures: knife apply tothe larger capacity of theoccasion, the space of thesmall number ofgenerally applicable tothe tool in the 30-120.Only increase the lengthof the chain tool will increase the number should not be increased circumferential speed of itsmoment of inertia of the knife does not increase the disc as large.(4) linear combination knife and the knife libraryThe linear knife simple structure in Figure 2.9, tool single order, the capacity of small knife, used for CNC lathe and drill press on. Because the location of fixed knife, ATC completed action by the spindle without manipulator. The cutter knife is generally the turret combination turret with a combination of the disc cutter knife and the chain combination. Every single knife the knife certificates of smaller, faster tool change. There are also some intensive drum wheel, and the lattice-type magazine for the knife, the knife-intensive though. Small footprint, but because of structural constraints, basically not used for single processing center, the concentration used for FMS for the knife system.1.4 Tool storage capacityTool storage capacity of the first to consider the needs of processing, from the use of point of view, generally 10 to 40 knives, knife will be the utilization of the high, and the structure iscompact.1.5 Tool options(1) choose to order processing tool according to the order, followed Add to the knife every knife in the Block. Each tool change, the order of rotation of a cutter knife on location, and remove the need knives, has been used by the cutter knife can be returned to the original Block, can also order Add Block, a knife. However, as the knife in the tool in different processes can not be repeated use of the knife must increase the capacity and lower utilization rate.(2) most of the arbitrary choice of the current system of using arbitrary NC election knives, divided into Daotao coding, coding and memory-cutter, three. Daotao coding tool code or knives or Daotao need to install the code used to identify, in accordance with the general principle of binary coding coding. Tool knife election coding method uses a special knife handle structure, and each of the coding tool. Each of the tool has its own code, thereby cutting tool can be in different processes repeatedly used, not to replace the tool back at the original knife, the knife capacity can be reduced accordingly. Memory-election this paper knife, in this way can knives and knife in the position corresponding to the Daotao memory of the PLC in the NC system, no matter which tool on the Inner knife, tool information is always there in mind, PLC . On the knife with position detection devices, will be the location of each Daotao. This tool can be removed and sent back to arbitrary. On the knife is also a mechanical origin, every election, the nearest knife selection.1.6.Control of the knife(1) the knife as a system to control the positioning axis. In the ladder diagram in accordance with the instructions for computing T code comparison of the output angle and speed of instructions to the knife the knife servo drive servo motor. Tool storage capacity, rotation speed, and / deceleration time, and other system parameters can be set in such a manner free from any outside influence positioning accurate and reliable but the cost is higher.(2) knife from the hydraulic motor drives, fast / slow the points, with proximity switches count and positioning. In comparison ladder diagram of the current storage system knife (knife spindle) and goals knife (pre-knife) and computing, then output rotation instructions, judging by the shortest path rotation in place. This approach requires sufficient hydraulic power and electromagnetic valve knife the rotational speed can be adjusted through the throttle. But over time may be oily hydraulic, oil temperature and environmental factors impact the change in velocity and accuracy. Not generally used in large and medium-sized machine tool change frequently.(3) the knife from AC asynchronous motor driven cam mechanism (Markov institutions), with proximity switches count, which means stable operation, and generally accurate and reliablepositioning cam used in conjunction with a mechanical hand, A TC fast-positioning.2. ATC, the main types, characteristics, and the scope of application 2.1 Auto Rotary ToolRotary Tool automatically onthe use of CNC machine tool is asimple installation of automatic toolchange, the Quartet and 47.60 TurretTool various forms, such as rotaryturret were installed on four, six ormore of the Tool , NC instructions byATC. Rotary Tool has two verticaland horizontal, relatively simplestructure, applicable to economicCNC lathe.Rotary Tool in the structure musthave good strength and stiffness,resistance to bear rough Cutting Toolin the cutting force and reduce therole of deformation and improveprocessing accuracy. Rotating Toolto choose reliable positioningprogramme structure and reasonable position, in order to ensure that each rotary turret to a higher position after repeated positioning accuracy (typically 0.001 to 0.005mm). Figure 2.1 shows the spiral movements of the Quartet Turret.Auto Rotary Tool in the simplest of ATC, is 180 º rotary ATC devices, as shown in Figure 2.2 ATC instructions received, the machine control system put ATC spindle control to the designated location at the same time, the tool movement to the appropriate location, ATC, with the rotary axis and at the same time, the knives matching tool; drawbars from Spindle Cutting Tools rip, ATC, will be the tool from their position removed; ATC, 180 º rotary tool spindle and the tool and tool away; A TC, the Rotary At the same time, the tool refocusing its position to accept Spindle removed from the cutting tool; Next, ATC, will be replaced with the cutter knives were unloaded into the spindle and tool: Finally, back to the original ATC, "standby" position. At this point, ATC completed procedures to continue to run. This ATC, the main advantage ofsimple structure, the less movement, fast tool change. The main disadvantage is that knives must be kept in parallel with the axis of the plane, and after the home side compared to the tool, chip and liquid-cutting knife into the folder, it is necessary to the tool plus protection. Cone knife folder on the chip will cause A TC error, or even damage knife folders, and the possibility of spindle. Some processing centre at the transfer, and the tool side. When the ATC command is called, the transfer-cutter knives will be removed, the machine go forward, and positioning with the ATC, in line with the position. 180 º "Rotary ATC devices can be used horizontal machine, can also be used for vertical machining centers.2. 2 ATC head-turret installedWith rotating CNC machine tool often used such ATC devices, with a few turret head spindle, each with a spindle on both knives, the first tower interim process can be automatic tool change-realization. The advantage is simple structure, tool change time is short, only about 2 s. However, due to spatial constraints, the number of spindle can not be too much, usually only apply to processes less, not to high precision machine tools, such as the NC drill, such as CNC milling machine. In recent years there has been a mechanical hand and the turret head with a knife for the automatic tool change ATC devices, as shown in Figure 2.3. It is in fact a turret head ATC, and the knife-ATC device combination. The principle is as follows:5 turret on the first two tool spindle 3 and 4, when using the tool spindle 4 processing tool, the manipulator 2 will be the next step to the need for the tool does not work on the tool spindle 3 until after the completion of this process , the first rotary turret 180 º, A TC completed. ATC most of their time and processing time coincidence, the only real tool change time turret transposition of the first time, this approach mainly used for ATC and NC NC drilling file bed. 2. 3.Daidao system for the automatic tool changeFigure 2.4 shows the knife and the whole machine tool CNC machine tools for the appearance of Fig.Figure 2.5 shows the knife and split-type machine to the appearance of CNC machine tool plans.At this point, knife storage capacity, a heavier tool can, and often additional transport unit to complete the knife between the spindle and cutting tool transport.Daidao the knife from the ATC, the election knives, automatic loading and unloading machine tool and tool exchange institutions (manipulator), composed of four parts, used widely.Tool Automatic Tool Change the manipulator system, the whole process more complicated ATC. We must first used in the processing of all installed in the standard tool on the knife handle in the machine outside the pre-size, according to a certain way Add to the knife. ATC, selected first in the knife knife, and then from ATC, from the knife from the knife or spindle, exchange, the new knife into the spindle, the old knife back into the knife.ATC, as the former two knives to accommodate a limited number can not be too many, can notmeet the needs of complex parts machining, CNC machine tool Automatic Tool Change Daidao the use of the automatic tool change devices. The knife has more capacity, both installed in the spindle box side or above. As for the automatic tool change Daidao device CNC machine tool spindle box only a spindle, spindle components to high stiffness to meet the machining requirements. The number of establishments in larger knife, which can meet the more complex parts of the machining processes, significantly improving productivity. Daidao system for the automatic tool change applied to drilling centres and CNC machining centers. The comparison drawn Daidao automatic tool change system is the most promising.3.PLC control of the knife random mode of election3. 1Common methods of automatic election knifeAutomatic control of the knife CNC refers to the system after the implementation of user instructions on the knife library automation process, including the process to find knives and automatic tool change [(63,71]. CNC Machining Center device (CNC) directive issued by the election knife , a knife, the tool required to take the knife position, said the election automatic knife. automatically elected knife There are two ways: random sequence election knives and knife election method.3.1.1 order election knifeTool Selection order is the process tool according to the sequence of the insert knife, the use of knives in order to take place, used knives back at the original knife, can also order Add Block, a knife. In this way, no need Tool identification devices, and drive control is a relatively simple, reliable and can be used directly from the points of the knife machinery to achieve. But the knives in each of the tool in different processes can not be reused, if the tool is installed in accordance with the order of the knife, there will be serious consequences. The need to increase the number of knives and knife the capacity of the tool and reduce the utilization of the knife.3.1.2Random election knifeRandom election under the knife is arbitrary instructions to select the required tools, then there must be tool identification devices. Tool knife in the library do not have the processing in accordance with the order of the workpiece can be arbitrary storage. Each of the tool (or knifeblocks) are for a code, automatic tool change, the rotary cutter, every tool have been the "tool identification device" acceptable identification. When CNC tool code and the code in line with directives of the tool selected, the rotary cutter knives will be sent to the ATC position, waiting to grab manipulator. Random knife election is the advantage of the cutter knife in the order has nothing to do with the processing sequence, the same tool can be used repeatedly. Therefore, the relatively small number of knives, knife the corresponding smaller. Random elections knife on the tool must be coded to identify. There are three main coding.1. Tool coding. Adopt special knife handle structure coding, the drawbars on the knife handle back-end packages such as spacing of the coding part of the lock-nut fixed. Coding diameter ring diameter of a size two, respectively, said that binary "1" and "0" to the two rings are different, can be a series of code. For example, there are six small diameter of the ring can be made to distinguish between 63 (26-1 = 63) of the coding tool. All of 0 normally not allowed to use the code, to avoid the cutter knife Block did not confuse the situation.2. Knife Block coding. On the knife Block coding, coding tool, and tool into line with the number of knives in the Block. ATC knife when the rotation, so that each knife seats followed through knowledge knife, knife found blocks, knives stopped the rotation. At this time there is no knife handle encoding part of the knife handle simplified.3. Annex coding methods. This style of coding keys, coded cards, coding and coding-disc, which is the most widely used coding keys.First to knives are attached to a tool of the show wrapped coding keys, and when the cutter knife to the store at knife in, so put the number of keys to remember knife Block Road, will be inserted into key to the coding Block next to the key hole in the seat for the knife to the numbers.ConclusionFocused on in today's manufacturing environment tool storage and management of new models and methods, practical application of good results in systems integration and optimization, and other aspects of operations will be further explored, so that it has a higher theoretical and practical level.译文:机床刀具设计课题研究意义机床原来的刀库控制程序是单独设计的,没有采用刀具管理系统,功能也比较单一,只实现了刀库刀具的找刀、刀库最短路径定位、主轴换刀,而且不支持大型刀具。

组合机床外文翻译1500字

组合机床外文翻译1500字

组合机床外文翻译1500字篇一:组合机床毕业设计外文翻译The Aggregate Machine-toolThe Aggregate Machine-tool is based on the workpiece needs, based on a large number of common components, combined with a semi-automatic or automatic machine with a small number of dedicated special components and process according to the workpiece shape and design of special parts and fixtures, composed. Combination machine is generally a combination of the base, slide, fixture, power boxes, multi-axle, tools, etc. From.Combination machine has the following advantages: (1) is mainly used for prism parts and other miscellaneous pieces of perforated surface processing. (2) high productivity. Because the process of concentration, can be multi-faceted, multi-site, multi-axis, multi-tool simultaneous machining. (3) precision and stability. Because the process is fixed, the choice of a mature generic parts, precision fixtures and automatic working cycle to ensure consistent processing accuracy. (4) the development cycle is short, easy to design, manufacture and maintenance, and low cost. Because GM, serialization, high degree of standardization, common parts can be pre-manufactured or mass organizations outsourcing. (5) a high degree of automation, low labor intensity. (6) flexible configuration. Because the structure is a cross-piece, combination. In accordance with the workpiece or process requirements, with plenty of common parts and a few special components consisting of various types of flexible combination of machine tools and automatic lines; tools to facilitate modification: the product or process changes, the general also common components can be reused.Combination of box-type drilling generally used for processing or special shape parts. During machining, the workpiece is generally not rotate, the rotational motion of the tool relative to the workpiece andtool feed movement to achieve drilling, reaming, countersinking, reaming, boring and other processing. Some combination of turning head clamp the workpiece using the machine to make the rotation, the tool for the feed motion, but also on some of the rotating parts (such as the flywheel, the automobile axle shaft, etc.) of cylindrical and face processing.Generally use a combination of multi-axis machine tools, multi-tool, multi-process, multi-faceted or multi-station machining methods simultaneously, productivity increased many times more than generic tools. Since the common components have been standardized and serialized, so can be flexibly configured according to need, you can shorten the design and manufacturing cycle. Multi-axle combination is the core components of general machine tools. It is the choice of generic parts, is designed according to special requirements, in combination machine design process, is one component of a larger workload. It is based on the number and location of the machining process diagram and schematic design combination machine workpiece determined by the hole, cutting the amount of power transmission components and the design of each spindle spindle type movement. Multi-axle power from a common power box, together with the power box installed on the feed slide, to be completed by drilling, reaming and other machining processes. The parts to be processed according to the size of multi-axle box combination machine tool design, based on an original drawing multi-axle diagram, determine the range of design data,the above design, implementation, completion of a two-sided 24-hole machining, achieve better the design requirements.In order to adapt to the development of CNC machine tools in combination , appeared composed of CNC machine tools CNC machining modules. Modular is the result of a combination of machine tool numerical control machine tool combination brings, but also the basis of a combination ofCNC machine tools , CNC machining eiched the universal modular combination of components of the machine, it will cause a fundamental piece for machine tool type changes . Over the past decade , the combination of machine tools and automatic line has made great strides in efficiency, productivity , flexibility and the use of concurrent engineering to develop a more rational, more savings programs. With the development of digital technology, electronic technology , the combination of machine mechanical structure and control system has undergone great changes. With a combination of the following development tools : 1 NC . Combination of CNC machine tools emerge , not only changed in the past by the relay circuit consisting of a combination of machine tool control systems , but also make head or even a combination of the mechanical structure of the machine components of general criteria huge change occurred . 2 modular . NC modular greatly eiched the common combination of components of the machine, it will cause a fundamental change occurred for machine tool parts , according to the principles of modular design , based on the functional analysis division of the combination of multi- axle box for each machine level modules. 3 speed. As the high-speed processing can reduce the surface roughness and cutting force components , reducing the cutting temperature , improve productivity, so the speed of the machine is just beginning research , especially the main movement of CNC machine tools and feed velocity has reached a very high speed . Conform to the trend of high-speed machine tools , machine tool ‘s speed will be higher. 4 , precision . Because the CNC machine to achieve , so more and more high machining accuracy . 5, full protection technology . Now the machine is fully enclosed features a large , almost all mechanical housings are fully closed . Fully enclosed protection, not only to make the machine more attractive appearance and its production line , but also improves the safety, reliability and ease of maintenance . Combination machine withboth the advantages of low cost and high efficiency in large volume production has been widely used, and can consist of automated production lines. .组合机床组合机床是根据工件加工需要,以大量通用部件为基础,配之以少量的专用部件和按工件形状和加工工艺设计的专用部件和夹具,组成的半自动或自动的专用机床。

电气工程及其自动化专业毕业论文外文翻译

电气工程及其自动化专业毕业论文外文翻译

电气工程及其自动化专业毕业论文外文翻译本科毕业设计(论文)中英文对照翻译院(系部)工程学院专业名称电气工程及其自动化年级班级 11级2班学生姓名蔡李良指导老师赵波Infrared Remote Control SystemAbstractRed outside data correspondence the technique be currently within the scope of world drive extensive usage of a kind of wireless conjunction technique, drive numerous hardware and software platform support. Red outside the transceiver product have cost low, small scaled turn, the baud rate be quick, point to point SSL, be free from electromagnetism thousand Raos etc. characteristics, can realization information at dissimilarity of the product fast, convenience, safely exchange and transmission, at short distance wireless deliver aspect to own very obvious of advantage. Along with red outside the data deliver a technique more and more mature, the cost descend, red outside the transceiver necessarily will get at the short distance communication realm more extensive of application.The purpo se that design this system is transmit customer’s operation information with infrared rays for transmit media, then demodulate original signal with receive circuit. It use coding chip to modulate signal and use decoding chip to demodulate signal. The coding chip is PT2262 and decoding chip is PT2272. Both chips are made in Taiwan. Main work principle is that we provide to input the information for the PT2262 with coding keyboard. The input information was coded by PT2262 and loading to high frequent loadwave whose frequent is 38 kHz, then modulate infrared transmit dioxide and radiate space outside when it attian enough power. The receive circuit receive the signal and demodulate original information. The original signal was decoded by PT2272, so as to driv e some circuit to accomplish customer’s operation demand.Keywords: Infrared dray;Code;Decoding;LM386;Red outside transceiver1 Introduction1.1 research the background and significanceInfrared Data Communication Technology is the world wide use of a wireless connection technology, by the many hardware and software platforms supported. Is a data through electrical pulses and infrared optical pulse switch between the wireless data transceiver technology.Infrared transceiver products with low cost, small, fast transmission rate, the point-to-point transmission security, not subject to electromagnetic interference and other characteristics that can be achieved between the different products, rapid, convenient and safe exchange and transmission, In short distance wireless transmission have a very distinct advantage.Infrared transceiver products in the portable product of a great role. At present, the world's 150 million piece of equipment used infrared technology in electronic products and industrial equipment. medical equipment and other fields widely used. For example, 95% of the notebook computers on the installation of infrared transceiver interface the majority of the cell phone is also the allocation of infrared transceiver interface. With the exchange of quantitative data, infrared datacommunications will enable cell phone data transmission more convenient. With infrared data transmission technology matures, perfect, low costs, Infrared Transceiver in short distance communications will be more widely applied.This chapter first describes the infrared transceiver IC design issues to the background and significance. then briefed the infrared data communications technology features and applications, and infrared transceiver product characteristics, domestic and international situation and development trend of the last under infrared remote transceiver system in practical application to establish a task of design orientation. 1.2 Infrared Remote Control Transceiver SystemInfrared remote control system is divided into single-channel and multi-channel remote control. Only a command signal transmission channel, called single-channel remote control system; with more than two instructions signal transmission channel known as a multi-channel remote control system. Relatively simple single-channel remote control, in general, only a launcher directive Key receivers and only one circuit implementation. While in the receiving circuit to add more stable memory circuits that can be activated commands to launch a number of key, so that the receiver circuit multi stable memory circuit repeatedly to change the state, to realize many of the functional control, But such a state of change is the order. If we are to achieve an arbitrary control, resort to the use of multi-channel remote control system. Multi-channel remote control can be realized by the object of arbitrary multi-function remote control. As for the choice of several routes and what control methods, according to the actual situation (such as object, operational requirements and cost accounting, etc.) to decide. General infrared remote transceiver system by infrared remote control transmitter signal coding, infrared remotecontrol signal receivers and decoders (or decoder chip MCU) and the external circuit consisting of three parts. Signal transmitter remote control code used to generate pulses of infrared emission-driven output infrared remote control signal, receiver completion of the remote control signal amplification and detection, plastic and demodulation encoding pulse. Infrared remote control coded pulse is going to obtain a continuous serial binary code, and for most of the infrared transceiver system, This serial code as micro-controller of the remote control input signals from the internal CPU completion of the remote control instruction decoder, on the other infrared remote control transceivers, the designers of electronic products, The internal micro-controller of the remote control decoder directive is not accessible. Therefore, people are using infrared encoder / decoder chip and microcontroller developed various generic infrared remote transceiver system, In various equipment infrared signals between the transceiver.Remote transceiver system generally transmitters and receivers is composed of two parts. Launchers from the general direction keys, coded instructions circuit modulation circuit, driving circuit, firing circuit of several parts. When pressed a key, the directive coding circuit, in the corresponding instructions encoded signal, the encoder signal to the carrier modulation, Driven by the power amplifier circuit after circuit fired from the field after firing instructions coded modulation signals. General receiver by the receiving circuit, the amplifier circuit, demodulation circuits, instruction decoder circuit, driving circuit, circuit implementation of several parts. Receiving Circuit will launch vehicles have been coded modulation signal receiving instructions from, and to enlarge evacuation demodulation circuit. Demodulation circuit will havethe coding modulation signal demodulation, namely, reduction of signal coding. The instruction decoder to the encoder signal decoding, Driven by the final circuit to drive the implementation of various instructions circuit to control the operation.1.3 infrared remote control transceiver product profilesCurrently infrared transceiver in accordance with the mode of transmission rate and can be divided into four categories : Serial mode, the highest rate of 115.2 Kbps; medium-speed model : the highest rate of 0.567 Mbps and 1.152Mbps; High-speed mode : The maximum rate of 16 Mbps.Also according to the size chip power consumption can be divided into low-power consumption and standard two categories, low-power type normally used 3 V power supply, transmission distance closer to about 0 - 30cm, which is commonly used standard 5V power supply, transmission distance away at least 1m above.Infrared communication technology in the development stage and there are several infrared communication standards, between different standards for infrared equipment can not infrared communication. To have all the infrared equipment to interoperability in 1993 by more than 20 large manufacturers initiated the establishment of an Infrared Data Association (IRDA) unified the infrared communication standards , which is currently widely used in infrared data communication protocols and standards, also known as the IRDA standard.Since 1993 IRDA since the establishment of the Infrared Data Association members have developed to more than 150. IRDA standards of the industry has been widely recognized and supported. Has beendeveloped with the infrared communications equipment have been as many as 100 species. IR module, installed capacity has reached 150 million sets. Although there is also a short distance wireless Bluetooth technology, But in infrared communication technology low cost and broad compatibility advantages, Infrared data communication in the future will still be a very long time inherent short-range wireless data communications fields play an important role.In various infrared transceiver products, although the transmission rate, transmission distance and other characteristics, But infrared transceiver products has been towards improving the transmission rate, increase the transmission distance and lower power consumption, expanding launch reception angle of development. In particular, as the technology development and maturity, the means of transmission is moving in the direction of point-to-multipoint. Therefore infrared remote control transceiver products have broader prospects for development.2 Infrared communication of knowledge2.1 infrared ray foundation knowledgeInfrared is actually a kind of electromagnetic wave. From the analysis of various natural component of the electromagnetic wave reflected spectrum is :-ray, x-ray, ultraviolet, visible, infrared, microwave and radio wave. From the viewpoint of form, and they did not seem to, but if the wavelength in descending order, and we will find him all theonl y visible light spectrum of the entire 0.38 μm - 0.76μm so long little area, and adjacent to the visible light and infrared (including the far infrared, mid-infrared and near infrared foreign) accounts for the spectrum of 0.76 μm - 1000μm of a major. Which micron wavelength range also includes UV, visible, near infrared, mid-infrared and far-infrared, microwave.From the above analysis shows that infrared is a very rich spectrum resources, it currently has in production, life, military, medical, and other aspects have been widely used, such as infrared heating, medical infrared, infrared communication, infrared camera, infrared remote control, and so on. Infrared remote control is the many applications of infrared part of the current household appliances widely used in TV remote control, VCR remote control, VCD remote control, high-fidelity audio remote control, are used infra-red remote control, It allows the control of these appliances have become very easy.Infrared lies between visible light and microwave a wave, it is with certain clinical characteristics of the wave. In the near-infrared, visible light and its adjacent, it is visible in certain characteristics, such as straight-line transmission, reflection, refraction, scattering, diffraction, can be certain objects and can be absorbed through the lens of their focusing. In the far-infrared region, owing to its neighboring microwave, it has some characteristics of microwave, If a strong penetrating power and can run through some opaque substances. Since in any object, natural profession, regardless of whether its own luminescence (referring to visible light), as long as the temperature is above absolute zero (-273 ° C), moment will be kept around to infrared radiation. Only higher temperature of objects strong infrared radiation, low-temperature objectsinfrared radiation weaker. Therefore infrared feature is the greatest common in nature, it is called thermal radiation called thermal radiation. Infrared cameras, infrared night market pyroelectric infrared detectors and some other missiles aiming at is the use of this characteristic of infrared work.Infrared and visible light compared to another characteristic of a variety of colors. As the longest wavelength of visible light is a wavelength of the shortest times (780 nm-380 nm), So is called an octave. And infrared wavelength is the longest shortest wavelength of a times, and the longest wavelength infrared is the shortest wavelength of 10 times, that is, 10 octave. Therefore, if visible light can be expressed as seven colors, infrared may performance 70 colors, showing the rich colors. Infrared smoke through the good performance, which is also one of its features.Because not visible to the infrared, it has little effect on the environment. By the wave infrared rays than the long wavelength radio waves, infrared remote control will not affect the nearby radio equipment. Another wavelength of less than 1.5μm near infrared light, transparent atmosphere in the visible light transmission characteristics much better than, because it close to the visible edge of the red light, linear transmission, reflection, refraction and absorption material and the physical characteristics very similar to visible light. Therefore, it can be used with similar visible focusing lens and other optical devices. Because infrared remote control is not as remote as the radio through the barrier to control the object's ability to control, so in the design of household appliances infra-red remote control, wireless remote control as unnecessary, each set (transmitters and receivers) have different frequency or remote coding (Otherwise, wall will control or interference with neighbors household appliances), all similar products in the infraredremote control, The same can control the frequency or coding, and no remote control signal "drop." This universal infrared remote control provides a great convenience. Infrared to visible light, is very subtle and confidentiality, therefore, the security, Alert and other security devices have been widely used. Infrared remote control is simple in structure and easy, low-cost, anti-interference capability, high reliability are a number of advantages, is a close-up remote control, especially in indoor remote control optimized manner.Infrared is not visible, people here are not aware of. Electronic technology is used infrared light emitting diode (also known as the IR emission diode) to generate infrared. Infrared remote control transceiver is using near-infrared transmission control instructions 0.76μm wavelength of ~ 1. 5μm. Near-infrared remote control as a light source, because there infrared light emitting diodes and infrared receiving device (photo diode. Transistor and PV) and the luminescence peak wavelength of light by the general 0.8μm ~ 0. 94μm. in the near-infrared band, both of the spectrum is the coincidence to a good match, access to higher transmission efficiency and higher reliability. Commonly used infrared diode, and its shape is similar LED light emitting diodes, Its basic circuit shown in figure 2 -2. The triode plans for the switch, when the base added a driving signal, Transistor saturated conduction infrared LED D is also Wizard Link, issued infrared (near infrared about 0.93 μm). D. The pressure drop of about 1.4 V and the current general for 10-20mA. To adapt to the working voltage of the D loop resistance often as a series of infrared diode current limit resistance.When the circuit diagram of the infrared emission control corresponding to the controlled device, the control of the distance and D is proportional to the transmitting power. In order to increase the distance of infrared control, infrared diode D should work on the pulse state that work is the lifeblood of current. Because pulse light (optical modulation) the effective transmission distance and pulse is proportional to the peak current, only maximize peak current Ip, will increase the infrared distance. Ip increase is a way to reduce the pulse duty cycle, that is compressed pulse width τ some TV infrared remote control, i ts infrared luminescence of the pulse duty cycle of about 1/4-1/3; Some electrical products infrared remote control, its duty cycle of 1 / 10. Decreasing pulse duty cycle also enable low-power infrared LED distance of the greatly increased. Common infrared light emitting diodes, power is divided into small power (1 mW - 10mW). Chinese power (20mW - 50mW) and power (50mW - 100mW more) three categories. Use different power infrared LED, the allocation should be driven by the corresponding power control. Figure 2 -2 by the reflected infrared light-emitting diodes to make produce optical modulation, Drivers only need to add the control of a certain frequency pulse voltage.Infrared transmitter and receiver in the way the two kinds of straight, and the second is reflective. Luminescence pointed straight pipe and tube receiver placed in a relatively controlled and fired on the two ends, a certain distance away from the middle; Reflective means luminescent tube and pipe parallel with the receiving peacetime, without always receiving tube light, luminescence only in possession of the infrared light reflected from encountered, the receiving tube received from the reflected infrared before work.2.2 infrared communication basic tenetsCommunication is the use of infrared wavelength of 900 nm-infrared waves from 1000 to serve as an information carrier, through infrared technology between the two close communication and confidentiality of information transmitted. Infrared communication system structure include : part launcher, channel, the receiver part.Launcher source letter issued after the binary signal from the high-frequency modulated infrared LED sent, receiving device regard the reception of high-frequency signals from the infrared receiver tube after receiving further demodulation photoelectric conversion of the original information of a mass communication lose way. Afterwards the former Information received after receiving part of the drive circuit connected to the expected completion of the various functions. To which the modulation coding style pulse width modulation (by changing the pulse width modulated signal PWM) and pulse modulation time (through change the pulse train interval time between the modulation signal PPM) two.(1) Launches : Currently there is a infrared wireless digital communications system sources of information including voice, data, images. Its methods of work for the launch of the receiver can be divided into different layout LOS way (Light-of-Sight , intracardiac way), diffuse (diffuse) mode. LOS way directional, it has good channel characteristics such advantages, but the existence of a "shadow" effect. difficult to achieve roaming function. Roaming means the main features of non-directional, and easy to implement roaming function, but its channel quality is better sometimes LOS way. Transmission of signals required fora few of (the sampling was quantified), the general need for baseband modulation, transmission, modulation, sometimes signal source coding, the above-driven signals from photoelectric converter complete optical signal transmission. Infrared wireless digital communications system and its scope of work-for-fired power distribution, the quality of the communication. While using various methods to improve optical transmitter power, the other using spatial diversity, holographic films and so on so diffuse light for the launch of space optical power evenly distributed.(2) Channel : infrared wireless digital communication channel refers to the transmitters and receivers in the space between. Due to natural light and artificial light sources such as light signals in the context of intervention, and the source - Electrical Equipment, The optical noise and disturbances, infrared wireless digital communications in some occasions, poor quality, At this point needed to channel coding. Infrared wireless communication system, the optical signal reflection, light scattering and background noise and interference effects, Infrared wireless digital channel presence multi-path interference and noise, This is to improve the quality and access for high-speed applications should be addressed. Infrared wireless digital communication channel often used by the major optical components, optical filter, condenser, their role is : plastic, filter, depending on the field transformation, the band division, the lens can be used as launch-ray focusing, the use of optical filters filter out stray light, the use of optical lenses to expand the field of view receiver, able to make use of optical components for the link frequency division multiplexing, etc.. Infrared wireless communication channel optical noise : the natural noise (sunlight) and anthropogenic interference (fluorescent lighting). canbe modulated by the transmission technology such as filters and adding to be addressed.(3) receivers : Channel optical signal from the optical receiver partially photoelectric conversion, In order to remove noise and intersymbol interference and other functions. Infrared wireless digital communications system receiver include optical receiver parts and follow-up sampling, filtering, judgment, quantity, balanced and decoding part. Infrared wireless optical receiver often used amplifier, and called for large-bandwidth, high gain, low noise and low noise, frequency response and channel impulse response matched. To be suppressed by low-frequency noise and human disturbance needs a band-pass filter. To obtain large optical receiver scope and instantaneous field of view, often using spherical optical lens.Wireless communications are a lot of ways, some using infrared communication with the following characteristics :• The high frequency, wave length, and fired the energy concentrated space propagation attenuation coefficient can ensure the effective signal transmission;• infr ared is the invisible light, strong confidentiality and use it as an information carrier. device when there is no visual pollution, it does no harm to the human body;• dissemination without limitation, and there is no question of frequency interference with radio-wave pattern, not on the spectrum resources to the relevant authorities for the application and registration, easy to implement;• has a good point, when the transmission equipment and infrared receiver ports line up straight, deviation of not more than about 15 degrees when infrared devices running the best effect;• through infrared or not bypassed and objects, data transmission, optical path can not be blocked;• currently produce and receive infrared signals in the technology is relatively mature, components small size, low cost production of simple, easy to produce and modulation advantages.2.3 infrared communication code based on the knowledgeUsually, infrared remote control transmitters will signal (pulse binary code) modulation at 38 KHz carrier, After buffer amplified sent to the infrared light-emitting diodes, infrared signals into firing away. Pulse binary code in a variety of formats. One of the most commonly used code is PWM (pulse width modulation code) and the PPM code (Pulse Code Modulation). The former said in a pulse width, pulse indicated 0. The latter pulse width, but the width of code-not the same, the codes represent a bit - and the digits represent narrow 0.Remote coding pulse signal (PPM code as an example) are usually guided by the code, the system code, the anti-code system, a feature code, functional anti-code signal components. Guide the code name for the initial code, by the width of 9 ms and the margin width of 4.5 ms to the low-level components (different remote control systems in the low-level high width of a certain distinction), remote coding used to mark the beginning of pulsed signals. System identification code is also called code, which used to indicate the type of remote control system, in order to distinguish other remote-control system, prevent the remote control system malfunction. Functional code is also called scripts, which represents the corresponding control functions, Receiver of the micro-controller functions under the numerical code to complete the variousfunctions operating. Anti-code system and function codes are anti-system code and the functional code against code Anti-code can be joined to the receiver synchronization transmission process leads to errors. In order to improve performance and reduce interference power consumption, The remote control will be coded pulse frequency of 38 KHz (for the cycle of 26.3 ms) of the carrier signal pulse reshuffle system (PAM), and then sent to the buffer amplified infrared LED, the remote control signal transmitter away.Address code and data codes are composed of different pulse width expressed that the two narrow pulse "0"; 2 pulse width "1"; a narrow pulse width and pulse expressed an "F" is the code addresses "vacant."Is the first part of a group a group of code, each code synchronization between separated. The plan is to enlarge the second half of a group code : a code from 12 AD (the address code plus data code For example, eight address code plus four data code), each with two AD-Pulse's : Pulse said the two "0"; 2 pulse width "1"; a narrow pulse width and pulse expressed an "F" is the code addresses "vacant."Realize fired at each fired at least four groups code, PT2272 only twice in a row to detect the same address code plus data code data will be the code "1" is driven The data should be output to drive margin and VT terminal for synchronous serial.红外遥控系统摘要目前红外数据通信技术是在世界范围内被广泛应用的一种无线连接技术,它也可以被许多软硬件平台所支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

襄樊学院理工学院毕业设计(论文)英文翻译题目About TOOL 关于组合机床专业机械设计制造及其自动化班级姓名学号指导教师职称2011年4月30 日┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊About TOOLMachine Tool (transfer and unit machine) machine tool is based on common components, together with the workpiece by a specific shape and design of special processing technology parts and fixtures, consisting of semi-automatic or automatic machine tools. Machines and mechanical and electrical auto line is an integrated set of higher degree of automation of manufacturing technology and complete technology and equipment. It is characterized by high efficiency, high-quality, economical and practical, they have been widely used in construction machinery, transportation, energy, industry, light industry, household appliances and other industries. The combination of traditional machine tools and machine tools automatic production line mainly uses the combination of mechanical, electrical, gas, hydraulic control, its main targets is the production of bulk processing of large and medium-sized box type, and shaft parts to complete the drilling, reaming, reaming and processing of various threads, boring, and the boss end cars, tanks of various shapes in the hole boring, and milling and forming flat noodles. As technology advances, a new combination of tools - flexible machine tool more and more people of all ages, it applied a number of spindle box, you can change the spindle box, code accompanying the automatic replacement of fixtures and tools, together with the available programmable controller (PLC), numerical control (NC), able to arbitrarily change the duty cycle control and drive systems, and the flexibility to adapt to variety the adjustable variable combination of processing machine.Combination of machining methods. Generally use multi-axis machine tool, multi tool, multi-process, multi-faceted or multi-station while processing means higher productivity than the general machine several times to several times. The common parts have been standardized and serialized, can be flexibly configured and can shorten the design and manufacturing cycle. Therefore, the combination of both machine tools and high-efficiency low-cost advantages, large, mass production has been widely used, and can be used to form an automatic production line.Machine Tool Box for processing general or special shapes of parts. Processing, the workpiece is generally not rotate, the tool rotation and tool and workpiece relative feed motion, to achieve the drilling, reaming, counter sinking, reaming, boring, milling surface, cutting and processing internal and external cylindrical thread and end and so on. Some machine tool head by turning the workpiece is rotated by a tool for feed motion, but also realize some of the revolving parts (such as the flywheel, axle rear axle, etc.) of the┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊cylindrical and end processing.Machine tool's development. Since the 70s the twentieth century, with the turning tool, fine-toothed milling, boring and tool automatically detects the size of automatic compensation technology, the combination of machining accuracy is also improved. Milling plane flatness up to 0.05 mm / 1,000 mm, the surface roughness can be as low as 2.5 to 0.63 microns; boring accuracy IT7 ~ 6 level, pitch accuracy is up to O.03 ~ O.02 microns. Machine tools, with the rise of the automobile industry to develop. In certain parts of machine tools for reuse, and gradually developed into a general components, resulting in a combination machine.The first machine tool is made in the United States in 1911, for the processing of automobile parts. Initially, the machine tool manufacturers have their own standards of common parts. In order to improve different parts of the interchangeability of generic manufacturer, user and maintenance, 1953 Ford Motor Company and General Motors Corporation in consultation with the U.S. machine tool manufacturer to determine the combination of machine tool standardization principle that the stringent requirements links between components size, but not provided for the structure of parts.Machine tool parts classification. General components can be divided into power components according to function, supporting parts, transmission parts, control parts and accessories five. Power components for the machine tool to provide the main movement and feed movement of the parts. The main power box, cutting head and power slider. Supporting parts are for the installation of power slide, with the feeding mechanism of the cutting head or fixture parts, with side base, intermediate base, frame, adjustable brackets, columns and column bases and so on. Transmission components are used to transport a workpiece or spindle box components to processing station, the main partakers degree rotary table, rotary table indexing ring, indexing drum and reciprocating table and so on. Control unit is used to control the duty cycle of automatic machine parts, a hydraulic, electrical cabinets and consoles and so on. Accessories lubrication devices, cooling devices and chip devices.Machine tool development. Machine tool in order to get small and medium volume production applications, often require the application of group technology, similar to the structure and process components focused on a single machine tool process in order to improve machine utilization. There are two such tools often can be combined for box-type machine tool spindle and turret machine tool. The future development of machine tool will be more so with variable speed motor and ball screw drive to simplify the structure and┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊shorten the production cycle; use of digital control system and the spindle box, the fixture automatically change the system to improve the process adjustability; and into the flexible manufacturing systems.In small batch production in machine tool is how to apply it? Machine tool is based on common components, together with the workpiece by a specific shape and design of special processing technology parts and fixtures, consisting of semi-automatic or automatic machine tools. It is commonly used multi-axis, multi-tool, multi-process, multi-faceted or multi-station while processing means higher productivity than the general machine several times to several times. The common parts have been standardized and serialized, can be flexibly configured and can shorten the design and manufacturing cycle. Therefore, the combination of both machine tools and high-efficiency low-cost advantages, large, mass production has been widely used, and can be used to form an automatic production line.Machine tool generally used for processing or extraordinary form for box parts. Processing, the workpiece is generally not rotate, the tool rotation and tool and workpiece relative feed motion, to achieve the drilling, reaming, counter sinking, reaming, boring, milling surface, cutting and processing internal and external cylindrical thread and end and so on. Some machine tool head by turning the workpiece is rotated by a tool for feed motion, but also realize some of the revolving parts (such as the flywheel, axle rear axle, etc.) of the cylindrical and end processing.Machine tools, with the rise of the automobile industry to develop. In the special machine for repeated use in some parts, and gradually developed into a general-purpose components, resulting in a combination machine.The first machine tool is made in the United States in 1911, for the processing of automobile parts. Initially, the machine tool manufacturers have their own standards of common parts. In order to improve different parts of the interchangeability of generic manufacturer, user and maintenance, 1953 Ford Motor Company and General Motors Corporation in consultation with the U.S. machine tool manufacturer to determine the combination of machine tool standardization principle that the stringent requirements links between components size, but not provided for the structure of parts.General components can be divided into power components according to function, supporting parts, transmission parts, control parts and accessories five. Power components for the machine tool to provide the main movement and feed movement of the parts. The main power box, cutting head and power slider.In order to machine tool can be applied in small and medium volume production,┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊often require the application of group technology, similar to the structure and process components focused on a single machine tool process in order to improve machine utilization. There are two such tools often can be combined for box-type machine tool spindle and turret machine tool.The future development of machine tool will be more so with variable speed motor and ball screw drive to simplify the structure and shorten the production cycle; use of digital control system and the spindle box, the fixture automatically change the system to improve the process adjustability; and into the flexible manufacturing systems.┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊关于组合机床组合机床(transfer and unit machine)是以通用部件为基础,配以按工件特定形状和加工工艺设计的专用部件和夹具,组成的半自动或自动专用机床。

相关文档
最新文档