第一学期期中考试初三数学试题卷(附答案)
江苏省南通市通州区2024-2025学年九年级上学期11月期中考试数学试题答案
2024~2025学年(上)初三期中学业水平质量监测数学试卷一、 选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上. B 1.函数解析式y=x²+2x-1的二次项系数、一次项系数和常数项分别是A.1,2,1B.1,2,-1C.0,2,-1D.0,-2,-1D 2.平面内,☉O 的半径为10,若点P 在☉O 内,则OP 的长可能为 A.14cmB.12cmC.10cmD.8cmC 3.如图,AB,AC 为☉O 的两条弦,连接OB, OC.若∠A=45°,则∠BOC 的度数为A.60°B.75°C.90°D.135°D 4.将抛物线y=3x²-x 向下平移k(k >0)个单位长度,关于平移前后的抛物线,下列说法正确的是 A.开口大小改变B.开口方向改变C.顶点位置不变D.对称轴不变A 5.掷两枚质地均匀的骰子,下列事件是随机事件的是 A. 点数的和为6B.点数的和为1C. 点数的和大于12D.点数的和小于13C 6.若抛物线y=ax²+bx+c 如图所示,则关于x 的方程ax²+bx+c=0根的情况是 A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根D.只有一个实数根注意事项考生在答题前请认真阅读本注意事项:1. 本试卷共6页,满分为150分,考试时间为120分钟。
2. 答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在答题卡上 指定的位置。
3. 答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效。
A7.一个不透明的盒子里装有一个红球、一个白球和一个绿球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后不放回,再从中随机摸出一个球,则两次摸到的球恰好有一个红球的概率是A.23B.13C.59D.49B8.某校九年级学生参加社团活动,学习编制圆锥型工艺品。
【初三数学】浙江省初中名校共同体2023-2024学年九年级上学期期中数学试题(解析版)
2023学年第一学期浙江省初中名校发展共同体九年级期中考试数学考生须知:1.本卷满分120分,考试时间120分钟;2.答题前,在答题卷指定区域填写班级、姓名、考场、座位号及准考证号并核对条形码信息;3.所有答案必须写在答题卷上,写在试卷上无效,考试结束后,只需上交答题卷;4.参加联批学校的学生可关注“启望教育”公众号查询个人成绩分析.一、选择题(本大题共10题,每小题3分,共30分.每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.若43a b =,则a b b -的值等于()A.13B.13-C.73D.73-【答案】A 【解析】【分析】此题考查了比例,直接利用比例设参数,然后代入求值即可,解题的关键是熟练掌握比例的性质.【详解】由43a b =,设4a k =,3b k =(0k ≠),∴431333a b k k k b k k --===,故选:A .2.已知在Rt ABC △中,90,5,12C AC BC ∠=︒==,则ABC V 的外接圆直径为()A.5B.12C.13D.6.5【答案】C 【解析】【分析】本题考查了直角三角形的外接圆直径,勾股定理求得斜边的长即可求解.【详解】解:∵在Rt ABC △中,90,5,12C AC BC ∠=︒==,∴13AB ==,∴ABC V 的外接圆直径为13,故选:C .3.若将函数23y x =的图象向右平移2个单位,再向上平移4个单位,得到的抛物线表达式为()A.23(2)4y x =+- B.23(2)4y x =++ C.23(2)4y x =-- D.23(2)4y x =-+【答案】D 【解析】【分析】本题考查了二次函数图象与几何变换,解题的关键是根据函数图象平移规律:左加右减,上加下减进行变换.【详解】解:将函数23y x =的图象向右平移2个单位,再向上平移4个单位,可得()2324y x =-+,故选D .4.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点M 表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O 为圆心,5m 为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB 长为8m ,则筒车工作时,盛水桶在水面以下的最大深度为()A.1米B.2米C.3米D.4米【答案】B 【解析】【分析】过O 点作半径OD AB ⊥于E ,如图,由垂径定理得到4AE BE ==,再利用勾股定理计算出OE ,然后即可计算出DE 的长.【详解】解:过O 点作半径OD AB ⊥于E ,如图,∴11===8=422AE BE AB ⨯,在Rt AEO △中,3OE ===,∴532(m)ED OD OE =-=-=,∴筒车工作时,盛水桶在水面以下的最大深度为2m .故选:B .【点睛】本题考查了垂径定理,垂直于弦的直径平分弦,并且平分弦所对的两条弧,能熟练运用垂径定理是解题的关键.5.关于二次函数()224y x =+-,下列说法正确的是()A.函数图象的开口向下B.函数图象的顶点坐标是()24-,C.该函数的最大值是4-D.当2x ≥-时,y 随x 的增大而增大【答案】D 【解析】【分析】本题考查了()2y a x h k =-+的图象性质,根据顶点坐标为()h k ,,对称轴x h =,开口方向,进行逐项分析,即可作答.【详解】解:A 、因为()224y x =+-中的10a =>,函数图象的开口向上,故该选项是错误的;B 、因为()224y x =+-,所以函数图象的顶点坐标是()24--,,故该选项是错误的;C 、因为10a =>,函数图象的开口向上,该函数的最小值是4-,故该选项是错误的;D 、因为对称轴2x =-,10a =>,函数图象的开口向上,当2x ≥-时,y 随x 的增大而增大,故该选项是正确的;故选:D6.如图,在ABC 中,90A ∠=︒,6AB =,10BC =,ABC ∠的平分线交AC 于点D ,与BC 的垂线CE 相交于点E ,则:BD DE 为()A.3:2B.5:3C.4:3D.2:1【答案】A 【解析】【分析】过点D 作DF BC ⊥于点F ,由勾股定理得8AC =,再由角平分线的性质得DA DF =,进而由面积法求出3DF =,则5CD AC DA =-=,然后由勾股定理得4CF =,则6BF =,最后由平行线分线段成比例定理即可得出结论.【详解】解:过点D 作DF BC ⊥于点F ,∵90A ∠=︒,6AB =,10BC =,∴DA BA ⊥,8AC ===,∵BD 平分ABC ∠,DF BC ⊥,∴DA DF =,∵ABC ABD BCD S S S =+△△△,∴111222AB AC AB DA BC DF ⋅=⋅+⋅,∴68610DF DF ⨯=+,解得:3DF =,∴3DA =,∴835CD AC DA =-=-=,∴4CF =,∴1046BF BC CF =-=-=,∵DF BC ⊥,CE BC ⊥,∴DF CE ∥,∴6342BD BF DE CF ===,即:3:2BD DE =.故选:A .【点睛】本题考查勾股定理,角平分线的性质,三角形面积,平行线的判定及平行线分线段成比例定理等知识,熟练掌握勾股定理、角平分线的性质及平行线分线段成比例定理是解题的关键.7.小舟给出如下题目:二次函数2(0)y ax bx c a =++≠的图象如图所示,点A 坐标为()1,0-,给出下列结论:①20b a +<﹔②240b ac -<;③3x =是方程20(a 0)++=≠ax bx c 的其中一个解;④30a b +>;其中正确的是()A.①B.②C.③D.④【答案】C 【解析】【分析】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当0a >时,抛物线向上开口;当0<a 时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左;当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于()0,c .抛物线与x 轴交点个数由判别式确定:24>0bac ∆=-时,抛物线与x 轴有2个交点;240b ac ∆=-=时,抛物线与x 轴有1个交点;240b ac ∆=-<时,抛物线与x 轴没有交点.利用抛物线的对称性得到抛物线与x 轴的另一个交点坐标为()3,0,则利用对称轴即可对①进行判断;根据判别式的意义可对②进行判断;根据抛物线与x 轴的另一个交点坐标为()3,0可对③进行判断;由20a b +=,0<a ,即可对④进行判断.【详解】解:∵抛物线的对称轴为直线1x =,即12ba-=,∴20b a +=,故①错误;∵抛物线对称轴是直线1x =,抛物线与x 轴的一个交点坐标为()1,0A -,∴抛物线与x 轴的另一个交点坐标为()3,0,即抛物线抛物线与x 轴有2个交点,∴24>0b ac =- ,故②错误;∵抛物线与x 轴的另一个交点坐标为()3,0,∴3x =是方程20(a 0)++=≠ax bx c 的其中一个解,故③正确;∵a<0,20a b +=,∴30a b +<,故④错误;故选:B .8.如图,点A ,B ,C ,D 为O 上的四个点,AC 平分BAD ∠,AC 交BD 于点E ,2,3CE CD ==,则AC 的长为()A.4B.4.5C.5D.5.5【答案】B 【解析】【分析】本题考查圆周角定理,相似三角形的性质与判定,方程思想,能够掌握相似三角形的性质是解决本题的关键.【详解】解:设AC x =2AC x =+,∵AC 平分BAD ∠,∴BAC CAD ∠∠=,∵CDB BAC ∠∠=(圆周角定理),∴CAD DB ∠∠=,∴ACD DCE ∽,∴CD ACCE DC =,即323x =,解得: 4.5x =,故选:B .9.如图,已知△ABC ,O 为AC 上一点,以OB 为半径的圆经过点A ,且与BC ,OC 交于点D ,E .设∠A =α,∠C =β()A.若α+β=70°,则 DE 的度数为20°B.若α+β=70°,则 DE的度数为40°C.若α﹣β=70°,则 DE的度数为20° D.若α﹣β=70°,则 DE的度数为40°【答案】B 【解析】【分析】连接BE ,根据圆周角定理求出∠ABE =90°,∠AEB =90﹣α,再根据三角形外角性质得出90°﹣α=β+12θ,得到 DE 的度数为180°﹣2(α+β),再逐个判断即可.【详解】解:连接BE ,设 DE的度数为θ,则∠EBD =12θ,∵AE 为直径,∴∠ABE =90°,∵∠A =α,∴∠AEB =90﹣α,∵∠C =β,∠AEB =∠C +∠EBC =β+12θ,∴90°﹣α=β+12θ,解得:θ=180°﹣2(α+β),即 DE 的度数为180°﹣2(α+β),A 、当α+β=70°时, DE的度数是180°-140°=40°,故本选项错误;B 、当α+β=70°时, DE的度数是180°-140°=40°,故本选项正确;C 、当α-β=70°时,即α=70°+β, DE的度数是180°-2(70°+β+β)=40°-4β,故本选项错误;D 、当α-β=70°时,即α=70°+β, DE的度数是40°-4β,故本选项错误;故选:B ..【点睛】本题考查了圆周角定理和三角形的外角性质,能灵活运用定理进行推理和计算是解此题的关键.10.定义平面内任意两点()()1122,,,P x y Q x y 之间的距离2121PQ d x x y y =-+-,称为这两点间的曼哈顿距离(简称为曼距).例如,在平面直角坐标系中,点()3,2P --与点()2,2Q 之间的曼距3222549PQ d =--+--=+=,若点A 在直线122y x =-上,点B 为抛物线22y x x =+上一点,则曼距AB d 的最小值() A.23540B.6940C.2316D.32【答案】C 【解析】【分析】本题考查了二次函数与一次函数的综合应用,二次函数的最值,根据定义表示出曼距AB d ,当A 、B 两点横坐标相等时,AB d 取得最小值,求解即可.【详解】解:由题意得:设1,22A a a ⎛⎫- ⎪⎝⎭,2(,2)B b b b +,∴()21222AB a b b d a b =---++,当A 、B 两点横坐标相等时,AB d 取得最小值,∴()2223323224161222ABd b b b b b b ⎛⎫==---=++ ⎪⎝⎭--+,∴曼距AB d 的最小值为2316;故选:C .二、填空题(本题有6小题,每小题4分,共24分)11.请写出一个开口向下并且顶点在y 轴上的二次函数表达式________.【答案】24y x =-+(答案不唯一)【解析】【分析】本题考查了二次函数的图象与性质,先设出二次函数解析式方程,()()20y a x h k a =++≠,再根据图像开口向下可知0a <,再根据顶点在y 轴上,有0h =,即可求解.【详解】设该二次函数的解析式为()()20y a x h k a =++≠,∵抛物线的开口向下,∴0a <,又∵顶点在y 轴上,∴0h =,∴4k =时,有:24y x =-+,故答案为:24y x =-+(答案不唯一,满足上述条件即可)12.生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a 与全身b 的高度比值接近0.618,可以增加视觉美感.若图中b 为4米,则a 约为________米.(结果精确到一位小数)【答案】2.5【解析】【分析】本题考查了黄金分割,根据0.618ab≈,4m b =,即可求出a 的值.【详解】解: 雕像的腰部以下a 与全身b 的高度比值接近0.618,4m b =,∴0.618ab≈,2.472 2.5m a ∴≈≈,a ∴的值为2.5米;故答案为2.5.13.二次函数()()53y a x x =+-的图象如图所示,当0y >时,x 的取值范围是________.【答案】53x -<<##35x >>-【解析】【分析】本题主要考查抛物线与x 轴的交点、二次函数图象与性质.先求出抛物线与x 轴的交点坐标,进而根据函数图象即可解答.【详解】解:当0y =时,()()530x x +-=,解得:1253x x =-=,∴二次函数()()53y a x x =+-的图象与x 轴的交点为(50)-,,()30,,由函数图象可得0y >的x 的取值范围为:53x -<<.故答案为:53x -<<.14.如图,在扇形EOF 中放置有三个全等的矩形方格,点O 为扇形的圆心,格点A 、B 、C 分别在扇形的1,则阴影部分的面积为________.【答案】73π【解析】【分析】连接OC ,先求出OC 长,再利用三角函数求出AOB ∠的度数,再根据阴影面积等于扇形的面积减去梯形面积即可得解.熟练掌握扇形面积公式和利用三角函数求出30AOB ∠=︒是解题的关键.【详解】解:连接OC ,1,∴OC ==,ant AOB Ð=,∴30AOB ∠=︒,∴(230π73603EOF Sπ⨯==扇形,()1232ACBO S =⨯+=梯形,∴阴影部分的面积为:73A O EOF CB S S S π=-=梯阴影扇形形故答案为:73π15.如图,矩形纸片ABCD ,点E 在边A 上,连接BE ,点F 在线段BE 上,且13EF BF =,折叠矩形纸片使点C 恰好落在点F 处,折痕为DG ,若4AB =,则折痕DG 的长为________.【答案】【解析】【分析】此题考查了矩形的折叠问题,勾股定理.正确画出辅助线,构造直角三角形是解题的关键.过点F 作MN AD ⊥于点M ,MN 交BC 于点N ,通过证明四边形ABNM 为矩形,四边形CDMN 为矩形,得出4AB MN CD ===,根据13EF BF =,推出13EF MF BF NF ==,则1,3MF NF ==,由折叠的性质得出4DF DC ==,CG FG =,即可根据勾股定理求出CN DM ===CG FG x ==,则GN x =-,根据勾股定理可得222GN NF FG +=,列出方程,求出4155x =,最后根据勾股定理可得:2DG =,即可求解.【详解】解:过点F 作MNAD ⊥于点M ,MN 交BC 于点N ,∵四边形ABCD 为矩形,∴90A ABN ∠=∠=︒,AD BC ∥,∵MN AD ⊥,∴四边形ABNM 为矩形,同理可得:四边形CDMN 为矩形,∴4AB MN CD ===,∵13EF BF =,∴13=EF BF ,∵AD BC ∥,∴13EF MF BF NF ==,∴1,3MF NF ==,∵CDG 由FDG △沿DG 折叠得到,∴4DF DC ==,CG FG =,根据勾股定理可得:CN DM ====设CG FG x ==,则GN x =,根据勾股定理可得:222GN NF FG +=,即)2223x x -+=,解得:5x =,根据勾股定理可得:2DG ===16.量角器和三角板是我们平常数学学习中常用的工具.有一天,爱思考的小聪拿着两块工具拼成了如图1的样子,计划让三角板的直角顶点始终在量角器的半圆弧上运动,紧接着小聪根据自己的想法画出了示意图(如图2).已知点C 是量角器半圆弧的中点,点P 为三角板的直角顶点,两直角边PE 、PF 分别过点A 、B .连结CP ,过点O 作OM CP ⊥交CP 于点M ,交AP 于点N .若8AB =,则NB 的最小值为________;若点Q 为 BC的中点,则点P 从点Q 运动到点B 时,N 点的运动路径长为________.【答案】①.-②.22π【解析】【分析】如图,连接AC OC ,.证明点N T 在 上,且运动轨迹是 OC,过点T 作TH AB ⊥于H .求出BT TN ,,可得结论;连接PO ,TO ,结合图形可得,点P 从点Q 运动到点B ,点Q 为 BC的中点,运动的终点时,1452POB COB ∠=∠=︒,即有9045CTN POB ∠=︒-∠=︒,则有9045OTN CTN ∠=︒-∠=︒,根据弧公式即可作答.【详解】解:当点P 在 BC上时,点N 在线段OC 的右侧,如图,连接AC OC ,.∵C 是半圆的二等分点,∴=90AOC ∠︒,即1452APC AOC ∠=∠=︒,∵OA OC =,∴AOC △是等腰直角三角形,作AOC △的外接圆T e ,连接TN ,TB .则有圆心T 为AC 中点,∵OM PC ⊥,∴CM PM =,∴NC NP =,∴45NPC NCP ∠=∠=︒,∴18090CNP PCN CPN ∠=︒-∠-∠=︒,∴90ANC PNC ∠=∠=︒,∴点N 在T e 上,运动轨迹是 OC,过点T 作TH AB ⊥于H .∵8AB =,∴142AO AB ==,∵AO OC =,=90AOC ∠︒,∴45OAC OCA ∠=∠=︒,AC ==,∴12TA TN TC AC ====,在Rt ATH 中,122AH OH AO ===,45TAH ∠=︒,∴45ATH TAH ∠=∠=︒,∴2AH TH ==,即6BH AB AH =-=,在Rt BHT 中,BT ===,∵BN BT TN ≥-,∴BN ≥-∴BN 的最小值为-当点P 在 AC 上时,如图,可知点N 在线段OC 的左侧,此时的BN 显然大于综上:BN 的最小值为-如图,连接PO ,TO ,∵2CTN CAN ∠=∠,2POB PAB ∠=∠,45CAN PAB CAO ∠+∠=∠=︒,∴()24590CTN PAB POB ∠=︒-∠=︒-∠,∵点P 从点Q 运动到点B ,点Q 为 BC的中点,∴终点时,1452POB COB ∠=∠=︒,∴9045CTN POB ∠=︒-∠=︒,∴9045OTN CTN ∠=︒-∠=︒,∵TA TN TC ===∴点N 在T e 上,运动轨迹长为:4522ππ3602︒⨯=︒,故答案为:-,2π2.【点睛】本题考查点与圆的位置关系,弧长公式,圆周角定理,垂径定理,勾股定理,等腰直角三角形的判定和性质,轨迹等知识,解题的关键是正确寻找点N 的运动轨迹.三、解答题(本题有8小题,第17~19题每小题6分,第20、21题每小题8分,第22、23题每小题10分,第24题12分,共66分)17.已知线段a 、b 、c 满足::3:2:4a b c =,且211++=a b c .(1)求a 、b 、c 的值;(2)若线段x 是线段a 、b 的比例中项,求x 的值.【答案】(1)3,2,4a b c ===(2)x 【解析】【分析】本题考查了比例和比例中项,(1)设比值为k ,然后用k 表示出a 、b 、c ,再代入等式进行计算即可得;(2)根据比例中项的定义列式求解即可得掌握比例和比例中项的定义“如果作为比例内项的是两条相同的线段,即a b b c=,那么线段b 是a 和c 的比例中项”是解题的关键.【小问1详解】解:∵::3:2:4a b c =,则设3,2,4a k b k c k ===,∵211++=a b c ,∴322411k k k +⨯+=,1111k =,1k =,∴3,2,4a b c ===;【小问2详解】解:∵线段x 是线段a 、b 的比例中项,∴a x x b=,2x ab =,232x =⨯,26x =,x =或x =(舍),即x 的值.18.如图,AB 是半圆O 的直径,C 、D 是半圆O 上的两点,且∥OD BC ,OD 与AC 交于点E .(1)若70B ∠=︒,求CAD ∠的度数;(2)若13,12AB AC ==,求DE 的长.【答案】(1)35︒(2)4【解析】【分析】(1)圆周角定理,得到90C ∠=︒, AC 的度数为140︒,平行得到90OEA ∠=︒,进而得到OE AC ⊥,垂径定理,得到 AD CD=,进而得到 CD 的度数为70︒,即可求出CAD ∠的度数;(2)勾股定理,求出OE 的长,OD OE -即可求出DE 的长.本题考查圆周角定理,垂径定理,勾股定理.熟练掌握圆周角定理和垂径定理,是解题的关键.【小问1详解】解:∵AB 是半圆O 的直径,70B ∠=︒,∴90C ∠=︒, AC 的度数为140︒,∵∥OD BC ,∴90OEA C ∠=∠=︒,∴OE AC ⊥,∴ AD CD=,∴ CD的度数为70︒,∴170352CAD ∠=⨯︒=︒;【小问2详解】∵13,12AB AC ==,OE AC ⊥,∴131,622OA OD AE AC ====,∴52OE ==,∴135422DE =-=.19.已知二次函数223y x x =-+,当22x -≤≤时,求函数y 的取值范围.小胡同学的解答如下:解:当2x =-时,则()()2222311y =--⨯-+=;当2x =时,则222233y =-⨯+=:所以函数y 的取值范围为311y ≤≤.小胡的解答正确吗?如果正确,请在方框内打“√”:如果错误,请在方框内打“×”,并写出正确的解答过程.【答案】见解析【解析】【分析】此题考查了二次函数的性质,先将该二次函数解析式化为顶点式,根据开口方向向上,求出最小值为2,再求出当2x =-时和当2x =时的函数值,即可解答.【详解】解:小胡的解答不正确,正确的解答过程如下:∵()222312y x x x =-+=-+,10a =>,∴当1x =时,该二次函数有最小值2,∵当2x =-时,则()()2222311y =--⨯-+=;当2x =时,则222233y =-⨯+=:∴当22x -≤≤时,函数y 的取值范围为211y ≤≤.20.请用无刻度的直尺在以下两个图中画出线段BC 的垂直平分线(保留作图痕迹,不写作法)(1)如图①,等腰ABC V 内接于O 中,AB AC =;(2)如图②,已知四边形ABCD 为矩形,点A 、D 在圆上,AB CD 、与O 分别交于点E 、F .【答案】(1)见详解(2)见详解【解析】【分析】本题考查的是作图,主要涉及等腰三角形的性质、垂径定理、矩形的性质、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运用相关的知识解决问题.(1)如图,作直线OA 即可,OA 即为所求;(2)连接AF DE 、交于点O ,连接EC BH 、交于点H ,连接OH 即可.【小问1详解】如图①,作直线OA 即可,OA 即为所求;【小问2详解】如图②,连接AF DE 、交于点O ,连接EC BH 、交于点H ,连接OH 即可,直线OH 即为所求.21.杭州亚运会期间,某网店经营亚运会吉祥物“宸宸、琮琮和莲莲”钥匙扣礼盒装,每盒进价为30元,出于营销考虑,要求每盒商品的售价不低于30元且不高于38元,在销售过程中发现该商品每周的销售量y (件)与销售单价x 32元时,销售量为36件;当销售单价为34元时,销售量为32件.(1)请求出y 与x 的函数关系式;(2)设该网店每周销售这种商品所获得的利润为w 元,①写出w 与x 的函数关系式;②将该商品销售单价定为多少元时,才能使网店每周销售该商品所获利润最大?最大利润是多少?【答案】(1)2100y x =-+(2)①221603000w x x =-+-;②该商品销售单价定为38元时,才能使网店销售该该商品所获利润最大,最大利润是192元.【解析】【分析】本题主要考查二次函数的应用、待定系数法等知识点,灵活应用这些知识解决问题并构建二次函数解决问题成为解题的关键.(1)直接利用待定系数法求解即可;(2)①根据“总利润=每件产品利润×数量”即可列出函数关系式;②利用二次函数的性质求最值即可.【小问1详解】解:设y 与x 的函数关系式为y kx b =+,把3236x y ==,和3432x y ==,分别代入得,36323234k b k b =+⎧⎨=+⎩,解得:2100k b =-⎧⎨=⎩.∴y 与x 的函数关系式为2100y x =-+.【小问2详解】解:①由题意可得()()230210021603000w x x x x =--+=-+-:,∴w 与x 的函数关系式为221603000w x x =-+-.②()2221603000240200w x x x =-+-=--+,∵20-<且对称轴为直线40x =∴抛物线开口向下,∵3038x ≤≤在对称轴左侧,即40x <时,w 随x 的增大而增大,∴当38x =时,()223840200196w =--+=最大(元).答:该商品销售单价定为38元时,才能使网店销售该该商品所获利润最大,最大利润是192元.22.如图1,在正方形ABCD 中,12CE DE =,F 为BE 上的一点,连结CF 并延长交AB 于点M ,作MN CM ⊥交边AD 于点N .(1)当F 为BE 中点时,求证:2AM CE =﹔(2)如图2,若23EF BF =,求AN ND 的值.【答案】(1)见解析(2)13【解析】【分析】本题考查了正方形的性质与判定,全等三角形的性质与判定,相似三角形的性质与判定;(1)先证明MBC ECB ≌得出BM EC =,根据12CE DE =,以及正方形的性质即可得证;(2)根据正方形的性质可得,AB CD ∥得出FBM FEC ∽,根据已知条件设3BM a =,则2EC a =,求得4DE a =,进而求得AM ,证明AMN BCM ∽,取得AN ,进而即可求解.【小问1详解】证明:F 为BE 的中点,BF EF ∴=,四边形ABCD 为正方形,90BCE ABC ∴∠=∠=︒,CF BF EF ∴==,FBC FCB ∴∠=∠,BC CB = ,MBC ECB ∴ ≌(AAS ),BM EC ∴=,AB CD = ,12CE DE =,12BM AM ∴=,2AM CE ∴=.【小问2详解】∵四边形ABCD 为正方形,∴AB CD ∥,∴FBM FEC ∽,∵23EF BF =,∴23EF EC BF BM ==设3BM a =,则2EC a =,∵12CE DE =,∴4DE a =,∴246CD DE EC a a a =+=+=,∴633AM AB MB CD MB a a a =-=-=-=,∵MN CM ⊥,∴90NMC ∠=︒,又∵90A MBC ∠=∠=︒,∴90AMN BMC MCB ∠=︒-∠=∠,∴AMN BCM ∽,∴AM AN BC BM =,即363a AN a a =,∴32AN a =,∴39622ND AD ND a a a =-=-=,∴AN ND 312932a a ==.23.根据以下素材,探索完成任务.绿化带灌溉车的操作方案灌溉车行驶过程中喷出的水能浇灌到整个绿化带吗,请说理由灌溉时,发现水流的上下两边缘冲击力最强,喷到针简容易造成针筒脱落.那么请问在满足最大灌溉面积的前提下对行道树“打针”是否有影响,并说明理由;若你认为有影响,请给出具体的“打针”范围.【答案】任务一:()213 2.510y x =-++;任务二:灌溉车行驶过程中喷出的水能浇灌到整个绿化带,理由见解析;任务三:在满足最大灌溉面积的前提下对行道树“打针”是否有影响,建议针一般打在离地面大于1.6米且小于或等于2米的高度.【解析】【分析】本题考查了二次函数的应用,待定系数法求解析式,求函数值,二次函数的性质;任务一:待定系数法求解析式,即可求解;任务二:根据题意,求得下边缘的抛物线解析式为:21 1.610y x =-+,分别令0y =,得出抛物线与坐标轴的交点,两交点的距离,即为所求;任务三:依题意,绿化带正中间种植了行道树,即8462x --==-处种植了行道树,令6x =-,求得y 的值,与题意比较,进而得出结论.【详解】解:任务一:依题意,设上边缘水流的抛物线的函数表达式为()23 1.60.9y a x =+++,将()0,1.6代入得,1.69 2.5a =+解得:110a =-∴抛物线的表达式为:()213 2.510y x =-++任务二:∵上边缘水流的抛物线解析式为:()213 2.510y x =-++当0y =时,()213 2.5010x -++=解得:8x =-或=2(舍去),则抛物线与x 负半轴的交点坐标为()8,0-;∵下边缘水流形状与上边缘相同,且喷水口是最高点.∴下边缘的抛物线解析式为:21 1.610y x =-+当0y =时,21 1.6010x -+=,解得:4x =-或4x =(舍去),则抛物线与x 负半轴的交点坐标为()4,0-;∵()484---=而路边的绿化带宽4米,∴灌溉车行驶过程中喷出的水能浇灌到整个绿化带;任务三:上边缘水流的抛物线解析式为:()213 2.510y x =-++,∵绿化带正中间种植了行道树,即8462x --==-处种植了行道树当6x =-时,()2163 2.5 1.610y =--++=米而园林工人给树木“打针”.针一般打在离地面1.5米到2米的高度(包含端点).则在满足最大灌溉面积的前提下对行道树“打针”是否有影响,建议针一般打在离地面大于1.6米且小于或等于2米的高度.24.如图1,ABC V 是O 内接三角形,将ABC V 绕点A 逆时针旋转至AED △,其中点D 在圆上,点E 在线段AC 上.(1)求证:DE DC =﹔(2)如图2,过点B 作BF CD ∥分别交AC 、AD 于点M 、N ,交O 于点F ,连接AF ,求证:AN DE AF BM ⋅=⋅;(3)在(2)的条件下,若13AB AC =时,求BF BC 的值;【答案】(1)见解析(2)见解析(3)79【解析】【分析】(1)旋转的性质,得到,BC DE BAC EAD =∠=,根据弧,弦,角的关系,得到BC CD =,即可得证;(2)证明BCM AFM ∽,进而得到BC BM AF AM=,旋转得到,BC DE AC AD ==,根据BF CD ∥,推出AM AN =,等量代换,得到DE BM AF AN=,即可得证;(3)等量代换,得到13AB AD =,过点E 作,EP AB EQ AD ⊥⊥,角平分线的性质得到EP EQ =,等积法得到13AB E DE AD B ==,连接DF ,推出BC DF =,AB AF =,将ABD △绕点A 旋转至AB 与AF 重合得到AFD ' ,证明,,D F D '三点共线,设BE x =,则3DE x =,进而得到3BC DE DF x ===,推出7DD DF FD DF BD x ''=+=+=,证明BAF DAD ' ∽,得到13AB BF AD DD ==',得到1733BF DD x '==,再进行计算即可.【小问1详解】证明:∵将ABC V 绕点A 逆时针旋转至AED △,∴,BC DE BAC EAD =∠=,∴ BC CD =,∴BC CD =,∴DE DC =;【小问2详解】证明:∵ AB AB =,∴BCM AFM ∠=∠,∵BMC AMF ∠=∠,∴BCM AFM ∽,∴BC BM AF AM =,∵将ABC V 绕点A 逆时针旋转至AED △,∴,BC DE AC AD ==,∵BF CD ∥,∴AMN ACD ∽,∴AM AN AC AD =,∴AM AN =,∴DE BM AF AN =,∴AN DE AF BM ⋅=⋅;【小问3详解】∵13AB AC =,AC AD =,∴13AB AD =,ACD ADC ∠=∠,∴ AC AD =,∵ACB ADE∠=∠∴延长DE 必经过点B ,过点E 作,EP AB EQ AD ⊥⊥,∵BAC DAE ∠=∠,∴EP EQ =,∴1212ABE ADE AB EP S BE S DE AD EQ ⋅==⋅ (同高三角形)∴13AB E DE AD B ==,连接DF ,∵BF CD ∥,∴BDC DBF ∠=∠,∴ BCDF =,∴ ,BC DF AC BC AD DF=-=-,∴ AB AF =,∴AB AF =,将ABD △绕点A 旋转至AB 与AF 重合得到AFD ' ,则:ABD AFD '∠=∠,D F BD '=,DAD BAF '∠=∠,∵180ABD AFD ∠+∠=︒,∴180AFD AFD '∠+∠=︒,∴,,D F D '三点共线,∵13BE DE =,∴设BE x =,则3DE x =,∴3BC DE DF x ===,4BD BE DE x =+=,∴7DD DF FD DF BD x ''=+=+=,∵DAD BAF '∠=∠,ABF ADF ∠=∠,∴BAF DAD ' ∽,∴13AB BF AD DD ==',∴1733BF DD x '==,∴77339x BF BC x ==.【点睛】本题考查旋转的性质,圆周角定理,弧,弦,角的关系,相似三角形的判定和性质,圆内接四边形的性质,综合性强,难度大,属于压轴题,解题的关键是掌握相关知识点,进行线段和角的转化.。
江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)
2024~2025学年度第一学期期中检测九年级数学试题注意事项1.本卷共6页,满分140分,考试时间100分钟。
2.答题前,请将姓名、文化考试证号用0.5毫米黑色字迹签字笔填写本卷和答题卡的指定位置。
3.答案全部涂、写在答题卡上,写在本卷上无效。
考试结束后,将答题卡交回。
一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.方程的解是( )A .,B .C .,D .,2.的半径长为4,若点P 到圆心的距离为3,则点P 与的位置关系是( )A .点P 在内B .点P 在上C .点P 在外D .无法确定3.方程的两根为、,则( )A .6B .-6C .3D .-34.下列函数的图象与的图象形状相同的是( )A .B .C .D .5.如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心.若,则这个正多边形的边数为( )A .7B .8C .9D .10(第5题)6.如图,在半径为5的中,弦,点C 是弦AB 上的一动点,若OC 长为整数,则满足条件的点C 有()240x x -=12x =-22x =4x =10x =24x =14x =-24x =O e O e O e O e O e 2261x x -=1x 2x 25y x =22y x=252y x =-+251y x x =++51y x =-20ADB ∠=︒O e 8AB =(第6题)A .3个B .4个C .5个D .6个7.为响应“坚持绿色低碳,建设一个清洁美丽的世界”的号召,已知某市一共有285个社区,第一季度已有60个社区实现垃圾分类,第二、三季度实现垃圾分类的小区个数较前一季度平均增长率为x ,要在第三季度将所有社医都进行垃圾分类,下列方程正确的是( )A .B .C .D .8.当时,函数的最小值为1,则a 的值为( )A .0B .2C .0或2D .0或3二、填空题(本大题共8小题,每小题4分,共32分.不需写出解题过程,请将答案直接填写在答题卡相应位置)9.一元二次方程的根是______.10.请在横线上写一个常数,使得关于x 的方程有两个相等的实数根.11.若是一元二次方程的一个根,则______.12.如图,是的内切圆,若,,则______°.(第12题)13.已知二次函数的图像经过点、,则______(填“>”“<”或“=”).14.如图,将一个圆锥展开后,其侧面是一个圆心角为108°,半径为12cm 的扇形,则该圆锥的底面圆的半径为______cm.()2601285x +=()2601285x -=()()2601601285x x +++=()()260601601285x x ++++=1a x a -≤≤221y x x =-+213x -=26______0x x -+=1x =20x mx n --=2024m n ++=O e ABC △60ABC ∠=︒50ACB ∠=︒BOC ∠=()()210y a x c a =-+<()11,y -()24,y 1y 2y(第14题)15.平面直角坐标系中,若平移二次函数的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为______.16.已知如图,二次函数的图像交x 轴于A 、B 两点,交y 轴于C 点,连接BC ,点M 是BC 上一点,射线MN 与以A 为圆心,1为半径的相切于点N ,则线段MN 的最小值是______.(第16题)三、解答题(本大题共9小题,共84分,请在答题卡指定区域内作答,解答时写出相应文字说明、证明过程或演算步骤)17.(本题10分)解下列方程:(1);(2).18.(本题8分)已知关于x 的一元二次方程.求证:不论m 为何值,该方程总有两个实数根.19.(本题8分)如图,AB 是的直径,弦AD 平分,,垂足为E .试判断DE 与的位置关系,并说明理由.(第19题)()()202420254y x x =--+2y =+A e 2420x x --=()()323x x x +=+210x mx m ++-=O e BAC ∠DE AC ⊥O e20.(本题8分)某小区有一块矩形绿地,长为20m ,宽为8m .为美化小区环境,现进行如下改造,将绿地的长减少a m ,宽增加a m ,改造后的面积比原来增加,求a 的值.21.(本题10分)已知y 是x 的函数,下表中给出了几组x 、y 的对应值:x …-2-1.5-101 4.55…y…3m-2-31.3753…(1)建立直角坐标系,以表中各对对应值为坐标描出各点,用平滑曲线顺次连接,由图像可知,它是我们学过的哪类函数?求出函数表达式,并直接写出m 的值;(2)结合图像回答问题:当x 的取值范围是____________时,.(第21题)22.(本题10分)如图,在中,,以AB 为直径作,分别交AC 、BC 于点D 、E .(1)求证:;(2)当时,求的度数;(3)过点E 作的切线,交AB 的延长线于点F ,当时,求图中阴影部分面积.(第22题)23.(本题10分)商场将进货价为40元每件的某商品以50元售出,平均每月能售出700件,调查表明:售价在50元至100元范围内,这种商品的售价每上涨1元,其销售量就将减少10件,设商场决定每件商品的售价为元.(1)该商场平均每月可售出______件商品(用含x 的代数式表示);(2)商品售价定为多少元时,每月销售利润最大?227m 0y ≥ABC △AB AC =O e BE CE =40BAC ∠=︒ADE ∠O e 2AO BE ==()50100x x <<(3)该商场决定每销售一件商品就捐赠a 元利润给希望工程,通过销售记录发现,每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小,求a 的取值范围.24.(本题10分)(1)如图①,点A 、B 、C 、D 在上,,则______°:(2)如图②,A 、B 两点分别在x 轴和y 轴上,是的外接圆,利用直尺和圆规在第一象限内作出一点P ,使,且;(保留作图痕迹)(3)如图③,已知线段AB 和直线l ,利用直尺和圆规在l 上作出点P ,使;(保留作图痕迹)(4)如图④,在平面直角坐标系的第一象限内有一点B ,坐标为,过点B 作轴,轴,垂足分别为A 、C ,若点P 在线段AB 上滑动(点P 可以与点A 、B 重合),使得的位置有两个,则m 的取值范围为______.(第24题)25.(本题10分)如图,二次函数的图像与x 轴交于点、,与y 轴交于点C .连接AC 、BC .(1)填空:______,______;(2)如图①,若点D 是此二次函数图像的第一象限上一点,设D 点横坐标为m ,当四边形OCDB 的面积最大时,求m 的值;(3)如图②,若点P 在第四象限,点Q 在PA 的延长线上,当时,求点P 的坐标.(第25题)()1a ≥O e 35BAC ∠=︒BOC ∠=C e AOB △OPA OBA ∠=∠OP AP =30APB ∠=︒()2,m AB y ⊥BC x ⊥45OPC ∠=︒212y x bx c =-++()1,0A -()4,0B b =c =45CAQ CBA ∠=∠+︒2024~2025学年度第一学期期中检测九年级数学参考答案一、选择题(本大题共8小题,每小题3分,共24分)题号12345678答案CACBCCDD二、填空题(本大题共8小题,每小题4分,共32分)9.,10.911.202512.12513.>14.3.615.向下平移4个单位长度16三、解答题(本大题共9小题,共84分)17.(本题10分)解:(1)移项,得配方,得即直接开平方,得∴(2)移项,得因式分解,得∴或∴,18.(本题8分)解:∵,,∴∵不论m 为何值∴不论m 为何值,该方程总有两个实数根.19.(本题8分)解:DE 与相切理由是:连接OD∵∴∵AD 平分∴∴∴∵∴∴DE 与相切.12x =22x =-242x x -=24424x x -+=+()226x -=2x -=12x =+22x =()()3230x x x +-+=()()230x x -+=20x -=30x +=12x =23x =-1a =b m =1c m =-()2²4411b ac m m -=-⨯⨯-²44m m =-+()22m =-()220m -≥O e OD OA =ODA OAD∠=∠BAC ∠OAD CAD ∠=∠ODA CAD ∠=∠AC OD ∥DE AC ⊥OD DE ⊥O e(第19题)20.(本题8分)解:根据题意得:即:解得:,答:a 的值为3或9.21.(本题10分)(1)描点、连线如图是二次函数,设函数的表达式为:把点,,代入得解得:∴函数得表达式为(2)或.22.(本题10分)(1)证明:连接AE∵AB 是直径∴∴∵∴()()20820827a a -+-⨯=212270a a -+=13a =29a =()20y ax bx c a =++≠()1,0-()0,2-()1,3-023a b c c a b c -+=⎧⎪=-⎨⎪++=-⎩12322a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩213222y x x =--1.375m =1x ≤-4x ≥O e 90AEB ∠=︒AE BC ⊥AB AC =BE CE=(第22题)(2)解:∵,∴∵四边形ABED 是的内接四边形∴∴.(3)解:连接OE 则∵∴∴是等边三角形∴∵EF 是切线∴∴∴∴∴阴影部分的面积.23.(本题10分)(1)(2)设每月销售利润为y 元则∵,∴当时,y 有最大值16000答:商品售价定为80元时,每月销售利润最大;(3)设每月销售利润为y 元则∴对称轴为直线∵∴当时,y 随x 得增大而减小∵每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小∴解得:∵∴a 的取值范围是.24.(本题10分)(1)35,702分AB AC =40BAC ∠=︒180180407022BAC ABC ︒-∠︒-︒∠===︒O e 180ADE ABC ∠+∠=︒180********ADE ABC ∠=︒-∠=︒-︒=︒OE OA OB==2OA BE ==OA OB BE ==OBE △60BOE ∠=︒O e OE EF ⊥30F ∠=︒24OF OE ==EF ===2160π222π23603OEF BOE S S ⨯=-=⨯⨯=-扇形△101200x -+()()()224010120010160048000108016000y x x x x x =--+=-+-=--+100-<50100x <<80x =()()()24010120010160010480001200y x a x x a x a=---+=-++--()160010802102a a x +=-=+⨯-100-<802ax >+80852a+≤10a ≤1a ≥110a ≤≤(2)如图(3)如图(4)25.(本题10分)(1),2(2)∵点D 横坐标为m ,且点D 在二次函数的图像上∴点D 坐标为对于二次函数,当时,∴设BC :则解得:∴BC :21m ≤<32213222y x x =-++213,222m m m ⎛⎫-++ ⎪⎝⎭213222y x x =-++0x =2y =()0,2C y kx b =+402k b b +=⎧⎨=⎩122k b ⎧=-⎪⎨⎪=⎩122y x =-+过点D 作轴,交BC 于点E 则∴∴到DE 的距离到DE 的距离(C 到DE 的距离到DE 的距离)∵,∴当时,有最大值8∴.(3)∵,,∴,,∴∴设,则∵∴∴DE y ∥1,22E m m ⎛⎫-+ ⎪⎝⎭2213112222222DE m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭OBC BCD OCDB S S S =+四边形△△OBC CDE BDES S S =++△△△1122OC OB DE C =⨯⨯+⨯⨯12DE B +⨯⨯112422DE =⨯⨯+⨯⨯B +1442DE =+⨯⨯214222m m ⎛⎫=+-+ ⎪⎝⎭244m m =-++()()22804m m =--+<<10a =-<04m <<2m =OCDB S 四边形2m =()1,0A -()4,0B ()0,2C 25AC =220BC =225AB =222AC BC AB +=90ACB ∠=︒ABC x ∠=90CAB x∠=︒-45CAQ CBA ∠=∠+︒45CAQ x ∠=+︒()()180459045PAB x x ∠=︒-+︒-︒-=︒设直线AP 交y 轴于F则∴设AP :则解得:∴AP :设∵点P 在二次函数的图象上∴解得:,(舍去)当时,∴点P 的坐标为.1OF OA ==()0,1F -y kx b =+01k b b -+=⎧⎨=-⎩11k b =-⎧⎨=-⎩1y x =--()(),10P n n n -->213222y x x =-++2132122n n n -++=--16n =21n =-6n =17n --=-()6,7-。
南京市秦淮区2023-2024学年初三上学期期中考试数学试卷(含解析)
南京秦淮区2023-2024学年度第一学期第一阶段学业质量监测九年级数学一、选择题.(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.下列方程是一元二次方程的是( ) A . 210x -=B .2110x -= C . 20x x -=D . 20x y -=2.一个圆锥的侧面积为36π,其底面圆的半径为4,则该圆锥的母线长为( ) A . 3B . 4C . 9D . 123.如图,点C 在O 上,OC 平分弦AB ,连接OA ,BC ,若40A ∠=︒,则C ∠的度数是( )A . 50︒B . 60︒C . 65︒D . 70︒4.“雷达图”是一种常用统计图,它可以直观展示一个研究对象的不同方面.图是某学生某次测验的五门学科成绩的“雷达图”,如果从学科一到学科五4:2:2:1:1计算平均成绩,则该学生这五门学科的平均成绩是( )A . 80B . 82C . 84D . 865.以下图形:①平行四边形;②菱形;③矩形;④正方形.其中一定有外接圆的是( ) A . ①B . ②③C . ③④D . ②③④6.图①是一张长28cm ,宽16cm 的矩形纸片,将阴影部分裁去(阴影部分为4个完全相同的小矩形)并折叠成一个如图②的底面积为280cm 的有盖长方体盒子.设该盒子的高为xcm ,根据题意,可列方程为( )A . (282)(162)80x x --=B . (2822)(162)80x x -⨯-=C . 1(282)(162)802x x ⨯--=D .1(282)(162)802x x --=二、填空题.(本大题共10小题,每小题2分,共20分.请把答案直接填写在答题卷相应位置上) 7.方程24x =的根是 .8.一组数据7,10,7,2,7的极差是 .9.若将一元二次方程21616x x +=化为2()x m n +=的形式,则m n += .10.如图,在ABC ∆中,92A ∠=︒,则点A 在以线段BC 为直径的圆 .(填“上”“内”或“外”)11.如图,在O 中,弦AB 的长度是弦CD 长度的两倍,连接OA ,OB ,OC ,OD ,则A O B ∠ 2COD ∠.(填“>”“<”或“=”)12.小明参加了中国传统文化课程——射箭,在一次练习中,他的成绩如下表所示:那么他成绩的中位数是 环.13.某超市今年八月份的营业额为20万元,今年十月份的营业额为24万元,设平均每月营业额的增长率为x ,根据题意可列方程为 .14.如图,四边形ABCD 的各边都与O 相切,若28AB CD cm ==,则四边形ABCD 的周长为 cm .15.如图,O 的半径为2,AB 是弦,点C 在优弧AB 上.将O 沿AB 折叠后,连接CB ,CB 交AB 于点D .若108ADB ∠=︒,则ADB 的长是 (结果保留π).16.在ABC ∆中,135A ∠=︒,3AB =,AC =,则其外接圆的半径是 .三、解答题.(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解方程:2410x x -+=.18.(6分)解方程:3(2)2x x x -=-.19.(8分)已知关于x 的一元二次方程20(0,0)ax bx c a c ++=≠≠.(1)当这个方程二次项系数和常数项的符号不同时,证明:该方程一定有两个不相等的实数根; (2)若这个方程有两个不相等的实数根,那么该方程二次项系数和常数项的符号是否一定不同?若是,请证明;若不是,请举出一个反例.20.(7分)如图,在O 的内接正八边形ABCDEFGH 中,2AB =,连接DG . (1)求证DG AB ∥; (2)DG 的长为 .21.(8分)已知关于x 的方程22(21)0x m x m +-+=. (1)当该方程有实数根时,求m 的范围;(2)若该方程的两个根1x ,2x 满足1212x x x x +=⋅,求m 的值.22.(9分)某工厂对新建的两条生产线A ,B 进行试运行,这两条生产线各生产了5个批次的产品(每个批次各100个).其中每个批次产品的合格数量如图.(1)哪条生产线的合格产品数量比较稳定,为什么?(2)经过调试,在接下来生产的5个批次中,生产线A ,B 的合格产品数量如下表:23.(6分)如图,已知直线l 和点A ,B .在直线l 上确定点C ,使以A ,B ,C 为顶点的三角形是直角三角形.(尺规作图,不写作法,保留作图痕迹,作出所有满足条件的点C .)24.(8分)某超市销售一批月饼,这批月饼每盒进价为80元,售价为120元,平均每天可售出20盒.为了增加盈利,商场采取了降价措施.假设在一定范围内,月饼的单价每降1元,商场平均每天可多售出2盒,降价后商场消售这批月饼每天盈利1200元.求降价后该月饼每盒的售价.25.(9分)如图,在ABC ∆中,AB AC =,O 是它的外接圆,点D 在AC 上且CD CB =,连接AD ,BD ,CD ,BD 与AC 交于点E .(1)判断AED ∆的形状,并证明; (2)当AD BE =时,求BAC ∠的度数.26.(10分)如图①,C ,D 分别是半圆O 的直径AB 上的点,点E ,F 在AB 上,且四边形CDEF 是正方形.(1)若AB =CDEF 的面积为 ;(2)如图②,点G ,H ,M 分别在AB ,AB ,DE 上,连接HG ,HM ,四边形DGHM 是正方形,且其面积为16. ①求AB 的值;②如图③,点N ,P ,Q 分别在HM ,AB ,EM 上,连接PN ,PQ ,四边形MNPQ 是正方形.直接写出正方形MNPQ 与正方形DGHM 的面积比.27.(11分)我们把经过三角形的一个顶点且与该三角形的两条边所在直线相切的圆叫做这个三角形的准切圆.(1)如图,已知ABC ∆.求作:ABC ∆的一个准切圆;(尺规作图,不写作法,保留作图痕迹) (2)证明:等边三角形的准切圆与它的外接圆是等圆;(3)在Rt ABC ∆中,90C ∠=︒,3AC =,4BC =,直接写出它的准切圆的半径长.南京市秦淮区2023-2024学年度第一学期第一阶段学业质量监测九年级数学一、选择题.(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.下列方程是一元二次方程的是( ) A . 210x -=B .2110x -= C . 20x x -=D . 20x y -=【答案】C .【解析】解:A 、210x -=,是一元一次方程,故A 不符合题意; B 、2110x -=,是分式方程,故B 不符合题意; C 、20x x -=,是一元二次方程,故C 符合题意; D 、20x y -=,是二元一次方程,故D 不符合题意;故选:C .2.一个圆锥的侧面积为36π,其底面圆的半径为4,则该圆锥的母线长为( ) A . 3B . 4C . 9D . 12【答案】C .【解析】设该圆锥的母线长为l ,根据题意得124362l ππ⨯⨯⨯=,解得9l =,即该圆锥的母线长是9. 故选:C .3.如图,点C 在O 上,OC 平分弦AB ,连接OA ,BC ,若40A ∠=︒,则C ∠的度数是( )A . 50︒B . 60︒C . 65︒D . 70︒【答案】C .【解析】OA OB =,40A ∠=︒, 40B ∴∠=︒, OC 平分弦AB ,OC AB ∴⊥,904050BOC ∴∠=︒-︒=︒, OC OB =,18050652OCB ︒-︒∴∠==︒, 故选:C .4.“雷达图”是一种常用统计图,它可以直观展示一个研究对象的不同方面.图是某学生某次测验的五门学科成绩的“雷达图”,如果从学科一到学科五4:2:2:1:1计算平均成绩,则该学生这五门学科的平均成绩是( )A . 80B . 82C . 84D . 86【答案】B . 【解析】平均成绩为4802100260100808210⨯+⨯+⨯++=,故选:B .5.以下图形:①平行四边形;②菱形;③矩形;④正方形.其中一定有外接圆的是( ) A . ①B . ②③C . ③④D . ②③④【答案】C .【解析】根据有外接圆的条件,四边形必须对角互补, ∴只有矩形、正方形有外接圆,故③④一定有外接圆. 故选:C .6.图①是一张长28cm ,宽16cm 的矩形纸片,将阴影部分裁去(阴影部分为4个完全相同的小矩形)并折叠成一个如图②的底面积为280cm 的有盖长方体盒子.设该盒子的高为xcm ,根据题意,可列方程为( )A . (282)(162)80x x --=B . (2822)(162)80x x -⨯-=C . 1(282)(162)802x x ⨯--=D .1(282)(162)802x x --=【答案】D .【解析】设该盒子的高为xcm ,则纸盒底面的长为1(282)2x cm -,宽为(162)x cm -,纸盒的底面(图中阴影部分)面积是280cm , ∴1(282)(162)802x x --=, 故选:D .二、填空题.(本大题共10小题,每小题2分,共20分.请把答案直接填写在答题卷相应位置上) 7.方程24x =的根是 . 【答案】122,2x x ==-. 【解析】两边开平方得, 2x =±.故答案为:122,2x x ==-.8.一组数据7,10,7,2,7的极差是 . 【答案】8.【解析】极差为:1028-=. 故答案为:8.9.若将一元二次方程21616x x +=化为2()x m n +=的形式,则m n += . 【答案】88.【解析】21616x x +=,216641664x x ++=+,2(8)80x +=, 所以8m =,80n =, 所以88088m n +=+=. 故答案为:88.10.如图,在ABC ∆中,92A ∠=︒,则点A 在以线段BC 为直径的圆 .(填“上”“内”或“外”)【答案】内.【解析】若点D 在以线段BC 为直径的圆上,则90D ∠=︒, 因为9290A D ∠=︒>∠=︒,所以点A 在以线段BC 为直径的圆内, 故答案为:内.11.如图,在O 中,弦AB 的长度是弦CD 长度的两倍,连接OA ,OB ,OC ,OD ,则A O B ∠ 2COD ∠.(填“>”“<”或“=”)【答案】>.【解析】过点O 作OE AB ⊥交AB 于点F ,连接BE .∴12AF BF AB ==,AE BE =, ∴12AOE BOE AOB ∠=∠=∠, 又2AB CD =, ∴BF CD =,在Rt BEF ∆中,BE BF >, ∴BE CD >, ∴BOE COD ∠>∠, ∴12AOB COD ∠>∠, 即2AOB COD ∠>∠, 故答案为:>.12.小明参加了中国传统文化课程——射箭,在一次练习中,他的成绩如下表所示:那么他成绩的中位数是 环.【答案】8.【解析】总次数为23455120+++++=,所以中位数取第10与第11的平均数, 所以中位数为8882+=, 故答案为:8.13.某超市今年八月份的营业额为20万元,今年十月份的营业额为24万元,设平均每月营业额的增长率为x ,根据题意可列方程为 . 【答案】220(1)24x +=.【解析】设平均每月营业额的增长率为x , 则九月份的营业额为:20(1)x +, 十月份的营业额为:220(1)x +, 则由题意列方程为:220(1)24x +=. 故答案为:220(1)24x +=.14.如图,四边形ABCD 的各边都与O 相切,若28AB CD cm ==,则四边形ABCD 的周长为 cm .【答案】24.【解析】如图,E ,F ,G ,H 是切点四边形ABCD 各边与O 相切AH AE ∴=,DH DG =,CG CF =,BE BF =AH DH CF BF AE DG CG BE ∴+++=+++AD BC CD AB ∴+=+ 28AB CD cm ==∴四边形ABCD 的周长为(84)224cm +⨯=故答案为:24.15.如图,O 的半径为2,AB 是弦,点C 在优弧AB 上.将O 沿AB 折叠后,连接CB ,CB 交AB 于点D .若108ADB ∠=︒,则ADB 的长是 (结果保留π).【答案】85π. 【解析】补全圆,取'D 与D 关于AB 对称,连接OA ,OB ,AC ,'108AD B ADB ∴∠=∠=︒,由内接四边形定理可得180'18010872ACB AD B ∠=︒-∠=︒-︒=︒, 2144AOB ACB ∴∠=∠=︒, ∴ADB 的长144281805ππ⋅==, 故答案为:85π.16.在ABC ∆中,135A ∠=︒,3AB =,AC =,则其外接圆的半径是 .. 【解析】作CD AB ⊥, 135A ∠=︒,∴45CAD ∠=︒,在Rt ACD ∆中,AC 45CAD ∠=︒, ∴1CD AD ==, ∴134BD =+=,在Rt BCD ∆中,BC = 135A ∠=︒,∴AC 在优弧上所对的圆周角为18013545︒-︒=︒, ∴90BOC ∠=︒,在Rt BOC ∆中,BC =OB OC =,∴OB OC ==,即r =. 三、解答题.(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解方程:2410x x -+=.【答案】12x =,2x . 【解析】2410x x -+=,2443x x ∴-+=,2(2)3x ∴-=,2x ∴=解得12x =,22x =. 18.(6分)解方程:3(2)2x x x -=-. 【答案】12x =,213x =. 【解析】3(2)2x x x -=-,3(2)(2)0x x x ∴---=, 则(2)(31)0x x --=, 20x ∴-=或310x -=,解得12x =,213x =. 19.(8分)已知关于x 的一元二次方程20(0,0)ax bx c a c ++=≠≠.(1)当这个方程二次项系数和常数项的符号不同时,证明:该方程一定有两个不相等的实数根; (2)若这个方程有两个不相等的实数根,那么该方程二次项系数和常数项的符号是否一定不同?若是,请证明;若不是,请举出一个反例. 【答案】(1)见解析.【解析】(1)证明:二次项系数和常数项的符号不同, ∴0ac <,∴0ac ->,20b >,∴224(4)0b ac b ac ∆=-=+->∴该方程一定有两个不相等的实数根.(2)不是,反例2304x x +-=(答案不唯一) 理由如下:方程有两个不相等的实数根 ∴240b ac ∆=->,满足24b ac >即可,反例:216b =,3ac =,即2304x x +-=,这个方程有两个不相等的实数根,该方程二次项系数和常数项的符号相同. 20.(7分)如图,在O 的内接正八边形ABCDEFGH 中,2AB =,连接DG . (1)求证DG AB ∥; (2)DG 的长为 .【答案】(1)见解析;(2)2+. 【解析】(1)证明:连接AD ,1802458BAD ︒∠=⨯=︒,1802458ADG ︒∠=⨯=︒, ∴BAD ADG ∠=∠, ∴DG AB ∥.(2)由题可得,四边形DGFE 为等腰梯形, 作EP DG ⊥,FQ DG ⊥,正八边形ABCDEFGH ,2AB =∴EF AB ∥,2GF EF AB ===,135GFE DEF ∠=∠=︒, ∴EF DG ∥,∴18013545DGF ∠=︒-︒=︒,在Rt QGF ∆中,45DGF ∠=︒,2GF =,QG QF ∴==,同理可得DP EP = 易证四边形PQFE 是矩形,2PQ EF ∴==,22DG ∴=.21.(8分)已知关于x 的方程22(21)0x m x m +-+=. (1)当该方程有实数根时,求m 的范围;(2)若该方程的两个根1x ,2x 满足1212x x x x +=⋅,求m 的值.【答案】(1)14m ≤;(2)1m =-- 【解析】(1)关于x 的方程22(21)0x m x m +-+=有实数根, ∴22(21)40m m --∆=≥,解得:14m ≤. 故m 的取值范围是14m ≤. (2)22(21)0x m x m +-+=∴12(21)x x m +=--,212x x m ⋅=,1212x x x x +=⋅, ∴2(21)m m --=,解得11m =-+21m =- 又14m ≤, ∴1m =-22.(9分)某工厂对新建的两条生产线A ,B 进行试运行,这两条生产线各生产了5个批次的产品(每个批次各100个).其中每个批次产品的合格数量如图.(1)哪条生产线的合格产品数量比较稳定,为什么?(2)经过调试,在接下来生产的5个批次中,生产线A ,B 的合格产品数量如下表:【答案】(1)B 比较稳定;(2)见解析. 【解析】(1)8291888386865A x ++++==,2162549010.85A S ++++==,8588868982865B x ++++==,214091665B S ++++==,∴A B x x =,22A B S S >, ∴B 比较稳定.(2)8586868687865A x ++++==2100010.45A S ++++==,9294949892945B x ++++==,24001644.85B S ++++==,综上,经过本次调试,A ,B 生产线的合格产品数量均变得更加稳定,B 生产线合格产品数量有提升.23.(6分)如图,已知直线l 和点A ,B .在直线l 上确定点C ,使以A ,B ,C 为顶点的三角形是直角三角形.(尺规作图,不写作法,保留作图痕迹,作出所有满足条件的点C .)【答案】见解析.【解析】即1234,,,C C C C 为所求24.(8分)某超市销售一批月饼,这批月饼每盒进价为80元,售价为120元,平均每天可售出20盒.为了增加盈利,商场采取了降价措施.假设在一定范围内,月饼的单价每降1元,商场平均每天可多售出2盒,降价后商场消售这批月饼每天盈利1200元.求降价后该月饼每盒的售价. 【答案】100元或110元.【解析】设月饼每盒降了x 元.根据题意,得(202)(12080)1200x x +--=, 解得:120x =或210x =, ∴120100x -=或110答:降价后该月饼每盒的售价为100元或110元.25.(9分)如图,在ABC ∆中,AB AC =,O 是它的外接圆,点D 在AC 上且CD CB =,连接AD ,BD ,CD ,BD 与AC 交于点E .(1)判断AED ∆的形状,并证明; (2)当AD BE =时,求BAC ∠的度数.【答案】(1)AED ∆为等腰三角形,证明见解析;(2)36︒. 【解析】(1)AED ∆为等腰三角形, 证明:设BDC α∠=,ACD β∠=, ∴AED αβ∠=+,CD CB =, ∴CD CB =,∴DBC BDC α∠=∠=,AD AD =,∴ABD ACD β∠=∠=,AB AC =,∴ACB ABC αβ∠=∠=+,AB AB =,∴ADB ACB αβ∠=∠=+, ∴ADB AED ∠=∠, ∴AD AE =,∴AED ∆为等腰三角形.(2)AD BE =,∴AE BE =,∴BAE EBA β∠=∠=,又BC BC =,∴BAE BDC ∠=∠, ∴αβ=,∴5180ABC ACB BAC α∠+∠+∠==︒,∴36α=︒, ∴36BAC ∠=︒.26.(10分)如图①,C ,D 分别是半圆O 的直径AB 上的点,点E ,F 在AB 上,且四边形CDEF是正方形.(1)若AB =CDEF 的面积为 ;(2)如图②,点G ,H ,M 分别在AB ,AB ,DE 上,连接HG ,HM ,四边形DGHM 是正方形,且其面积为16. ①求AB 的值;②如图③,点N ,P ,Q 分别在HM ,AB ,EM 上,连接PN ,PQ ,四边形MNPQ 是正方形.直接写出正方形MNPQ 与正方形DGHM 的面积比.【答案】(1)16;(2)①AB =. 【解析】(1)连接OF四边形CDEF 是正方形, 2FC CO ∴=,2222FC CO OF +== 解得:2CO =,4FC = ∴正方形的边长为4, ∴正方形CDEF 的面积为16.(2)①连接OE ,ON ,四边形DGHM 是正方形, ∴4NG DG ==,设OD x =,则2DE x =,在Rt ODE ∆中,2222(2)5OE x x x =+=,在Rt ONG ∆中,2224(4)ON x =++, ∴2224(4)5x x ++=,解得124,2x x ==-(舍)∴OE =∴AB =.②连接OP ,DH ,4MD OD ==,且90MDO ∠=︒, ∴45MOD OMD ∠=∠=︒,又45PMN ∠=︒,∴180OMD DMH PMN ∠=∠+∠=︒,∴,,O M P 共线,∴OM DH ==MP =∴22MNPQ DGHMS MP S OM ==正正. 27.(11分)我们把经过三角形的一个顶点且与该三角形的两条边所在直线相切的圆叫做这个三角形的准切圆.(1)如图,已知ABC ∆.求作:ABC ∆的一个准切圆;(尺规作图,不写作法,保留作图痕迹) (2)证明:等边三角形的准切圆与它的外接圆是等圆;(3)在Rt ABC ∆中,90C ∠=︒,3AC =,4BC =,直接写出它的准切圆的半径长.【答案】(1)见解析;(2)见解析;(3)12345654353,4,,,,3322r r r r r r ======.【解析】(1)如图所示(其中一种情况)(2)证明:如图所示:过C 且与AB ,BC 相切, 连OC ,∴90OCB ∠=︒,O 到,AB BC 的距离相等,∴O 在ABC ∠角平分线上, ∴1302OBC ABC ∠=∠=︒, ∴在Rt ABC ∆中,12OC OB =, ∴22223BC OB OC OC =-=, ∴OC =若1O 是ABC ∆外接圆, ∴2120BOC BAC ∠=∠=︒, 作1O M BC =,OB OC =,∴1O M 平分1BO C ∠, ∴111602BO M BO C ∠=∠=︒, 同理,在1Rt BO M ∆中,112BO O M =, ∴222211134BM O B O M O B =-=,∴1O B ,12BM BC =, ∴1O B =,∴1O B OC =.(3)12345654353,4,,,,3322r r r r r r ======.。
广东深圳福田区外国语学校(集团)2024年九年级上学期11月期中考试数学试题
2024-2025 学年第一学期期中考试九年级数学试卷说明:命题人、审题人:九年级备课组答题前,务必用黑色字迹的签字笔将自己的姓名、学号等填写在答题卷规定的位置上。
选择题用 2B 铅笔作答,填涂答题前,务必用黑色字迹的签字笔将自己的姓名、学号等填写在答题卷规定的位置上。
选择题用 2B 铅笔作答,填涂时要将选中项框内涂黑、涂满。
修改时须用橡皮将原作答擦除干净,再重新作答。
主观题用黑色字迹的签字笔作答; 答题字迹不可压在黑色框线上,更不可写在框线外。
考试结束后,不要将试卷、草稿纸或其它物品夹在答题卡中。
1、考生必须在答题卷上按规定作答:凡在试卷、草稿纸上作答的,其答案一律无效。
2、全卷共 4 页,考试时间 90 分钟,满分 100 分。
一、选择题(本大题共 8 小题,每小题 3 分,共 24 分,每小题有四个选项,其中只有一个是正确的)1、如图所示的几何体,其俯视图是()A .B .C .D .1 题2、在传统游戏“石头、剪子、布”中,随机出一个手势,出“石头”的概率是( )A .B .C .D . 3、不解方程,判断方程 x 2﹣4x ﹣1=0 的根的情况是( ) A .没有实数根 B .有两个相等实数根C .有两个不相等实数根D .无法确定4、如图,在△ABC 中,DE ∥BC , ,DE =4,则 BC 的长是()3 题A .8B .10C .11D .125、如图,张老汉想用长为 70 米的栅栏,再借助房屋的外墙(外墙足够长)围成一个面积为 640 平方米的矩形羊圈AB 并在边 BC 上留一个 2 米宽的门(建在 EF 处,门用其他材料),设 AB 的长为 x 米,则下面所列方程正确的是()A .x (70﹣x )=640B .x (70﹣2x )=640 5 题C .x (72﹣x )=640D .x (72﹣2x )=6406、如图,△ABC 和△A 1B 1C 1 是以点 P 为位似中心的位似图形,若 ,△ABC 的周长为 6,则△A 1B 1C 1 的周长是( )A .12B .8C .6D .36 题7、如图,在▱ABCD 中,点E,F 分别在边AD 和CD 上,EF∥AC,连接BE 交对角线AC 于点G,若点G 是AC 的四等分点(AG<CG),AC=4,则EF 的长为()A.B.2 C.D.38、在正方形ABCD 中,AB=4,点E 是边AD 的中点,连接BE,将△ABE 沿BE 翻折,点A 落在点F 处,BF 与AC交于点H,点O 是AC 的中点,则OH 的长度是()A.B.C.4﹣27 题8 题二、填空题(本题共5 小题,每小题 3 分,共15 分)9、已知,则=10、在测量旗杆高度的活动课中,某小组学生于同一时刻在阳光下对一根直立于平地的竹竿及其影长和旗杆的影长进行了测量,得到的数据如图所示,根据这些数据计算出旗杆的高度为m.11、一个不透明的箱子里有3 个球,其中2 个白球,1 个红球,它们除了颜色外其他都相同,从中任意摸出一个球,记下颜色后放回,搅匀,再摸出一个球,则摸出的两个球恰好颜色不同的概率为.12、如图,Rt△ABC 中,∠ABC=90°,BD⊥AC,垂足为D,AE 平分∠BAC,分别交BD,BC 于点F,E.若AB:BC=3:4,则13、在菱形ABCD 中,E,F 分别是AB,BC 边上的中点,G 为DE 上一点,若AB=6,∠B =∠EGF = 60 ,则DG的长为10 题12 题13 题三、解答题(本题共7 小题,其中第14 题6分,第15 题 6 分,第16 题9 分,第17 题8 分,第18 题8 分,第19 题12 分,第20 题12 分,共61 分)14、(6 分)解一元二次方程:(x+2)2 =3(x+2);(2)x2﹣3x﹣1=0.D.15、(6 分)如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(1,﹣2)、B(4,﹣1),C(3,﹣3).(1)画出将△ABC 向左平移5 个单位,再向上平移3 个单位后的△A1B1C1;(2)以原点O 为位似中心,在位似中心的同侧画出△A1B1C1 的一个位似△A2B2C2,使它与△A1B1C1 的相似比为2:1;(3)若△A1B1C1 内部任意一点P1 的坐标为(a,b),直接写出经过(2)的变化后点P1 的对应点P2 的坐标(用含a、b 的代数式表示)16、(9 分)本期开学以来,初三2015 级开展了轰轰烈烈的体育锻炼,为了解体育科目训练的效果,九年级学生中随机抽取了部分学生进行了以此中考体育科目测试(把测试结果分为四个等级,A 等:优秀;B 等:良好;C 等:及格;D 等:不及格),并将结果汇成了如图1、2 所示两幅不同统计图,请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1 扇形图中D 等所在的扇形的圆心角的度数是,并把图2 条形统计图补充完整;(3)我校九年级有1800 名学生,如果全部参加这次中考体育科目测试,请估计不及格的人数为;(4)已知得A 等的同学中有一位男生,体育老师想从4 位A 等的同学中随机选择两位同学向其他同学介绍经验,请用列表法或画树形图的方法求出选中的两人刚好是一男一女的概率.17、(8 分)济南市公安交警部门提醒市民:“出门戴头盔,放心平安归”.某商店统计了某品牌头盔的销售量,四月份售出375 个,六月份售出540 个,且从四月份到六月份月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)经市场调研发现,此种品牌头盔如果每个盈利10 元,月销售量为500 个,若在此基础上每个涨价1 元,则月销售量将减少20 个,现在既要使月销售利润达到6000 元,又要尽可能让顾客得到实惠,那么该品牌头盔每个应涨价多少元?18、(8 分)如图,在四边形ABCD 中,AB∥DC,AB=AD,对角线AC,BD 交于点O,AC 平分∠BAD,过点C 作CE⊥AB 交AB 的延长线于点E.(1)求证:四边形ABCD 是菱形;(2)若,BD=2,求BE 的长(直接写出答案)3 19、(12 分)在数学综合与实践活动课上,同学们用两个完全相同的矩形纸片展开探究活动:【实践探究】:(1)小红将两个矩形纸片摆成图 1 的形状,连接 AG 、AC ,则∠ACG =°;【解决问题】:(2)将矩形 AQGF 绕点 A 顺时针转动,边 AF 与边 CD 交于点 M ,连接 BM ,AB =10,AD =6.①如图 2,当 BM =AB 时,求证:AM 平分∠DMB ;写出证明过程 ②如图 3,当点 F 落在 DC 上时,连接 BQ 交 AF 于点 O ,则 AO =;【迁移应用】:(3)如图4,正方形 ABCD 的边长为5 2 ,E 是 BC 边上一点(不与点 B 、C 重合),连接 AE ,将线段 AE 绕点 E 顺时针旋转 90°至 FE ,作射线 FC 交 AB 的延长线于点 G ,则 BG =;(4) 如图 5,在菱形 ABCD 中,∠A =120°,E 是 CD 边上一点(不与点 C 、D 重合),连接 BE ,将线段 BE 绕点 E顺时针旋转 120°至 FE ,作射线 FD 交 BC 的延长线于点 G ,若 BG= 6 ,则 CG=;20、(12 分)在正方形 ABCD 中,AB =10,AC 是对角线,点 O 是 AC 的中点,点 E 在 AC 上,连接 DE ,点 C 关于DE 的对称点是 C ′,连接 DC ′,EC ′.(1) 如图 1,若 DC ′经过点 O ,求证:;(2) 如图 2,连接 CC ′,BC ′,若∠ADC ′=2∠CBC ′,则 CC ′的长为;并说明理由?(3) 当点 B ,C ′,E 三点共线时,直接写出 CE 的长.备用图。
2024-2025学年北京北师大附中初三上学期期中数学试题及答案
2024北京北师大附中初三(上)期中数 学考生须知1.本试卷有三道大题,共10页.考试时长120分钟,满分100分. 2.考生务必将答案填写在答题纸上,在试卷上作答无效. 3.考试结束后,考生应将答题纸交回. 一、选择题(共8小题,共16分)1. 2023年5月30日神舟十六号载人飞船发射取得圆满成功,此次任务是我国载人航天工程进入空间站应用与发展阶段的首次载人飞行任务.下列有关航天的4个图标图案中是中心对称图形的是( )A. B. C. D .2. 把抛物线2y x =−向上平移3个单位长度,则乎移后抛物线的解析式为( ) A. ()23y x =−+ B. ()23y x =−− C. 23y x =−+D. 23=−−y x3. 将一元二次方程2810x x −+=通过配方转化为()2x a b +=的形式,下列结果中正确的是( ) A. ()2826x −= B. ()286x −= C. ()246x −=− D. ()246x −=4. 如图,在ABC 中,80B ∠=︒,65C =︒∠,将ABC 绕点A 逆时针旋转得到AB C ''△.当AB '落在AC 上时,BAC '∠的度数为( )A. 65︒B. 70︒C. 80︒D. 85︒5. 如图,已知正六边形ABCDEF 的外接圆半径为2cm ,则该正六边形的边心距是( )A. 1cmB. 2cm6. 如图所示,用10米的铁丝网围成一个面积为15的矩形菜地,菜地的一边靠墙(不使用铁丝),如果设平行于围墙的一边为x 米,那么可列方程( )A. ()1015xx −=B.()10152xx −= C. 110152x x ⎛⎫−= ⎪⎝⎭D.()102152xx −= 7. 下面是“作ABC 的外接圆”的尺规作图方法.ABC 的外接圆O .上述方法由,得到OA OB OC ==,从而知O 经过A ,,三点.其中获得OA OB =的依据是( )A. 线段垂直平分线上的点与这条线段两个端点的距离相等B. 与一条线段两个端点距离相等的点,在这条线段的垂直平分线上C. 角平分线上的点到角的两边的距离相等D. 角的内部到角的两边距离相等的点在角的平分线上8. 二次函数()20y ax bx c a =++≠的对称轴是2x =−,该抛物线与x 轴的一个交点在点(4,0)−和点(3,0)−之间,其部分图象如图所示,下列结论:①40a b −=,②0a b c ++<,③2324b b ac +>,④若点()5,n −在二次函数的图像上,则关于x 的不等式20ax bx c n ++−>的解集是51x −<<,其中正确的是( )A. ①③B. ③④C. ①③④D. ①②③④二、填空题(共8小题,共16分)9. 若关于x 的一元二次方程220x x m +−=有一个根为1,则m 的值为_______. 10. 如图,点A ,B ,C 在O 上,55BAC ∠=︒,则BOC ∠的度数为_______︒.11. 若点()2,a ,()3,b 都在二次函数y =(x −1)2−1的图象上,则a _______b .(填<,=或>). 12. 请你写出一个二次函数,其图象满足条件:①开口向下,②顶点在y 轴上.此二次函数的解析式可以是_______.13. 如图,PA PB ,是O 的两条切线,切点分别为A ,B ,连接OA AB ,,若35OAB ∠=︒,则P ∠=________︒.14. 如图,抛物线2y ax bx =+与直线y mx n =+相交于点(3,6)A −−,(1,2)B −,则关于x 的方程2ax bx mx n +=+的解为_______________ .15. 无论非零实数m 取何值,抛物线()2211y mx m x =++−一定经过的定点的坐标是________.16. 如图,AB 是O 的直径,C 为O 上一点,AB OC ⊥,P 为圆上一动点,M 为AP 的中点,连接CM ,若O 的半径为4,则CM 长的最大值是________.三、解答题(共12小题,共68分.其中第17题8分,第18题4分,第19,21,22,23,25题每小题5分,第20,24,26,27题每小题6分,第28题7分)17. 解方程:(1)210x x +−=. (2)()()3121x x x +=+18. 如图,AB 是O 的弦,半径OC AB ⊥,垂足为D ,AB =(1)BD =________. (2)若D 为OC 中点,求O 的半径.19. 已知关于x 的一元二次方程()22210x m x m m −+++=. (1)求证:该方程总有两个不相等的实数根; (2)当该方程的两个实数根的和为0时,求m 的值. 20. 已知二次函数 2=23y x x −−.(1)求该二次函数的顶点坐标;(2)在平面直角坐标系 xOy 中,画出二次函数 2=23y x x −−的图象; (3)结合函数图象:直接写出当12x −<<时,y 的取值范围.21. 如图,在边长均为1个单位长度的小正方形组成的网格中,点0A ,B ,C 均为格点(每个小正方形的顶点叫做格点).(1)作点()01,1A −−关于原点O 的对称点A ; (2)连接AC ,AB 得ABC ,将ABC 绕点A 逆时针旋转90°得11AB C △.画出旋转后的11AB C △;(3)在(2)的条件下,点1B 的坐标是________,边AC 扫过区域的面积为________. 22. 下面是小于同学设计的“过直线外一点作这条直线的平行线”的尺规作图过程.(1)使用直尺和圆规,完成作图;(保留作图痕迹)(2)完成下面的证明,并在括号中填推理的依据: 证明:连接DP , ∵CP DQ = ∴________DQ = ∴PDC________.∴PQ l ∥(________).23. 如图1,某公园在入园处搭建了一道“气球拱门”,拱门两端落在地面上.若将拱门看作抛物线的一部分,建立如图2所示的平面直角坐标系.当拱门上的点到O 点的水平距离为x (单位:m )时,它距地面的竖直高度为y (单位:m ).(1)经过对拱门进行测量,发现x 与y 的几组数据如下:离),并求y 与x 满足的函数关系式.(2)在一段时间后,公园重新维修拱门.在同样的坐标系下,新拱门上的点距地面的竖直高度y (单位:m )与它到O 点的水平距离x (单位:m )近似满足函数关系()20.187.30y x h =−−+,若记原拱门的跨度为1d ,新拱门的跨度为2d ,则1d ______2d (填“>”,“=”或“<”). 24. 如图,AB 为O 的直径,点C 在O 上,ACB ∠的平分线CD 交O 于点D ,过点D 作DE AB ∥,交CB 的延长线于点E .(1)求证:DE 是O 的切线;(2)若60ADC ∠=︒,4BC =,求CD 的长. 25. 【项目式学习】 项目主题:车轮的形状项目背景:在学习完圆的相关知识后,九年级某班同学通过小组合作方式开展项目式学习,深入探究车轮制作成圆形的相关原理. 【合作探究】(1)探究A 组:车轮做成圆形的优点是:车轮滚动过程中轴心到地面的距离始终保持不变.另外圆形车轮在滚动过程中,最高点到地面的距离也是不变的.如图1,圆形车轮半径为4cm ,其车轮最高点到地面的距离始终为______cm ;(2)探究B 组:正方形车轮在滚动过程中轴心到地面的距离不断变化.如图2,正方形车轮的轴心为O ,若正方形的边长为6cm ,车轮轴心O 距离地面的最高点与最低点的高度差为______cm ;(3)探究C 组:如图3,有一个正三角形车轮,边长为6cm ,车轮轴心为O (三边垂直平分线的交点),车轮在地面上无滑动地滚动一周,求点O 经过的路径长.探究发现:车辆的平稳关键看车轮轴心是否稳定,即车轮的轴心是否在一条水平线上运动.【拓展延伸】如图4,分别以正三角形的三个顶点A ,B ,C 为圆心,以正三角形的边长为半径作60︒圆弧,这样形成的曲线图形叫做“莱洛三角形”.“莱洛三角形”在滚动时始终位于一组平行线之间,因此放在其上的物体也能够保持平衡,但其车轴中心O 并不稳定.(4)探究D 组:使“莱洛三角形”以图4为初始位置沿水平方向向右滚动.在滚动过程中,其“最高点”和“车轮轴心O ”均在不断移动位置,那么在“莱洛三角形”滚动一周的过程中,其“最高点”和“车轮轴心O ”所形成的图形按上、下放置,应大致为______.26. 在平面直角坐标系xOy 中,点()1,m −,()3n ,在抛物线()2<0y ax bx c a =++上,设抛物线的对称轴为x t =.(1)当5c =,m n =时,求抛物线与y 轴交点的坐标及t 的值;(2)点()()00,3x n x ≠在抛物线上,若m n c <<,求t 的取值范围及0x 的取值范围.27. 如图,在Rt ABC △中,90ABC ∠=︒,()030BAC a α∠=︒<<︒.将射线AC 绕点A 逆时针旋转2α得到射线l ,射线l 与射线BC 的交点为M .在射线BC 上截取MD AC =(点D 在点M 左侧),(1)如图1,当点D 与点C 重合时,此时α=_________°,ACB ∠的度数为_________°.(2)当点D 与点C 不重合时,在线段MA 上截取2ME BC =,连接DE .依题意补全图2,用等式表示EDM ∠与BAC ∠的数量关系,并证明.28. 在平面直角坐标系xOy 中,给定图形W 和点P ,若图形W 上存在两个不同的点S ,T 满足2ST PM =.其中点M 为线段ST 的中点,则称点P 是图形W 的相关点.(1)已知点(2A ,0)①在点1234113(,),(,(2,1)2222P P P P −−中,线段OA 的相关点是_______; ②若直线y x b =+上存在线段OA 的相关点,求b 的取值范围.(2)已知点(3Q −,0),线段的长度为d ,当线段CD 在直线2x =−上运动时,如果总能在线段CD 上找到一点K ,使得在y 轴上存在以QK 为直径的圆的相关点,直接写出d 的取值范围.参考答案一、选择题(共8小题,共16分)1. 【答案】C【分析】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.根据中心对称图形的概念判断.把一个图形绕某一点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】解:选项A 、B 、D 不都能找到一个点,使图形绕某一点旋转180度后与原来的图形重合,所以不是中心对称图形.选项C 能找到一个点,使图形绕某一点旋转180度后与原来的图形重合,所以是中心对称图形. 故选:C . 2. 【答案】C【分析】本题考查了二次函数图象的平移,掌握平移规律是解题的关键.根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:把抛物线2y x =−向上平移3个单位,则平移后抛物线的解析式为23y x =−+ 故选:C . 3. 【答案】D【分析】此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.先把常数项移到方程右边,再把方程两边加上16 【详解】解:移项得2810x x −=−,配方得22284104x x −+=−+,即2(4)6x −=. 故选:D . 4. 【答案】B【分析】本题主要考查了旋转的性质,三角形内角和定理,由旋转的性质可得B AC BAC ''∠=∠, 由三角形内角和定理可得出35B AC BAC ∠=∠=''︒,最后根据角的和差关系即可得出答案. 【详解】解:由旋转的性质可得出B AC BAC ''∠=∠, ∵180BAC B C ∠+∠+∠=︒, ∴180806535BAC ∠=︒−︒−︒=︒, ∴35B AC BAC ∠=∠=''︒,∴70BAC BAC B AC ∠=∠+''∠='︒, 故选:B . 5. 【答案】D【分析】该题主要考查了正多边形与圆,构建直角三角形,利用直角三角形的边角关系求解是解题的关键.连接OA ,作OM AB ⊥,构造出直角OAM △,且根据正六边形的性质可知30AOM ∠=︒,即可解答; 【详解】解:连接,OA OB ,作OM AB ⊥于点M , ∵正六边形ABCDEF 的外接圆半径为2cm , ∴正六边形的半径为2cm , 即2cm OA =,在正六边形ABCDEF 中,360660AOB ∠=︒÷=︒, ∴30AOM ∠=︒,∴正六边形的边心距是)cos302cm 2OM OA =︒⨯=⨯=, 故选:D .6. 【答案】B【分析】平行于围墙的一边为x 米,则垂直于围墙的一边为()1102x −米,再根据矩形的面积公式列方程即可.()10152xx −=. 故选:B .【点睛】本题主要考查一元二次方程的应用,正确列出方程是解题的关键. 7. 【答案】A【分析】本题考查作图-复杂作图,线段的垂直平分线,解题的关键熟练掌握基本知识,属于中考常考题型.【详解】解:由作图可知直线1l 是线段AB 的垂直平分线,则OA OB =的依据是线段垂直平分线上的点与这条线段两个端点的距离相等, 故选:A . 8. 【答案】D【分析】本题考查了二次函数的图像与性质,熟练掌握对称轴,最值,相应方程的根是解题关键.根据抛物线的对称轴可判断①对错;根据图像利用抛物线的顶点坐标,得到2434ac b a−=,即可判断③对错;抛物线的对称性可知,当0x =时,0y <,得到0c <,即可判断②对错;根据二次函数2(0)y ax bx c a =++≠和直线y n =的交点,即可判断④对错.【详解】解:∵抛物线的对称轴为直线22b x a=−=−, 4b a ∴=,∴40a b −=,①正确;∵抛物线的顶线坐标为(2,3)−,2434ac b a−∴=, 2124b a ac ∴+=,4b a =,234b b ac ∴+=,0a <,40b a ∴=<,∴2b 2>b ,∴2b 2+b 2+2b >b +b 2+2b ,∴3b 2+2b >b 2+3b ,∴3b 2+2b >b 2+3b =4ac ,成立,故③正确;∵抛物线与x 轴的一个交点在点(4,0)−和点(3,0)−之间,∴由抛物线的对称性可知,另一个交点在(1,0)−和(0,0)之间,0x ∴=时,0y <,0c ∴<,0a <,40b a ∴=<,∴0a b c ++<,②正确;∵抛物线的顶线坐标为(2,3)−,点()5,n −在二次函数的图像,∴抛物线与直线y n =有两个交点,∴交点的横坐标即为方程2ax bx c n ++=的两个实数根,∵点()5,n −在二次函数的图像,∴5−为其中一个实数根,根据函数图像对称性,对称轴2x =−,∴另一个实数根是1,∴关于x 的不等式20ax bx c n ++−>的解集是51x −<<,∴④正确,故选:D .二、填空题(共8小题,共16分)9. 【答案】3【分析】本题考查了方程根的定义即使方程左右两边相等的未知数的值,转化求解是解题的关键. 把1x =代入220x x m +−=,转化为m 的方程求解即可.【详解】解:把1x =代入220x x m +−=,得210m +−=,解得:3m =,故答案为:3.10. 【答案】110【分析】本题考查的知识点是圆周角定理,熟记定理内容是解题的关键.根据同圆中同弧所对的圆周角等于圆心角的一半解答即可.【详解】解:∵点A 、B 、C 在O 上,55BAC ∠=︒,2110BOC A ∴∠=∠=︒,故答案为:110.11. 【答案】<【分析】本题考查了二次函数2()y a x h k =−+图象的性质,掌握二次函数2()y a x h k =−+图象的性质是解题的关键.根据二次函数的解析式求得对称轴以及开口方向,根据点与对称轴的距离越远函数值越大即可判断,a b 的大小关系.【详解】解:∵二次函数2(,1011)y x a =−=>−,开口向上,对称轴为1x =,当x >1时,y 随x 增大而增大,又点()2,a ,()3,b 都在二次函数y =(x −1)2−1的图象上,211,312−=−=,a b ∴<,故答案为:<.12. 【答案】23y x =−+(答案不唯一)【分析】本题考查了二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征,找出0a <,0b =是解题的关键.根据二次函数的性质可得出0a <,利用二次函数图象顶点在y 轴上的特征可得出0b =,取取1a =−,0b =,c 为任何数即可得出结论.【详解】解:设二次函数的解析式为2y ax bx c =++.∵抛物线开口向下,∴0a <.∵抛物线顶点在y 轴上,∴0b =,c 为任何数,则取1a =−,0b =,3c =时,二次函数的解析式为23y x =−+.故答案为:23y x =−+(答案不唯一).13. 【答案】70【分析】先根据等边对等角和三角形内角和定理求出110AOB ∠=︒,再根据切线的性质得到90OAP OBP ∠=∠=︒,再根据四边形内角和定理求出P ∠的度数即可.【详解】解:∵OA OB =,∴35OAB OBA ∠=∠=︒,∴180110AOB OAB OBA ∠=︒−∠−∠=︒,∵PA PB ,是O 的两条切线,∴90OAP OBP ∠=∠=︒,∴36070P AOB OAP OBP =︒−−−=︒∠∠∠∠,故答案为:70.【点睛】本题主要考查了切线的性质,等边对等角,三角形内角和定理,四边形内角和定理,熟知切线的性质是解题的关键.14. 【答案】x 1=﹣3,x 2=1【分析】关于x 的方程ax 2+bx =mx +n 的解为抛物线y =ax 2+bx 与直线y =mx +n 交点的横坐标,由此即可得到答案.【详解】∵抛物线y =ax 2+bx 与直线y =mx +n 相交于点A (﹣3,﹣6),B (1,﹣2),∴关于x 的方程ax 2+bx =mx +n 的解为x 1=﹣3,x 2=1.故答案为x 1=﹣3,x 2=1.【点睛】本题考查了抛物线与直线的交点问题:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化解关于x 的一元二次方程即可求得交点横坐标.也考查了二次函数的性质. 15. 【答案】(2,3)−−,()01−,【分析】本题考查二次函数图象过定点问题,解决此类问题:首先根据题意,化简函数式,提出未知的常数,化简后再根据具体情况判断.把含m 的项合并,只有当m 的系数为0时,不管m 取何值抛物线都通过定点,可求x 、y 的对应值,确定定点坐标.【详解】解:∵()2211y mx m x =++−, ()222121y mx mx x m x x x ∴=++−=++−,∴当220x x +=时,与m 的取值无关,即0x =或2x =−时,不管m 取何值时都通过定点,当2x =−时,()422113y m m =−+−=−,当x =0时,1y =−,故不管m 取何值时都通过定点(2,3)−−或()01−,. 故答案为:(2,3)−−,()01−,.16. 【答案】2+【分析】本题考查圆周角定理,勾股定理,由90OMA ∠=︒得出点M 的移动轨迹,再根据圆外一点到圆上一点最大距离进行计算即可.【详解】解:如图,取OA 中点O ',连接O C ',O M ',OM ,∵M 为AP 的中点,∴90OMA ∠=︒, ∴122O M O A O O OA '''====, ∴当点P 在O 上移动时,AP 的中点M 的轨迹是以OA 为直径的O ',∴'CO 交O '于点M ,此时CM 的值最大,由题意得,4OA OB OC ===,122OO OA O M ''===, 在Rt O OC '中,4OC =,2OO '=,∴O C '==,∴2CM CO O M ''=+=,故答案为:2+.三、解答题(共12小题,共68分.其中第17题8分,第18题4分,第19,21,22,23,25题每小题5分,第20,24,26,27题每小题6分,第28题7分)17. 【答案】(1)112x −=,212x −−= (2)11x =−,223x = 【分析】此题考查了一元二次方程的求解,解题的关键是掌握一元二次方程的求解方法.(1)利用公式法求解即可;(2)移项,利用因式分解法求解即可.【小问1详解】解:∵1,1,1a b c ===−,∴122b x a −−===,则112x −+=,212x −=; 【小问2详解】解:()()3121x x x +=+()()31210x x x +−+=()()1320x x +−=∴10x +=或320x −= 则11x =−,223x =. 18. 【答案】(1)√3 (2)2【分析】本题考查垂径定理,勾股定理.(1)根据垂径定理即可得到12AD BD AB ==即可得出结果; (2)连接OA ,设O 的半径为r ,在Rt AOD 中,利用勾股定理即可求解. 【小问1详解】解:∵AB 是O 的弦,半径OC AB ⊥,垂足为D ,AB =∴12AD BD AB === 【小问2详解】 解:连接OA ,如图所示:设O 的半径为r ,即OA OC r ==, 若D 为OC 中点,1122OD OC r ∴==,由(1)知12AD BD AB ===在Rt AOD 中,由勾股定理可知222AD OA OD =−,即22212r r ⎛⎫=− ⎪⎝⎭, 解得2r =(负值舍去), ∴O 的半径为2.19. 【答案】(1)见详解 (2)12m =− 【分析】本题主要考查根与系数的关系,解题的关键是掌握根与系数的关系及根的判别式.(1)根据方程的系数结合根的判别式,可得出10∆=>,进而即可证出:方程总有两个不相等的实数根; (2)用根与系数的关系列式求得m 的值即可.【小问1详解】证明:∵[]22(21)41()10m m m ∆=−+−⨯⨯+=>.即0∆>,∴方程总有两个不相等的实数根.【小问2详解】解:设方程的两根为a 、b ,利用根与系数的关系得:210a b m +=+=, 解得:12m =−. 20. 【答案】(1)()1,4−(2)见解析 (3)40y −≤<【分析】本题主要考查了二次函数的图象和性质,做题的关键是通过数形结合去解题.(1)将二次函数表达式化为顶点式,即可进行解答;(2)由五点作图法即可画出二次函数图象;(3)根据图象即可求得y 的范围;【小问1详解】()222314y x x x =−−=−−, ∴该二次函数的顶点坐标为()1,4−;【小问2详解】列表如下,=23y x x 的图象如图,【小问3详解】由图象可知,当1x =−时,y 取得最大值,y 的最大值为0,当1x =时,y 取得最小值,y 的最小值为-4,∴当12x −<<时,y 的范围为40y −≤<.21. 【答案】(1)()1,1A(2)见详解 (3)()12,3B −,94π 【分析】本题主要考查对称性和旋转的性质.(1)根据一点关于原点对称点的性质即可求解;(2)结合旋转的性质即可得到旋转后的图形;(3)结合点A 的坐标和旋转的性质即可求得点1B ,利用旋转的性质和面积公式即可.【小问1详解】解:∵()01,1A −−,∴()1,1A ;【小问2详解】解:如图,【小问3详解】解:根据旋转得,13AC AC ==,12BC B C ==,∵点()1,1A ,∴点()12,3B −,∵将ABC 绕点A 逆时针旋转90°得11AB C △.∴边AC 扫过区域的面积为229019·336044AC πππ⨯=⨯=. 22. 【答案】(1)作图见解析(2)CP ,DPQ ∠,内错角相等,两直线平行【分析】本题考查的作已知直线的平行线,圆周角定理的应用,平行线的判定;(1)根据题干的作图语言逐步作图即可;(2)证明CP DQ =,可得PDC DPQ ∠=∠,结合平行线的判定可得结论.【小问1详解】解:如图,作图如下:.【小问2详解】证明:连接DP ,∵CP DQ =,∴CP DQ =,∴PDC DPQ ∠=∠.∴PQ l ∥(内错角相等,两直线平行).23. 【答案】(1)该拱门的高度为7.2m ,跨度为12m ,()20.267.2y x =−−+(2)<【分析】本题考查了二次函数的实际应用,(1)由表格得当0x =时,0y =,当12x =时,0y =,从而可求对称轴和顶点坐标,进而可求出拱门的高度和跨度,再把解析式设为顶点式利用待定系数法即可求解;(2)先把()0,0代入()20.187.30y x h =−−+中,求出h 的值,则可求出2d ,进行比较即可. 【小问1详解】解:由表格可知抛物线经过()0,0和()12,0,∴抛物线的对称轴为直线6x =,∵当6x =,7.2y =,∴该拱门的高度为7.2m ,∵12012−=,∴跨度为12m ;设抛物线解析式为()267.2y a x =−+,把()2,4代入()267.2y a x =−+中得:()2267.24a −+=, 解得:0.2a =−,∴()20.267.2y x =−−+;【小问2详解】解:把()0,0代入()20.187.30y x h =−−+中得()200.1807.30h =−−+,解得3h =或3h =−(舍去),∴抛物线()20.187.30y x h =−−+与x 轴的另一个交点坐标为,03⎛⎫ ⎪⎝⎭,∴2m 3d =, 由(1)可得110m d =, ∵222114601009d d =>=, ∴21d d >,故答案为:<.24. 【答案】(1)证明见解析(2)【分析】(1)连接OD .根据直径所对的圆周角是直角得90ACB ∠=︒,再根据角平分线得45ACD BCD ∠=∠=︒,进而得45ABD ACD ∠=∠=︒,又由45ODB OBD ∠=∠=︒,从而根据平行线的性质得45BDE OBD ︒∠=∠=,于是90ODE ODB BDE ∠=∠+∠=︒,得OD DE ⊥,根据切线的判定即可证明结论成立;(2)如图2,过点B 作BF CD ⊥于点F ,先证明BF CF =.再根据勾股定理得BF CF ==,根据直角三角形的性质得2BD BF ==【小问1详解】证明,如图1,连接OD .AB 是O 的直径,90ACB ∴∠=︒, CD 平分ACB ∠,45ACD BCD ∴∠=∠=︒45ABD ACD ∴∠=∠=︒OD OB =,45ODB OBD ∴∠=∠=︒, DE AB ∥,45BDE OBD ︒∴∠=∠=,90ODE ODB BDE ︒∴∠=∠+∠=, OD DE ∴⊥ OD 为O 的半径,∴直线DE 是O 的切线.【小问2详解】解:如图2,过点B 作BF CD ⊥于点F ,90BFC BFD ︒∴∠=∠=, ∵AB 为O 的直径,∴90ACB ∠=︒,∵ACB ∠的平分线CD 交O 于点D , ∴45ACD BCD ∠=∠=︒, 45CBF ∴∠=︒,BF CF ∴=.在Rt BFC △中,4BC =,根据勾股定理,得42BF CF ==⨯= ∵60ABC ADC ∠=∠=︒,∴906030BAC ∠=︒−︒=︒, BC BC =,30CDB BAC ︒∴∠=∠=,2BD BF ∴==在Rt BFD 中,根据勾股定理,得DF ==CD CF DF ∴=+=.【点睛】本题主要考查了勾股定理、圆周角角定理、直径所对的圆周角是直角、切线的判定以及平行线的性质,等腰三角形的判定与性质,熟练掌握圆周角角定理、直径所对的圆周角是直角以及切线的判定是解题的关键.25. 【答案】8;3−;;A【分析】本题主要考查圆的综合应用,主要考查了弧长公式,正方形的性质,等边三角形的性质,理解题意并画出图形是解题的关键.(1)利用正方形的性质解答即可;(2)画出图形,找到最高点和最低点即可得到答案; (3)分别求出三部分一定的距离,然后相加即可;(4)由题意知:最高点与水平面距离不变,即可得到结论. 【详解】解:(1)圆形车轮与地面始终相切,∴车轮轴心O 到地面的距离始终等于圆的直径,圆形车轮半径为4cm ,故车轮最高点到地面的距离始终为8cm ,故答案为:8;(2)如图所示,OC 为正方形车轮的轴心O 移动的部分轨迹,点D 为车轮轴心O 的最高点,点C 为车轮轴心O 的最低点,由题意得车轮轴心O 距离地面的最低高度为AD OA ==∴车轮轴心O 距离地面的最高点与最低点的高度差为3)cm ,故答案为:3);(3)点O 的运动轨迹为圆,以点C 为圆心,23=运动距离为2π⨯=故答案为:; (4)由题意知,当“莱洛三角形”在滚动时始终位于一组平行线之间,因此放在其上的物体也能够保持平衡,故“最高点”和“最低点所形成的图案大致是”A ,故答案为:A .26. 【答案】(1)抛物线与y 轴交点的坐标为()0,5,1t =(2)010x −<<【分析】本题考查了二次函数图像的性质;运用二次函数的增减性按要求列出相应的不等式是解题的关键.(1)将5c =代入()20y ax bx c a =++<中,可得抛物线与y 轴交点的坐标,再根据m n =可得点()1,m −与()3,n 关于抛物线的对称轴对称,即132t −+=计算即可; (2)根据m n c <<,可确定出2a >−b >3a , 结合20a <,可得对称轴的取值范围,再利用对称轴可表示为直线032x x +=,进而可确定0x 的取值范围. 【小问1详解】解:当5c =时,抛物线:25y ax bx =++当0x = 时,5y =;∴ 抛物线与y 轴交点的坐标为:()0,5;∵m n =,∴点()1,m −与()3,n 关于抛物线的对称轴对称, ∴1312x t −+===; 【小问2详解】解:∵m n c <<,∴93a b c a b c c −+<++<,解得23a b a −<<−,∴2a >−b >3a , 而20a <, ∴3122b a <−<,即312t <<, ∵点()3,n ,()()00,3x n x ≠在抛物线上, ∴抛物线的对称轴为直线032x x +=, ∴033122x +<<, 解得:010x −<<,∴0x 的取值范围010x −<<.27. 【答案】(1)18︒,72°(2)补全图形见解析,2EDM BAC ∠=∠,证明见解析【分析】(1)当点D 与点C 重合时,由等腰三角形等边对等角,得到 2AMC CAM α∠=∠=,再根据直角三角形的性质可得590AMC CAM BAC α∠+∠+∠==︒,进而求出18α=︒,可求ACB ∠的度数; (2)根据题意补全图形,在CB 的延长线上截取BF BC =,连接AF ,在AF 上取点N ,使得CF CN =, 连接CN , 证明DME ACN ≌可得EDM CAN ∠=∠,即可得到EDM ∠与BAC ∠的等量关系.【小问1详解】解:∵点D 与点C 重合,,2MD AC CAM α=∠=,∴2AMC CAM α∠=∠=,在Rt ABC △中,90ABC ∠=︒,∴90AMC MAB ∠+∠=︒,∵BAC α∠=,∴590AMC CAM BAC α∠+∠+∠==︒,∴18α=︒,∴236MAC AMC α∠=∠==︒,∴22472ACB MAC MAC a αα∠=∠+∠=+==︒;【小问2详解】解:补全图形如图;2EDM BAC ∠=∠,理由如下:如图, 在CB 的延长线上截取BF BC =,连接AF ,在AF 上取点N ,使得CF CN =, 连接CN ,∵,90BF BC ABC =∠=︒,∴AC AF =,∴22CAN BAC α∠=∠=, ∴()1180902AFC ACF CAN α∠=∠=︒−∠=︒−, ∵CF CN =,∴90CNF AFC α∠=∠=︒−,∴1802FCN AFC CNF α∠=︒−∠−∠=,∴903ACN ACF FCN α∠=∠−∠=︒−,∵22MAC BAC α∠=∠=,∴90903AMD MAC BAC α∠=︒−∠−∠=︒−,∴ACN AMD ∠=∠,∵2ME BC =,2CF CN BC ==,∴ME CN =,∵MD AC =,∴()SAS DME ACN ≌,∴22EDM CAN BAC α∠=∠==∠.【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形内角和定理,直角三角形的性质.关键是添加辅助线构造全等三角形,找到线段的等量关系.28. 【答案】(1)①1P ,3P ;②1−b ≤≤1(2)d ≥【分析】(1)①根据新定义得出P 点在以OA 为直径的圆上及其内部,以OA 为直径,()1,0为圆心作圆,在圆上或圆内的点即为所求;②根据①可得P 点在以OA 为直径的圆上及其内部,作出图形,进而根据直线y x b =+上存在线段OA 的相关点,求得相切时的临界值,即可求解;(2)设点K 是直线2x =−上一点,且点K ,使得在y 轴上存在以QK 为直径的圆的唯一相关点,设()2,K k −,则以QK 为直径的圆上两点ST 为直径的圆与y 轴相切于点P ,且ST y ∥轴,当ST CP ⊥且ST PC =时,y 轴上存在以QK 为直径的圆的唯一相关点P ,勾股定理求得KB 的值,进而根据对称性可得当K 点在x 轴的下方时,符合题意,即可求解.【小问1详解】解:①∵(2A ,0),∴2OA =,∵P 是线段OA 的相关点,∵2ST PM =,若点,S T 分别与点()()0,0,2,0A 重合,则中点为()1,0,∴P 在以OA 为直径的圆上,∵,S T 是线段OA 上的点,∴P 点在以OA 为直径的圆上及其内部,故答案为: 1P ,3P. ②由题意可得线段OA 的所有相关点都在以OA 为直径的圆上及其内部,如图.设这个圆的圆心是H .(2A ,0),∴ (1H ,0).当直线y x b =+与H 相切,且0b >时,将直线y x b =+与x 轴的交点分别记为B ,则点B 的坐标是(b −,0).∴ 1BH b =+.BH =,∴1b +=1b =.当直线y x b =+与H 相切,且0b <时,同理可求得1b =−.所以b 的取值范围是1−b ≤≤1.【小问2详解】解:设点K 是直线2x =−上一点,且点K ,使得在y 轴上存在以QK 为直径的圆的唯一相关点, 设()2,K k −,则以QK 为直径的圆上两点ST 为直径的圆与y 轴相切于点P ,且ST y ∥轴,如图所示,设以QK 为直径的圆,圆心是C .则5,22k C ⎛⎫− ⎪⎝⎭, ∴52CP = M 是ST 的中点,2ST PM =,∴SP =当ST CP ⊥且ST PC =时,y 轴上存在以QK 为直径的圆的唯一相关点P ,在Rt CSM 中,52224CS CP ===,∴22QK CS ==,∴2KB ===, 根据对称性可得当K 点在x 轴的下方时,也符合题意,∴d ≥.【点睛】本题考查了几何新定义,切线的性质,垂径定理,勾股定理,理解新定义是解题的关键.。
2024-2025学年北京四中初三上学期期中数学试题及答案
数学试卷班级__________ 姓名__________学号__________ 成绩__________一、选择题 (共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.下面四个标志中是中心对称图形的是( ).A .B .C .D .2.方程220x x -=的根是( ). A .0x =B .2x =C .0x =或2x =D .0x =或2x =-3.若1(3,)A y -,2(2,)B y -,3(3,)C y 为二次函数21y x =+()图象上的三点,则1y ,2y ,3y 的大小关系是( ). A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<4.二次函数(5)(7)y x x =-+的图象的对称轴是(). A .直线1x =- B .直线1x =C .直线2x =D .直线6x =5.如图,AB 为O 直径,点C 、D 在O 上,如果70ABC ∠=︒,那么D ∠的度数为( ).A .20︒B .30︒C .35︒D .70︒6.2024年北京第一季度GDP 约为1.058万亿元,第三季度GDP 约为1.167万亿元,设2024年北京平均每季度GDP 增长率为x ,则可列关于x 的方程为( ). A .21.058(1) 1.167x -= B .1.058(12) 1.167x +=C .21.058(1) 1.167x +=D .21.167(1)1.058x -=7.如图是一个钟表表盘,连接整点2时与整点10时 的B 、D 两点并延长,交过整点8时的切线于点P ,若切线长2PC =,则表盘的半径长为( ).A .3B. C . D.A8.某农场用篱笆围成饲养室,一面靠现有墙(墙足够长),已知计划中的篱笆(不包括门)总长为12m ,现有四种方案(如图)中面积最大的方案为( ). A 方案为一个封闭的矩形B 方案为一个等边三角形,并留一处1m 宽的门C 方案为一个矩形,中间用一道垂直于墙的篱笆隔开,并在如图所示的三处各留1m 宽的门D 方案为一个矩形,中间用一道平行于墙的篱笆隔开,并在如图所示的四处各留1m 宽的门A. B.C. D.二、填空题(共16分,每题2分)9.在平面直角坐标系xOy 中,将抛物线23y x =向上平移1个单位,得到的抛物线表达式为 .10.如图,四边形ABCD 内接于O ,E 为BC 延长线上一点,50A ∠=︒,则DCE ∠的度数为 .11.抛物线256y x x =-+与y 轴的交点的坐标是 .12.如图,PA 、PB 分别切O 于A 、B 两点,点C 为AB 上一点,过点C 作O 的切线分别交PA 、PB 于M 、N 两点,若△PMN 的周长为10,则切线长PA 等于 .第10题图 第12题图13.已知22310a a -+=,则代数式2(3)(3)a a a -++的值为 .14.“青山绿水,畅享生活”,人们经常将圆柱形竹筒改造成生活用具,图1所示是一个竹筒水容器,图2为该竹筒水容器的截面.已知截面的半径为10cm ,开口AB 宽为12cm ,这个水容器所能装水的最大深度....是 cm .图1 图2 第15题图15.二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-, 对称轴为直线2x =,抛物线与y 轴交点在(0,1)A 和(0,2)B 之间(不与A 、B 重合).下列结论:①0abc >; ②93a c b +>; ③40a b +=; ④当0y >时,15x -<<; ⑤a 的取值范围为2155a -<<-. 其中正确结论有 .(填序号)16.如图,在直角三角形ABC 中,∠A =90°,D 是AC 上一点,BD =10, AB =CD ,则BC 的最大值为 .三、解答题(共68分,第17题8分,第18、21、25题每题4分,第19、23、24题每题5分,第20、26题6分,第22、27、28题每题7分)17.解下列方程:(1)23610x x -+=; (2)2(3)3x x x -=-.18.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为(1,1)A -,(3,1)B -,(1,4)C -.将△ABC 绕着点B 顺时针旋转90︒后得到△11A BC , (1)请在图中画出△11A BC ; (2)线段BC 旋转过程中所扫过的面积是 (结果保留π).19.如图,D 是等边三角形ABC 内一点,将线段AD 绕点A 顺时针旋转60︒,得到线段AE ,连接CD ,BE . (1)求证:△AEB ≌△ADC ; (2)连接DE ,若96ADC ∠=︒,求BED ∠的度数. 20.已知关于x 的一元二次方程22(8)40x k x k +--=.(1)求证:该方程总有两个实数根;(2)若该方程有一个根小于3,求k 的取值范围. 21.已知:如图O 及O 外一点P .求作:直线PB ,使PB 与O 相切于点B .李华同学经过探索,想出了两种作法.具体如下(已知点B 是直线OP 上方一点):A ,A 交O 于点B ,则直线PB 是O 的切O 于点M ;②以点的长为半径作弧,交直线,交O 于点B PB 是O 的切线. 证明:如图1,连接OB , A 直径,90PBO =︒.( OB . OB 是O 的半径,∴直线PB 是O 的切线.请仔细阅读,并完成相应的任务.(1)“作法一”中的“依据”是指 ; (2)请写出“作法二”的证明过程.NQ M P22.在平面直角坐标系xOy 中,二次函数2y x bx c =++的图象经过(0,2)A -,(2,0)B 两点.(1)求这个二次函数的解析式;(2)填写表格并在给出的平面直角坐标系中画出这个函数的图象;(3)若一次函数y mx n =+的图象也 经过A ,B 两点,结合图象,直接写出 不等式2x bx c mx n ++<+的解集.23.如图,在Rt △ABC 中,90C ∠=︒,BE 平分ABC ∠交AC于点E ,点D 在AB 上,DE EB ⊥. (1)求证:AC 是△BDE 的外接圆的切线;(2)若2AD =,AE =,求EC 的长.24.如图1所示的某种发石车是古代一种远程攻击的武器.将发石车置于山坡底部O 处,以点O 为原点,水平方向为x 轴方向,建立如图2所示的平面直角坐标系,将发射出去的石块当作一个点看,其飞行路线可以近似看作抛物线2(20)y a x k =-+的一部分,山坡OA 上有一堵防御墙,其竖直截面为ABCD ,墙宽2BC =米,BC 与x 轴平行,点B 与点O 的水平距离为28米,竖直距离为6米.若发射石块在空中飞行的最大高度为10米. (1)求抛物线的解析式;(2)试通过计算说明石块能否飞越防御墙.25.如图1,线段AB 及一定点C ,P 是线段AB 上一动点,作直线CP ,过点A 作AQ CP ⊥于点Q ,已知7AB =cm ,设A 、P 两点间的距离为x cm ,A 、Q 两点间的距离为1y cm ,P 、Q 两点间的距离为2y cm .小明根据学习函数的经验,分别对函数1y 、2y 随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程:第一步:按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y 、2y 与x 的几组对应值.1(,)x y ,2(,)x y ,并画出函数1y 、2y 的图象. 解决问题:(1)在给出的平面直角坐标系中(图2)补全函数2y 的图象;(2)结合函数图象,解决问题:当△APQ 中有一个角为30︒时,AP 的长度约为 cm .图1图226.在平面直角坐标系xOy 中,已知抛物线224(0)y ax a x a =-≠. (1)当1a =时,求抛物线的顶点坐标;(2)已知1(M x ,1)y 和2(N x ,2)y 是抛物线上的两点.若对于15x a =,256x ,都有12y y <,求a 的取值范围.27.已知,如图,在△ABC 中,∠ACB =90°,∠ABC =45°,点D 在BC 的延长线上,点E 在CB 的延长线上,DC =BE ,连接AE ,过C 作CF ⊥AE 于F ,CF 交AB 于G ,连接DG . (1)求证:∠AEB =∠ACF ;(2)用等式表示CG ,DG 和AE 的数量关系,并证明.28. 对于平面直角坐标系xOy 内的直线l 和点P ,若点A 关于l 作轴对称变换得到点1A ,点1A 关于点P 作中心对称变换得到点2A ,我们则称点2A 为点A 关于直线l 和点P 的“正对称点”. 已知B (-1,0),C (2,0),(1)写出B 关于y 轴和点C 的“正对称点”的坐标________;(2)已知点1C (2,m )(102m ),存在过原点O 的直线1l ,使得点B 关于直线1l 和点1C 的“正对称点”在直线2l :y =x+b 上,求b 的取值范围;(3)已知点H 是直线x =1上的一点,且点H 的纵坐标小于0,C (3,0),E 点在以C 为圆心1为半径的圆上,对于直线x =6上的点F (6,h ),以F 为圆心,1为直径作圆F ,若圆F 上存在点B 关于直线OH 和点E 的“正对称点”,直接写出h 的取值范围.备用图数学参考答案一、选择题1.D 2.C 3.B 4.A 5.A 6.C 7.B 8.C二、填空题9. 231y x =+ 10. 50° 11.(0,6) 12.5 13.8 14.18 15.③④⑤16. 5+ 补充说明:T15只有一个正确答案得1分,有错误答案不得分。
广东省深圳市深圳高级中学2024-2025学年九年级上学期期中考试数学试卷
高级中学2024-2025学年第一学期期中测试初三数学注意事项:1、答题前,考生务必在答题卡写上姓名、班级,准考证号用2B 铅笔涂写在答题卡上。
2、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动用橡皮擦干净后,再涂其它答案,不能答在试题卷上。
3、考试结束,监考人员将答题卡收回。
第一部分选择题一.选择题:(每小题只有一个选项,每小题3分,共计24分)1.如图所示,该几何体的左视图是( )A. B. C. D.2.若两个相似三角形周长的比为,则这两个三角形对应边的比是( )A. B. C. D.3.下列说法错误的是( )A.一组对边平行且一组对角相等的四边形是平行四边形B.四条边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形4.在一幅长为、宽为的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是,设金色纸边的宽为,那么满足的方程是( )A. B. C. D.5.如图,点在正方形的对角线上,于点,连接并延长,交边于点,交边的延长线于点.若,,则()1:41:21:41:81:1650cm 30cm 22400cm cm x x 2402250x x +-=2802250x x +-=2402250x x --=2802250x x --=E ABCD AC EF AB ⊥F DE BC M AB G 4AF =2FB =MG =A. B. C. D.6.如图,平面直角坐标系中,在边长为1的正方形的边上有一动点沿A →B →C →D →A 运动一周,则的纵坐标与点走过的路程之间的函数关系用图象表示大致是( )A. B. C. D.7.如图,在中,,,以点为圆心,以为半径作弧交于点,再分别以,为圆心,以大于的长为半径作弧,两弧相交于点,作射线交于点,连接.以下结论不正确的是( )A. B. C.D.8.若一个菱形的两条对角线长分别是关于的一元二次方程的两个实数根,且其面积为21,则该菱形的边长为( )A. B. C. D.二、填空题(每小题3分,共计15分)9.方程的根是_____.2+ABCD P P y P s ABC AB AC =36BAC ︒∠=C BC AC D B D 12BD P CP AB E DE 36BCE ︒∠=BC AE =BE AC =AEC BEC S S =△△x 2140x x m -+=22x x =10.《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,,在同一水平线上,和均为直角,与相交于点.测得,,,则树高___.11.如图,4张卡片正面分别呈现了几种常见的生活现象,它们的背面完全相同.现将所有卡片背面朝上洗匀后从中随机抽取两张,这两张卡片正面图案呈现的现象恰好都属于化学变化的概率是_____.火柴燃烧水结成冰玻璃杯破碎铁锅生锈12.边长分别为5,3,2的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为_____.13.如图,在四边形中,,对角线,相交于点.若,,,则的长为_____.三、解答题(共计61分)14.(6分)用适当的方法解下列方程:(1);(2).15.(7分)某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:ABC B Q ABC ∠AQP ∠AP BC D 40cm AB =20cm BD =10m AQ =PQ =m ABCD 90BCD ︒∠=AC BD O 5AB AC ==6BC =2ADB CBD ∠=∠AD 2290x x +-=()()251315x x -=-转动转盘的次数n1002004005008001000落在“可乐”区域的次数m60122240295a 604落在“可乐”区域的频率0.60.610.6b 0.590.604(1)完成上述表格,其中_____,_____;(2)请估计当很大时,频率将会接近_____,假如你去动该转盘一次,你获得“可乐”的概率约是_____;(本小问结果全部精确到0.1)(3)转盘中,表示“洗衣粉”区域的扇形的圆心角约是_____°;(4)在这次购物中,甲、乙两人随机从“微信”、“支付宝”、“银行卡”(依次用、、表示)三种支付方式中各选一种方式进行支付.请用画树状图或列表的方法,求甲、乙两人恰好都选择同一种支付方式的概率.16.(8分)如图,在正方形格纸中.(1)请在正方形格纸上建立平面直角坐标系,使,,并写出点坐标_____;(2)以坐标原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形并写出点的对应点的坐标_____;(3)若线段绕原点旋转后点的对应点为,写出点的坐标_____.17.(8分)如图,四边形是矩形,点在边上,点在延长线上,.(1)下列条件:①点是的中点;②平分;③点A 与点关于直线对称.请从中选择一个能证明四边形是菱形的条件,并写出完整证明过程.m na =b =n A B C ABC △()2,3A ()6,2C B O ABC △111A B C △A 1A AB O 90︒B 2B 2B ABCD E CD F DC AE BF E CD BE ABF ∠F BE ABFE选择条件:_____(填序号),理由如下.(2)若,,,求四边形的面积是多少.18.(8分)2024年奥运会在巴黎顺利召开,奥运会吉祥物“弗里热”爆红.(1)据统计某“弗里热”玩偶在某电商平台7月份的销售量是5万件,9月份的销售量是7.2万件,问月平均增长率是多少?(2)市场调查发现,某实体店“弗里热”玩偶的进价为每件60元,若售价为每件100元,每天能销售20件,售价每降价1元,每天可多售出2件,为了推广宣传,商家决定降价促销,同时尽量减少库存,若使销售“弗里热”玩偶每天获利1200元,则售价应降低多少元?19.(12分)某数学兴趣小组的同学在学完一元二次方程后,发现配方法可以求二次三项式的最值:他们对最值问题产生了浓厚兴趣,决定进行深入的研究.下面是该学习小组收集的素材,汇总如下,请根据素材帮助他完成相应任务:BEF DAE ∠=∠6AE =8BE =ABFE20.(12分)阅读理解:两个三角形中有一个角相等或互补,我们称这两个三角形是共角三角形,这个角称为对应角.根据上述定义,判断下列结论,正确的打“√”,错误的打“×”.(1)三角形一条中线分成的两个三角形是共角三角形.(_____)(2)两个等腰三角形是共角三角形.(_____)问题提出:小明在研究图1的时发现,因为点,分别在和上,所以和是共角三角形,并且还发现.以下是小明的证明思路,请帮小明完善证明过程.证明:分别过点,作于点,于点,得到图2,,又,(_____),.,,即.延伸探究:如图3,已知,请你参照小明的证明方法,求证:.D E AB AC ADE △ABC △ADE ABC S AD AE S AB AC⋅=⋅△△E C EG AB ⊥G CF AB ⊥F AGE AFC ∠=∠ A A ∠=∠ GAE ∴△∽()_____EG AE CF ∴=②1212ADE ABCAD EG S S AB CF ⋅=⋅ △△ADE ABC S AD EG AD AE S AB CF AB AC⋅∴==⋅⋅△△ADE ABC S AD AE S AB AC⋅=⋅△△180BAC DAE ︒∠+∠=ADE ABC S AD AE S AB AC ⋅=⋅△△结论应用:(1)如图4,在平行四边形中,是边上的点且满足,延长到,连接交的延长线于,若,,,的面积为60,则的面积是_____.(2)如图5,的面积为2,延长的各边,使,,,,则四边形的面积为_____.ABCD G BC 2BG GC =GA E DE BA F 6AB =5AG = 2.5AE =ABCD AEF △ABCD ABCD BE AB =2CF BC =3DG CD =4AH AD =EFGH。
福建省福州市福清市2022-2023学年九年级上学期期中考试数学试卷(含答案)
2022-2023学年福建省福州市福清市九年级(上)期中数学试卷第I卷(选择题)一、选择题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1.许多数学符号蕴含着对称美,在下列数学符号中,既是轴对称图形,又是中心对称图形的符号是( )A. B. C. D.2.如图,已知点A、B、C依次在⊙O上,∠C=40°,则∠AOB的度数为( )A. 70°B. 72°C. 80°D. 84°3.将抛物线y=x2向右平移1个单位,再向下平移2个单位后,则所得新抛物线的顶点坐标为( )A. (−1,−2)B. (1,−2)C. (−1,2)D. (1,2)4.下列一元二次方程没有实数根的是( )A. (x+2022)2=0B. x2+2022x=0C. (x+2022)2=2022D. x2+2022=05.如图,△AOB中,∠B=25°,将△AOB绕点O顺时针旋转60°,得到△A′OB′,边A′B′与边OB交于点C(A′不在OB上),则∠A′CO的度数为( )A. 85°B. 75°C. 95°D. 105°6.已知A(−1,y1)、B(3,y2)是抛物线y=x2+4x上两点,则y1、y2的大小关系为( )A. y1>y2B. y1=y2C. y1<y2D. y1≥y27.如图,AB是半圆O的直径,C、N为半圆上的两点,且CN⏜=BN⏜,过点C作半圆O的切线,交AB的延长线于M,若∠M=40°,则∠BON的度数( )A. 30°B. 25°C. 20°D. 22.5°8.《增删算法统宗》中记载:“今有门厅一座,不知门广高低,长午横进使归室,争奈门狭四尺,随即竖竿过去,亦长二尺无疑,两隅斜去恰方齐,请问三色各几?”,其大意是今有一房门,不知宽与高,长竿横着进门,门的宽度比竿小4尺进不了;将竿竖着进门,竿比门长2尺;将竿斜着穿过门的对角,恰好进门.试问门的宽、高和竿长各是多少?如图,若设竿长AC为x尺,依题意可得方程是( )A. (x−4)2+(x−2)2=x2B. 42+(x−2)2=x2C. (x−4)2+(x−2)2=2x2D. (x−4)2+22=x29.如图,在△ABC中,AB=3,B C=6,∠ABC=60°,以点B为圆心,AB长为半径画弧,交BC于点D,则图中阴影部分的面积是( )A. 9√3−3πB. 9√32−π2C. 9√32−π D. 9√32−3π210.若抛物线y=x2+bx+c的顶点在x轴上,且不等式x2+bx+c>m的解集为x<−1或x>3,则m的值为( )A. 4B. 3C. 2D. 1第II卷(非选择题)二、填空题(本大题共6小题,共24.0分)11.已知x=1为一元二次方程x2−a=0的解,则a=______.12.若点A(a,3)与点B(4,−3)关于原点对称,则a=______ .13.如图,正六边形ABCDEF内接于⊙O,半径为2,则这个正六边形的边心距OM的长为______ .14.一元二次方程x2−3x−1=0两根分别为a、b,则式子(a−b)2的值等于______.15.汽车刹车后行驶的距离s(单位:m)关于行驶的时间(单位:)的函数解析式是s=15t−6t2,汽车刹车后到停下来前进了______米.16.如图,边长4√3的等边△ABC中,点D为BC上一点,且BD=√3,点E为AB边上的一个动点,点E绕点D顺时针旋转60°得到点F,则AF的最小值为______.三、计算题(本大题共1小题,共8.0分)17.解方程:x2−2x−1=0.四、解答题(本大题共8小题,共78.0分。
2023-2024 学年度深圳市罗湖区期中联考九年级第一学期数学试卷答案
初三期中考试数学试题参考答案16、解;(1)解法一当x=2时,x2﹣(k+2)x+2k=4-2(k+2)+2k=4-2k-4+2k=0 ------2分∴x=2是方程x2﹣(k+2)x+2k=0的一个根 -------------------3分解法二∵ x2﹣(k+2)x+2k=(x-k)(x-2)=0 --------1分∴x-k=0,x-2=0∴x=k,x=2 ---------------------------------2分∴x=2是方程x2﹣(k+2)x+2k=0的一个根 -------------------3分(2)由(1)可知方程的另一个根是x=k∴k2+22=2k+7 ---------------------4分k2-2k=3(k-1)2=4∴ k-1=±2 ---------------------5分∴ k=3, k=-1∴k的值是3或-1. --------------6分17、(1)该顾客至少可得10 元购物券,至多可得60 元购物券;(2分)(2)请用画树状图或列表法,求出该顾客所获购物券的金额不低于50元的概率.(4分)画出树状图或列出表格 -----------------------------------4分P(购物券金额不低于50元)=------------------------------------------6分18、(1)画出111A B C ∆,直接写出点A 1,B 1,C 1的坐标;(6分)111A B C ∆如图所示 ——--3分A 1 (-2,-4),B 1(-6,-2),C 1(-4,-6) ———-6分(每个点坐标1分) (2)△OAB 与△OA 1B 1的面积比是----8分19、(1)∵EF ∥BC,GF ∥BE∴四边形BEFG 是平行四边形 -----1分 ∵平行四边形ABCD ∴AB ∥CD,AD ∥BC∴∠AEG=∠CDG,∠ADE=∠BGE ----2分 ∵DE 平分∠ADC ∴∠ADE=∠CDG ∴∠AEG=∠BGE∴BE=BG ---------------------3分 ∴四边形BEFG 是菱形 ----------4分(2)∵AB=2BE=CD∴-------------------------------------5分∵∠AEG=∠CDG ,∠APE=∠CPD ∴△APE ∽△CPD∴----------------------6分 PE=----------------7分 ∴ DE=PE+PD=----------8分A 1B 1C1E20、⑴当前直接出售可获利 2400 元;———2分⑵解:设储存x 周后出售利润可达到4960元依题意列方程得:(12+2x)(800-10x)-1000x=7200+4960 ------------4分解方程得:x 1=8 ,x 2=16 -------------------6分 又 12+2x ≤40 ,x 2=16舍去 ------------------7分 储存8周后出售利润可达到4960元 -------------8分21、(1)DE= 6 --------------------------------------2分(2) ∵ H ,G 分别为BC ,AD 的中点 ∴ AG=DG=∴∠GFD=30°,∠GDF=60° --------------3分 又由折叠可知 ∠ADE=∠FDE=30° ∴DE=2AE,AD=∴AE=2 ,DE=4 -------------------------------5分(3)∵ H ,G 分别为BC ,AD 的中点 ∴矩形ABHG ≌矩形DCHG∴重叠四边形PQMN 是菱形 ---------------6分 当重叠四边形PQMN 顶点Q,N 与矩形顶点重合时,如图,则其周长最大 -----------------------------7分 设MN=MQ=x,则MG=9-x,QG=3由勾股定理得:(9-x)2+32=x 2,解得:x=5 ------------------------------8分 ∴重叠四边形PQMN 周长的最大值是20 -------------------------------9分N22、解:(1)∵矩形ABCD∴∠ADF=∠DCE=90° ------------------1分 ∵AF ⊥DE∴∠FAD+ ∠ADE=∠ADE+∠EDC=90°∴∠FAD=∠EDC ----------------2分 △ADF ∽△DCE ----------------------3分(2)作EM ⊥AE 于E,交AC 于M,作MN ⊥BC 于N ∵ ∠CAE=45° ∴ AE=EM∴△ABE ≌△ENM ---------------4分∴MN=BE,EN=AB设BE=a,AB=b,则EN=b,CN=b-a △CMN ∽△CAB,, 解得 b=3a -----------5分∴CE=6a-a=5a∴---------------------------------6分(3) 作EH ⊥AG 于H,交AD 于F, ∵AE 平分∠BAG ,且BE=DG=2, ∴EH=BE=2,AH=AB=AD -----------7分△AHF ∽△ADG ∴,∴FH=1,EF=3 --------8分∵ EF ⊥AG由(1)可得, ∴ AG=6 ----------------------9分 AD= =4 ,CD=2∴ CG=2 2 ------------------------10分BD图2GBD图3。
内蒙古鄂尔多斯市东胜区第一中学2023届九年级上学期期中考试数学试卷(含解析)
东胜一中初三年级2022-2023学年第一学期期中试题(数学)一.选择题(共13小题)1.在下列四个图案中,既是轴对称图形,又是中心对称图形是( )A.B.C.D.解析:解:A、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,也是中心对称图形,故此选项正确;B、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,也不是中心对称图形,故此选项错误.C、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180°不能与原图形重合,不是中心对称图形,故此选项错误;D、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:A.2.将抛物线y=﹣2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( )A.y=﹣2(x+2)2+3B.y=﹣2(x﹣2)2+3C.y=﹣2(x﹣2)2﹣3D.y=﹣2(x+2)2﹣3解析:解:将抛物线y=﹣2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的解析式为y=﹣2(x﹣2)2+3,故选:B.3.直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是( )A.0个B.1个C.2个D.1个或2个解析:解:∵直线y=x+a不经过第二象限,∴a≤0,当a=0时,关于x的方程ax2+2x+1=0是一元一次方程,解为x=﹣,当a<0时,关于x的方程ax2+2x+1=0是一元二次方程,∵Δ=22﹣4a>0,∴方程有两个不相等的实数根.故选:D.4.已知二次函数y=ax2+bx+c,其函数值y与自变量x之间的部分对应值如表所示:x…01234y…﹣4﹣10﹣1﹣4点A(x1,y1),B(x2,y2)在函数的图象上,当1<x1<2,3<x2<4时,y1与y2的大小关系正确的是( )A.y1>y2B.y1<y2C.y1⩾y2D.y1⩽y2解析:解:设该二次函数的解析式为y=ax2+bx+c(a≠0),∵x=0时y=﹣4;x=1时y=﹣1;x=2时y=0,∴,解得,,∴此抛物线的解析式为:y=x2+4x﹣4,∴抛物线开口向下,对称轴x=﹣2,对称轴越近值越小,∴可知抛物线顶点为(﹣2,8),∵1<x1<2,3<x2<4,∴y1<y2.故选:B.5.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=100C.200+2003x=1000D.200[1+(1+x)+(1+x)2]=1000解析:解:∵该超市一月份的营业额为200万元,且平均每月增长率为x,∴该超市二月份的营业额为200(1+x)万元,三月份的营业额为200(1+x)2万元,又∵第一季度的总营业额共1000万元,∴200+200(1+x)+200(1+x)2=1000,即200[1+(1+x)+(1+x)2]=1000.故选:D.6.下列命题中,真命题的个数是( )①经过三点一定可以作圆;②平分弦的直径必定垂直于这条弦;③在同圆或等圆中,相等的圆心角所对的弧相等;④三角形的外心到三角形三边的距离相等.A.4个B.3个C.2个D.1个解析:解:①过不在同一直线上的三点一定可以作一个圆,错误;②平分弦(不是直径)的直径垂直于弦,故错误,③同圆或等圆中,相等的圆心角所对的弧相等,正确;④三角形的外心到三角形的三个顶点的距离相等,错误;真命题有1个,故选:D.7.已知二次函数y=ax2+2ax+1(其中x是自变量),当x≥1时,y随x的增大而增大,且﹣3≤x≤2时,y的最大值为9,则a的值为( )A.﹣1B.C.1D.﹣8解析:解:∵二次函数y=ax2+2ax+1=a(x+1)2﹣a+1(其中x是自变量),∴该函数的对称轴为直线x=﹣1,∵当x≥1时,y随x的增大而增大,∴a>0,又∵当﹣3≤x≤2时,y的最大值为9,∴x=2时,y=9,即9=a(2+1)2﹣a+1,解得,a=﹣1,故选:C.8.函数y=ax2﹣2x+1和y=ax+a(a是常数,且a≠0)在同一平面直角坐标系中的图象可能是( )A.B.C.D.解析:解:A、由一次函数y=ax+a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下,故选项错误;B、由一次函数y=ax+a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下,故选项错误;C、由一次函数y=ax+a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,故选项正确;D、由一次函数y=ax+a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的对称轴x=﹣<0,故选项错误.故选:C.9.如图,在⊙O中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连结CD.若点D与圆心O不重合,∠BAC=24°,则∠DCA的度数为( )A.40°B.41°C.42°D.43°解析:解:如图,连接BC,∵AB是直径,∴∠ACB=90°,∴∠BAC+∠B=90°,∵∠BAC=24°,∴∠B=90°﹣∠BAC=90°﹣24°=66°,根据翻折的性质,弧AC所对的圆周角为∠B,所对的圆周角为∠ADC,∴∠ADC+∠B=180°,∵∠ADC+∠CDB=180°,∴∠B=∠CDB=66°,∴∠DCA=∠CDB﹣∠BAC=66°﹣24°=42°.故选:C.10.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4cm,CD⊥AB,垂足为点D,动点M从点A 出发沿AB方向以cm/s的速度匀速运动到点B,同时动点N从点C出发沿射线DC方向以1cm/s的速度匀速运动.当点M停止运动时,点N也随之停止,连接MN.设运动时间为ts,△MND的面积为Scm2,则下列图象能大致反映S与t之间函数关系的是( )A.B.C.D.解析:解:∵∠ACB=90°,∠A=30°,AB=4,∴∠B=60°,BC=AB=2,AC=BC=6,∵CD⊥AB,∴CD=AC=3,AD=CD=3,BD=BC=,∴当M在AD上时,0≤t≤3,MD=AD﹣AM=3﹣t,DN=DC+CN=3+t,∴S=MD•DN=(3﹣t)(3+t)=﹣t2+,当M在BD上时,3<t≤4,MD=AM﹣AD=t﹣3,∴S=MD•DN=(t﹣3)(3+t)=t2﹣,故选:B.二.填空题(共6小题)11.已知函数y=(m+2)-2是关于x的二次函数.满足条件的m= ﹣3或2 .解析:解:由题意得:m2+m﹣4=2且m+2≠0,∴m=﹣3或m=2且m≠﹣2,∴m=﹣3或2,故答案为:﹣3或2.12.已知关于x的方程k2x2+2(k﹣1)x+1=0有两个实数根,则k的取值范围是k≤且k≠0解析:解:根据题意得k≠0且Δ=4(k﹣1)2﹣4k2≥0,解得k≤且k≠0.13.在同一个平面直角坐标系xOy中,二次函数y1=a1x2,y2=a2x2,y3=a3x2的图象如图所示,则a1,a2,a3的大小关系为 a3>a2>a1 (用“>”连接).解析:解:∵二次函数y1=a1x2的开口最大,二次函数y3=a3x2的开口最小,∴a3>a2>a1,故答案为:a3>a2>a1.14.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣(x﹣4)2+3,由此可知铅球推出的距离是 10 m.解析:解:令函数式y=﹣(x﹣4)2+3中,y=0,0=﹣(x﹣4)2+3,解得x1=10,x2=﹣2(舍去),即铅球推出的距离是10m.故答案为:10.15.如图,二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=﹣1,下列结论:①abc<0;②2a﹣b=0;③3a<﹣c;④若m为任意实数,则有a﹣bm≤am2+b;⑤若图象经过点(﹣3,﹣2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|),则2x1﹣x2=5.其中结论正确的是②③⑤解析:解:∵抛物线开口向下,∴a<0,∵抛物线对称轴在y轴左侧,∴b<0,∵抛物线与x轴交点在y轴上方,∴c>0,∴abc>0,①错误.∵﹣=﹣1,∴b=2a,∴2a﹣b=0,②正确.由图象可得x=1时,y<0,∴a+b+c<0,∴3a+c<0,∴3a<﹣c,③正确.∵抛物线开口向下,对称轴为直线x=﹣1,∴当x=﹣1时,y取最大值,∴a﹣b+c≥am2+bm+c,∴a﹣bm≥am2+b,④错误.若图象经过点(﹣3,﹣2),由抛物线对称性可得图象经过(1,﹣2),∵|x1|<|x2|,∴x1=1,x2=﹣3为方程ax2+bx+c+2=0的两根,∴2x1﹣x2=﹣5,⑤正确.16.如图,正方形ABCD的中心与坐标原点O重合,将顶点D(1,0)绕点A(0,1)逆时针旋转90°得点D1,再将D1绕点B逆时针旋转90°得点D2,再将D2绕点C逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……依此类推,则点D2022的坐标是 (﹣2023,2022) .解析:解:∵将顶点D(1,0)绕点A(0,1)逆时针旋转90°得点D1,∴D1(1,2),∵再将D1绕点B逆时针旋转90°得点D2,再将D2绕点C逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……∴D2(﹣3,2),D3(﹣3,﹣4),D4(5,﹣4),D5(5,6),D6(﹣7,6),……,观察发现:每四个点一个循环,D4n+2(﹣4n﹣3,4n+2),∵2022=4×505+2,∴D2022(﹣2023,2022);故答案为:(﹣2023,2022).三.解答题(共9小题)17.解下列方程.(Ⅰ)x(3x+2)=6(3x+2);(Ⅱ)3x2﹣2x﹣4=0.解析:解:(Ⅰ)x(3x+2)=6(3x+2),x(3x+2)﹣6(3x+2)=0,(3x+2)(x﹣6)=0,3x+2=0或x﹣6=0,所以x1=﹣,x2=6;(Ⅱ)3x2﹣2x﹣4=0,∵Δ=(﹣2)2﹣4×3×(﹣4)=4+48=52,∴x===,∴x1=,x2=.18.已知关于x的一元二次方程x2﹣(m+3)x+3m=0.(1)若x=1是这个方程的一个根,求m的值和它的另一根;(2)求证:无论m取任何实数,方程总有实数根;解析:(1)解:将x=1代入原方程得:1﹣(m+3)+3m=0,解得:m=1,∴方程的另一根为3m÷1=3m.∴m的值为1,方程的另一根为3.(2)证明:Δ=[﹣(m+3)]2﹣4×1×3m=m2﹣6m+9=(m﹣3)2.∵(m﹣3)2≥0,即Δ≥0,∴无论m取任何实数,方程总有实数根;19.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心顺时针旋转90°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△A1B1C,使点A1的对应点A2坐标为(2,0),请画出平移后对应的△A2B2C2的图形.(3)若将△ABC绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.解析:解:(1)如图,△A1B1C即为所求.(2)如图,△A2B2C2即为所求.(3)如图,点(﹣1,﹣1)即为所求.20.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大.解析:解:设涨价x元,利润为y,则y=(60﹣40+x)(300﹣10x)=﹣10x2+100x+6000=﹣10(x﹣5)2+6250因此当x=5时,y有最大值6250.60+5=65元每件定价为65元时利润最大.设每件降价a元,总利润为w,则w=(60﹣40﹣a)(300+20a)=﹣20a2+100a+6000=﹣20(a﹣2.5)2+6125因此当a=2.5时,w有最大值6125.每件定价为57.5元时利润最大.综上所知每件定价为65元时利润最大.21.为促进经济发展,方便居民出行.某施工队要修建一个横断面为抛物线的公路隧道.抛物线的最高点P 离路面OM的距离为6m,宽度OM为12m.(1)按如图所示的平面直角坐标系,求表示该抛物线的函数表达式;(2)一货运汽车装载某大型设备后高为4m,宽为3.5m.如果该隧道内设双向行车道(正中间是一条宽1m的隔离带),那么这辆货车能否安全通过?(3)施工队计划在隧道口搭建一个矩形“脚手架”ABCD,使A,D点在抛物线上.B,C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根支杆AB,AD,DC的长度之和的最大值是多少?请你帮施工队计算一下.解析:解:(1)根据题意,顶点P的坐标为(6,6),设抛物线的解析式为y=a(x﹣6)2+6,把点O(0,0)代入得:36a+6=0,解得:,即所求抛物线的解析式为:(0≤x≤12);(2)根据题意,当x=6﹣0.5﹣3.5=2时(或者当x=6+0.5+3.5=10)时,,∴这辆货车不能安全通过;(3)设A点的坐标为,则OB=m,,根据抛物线的对称性可得CM=OB=m,∴BC=12﹣2m,∵四边形ABCD是矩形,∴AD=BC=12﹣2m,,∴三根支杆AB,AD,DC的长度之和:=,∴当m=3,即OB=3米时,三根支杆AB,AD,DC的长度之和的最大值为15.22.已知⊙O的直径为10,点A、点B、点C在⊙O上,∠CAB的平分线交⊙O于点D.(1)如图①,若BC为⊙O的直径,AB=6,求AC、BD、CD的长;(2)如图②,若∠CAB=60°,求BD的长.解析:解:(1)如图①,∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵在直角△CAB中,BC=10,AB=6,∴由勾股定理得到:AC===8.∵AD平分∠CAB,∴=,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴易求BD=CD=5;(2)如图②,连接OB,OD,∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5.23.(原题初探)(1)小明在数学作业本中看到有这样一道作业题:如图1,P是正方形ABCD内一点,连结PA,PB,PC现将△PAB绕点B顺时针旋转90°得到的△P′CB,连接PP′.若PA=,PB=3,∠APB=135°,则PC的长为 2 ,正方形ABCD的边长为 .(变式猜想)(2)如图2,若点P是等边△ABC内的一点,且PA=3,PB=4,PC=5,请猜想∠APB的度数,并说明理由.(拓展应用)(3)聪明的小明经过上述两小题的训练后,善于反思的他又提出了如下的问题:如图3,在四边形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,则BD的长度为 .解析:解:(1)∵△PAB绕点B顺时针旋转90°得到的△P′CB,∴BP=BP′=3,P′C=PA=,∠PBP′=90°,∠BP′C=∠APB=135°,∴△BPP′为等腰直角三角形,∴∠BP′P=45°,PP′=PB=3,∴∠PP′C=135°﹣45°=90°,在Rt△PP′C中,由勾股定理得:PC===2,过点A作AE⊥BP交BP的延长线于E,如图1所示:∵∠APB=135°,∴∠APE=180°﹣135°=45°,∴△AEP是等腰直角三角形,∴AE=PE=PA=×=1,∴BE=PB+PE=3+1=4,在Rt△AEB中,由勾股定理得:AB===,故答案为:2,;(2)∠APB的度数为150°,理由如下:∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,将△BPC绕点B逆时针旋转60°,得到△BP′A,连接PP′,如图2所示:则△BPP′是等边三角形,∴PP′=BP=4,∠BPP′=60°,∵AP=3,AP′=PC=5,∴P'P2+AP2=AP'2,∴△APP′为直角三角形,∴∠APP′=90°,∴∠APB=∠APP′+∠BPP′=90°+60°=150°;(3)∵∠ABC=∠ACB=∠ADC=45°,∴△BAC是等腰直角三角形,∴∠BAC=90°,AB=AC,将△ABD绕点A顺时针旋转90°,得到△ACK,连接DK,如图3所示:由旋转的性质得:AK=AD=3,CK=BD,∠KAD=90°,∴△DAK是等腰直角三角形,∴DK=AD=3,∠ADK=45°,∴∠CDK=∠ADC+∠ADK=45°+45°=90°,∴△CDK是直角三角形,∴CK===,∴BD=,故答案为:.24.如图,抛物线y=ax2+bx﹣4与x轴交于A(﹣4,0)、B(3,0)两点,与y轴交于点C.(1)求抛物线的函数关系式;(2)点P是抛物上第三象限内的一动点,当点P运动到什么位置时,四边形ABCP的面积最大?求出此时点P的坐标和四边形ABCP的面积;(3)点M在抛物线对称轴上,点N是平面内一点,是否存在这样的点M、N,使得以点M、N、B、C 为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.解析:解:(1)∵抛物线y=ax2+bx﹣4与x轴交于A(﹣4,0)、B(3,0)两点,∴,解得,∴抛物线的解析式为y=x2+x﹣4;(2)如图,设点P的坐标为(m,m2+m﹣4),则﹣4<m<0,m2+m﹣4<0.连接OP.∵S四边形ABCP=S△AOP+S△COP+S△BOC=×4(﹣m2﹣m+4)+×4(﹣m)+×4×3=﹣m2﹣m+14=﹣(m+2)2+,∴当m=﹣2时,四边形ABCP的面积最大,最大值为,此时点P的坐标为(﹣2,﹣);(3)存在这样的点M、N,能够使得以点M、N、B、C为顶点的四边形是菱形.理由如下:∵OB=3,OC=4,∠BOC=90°,∴BC==5.设M点的坐标为(﹣,y),分两种情况讨论:(i)以BC为边长时,如果四边形CBMN是菱形,那么BM=BC,即(3+)2+y2=25,解得y=±,即存在M(﹣,)或(﹣,﹣),能够使以点M、N、B、C为顶点的四边形是菱形;如果四边形BCMN是菱形,那么CM=BC,即(0+)2+(y+4)2=25,整理,得4y2+32y﹣35=0,解得y=﹣4±,即存在M(﹣,﹣4+)或(﹣,﹣4﹣),能够使以点M、N、B、C为顶点的四边形是菱形;(ii)以BC为对角线时,四边形MCNB是菱形,则BM=CM,即(3+)2+y2=(0+)2+(y+4)2,解得y=﹣,即存在M(﹣,﹣),能够使以点M、N、B、C为顶点的四边形是菱形;综上可知,存在这样的点M、N,使得以点M、N、B、C为顶点的四边形是菱形,此时点M的坐标为:M1(﹣,),M2(﹣,﹣4+),M3(﹣,﹣),M4(﹣,﹣4﹣),M5(﹣,﹣).。
广东省汕头市潮南区峡山街道联考2024-2025学年上学期期中考试九年级数学试题(含答案)
2024~2025学年度第一学期九年级期中考试数学试卷(S )说明:1、本卷满分120分;2、考试时间120分钟;3、答案请写在答题卷上.一、选择题(每小题3分,共30分)1.关于的一元二次方程(为实数)根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.不能确定2.已知二次函数,当时,随增大而增大,则实数的取值范围是( )A. B. C. D.3.下列四幅图案是四所大学校徽的主体标识,其中是中心对称图形的是( )A. B.C. D.4.二次函数图象的顶点所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限5.是一元二次方程的一个根,则代数式的值是( )A. B.2017 C. D.20256.某商品原价200元,连续两次降价后售价为148元,下列所列方程正确的是( )A. B.C. D.7.如图,是一个中心对称图形,为对称中心,若,,,则的长为( )B.D.48.若直角三角形的两边长分别是方程的两根,则该直角三角形的面积是( )A.6B.12C.12D.6x 220x kx --=k 2(1)y a x =-0x >y x a 0a >1a >1a ≠1a <2(1)2y x =-++m 220x x ++=2222021m m +-2017-2025-%a 2200(1%)148a +=()22001%148a -=200(12%)148a -=2200(1%)148a -=A 90C ∠=︒60BAC ∠=︒1BC =CC '27120x x -+=9.已知抛物线,则当时,函数的最大值为( )A. B. C.0 D.210.如图,抛物线经过正方形的三个顶点,,,点在轴上,则的值为( )A. B. C. D.二、填空题(每小题3分,共15分)11.已知关于的方程有一个根1,那么__________.12.若二次函数的图象与轴有且只有一个交点,则的值为________.13.如图,在正方形中,,E 为的中点,连接,将绕点按逆时针方向旋转得到,连接,则的长为_________.14.在平面直角坐标系中,将抛物线先绕原点旋转,再向下平移5个单位,所得到的抛物线的顶点坐标是_________.15.观察下列图形规律:当_________时,图形“”的个数是“”的个数的2倍.三、解答题(一)(每小题7分,共21分)16.用配方法解一元二次方程:17.如图,在中,,点、点分别为、的中点,连结,将绕点旋转得到.试判断四边形的形状,并说明理由.221y xx =--03x ≤≤2-1-2y axc =+OABC A B C B y a c 1-2-3-4-x 20ax bx c ++=a b c ++=2(1)42y a x x a =--+x a ABCD 4AB =AB DE DAE △D 90︒DCF △EF EF 221y xx =+-180︒n =∆∙2213x x+=ABC △2AB BC =D E AB AC DE ADE △E 180︒CFE ∆BCFD18.已知开口向上的抛物线经过点.(1)确定此拋物线的解析式;(2)当取何值时,有最小值,并求出这个最小值.四、解答题(二)(每小题9分,共27分)19.如图,在边长均为1个单位长度的小正方形组成的网格中,点,点,点均为格点(每个小正方形的顶点叫做格点).【实践与操作】(1)作点关于点的对称点;(2)连接,将线段绕点顺时针旋转得点对应点,画出旋转后的线段;【应用与计算】(3)连接,求出四边形的面积.20.如图,二次函数(为常数)的图象的对称轴为直线.(1)求的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式。
2022-2023学年度第一学期初三期中考试数学试题
2022-2023学年度第一学期初三期中考试九年级数学试卷考试时间120分钟 卷面总分150 命题人: 审核人:一、选择题(本大题共8小题,每小题3分,共24分) 1.下列函数解析式中,一定为二次函数的是【 ▲ 】. A .y =3x -1 B.y =ax 2+bx +c C .s =2t 2+1 D .y =x 2+x1 2.方程x 2-2x +3=0的根的情况是【 ▲ 】 A .有两个相等的实数根 B .只有一个实数根 C .没有实数根D .有两个不相等的实数根3.二次函数y =x 2-2x -3的图象如图所示,下列说法中错误的是【 ▲ 】 A .函数图象与y 轴的交点坐标是(0,-3) B .顶点坐标是(1,-3)C .函数图象与x 轴的交点坐标是(3,0)、(-1,0)D .当x <0时,y 随x 的增大而减小第3题图 第6题图 第11题图4.将抛物线y =(x -1)2+2向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为【 ▲ 】A .y =(x -1)2+4B .y =(x -4)2+4C .y =(x +2)2+6D .y =(x -4)2+6 5.已知样本数据2,3,5,3,7,下列说法不正确的是【 ▲ 】A .平均数是4.B .众数是3.C .中位数是5.D .方差是3.2. 6.如图,A 、B 、C 是⊙O 上三点,∠ACB =25°,则∠BAO 的度数是【 ▲ 】 A .55° B .60° C .65° D .70° 7.在二次函数322--=x x y 中,当03x ≤≤时,y 的最大值和最小值分别是【 ▲ 】 A. 0,-4 B. 0,-3 C. -3,-4 D. 0,08.以坐标原点O 为圆心,作半径为2的圆,若直线y =-x +b 与⊙O 相交,则b 的取值OBCA范围是【 ▲ 】A.0b ≤<B.b -≤≤ C.b -<<.b -<<二、填空题(本大题共8小题,每小题3分,共24分) 9.方程3(x -5)2=2(x -5)的根是▲.10.二次函数y = ax 2+bx –1(a ≠0)的图象经过点(1,1),则a +b +1的值是▲. 11.如图,转盘中6个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针落在阴影部分的概率为▲.12.已知点A (4,y 1),B,y 2),C (-2,y 3)都在二次函数2(2)1y x =--的图象上,则y 1,y 2,y 3的大小关系是▲.13.如图,⊙O 是△ABC 的外接圆,∠B =60°,⊙O 的半径为4,则AC 的长等于▲.第13题图 第14题图 第16题图14.如图,这是某同学用纸板做成的一个底面直径为10cm ,高为12cm 的无底圆锥形玩具(接缝忽略不计),则做这个玩具所需纸板的面积是▲cm 2(结果保留π).15.已知二次函数y =2x +(m -1)x +1,当x >1时,y 随x 的增大而增大,而m 的取值范围是▲.16.如图,点A 的坐标是(a ,0)(a <0),点B 是以OA 为直径的⊙M 上一动点,点A 关于点B 的对称点为C .当点B 在⊙M 上运动时,所有这样的点C 组成的图形与直线y =3-4x -3有且只有一个公共点,则a 的值等于▲.三、解答题 (本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(本题满分6分)解方程(1)2x 2﹣6x =1(用配方法) (2)(t +3)(t ﹣1)=12.18.(本题满分6分)已知关于x 的一元二次方程x 2+(2k +1)x +k 2=0①有两个不相x yC MOAB等的实数根.(1)求k的取值范围;(2)设方程①的两个实数根分别为x1,x2.当k=1时,求x12+x22的值.19.(本题满分8分)某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表分数(分)人数(人)70 78090 1100 8(1)在图①中,“80分”所在扇形的圆心角度数为;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知S甲2=135,S乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.20.(本题满分8分)如图,已知经过原点的抛物线y=2x2+mx与x轴交于另一点A(2,0).(1)求m的值和抛物线顶点M的坐标;(2)点N在抛物线上,与点M不重合,若S△AON=S△AOM,求点N的坐标.21.(本题满分8分)有四张完全相同的不透明卡片,其正面分别写有数字2-,1-,0,2,把这四张卡片背面朝上洗匀后放在桌面上.(1)随机的取一张卡片,抽取的卡片上的数字为负数的概率为.(2)先随机抽取一张卡片,其上的数字作为点A 的横坐标;然后放回并洗匀,再随机抽取一张卡片,其上的数字作为点A 的纵坐标,试用画树状图或列表的方法求出点A 在直线2y x 上的概率.22.(本题满分10分)如图,在单位长度为1的正方形网格中,一段圆弧经过格点A 、B 、C . (1)画出该圆弧所在圆的圆心D 的位置(不用写作法,保留作图痕迹),并连接AD 、CD .(2)请在(1)的基础上,完成下列问题:①以点O 为原点、水平方向所在直线为x 轴、竖直方向所在直线为y 轴,建立平面直角坐标系,写出点的坐标:C 、D ; ②⊙D 的半径为(结果保留根号);③若用扇形ADC 围成一个圆锥的侧面,则该圆锥的底面圆半径是.23.(本题满分10分)如图,在△ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC ,AB 于 E ,F .(1)试判断直线BC 与⊙O 的位置关系,并说明理由;(2)若BD =2√3,∠B =30°,求阴影部分的面积(结果保留π).FEOD24.(本题满分10分)某精品店购进甲乙两种小礼品,已知1件甲礼品的进价比1件乙礼品的进价多1元,购进2件甲礼品与1件乙礼品共需11元.(1)求甲种礼品的进价;(2)经市场调查发现,若甲礼品按6元/件销售,每天可卖40件;若按5元/件销售,每天可卖60件.假设每天销售的件数y(件)与售价x(元/件)之间满足一次函数关系,当甲礼品的售价定为多少时,才能使每天销售甲礼品的利润为60元?25.(本题满分10分)若两个二次函数图像的顶点、开口方向都相同,则称这两个二次函数为“和谐二次函数”.(1)请写出两个为“和谐二次函数”的函数;(2)已知关于x的二次函数y1=2x2-4mx+2m2+1和y2=ax2+bx+1,其中y1的图像经过点A(1,1),若y1+y2与y1为“和谐二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的取值范围.26.(本题满分12分)结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC 的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.所以S△ABC=AC•BC=(x+3)(x+4)=(x2+7x+12)=×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.(1)若∠C=90°,求证:△ABC的面积等于mn.(2)若AC•BC=2mn,求证∠C=90°.(3)若∠C=60°,用m、n表示△ABC的面积.27.(本题满分14分)如图1,抛物线y=ax2+bx+c与x轴相交于点A(-3,0),B(1,0),与y轴交于点C(0,3),点D为抛物线的顶点.(1)直接写出抛物线的函数表达式;(2)如图1,抛物线的对称轴上是否存在点F,使得△BCF周长最小,若存在求点F 坐标,并求周长的最小值;若不存在,请说明理由;(3)如图2,抛物线在第二象限的部分上是否存在一点M,使得四边形AOCM面积最大,若存在求点M坐标;若不存在,请说明理由;(4)在抛物线上是否存在点Q,使∠ADQ=45°,若存在,请求出点Q的横坐标;若不存在,说明理由.九年级数学参考答案1.C 2.C 3.B 4.B 5. C 6. C 7.A 8. D 9.1217,53x x == 10.3 11.1212.y 3>y 1>y 213. 14.65π 15.m ≥-1 16.125-17.(1)x =(3分) (2)t 1=-5,t 2=3 (6分)18.(1) 1-4k >(3分)(2)7(6分) 19.(1)54°;(2分)(2)20﹣6﹣3﹣6=5,统计图补充如下:(4分)(3)20﹣1﹣7﹣8=4,乙x =208100190480770⨯+⨯+⨯+⨯=85;(6分)(4)∵S 甲2<S 乙2,∴甲班20同名同学的成绩比较整齐.(8分)20.(1)m=-4,顶点(1,-2)(4分)(2)N (12)(8分)21.(1) 12(2分)(2)画树状图如图所示:(5分)共有16个可能的结果,点A 在直线y=2x 上的结果有2个,(6分)8分)22.(1)略(2分)(2)①(6,2)(2,0)(6分)②(8分)10分)23.解:(1)相切(5分)(2)23(10分).24.解:解:(1)设甲种礼品的进价为m元,则乙种礼品的进价为(m-1)元,则2m+m-1=11 解得:m=4答:甲种礼品的进价为4元.(4分)(2)设y与x的关系式为:y=kx+b,把x=6,y=40;x=5,y=60代入上式得:640560k bk b解得20160kb∴y与x的关系式为:y=-20x+160.(7分)(x-4)(-20x+160)=60整理得:x2-12x+35=0 ,解得:x=5或x=7答:当甲礼品的售价定为5元或7元时,才能使每天销售甲礼品的利润为60元.(10分)25.(1)略;(2分)(2)y2=x2-2x+1 (7分)0≤y2≤4 (10分)26.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,(1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,所以S△ABC=AC•BC=(x+m)(x+n)=[x2+(m+n)x+mn]=(mn+mn)=mn,(4分)(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(8分)(3)如图2,过点A作AG⊥BC于点G,在Rt△ACG中∠=60°,∴CG=12AC=(x+m),AG=32AC°=(x+m),∴BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,整理,得:x2+(m+n)x=3mn,∴S△ABC=BC•AG=×(x+n)•(x+m)=[x2+(m+n)x+mn]=×(3mn+mn)=mn.(12分)27.(1)y=-x2-2x+3;(2分)(2)F(-1,2)周长最小值(6分)(3)M(3-2,154);(10分)(4)点Q的横坐标为2或﹣.(14分)。
河南省洛阳市涧西区2023-2024学年九年级上学期期中数学试题(含答案)
洛阳市涧西区2023-2024学年第一学期期中考试九年级数学试卷注意事项:1.本试卷分试题卷和答题卡两部分,试题卷共4页,满分120分,考试时间100分钟.2.试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题上的答案无效.3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.一、选择题(每小题3分,共30分)1.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A .赵爽弦图B .笛卡尔心形线C .斐波那契螺旋线D .科克曲线2.下列关于x 的方程一定是一元二次方程的是( )A .B .C .D .3.方程的二次项系数、一次项系数和常数项分别是( )A .5,-6,-1B .5,6,1C .1,-6,1D .1,6,-14.关于函数的性质表述正确的一项是( )A .无论x 为任何实数,y 的值总为正数B .它的图象关于y 轴对称C .当x 的值增大时,y 的值也增大D .它的图象在第一、三象限内5.将抛物线向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是( )A .B .C .D .6.如图,在4×4的正方形网格中,绕某点旋转一定的角度,得到,则其旋转中心是( )(第6题)A .点AB .点BC .点CD .点D7.在一幅长80cm ,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图.如图所示,如果要使()2421x x x x +=+-12x x+=()()513x x -+=()212y x =-+25610x x --=24y x =()232y x =-+2y x =()264y x =-+()26y x =-24y x =+MNP △111M N P △整个挂图的面积是5400cm,设金色纸边的宽为x cm,那么x满足的方程是()(第7题)A.B.C.D.8.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567…h08141820201814…下列结论:①足球距离地面的最大高度为20m;②足球被踢出7s时,距离地面的高度是14m;③足球飞行路线的对称轴是直线;④足球被踢出9s时落地,其中正确结论的个数是()A.1B.2C.3D.49.我国古代数学家赵爽在其所著的《勾股圆方图注》中记载过一元二次方程(正根)的几何解法.以方程即为例说明,记载的方法是:构造如图正方形,大正方形的面积是,同时它又等于四个矩形的面积加上中间小正方形的面积,即,因此.在下面四个选项中,能正确说明方程解法的构图是()(第9题)A.B.C.D.()()5028025400x x--=()()5028025400x x++=()()50805400x x--=()()50805400x x++=92t=22350x x+-=()235x x+=()22x x++24352⨯+5x=2560x x--=10.如图,在四边形ABCD 中,,,,,.动点P 沿路径从点A 出发,以每秒1个单位长度的速度向点D 运动.过点P 作,垂足为H .设点P 运动的时间为x (单位:s ),的面积为y ,则y 关于x 的函数图象大致是()(第10题)A .B .C .D .二、填空题(每小题3分,共15分)11.已知关于x 的方程有两个不相等的实数根,则a 的取值范围是_____.12.如果二次函数的图象经过原点,那么______.13.一个小球以5m/s 的速度开始向前滚动,小球滚动的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是,则小球从开始滚动到完全停止所用的时间是______秒.14.如图,在中,,将绕点A 逆时针旋转,得到,连接.若,则______.(第14题)15.如图,已知二次函数的图象交x 轴于,对称轴为.下列结论:①;②;③若,是图象上的两点,则;④若,则.其中正确结论为______.//AD BC 90D ∠=︒4AB =6BC =30BAD ∠=︒A B C D →→→PH AD ⊥APH △220x x a +-=()2²24104y m x x m =-++-m =2558s t t =-ABC △65BAC ∠=︒ABC △AB C ''△C C '//C C AB 'BAB '∠=2y ax bx c =++()3,0-1x =-0abc >420a b c ++>13,2y ⎛⎫- ⎪⎝⎭21,2y ⎛⎫⎪⎝⎭12y y >y c ≤20x -≤≤(第15题)三、解答题(共8小题,满分75分)16.(10分)解下列方程:(1);(2).17.(9分)如图,的顶点都在方格线的交点(格点)上.(1)若将绕点旋转180°,点A 的对应点的坐标是(______,______);(2)将绕C 点按逆时针方向旋转90°得到,请在图中画出并写出点,的坐标.(第17题)18.(9分)已知二次函数的图象过点,.(1)求这个二次函数的解析式;(2)已知二次函数与直线交于点,,请结合图象直接写出方程的解.(第18题)19.(9分)某商店准备销售一种多功能文件夹,计划从厂家以每个8元的价格进货,经过市场调研发现,当每个文件夹的售价为10元时,月均销量为100个,售价每增长1元,月均销量就相应减少10个.(1)若使这种文件夹的月均销量不低于50个,每个文件夹售价应不高于多少元?()()273273x x +=+2640x x --=ABC △ABC △()0,21A ABC △A B C '''△A B C '''△A 'B '2y x bx c =++()0,3A ()1,0B 2y x bx c =++y mx n =+()1,0B ()4,3C 2x bx c mx n ++=+(2)在(1)的条件下,当这种文件夹销售单价为多少元时,销售利润是320元.20.(9分)阅读材料:材料1:若关于x 的一元二次方程的两个根为,,则:..材料2:已知一元二次方程的两个实数根分别为m ,n ,求的值.解:∵一元二次方程的两个实数根分别为m ,n .∴,,则.根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程的两个根为,,则______;______.(2)类比应用:已知一元二次方程的两根分别为m ,n ,求的值.21.(9分)如图,排球运动场的场地长18m ,球网高度2.43m ,球网在场地中央,距离球场左、右边界均为9m .一名球员在场地左侧边界练习发球,排球的飞行路线可以看作是对称轴垂直于水平面的抛物线的一部分.某次发球,排球从左边界的正上方发出,击球点的高度为2.2m ,当排球飞行到距离球网3m 时达到最大高度2.8m .小洛在下图中建立了平面直角坐标系,求得该抛物线的表达式为.根据以上信息,解答下列问题:(1)请在下图中画出小洛建立的平而直角坐标系;(2)判断排球能否过球网,并说明理由;(3)判断排球是否会出界,并说明理由.22.(10分)对某一个函数给出如下定义:如果存在实数M ,对于任意的函数值y ,都满足,那么称这个函数是有上界函数.在所有满足条件的M 中,其最小值称为这个函数的上确界.例如,函数是有上界函数,其上确界是2.(1)函数①,②,③中是有上界函数的为______(只填序号即可),请挑选其中的任意一个有上界函数并求出其上确界;()200ax bx c a ++=≠1x 2x 12b x x a +=-12cx x a=210x x --=22m n mn +210x x --=1m n +=1mn =-()22111m n mn mn m n +=+=-⨯=-22510x x --=1x 2x 12x x +=12x x =2350x x --=n mm n+21 2.860x y =-+y M ≤()232y x =--+()235y x x =-+≥234y x x =++2241y x x =-++(2)如果函数是以3为上确界的有上界函数,求实数a 的值.23.(10ABCD 与边长为的正方形AEFG 按图1位置放置,AD 与AE 在同一直线上,AB 与AC 在同一直线上.连接DG ,BE ,易得且(不需要说明理由).(1)如图2,小明将正方形ABCD 绕点A 逆时针旋转,旋转角为.①连接DG ,BE ,判断DG 与BE 的数量关系和位置关系,并说明理由;②在旋转过程中,如图3,连接BG ,GE ,ED .DB ,求四边形BGED 面积的最大值.(2)如图4,分别取BG ,GE ,ED ,DB 的中点M ,N ,P ,Q ,连接MN ,NP ,PQ ,QM ,则四边形MNPQ 的形状为______,四边形MNPQ 面积的最大值是______.()22315y x ax x =-+≤≤DG BE =DG BE ⊥()15165αα︒<<︒洛阳市涧西区2023—2024学年第一学期期中考试九年级数学参考答案说明:1.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅。
山西省大同市平城区三校联考2024届九年级上学期期中考试数学试卷(含答案)
山西省大同市平城区2023-2024(1)初三阶段性测试(数学)试题一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.如图图案中既是轴对称图形又是中心对称图形的是()A .B .C .D .2.将方程x 2-8x =10化为一元次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是()A .-8、-10B .-8、10C .8、-10D .8、103.等腰三角形、等边三角形、矩形、正方形和圆这五种图形中,既是轴对称图形又是中心对称图形的图形种数是()A .2B .3C .4D .54.已知关于x 的一元二次方程(a -5)x 2-4x -1=0有实数根,则a 的取值范围是()A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠55.将抛物线y =-2x 2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A .y =-2(x +1)2-1B .y =-2(x +1)2+3C .y =-2(x -1)2+1D .y =-2(x -1)2+36、4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是()图(1)图(2)A .第一张、第二张B .第二张、第三张C .第三张、第四张D .第四张、第一张7、如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,∠A =22.5°,OC =4,CD 的长为()A.B.4C.D.88.如图,AB,CD是⊙O的两条直径,E是劣弧 BC的中点,连接BC,DE.若∠ABC=22°,则∠CDE 的度数为()A.22°B.32°C.34°D.44°9、如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2,若设道路的宽为xm,则下面所列方程正确的是()A.(32-2x)(20-x)=570B.32x+2×20x=32×20-570C.(32-x)(20-x)=32×20-570D.32x+2×20x-2x2=57010.如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1,给出下列结论:①ac<0;②b2-4ac>0;③2a-b=0;④a-b+c=0,其中,正确的结论有()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题,共90分)二、填空题(本大题共5小题,每小题3分,共15分)11、若x=2是方程x2-mx+2=0的根,则m=.12、某村种的水稻前年平均每公顷产7200kg,今年平均每公顷产8450kg.设这两年该村水稻每公顷产量的年平均增长率为x,根据题意,所列方程为.'''的位置,旋转角为α(0°<α<90°).若13、如图,将矩形ABCD绕点A顺时针旋转到矩形AB C D∠1=110°,则α=.14、如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),不等式x2+bx+c>x +m解集为.15、如图,点P是等边三角形ABC内一点,且PA6,PB2,PC=2,则这个等边三角形ABC 的边长为.三、解答题(本题共8个小题,共75分,解答应写出文字说明、证明过程或演算步骤)16、(每小题4分,共8分)解下列方程:(1)x2-2x-1=0(2)(x-2)2=2x-417、(8分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-1,0),B(-4,1),C(-2,2).(1)直接写出点B关于点C对称的点B'的坐标:;A B C;(2)请画出△ABC关于点O成中心对称的△111A B C.(3)画出△ABC绕原点O逆时针旋转90°后得到的△22218、(6分)如图,杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=-0.5x2+3x+1的一部分.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=5米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.=,∠OPB=45°.19、(8分)如图,已知⊙O中,弦AB=8,点P是弦AB上一点,OP32(1)求OB的长;(2)过点P作弦CD与弦AB垂直,求证:AB=CD.20、(10分)如图,AB 为⊙O 的切线,B 为切点,过点B 作BC ⊥OA ,垂足为点E .交于点C ,延长CO 与AB 的延长线交于点D .(1)求证:AC 为⊙O 的切线;(2)若OC =2,OD =5,求线段AD 和AC 的长.21、(10)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当月利润为8750元时,每千克水果售价为多少元?(2)当每千克水果售价为多少元时,获得的月利润最大?22.(12分)在数学兴趣小组活动中,小明进行数学探究活动,如图①所示,已知直角三角形ABC 中,BC =AC ,点E ,D 为AC 、BC 边的中点.操作探究将△ECD 以点C 为旋转中心逆时针旋转,得到△E CD '',连接,AE BD ''.图①图②图③图④(1)如图②,判断线段AE '与BD '的数量关系与位置关系,并说明理由;(2)如图③,当B ,D ',E '三点在同一直线上时,∠E 'AC =20°,求旋转角的度数;(3)如图④,当旋转到某一时刻,CD BD ''⊥,延长BD '与AE '交于点F ,请判断四边形D CE F ''的形状,并说明理由;23、(13分)如图,在平面直角坐标系xOy 中,抛物线y =-x 2+bx +c 与x 轴相交于原点O 和点B (4,0),点A (3,m )在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)若点P为线段OA上方抛物线上的点,过点P作x轴的垂线,交OA于点Q,求线段PQ长度的最大值.(3)在抛物线的对称轴上是否存在一点N,使得△BAN为以AB为腰的等腰三角形,若不存在,请说明理由,若存在,请直接写出点N的坐标.2023-2024学年第一学期九年级数学期中考试答案一、选择题12345678910D A B C D AC C A C 二、填空题11.312.7200(1+x )2=845013.20°14.x <11或x >3三、解答题16.(8分)(1)x 2-2x -1=0x 2-2x -1+2=2x 2-2x +1=2(x -1)2=2x -1∴x -1或x -11211x x ==+(2)(x -2)2=2x -4(x -2)2-2x +4=0X 2-4x +4-2x +4=0X 2-6x +8=0(x -2)(x -4)=01224x x ==17.(8分)(1)(4,-1)(2)如图所示,△111A B C 为所求作的图形;(3)如图所示,△222A B C 为所求作的图形.18.(6分)(1)y =-0.5x 2+3x +1a =-12b =3c =1h =331222b a -=-=⎛⎫⨯- ⎪⎝⎭221413429112 5.5142242ac b k a ⎛⎫⨯-⨯- ⎪----⎝⎭=====--⎛⎫⨯- ⎪⎝⎭∴顶点(3,5.5)答:演员弹跳离地面的最大高度为5.5米.(2)当x =4,代入21312y x x =-++2143412y =-⨯+⨯+1161212=-⨯++=-8+12+1=5∵5=5∴这次表演成功了.19.(8分)(1)过O 作OH ⊥AB 90OHB OHA ∠∠∴==142AH BH AB ===45OPB ∠=∴△OHP 为等腰直角三角形设OH =PH =x在Rt △PHO 中OH 2+PH 2=OP 2222x x +=2x 2=18x 2=93x =±1233x x ==-(舍)∴OH =PH =3在Rt △DHB 中OB =5∴OB =5(2)过O 作OE ⊥CD ∴90OEP ∠= 190,2OEP BPC OHP CE DE CD ∠∠∠===== ∴四边形OEPH 为矩形又∵OH =PH∴四边形OEPH 为正方形∴OE =OH =3连接OC∴OC =OB =5在Rt △CEO 中CE ==4∴CD =2CE =8∴AB =CD =820.(10分)(1)连接OB∵OB ,OC 为⊙O 半径∴OB =OC∵CB ⊥OA∴∠OED =∠BEO =90°在Rt △CED 和Rt △BED 中CO BOOE OE=⎧⎨=⎩∴Rt △CED ≌Rt △BED (HL )COE BOE ∠∠∴=在△AOC 和△AOB 中OC OBCOE BOE AO AO∠∠=⎧⎪=⎨⎪=⎩∴△AOC ≌△AOB (SAS )90ACO ABO ∠∠∴== AC OC∴⊥∵OC 为⊙O 半径∴AC 为⊙O 的切线.(2)∵△AOC ≌△AOB∴AB =AC OB =OC =2∵AB 为⊙O 的切线90OBD ∠∴=在Rt △BOD 中BD ===设AB =AC =x ,则AD x+∵AC 为⊙O 的切线90ACD ∠∴=CD =OC +OD =2+5=7在Rt △ACD 中AC 2+CD 2=AD 22227)x x +=+224921x x +=++28=14=x =142121=2213=∴AC =AB 2213=∴AD =AB +BD 22152133==21.(10分)(1)解:设水果涨价了x 元,则少售出10x 千克(500-10x )(50+x -40)=8750(500-10x )(10+x )=87505000+500x -100x -10x 2=8750-10x 2+400x =3750-x 2+40x -375=0x 2-40x +275=0(x -25)(x -15)=0122515x x ==当x =25时,50+x =75当x =15时,50+x =65答:当月利润为8750元时,水果售价为75元或65元.(2)设月利润为WW =(500-10x )(50+x -40)=(500-10x )(10+x )=5000+500x -100x -10x 2=-10x 2+400x +5000a =-10b =400c =50004002022(10)b h a =-=-=⨯-∵a =-10开口向下∴当x =20时,月利润最大售价=50+20=70(元)答:当售价为70元时,获得的月利润最大.22.(12分)(1)AE BD AE BD ''=⊥''∵AB =AC ,E 、D 为AC 、BC 中点E C CD '∴='又∵△ABC 为Rt △∠C =90°90E CD ACB ∠∠'∴=='即1290ACD ACD ∠∠∠∠''+=+=12∠∠∴=在△ACE '与△BCD '中12AC BC E C D C ∠∠⎪'=⎧⎪=⎨'=⎩∴△ACE '≌△BCD '(SAS )AE BD EAC DBC∠∠'∴''∴==∵AC =BC ,∠ACB =90°∴∠CAB =∠CBA =45°反向延长BD ',交AE '于F45CBD ABF ∠∠'+= 45EAC ABF ∠∴∠+= ∴180()AFB EAC ABF CAB ∠∠∠∠'=-+- =180455049=--∴BF ⊥AF(2)由(1)知BD AE '⊥',设BD '交AC 于F 90AE B ∠∴='20E AC ∠'=180902070AFE ∠'∴=--=70CFD ACE ∠∠∴'=='CD CE ''= 90E CD ∠=''45CD E ∠'∴'=180704655ACD ∠'∴=--=90=906525D CB ACD ∠∠''∴=--= ∴旋转角为25°.(3)BD CD ''⊥ 90BD C ∠'∴'= 又90D CE ∠'='90BD C D CE ∠∠∴''=='' //CE BD ''∴由(1)知BD AE '⊥'90BFE ∠'∴=∵//CE BD ''180AE C BFE ∠∠''∴+= 90AE C BFE ∠∠'∴=='又90D CE ∠''=90AE C BFE D CE ∠∠∠''''∴=== 即四边形D CE F ''为矩形又CE CD ''= ∴四边形D CE F ''为正方形.23.(13分)(1)y =-x 2+bx +ca =-1设()()12y a x x x x =--设120,4x x ==代入y =-x (x -4)=-x 2+4x4222(1)24b h a =-=-=-=⨯--∴抛物线表达式:y =-x 2+4x 抛物线对称轴为直线x =2(2)将x =3代入y =-x 2+4x 2343y =-+⨯=-9+12=3∴A 的坐标为(3,3)设OA 的解析式为y =kx将点A (3,3)代入3=3kk =1∴OA 的解析式为y =x设P 的坐标为(x ,-x 2+4x )则Q 的坐标(x ,x )p y QP> P PQ y QP ∴=-=-x 2+4x -x 23PQ y x x=-+a =-1b =33322(1)2h b a =-=-=⨯-2243944(1)4ac b k a --===⨯-∴PQ 长度的最大值为94.(3)存在,N 的坐标为(2,,(2,0),.。
河南省新乡市河南师范大学附属中学联考2024-2025学年九年级上学期11月期中数学试题(含答案)
2024-2025学年第一学期九年级期中考试数学试卷一、选择题(每小题3分,共30分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.已知的半径为,圆心O 到直线l 的距离为,则直线l 与的位置关系是( )A .相离 B .相交C .相切D .无法判断3.一元二次方程经过配方变形为,则k 的值是( )A .B .C .1D .74.如图,A 、B 、C 为圆O 上的三点,,则的度数是( )A .B .C .D .5.关于二次函数,下列说法正确的是( )A .图象的对称轴在y 轴的右侧B .图象的顶点坐标为C .与x 轴交于点和D .当时,y 随着x 的增大而减小6.如图,是由绕点O 顺时针旋转后得到的图形,若点D 恰好落在AB 上,且,则的度数是( )A .B .C .D .7.如果关于x 的一元二次方程有实数根,则a 的取值范围是()O e 5cm 4cm O e 2430x x -+=2(2)x k -=3-7-78AOB ∠=︒ACB ∠35︒36︒37︒39︒2(1)9y x =+-(1,9)-(2,0)-(4,0)1x <-ODC △OAB △40︒105AOC ∠=︒C ∠55︒45︒42︒40︒20x x a +-=A .B .C .D .8.如图,已知的半径为5,弦AB 的长为8,P 是AB 的延长线上一点,,则OP 等于()A . B .C.D .9.已知二次函数(m 为常数),当时,函数值y 的最小值为,则m 的值是( )A .或B .或C .2或D .2或10.如图1,动点P 从菱形ABCD 的点A 出发,沿边匀速运动,运动到点C时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为( )图1图2A .2 B .3 C D .二、填空题(每小题3分,共15分)11.把抛物线先向右平移1个单位再向上平移1个单位,所得到抛物线的解析式为________________.12.某种植物的主干长出若干个分支,每个支干又长出同样个数的小分支,主干、支干、小分支的总数是241,设每个支干长出小分支的个数是x ,则可列方程为________________。
黑龙江省绥化市望奎县第五中学(五四学制)2024-2025学年九年级上学期期中数学试卷(含答案)
2024-2025学年度初三上学期期中考试数学试题考生注意:考试时间90分钟;本题共计五道大题,满分120分.一、填空题(每题3分,共30分)1.等腰三角形中,有一个角是,则另外两个角分别为__________.2.两边长分别为的等腰三角形的周长是__________.3.如图,在中,,则的长为__________.4.如图.,那么,__________,__________.假设.那么__________.5.如图,相交于点,请你补充一个条件,使得.你补充的条件是__________.6.点关于轴对称的点的坐标是__________,直线与轴的位置关系是__________.7.已知中,,则__________.8.如图,直线,点在上,假设的面积为16,那么的面积为__________.70 6cm 10cm 、ABC 90,60,4A C BC ∠=∠== AC ABC ADE ≌AB =E ∠=∠12040BAE BAD ∠=∠= BAC ∠=,AB CD ,O AD CB =AOD COB ≌()2,1M -x N MN x ABC ()23B C A ∠+∠=∠A ∠=AE ∥BD C BD 4,8,AE BD ABD == ACE9.如图,在中,是的垂直平分线,的周长为的周长为,则的长为__________.10.如图,在中,平分交于点,点分别是线段上一动点且,则的最小值为__________.二、选择题(每小题3分,计30分)11.2023年全国民航工作会议介绍了2023年民航业发展目标:民航业将按照安全第一、市场主导、保障先行的原则,在做好运行保障能力评估的基础上,把握好行业恢复发展的节奏,下列航空图标,其文字上方的图案是轴对称图形的是( ).A. B.C. D.12.下列长度的三条线段,能组成三角形的是()A. B. C. D.13.一个边形的每个外角都是,则这个n 边形的内角和是().A.1080B.540C.2700D.216014.过一个多边形的一个顶点的所有对角线把多边形分成4个三角形,则这个多边形的边数为( )A.3B.4C.5D.6ABC DE AC ABC 19cm,ABD 13cm AE ABC BD ABC ∠AC D ,M N BD BC 、AB BD >10,5S ABC AB == CM MN +2,4,66,8,157,5,116,7,14n 4515.某公路急转弯处设立了一面圆形大镜子,车内乘客从镜子中看到汽车前车牌的部分号码如图所示,则该车牌的部分号码为( )A. B.C. D.16.如图,某同学把一块三角形的玻璃打碎成了四块,现在要到玻璃店去配一块完全一样的玻璃,那么,最省事的方法是()A.带①去 B.带③去 C.带②去 D.带④去17.如图,在中,,以顶点为圆心,适当长为半径画弧,分别交于点,再分别以为圆心,大于的长为半径画弧,两弧交于点,作射线交于点,若,则的面积是( )A.15B.30C.40D.4518.如图,在中,为线段的垂直平分线与直线的交点,连结,则( )A. B. C. D.19.如图,已知是等边三角形,点在同一直线上,且,则( )E9362E9365E6395E6392Rt ABC 90C ∠= A AC AB 、M N 、M N 、12MN P AP BC D 5,18CD AB ==ABD ABC 50,20,ABC BAC D ∠=∠= AB BC AD CAD ∠=40 30 20 10ABC ,B C D E 、、,CG CD DF DE ==E ∠=A.35B.20C.15D.1020.如图,已知,直角的顶点是的中点,两边分别交于点.给出以下四个结论:①;②;③是等腰直角三角形;④,上述结论始终正确的有( )A.①②③ B.①③ C.①② D.①③④三、作图题(共18分)21.最近几年来,国家实施“村村通”工程和农村医疗卫生改革,某县打算在张村、李村之间建一座定点医疗站P ,张、李两村座落在两相交公路内(如下图).医疗站必需知足以下条件:①使其到两公路距离相等,②到张、李两村的距离也相等,请你通过作图确信点的位置.(不写作法,要保留作图痕迹)(8分)22.如图是由边长为1的若干个小正方形拼成的方格图,的顶点均在小正方形的顶点上.(10分)(1)在图中建立恰当的平面直角坐标系,且使点的坐标为,并写出两点的坐标;(4分)(2)在(1)中建立的平面直角坐标系内画出关于y 轴对称的;(3分)(3)求的面积.(3分)四、解答题(满分42分)23.如图,是的中线,的周长比的周长多.若的周长为,且,求和的长.(8分),,90ABC AB AC A =∠= EPF ∠P BC ,PE PF ,AB AC E F 、AE CF =BE CF EF +=EPF 12ABC AEPF S S = 四边形P ABC ,,A B C A ()4,2-,B C ABC A B C ''' ABC BD ABC ABD BCD 2cm ABC 18cm 4cm AC =AB BC24.如图,为上一点,.求证:.(6分)25.如图,中,于,且分别是的中点,延长至点,使.(8分)(1)的度数.(4分)(2)求证:.(4分)26.如图,在中,边的垂直平分线与的外角平分线交于点,过点作于点于点.若.求的长度(8分)27.(12分)(1)问题发现:如图①,和都是等边三角形,点在同一条直线上,连接.E BC AC ∥,,BD AC BE ABD CED =∠=∠AB ED =ABC ,AB AC BE AC =⊥E D E 、AB AC 、BCF CF CE =ABC ∠BE FE =ABC AB PQ ABC P P PD BC ⊥,D PE AC ⊥E 8,4BD AC ==CE ABC EDC B D E 、、AE①的度数为__________.②线段之间的数量关系为__________.(2)拓展探究:如图②,和都是等腰直角三角形、,点在同一条直线上,为中边上的高,连接,试求的度数及判断线段之间的数量关系,并说明理由;(3)解决问题:如图③,和都是等腰三角形,,点在同条直线上,请直接写出的度数.AEC ∠AE BD 、ABC EDC 90ACB DCE ∠=∠= B D E 、、CM EDC DE AE AEB ∠CM AE BE 、、ABC EDC 36ACB DCE ∠=∠= B D E 、、EAB ECB ∠+∠参考答案一、填空题(每题3分,共30分)或2.或3.24.,,5.(答案不唯一)6.垂直7.8.89.10.4二、选择题(每小题3分,计30分)11-15DCADC16-20CDBCD三、作图题(共18分)21.如图所示(8分)22.(1);(3分)(2)(3分)(3)(4分)(1)点的坐标表明点在第二象限,横坐标离坐标原点的距离为4,纵坐标离坐标原点的距离为2,由此确定坐标原点的位置,再画坐标轴,结果如下:结合点在方格图中的位置可得它们的坐标为:;(2)点关于y 轴对称:横坐标互为相反数,纵坐标相同则三点的坐标分别为:1.55,55 70,4022cm 26cmAD C ∠80A C ∠=∠(2,1)--723cm()()1,0,3,1B C ---72A ()4,2-A O O OBC 、()()1,0,3,1B C ---,,A B C '''()()()4,2,1,0,3,1A B C ''-'先在平面直角坐标系中描出三点,再连接,画图如下:(3)如图,的面积等于正方形的面积减去三个直角三角形的面积即则.四、解答题(满分42分)23...(8分)由题意知①,点D 为AC 的中点,,,,即②,由①②得24.(6分)在与中,,,A B C '''ABC ABC ADC BCE ABFADEF S S S S S =--- 正方形111373313122391322222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=---= 8cm,6cm AB BC ==18cm,4cm,14cm C ABC AC AB BC ==∴+= AD DC ∴=2cm C ABD C BCD -= ()()2cm AB BD AD BC BD DC ∴++-++=2cm AB BC -=8cm,6cmAB BC ==AC ∥BDACB EBD∴∠=∠,,ABD CED ABD ABC EBD CED EBD EDB ∠=∠∠=∠+∠∠=∠+∠ ABC EDB∴∠=∠ABC EDB ABC EDB ACB EBDAC BE ∠=∠⎧⎪∠=∠⎨⎪=⎩.25.(8分)(1);(4分)(2)(4分)(1)于是的中点,是等腰三角形,即,,是等边三角形,;(2),,,,是等边三角形,,,,;26.(8分)连接是的平分线,是线段的垂直平分线在和中27.(12分)解:(1);()ABC EDB AAS ∴ ≌AB ED ∴=60 BE AC ⊥ ,E E AC ABC ∴ AB BC =AB AC = ABC ∴ 60ABC ∴∠= CF CE = F CEF ∴∠=∠60ACB F CEF ∠==∠+∠ 30F ∴∠= ABC BE AC ⊥30EBC ∴∠= F EBC ∴∠=∠BE EF ∴=PA PB、CP BCE ∠,PD BC PE AC ⊥⊥PD PE∴=PQ AB PA PB∴=Rt AEP Rt BDP PE PD=PA PB=()Rt Rt HL AEP BDP ∴ ≌AE BD∴=4CE BD AC ∴=-=4CE ∴=1120(2).;(2),理由如下:是等腰直角三角形,由(1)得,,,都是等腰直角三角形,为中边上的高,;(3)AE BD =2CM AE BM +=DCE 45CDE ∴∠=135CDB ∴∠=ECA DCB ≌135,CEA CDB AE BD ∴∠=∠== 45CEB ∠= 90AEB CEA CEB ∴∠=∠-∠=DCE CM DCE DE CM EM MD∴==EM MD BD BE++= 2CM AE BE ∴+=180EAB ECB ∠+∠=。
济南天桥区2023-2024学年九年级数学第一学期期中考试试题(含答案)
2023~2024学年第一学期九年级期中考试数学试题注意事项:本试题共6页,满分为150分,考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm 黑色签字笔在答题卡上题号所提示的答题区域作答,答案写在试卷上无效,考试结束后,将本试卷和答题卡一并交回.第1卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图是一个零件的示意图,它的俯视图是( )A.B.C.D.2.已知2a=3b(ab≠0),则下列比例式成立的是( ) A.a 2=3B B.a 3=b2 C.a b =23 D.b a =323.如图,两条直线被三条平行线所截,若DE=3,EF=6,BC=8,则AB 等于( ) A.4 B.8 C.12 D.94.若x=1是关于x 的一元二次方程x 2-mx+3=0的一个解,则m 的值是( ) A.6 B.5 C.4 D.35.若反比例函数y=6x 的图像经过点(﹣2,a ),则a 的值是( )A.6B.﹣2C.﹣3D.3 6.下列命题正确的是( )A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形 7.对于反比例函数y=﹣2x ,下列说法不正确的是( ) A.图象分布在第二、四象限 B.图象关于原点对称C.图象经过点(1,﹣2)D.若点A(x 1,y 1),B(x 2,y 2)都在该函数图象上,且x 1<x 2,则y 1<y 28.如图,在平行四边形ABCD 中,点E 在边DC 上,DE:EC=4:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A.4:5B.9:16C.16:25D.3:5(第8题图) (第10题图)9.电影《长安三万里》上映以来,全国票连创佳绩,据不完全统计,某市第一天票房约2亿元,若以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,将增长率记作x ,则方程可以列为( )A.(1+x)2=10B.2(1+x)2=10C.2+2x+2(1+x)2=10D.2+2(1+x)+2(1+x)2=1010.如图,在矩形ABCD 中,点F 是CD 边上的一点,把矩形ABCD 沿BF 折叠,点C 落在AD 边上的点E 处,AD=5,AB=4,点M 是线段CF 上的动点,连接BM ,过点E 作BM 的垂线交BC 于点N ,垂足为H .以下结论:①△ABE ∽△DEF:②AE BE =DEEF :③CF=2:④BM EN =54.其中正确的结论有( )A.1个B.2个C.3个D.4个II 卷(非选择题共110分)二.填空题:(本大题共6个小题,每小题4分,共24分) 11.一元二次方程x 2=x 的根是 . 12.若a2=b3,则a+b b= .13.为了估计水塘中的鱼数,养鱼者先从鱼塘中捕获50条鱼,在每一条鱼身上做好标记后把这些鱼放归鱼塘,再从鱼塘中打捞鱼,通过多次实验后发现捕捞的鱼中有作记号的频率稳定在2.5%左右,则鱼塘中估计有鱼 条.14.如图的红叶,A ,B ,C 三点在同一直线上,B 为AC 的黄金分割点(AB>BC),若AC 的长度为10cm ,则BC 的长度为 .(结果保留根号)(第14题图) (第15题图) (第16题图)15.如图,是反比例函数y=K1x 和y=K2x (k 1<k 2)在第一象限的图象,直线AB//x 轴,并分别交两条曲线于A 、B 两点,若S AOB =2,则k 2-k 1的值是 .16.如图,正方形ABCD 边长为4,O 为对角线BD 的中点,点M 在边AB 上,且BM=2AM ,点N在边BC上,且BN=AM,连接AN,MD交于点P,连接OP,则OP的长为.三.解答题(本大题10个小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分6分)解方程:x2+4x+3=0.18.(本小题满分6分)如图,四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F.求证:△ABE≌△ADF.19.(本小题满分6分)如图,某同学利用镜面反射的原理巧妙地测出了树的高度,已知人的站位点A,镜子点O,树底点B三点在同一水平线上,眼睛与地面的高度为1.6米,OA =2.4米,OB=6米,则树高为多少米.如图,在△ABC中,∠CAD=∠B,BC=8,D是BC边上一点,且CD=2.(1)求证:△ABC∽△DAC.(2)求AC的长.21.(本小题满分8分)在如图的方格纸中(每个小方格都是边长为1个单位长度的正方形),△OAB的顶点坐标分别为O(0,0),A(﹣2,﹣1),B(﹣1,﹣3),△O1A1B1与△OAB是关于点P为位似中心的位似图形.(1)在图中标出位似中心P的位置并直接写出P点的坐标.(2)以原点O为位似中心,在位似中心的同侧画出△OAB的一个位似△OA2B2,使它与△OAB的位似比为2:1.(3)△OAB的内部一点M的坐标为(a,b),直接写出点M在△OA2B2中的对应点M2的坐标为.有甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M 的坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标.(2)求点M(x,y)在函数y=﹣x+1的图象上的概率.23.(本小题满分10分)如图,学校打算用16m的篱笆围成一个长方形的生物园饲养小兔,生物园的一面靠墙,墙长8m,长方形的面积是30m2.求生物园的长和宽.24.(本小题满分10分)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,点P由点B出发沿BA方向向点A 匀速运动,速度为1cm/s,同时点Q由A出发沿AC方向向点C匀速运动,速度为1cm/s,连接PQ.设运动的时间为t(s),其中0<1<4.解答下列问题:(1)AP= ,AQ=(用含t的代数式表示)(2)当t为何值时,△APQ∽△ABC.(3)在P、Q运动过程中,是否存在某一时刻使得PC=PQ,若能,求出此时t的值;若不能,请说明理由.备用图(1)备用图(2)如图,已知一次函数图象y=x+b与y轴交于点C(0,1),与反比例函数图象y=k交于点A(a,x2)和点B两点.(1)求一次函数和反比例函数的解析式.(2)求点B的坐标和△AOB的面积.(3)若点M为y轴上的一个动点,N为平面内任意一点,当四边形ABMN是矩形时,请求出M点坐标.已知△ABC 中,∠ABC=90°,点D 、E 分别在边BC 、边AC 上,连接DE ,DF△DE ,点F 、点C 在直线DE 同侧,连接FC ,且AB BC =DEDF =k.(1)点D 与点B 重合时:①如图1,k=1时,AE 和FC 的数量关系是 ,位置关系是 . ②如图2,k=2时,猜想AE 和FC 的关系,并说明理由;(2)BD=2CD 时,①如图3,k =1时,若AE=2,S △CDF =6,求FC 的长度.②如图4,k=2时,点M 、N 分别为EF 和AC 的中点,若AB=10,直接写出MN 最小值.答案解析一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图是一个零件的示意图,它的俯视图是( C )A.B.C.D.2.已知2a=3b(ab≠0),则下列比例式成立的是( B ) A.a 2=3B B.a 3=b2 C.a b =23 D.b a =323.如图,两条直线被三条平行线所截,若DE=3,EF=6,BC=8,则AB 等于( A ) A.4 B.8 C.12 D.94.若x=1是关于x 的一元二次方程x 2-mx+3=0的一个解,则m 的值是( C ) A.6 B.5 C.4 D.35.若反比例函数y=6x 的图像经过点(﹣2,a ),则a 的值是( C )A.6B.﹣2C.﹣3D.3 6.下列命题正确的是( C )A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形 7.对于反比例函数y=﹣2x ,下列说法不正确的是( D )A.图象分布在第二、四象限B.图象关于原点对称C.图象经过点(1,﹣2)D.若点A(x 1,y 1),B(x 2,y 2)都在该函数图象上,且x 1<x 2,则y 1<y 28.如图,在平行四边形ABCD 中,点E 在边DC 上,DE:EC=4:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( C )A.4:5B.9:16C.16:25D.3:5(第8题图) (第10题图)9.电影《长安三万里》上映以来,全国票连创佳绩,据不完全统计,某市第一天票房约2亿元,若以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,将增长率记作x ,则方程可以列为( D )A.(1+x)2=10B.2(1+x)2=10C.2+2x+2(1+x)2=10D.2+2(1+x)+2(1+x)2=1010.如图,在矩形ABCD 中,点F 是CD 边上的一点,把矩形ABCD 沿BF 折叠,点C 落在AD 边上的点E 处,AD=5,AB=4,点M 是线段CF 上的动点,连接BM ,过点E 作BM 的垂线交BC 于点N ,垂足为H .以下结论:①△ABE ∽△DEF:②AE BE =DEEF :③CF=2:④BM EN =54.其中正确的结论有( B )A.1个B.2个C.3个D.4个II 卷(非选择题共110分)二.填空题:(本大题共6个小题,每小题4分,共24分) 11.一元二次方程x 2=x 的根是 x 1=1,x 2=0 . 12.若a2=b3,则a+b b= 53 .13.为了估计水塘中的鱼数,养鱼者先从鱼塘中捕获50条鱼,在每一条鱼身上做好标记后把这些鱼放归鱼塘,再从鱼塘中打捞鱼,通过多次实验后发现捕捞的鱼中有作记号的频率稳定在2.5%左右,则鱼塘中估计有鱼 2000 条.14.如图的红叶,A ,B ,C 三点在同一直线上,B 为AC 的黄金分割点(AB>BC),若AC 的长度为10cm ,则BC 的长度为 (15-5√5)m .(结果保留根号)(第14题图) (第15题图) (第16题图)15.如图,是反比例函数y=K1x 和y=K2x (k 1<k 2)在第一象限的图象,直线AB//x 轴,并分别交两条曲线于A 、B 两点,若S AOB =2,则k 2-k 1的值是 4 .16.如图,正方形ABCD 边长为4,O 为对角线BD 的中点,点M 在边AB 上,且BM=2AM ,点N 在边BC 上,且BN=AM ,连接AN ,MD 交于点P ,连接OP ,则OP 的长为4√55.三.解答题(本大题10个小题,共86分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分) 解方程:x 2+4x+3=0. (x+1)(x+3)=0 x 1=﹣1,x 2=﹣318.(本小题满分6分)如图,四边形ABCD 是菱形,AE ⊥BC 于点E ,AF ⊥CD 于点F.求证:△ABE ≌△ADF.证明:四边形ABCD 是菱形 ∴AB=BC= CD=AD ,∠B=∠D ∵AE ⊥BC ,AF ⊥CD ∴∠AEB=∠AFD在△ABE 和△ADF 中, {AB =AD ∠B =∠D∠AEB =∠AFD∴△ABE ≌△AD (AAS)19.(本小题满分6分) 如图,某同学利用镜面反射的原理巧妙地测出了树的高度,已知人的站位点A ,镜子点O ,树底点B 三点在同一水平线上,眼睛与地面的高度为1.6米,OA =2.4米,OB=6米,则树高为多少米.点O 作镜面的法线FO ,由入射角等于反射角 可知∠COF=∠DOF∵∠COA =90°-∠COF ∠DOB=90°-∠DOF ∴∠COA=∠DOB ∵∠CAO=∠OBD=90° ∴△ACO ∽△BDO ∴AC BD =OAOB∵AC=1.6米,OA=2.4米,OB=6米1.6BD =2.46∴BD=4米答:树高为4米20.(本小题满分8分)如图,在△ABC 中,∠CAD=∠B ,BC=8,D 是BC 边上一点,且CD=2.(1)求证:△ABC ∽△DAC.(2)求AC 的长.(1)∵∠C=∠C ,∠CAD=∠B∴△ABC ∽△DAC(2)∵△ABC ∽△DAC∴AC BC =CD AC∵CD=2,BC=8即AC B =2AC∴AC=421.(本小题满分8分)在如图的方格纸中(每个小方格都是边长为1个单位长度的正方形),△OAB 的顶点坐标分别为O(0,0),A(﹣2,﹣1),B(﹣1,﹣3),△O 1A 1B 1与△OAB 是关于点P 为位似中心的位似图形.(1)在图中标出位似中心P 的位置并直接写出P 点的坐标 .(2)以原点O 为位似中心,在位似中心的同侧画出△OAB 的一个位似△OA 2B 2,使它与△OAB 的位似比为2:1.(3)△OAB 的内部一点M 的坐标为(a ,b ),直接写出点M 在△OA 2B 2中的对应点M 2的坐标为 .(1)(﹣5,﹣1) (2)(3)(2a,2b)22.(本小题满分8分)有甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M 的坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标.(2)求点M(x,y)在函数y=﹣x+1的图象上的概率.(1)(2)一共有9种等可能性,其中在函数y=﹣x+1图象上的有2个,概率为2923.(本小题满分10分)如图,学校打算用16m的篱笆围成一个长方形的生物园饲养小兔,生物园的一面靠墙,墙长8m,长方形的面积是30m2.求生物园的长和宽.设宽为xm,则长为(16-2x)m由题意,得x(16-2x)=30解得x1=3,x2=5当x=3时,16-2×3=10 10>9,不合题意舍去,当x=5时,16-2×5=6答:围成矩形的长为6m,宽为5m.如图,在Rt△ABC 中,∠ACB=90°,AC=4cm ,BC=3cm ,点P 由点B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ,同时点Q 由A 出发沿AC 方向向点C 匀速运动,速度为1cm/s ,连接PQ .设运动的时间为t(s),其中0<1<4.解答下列问题:(1)AP= ,AQ = (用含t 的代数式表示)(2)当t 为何值时,△APQ ∽△ABC.(3)在P 、Q 运动过程中,是否存在某一时刻使得PC=PQ ,若能,求出此时t 的值;若不能,请说明理由.备用图(1) 备用图(2)(1)5-t t(2)当∠A=∠A∴当AP AB =AQ AC 时,△APQ ∽△ABC即5-t 5=t 4 ∴t=209(3)5-t 5=t+4-t 24t=2013如图,已知一次函数图象y=x+b 与y 轴交于点C(0,1),与反比例函数图象y=k x 交于点A(a ,2)和点B 两点.(1)求一次函数和反比例函数的解析式.(2)求点B 的坐标和△AOB 的面积.(3)若点M 为y 轴上的一个动点,N 为平面内任意一点,当四边形ABMN 是矩形时,请求 出M 点坐标.(1).一次函数图象y=x+b 与y 轴交于点C(0,1)∴b=1∴一次函数的解析式为y=x+1∵点A(a ,2)在直线y=x+1上,∴a=1即A(1,2)又∵反比例函数y=k x 过A 点∴k=2∴反比例函数为y=2x(2)反比例函数与一次函数交于点A 和点B联立两解析式得{y =2x y =x +1解得{x =1y =2或{x =﹣2y =﹣1∴B(﹣2,﹣1)△AOB 面积=1×1÷2+1×2÷2=1.5(3)M (0,3)或(0,﹣3)或(0,1+√172)或(0,1-√172)已知△ABC 中,∠ABC=90°,点D 、E 分别在边BC 、边AC 上,连接DE ,DF△DE ,点F 、点C 在直线DE 同侧,连接FC ,且AB BC =DE DF =k.(1)点D 与点B 重合时:①如图1,k=1时,AE 和FC 的数量关系是 ,位置关系是 . ②如图2,k=2时,猜想AE 和FC 的关系,并说明理由;(2)BD=2CD 时,①如图3,k =1时,若AE=2,S △CDF =6,求FC 的长度.②如图4,k=2时,点M 、N 分别为EF 和AC 的中点,若AB=10,直接写出MN 最小值.(1)①结论:AE=CF ,AE△CF②结论:AE=2CF ,AELCF∵AB BC =DE DF =2 ∠ABE=∠CBF∴△ABE ∽△CBF∴AE=2CF ∠A+∠BCF∵∠A+∠ACB=90°∴∠BCF+∠ACB=90°∴AELCF(2)①如图,过点D 作DH△AC 于H ,DT//AB 交AC 于T∵AB=BC ,∠ABC=90°∴∠ACB=45°∵DT ∥AB ,∴∠CDT=∠CBA=90°∴∠DTC=∠DCT=45°∴DT=DC∵DH⊥CT∴HT=HC∴DH=HT=HC设DH=HT=HC=m1(4m-2)m=62m1=2,m2=﹣3(舍去)2②53。
2023-2024学年北京东城区东直门中学初三(上)期中数学试题及答案
2023北京东直门中学初三(上)期中数 学考试时间:120分钟 总分100分一、选择题(本题共16分,每小题2分)1. “瓦当”是中国古建筑中覆盖檐头筒瓦前端的遮挡,主要有防水、排水、保护木制飞檐和美化屋面轮廓的作用.瓦当上的图案设计优美,字体行云流水,极富变化,是中国特有的文化艺术遗产.下面“瓦当”图案中既是轴对称图形又是中心对称图形的是( )A. B. C. D. 2. 抛物线()213y x =−+的顶点坐标为( )A. ()1,3B. ()1,3−C. ()1,3−−D. ()3,1 3. 在△ABC 中,CA CB =,点O 为AB 中点.以点C 为圆心,CO 长为半径作⊙C ,则⊙C 与AB 的位置关系是( )A. 相交B. 相切C.相离D. 不确定 4. 如图,四边形ABCD 是O 的内接四边形,70B ∠=︒,则D ∠的度数是( )A. 110°B. 90°C. 70°D. 50°5. 若一个扇形的圆心角为90°,半径为6,则该扇形的面积为( ) A. 32π B. 3π C. 6π D. 9π6. 一元二次方程2630kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 3k <B. 3k <且0k ≠C. 3k ≤D. 3k ≤且0k ≠ 7. 如图,将ABC 绕着点C 顺时针旋转50︒后得到A B C '''.若40,110A B ∠=∠='︒︒,则BCA '∠的度数是( )A. 90︒B. 80︒C. 50︒D. 30︒8. 如图,线段AB =5,动点P 以每秒1个单位长度的速度从点A 出发,沿线段AB 运动至点B ,以点A 为圆心,线段AP 长为半径作圆.设点P 的运动时间为t ,点P ,B 之间的距离为y ,⊙A 的面积为S ,则y 与t ,S 与t 满足的函数关系分别是( )A. 正比例函数关系,一次函数关系B. 一次函数关系,正比例函数关系C. 一次函数关系, 二次函数关系D. 正比例函数关系,二次函数关系二、填空题(本题共16分,每小题2分)9. 在平面直角坐标系中,点A 的坐标为(﹣2,3),若点A 与点B 关于原点O 对称,则B 点的坐标为____.10. 请写出一个开口向上,且经过点(0,1)−的二次函数解析式:________.11. 参加足球联赛的每两个队都进行2场比赛,共要比赛90场,共有多少个队参加比赛?设参加比赛的有x 个队,根据题意,可列方程为________.12. 把抛物线2112y x =+向右平移2个单位长度,得到的抛物线的解析式为________. 13. 如图,在O 中AB 是直径,CD AB ⊥,30BAC ∠=︒,2OD =,那么DC 的长等于________.14. 如图,在平面直角坐标系xOy 中,点()31A −,,()11B −,,若抛物线()20y ax a =>与线段AB 有公共点,则a 的取值范围是___________.15. 如图所示的网格是正方形网格,线段AB 绕点A 顺时针旋转α(0°<α<180°)后与⊙O 相切,则α的值为_____.16. 某快递员负责为A ,B ,C ,D ,E 五个小区取送快递,每送一个快递收益1元,每取一个快递收益2元,某天5个小区需要取送快递数量下表.30件,最少取快递15件,写出一种满足条件的方案______(写出小区编号);(2)在(1)的条件下,如果快递员想要在上午达到最大收益,写出他的最优方案______(写出小区编号).三、解答题(本题共68分,17题5分,18题每小题4分,第19—25题,每小题5分,26题6分,第27、28题,每小题7分)17. 计算:02cos30|(π+−−︒.18. 解一元二次方程:(1)解方程:250x x +=(2)解方程:261x x −=(配方法)19. 下面是小亮设计的“过圆上一点作已知圆的切线”的尺规作图过程.已知:点A 在O 上.求作:直线P A 和O 相切. 作法:如图,①连接AO ;②以A 为圆心,AO 长为半径作弧,与O 的一个交点为B ; ③连接BO ;④以B 为圆心,BO 长为半径作圆;⑤作B 的直径OP ;⑥作直线P A .所以直线P A 就是所求作的O 的切线.根据小亮设计的尺规作图过程,(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:证明:在O 中,连接BA .∵OA OB =,AO AB =,∴OB AB =.∴点A 在B 上. ∵OP 是B 的直径,∴90OAP ∠=︒(______)(填推理的依据).∴OA AP ⊥.又∵点A 在O 上, ∴P A 是O 的切线(______)(填推理的依据).20. 如图是一个隧道的横截面,它的形状是以点O 为圆心的圆的一部分.如果M 是O 中弦CD 的中点,EM 经过圆心O 交O 于点E ,6CD =,9EM =,求O 的半径.21. 已知二次函数243y x x =−+.(1)二次函数243y x x =−+图象与x 轴的交点坐标是 ,y 轴的交点坐标是 ,顶点坐标是 ; (2)在平面直角坐标系xOy 中,画出二次函数243y x x =−+的图象;(3)当14x <<时,结合函数图象,直接写出y 的取值范围 .22. 如图,点A 的坐标为(3,2),点B 的坐标为(3,0),作如下操作:以点A 为旋转中心,将ABO 顺时针方向旋转90°,得到AB 1O 1.(1)在图中画出AB1O 1.(2)请接写出点B 1的坐标 .(3)请直接写出点B 旋转到点B 1所经过的路径长 .23. 已知关于x 的一元二次方程220x x m −+−=有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为正整数,且该方程的根都是整数,求m 的值.24. 如图,AB 为O 的直径,BD CD ,过点A 作O 的切线,交DO 的延长线于点E .(1)求证:AC DE ∥;(2)若2AC =,1tan 2=E ,求OE 的长. 25. 原地正面掷实心球是北京市初中学业水平考试体育现场考试的选考项目之一.实心球被掷出后的运动路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系xOy ,实心球从出手到陆的过程中,它的直高度y (单位:m )与水距x (单位:m )近似满足函数关系2()(0)y a x h k a =−+<.小明进行了两次掷实心球训练.(1)第一次训练时,实心球的水平距离x 与竖直高度y 的几组数据如下:①实心球竖直高度的最大的值是________m ;②求出函数解析式________;(2)第二次训练时,实心球的竖直高度y 与水平距离x 近似满足函数关系20.09(4) 3.6y x =−−+,记第一次训练实心球的着陆点的水平距离为1d ,第二次训练实心球的陆点的水平距离为2d ,则1d ________2d (填“>”,“=”或“<”)26. 已知关于x 的二次函数222y x tx =−+.(1)求该抛物线的对称轴(用含t 的式子表示);(2)若点()3,M t m −,()5,N t n +在抛物线上,则m _________n ;(填“>”,“<”或“=”) (3)()11,P x y ,()22,Q x y 是抛物线上的任意两个点,若对于113x −≤<且23x =,都有12y y ≤,求t 的取值范围.27. 已知正方形ABCD 和一动点E ,连接CE ,将线段CE 绕点C 顺时针旋转90︒得到线段CF ,连接BE ,DF .(1)如图1,当点E 在正方形ABCD 内部时,①依题意补全图1;②求证:BE DF =;(2)如图2,当点E 在正方形ABCD 外部时,连接AF ,取AF 中点M ,连接AE ,DM ,用等式表示线段AE 与DM 的数量关系,并证明.28. 在平面直角坐标系xOy 中,O 的半径为1,P 是O 外一点,给出如下的定义:若在O 上存在一点T ,使得点P 关于某条过点T 的直线对称后的点Q 在O 上,则称Q 为点P 关于O 的关联点. (1)当点P 在直线2y x =上时,①若点()1,2P ,在点122Q ⎛⎫−− ⎪ ⎪⎝⎭,()20,1Q ,()31,0Q 中,点P 关于O 的关联点是______; ②若P 关于O 的关联点Q 存在,求点P 的横坐标p 的取值范围;(2)已知点32,2A ⎛⎫ ⎪⎝⎭,动点M 满足1AM ≤,若M 关于O 的关联点N 存在,直接写出MN 的取值范围.参考答案一、选择题(本题共16分,每小题2分)1. 【答案】B【分析】根据圆的性质和轴对称图形与中心对称图形的定义解答.【详解】A、不是轴对称图形,也不是中心对称图形,选项错误;B、既是轴对称图形又是中心对称图形,故选项正确;C、是轴对称图形,不是中心对称图形,选项错误;D、不是轴对称图形,是中心对称图形,选项错误.故选B.【点睛】本题考查了中心对称图形和轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2. 【答案】A【分析】根据顶点式的特点可直接写出顶点坐标.【详解】因为y=(x-1)2+3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(1,3).故选A.【点睛】本题考查了二次函数的性质:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h,此题考查了学生的应用能力.3. 【答案】B⊥,根据三角形切线的判定即可判断AB是C 【分析】根据等腰三角形的性质,三线合一即可得CO AB的切线,进而可得⊙C与AB的位置关系【详解】解:连接CO,=,点O为AB中点.CA CB∴⊥CO ABCO为⊙C的半径,∴是C的切线,AB∴⊙C与AB的位置关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键. 4. 【答案】A【分析】先根据圆内接四边形的对角互补得出180D B ∠+∠=︒,即可解答. 【详解】解:四边形ABCD 是O 的内接四边形,180D B ∴∠+∠=︒, 18070110D ∴∠=︒−︒=︒,故选:A .【点睛】本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键. 5. 【答案】D【分析】根据扇形公式S 扇形=2360n R π,代入数据运算即可得出答案. 【详解】解:由题意得,n=90°,R=6,S 扇形=229069360360n R πππ==, 故选:D .【点睛】本题主要考查了扇形的面积计算,属于基础题,解答本题的关键是熟练掌握扇形的面积公式,另外要明白扇形公式中,每个字母所代表的含义.6. 【答案】B【分析】根据一元二次方程的定义和一元二次方程根的判别式求解即可;【详解】解:由题意得:2(6)1200k k ⎧−−>⎨≠⎩ 解得:3k <且0k ≠故选:B .【点睛】本题考查了一元二次方程根的判别式,同时要满足该方程的二次项系数不为0;熟练运用根的判别式是解题关键.7. 【答案】B【分析】先利用旋转的性质得到50110ACA B B ''∠=︒==︒,∠∠,再利用三角形内角和计算出30ACB ∠=︒,然后计算BCA ACA '∠+∠即可.【详解】解: ABC 绕着点C 顺时针旋转50︒后得到A B C ''',50110ACA B B ''∴∠=︒==︒,∠∠,40A ∠=︒,18030ACB A B ∴∠=︒−︒−=∠∠,305080BCA BCA ACA ''∴∠=∠+∠=︒+︒=︒.故选:B .【点睛】本题考查了三角形内角和定理,旋转的性质,熟知旋转的性质是解题的关键:旋转图形对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等. 8. 【答案】C【分析】根据题意分别列出y 与t ,S 与t 的函数关系,进而进行判断即可.【详解】解:根据题意得AP t =,5PB AB AP t =−=−,即5y t =−()05t ≤≤,是一次函数;⊙A 的面积为S =22AP t ππ⨯=,即2S t π=()05t ≤≤,是二次函数故选C【点睛】本题考查了列函数表达式,一次函数与二次函数的识别,根据题意列出函数表达式是解题的关键.二、填空题(本题共16分,每小题2分)9. 【答案】(2,﹣3)【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的对应坐标符号相反可直接得到答案.【详解】解:∵点A 和点B 关于原点对称,点A 的坐标为(﹣2,3),∴点B 的坐标为(2,﹣3),故答案为:(2,﹣3).【点睛】此题主要考查了关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律.10. 【答案】21y x =−【分析】本题主要考查二次函数的性质,掌握二次函数的各种形式,利用特殊点代入求得答案即可.根据二次函数的性质,二次项系数大于0时,开口方向向下,再利用过点(0,1)−得出即可. 【详解】解:开口向上,且经过点(0,1)−的二次函数解析式,设顶点坐标为(0,1)−,故解析式为21y x =−.故答案为:21y x =−.11. 【答案】(1)90x x −=【分析】本题主要考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出方程是解题的关键.利用比赛的总场数=参赛队伍数(⨯参赛队伍数1)−即可得到答案.【详解】解:由题意得(1)90x x −=,故答案为:(1)90x x −=.12. 【答案】21(2)12y x =−+ 【分析】本题主要考查二次函数图像的与几何变换,熟记“上加下减,左加右减”是解题的关键.根据“上加下减,左加右减”解题即可.【详解】解:抛物线2112y x =+向右平移2个单位长度, 得21(2)12y x =−+, 故答案为:21(2)12y x =−+.13. 【答案】【分析】本题考查垂径定理、勾股定理和30︒所对的直角边等于斜边的一半,根据30BAC ∠=︒,得出DCA ∠,结合同弧所对的圆周角等于圆心角一半得到DOA ∠,推出30ODE ∠=︒,再结合30︒所对的直角边等于斜边的一半和勾股定理,即可求解.【详解】解:记CD AB ⊥于点E ,O 中AB 是直径,DE EC ∴=,90AED AEC ∠=∠=︒,30BAC ∠=︒,60DCA ∴∠=︒,AD AD =,120DOA ∴∠=︒,60DOE ∴∠=︒,30ODE ∴∠=︒,12OE OD ∴=, 2OD =,1OE ∴=,DE ∴==DC ∴=.故答案为:14. 【答案】119a ≤≤##119a ≥≥【分析】分别把A 、B 点的坐标代入2y ax =得a 的值,根据二次函数的性质得到a 的取值范围.【详解】解:把()31A −,代入2y ax =得19a =; 把()11B −,代入2y ax =得1a =,∴a 的取值范围为119a ≤≤. 故答案为:119a ≤≤. 【点睛】本题考查二次函数的图象与性质,解题的关键是熟练掌握二次函数的性质.15. 【答案】60°或120 °【分析】线段AB 绕点A 顺时针旋转α(0°<α<180°)后与⊙O 相切,切点为C′和C″,连接OC′、OC″,根据切线的性质得OC′⊥AB′,OC″⊥AB″,利用直角三角形30度的判定或三角函数求出∠OAC′=30°,从而得到∠BAB′=60°,同理可得∠OAC″=30°,则∠BAB″=120°.【详解】线段AB 绕点A 顺时针旋转α(0°<α<180°)后与⊙O 相切,切点为C′和C″,连接OC′、OC″, 则OC′⊥AB′,OC″⊥AB″,在Rt △OAC′中,∵OC′=1,OA=2∴∠OAC′=30°,∴∠BAB′=60°,同理可得∠OAC″=30°,∴∠BAB″=120°,综上所述,α的值为60°或120°.故答案为60°或120°.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了旋转的性质和直角三角形的性质.16. 【答案】 ①. A ,B ,C (答案不唯一) ②. A ,B ,E【分析】(1)根据三个小区需送快递总数量30≥,需取快递总数量15≥,求解即可;(2)先求出第个小区总收益,再比较,选择收益最多的,且又满足需送快递总数量30≥,需取快递总数量15≥的三个小区即可.【详解】解:(1)∵A 小区需送快递数量15,需取快递数量6,B 小区需送快递数量10,需取快递数量5,C 小区需送快递数量8,需取快递数量5,∴若前往A 、B 、C 小区,需取快递数量为151083330++=>,需取快递数量为6551615++=>,∴前往A ,B ,C 小区满足条件,故答案为:A ,B ,C (答案不唯一);(2)前往A 小区收益为:1516228⨯+⨯=(元),前往B 小区收益为:1015220⨯+⨯=(元),前往C 小区收益为:815218⨯+⨯=(元),前往D 小区收益为:417218⨯+⨯=(元),前往E 小区收益为:1314221⨯+⨯=(元),∵28212018>>>,15101330++>,65415++=,∴他的最优方案是前往A 、B 、E 小区收益最大,故答案为∶A ,B ,E .【点睛】本题考查有理数混合运算,有理数比较大小,属基础题目,难度不大.三、解答题(本题共68分,17题5分,18题每小题4分,第19—25题,每小题5分,26题6分,第27、28题,每小题7分)17. 【答案】-1【分析】根据实数的计算,把各个部分的值求出来进行计算即可.【详解】解:原式=212⨯+−−1−=-1.【点睛】本题考查了实数的混合运算,准确记忆特殊角的锐角三角函数值、绝对值化简、零指数幂、二次根式的化简是解题的关键.18. 【答案】(1)10x =,25x =−(2)13x =+,23x =【分析】本题主要考查解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键.(1)根据因式分解法解一元二次方程即可;(2)根据配方法解一元二次方程即可;【小问1详解】解:250x x +=, (5)0x x +=,10x =,25x =−;【小问2详解】解:261x x −=,26919x x −+=+,2(3)10x −=,3x −=,13x =+,23x =.19. 【答案】(1)见解析 (2)直径所对的圆周角是直角;经过半径的外端,并且垂直于这条半径的直线是圆的切线【分析】(1)根据题意作出图形即可;(2)根据圆周角定理得到∠OAP =90°,根据切线的判定定理即可得到结论.【小问1详解】解:补全的图形如图所示;【小问2详解】证明:在O 中,连接BA .∵OA OB =,AO AB =,∴OB AB =.∴点A 在B 上. ∵OP 是B 的直径,∴90OAP ∠=︒(直径所对的圆周角是直角)(填推理的依据).∴OA AP ⊥.又∵点A 在O 上, ∴P A 是O 的切线(经过半径的外端,并且垂直于这条半径的直线是圆的切线)(填推理的依据). 故答案为:直径所对的圆周角是直角;经过半径的外端,并且垂直于这条半径的直线是圆的切线【点睛】本题考查了作图,切线的判定,圆周角定理,正确的作出图形是解题的关键.20. 【答案】5【分析】本题主要考查了垂径定理,构造直角三角形是解题的关键.连接OC ,由垂径定理得出EM CD ⊥,则2CM DM ==,根据勾股定理求解即可.【详解】解:连接OC ,M 是O 中弦CD 的中点,EM 经过圆心O ,EM MD ∴⊥,CM MD ∴=,6CD =,3CM ∴=,设OC x =,则9OM x =−,在Rt COM △中,根据勾股定理可得,2223(9)x x +−=,解得5x =.故O 的半径为5.21. 【答案】(1)()1,0,()3,0;()0,3;(2,1)−(2)见解析 (3)13y −≤<【分析】本题考查了二次函数的图象和性质,画二次函数图象;(1)把一般式配成顶点式得到抛物线的顶点坐标,分别令0,0x y ==求得与坐标轴的交点坐标; (2(3)结合二次函数图象,写出当14x <<时对应的y 的取值范围.【小问1详解】解:令0y =,则2430x x −+=,解得:121,3x x ==,∴二次函数243y x x =−+图象与x 轴的交点坐标是()1,0,()3,0,令0x =,解得:3y =,∴二次函数243y x x =−+图象与y 轴的交点坐标是()0,3; ∵2243(2)1y x x x =−+=−−,∴该二次函数图象顶点坐标为(2,1)−;故答案为:()1,0,()3,0;()0,3;(2,1)−.【小问2详解】解:列表:;【小问3详解】解:由图象可知,当14x <<时,13y −≤<.故答案为:13y −≤<.22. 【答案】(1)见解析,(2)(1,2),(3)π【分析】(1)利用网格和旋转的性质画出点B 、O 的对应点B 1、O 1,从而得到△AB 1O 1;(2)由(1)得到点B 1的坐标;(3)根据弧长公式求解即可.【详解】解:(1)如图,△AB 1O 1为所作;(2)点B 1的坐标为(1,2);故答案为(1,2);(3)点B 旋转到点B 1所经过的路线长=902180π⋅⋅=π 故答案为:π.【点睛】本题考查了作图﹣旋转变换和弧长公式,解题关键是根据旋转的性质作出对应点.23. 【答案】(1)94m <(2)2m =【分析】本题主要考查根的判别式和解一元二次方程,熟练掌握根的判别式是解题的关键.(1)根据题意0∆>,代入求解即可;(2)求出1m =或2,代入方程求解即可.【小问1详解】解:依题意得224(1)41(2)0b ac m ∆=−=−−⨯⨯−> 94m ∴<; 【小问2详解】 解:m 为正整数,∴1m =或2,当1m =时,方程为210x x −−=的根12x =不是整数, 当2m =时,方程为20x x −=的根120,1x ==,都是整数,故2m =.24. 【答案】(1)见解析 (2)5【分析】(1)根据同圆中,等弧相等性质可得BAD CAD ∠=∠,再利用等边对等角及等量代换即可证得CAD D ∠=∠从而证得结论.(2)连接BC ,利用直径所对的圆周角是直角结合(1)中平行线的性质可求得B E ∠=∠,从而得到tan tan B E =,根据直角三角形的锐角三角函数的值结合勾股定理即可求得答案.【小问1详解】证明:BD CD =,∴BAD CAD ∠=∠,∵OA OD =,∴D BAD ∠=∠,∴CAD D ∠=∠,∴AC DE ∥.【小问2详解】如图,连接BC ,∵AB 为O 的直径,∴90C ∠=︒,∵AC DE ∥,∴∠=∠BAC AOE ,∵AE 是O 的切线,∴OA AE ⊥,∴90∠=∠=︒C OAE ,∴B E ∠=∠, ∴1tan tan 2==B E , 在Rt OAE △中,1tan 2B =,2AC =, ∴21tan 2AC B BC BC ===,解得4BC =,AB ∴===,∴OA =∵在Rt OAE △中,1tan 2E =,∴1tan 2AO E AE AE ===,解得AE =,∴5OE ===.【点睛】本题考查了平行线的判定及性质、切线的性质、圆周角定理、锐角三角函数值及勾股定理解直角三角形的应用,熟练掌握圆周角定理及平行线的判定及锐角三角函数值及勾股定理解直角三角形的应用是解题的关键.25. 【答案】(1)①3.6;②20.1(4) 3.6y x =−−+(2)<【分析】本题主要考查了二次函数的应用,待定系数法求函数关系式,读懂题意是解题的关键.(1)①根据表中的数据找出顶点坐标即可;②用待定系数法求函数解析式;(2)分别将0y =代入第一次和第二次的函数关系式,求出着陆点的横坐标,用表示出1d 和2d 进行比较即可.【小问1详解】解:①根据表格中的数据可得竖直高度的最大值是3.6m ,故答案为:3.6m ;②由①可知,顶点坐标为(4,3.6),故函数关系为2(4) 3.6(0)y a x a =−+<,把(0,2.0)代入2(4) 3.6y a x =−+得,16 3.62a +=,0.1a ∴=−,故函数解析式为20.1(4) 3.6y x =−−+;【小问2详解】解:由(1)可知函数解析式为20.1(4) 3.6y x =−−+,当0y =时,10x =(负值舍去),110m d ∴=,在20.09(4) 3.6y x =−−+中,令0y =得20.09(4) 3.60x −−+=,解得4x =(负值舍去),24)m d ∴=+,102104<+,12d d ∴<.26. 【答案】(1)x =t (2)<(3)t ≤1【分析】(1)根据对称轴的表达式直接求解即可;(2)利用抛物线的对称性和增减性进行判断即可;(3)根据二次函数的增减性进行判断解答即可. 【小问1详解】解:二次函数的对称轴为:222b t x t a −=−=−= 【小问2详解】解:∵a 10>,∴x t <时y 随x 的增大而减小,x t >,y 随x 的增大而增大根据抛物线的对称性可知:M 点关于对称轴对称的点为:()3,t m +,∵35t t t ++<<∴m n <故答案为:<【小问3详解】解:若对于113x −≤<且23x =,都有12y y ≤,∴点P 在Q 点的左侧,且对称轴在P ,Q 中间∴对称轴一定在水平距离上距离2x 更远或相等 ∴122x x +≥t (距离相等时122x x t +=,x 2更远时122x x +>t ) ∴332+>t 且312−≥t ∴3>t 且1≥t∴t ≤1.【点睛】本题考查二次函数的图象和性质,熟记二次函数对称轴的表达式,以及二次函数的增减性是解题的关键.27.【答案】(1)①见解析;②见解析(2)2=AE DM ;理由见解析【分析】(1)①根据题意补全图形即可;②证明()SAS BCE DCF ≌△△,根据全等三角形对应边相等得出结果即可;(2)连接BE 、DF ,延长DM ,使MN DM =,连接AN ,延长AD 交CF 于点G ,证明()SAS BCE DCF ≌△△,得出BE DF =,CBE CDF ∠=∠,证明()SAS AMN DMF ≌,得出AN DF =,MAN MFD ∠=∠,证明()SAS AND BEA ≌,得出AE DN =,即可证明结论.【小问1详解】解:①依题意补全图1,如图所示:②∵四边形ABCD 为正方形,∴BC CD =,90BCD ∠=︒,根据旋转可知,CE CF =,90ECF ∠=︒,∴90BCE ECD ECD DCF ∠+∠=∠+∠=︒,∴BCE DCF ∠=∠,∴()SAS BCE DCF ≌△△,∴BE DF =;【小问2详解】解:2=AE DM ;理由如下:连接BE 、DF ,延长DM ,使MN DM =,连接AN ,延长AD 交CF 于点G ,如图所示:∵四边形ABCD 为正方形,∴AB BC CD AD ===,90BCD ABC ADC ∠=∠=∠=︒,根据旋转可知,CE CF =,90ECF ∠=︒,∴90BCE ECD ECD DCF ∠+∠=∠+∠=︒,∴BCE DCF ∠=∠,∴()SAS BCE DCF ≌△△,∴BE DF =,CBE CDF ∠=∠,∵90CBE ABC ABE ABE ∠=∠+∠=︒+∠,90CDF CDG FDG FDG ∠=∠+∠=︒+∠,∴FDG ABE ∠=∠,∵点M 为AF 的中点,∴AM MF =,∵DM MN =,AMN DMF ∠=∠,∴()SAS AMN DMF ≌,∴AN DF =,MAN MFD ∠=∠,∴AN DF ∥,∴FDG NAD ∠=∠,∵FDG ABE ∠=∠,∴NAD ABE ∠=∠,∵AN DF =,BE DF =,∴AN BE =,∵AD AB =,∴()SAS AND BEA ≌,∴AE DN =,∵2DN DM =,∴2AE DM =.【点睛】本题主要考查了全等三角形的判定和性质,正方形的性质,旋转的性质,平行线的判定和性质,解题的 关键是作出辅助线,构造全等三角形,熟练掌握三角形全等的判定方法.28. 【答案】(1)①1Q ,2Q ;②55p −≤≤ (2)存在,14MN ≤≤【分析】(1)①根据新定义,画出图形,进而即可求解;②设2y x =与O 交于点M N ,,过点,N P 分别作x 轴的垂线,垂足分别为,A B ,根据勾股定理得出221x y +=,联立直线解析式,得出交点坐标,进而根据平行线分线段成比例得出p =p 的最小值为5−,即可求解; (2)依题意,关于O 的关联点在半径为3的圆内,进而根据点与圆的位置关系,求得MN 的最值,即可求解.【小问1详解】解:如图所示,1PQ 连线的中点在O 的内部, 2PQ 的中点的纵坐标为1,则点2,P Q 关于1y =对称点P 关于O 的关联点是1Q ,2Q ,故答案为:1Q ,2Q .②如图所示,设2y x =与O 交于点M N ,,过点,N P 分别作x 轴的垂线,垂足分别为,A B ,∵设O 上的点的坐标为(),x y ,则221x y +=,联立2212x y y x⎧+=⎨=⎩解得:x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩ 当P 点的对称点为M 时,点P 的横坐标最大,∵1,123ON OP ==+=,NA PB ∥, ∴N Px ON OP x =,∴5p =, 同理可得p的最小值为5−∴p ≤≤【小问2详解】 解:依题意,关于O 的关联点在半径为3的圆内,如图所示,∵1AM ≤,则M 在半径为1的A 上以及圆内,M 关于O 的关联点N∴MN 的最大值为314OM ON +=+=,如图所示,当M 在线段OA 上时,MN 取最小值,∵52OA == ∴511122MT OM OT OA AM OT =−=−−=−−= ∴21MN MT ==∴14MN ≤≤【点睛】本题考查了坐标与图形,勾股定理,平行线分线段成比例,解一元二次方程,点与圆的位置关系求最值问题,熟练掌握以上知识是解题的关键.。
2024年北京八中初三(上)期中数学试题及答案
2024-2025学年度第一学期期中练习题年级:初三 科目:数学 班级:_________ 姓名:__________..1. 在平面直角坐标系中,点A (3,4)-关于原点对称的点的坐标是( ) A. (3,4) B. (3,-4) C. (-3,-4) D. (-4,3) 2.已知⊙O 的半径为4,如果OP 的长为3,则点P 在( )A .⊙O 内B .⊙O 上C .⊙O 外D .不确定3. 若关于x 的一元二次方程220x x m +-=有一个根为 1,则另一个根的值为( ) A. 3B. 3-C. 32-D.124. 如图,在⊙O 中,弦AB ,CD 相交于点E ,∠AEC =74°,∠ABD =36°,则∠BOC 的度数为( )A. 100°B. 110°C. 148°D. 140°5. 在 圆、正六边形、平行四边形、等腰三角形、正方形这五个图形中,既是轴对称图形又是中心对称图形的图形有( )A .2个B .3个C .4个D .5个 6. 在平面直角坐标系xOy 中,抛物线2y ax bx c =++如图所示,则关于x 的方程240++-=ax bx c 的根的情况为( )A.没有实数根B.有两个相等的实数根C. 有两个不相等的实数根D.有实数根 7. 如图,点O 为线段AB 的中点,∠ACB =∠ADB =90°, 连接OC,OD .则下面结论不.一定成立的是( )A .OC =ODB .∠BDC =∠BAC C .∠BCD+∠BAD =180° D .AC 平分∠BAD第4题图 第6题图 第7题图8. 在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a =++≠的顶点为P (-1,k ),且经过点 A (-3,0),其部分图象如图所示,下面四个结论中, ①0abc >; ②2b a =-;③若点()N t n ,在此抛物线上且n c <,则02或><-t t ; ④对于任意实数t ,都有2(1)(1)0-++≤a t b t 成立. 正确的有( )个A. 0B. 1C. 2D. 3二、填空题(本题共16分,每小题2分)9. 写出一个开口向上,对称轴为1=x 的抛物线的表达式 .10. 将抛物线2=y x 向下平移3个单位,向左平移1个单位,得到新的抛物线的表达式是 . 11. ⊙O 的直径为17cm ,若圆心O 与直线l 的距离为7.5cm ,则l 与⊙O 的位置关系是________(填“相交”、“相切”或“相离”).12. 如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m ,另一边减少了3m ,剩余一块面积为20m 2的矩形空地,若原正方形空地边长是x m ,则可列关于x 的一元二次方程 .第12题图 第13题图 第16题图13. 如图,P A ,PB 分别与⊙O 相切于点A ,B ,点C 为劣弧AB 上的点,过点C 的切线分别交P A ,PB 于点M ,N .若P A =8,则△PMN 的周长为 .14. 在平面直角坐标系xOy 中,抛物线21(0)(3)a y a x +<=-的顶点坐标是 ;若点(2,1y ),(6,2y )在此抛物线上,则1y ,2y ,1的大小关系是 (用“<”号连接). 15. 已知二次函数2(2)2y a x a =--, 当14x ≤≤ 时,函数值y 的最大值为4,则a 的值为 .16. 如图,以点G (0,1)为圆心,2为半径的圆与x 轴交于A ,B 两点,与y 轴交于C ,D 两点,E 为G 上一动点,CF AE ⊥于点F ,连接FG ,则弦AB 的长度为 ;点E 在G 上运动的过程中,线段FG 的长度的最小值为 .三、解答题(本题共68分,17题每小题 3分;18-19题每题 4 分; 20-21题每题6分;22题5分;23题7分;24题6分;25题5分;26题6分;27题7分;28题6分) 17. 解方程:(1) 2410x x --=; (2)2230+=x x .18. 已知:如图,△ABC 绕某点按一定方向旋转一定角度后得到△A 1B 1C 1,点A ,B ,C 分别对应点A 1,B 1,C 1.(1)请通过画图找到旋转中心,将其记作O ; (2)直接写出旋转方向 (填顺时针或逆时针),旋转角度 °; (3)在图中画出△A 1B 1C 1.19. 如图, AB 是⊙O 的弦,半径OD ⊥AB 于点C . 若AB =16,CD =2,求⊙O 的半径的长.20. 已知关于x 的一元二次方程220mx x --=有两个不相等的实数根. (1)求m 的取值范围;(2)当m 取最小的正整数时,求方程的根.B21. 已知二次函数y=ax ²+bx+c (a ≠0)图象上部分点的横坐标x ,纵坐标y 的对应值如下表所示:(1值为 (2)求此二次函数的解析式,并用描点法画出该二次函数的图象;(不用列表) (3)一次函数3=+y kx ,当03x <<时,对于x 的每一个值,都有23kx ax bx c +>++,直接写出k 的取值范围.22. 如图,△ABC 中,∠C =90°. 将△ABC 绕点B 逆时针旋转60°得到△''A BC .若'3BC =,AC =4,求'AA 的长.23. 小明在学习了圆内接四边形的性质“圆内接四边形的对角互补”后,想探究它的逆命题“对角互补的四边形的四个顶点在同一个圆上”是否成立. 他先根据命题画出图形,并用符号表示已知,求证.已知:如图,在四边形ABCD 中,∠B+∠ADC=180º.求证:点A ,B ,C ,D 在同一个圆上.他的基本思路是依据“不在同一直线上的三个点确定一个圆”,先作出一个过三个顶点A ,B ,C 的⊙O ,再证明第四个顶点D 也在⊙O 上. 具体过程如下:步骤一 利用直尺与圆规,作出过A ,B ,C 三点的⊙O ,并保留作图痕迹.图1步骤二用反证法证明点D也在⊙O上.假设点D不在⊙O上,则点D在⊙O内或⊙O外.(ⅰ)如图2,假设点D在⊙O内.延长CD交⊙O于点D1,连接AD1,∴∠B+∠D1=180º(①).(填推理依据)∵∠ADC是△ADD1的外角,∴∠ADC=∠DAD1+∠D1.∴∠ADC>∠D1.∴∠B+∠ADC>180º.这与已知条件∠B+∠ADC=180º矛盾.∴假设不成立.即点D不在⊙O内.(ⅱ)如图3,假设点D在⊙O外.设CD与⊙O交于点D2,连接AD2,∴②+∠AD2C=180º.∵∠AD2C是△AD2D的外角,∴∠AD2C=∠DAD2+ ③.∴④<∠AD2C.∴⑤+∠ADC<180º.这与已知条件∠B+∠ADC=180º矛盾.∴假设不成立.即点D不在⊙O外.综上所述,点D在⊙O上.∴点A,B,C,D在同一个圆上.阅读上述材料,并解答问题:(1)根据步骤一,补全图1(要求:尺规作图,保留作图痕迹);(2)填写推理依据:①_____________________________________________;(3)填空:②,③,④,⑤.24. 如图,点C在以AB为直径的⊙O上,CD平分∠ACB交⊙O于点D,交AB于点E,过点D作DF∥AB,交CO的延长线于点F.(1)求证:直线DF是⊙O的切线;(2)若A∠=30°,AC DF的长.图2图325. 投掷实心球是北京市初中学业水平考试体育现场考试的选考项目之一. 实心球被投掷后的运动的运动路线可以看作是抛物线的一部分. 建立如图所示的平面直角坐标系,实心球从出手(点A 处)到落地的过程中,其竖直高度y (单位:m )与水平距离x (单位:m )近似满足二次函数关系.小石进行了三次训练,每次实心球的出手点A 的竖直高度为2m .记实心球运动路线的最 高点为P ,训练成绩(实心球落地点的水平距离)为d (单位:m ).训练情况如下:(1)求第二次训练时满足的函数关系式; (2)小石第二次训练的成绩2d 为 m ; (3)直接写出训练成绩1d ,2d ,3d 的大小关系.26. 在平面直角坐标系xOy 中,二次函数2222(0)y ax a x a =-+≠的图象与y 轴交于点A ,与直线x =2交于点B.(1)若AB ∥x 轴,求二次函数解析式;(2)记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点),若对于图象G 上任意一点C (C x ,C y ),都有2C y ≤,求a 的取值范围.2OA27. 如图,Rt ABC∆中,∠B=90°,∠ACB=α(0°<α<45°),点E是线段BC延长线上一点,点D为线段EC的中点,连接EA. 将射线EA绕点E顺时针旋转α得到射线EM,过点A作AF⊥EM,垂足为点F,连接FD.(1)用等式表示线段BD与DF之间的数量关系,并证明;(2)求∠FDB的大小(用含α的代数式表示);(3)若点D满足BC=CD,直接写出一个α的值,使得CF⊥BE.28.在平面直角坐标系xOy 中,将对角线交点为T 的正方形记作正方形T ,对于正方形T 和点P (不与O 重合)给出如下定义:若正方形T 的边上存在点Q ,使得直线OP 与以TQ 为半径的⊙T 相切于点P ,则称点P 为正方形T 的“伴随切点”.(1)如图,正方形T 的顶点分别为点O ,A (2-,2),B (4-,0),C (2-,2-).①在点1P (1-,1),2P (1-,1-),3P (2-,1)中,正方形T 的“伴随切点”是_____________;②若直线y x b =-+上存在正方形T 的“伴随切点”,求b 的取值范围;(2)已知点T (t ,1t -),正方形T 的边长为2.若存在正方形T 的两个“伴随切点”M ,N ,使得OMN 为等边三角形,直接写出t 的取值范围.x第1页,共4页2024-2025学年度第一学期初三数学期中练习答案一、选择题(本题共16分,每小题2分)题号12345678答案BACDBCDD二、填空题(本题共16分,每小题2分)9.2(1)y x =-(答案不唯一);10.2(1)3y x =+-;11.相交;12.(2)(3)20x x --=13.16;14.(3,1);211y y <<;15.2或2-;16.1-.三、解答题(本题共68分,17题6分;18-19题每题4分;20-21题每题6分;22题5分;23题7分;24题6分;25题5分;26题6分;27题7分;28题6分)17.解:(1)2410x x --=;2(2)5x -=1222x x ==(2)2230x x +=.(23)0x x +=1230,2x x ==-18解:(1)如图;(2)顺时针;90(3)如图19.解:连接OA .∵OD ⊥AB ,AB =16,∴AC =12AB =8.设OA=x ,则OC=x -2.∵OD ⊥AB ,∴OC ²+AC ²=OA²,第2页,共4页∴(x -2)²+64=x ².解得,x =17,∴⊙O 的半径为17.20.解:(1)∵关于x 的一元二次方程220mx x --=有两个不相等的实数根,∴14(2)810m m ∆=-⋅-=+>,∴18m >-且m ≠0.(2)∵m 取最小的正整数,∴m =1.此时一元二次方程为:x ²-x -2=0,解得12x =,21x =-.21.(1)0;(2)设y =a (x -2)²-1.将点(1,0)代入,得a =1,即y =(x -2)²-1.(3)1k ≥-且0k ≠.22.解:∵将△ABC 绕点B 逆时针旋转60°得到△''A BC∴△ABC ≌△''A BC ,∠'A BA =60°,∴''3BC B C ==.∵∠C =90°,AC =4,∴AB =5.∵'AB A B =,∴△'A BA 为等边三角形,∴''AA A B ==5.23.解:(1)如图;(2)圆内接四边形对角互补;(3)∠B ;∠D ;∠D ;∠B .24.(1)证明:连接OD ,∵CD 平分∠ACB ,∴∠ACD =∠BCD ,∴∠AOD =∠BOD ,∵∠AOD +∠BOD =180°,∴∠AOD =90°,∴OD ⊥AB ,第3页,共4页∵FD ∥AB ,∴OD ⊥FD ,∴FD 为⊙O 的切线.(2)∵AB 为⊙O 的直径,∴∠ACB =90°.∵∠A =30°,AC =∴AB =4,∴122OD AB ==.∴∠COB =2∠A =60°,∴∠AOF =∠COB =60°,∴∠FOD =30°.设DF=x ,OF =2x ,2=,∴3x =∴3DF =.25.(1)设2(4) 3.6y a x =-+,∵过点A (0,2),∴20(04) 3.6a =-+,∴0.1a =-,∴20.1(4) 3.6y x =--+.(2)10;(3)312d d d <<26.(1)∵A (0,2),AB ∥x 轴,∴B (2,2),∴24422a a -+=,∵0a ≠,∴1a =.∴222y x x =-+.(2)∵对称轴为:x=a ,∴A (0,2)关于对称轴x=a 的对称点'A (2a ,2).若a >0,∵当02x ≤≤时,2C y ≤,第4页,共4页∴22a ≥,∴1a ≥.若a <0,当02x ≤≤时,y 随x 增大而减小,∴2C y ≤恒成立.综上,1a ≥或a <0.27.(1)BD=DF ;证明:延长EF ,使FN =EF ,连接AN ,NC .∵AF ⊥EN ,∴AE =AN ,①∴∠EAN =180°2α-.延长CB ,使CB =BH .∵∠ABC =90°,∴AC =AH ,②∴∠CAH =180°2α-,∴∠NAC =∠EAH ,③∴△NCA ≌△EAH ,∴CN =EH .∵ED =DC ,EF =FN ,∴CN =2FD .∵EH =2BD ,∴FD =BD .(2)解:由(1)可知,△EAH ≌△NCA ,∴∠NCA =∠A =α,∴∠NCH =2α.∵NH ∥FD ,∴∠FDB =∠NCH =2α.(3)30°28.(1)①1P ,2P ;②∴21b -≤≤.(2t ≤≤t ≤≤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一学期期中考试初三数学试题卷一.选择题(本题6个小题,每小题3分,共18分)1.下列图形中,既是轴对称图形又是中心对称图形的是 ( )2.下列方程中,一元二次方程共有( ).①2320x x += ②22340x xy -+= ③214x x -= ④21x =⑤2303x x -+=A . 2个B .3个C .4个D . 5个3.下列等式成立的是( )A .9494+=+B .3327=C . 3333=+D .4)4(2-=-4.下列二次根式中属于最简二次根式的是( )A .44+aB .48C .14D .b a5.关于关于x 的一元二次方程220x x +-=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法判断 6.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA=5,则△PCD 的周长为( )A .5B .7C .8D .10二.填空题(本题8个小题,每小题3分,共24分) 7.若点A (a –2,3)与点B (4,–3)关于原点对称,则a= . 8.x 的取值范围是____________. 9.若2<x<3,化简()x x -+-322的正确结果是 _.10. 将点A (3,l )绕原点O 按顺时针方向旋转90°到点B ,则点B 的坐标是 .11.三角形两边的长分别是8和6,第三边的长是方程x²-12x +20=0的一个实数根,则三角形的周长是 .第6题12.九年级(9)班的全体同学,在新年来临之际,在贺卡上写上自己的心愿和祝福赠送给其他同学各一张,全班共互赠了5112张,设全班有x 名同学,那么根据题意列出的方程是 . 13.如图,⊙M 与x 轴相交于点A (2,0),B (8,0),与y 轴相切于点C ,圆心M 的坐标为 .M (5,4).14.直角三角形的边长为6和8,则它的外接圆的直径为 .三.(本题4个小题,每小题6分,共24分)15.计算: 48268126-⎪⎪⎭⎫⎝⎛- 16.解方程: ()6432+=+x x x17.已知关于x 的方程x 2+kx -2=0的一个解与方程311=-+x x 解相同. (1)求k 的值;(2)求方程x 2+kx -2=0的另一个根.18. 图中正三角形与正六边形的周长相等,这个正三角形的面积是12平方厘米,那么这个正六边形的面积是多少?四.(本题2个小题,每小题8分,共16分) 19. 如图,在边长为1的正方形组成的网格中,△AOB 的顶点均在格点上,点A 、B 的坐标分别是A (3,2)、B (1,3).△AOB 绕点O 逆时针旋转90°后得到△A 1OB 1.(1)画出旋转后的图形;(2)点A 1的坐标为 .(3)在旋转过程中,点B 经过的路径为弧BB 1,那么弧BB 1的长为多少20. 如图,AB是⊙O的一条弦,OD AB⊥,垂足为C,交⊙O于点D,点E在⊙O 上.(1)若52AOD∠=,求DEB∠的度数;(2)若3OC=,5OA=,求AB的长.五.(本题2个小题,每小题9分,共18分)21.如图,已知在⊙O中,OB=4,AC是⊙O的直径,AC⊥BD 于F,图中阴影部分的面积为316π(1)求BD的长及∠A的度数(2)若阴影扇形围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.22.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图①,若2AB=,30P∠=︒,求AP的长(结果保留根号);(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.六.(本题2个小题,每小题10分,共20分)23.有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器:(1)若此单位需购买12台图形计算器,应去哪家公司购买花费较少?(2)若此单位恰好花费7280元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少?A图①A D图②24. 如图,将△ABC的顶点A放在⊙O上,现从AC与⊙O相切于点A(如图1)的位置开始,将△ABC绕着点A顺时针旋转,设旋转角为α(0°<α<120°),旋转后AC,AB分别与⊙O交于点E,F,连接EF(如图2).已知∠BAC=60°,∠C=90°,AC=8,⊙O的直径为8.(1)在旋转过程中,有以下几个量:①弦EF的长;②弧EF的长;③∠AFE 的度数;④点O到EF的距离.其中不变的量是(填序号);(2)当BC与⊙O相切时,请直接写出α的值,并求此时△AEF的面积.初三数学参考答案一.选择题(本题6个小题,每小题3分,共18分) 1、B. 2、B . 3、B. 4、C . 5、A. 6、D. 二.填空题(本题8个小题,每小题3分,共24分) 7、-2. 8、52≤x . 9、1. 10、(-1,3). 11、24. 12、()51121=-x x 13、 (5,4). 14、8或10. 三.(本题4个小题,每小题6分,共24分)15、3203- -------------------6分16、23,221-==x x -------------------6分17、(1)方程311=-+x x 两边同乘以x-1得,x+1=3(x-1),解得x=2, 经检验是原方程的解,所以x=2. -------------------2分 把x=2代入方程x 2+kx-2=0,得4+2k-2=0,所以k=-1.-------------------3分 (2)而方程两根之积为-2,所以另一个解为-1.因此k=-1,另一个解为-1. -------------------6分 18. 解:设正六边形的边长为a ,大正三角形的边长为b ,根据题意可得: 6a=3b ,则a :b=3:6=1:2;又由于大正三角形里面的每一个小正三角形的边长等于大正三角形边长(b )的1/2,所以大正三角形里面的每一个小正三角形的面积等于正六边形里面的每一个小正三角形的面积;因此每一个小正三角形的面积是:12÷4=3(平方厘米), 正六边形的面积是:3×6=18(平方厘米);答:这个正六边形的面积是18平方厘米. -------------------6分四.(本题2个小题,每小题8分,共16分)19.-------------------3分210π(-2,3); -------------------5分-------------------8分20.解:(1)∵OD ⊥AB ,垂足为C ,交⊙O 于点D , ∴弧AD=弧BD , ∵∠AOD=52°, ∴∠DEB=26°; -------------------4分 (2)∵OD ⊥AB ,OC=3 ,AO=5. ∴在直角三角形AOC 中,∴AC=BC=4 .∴AB=8. -------------------8分 五.(本题2个小题,每小题9分,共18分)21. 解:(1)=⨯36042πn 316π,n=120°∵OC ⊥BD ,AC 为直径,∴AC 平分BD , ∴BD=2BF ,在Rt △OBF 中,∠BOF=60°,BO=4,BF=23,BD=43, -------------------3分 ∠BOF=∠A+∠ABO=60°, ∵OB=OA∴∠A=∠ABO=30° -------------------5分(2)∵r ππ238= ∴ r=34. -------------------9分22.(1)解:∵AB 是⊙O 的直径,AP 是⊙O 的切线, ∴AB ⊥AP , ∴∠BAP=90°;又∵AB=2,∠P=30°,∴AP=32 ------------------- 4分 (2)证明:如图,连接OC ,OD 、AC . ∵AB 是⊙O 的直径, ∴∠ACB=90°(直径所对的圆周角是直角), ∴∠ACP=90°;又∵D 为AP 的中点,∴AD=CD (直角三角形斜边上的中线等于斜边的一半); 在△OAD 和△OCD 中, ∴△OAD ≌△OCD (SSS ),∴∠OAD=∠OCD (全等三角形的对应角相等); 又∵AP 是⊙O 的切线,A 是切点, ∴AB ⊥AP , ∴∠OAD=90°, ∴∠OCD=90°,即直线CD 是⊙O 的切线. -------------------9分六.(本题2个小题,每小题10分,共20分)23.解:(1)在甲公司购买12台图形计算器需要用12×(800-20×12)=6720元, 在乙公司购买需要用75%×800×12=7200元>6720元,∴应去甲公司购买; -------------------3分 (2)设该单位买x 台,若在甲公司购买则需要花费x (800-20x )元; 若在乙公司购买则需要花费75%×800x=600x 元; ①若该单位是在甲公司花费7280元购买的图形计算器, 则有x (800-20x )=7280,解之得x 1=14,x 2=26. -------------------5分 当x 1=14时,每台单价为800-20×14=520>440,符合题意;当x 2=26时,每台单价为800-20×26=280<440,不符合题意,舍去. ----------------7分 ②若该单位是在乙公司花费7280元购买的图形计算器, 则有600x=7280,解之得x=12152,不符合题意,舍去. -------------------9分 答:该单位是在甲公司购买的图形计算器,买了14台. -------------------10分 24.解:(1)∵在整个旋转过程中,∠A 为弦切角或圆周角,且大小不变,所以其所对的弦、弧不变; ∴①②正确;∵根据勾股定理得:O 到EF 的距离是2221⎪⎭⎫ ⎝⎛-EF OF ,∵OB 不变,EF 不变, ∴④正确;∵在整个旋转过程中,∠AEF 和∠AFE 都在改变,大小不能确定, ∴③错误;故答案为:①②④. (多填或填错得0分,少填酌情给分) -------------------4分 (2)α=90°. ------------------5分 依题意可知,△ACB 旋转90°后AC 为⊙O 直径, 且点C 与点E 重合, 因此∠AFE=90°.∵AC=8,∠BAC=60°,∴AF=21AC=4,EF=34, ∴S △AEF =21×4×34=83. -------------------10分。