3-2圆对称性练习题

合集下载

人教版六年级数学上册第三单元第二课时_圆的对称性(例3)

人教版六年级数学上册第三单元第二课时_圆的对称性(例3)

1 、判断:
(1)在同一个圆内只可以画100条直径。 ( × ) (2)所有的圆的直径都相等。 (
× )
(3)两端都在圆上的线段叫做直径。 ( × ) (4)等圆的半径都相等。 (

)
一个图形沿着一条直线对折,两侧的图形能够完全
重合,这个图形就是轴对称图形。折痕所在的这条 直线叫做对称轴。
画出对称轴,看能画几条。
( )。 5厘米
6、圆心决定圆的( ),半径决定圆的( )。 位置 大小
7、在同一个圆里,所有的直径都( )。 相等
8、一个圆的半径扩大到原来的3倍,那么它的直径
扩大到原来的( 3 )倍。
对的打“√”,错的打 “×” (1)半径是射线,直径是直线。( × )
(2)圆的直径都相等。( ×) (3)圆心决定圆的位置,半径决定 圆的大小。( √ )
.
无数条
无数条
2条
1条
3条
2条
树苗如果因为怕痛而拒 绝修剪,那就永远不会成材。
人教版六年级数学上册第三单元
圆的 性 对称
复习:
1、连接( )和( )任意一点的线段叫做圆的 圆心 圆上 半径。 2、在同一个圆中,所有的半径都( 相等 )。 3、在同一个圆中,直径有(无数 )条。 4、在同一个圆里,半径的长度是直径的(一半 ),直 径的长度是半径的( )。 两倍
复习:
5、一பைடு நூலகம்圆的直径是10厘米,那么这个圆的半径是
圆也是轴对称图形。
3
你能分别画出下面两个圆的对称轴吗?你能画 出几条呢?
o .
o .
你发现了什么? 与同桌说一说。
小结:
直径所在的直线是圆的对称轴。 圆的对称轴有无数条。

圆的对称性 - 习题2

圆的对称性 - 习题2

圆的对称性参考答案与试题解析一.选择题(共7小题)1.(2008•台湾)如图,AD为圆O的直径.甲、乙两人想在圆上找B,C两点,作一个正三角形ABC,其作法如下:甲:1.作OD中垂线,交圆于B,C两点,2.连AB,AC,△ABC即为所求.乙:1.以D为圆心,OD长为半径画弧,交圆于B,C两点,2.连AB,BC,CA,△ABC即为所求.对于甲、乙两人的作法,下列判断何者正确()A.甲、乙皆正确 B.甲、乙皆错误C.甲正确、乙错误D.甲错误、乙正确【分析】根据垂径定理和等边三角形的判定求解.【解答】解:甲的作图:BC是OD的中垂线,则在直角△OBE中,OE=OB,则∠OBE=30°,∠BOE=60°,∠BOC=120°,∴∠BAC=60°.根据条件易证AB=AC,则△ABC是等边三角形.乙的作图:连接BD,则△OBD是等边三角形.因而∠BAD=30°,∠BAC=60°.根据条件易证AB=AC,则△ABC是等边三角形.所以甲乙皆正确,故选A.【点评】AD经过圆心,则AD所在的直线是本题图形的对称轴.2.(2013•陕西校级一模)⊙O的直径AB和弦CD相交于点E,已知AE=6cm,EB=2cm,∠CEA=30°,则弦CD的长为()A.8cm B.4cm C.2D.2【分析】先过点O作OM⊥CD,连结OC,根据垂径定理得出CD=2CM,再根据AE=6cm,EB=2cm,求出AB,再求出OC、OB、OE,再根据∠CEA=30°,求出OM=OE=×2=1,根据CM=,求出CM,最后根据CD=2CM即可得出答案.【解答】解:过点O作OM⊥CD,连结OC,则CD=2CM,∵AE=6cm,EB=2cm,∴AB=8cm,∴OC=OB=4cm,∴OE=4﹣2=2(cm),∵∠CEA=30°,∴OM=OE=×2=1(cm),∴CM===,∴CD=2.故选:C.【点评】此题考查了垂经定理,用到的知识点是垂经定理、勾股定理、30°角的直角三角形,关键是根据题意做出辅助线,构造直角三角形.3.(2013•洛阳模拟)如图,⊙O的直径AB=10,E在⊙O内,且OE=4,则过E点所有弦中,长度为整数的条数为()A.4 B.6 C.8 D.10【分析】过E作CD⊥AB于E,连接OC,则CD是过E的⊙O的最短的弦,AB是过E的⊙O的最长弦,根据勾股定理和垂径定理求出CD=6,得出弦的长度为6(1条),7、8、9(都有2条),10(1条),即可得出答案.【解答】解:∵AB=10,∵OB=OA=OC=5,过E作CD⊥AB于E,连接OC,则CD是过E的⊙O的最短的弦,∵OB⊥CD,∴∠CEO=90°,由勾股定理得:CE===3,∵OE⊥CD,OE过O,∴CD=2CE=6,∵AB是过E的⊙O的最长弦,AB=10,∴过E点所有弦中,长度为整数的条数为1+2+2+2+1=8,故选C.【点评】本题考查了垂径定理和勾股定理的应用,关键是能求出符合条件的所有情况.4.(2015秋•盐城校级期末)如图,一宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“1”和“4”(单位:cm),则该圆的半径为()A.5cm B.cm C.cm D.cm【分析】根据题意可知,圆内的弦长为3cm,作出弦的弦心距,根据垂径定理和勾股定理,可以求出圆的半径.【解答】解:如图示,连接OA,根据题意知,PC=2cm,OP⊥AB,∴AP=BP,∵AB=3cm,∴AP=cm,在Rt△AOP中,设OA=x,则0P=x﹣2,根据勾股定理得,+(x﹣2)2=x2,解得,x=.故选C.【点评】解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+()2成立,知道这三个量中的任意两个,就可以求出另外一个.5.(2010•西藏)如图,⊙O的直径CD⊥弦AB于点P,且点P为OD的中点,已知AB=2,则CD的值为()A.2 B.4 C.D.【分析】连接OA,由CD垂直于AB,利用垂径定理得到P为AB的中点,求出AP的长,设OA=OD=x,由P为OD中点,得到OP为x,在直角三角形AOP中,利用勾股定理列出关于x的方程,求出方程的解即可得到x的值,即为圆的半径,进而求出CD的长.【解答】解:连接OA,∵CD⊥AB,∴P为AB的中点,∴AP=AB=,∵P为AB的中点,∴OP=PD=OD,在Rt△AOP中,OA=x,OP=x,根据勾股定理得:OA2=OP2+AP2,即x2=x2+3,即x2=4,解得:x=2,则CD=4.故选B【点评】此题考查了垂径定理,勾股定理,利用了方程的思想,熟练掌握垂径定理是解本题的关键.6.(2013•本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为()A.2 B.C.2D.【分析】先过O作OC⊥AP,连结OB,根据OP=4,∠APO=30°,求出OC的值,在Rt△BCO中,根据勾股定理求出BC的值,即可求出AB的值.【解答】解:过O作OC⊥AP于点C,连结OB,∵OP=4,∠APO=30°,∴OC=sin30°×4=2,∵OB=3,∴BC===,∴AB=2;故选A.【点评】此题考查了垂经定理,用到的知识点是垂经定理、含30度角的直角三角形、勾股定理,解题的关键是作出辅助线,构造直角三角形.7.(2009•广元)如图,半径为5的⊙P与y轴相交于M(0,﹣4),N(0,﹣10)两点,则圆心P的坐标为()A.(5,﹣4)B.(4,﹣5)C.(4,﹣7)D.(5,﹣7)【分析】由M(0,﹣4),N(0,﹣10),即可得MN的值,然后连接PM,过点P作PE⊥MN于E,根据垂径定理可得ME的值,然后由勾股定理,即可求得PE的值,则可得圆心P的坐标.【解答】解:∵M(0,﹣4),N(0,﹣10),∴MN=6,连接PM,过点P作PE⊥MN于E,∴ME=NE=MN=3,∴OE=OM+EM=4+3=7,在Rt△PEM,PE===4,∴圆心P的坐标为(4,﹣7).故选C.【点评】此题考查了垂径定理,勾股定理的知识.此题难度不大,解题的关键是数形结合思想的应用,注意辅助线的作法.二.填空题(共1小题)8.(2015•黄冈中学自主招生)在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是.【分析】过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.分别求出PD、DC,相加即可.【解答】解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.∵AB=2,∴AE=,PA=2,∴PE=1.∵点D在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=.∵⊙P的圆心是(2,a),∴点D的横坐标为2,∴OC=2,∴DC=OC=2,∴a=PD+DC=2+.故答案为:2+.【点评】本题综合考查了一次函数与几何知识的应用,题中运用圆与直线的关系以及直角三角形等知识求出线段的长是解题的关键.注意函数y=x与x轴的夹角是45°.三.解答题(共17小题)9.(2007•双柏县)如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交弧BC于D.(1)请写出五个不同类型的正确结论;(2)若BC=8,ED=2,求⊙O的半径.【分析】(1)AB是⊙O的直径,则AB所对的圆周角是直角,BC是弦,OD⊥BC于E,则满足垂径定理的结论;(2)OD⊥BC,则BE=CE=BC=4,在Rt△OEB中,由勾股定理就可以得到关于半径的方程,可以求出半径.【解答】解:(1)不同类型的正确结论有:①BE=CE;②弧BD=弧DC;③∠BED=90°;④∠BOD=∠A;⑤AC∥OD;⑥AC⊥BC;⑦OE2+BE2=OB2;⑧S△ABC=BC•OE;⑨△BOD是等腰三角形;⑩△BOE∽△BAC…(2)∵OD⊥BC,∴BE=CE=BC=4,设⊙O的半径为R,则OE=OD﹣DE=R﹣2,在Rt△OEB中,由勾股定理得:OE2+BE2=OB2,即(R﹣2)2+42=R2,解得:R=5,∴⊙O的半径为5.【点评】本题主要考查了垂径定理,求圆的弦,半径,弦心距的长问题可以转化为解直角三角形的问题.10.(2007•佛山)如图,⊙O是△ABC的外接圆,且AB=AC=13,BC=24,求⊙O的半径.【分析】可通过构建直角三角形进行求解.连接OA,OC,那么OA⊥BC.在直角三角形ACD中,有AC,CD的值,AD就能求出了;在直角三角形ODC中,用半径表示出OD,OC,然后根据勾股定理就能求出半径了.【解答】解:连接OA交BC于点D,连接OC,OB,∵AB=AC=13,∴=,∴∠AOB=∠AOC,∵OB=OC,∴AO⊥BC,CD=BC=12在Rt△ACD中,AC=13,CD=12所以AD=设⊙O的半径为r则在Rt△OCD中,OD=r﹣5,CD=12,OC=r所以(r﹣5)2+122=r2解得r=16.9.答:⊙O的半径为16.9.【点评】本题主要考查了垂径定理和勾股定理的综合运用.11.(2013秋•章丘市校级月考)(1)如图1,AB为圆O的直径,弦CD⊥AB,垂足为点E,连结OC,若AB=10,CD=8,求AE的长.(2)如图2,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,求PD的长度.【分析】(1)根据垂径定理可以得到CE的长,在直角△OCE中,根据勾股定理即可求得.(2)先过点P作PE⊥OB于E,根据两直线平行,内错角相等可得∠AOP=∠COP,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠PCE=∠AOB=30°,再根据直角三角形30°角所对的直角边等于斜边的一半解答即可.【解答】解:(1)∵AB为圆O的直径,弦CD⊥AB,垂足为点E.∴CE=CD=4.在直角△OCE中,OE===3.则AE=OA﹣OE=5﹣3=2;(2)如图,过点P作PE⊥OB于E,∵PC∥OA,∴∠AOP=∠COP,∴∠PCE=∠BOP+∠COP=∠BOP+∠AOP=∠AOB=30°,又∵PC=4,∴PE=PC=×4=2,∵∠AOP=∠BOP,PD⊥OA,∴PD=PE=2.【点评】此题考查了垂经定理和30°角的直角三角形,用到的知识点是垂经定理、勾股定理、直角三角形中0°角所对的直角边等于斜边的一半,关键是作辅助线构造出含30°的直角三角形.12.(2015秋•湖南月考)如图是以定长AB为直径的⊙O,CD为上的一条动弦(点C与A,点D与B不重合),CF⊥CD交AB于F,DE⊥CD交AB于E.(1)求证:AF=BE;(2)若弦CD的长度保持不变,四边形CDEF的面积是否也保持不变?并请说明理由.【分析】(1)作OM⊥CD于M,根据垂径定理得到CM=DM,根据平行线等分线段定理证明结论;(2)根据梯形中位线定理和梯形的面积公式解答即可.【解答】(1)证明:作OM⊥CD于M,则CM=DM,∵CF⊥CD,DE⊥CD,OM⊥CD,∴CF∥OM∥DE,又CM=DM,∴OF=OE,又OA=OB,∴OA﹣OF=OB﹣OE,即AF=BE;(2)∵弦CD的长度保持不变,∴弦心距OM的长度保持不变,由(1)得,OM是梯形CDEF的中位线,∴OM=(CF+DE),∵四边形CDEF的面积=OM×CD,∴四边形CDEF的面积保持不变.【点评】本题考查的是垂径定理、梯形中位线定理的应用,掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧、梯形的中位线平行于两底,并且等于两底和的一半是解题的关键.13.(2015秋•富顺县月考)已知:在⊙O中,M、N分别是半径OA、OB的中点,且CM ⊥OA,DN⊥OB.求证:.【分析】首先连接OC,OD,由M、N分别是半径OA、OB的中点,且CM⊥OA,DN⊥OB,易证得Rt△OMC≌Rt△OND(HL),继而证得∠MOC=∠NOD,然后由圆心角与弧的关系,证得结论.【解答】证明:连接OC,OD,则OC=OD,∵M、N分别是半径OA、OB的中点,∴OM=ON,∵CM⊥OA,DN⊥OB,∴∠OMC=∠OND=90°,在Rt△OMC和Rt△OND中,,∴Rt△OMC≌Rt△OND(HL),∴∠MOC=∠NOD,∴.【点评】此题考查了圆心角与弧的关系以及全等三角形的判定与性质.注意准确作出辅助线是解此题的关键.14.(2013秋•包河区期末)如图,在⊙O中,弦AB垂直于直径CD,垂足为E,连接OB、AD,∠ADC=30°,弦AB=2.(1)求∠BOC的度数;(2)求CE的长.【分析】(1)先根据垂径定理得出=,再由∠ADC=30°求出∠BOC的度数即可;(2)在Rt△OBE中,根据BE=,∠BOC=60°可得出OB及OE的长,进而可得出CE的长.【解答】解:(1)∵弦AB垂直于直径CD,∠ADC=30°,∴=,∴∠BOC=2∠ADC=60°;(2)∵AB⊥CD,AB=2,∴BE=AB=.∵由(1)知,∠BOC=60°,∴OB===2,OE===1,∴CE=2﹣1=1.【点评】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.15.(2013秋•仙游县月考)已知如图(1),AB是⊙O的直径,弦CD⊥AB于H,OE⊥AC 于E,猜想OE与BD的数量关系是BD=2OE.探索:①若:AB不是⊙O的直径,其他的条件不变[如图(2)]则(1)中的结论是否成立?如果成立,请给予证明,不成立,请说明理由.②若:AB,CD的位置关系不变,但其交点在⊙O外[如图(3)],则上述结论还成立吗?请说明你的判断依据.【分析】(1)首先连接BC,由AB是⊙O的直径,弦CD⊥AB,可得BC=BD,又由OE⊥AC,易得OE是△ABC的中位线,继而证得BD=2OE;(2)①首先连接AO,并延长AO交⊙O于点F,连接CF,易得OE是△ACF的中位线,则可得CF=2OE,又由圆周角定理与弧与弦的关系,可证得BD=CF,继而证得结论;②首先连接AO,并延长AO交⊙O于点F,连接CF,易得OE是△ACF的中位线,则可得CF=2OE,又由圆周角定理与弧与弦的关系,可证得BD=CF,继而证得结论.【解答】解:(1)连接BC,∵AB是⊙O的直径,弦CD⊥AB,∴=,∴BC=BD,∵OE⊥AC,∴AE=CE,∵AO=BO,∴BC=2OE,∴BD=2OE.故答案为:BD=2OE.(2)①成立.理由:连接AO,并延长AO交⊙O于点F,连接CF,∵OE⊥AC,∴AE=CE,∵OA=OF,∵CF=2OE,∵AF是直径,∴∠ACF=90°,∵CD⊥AB,∴∠AHC=90°,∴∠CAH+∠ACH=90°,∵∠ACH+∠DCF=90°,∴∠CAH=∠DCF,∵∠CAH=∠CDB,∴∠DCF=∠CDB,∴=,∴=,∴CF=BD,∴BD=2OE.②成立.理由:连接AO,并延长AO交⊙O于点F,连接CF,∵OE⊥AC,∴AE=CE,∵OA=OF,∵CF=2OE,∵AF是直径,∴∠ACF=90°,∵CD⊥AB,∴∠AHC=90°,∴∠CAH+∠ACH=90°,∵∠ACH+∠DCF=90°,∴∠CAH=∠DCF,∵∠CAH=∠CDB,∴∠DCF=∠CDB,∴=,∴=,∴CF=BD,∴BD=2OE.【点评】此题考查了垂径定理、圆周角定理、弧与弦的关系以及三角形中位线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.(2009秋•和县期末)如图,AB是⊙O的直径,CD是⊙O的一条弦,且CE⊥AB于E,连接AC、BC.若BE=2,CD=8,求AB和AC的长.【分析】根据垂径定理得到CE的长,再根据勾股定理得到关于半径的方程,从而求得AB 的长;进一步求得AE的长,从而根据勾股定理求得AC的长.【解答】解:∵AB是⊙O的直径,CD⊥AB,∴CE=ED=4.设⊙O的半径为r,OE=OB﹣BE=r﹣2.在Rt△OEC中,OE2+CE2=OC2,即(r﹣2)2+16=r2,解得r=5.∴AB=10.又CD=8,∴CE=DE=4,∴AE=8.∴AC=.【点评】此题综合运用了垂径定理和勾股定理.17.(2010秋•常州期末)如图,⊙O的半径为6,点C在⊙O上,将圆折叠,使点C与圆心O重合,折痕为AB且点A、B在⊙O上,E、F是AB上两点(点E、F不与点A、B重合且点E在点F的右边),且AF=BE.(1)判定四边形OECF的形状;(2)当AF为多少时,四边形OECF为正方形?【分析】(1)四边形OECF为菱形,连接OC,交AB于点D,先由折叠的性质得到OD=CD,且OC垂直于AB,利用垂径定理得到D为AB的中点,利用等式的性质得到FD=ED,利用对角线互相平分的四边形为平行四边形得到OEFC为平行四边形,再由FD=ED,且OD 垂直于EF,得到OE=OF,即可得到四边形OECF为菱形;(2)四边形OEFC要为正方形,必须FD=ED=OD=CD,由半径求出OD的长,得到DF的长,在直角三角形AOD中,利用勾股定理求出AD的长,由AD﹣DF即可求出此时AF的长.【解答】解:(1)四边形OEFC为菱形,理由为:连接OC,交AB于点D,由折叠的性质得到OD=CD,OC⊥AB,则D为AB的中点,即AD=BD,∵AF=BE,∴AD﹣AF=BD﹣BE,即FD=ED,∴四边形OEFC为平行四边形,∵FD=ED,OD⊥EF,∴OE=OF,则四边形OEFC为菱形;(2)∵OD=DC=OC=3,∴在Rt△AOD中,根据勾股定理得:AD==3,要使四边形OEFC为正方形,必须FD=OD=3,则此时AF=AD﹣FD=3﹣3.【点评】此题考查了垂径定理,勾股定理,平行四边形、菱形、正方形的判定,熟练掌握垂径定理是解本题的关键.18.(2009秋•自贡校级期中)如图,已知:在△ABC中,a、b、c分别是∠A、∠B、∠C 的对边,且a、b是关于x的一元二次方程x2+4(c+2)=(c+4)x的两个根,点D是以C为圆心,CB为半径的圆与AB的交点.(1)证明:△ABC是直角三角形;(2)若,求AB的长;(3)在(2)的条件下求AD长.【分析】(1)由韦达定理可求得a+b、ab的值,然后证a2+b2=c2,由勾股定理来判定△ABC 是直角三角形;(2)可根据a、b的比例关系,用未知数设出a、b的长,进而可表示出c的值;由韦达定理知:a+b=c+4,由此可求得未知数的值,进而可求出a、b、c的值,也就得出了AB的长.(3)欲求AD,需先求出BD;可过C作CE⊥BD于E,根据直角三角形面积的不同表示方法,可求出CE的长,在Rt△BCE中,根据勾股定理,可求出BE的值;由垂径定理知BD=2BE,由此可求出BD的长,由此得解.【解答】(1)证明:依题意,得a+b=c+4,ab=4(c+2)(1分)∴a2+b2=(a+b)2﹣2ab=(c+4)2﹣2×4(c+2)=c2+8c+16﹣8c﹣16=c2∴△ABC是直角三角形.(3分)(2)解:设a=3k,b=4k,从而c=5k(k>0).代入a+b=c+4,得k=2;∴a=6,b=8,c=10.(5分)(3)解:过C作CE⊥AB于E.则CE==,BE===;由垂径定理,得BD=2BE=;故AD=10﹣BD=10﹣7.2=2.8.(9分)【点评】此题综合考查了一元二次方程根与系数的关系、勾股定理、直角三角形的判定和性质、垂径定理等知识.19.(2008秋•苏州期末)如图,一车轱辘⊙O抵住高为10cm的路沿AB,此时发现轮胎与地面的接触点C与路沿下端B的距离恰好为30cm(∠ABC=90°),请你利用已学的知识,求出车轱辘的直径.【分析】将实际问题转化为关于圆的问题解答.【解答】解:连接OC,则OC⊥BC,过A作AD⊥OC于D,则可得矩形ABCD,且有AD=BC=30cm,DC=AB=10cm,连接OA,设⊙O半径为xcm,在Rt△OAD中,由勾股定理得方程,(x﹣10)2+302=x2,解得,x=50,∴2x=100,答:车轱辘的直径为100cm.【点评】此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径的计算的问题,常把半弦长,弦心距转换到同一直角三角形中,然后通过直角三角形予以求解,常见辅助线是过圆心作弦的垂线.20.(2008秋•黄冈校级月考)2008年北京奥运会圆了所有中国人的百年奥运梦,开幕式上奇特的点火式为世界所震惊.(图中为奥运会中所用的圣火盆),其中圣火盆高120cm,盆体深20cm,立柱高110cm,CD=60cm.试求盆口圆的直径AB.【分析】这道题虽然数据复杂,借助图形,在Rt△OFD中运用勾股定理求出OF的值.再次运用勾股定理在Rt△OPB中求出PB的值,最后求得AB的值.【解答】解:如图作OF⊥CD,垂足为F,交AB于点P,交狐AB于E,连接OB、OD设⊙O的半径为r,依题意可知:PF=120﹣110=10cm,EF=20﹣10=10(cm),DF=CD=30cm.在Rt△OFD中,OD=r,OF=r﹣10,DF=30,∴r2=(r﹣10)2+302∴r=50cm在RT△OPB中OB=50,OP=50﹣20=30.∴BP=cm∴AB=2BP=80cm即盆口圆的直径AB=80cm.【点评】借助图形,分析好题所给的数据,把问题转化在直角三角形中得出问题处理的方法.21.(2006秋•宝山区期末)已知:⊙O中,OB、OC是半径,DF⊥OC于F,AE⊥OB于E,若AB=CD,求证:AE=DF.【分析】连接OA、OD,根据AB=CD可得出∠AOB=∠COD,结合圆的性质可证明△AOE ≌△DOF,继而可得出结论.【解答】证明:连接OA、OD,∵AB=CD,∴∠AOB=∠COD,∵AE⊥OB,DF⊥OC,∴∠OEA=∠OFD=90°,又∵OA=OD,∴△AOE≌△DOF,∴AE=DF.【点评】此题考查了全等三角形的判定与性质及圆心角、弦、弧的关系,难度一般,解答本题的关键是得出∠AOB=∠COD.22.(2005秋•静安区期末)已知:如图,点P是⊙O外的一点,PB与⊙O相交于点A、B,PD与⊙O相交于C、D,AB=CD.求证:(1)PO平分∠BPD;(2)PA=PC.【分析】(1)过点O作OE⊥AB,OF⊥CD,垂足分别为E、F,根据AB=CD可知OE=OF,进而可知PO平分∠BPD;(2)先根据全等三角形的判定定理得出Rt△POE≌Rt△POF,再由垂径定理可得出AE=CF,再根据PE﹣AE=PF﹣CF即可得出结论.【解答】证明:(1)过点O作OE⊥AB,OF⊥CD,垂足分别为E、F,∵AB=CD,∴OE=OF,∴PO平分∠BPD;(2)在Rt△POE与Rt△POF中,∵OP=OP,OE=OF,∴Rt△POE≌Rt△POF,∴PE=PF,∵AB=CD,OE⊥AB,OF⊥CD,E、F分别为垂足,∴AE=,CF=,∴AE=CF,∴PE﹣AE=PF﹣CF,即PA=PC.【点评】本题考查的是垂径定理、勾股定理、全等三角形的判定与性质及角平分线的判定,涉及面较广,难度适中.23.(2004秋•奉贤区期末)如图,已知OE是⊙O的半径,F是OE上任意一点,AB和CD 为过点F的弦,且FA=FD.求证:AB=CD.【分析】首先连接OA,OD,作AB、CD的弦心距OM,ON,根据SSS可证得△AOF≌△DOF,即可得∠AFO=∠DFO,根据角平分线的性质,可证得弦心距OM,ON相等,然后根据同圆或等圆中,弦心距相等,则对应的弦相等,即可证得AB=CD.【解答】解:连接OA,OD,作AB、CD的弦心距OM,ON,(2分)∵OA=OD,FA=FD,OF=OF,∴△AOF≌△DOF,(1分)∴∠AFO=∠DFO,(1分)∴OM=ON,(1分)∴AB=CD.(1分)【点评】此题考查了垂径定理,全等三角形的判定与性质,角平分线的性质等知识.此题综合性较强,难度适中,解题的关键是准确作出辅助线,注意数形结合思想的应用.24.已知⊙O中,=.(1)如图1,求证:CO⊥AE;(2)如图2,CD⊥直径AB于D,若BD=1,AE=4,求⊙O的半径.【分析】(1)延长CO交AE于点D,再由垂径定理即可得出结论;(2)连接CO并延长交AE于点F,由垂径定理可知OF⊥AE,根据全等三角形的判定定理得出△OAF≌△OCD,故可得出OF的长,根据勾股定理即可求出OA的长.【解答】(1)证明:延长CO交AE于点D,∵=,CD过圆心,∴CO⊥AE;(2)设⊙O的半径为r,连接CO并延长交AE于点F,∵=,CF过圆心,AE=4,∴OF⊥AE,∴AF=AE=×4=2,∵CD⊥AB,∠AOF=∠COD,∴在△OAF与△OCD中,∵,∴△OAF≌△OCD(ASA),∴OF=OD=r﹣1,∴在Rt△AOF中,OA2=AF2+OF2,即r2=22+(r﹣1)2,解得r=.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.25.如图,已知:AD是⊙O的直径,AB、AC是弦,且AB=AC.(1)求证:直径AD平分∠BAC;(2)若BC经过半径OA的中点E,F是的中点,G是中点,⊙O的半径为1,求GF的长.【分析】(1)根据全等或等腰三角形的性质即可得出AO⊥BC,AO平分BC.(2)求出∠AOC的度数,求出弧AC度数,分别求出弧CD、弧CF、弧DF、弧BF、弧GF的度数,求出∠GOF=90°,根据勾股定理求出即可.【解答】(1)证明:连接OB,OC,∵在△ABO和△ACO中,∴△ABO≌△ACO,∴∠BAO=∠CAO,∴直径AD平分∠BAC;(2)解:连接OG、OF,OC,∵BC过AO中点,∴AE=OE=OA=OC,∵AO⊥BC,∴∠OEC=90°,∴∠OCE=30°,∴∠AOC=60°,即弧AC度数是60°,∵AD为直径,∴弧CD的度数是180°﹣60°=120°,∵F为弧CD中点,∴弧CF的度数和弧DF的度数都等于60°,∵AO⊥BC,AO平分BC,∴弧BD的度数=弧CD的度数,是120°,∴弧BDF的度数是120°+60°=180°,∵G为弧BDF的中点,∴弧GF度数是90°,∴∠GOF=90°,∵OG=OF=1,∴由勾股定理得:GF==.【点评】本题考查了垂径定理,勾股定理,全等三角形的性质和判定,等腰三角形的性质的应用,主要考查学生综合运用定理进行推理的能力.。

3.2 圆的对称性(练习)(解析版)

3.2 圆的对称性(练习)(解析版)

第三章圆第二节圆的对称性精选练习一、单选题1.(2021·全国九年级课时练习)下列说法中,正确的是()A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等【答案】B【分析】根据圆心角,弦,弧之间的关系判断,注意条件.【详解】A中,等弦所对应的弧可以相等也可以互补构成新圆;B中,等弧所对应的弦相等,故选BC中,圆心角相等所对应的弦可能互补;D中,弦相等,圆心角可能互补;故选B【点睛】本题考查了圆心角,弧,弦之间的观,此类试题属于难度较大的试题,其中,弦和圆心角等一些基本知识容易混淆,从而很难把握.2.(2021·全国九年级课时练习)下列说法中,不正确的是()A.圆是轴对称图形B.圆的任意一条直径所在的直线都是圆的对称轴C.圆的任意一条直径都是圆的对称轴D.经过圆心的任意直线都是圆的对称轴【答案】C【分析】根据轴对称图形的概念并结合圆的特点判断各选项,然后求解即可.【详解】A 、圆是轴对称图形,正确;B 、圆的任意一条直径所在得直线都是圆的对称轴,正确;C 、圆的任一直径所在的直线都是圆的对称轴,错误;D 、经过圆心的任意直线都是圆的对称轴,正确,故选:C .【点睛】本题主要是考查圆的特征、轴对称图形的特征,注意,语言要严密,不能说成圆的直径就是圆的对称轴,因为对称轴是一条直线,直径是线段.3.(2021·全国九年级课时练习)下列说法:①直径是弦;②长度相等的两条弧是等弧;③圆是中心对称图形;④任何一条直径都是圆的对称轴,其中说法正确的有( )个A .1个B .2个C .3个D .4个【答案】B【分析】根据圆的性质依次判断即可得到答案.【详解】①直径是圆中最长的弦,故正确;②在同圆或等圆中,能够完全重合的两条弧是等弧,故②错误;③圆是中心对称图形,故正确;④任何一条直径所在的直线都是圆的对称轴,故④错误,正确的有2个,故选:B.【点睛】此题考查圆的性质,正确掌握弦、等弧的定义,圆的对称性是解题的关键.4.(2020·杭州市建兰中学九年级月考)如图,AB 是圆O 的直径,点C 是半圆O 上不同于,A B 的一点,点D 为弧AC 的中点,连结,,OD BD AC ,设,CAB BDO b a Ð=Ð=,则( ).A .a b=B .290a b °+=C .290a b °+=D .45a b °+=【答案】C利用等腰三角形边角关系表示出∠AOD ,再根据同圆中平分弧平分弦垂直弦求出关系即可.【详解】解析 如图,设AC 与DO 交点为E ,连接BC ,OD OB = ,OBD BDO a \Ð=Ð=,2DOA OBD BDO a \Ð=Ð+Ð=,又D Q 为 AC 中点,AB 为O e 直径,,OD AC BC AC \^^,90AED ACB °\Ð=Ð=,90EAO EOA °\Ð+Ð=,即:290a b °+=.故选C .【点睛】此题考查了垂径定理中同圆中平分弧平分弦垂直弦,等边对等角等有关知识点,难度一般.5.(2020·西安益新中学九年级期末)如图,AB 是O e 的直径,弧BC 、弧CD 与弧DE 相等,36COD Ð=°,则AOE Ð的度数是( )A .30°B .36°C .54°D .72°【答案】D【分析】由弧BC 、弧CD 与弧DE 相等,得36COB COD EOD Ð=Ð=Ð=°,即可求AOE Ð.解:∵弧BC 、弧CD 与弧DE 相等,∴36COB COD EOD Ð=Ð=Ð=°,18036372AOE Ð=°-°´=°,故选:D .【点睛】本题考查了圆心角和弧的关系,解题关键是熟知在同圆和等圆中,相等的弧所对的圆心角相等.6.(2021·全国九年级课时练习)如图,已知:AB 是O e 的直径,C 、D 是 BE上的三等分点,60AOE Ð=o ,则COE Ð是( )A .40oB .60oC .80oD .120o【答案】C【分析】先求出∠BOE=120°,再运用“等弧对等角”即可解.【详解】∵∠AOE=60°,∴∠BOE=180°-∠AOE=120°,∴»BE的度数是120°,∵C 、D 是»BE上的三等分点,∴弧CD 与弧ED 的度数都是40度,∴∠COE=80°,故选C.【点睛】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.熟练掌握圆周角定理是解题关键.7.(2021·全国九年级课时练习)如图,⊙O 中,弦AB ⊥CD ,垂足为E ,F 为 CBD的中点,连接AF 、BF 、AC ,A F 交CD 于M ,过F 作FH ⊥AC ,垂足为G ,以下结论:① CFDF =;②HC =BF :③MF =FC :④ DF AH BF AF +=+,其中成立的个数是( )A.1个B.2个C.3个D.4个【答案】C【分析】根据弧,弦,圆心角之间的关系,圆周角定理以及三角形内角和定理一一判断即可.【详解】解:∵F为CBD的中点,∴CF DF=,故①正确,∴∠FCM=∠FAC,∵∠FCG=∠ACM+∠FCM,∠AME=∠FMC=∠ACM+∠FAC,∴∠AME=∠FMC=∠FCG>∠FCM,∴FC>FM,故③错误,∵AB⊥CD,FH⊥AC,∴∠AEM=∠CGF=90°,∴∠CFH+∠FCG=90°,∠BAF+∠AME=90°,∴∠CFH=∠BAF,∴=,CF BF∴HC=BF,故②正确,∵∠AGF=90°,∴∠CAF+∠AFH=90°,∴+=180°,AH CF∴+=180°,CH AF∴+=+=+=+,故④正确,AH CF AH DF CH AF AF BF故选:C.【点评】本题考查圆心角,弧,弦之间的关系,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考选择题中的压轴题.8.(2019·武汉市梅苑学校九年级月考)如图AB 为⊙O 的定直径,过圆上一点C 作弦CD AB ^,OCD Ð的平分线交⊙O 于点P ,当点C (不包括A ,B 两点)在⊙O 上移动时,点P ( )A .到CD 的距离保持不变B .位置不变C .等分弧DBD .随C 点移动而移动【答案】B【分析】连OP ,由CP 平分∠OCD ,得到∠1=∠2,而∠1=∠3,可得2=3,ÐÐ所以有//OP CD ,则OP ⊥AB ,即可得到OP 平分半圆APB .从而可得答案.【详解】解:连OP ,如图,∵CP 平分∠OCD ,∴∠1=∠2,OC=OP ,\ ∠1=∠3,∴∠2=∠3,∴//OP CD ,又∵弦CD ⊥AB ,∴OP ⊥AB ,∴OP 平分半圆APB ,即点P 是半圆的中点.故选:B .【点睛】本题考查了角平分线的定义,平行线的判定,等腰三角形的性质,圆的对称性,掌握以上知识是解题的关键.二、填空题9.(2021·全国九年级课时练习)半径为5的⊙O是锐角三角形ABC的外接圆,AB=BC,连结OB、OC,延长CO 交弦AB于D,若△OBD是直角三角形,则弦BC的长为______________.【答案】【分析】如图1,当∠DOB=90°时,推出△BOC是等腰直角三角形,于是得到=;如图2,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC=AB=.【详解】如图1,当∠DOB =90°时,∴∠BOC=90°∴△BOC是等腰直角三角形∴=^如图2,当∠ODB=90°时,即CD AB∴ AD=BD∴ AC=BC∵ AB=BC∴△ABC是等边三角形∴∠DBO=30°∵ OB=5∴BD==∴ BC=AB=.综上所述:若△OBD是直角三角形,则弦BC的长为.故答案为:.【点睛】本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.10.(2021·全国九年级课时练习)如图,AB是⊙O的直径,AD DE=,AB=5,BD=4,则cos∠ECB=__.【答案】3 5【分析】连接AD,BE,根据直径所对的圆周角是直角,构建两个直角三角形,再利用等弧所对的圆周角相等得:∠ABD=∠CBE,根据等角的余角相等得:∠ECB=∠DAB,最后利用等角的三角函数得出结论.【详解】解:连接AD, BE,AD DE=,∴EBC DBAÐ=Ð,∵AB是⊙O的直径,∴∠AEB=∠ADB=90°,∴∠ECB+∠EBC=90°,∠DBA+∠DAB=90°,∴∠ECB =∠DAB .AB =5,BD =4 ,3AD \==, ∴3cos cos 5ECB DAB Ð=Ð=.【点睛】本题考查了圆周角定理,解直角三角形,余角的性质,以及勾股定理等知识.掌握圆周角的两个定理:①在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.②半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.这两个性质在圆的证明题中经常运用,要熟练掌握.11.(2021·全国九年级课时练习)如图,A 、D 是⊙O 上的两点,BC 是直径,若∠D =32°,则∠OAC =_______度.【答案】58【分析】根据∠D 的度数,可以得到∠ABC 的度数,然后根据BC 是直径,从而可以得到∠BAC 的度数,然后可以得到∠OCA 的度数,再根据OA=OC ,从而可以得到∠OAC 的度数.【详解】解:∵∠D=32°,∠D=∠ABC∴∠ABC=32°∵BC 是直径∴∠BAC=90°∴∠BCA=90°-∠ABC=90°-32°=58°∴∠OCA=58°∵OA=OC∴∠OAC=∠OCA∴∠OAC=58°故答案为58.【点睛】本题考查了圆周角定理,圆心角、弧、弦的关系.解题的关键是明确题意,利用数形结合的思想解答.12.(2021·上海九年级专题练习)一根横截面为圆形的下水管的直径为1米,管内污水的水面宽为0.8米,那么管内污水深度为__________米.【答案】0.8或0.2.【分析】构造垂径定理,分两种情形求得弦心距,从而得到水深.【详解】如图所示,作AB 的垂直平分线,垂足为E ,根据题意,得 AO=0.5,AE=0.4,根据勾股定理,得,∴水深ED=OD-OE=0.5-03=0.2(米)或水深ED=OD+OE=0.5+03=0.8(米),∴水深为0.2米或0.8米.故答案为:0.2米或0.8.【点睛】本题考查了垂径定理,勾股定理,解答时,构造垂径定理,活用分类思想是解题的关键.三、解答题13.(2021·全国九年级课时练习)如图,⊙O的弦AB、CD的延长线相交于点P,且PA=PC.求证:AB CD=.【答案】证明见解析【分析】连接AC、OA、OB、OC、OD,根据等腰三角形的性质得到∠PAC=∠PCA,根据圆周角定理得到∠BOC=∠AOD,根据圆心角、弧、弦的关系定理证明结论.【详解】证明:连接AC、OA、OB、OC、OD,∵PA=PC,∴∠PAC=∠PCA,∵∠PAC12=∠BOC,∠PCA12=∠AOD,∴∠BOC=∠AOD,∴AD BC=n n,∴AD BD BC BD-=-,即AB CD=.【点睛】本题考查的是圆心角、弧、弦的关系定理、圆周角定理,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.14.(2021·全国九年级课时练习)如图,在⊙O中,弦AD与BC交于点E,且AD=BC,连接AB、CD.求证:(1)AB=CD;(2)AE =CE .【答案】(1)证明见解析;(2)证明见解析.【分析】(1)欲证明AB=CD ,只需证得 AB = CD ;(2)连接AC ,由 AB = CD得出∠ACB=∠CAD ,再由等角对等边即可证的AE =CE.【详解】证明:(1)∵AD =BC∴ AD = BC∴ AD -AC = BC - AC 即 AB = CD∴AB =CD(2)连接AC∵ AB = CD∴∠ACB =∠DAC∴AE =CE【点睛】本题考查了圆周角、弧、弦间的关系,注意(2)中辅助线的作法是求解(2)的关键.15.(2020·江苏苏州市·苏州草桥中学九年级期中)如图,在O e 中, AC CB=,CD OA ^于点D ,CE OB ^于点E .(1)求证:CD CE =;(2)若120AOB Ð=°,2OA =,求四边形DOEC 的面积.【答案】(1)证明见解析;(2【分析】(1)如图,连接OC ,先证明,AOC BOC Ð=Ð再证明:,CDO CEO V V ≌从而可得结论;(2)由120AOB Ð=°,2OA =,求解60AOC Ð=°,再利用三角函数求解,OD CD , 利用,CDO CEO V V ≌从而可得四边形的面积.【详解】(1)证明:如图,连接OC ,AC BC= , ,AOC BOC \Ð=Ð,,CD OA CE OB ^^90CDO CEO \Ð=Ð=°,,OC OC =(),CDO CEO AAS \V V ≌.CD CE \=(2)120,AOB Ð=60AOC BOC \Ð=Ð=°,2OA OC == ,1cos 6021,sin 6022OD OC CD OC \=°=´==°==g g ,CDO CEO V V ≌12212CDO CDOE S S \==´´=V 四边形【点睛】本题考查的是三角形全等的判定与性质,圆的基本性质,两条弧,两个圆心角,两条弦之间的关系定理,解直角三角形的应用,四边形的面积,掌握以上知识是解题的关键.。

圆的基本性质练习(含答案)

圆的基本性质练习(含答案)

圆的基本性质练习(含答案)圆的基本性质考点1 对称性圆既是__________ ①______ 对称图形,又是 _________ ②____ 对称图形。

任何一条直径所在的直线都是它的 _____ ③。

它的对称中心是_ ④ _____________________ 。

同时圆又具有旋转不变性。

温馨提示:轴对称图形的对称轴是一条直线,因此在谈及圆的对称轴时不能说圆的对称轴是直径。

考点2 垂径定理定理:垂直于弦的直径平分_________ ⑤______ 并且平分弦所对的两条__⑥ __________ 。

常用推论:平分弦(不是直径)的直径垂直于__________ ⑦ _______ ,并且平分弦所对的两条 _______ ⑧ ___________ 。

温馨提示:垂径定理是中考中的重点考查内容,每年基本上都以选择或填空的形式出现,一般分值都在3分左右,这个题目难度不大,只要在平时的练习中,多注意总结它所用的数学方法或数学思想等,以及常用的辅助线的作法。

在这里总结一下:(1)垂径定理和勾股定理的有机结合是计算弦长、半径等问题的有效方法,其关键是构造直角三角形;(2)常用的辅助线:连接半径;过顶点作垂线;(3)另外要注意答案不唯一的情况,若点的位置不确定,则要考虑优弧、劣弧的区别;(4)为了更好理解垂径定理,一条直线只要满足:①过圆心;②垂直于弦;③平分弦;④ 平分弦所对的优弧;⑤平分弦所对的劣弧;考点3 圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧___________ ⑨ _____ ,所对的弦也______ ⑩_________ o常用的还有:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角—a ______________ ,所对的弦____ J2 __________ o(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角 _______ 13 _____________ ,所对的弧 __________ 14方法点拨:为了便于理解和记忆,圆心角、弧、弦之间的关系定理,可以归纳为:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应地其余各组量也都相等。

2021-2022学年北师大版九年级数学下册《3-2圆的对称性》同步达标测试题(附答案)

2021-2022学年北师大版九年级数学下册《3-2圆的对称性》同步达标测试题(附答案)

2021-2022学年北师大版九年级数学下册《3-2圆的对称性》同步达标测试题(附答案)一.选择题(共10小题,满分50分)1.下列说法正确的是()A.等弧所对的弦相等B.平分弦的直径垂直弦并平分弦所对的弧C.相等的弦所对的圆心角相等D.相等的圆心角所对的弧相等2.下列命题是真命题的是()A.相等的弦所对的弧相等B.圆心角相等,其所对的弦相等C.在同圆或等圆中,圆心角不等,所对的弦不相等D.弦相等,它所对的圆心角相等3.如图,AB,CD是⊙O的直径,=,若∠AOE=32°,则∠COE的度数是()A.32°B.60°C.68°D.64°4.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为()A.5πcm B.6πcm C.9πcm D.8πcm5.如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C.D.∠BCA=∠DCA6.如图,AB是圆O的直径,BC、CD、DA是圆O的弦,且BC=CD=DA,则∠BCD等于()A.100°B.110°C.120°D.135°7.如图,AB是⊙O的弦(AB不是直径),以点A为圆心,以AB长为半径画弧交⊙O于点C,连接AC、BC、OB、OC.若∠ABC=65°,则∠BOC的度数是()A.50°B.65°C.100°D.130°8.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°9.如图,四边形ABCD内接于半圆O,AB为直径,AB=4,AD=DC=1,则弦BC的长为()A.3.5B.2C.D.10.如图D、A、C、B为⊙O上的点,DC=AB,则AD与BC的大小关系是()A.AD>BC B.AD=BC C.AD<BC D.不能确定二.填空题(共5小题,满分30分)11.如图所示,四边形AB∥CD,AD=DC=DB=p,BC=q,则AC=(用p、q表示).12.弦AB分圆为1:3两部分,则劣弧所对圆心角为.13.一条弦把圆分成1:3两部分,则弦所对的圆心角为度.14.如图,在⊙O中,,∠A=40°,则∠B=度.15.在半径为9cm的圆中,60°的圆心角所对的弦长为cm.三.解答题(共5小题,满分40分)16.已知锐角∠POQ,如图,在射线OP上取一点A,以点O为圆心,OA长为半径作,交射线OQ于点B,连接AB,分别以点A,B为圆心,AB长为半径作弧,交于点E,F,连接OE,EF.(1)证明:∠EAO=∠BAO;(2)若OE=EF.求∠POQ的度数.17.如图,MB,MD是⊙O的两条弦,点A,C分别在,上,且AB=CD,M是的中点.(1)求证:MB=MD;(2)过O作OE⊥MB于点E,当OE=1,MD=4时,求⊙O的半径.18.已知:如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC.19.如图所示,⊙O的直径AB和弦CD相交于点E,且点B是劣弧DF的中点.(1)求证:△EBD≌△EBF;(2)已知AE=1,EB=5,∠DEB=30°,求CD的长.20.如图,已知AB、CD为⊙O的两条弦,,求证:AB=CD.参考答案一.选择题(共10小题,满分50分)1.解:A、正确.本选项符合题意.B、错误.应该是平分弦(此弦非直径)的直径垂直弦并平分弦所对的弧,本选项不符合题意.C、错误,必须在同圆或等圆中,本选项不符合题意.D、错误.必须在同圆或等圆中,本选项不符合题意.故选:A.2.解:A、B、D结论若成立,都必须以“在同圆或等圆中”为前提条件,所以A、B、D 错误;故选:C.3.解:∵=,∴∠BOD=∠AOE=32°,∵∠BOD=∠AOC,∴∠AOC=32°∴∠COE=32°+32°=64°.故选:D.4.解:如图,连接OD、OC.∵AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,∴==,∴∠AOD=∠DOC=∠BOC=60°.又OA=OD,∴△AOD是等边三角形,∴OA=AD=4cm,∴⊙O的周长=2×4π=8π(cm).故选:D.5.解:A、∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;B、∵AC平分∠BAD,∴∠BAC=∠DAC,∴=,∴BC=CD,故本选项正确;C、∵∠ACB与∠ACD的大小关系不确定,∴与不一定相等,故本选项错误;D、∠BCA与∠DCA的大小关系不确定,故本选项错误.故选:B.6.解:连接OC、OD,∵BC=CD=DA,∴∠COB=∠COD=∠DOA,∵∠COB+∠COD+∠DOA=180°,∴∠COB=∠COD=∠DOA=60°,∴∠BCD=×2(180°﹣60°)=120°.故选:C.7.解:由题意可得:AB=AC,∵∠ABC=65°,∴∠ACB=65°,∴∠A=50°,∴∠BOC=100°,故选:C.8.解:如图,∵==,∠COD=34°,∴∠BOC=∠EOD=∠COD=34°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=78°.又∵OA=OE,∴∠AEO=∠OAE,∴∠AEO=×(180°﹣78°)=51°.故选:A.9.解:如图,连AC、BD,过D作DE⊥AC于E.∴∠ADB=∠ACB=90°,∠ABD=∠CAD.∵BD==.∵AD=DC=1,∴∠DAC=∠DCA,∵∠DCA=∠ABD,cos∠CAD=cos∠ABD==.∴AE=AD•cos∠CAD=,∴AC=2AE=,∴BC==.故选:A.10.解:∵DC=AB,∴=,∴=,∴AD=BD.故选:B.二.填空题(共5小题,满分30分)11.解:延长CD交半径为p的⊙D于E点,连接AE.显然A、B、C在⊙D上.∵AB∥CD∴=,∴BC=AE=q.在△ACE中,∠CAE=90°,CE=2p,AE=q,故AC==.故答案为:.12.解:设弦AB分圆的两部分别为x,3x,∴x+3x=360°,解得:x=90,则劣弧所对圆心角为90°.故答案为:90°13.解:∵一条弦把圆分成1:3两部分,∴整个圆分为四等分,则劣弧的度数为360°÷4=90°,∴弦所对的圆心角为90°.14.解:∵,∴AB=AC,∵∠A=40°,∴∠B=∠C=(180°﹣∠A)÷2=70°.15.解:由题意知,设圆心为O,60°的圆心角的两边与圆的交点分别为A,B,则△AOB 是等边三角形,∴AO=AB=OB=9cm.三.解答题(共5小题,满分40分)16.(1)证明:连接AE、OE、OF,如图所示,由题意得:OB=OE=OA,AE=AB,∴∠EAO=∠AEO,∠BAO=∠ABO,,∴∠AOE=∠AOB,∴∠EAO=∠BAO;(2)解:∵OE=OF,OE=EF,∴OE=OF=EF,∴∠EOF=60°,∵AE=BF=AB,∴,∴∠AOE=∠BOF=∠AOB,∴∠POQ=∠EOF=20°.17.(1)证明:∵AB=CD,∴=,∵M是的中点,∴=,∴=,∴BM=DM.(2)解:如图,连接OM.∵DM=BM=4,OE⊥BM,∴EM=BE=2,∵OE=1,∠OEM=90°,∴OM===,∴⊙O的半径为.18.证明:连接OC,如图,∵OD∥BC,∴∠1=∠B,∠2=∠3,又∵OB=OC,∴∠B=∠3,∴∠1=∠2,∴AD=DC.19.解:(1)连接OD、OF,∵B是劣弧DF的中点.∴,∴,∴BD=BF,∠DBE=∠EBF,在△EBD和△EBF中,∵,∴△EBD≌△EBF(SAS);(2)∵AE=1,EB=5,∴AB=6,∵AB是⊙O的直径,∴OD=OA=3,OE=3﹣1=2,过O作OG⊥CD于G,则CD=2DG,∵∠DEB=30°,∠EGO=90°,∴OG=OE=1,由勾股定理得:DG===2,∴CD=2DG=4.20.解:∵,∴,即:,∴AB=CD.。

圆的对称性练习题

圆的对称性练习题

圆的对称性(一)练习题1.下列说法中正确的是()A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等,所对的圆心角相等2.在e O中,圆心角∠AOB=80°,圆心角∠COD=40°,那么下列说法中正确的是()A.»»2AB CD=B.»»2AB CD>C.»»2AB CD<D.AB=2CD3.如图,C,D为半圆上的三等分点,则下列说法正确的有()①AD=CD=BC②∠AOD=∠DOC=∠BOC③AD=CD=OC④△AOD沿OD翻折与△C OD重合A.1个B.2个C.3个D.4个4.若e O内一条弦把圆周分为3∶1的两段弧,且e O的半径为R,那么这条弦的长为()A.R B.2RC.2R D.3R5.如图,O是∠EPF的平分线上的一点,以点O为圆心的圆与该角的两边所在直线分别交于点A,B和C,D,则AB与CD的关系是()A.AB=CD B.AB>CDC.AB<CD D.无法确定6.如图,AB,CD是e O的直径,若弦DE∥AB,则弦AC与AE的大小关系为__________.7.如图,在e O中弦AB=AC,AD是e O的直径,试判断弦BD与CD是否相等,并说明理由.8.如图,在ABCD中,以A为圆心,以AB为半径作圆交A D于点F,交BC于点G,BA的延长线交e A于点E,求证:»»EF FC=.9.如图,AB,CD是eO的弦,OC,OD分别交AB于点E,F,且OE=OF,请你来猜想一下,»»AC BD=吗?请加以说明.圆的对称性(二)练习题1.下列说法中正确的是( )A .直径是圆的对称轴B .经过圆心的直线是圆的对称轴C .与圆相交的直线是圆的对称轴D .与半径垂直的直线是圆的对称轴2.如图,AB 是e O 的直径,CD 是弦,CD ⊥AB 于点E , 则下列结论中不一定成立的是( ) A .∠COE =∠DOE B .CE =DEC .OE =BED .»»BDBC 3.如图所示,e O 的弦AB 垂直平分半径OC , 则四边形OACB 是( )A .正方形B .长方形C .菱形D .以上答案都不对4.如图,AB 是e O 的弦,半径OC ⊥AB 于点D ,且AB =6cm , OD =4cm ,则DC 的长为( )A .5cmB .2.5cmC .2cmD .1cm 5.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C ,D 两点,AB =10cm ,CD =6cm ,则AC 的长为( )A .0.5cmB .1cmC .1.5cmD .2cm6.右图是一个单心圆隧道的截面,若路面AB 宽为10m , 拱高CD 为7m ,则此隧道单心圆的半径OA 是( )A .5mB .377mC .375m D .7m7.如图,AB ,AC 分别是e O 的直径和弦,OD ⊥AC 于点D ,连接BC ,若BC =12,则OD =__________ 8.如图,在e O 中,直径AB ⊥弦CD 于点M , AM =18,BM =8,则CD 的长为_________. 9.如图,已知e O 的半径为5,弦AB =6,M是AB上任意一点,则线段OM 的长可能是( ) A .2.5 B .3.5 C .4.5 D .5.510.在半径为5cm 的圆内有两条平行弦,一条弦长为8cm ,另一条弦长为6cm ,则两弦之间的距离为__________.11.在直径为650mm 的圆柱形油桶内装进一些油后,其截面如图所示,若油面宽为600mm ,求油的最大深度.12.有一座弧形的拱桥,桥下的水面宽度为7.2m ,拱顶高出水面2.4m ,现有一艘宽3m ,船舱顶部为长方形并高出水面2m 的货船要经过这里,此货船能顺利通过这座拱形桥吗?。

青岛版九年级数学上册圆的对称性练习题

青岛版九年级数学上册圆的对称性练习题

3.1 圆的对称性【知识要点】圆的轴对称性和中心对称性以及相关性质.【能力要求】理解圆的对称性及相关性质,体会和理解研究几何图形的各种方法. 【基础练习】 一、填空题:1. P 是⊙O 半径上一点,OP = 5, 经过点P 的最短的弦长为24, 则⊙O 的半径为 ;2.如图3-1,AB 是⊙O 的直径,弦CD ⊥AB , 垂足为P ,若AP ∶PB = 1∶4, CD = 8, 则AB 的长为= ;3.如图3-2,⊙O 的半径为25cm ,弦AB = 48cm, OD ⊥AB 于C 交⊙O 于D , 则AD = .二、选择题:1. 下列命题中,假命题是( )A. 平分弧的直径必平分这条弧所对的弦B. 圆的任意两条弦的垂直平分线的交点是该圆的圆心C. 平分弦的直径垂直于弦D. 垂直平分一条弦的直线平分弦所对的两条弧2. “圆材埋壁”是我国著名的数学著作《九章算术》中的一个问题,“今有圆材,埋于壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?” 用现代的数学语言表达是:“如图3-3,CD 是⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE = 1寸,AB = 1尺,求直径的长”. 依题意,CD 长为( )A. 252寸 B. 13寸 C. 25寸 D. 26寸三、解答题:1. 已知:如图3-4,AB 是⊙O 的弦,P 是AB 上一点,AB = 10 cm, PA = 4 cm, OP = 5 cm, 求⊙O 的半径.2. 已知:如图3-5,在⊙O中,弦AB的长是半径OA的3倍,C为AB⌒的中点,AB、OC相交于点P,试判断:四边形OACB是何种特殊的四边形.3.1 圆的对称性一、填空题1. 圆是轴对称图形,它有条对称轴,圆又是对称图形,圆心是它的;2. 如图3-6,在⊙O中,如果AB⌒ = CD⌒,那么AB = ,∠AOB =∠,若OE⊥AB于E,OF⊥CD于F,则OE OF;3. 已知:⊙O的弦AB = 24 cm,OC⊥AB,垂足为C. 若OC = 43cm,则⊙O直径长为 cm.二、选择题1. 已知:AB⌒、CD⌒是⊙O的两条劣弧,且AB⌒ = 2CD⌒,则弦AB与CD之间的关系为()A. AB = 2CDB. AB < 2CDC. AB > 2CDD. 不能确定2. 下列说法中,正确的是()A. 相等的圆心角所对的弧相等B. 相等的圆心角所对的弦相等C. 相等的弧所对的弦相等D. 相等的弦所对的弧相等三、解答题1. 已知:如图3-7,⊙O中,AB⌒ = BC⌒ = CD⌒,OB、OC分别交AC、BD于点E、F. 试比较∠OEF与∠OFE 的大小,并证明你的结论.2. 如图3-8,P是⊙O外一点,PA交⊙O于点B,PD交⊙O于点C,且∠APO=∠DPO. 弦AB与CD相等吗?为什么?3. 如图 3-9,已知:⊙O的两弦AB、CD相交于点P,如果AB= CD,那么OP与AC互相垂直吗?为什么?3.1 圆的对称性一. 选择题1. ⊙O中,弦AB所对的弧为120°,圆的半径为2,则圆心到弦AB的距离OC为()A B.1 C. D.2. 如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果,则AE的长为()A.2B.3C. 4D. 53. 如图,⊙O的弦AB垂直于直径MN,C为垂足,若OA=5cm,下面四个结论中可能成立的是()A. B. C. D.4. 一种花边由如图的弓形组成,的半径为,弦AB=2,则弓形的高CD为()A. B. C. 1 D.5. 下列命题中正确的是()A. 圆只有一条对称轴B. 平分弦的直径垂直于弦C. 垂直于弦的直径平分这条弦D. 相等的圆心角所对的弧相等6. 如图,已知AD=BC,则AB与CD的关系为()A. AB>CDB. AB=CDC. AB<CDD. 不能确定二. 填空题7. 半径为6cm的圆中,有一条长的弦,则圆心到此弦的距离为___________cm。

圆的对称性

圆的对称性
相等( × )
8
试一试你的能力 B
1、如图,⊙O中,AB=CD,
1
A
1 50,则 2 _5_0_o_.
C
2O
D
2、如图,在⊙O中,AC=BD,
1 45,求∠2的度数。
9
图 23.1.5
3、如图,AB、AC、BC都是⊙O的弦, ∠AOC=∠BOC,∠ABC与∠BAC相等吗? 为什么?
A4
O
12
求AD,DE的度数。
B
D
E
A
C
14
3.如图,在同圆中,若AOB=2COD,则AB与2CD的大小关系是( C )
(A) AB >2CD (B)AB <2CD (C) AB=2CD (D) 不能确定
A
C
D O B
15
4.在同圆中,若AB=2CD,则AB与2CD的大小关系是( B )
(A)AB>2CD
1
1、圆是中心对称图形, 圆心是它的对称中心。
2、圆具有旋转不变性。
圆的中心对称性是其旋转不变性的特例。
2
尝试与交流
1.在两张透明纸片上,分别作半径相等的 O和 O’
2.在 O和 O’中,分别作相等的圆心角AOB,A’O’B’ ,连接AB,A’B’ 。
3.将两张透明纸片叠在一起,使 O与 O重合。
(B)AB <2CD
A
(C) AB=2CD
C
(D) 不能确定
D
B
O
16
课后小结: 1.圆是中心对称图形,圆心是它的对称中心。
2.在同圆或等圆中, 如果两个圆心角,两条弧,两条弦中有一组量相等, 那么它们所对应的其余各组都分别相等。 3. 圆心角的度数与它所对的弧的度数相等。

圆的认识2圆的对称性垂径定理及其推论+练习课件+ 2023—2024学年华东师大版数学九年级下册

圆的认识2圆的对称性垂径定理及其推论+练习课件+ 2023—2024学年华东师大版数学九年级下册

桥,桥下水面宽度AB为12 m,拱高CD为4 m.
(1)求拱桥所在圆的半径;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
解:(1)设拱桥所在圆的圆心为O,连结OB,OD,则易知
OD⊥AB,点C在OD的延长线上.∵OC⊥AB,∴D为AB

的中点.∵AB=12 m,∴BD= AB=6 m.

设OB=OC=r m,∵CD=4 m,∴OD=(r-4)m.
垂足分别是点D、E,连结DE.
(1)求线段DE的长;
解:(1)∵OD经过圆心O,OD⊥AC,
∴AD=DC.同理得CE=EB.
∴DE是△ABC的中位线.

∴DE= AB.∵AB=8,∴DE=4.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
(2)若点O到AB的距离为3,求☉O的半径.
解:(2)过点O作OH⊥AB于点H,连结OA,
(r-15)
含 r 的 代 数 式 表 示 OD , 则 OD =
cm. 在
Rt△OAD中,由勾股定理可列出关于r的方程:r2= 452+
(r-15)2 ,解得r=75.通过单位换算,得到车轮直径约
为六尺六寸,可验证此车轮为兵车之轮.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
9.已知☉O的半径为7,AB是☉O的弦,点P在弦AB上.若PA=

九年级数学上册 圆的对称性练习 试题

九年级数学上册  圆的对称性练习 试题

轧东卡州北占业市传业学校圆的对称性知识点:点在圆外,即这个点到圆心的距离 ________________半径; 点在圆上,即这个点到圆心的距离 ________________半径; 点在圆内,即这个点到圆心的距离 ________________半径; 反过来,也成立〔即判定位置关系的方法〕圆是 图形,其对称轴是 ,因此有 条对称轴。

定理一: 〔垂径定理〕定理二: 〔垂径定理逆定理〕 定理三: 定理四: 例一:⊙0的面积为25π。

(1)假设PO=,那么点P 在________;〔2〕假设PO=4,那么点P 在________; 〔3〕假设PO=________,那么点P 在⊙0上。

例二:设AB=3cm ,作图说明:到点A 的距离小于2cm ,且到点B 的距离大于2cm③、:如图,矩形ABCD 的对角线AC 和BD 相交于点0,它的四个顶点A、B 、C 、D 是否在以点0④、如图,在△ABC 中,BD 、CE 是高。

求证:A 、B 、C 、D 、E 在同一个圆上。

⑤、设AB=3cm ,作图说明满足以下要求的图形:〔1〕到点A 和点B 的距离都等于2cm 的所有点组成的图形。

〔2〕到点A 和点B 的距离都小于2cm 的所有点组成的图形。

【例1】判断正误: 〔1〕直径是圆的对称轴.〔2〕平分弦的直径垂直于弦.B【例2】假设⊙O的半径为5,弦AB长为8,求拱高.【例3】如图,⊙O的直径AB和弦CD相交于点E,AE=6cm,EB=2cm,∠CEA=30°,求CD的长.【例4】如图,在⊙O中,弦AB=8cm,OC⊥AB于C,OC=3cm,求⊙O的半径长.【例5】如图1,AB是⊙O的直径,CD是弦,AE⊥CD,垂足为E,BF⊥CD,垂足为F,EC和DF相等吗?说明理由.如图2,假设直线EF平移到与直径AB相交于点P〔P不与A、B重合〕,在其他条件不变的情况下,原结论是否改变?为什么?如图3,当EF∥AB时,情况又怎样?如图4,CD为弦,EC⊥CD,FD⊥CD,EC、FD分别交直径AB于E、F两点,你能说明AE和BF为什么相等吗?二、课内练习:1、判断:⑴垂直于弦的直线平分这条弦,并且平分弦所对的两条弧.〔〕⑵平分弦所对的一条弧的直径一定平分这条弦所对的另一条弧.〔〕⑶经过弦的中点的直径一定垂直于弦.〔〕⑷圆的两条弦所夹的弧相等,那么这两条弦平行. 〔〕⑸弦的垂直平分线一定平分这条弦所对的弧. 〔〕2、:如图,⊙O 中,弦AB∥CD,AB<CD,直径MN⊥AB,垂足为E,交弦CD于点F.图中相等的线段有 .图中相等的劣弧有 .3、:如图,⊙O 中, AB为弦,C 为 AB 的中点,OC交AB 于D ,AB = 6cm ,CD = 1cm. 求⊙O 的半径OA.4.如图,圆O与矩形ABCD交于E、F、G、H,EF=10,HG=6,AH=4.求BE的长.5.储油罐的截面如图3-2-12所示,装入一些油后,假设油面宽AB=600mm,求油的最大深度.6.“五段彩虹展翅飞〞,我利用国债资金修建的,横跨南渡江的琼州大桥〔如图3-2-16〕已于今年5月12日正式通车,该桥的两边均有五个红色的圆拱,如图〔1〕.最高的圆拱的跨度为110米,拱高为22米,如图〔2〕那么这个圆拱所在圆的直径为米.三、课后练习:1、,如图在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点,求证:AC=BD2、AB、CD为⊙O的弦,且AB⊥CD,AB将CD分成3cm和7cm两局部,求:圆心O到弦AB的距离3、:⊙O弦AB∥CD 求证:⋂=⋂BD AC4、:⊙O半径为6cm,弦AB与直径CD垂直,且将CD分成1∶3两局部,求:弦AB的长.5、:AB为⊙O的直径,CD为弦,CE⊥CD交AB于E DF⊥CD交AB于F求证:AE=BF6、:△ABC内接于⊙O,边AB过圆心O,OE是BC的垂直平分线,交⊙O于E、D两点,求证,⋂=⋂BC21 AE7、:AB为⊙O的直径,CD是弦,BE⊥CD于E,AF⊥CD于F,连结OE,OF求证:⑴OE=OF ⑵ CE=DF8、在⊙O中,弦AB∥EF,连结OE、OF交AB于C、D求证:AC=DB9、如图等腰三角形ABC中,AB=AC,半径OB=5cm,圆心O到BC的距离为3cm,求ABC的长10、:⊙O与⊙O'相交于P、Q,过P点作直线交⊙O于A,交⊙O'于B使OO'与AB平行求证:AB=2OO'11、:AB为⊙O的直径,CD为弦,AE⊥CD于E,BF⊥CD于F求证:EC=DF【例1】A,B是⊙O上的两点,∠AOB=1200,C是的中点,试确定四边形OACB的形状,并说明理由.【例2】如图,AB、CD、EF都是⊙O的直径,且∠1=∠2=∠3,弦AC、EB、DF是否相等?为什么?【例3】如图,弦DC、FE的延长线交于⊙O外一点P,直线PAB经过圆心O,请你根据现有圆形,添加一个适当的条件:,使∠1=∠2.二、课内练习:1、判断题〔1〕相等的圆心角所对弦相等〔〕〔2〕相等的弦所对的弧相等〔〕2、填空题⊙O中,弦AB的长恰等于半径,那么弦AB所对圆心角是________度.3、选择题如图,O为两个同圆的圆心,大圆的弦AB交小圆于C、D两点,OE⊥AB,垂足为E,假设AC=2.5 cm,ED=1.5 cm ,OA =5 cm ,那么AB 长度是___________. A 、6 cm B 、8 cm C 、7 cm D 、7.5 cm 三、课后练习:1 〕A .圆只有一条对称轴B .圆的对称轴不止一条,但只有有限条C .圆有无数条对称轴,每条直径都是它的对称轴D .圆有无数条对称轴,经过圆心的每条直线都是它的对称轴 2.以下说法中,正确的选项是〔 〕 A .等弦所对的弧相等B .等弧所对的弦相等C .圆心角相等,所对的弦相等D .弦相等所对的圆心角相等3 〕A .圆是轴对称图形B .圆是中心对称图形C .圆既是轴对称图形,又是中心对称图形D .以上都不对 4.半径为R 的圆中,垂直平分半径的弦长等于〔 〕A .43R B .23R C .3RD .23R5.如图1,半圆的直径AB=4,O 为圆心,半径OE ⊥AB ,F 为OE 的中点,CD ∥AB ,那么弦CD 的长为〔 〕 A .23B .3C .5D .256.:如图2,⊙O 的直径CD 垂直于弦AB ,垂足为P ,且AP=4cm ,PD=2cm ,那么⊙O 的半径为〔 〕 A .4cmB .5cmC .42cmD .23cm7.如图3,同心圆中,大圆的弦AB 交小圆于C 、D ,AB=4,CD=2,AB 的弦心距等于1,那么两个同心圆的半径之比为〔 〕 A .3:2B .5:2C .5:2D .5:48.半径为R 的⊙O 中,弦AB=2R ,弦CD=R ,假设两弦的弦心距分别为OE 、OF ,那么OE :OF=〔 〕 A .2:1B .3:2C .2:3D .09.在⊙O 中,圆心角∠AOB=90°,点O 到弦AB 的距离为4,那么⊙O 的直径的长为〔 〕 A .42B .82C .24D .1610.如果两条弦相等,那么〔 〕 A .这两条弦所对的弧相等B .这两条弦所对的圆心角相等C.这两条弦的弦心距相等D.以上答案都不对11.⊙O中假设直径为25cm,弦AB的弦心距为10cm,那么弦AB的长为.12.假设圆的半径为2cm,圆中的一条弦长23cm,那么此弦中点到此弦所对劣弧的中点的距离为.13.AB为圆O的直径,弦CD⊥AB于E,且CD=6cm,OE=4cm,那么AB= .14.半径为5的⊙O内有一点P,且OP=4,那么过点P的最短的弦长是,最长的弦长是.15.弓形的弦长6cm,高为1cm,那么弓形所在圆的半径为 cm.16.在半径为6cm的圆中,垂直平分半径的弦长为 cm.17.一条弦把圆分成1:3两局部,那么弦所对的圆心角为.18.弦心距是弦的一半时,弦与直径的比是,弦所对的圆心角是.19.如图4,AB、CD是⊙O的直径OE⊥AB,OF⊥CD,那么∠EOD ∠BOF,⌒AC⌒AE,AC AE.20.如图5,AB为⊙O的弦,P是AB上一点,AB=10cm,OP=5cm,PA=4cm,求⊙O的半径.21.如图6,以点O为公共圆心的两个同心圆,大圆的弦AB交小圆于C、D.〔1〕求证:AC=DB;〔2〕如果AB=6cm,CD=4cm,求圆环的面积.22.⊙O的直径为50cm,弦AB∥CD,且AB=40cm,CD=48cm,求弦AB和CD之间的距离.23.如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么?24.一弓形的弦长为46,弓形所在的圆的半径为7,求弓形的高.25.如图,⊙O1和⊙O2是等圆,直线CF顺次交这两个圆于C、D、E、F,且CF交O1O2于点M,⌒⌒EFCD ,O1M和O2M相等吗?为什么?。

27.1《圆的对称性》同步练习

27.1《圆的对称性》同步练习

《圆的对称性》同步练习一.选择题(共10小题)1.下列说法,正确的是()A.弦是直径B.弧是半圆C.半圆是弧D.过圆心的线段是直径2.点A、O、D与点B、O、C分别在同一直线上,图中弦的条数为()A.2 B.3 C.4 D.53.下列说法中,正确的是()A.两个半圆是等弧B.同圆中优弧与半圆的差必是劣弧C.长度相等的弧是等弧D.同圆中优弧与劣弧的差必是优弧4.有下列四个说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中错误说法的个数是()A.1 B.2 C.3 D.45.下列说法中,结论错误的是()A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧6.如图,在半圆的直径上作4个正三角形,如这半圆周长为C1,这4个正三角形的周长和为C2,则C1和C2的大小关系是()A.C1>C2B.C1<C2C.C1=C2D.不能确定7.过圆内一点A可以作出圆的最长弦有()A.1条B.2条C.3条D.1条或无数条8.下列结论错误的是()A.圆是轴对称图形B.圆是中心对称图形C.半圆不是弧D.同圆中,等弧所对的圆心角相等9.一个点到圆的最小距离为3cm,最大距离为8cm,则该圆的半径是()A.5cm或11cm B.2.5cm C.5.5cm D.2.5cm或5.5cm10.在直角坐标平面中,M(2,0),圆M的半径为4,那么点P(﹣2,3)与圆M的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定二.填空题(共8小题)11.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是.12.已知⊙P在直角坐标平面内,它的半径是5,圆心P(﹣3,4),则坐标原点O与⊙P的位置关系是.13.已知⊙O的半径为5,点A在⊙O外,那么线段OA的取值范围是.14.若⊙O的半径为6cm,则⊙O中最长的弦为厘米.15.圆上各点到圆心的距离都等于,到圆心距离等于半径的点都在.16.下列说法正确的是()填序号.①半径不等的圆叫做同心圆;②优弧一定大于劣弧;③不同的圆中不可能有相等的弦;④直径是同一个圆中最长的弦.17.与已知点A的距离为3cm的点所组成的平面图形是.18.如图,在⊙O中,点A、O、D和点B、O、C分别在一条直线上,图中共有条弦,它们分别是.三.解答题(共2小题)19.如图,AB、CD为⊙O中两条直径,点E、F在直径CD上,且CE=DF.。

《圆的对称性》练习题

《圆的对称性》练习题

14.如图,已知⊙O 的半径等于 1 cm,AB 是直径,C,D 是⊙O 上的 ︵ ︵ ︵ 两点,且AD=DC=CB,则四边形 ABCD 的周长等于( B ) A.4 cm B.5 cm C.6 cm D.7 cm
15.(导学号:37554049)如图,在扇形 OAB 中,∠AOB=110°, ︵ 将扇形 OAB 沿过点 B 的直线折叠,点 O 恰好落在AB上的点 D 处, ︵ 折痕交 OA 于点 C,则AD所对的圆心角的度数为( B A.40° B.50° C.60° D.70° )
20.如图,A,B,C 是半径为 2 的圆 O 上的三个点,其中点 A 是弧 BC 的中点,连接 AB,AC,点 D,E 分别在弦 AB,AC 上,且满足 AD=CE. (1)求证:OD=OE; (2)连接 BC,当 BC=2 2时,求∠DOE 的度数.
(1) 证明:连接 OA , 图略.∵点 A 是弧 BC 的中点 , ∴∠ AOB = ∠AOC.∵OA=OB=OC,∴∠ABO=∠BAO=∠ACO,∵AD=CE, ∴△AOD≌△COE,∴OD=OE (2)连接 BC 交 OA 于点 F,图略.由 三线合一知 OA⊥BC,BF= 2.在 Rt△BFO 中,由勾股定理可求 OF= 2 , ∴ BF = OF , ∴∠ AOB = 45 ° . ∵△ AOD ≌△ COE , ∴∠ AOD = ∠COE,∴∠BOD=∠AOE,∴∠DOE=∠AOB=45°
︵ 的三 连接 AC,BD,图略.∵在⊙O 中,半径 OA⊥OB,C,D 为AB 1 1 等分点,∴∠AOC=∠COD=∠BOD= ∠AOB = ×90°=30°, 3 3 AC=CD=BD.∵OA=OB ,∴∠OAB =∠OBA=45°,∵∠AOC= ∠BOD=30°,∴∠OEF=∠OAB+∠AOC=45°+30°=75°,同 理∠OFE=75°,∵OA=OC,OB=OD,∠AOC=∠BOD=30°, 180°-30° ∴∠ACO=∠BDO= =75°.∵∠AEC=∠OEF=75°, 2 ∠ BDO =∠OFE = 75 ° , ∴∠ ACO =∠AEC , ∠ BDO =∠BFD , ∴ AE=AC,BD=BF,又∵AC=CD=BD,∴AE=BF=CD

圆的对称性压轴题六种模型全攻略(解析版)

圆的对称性压轴题六种模型全攻略(解析版)

圆的对称性压轴题六种模型全攻略【考点导航】目录【典型例题】1【考点一利用弧、弦、圆心角的关系求解】【考点二利用弧、弦、圆心角的关系求证】【考点三利用垂径定理求值】【考点四利用垂径定理求平行弦问题】【考点五垂径定理的推论】【考点六垂径定理的实际应用】【过关检测】15【典型例题】【考点一利用弧、弦、圆心角的关系求解】1(2023·陕西西安·西安市庆安初级中学校联考模拟预测)如图,AB是⊙O的直径,点C,D在⊙O上,AC=AD,∠AOD=70°,则∠BCO的度数是()A.30°B.35°C.40°D.55°【答案】B【分析】首先由AC=AD,∠AOD=70°可得∠AOC=∠AOD=70°,再由OB=OC可得出∠OBC=∠AOC=35°.∠OCB=12【详解】解:∵在⊙O中,AC=AD,∠AOD=70°∴∠AOC=∠AOD=70°,∵OB=OC,∠AOC=35°,∴∠OBC=∠OCB=12故选:B.【点睛】此题考查了弧与圆心角的关系、等腰三角形的性质及三角形外角的性质,掌握数形结合思想的应用是解题的关键.【变式训练】1(2023·全国·九年级专题练习)如图,点A,B,C在⊙O上,∠BAC=40°,则∠BOC的度数为()A.20°B.80°C.50°D.100°【答案】B【分析】根据同弧所对的圆周角等于圆心角的一半即可得出答案.【详解】解:∵∠BAC =40°,∴∠BOC =2∠BAC =2×40°=80°,故选:B .【点睛】本题考查了同弧所对的圆周角与圆心角的关系,熟知同弧所对的圆周角等于圆心角的一半是解本题的关键.2(2023春·安徽合肥·九年级校考阶段练习)下列说法:①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③过直线上两点和直线外一点,可以确定一个圆;④圆是轴对称图形,直径是它的对称轴.其中正确的个数是()A.0 B.1 C.2 D.3【答案】B【分析】根据圆心角、弧、弦的关系定理判断①,根据垂径定理的推论判断②;根据不共线的三点共圆可判断③;根据轴对称图形的定义判断④.【详解】解:①同圆或等圆中,相等的圆心角所对的弧相等,故错误;②平分弦不是直径的直径垂直于弦,故错误;③过直线上两点和直线外一点,可以确定一个圆,正确;④圆是轴对称图形,直径所在的直线是它的对称轴,故错误,正确的只有1个,故选:B .【点睛】本题考查了圆心角、弧、弦的关系,垂径定理的推论,轴对称图形的对称轴,圆的性质,熟练掌握定义与性质是解题的关键.【考点二利用弧、弦、圆心角的关系求证】1(2023·全国·九年级专题练习)如图,已知⊙O 的半径OA ,OB ,C 在AB �上,CD ⊥OA 于点D ,CE ⊥OB 于点E ,且CD =CE ,求证:AC=BC.【答案】见解析【分析】根据角平分线的判定定理可得∠AOC =∠BOC ,然后根据弧、弦和圆心角的关系证明即可.【详解】证明:∵CD =CE ,CD ⊥OA ,CE ⊥OB ,∴∠AOC =∠BOC ,∴AC=BC.【点睛】本题主要考查了角平分线的判定定理以及弧、弦和圆心角的关系等知识,准确证明∠AOC =∠BOC 是解题关键.【变式训练】1(2023春·广东惠州·九年级校考开学考试)已知:如图,在⊙O 中,∠ABD =∠CDB .求证:AB =CD .【答案】见解析【分析】根据∠ABD =∠CDB ,可知AD =BC ,则有AD +AC =BC +AC ,由此可得AB =CD,进而可证AB =CD .【详解】证明:∵∠ABD =∠CDB ,∴AD=BC,∴AD +AC=BC +AC,∴AB=CD,∴AB =CD .【点睛】本题考查圆心角、弧、弦之间的关系,即在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,能够熟练掌握圆心角、弧、弦之间的关系是解决本题的关键.2(2023秋·河北秦皇岛·九年级统考期末)如图,A 、B 是⊙O 上的两点,C 是弧AB 中点.求证:∠A =∠B .【答案】见解析【分析】连接OC ,通过证明△AOC ≌△BOC (SAS )即可得结论.【详解】证明:如图,连接OC ,∵C 是AB的中点,∴AC=BC ,∴∠AOC =∠BOC ,在△AOC 和△BOC 中,OA =OB∠AOC =∠BOC OC =OC,∴△AOC ≌△BOC (SAS ),∴∠A =∠B .【点睛】本题考查弧、弦、圆心角的关系,全等三角形的判定和性质等知识,解题的关键是利用全等三角形的判定和性质解决问题,属于中考常考题型.【考点三利用垂径定理求值】1(2023秋·辽宁葫芦岛·九年级统考期末)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AD ,若AB =10,CD =6,则弦AD 的长为.【答案】310【分析】由题意易得DE =12CD =3,OD =5,根据勾股定理可求OE 的长,然后问题可求解.【详解】解:连接OD ,∵AB 是⊙O 的直径,AB =10,∴OD =OB =12AB =5,∵CD ⊥AB ,CD =6,∴DE =12CD =3,∠DEO =90°,∴OE=OD2-DE2=4,∴AE=OA+OE=5+4=9,∴AD=DE2+AE2=92+32=310,故答案为310.【点睛】本题主要考查垂径定理,熟练掌握垂径定理是解题的关键.【变式训练】1(2023秋·广东惠州·九年级校考阶段练习)已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O 到AB的距离为cm.【答案】12【分析】过点O作OH⊥AB于点H,由垂径定理得到BH=12AB=5cm,在Rt△BOH中,利用勾股定理即可得到圆心O到AB的距离.【详解】解:如图,⊙O的半径为13cm,弦AB的长为10cm,过点O作OH⊥AB于点H,则BH=12AB=5cm,∠BHO=90°,∴OH=OB2-BH2=132-52=12cm,即圆心O到AB的距离为12cm,故答案为:12【点睛】此题考查了垂径定理、勾股定理等知识,熟练掌握垂径定理的内容是解题的关键.2(2023·浙江·九年级假期作业)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问:径几何?”转化为现在的数学语言就是:如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,AE=1寸,CD=10寸.则直径AB的长为寸.【答案】26【分析】连接OC构成直角三角形,先根据垂径定理,由CD⊥AB得到点E为CD的中点,由CD=10可求出CE的长,再设出圆的半径OC为x,表示出OE,根据勾股定理建立关于x的方程,求解方程可得2x的值,即为圆的直径.【详解】解:连接OC,∵AB⊥CD,且CD=10寸,∴CE=DE=5寸,设圆O的半径OC的长为x,则OC=OA=x,∵AE=1,∴OE=x-1,在Rt△COE中,根据勾股定理得:x2-(x-1)2=52,化简得:x2-x2+2x-1=25,即2x=26,∴AB=26(寸).故答案为:26.【点睛】本题考查了垂径定理和勾股定理,解题的关键是正确作出辅助线构造直角三角形.【考点四利用垂径定理求平行弦问题】1(2023秋·天津和平·九年级校考期末)⊙O半径为5,弦AB∥CD,AB=6,CD=8,则AB与CD间的距离为()A.1B.7C.1或7D.3或4【答案】C【分析】过O点作OE⊥AB,E为垂足,交CD与F,连OA,OC,由AB∥CD,得到OF⊥CD,根据垂径定理得AE=3,CF=4,再在Rt△OAE中和在Rt△OCF中分别利用勾股定理求出OE,OF,然后讨论:当圆O点在AB、CD之间,AB与CD之间的距离=OE+OF;当圆O点不在AB、CD之间,AB与CD 之间的距离=OE-OF.【详解】解:过O点作OE⊥AB,E为垂足,交CD与F,连OA,OC,如图,∵AB∥CD,∴OF⊥CD,∴AE=BE,CF=DF,而AB=6,CD=8,∴AE=3,CF=4,在Rt△OAE中,OA=5,OE=OA2-AE2=52-32=4;在Rt△OCF中,OC=5,OF=OC2-CF2=52-42=3;当圆O点在AB、CD之间,AB与CD之间的距离=OE+OF=7;当圆O点不在AB、CD之间,AB与CD之间的距离=OE-OF=1;所以AB与CD之间的距离为7或1.故选:C.【点睛】本题考查了垂径定理,即垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理以及分类讨论的思想的运用.【变式训练】1(2023·全国·九年级专题练习)在半径为10的⊙O中,弦AB=12,弦CD=16,且AB∥CD,则AB 与CD之间的距离是.【答案】2或14【分析】由于弦AB与CD的具体位置不能确定,故应分两种情况进行讨论:①弦AB与CD在圆心同侧;②弦AB与CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB与CD在圆心同侧时,如图①,过点O作OF⊥AB,垂足为F,交CD于点E,连接OA,OC,∵AB∥CD,∴OE⊥CD,∵AB=12,CD=16,∴CE=8,AF=6,∵OA=OC=10,∴由勾股定理得:EO=102-82=6,OF=102-62=8,∴EF=OF-OE=2;②当弦AB与CD在圆心异侧时,如图,过点O作OE⊥CD于点E,反向延长OE交AB于点F,连接OA,OC,同理EO=102-82=6,OF=102-62=8,EF=OF+OE=14,所以AB与CD之间的距离是2或14.故答案为:2或14.【点睛】本题考查了勾股定理和垂径定理,解答此题时要注意进行分类讨论,不要漏解.2(2023春·甘肃武威·九年级校联考阶段练习)⊙O的半径为13cm,AB、CD是⊙O的两条弦,AB⎳CD,AB=24cm,CD=10cm,求AB和CD之间的距离.【答案】7cm或17cm.【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB和CD在圆心同侧时,如图1∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12-5=7cm;②当弦AB和CD在圆心异侧时,如图2,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm.∴AB与CD之间的距离为7cm或17cm.【点睛】本题考查了勾股定理和垂径定理的应用,正确作出辅助线、灵活运用定理是解题的关键,注意掌握数形结合思想与分类讨论思想的应用.【考点五垂径定理的推论】1(2023·新疆喀什·统考二模)某公路隧道的截面为圆弧形,设圆弧所在圆的圆心为O,测得其同一水平线上A、B两点之间的距离为12米,拱高CD为4米,则⊙O的半径为米.【答案】6.5【分析】连接OA,设⊙O的半径为R,利用垂径定理以及勾股定理求解即可.【详解】解:连接OA,设⊙O的半径为R,则OC=R-4,由题意得,OD⊥AB,AB=6,∴AC=BC=12在Rt△AOC中,由勾股定理得R2=62+R-42,解得R=6.5,则⊙O的半径为6.5米.故答案为:6.5.【点睛】本题考查了垂径定理的应用,根据题意作出辅助线,由勾股定理得出方程是解题的关键.【变式训练】1(2023·浙江·九年级假期作业)如图是一位同学从照片上前切下来的海上日出时的画面,“图上”太阳与海平线交于A,B两点,他测得“图上”圆的半径为10厘米,AB=16厘米.则“图上”太阳从目前所处位置到完全跳出海平面,升起厘米.【答案】16【分析】连接OB,作OD⊥AB于点D,交优弧于点C,利用垂径定理求得AD=BD=8厘米.在Rt△OBD中,利用勾股定理求得OD的长,据此求解即可.【详解】解:连接OB,作OD⊥AB于点D,交优弧于点C,则AD=BD=8厘米.由题意得OB=OC=10厘米,在Rt△OBD中,OD=OB2-BD2=6厘米,∴CD=OD+OC=16厘米,则“图上”太阳从目前所处位置到完全跳出海平面,升起16厘米.故答案为:16.【点睛】本题考查了垂径定理的应用,利用垂径定理构造直角三角形是解题的关键.2(2023春·江苏无锡·九年级校联考期末)《九章算术》中卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?转化为数学语言:如图,OD为⊙O的半径,弦AB⊥OD,垂足为C,CD=1寸,AB=1尺(1尺=10寸),则此圆材的直径长是寸.【答案】26【分析】连接AO,依题意,得出AC=5,设半径为r,则AO=r,在Rt△AOC中,AO2=AC2+CO2,解方程即可求解.【详解】解:如图所示,连接AO,∵CD=1,AB=10,AB⊥OD,OD为⊙O的半径,∴AC=5,设半径为r ,则AO =r ,在Rt △AOC 中,AO 2=AC 2+CO 2,∴r 2=52+r -1 2,解得:r =13,∴直径为26,故答案为:26.【点睛】本题考查了垂径定理的应用,勾股定理,掌握垂径定理是解题的关键.【考点六垂径定理的实际应用】1(2023春·安徽亳州·九年级专题练习)如图,⊙O 的直径AB 与弦CD 交于点E ,CE =DE ,则下列说法错误的是()A.CB =BDB.OE =BEC.CA =DAD.AB ⊥CD【答案】B【分析】根据垂径定理及其推论判断即可.【详解】解:∵AB 是⊙O 的直径与弦CD 交于点E ,CE =DE ,∴根据垂径定理及其推论可得,点B 为劣弧CD的中点,点A 为优弧CD的中点,AB ⊥CD ∴CB=BD,AC=AD,∴CA =DA但不能证明OE =BE ,故B 选项说法错误,符合题意;故选:B .【点睛】本题考查的是垂径定理及其推论,解决本题的关键是熟练掌握垂径定理及其推论:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【变式训练】1(2023春·九年级单元测试)下列说法正确的是()①平分弧的直径垂直平分弧所对的弦②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③ B.①③C.②④D.①④【答案】D【详解】根据垂径定理及其推论进行判断.【解答】解:根据垂径定理,①正确;②错误.平分弦(不是直径)的直径平分弦所对的弧;③错误.垂直于弦且平分弦的直线必过圆心;④正确.故选:D.【点评】注意概念性质的语言叙述,有时是专门来混淆是非的,只是一字之差,所以学生一定要养成认真仔细的习惯.2(2023·四川攀枝花·校联考二模)下列说法中正确的说法有( )个①对角线相等的四边形是矩形②在同圆或等圆中,同一条弦所对的圆周角相等③相等的圆心角所对的弧相等④平分弦的直径垂直于弦,并且平分弦所对的弧⑤到三角形三边距离相等的点是三角形三个内角平分线的交点A.1B.2C.3D.4【答案】A【分析】根据矩形的判定方法、圆的性质、垂径定理、三角形的有关性质求解即可.【详解】解:①对角线相等的平行四边形是矩形,故错误;②在同圆或等圆中,同一条弦所对的圆周角不一定相等,∵同一条弦所对的圆周角有两种情况,故不正确;③在同圆或等圆中,相等的圆心角所对的弧相等,故错误;④平分非直径的弦的直径垂直于弦,并且平分弦所对的弧,故错误;⑤到三角形三边距离相等的点是三角形的内心,而内心是角平分线的交点,故正确;故选:A.【点睛】本题是对基础概念的考查,熟记概念是解题关键.【过关检测】一、单选题1(2023·上海普陀·统考二模)下列关于圆的说法中,正确的是()A.过三点可以作一个圆B.相等的圆心角所对的弧相等C.平分弦的直径垂直于弦D.圆的直径所在的直线是它的对称轴【答案】D【分析】利用圆的有关定义及性质分别判断后即可确定正确的选项.【详解】解:A、过不在同一直线上的三个点一定能作一个圆,故错误,不符合题意;B、同圆或等圆中,相等的圆心角所对的弧相等,故错误,不符合题意;C、平分弦(不是直径)的直径垂直于弦,故错误,不符合题意;D、圆的直径所在的直线是它的对称轴,正确,符合题意.故选:D.【点睛】本题考查了确定圆的条件及圆的有关性质,解题的关键是了解有关性质及定义,难度不大.2(2023·浙江·模拟预测)已知弦AB把圆周分成1:3两部分,则弦AB所对圆心角的度数为()A.90°B.270°C.90°或270°D.45°或135°【答案】C【分析】分优弧,劣弧两种情况,求解即可.【详解】解:∵弦AB 把圆周分成1:3两部分,∴劣弧AB 的度数为:360°×14=90°,即:劣弧所对的圆心角的度数为90°,优弧AB 的度数为:360°×34=270°,即:优弧所对的圆心角的度数为270°,∴弦AB 所对圆心角的度数为90°或270°;故选C .【点睛】本题考查弦,弧,角之间的关系.注意弦分弧为优弧和劣弧两种情况.3(2023·全国·九年级专题练习)如图,线段CD 是⊙O 的直径,CD ⊥AB 于点E ,若AB 长为16,OE 长为6,则⊙O 半径是()A.5B.6C.8D.10【答案】D【分析】连接OB ,由垂径定理可得BE =AE =8,由勾股定理计算即可获得答案.【详解】解:如图,连接OB ,∵线段CD 是⊙O 的直径,CD ⊥AB 于点E ,AB =16,∴BE =AE =12AB =12×16=8,∴在Rt △OBE 中,可有OB =OE 2+BE 2=62+82=10,∴⊙O 半径是10.故选:D .【点睛】本题主要考查了垂径定理及勾股定理等知识,理解并掌握垂径定理是解题关键.4(2023秋·浙江台州·九年级统考期末)如图,CD 是⊙O 的直径,弦AB 垂直CD 于点E ,连接AC ,BC ,AD ,BD ,则下列结论不一定成立的是()A.AE =BEB.CE =OEC.AC =BCD.AD =BD【答案】B【分析】根据垂径定理对各选项进行逐一分析即可.【详解】解:∵CD 是⊙O 的直径,弦AB 垂直CD 于点E ,∴AE =BE ,AC=BC,AD=BD,∴AC =BC ,AD =BD ,而CE =OE 不一定成立,故选:B .【点睛】本题考查的是垂径定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.5(2023·浙江衢州·统考二模)一次综合实践的主题为:只用一张矩形纸条和刻度尺,如何测量一次性纸杯杯口的直径?小聪同学所在的学习小组想到了如下方法:如图,将纸条拉直紧贴杯口上,纸条的上下边沿分别与杯口相交于A ,B ,C ,D 四点,利用刻度尺量得该纸条宽为3.5cm ,AB =3cm ,CD =4cm .请你帮忙计算纸杯的直径为()A.4cmB.5cmC.6cmD.7cm【答案】B【分析】设圆心为O ,根据垂径定理可以得到CE =2,AF =1.5,再根据勾股定理构建方程解题即可.【详解】设圆心为O ,EF 为纸条宽,连接OC ,OA ,则EF ⊥CD ,EF ⊥AB ,∴CE =12CD =12×4=2,AF =12AB =12×3=1.5,设OE =x ,则OF =3.5-x ,又∵OC =OA ,∴CE 2+OE 2=AF 2+OF 2,即22+x 2=1.52+3.5-x 2,解得:x =1.5,∴半径OC =22+x 2=2.5,即直径为5cm ,故选B .【点睛】本题考查垂径定理,勾股定理,构建直角三角形利用勾股定理计算是解题的关键.二、填空题6(2023春·九年级单元测试)AB 为⊙O 的直径,弦CD ⊥AB 于E ,且CD =6cm ,OE =4cm ,则AB =.【答案】10cm【分析】由垂径定理可知CE =12CD =3cm ,在Rt △CEO 中由勾股定理可求得OC 即AB 的值.【详解】解:如图:依题意可知OA =OC =12AB ,∵AB 为⊙O 的直径,弦CD ⊥AB 于E ,∴CE =12CD =3cm ,在Rt △CEO 中,OC =OE 2+CE 2=42+32=5cm ,∴AB =2OC =10cm ,故答案为:10cm .【点睛】本题考查了垂径定理,勾股定理解直角三角形;解题的关键是熟练掌握相关知识.7(2023春·北京海淀·九年级101中学校考阶段练习)如图,AB 是⊙O 的直径,BC=CD=DE,∠AOE =78°,则∠COB 的度数是.-【答案】34°/34度【分析】先由平角的定义求出∠BOE 的度数,由BC=CD=DE,根据相等的弧所对的圆心角相等可得∠BOC =∠EOD =∠COD =13∠BOE ,即可求解.【详解】∵∠AOE =78°,∴∠BOE =180°-∠AOE =180°-78°=102°,∵BC=CD=DE,∴∠BOC =∠EOD =∠COD =13∠BOE =34°,故答案为:34°.【点睛】此题考查了弧与圆心角的关系.此题比较简单,注意掌握数形结合思想的应用.8(2023春·九年级单元测试)半径为5的⊙O 内有一点P ,且OP =4,则过点P 的最短的弦长是,最长的弦长是.【答案】 610【分析】过点P 的最短的弦是垂直于OP 的弦,过点P 的最长的弦是直径,利用勾股定理和垂径定理进行求解即可得到答案.【详解】解:如图,OP 在直径AB 上,AB ⊥CD 于点P ,过点P 的最短的弦是垂直于OP 的弦,即CD 的长∵OC =5,OP =4,由勾股定理得:PC =OC 2-OP 2=3,∴CD =2PC =6,∴过点P 的最短的弦长是6;过点P 的最长的弦是直径,即AB 的长,∵AB =5×2=10,.∴过点P 的最长的弦长是10,故答案为:6;10.【点睛】本题考查了垂径定理,勾股定理,解题关键是熟练掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.9(2023·河南南阳·校联考二模)已知半径为5的圆O 中有一条长度为8的弦AB ,分别以A ,B 为圆心,长度大于4为半径作圆弧交于点M ,N ,连接MN ,点C 为直线MN 与圆O 的交点,点D 为直线MN 与弦AB 的交点,则CD 的长度为.【答案】2或8【分析】根据作图可知,MN 为AB 的中垂线,则MN 必过圆心O ,连接OA ,利用垂径定理求出OD 的长,分点C 在劣弧AB 上和点C 在优弧AB 上两种情况进行求解即可.【详解】解:由题意,得:MN 是弦AB 的中垂线,D 为AB 的中点,如图,连接OA ,OD ,OB ,则:OA =OB =5,AD =12AB =4,∴OD ⊥AB ,∵CD ⊥AB ,∴O ,C ,D 三点共线,∴OC =5,∴OD =OA 2-AD 2=3;①当点C 在劣弧AB 上时:CD =OC -OD =2;②当点C 在优弧AB 上时:CD =OC +OD =8;故答案为:2或8【点睛】本题考查中垂线的作图,垂径定理.根据作图方法得到MN 是AB 的中垂线,是解题的关键.注意分类讨论.10(2023·浙江·九年级专题练习)图1是小文家的木马玩具,图2是木马玩具底座水平放置的示意图,点O 是AB所在圆的圆心,OA =OB ,点A ,点B 离地高度均为15cm ,水平距离AB =90cm .则OA =cm .当半径OA 转到竖直位置时,木马就有翻倒的风险,为安全起见,点B 离地高度应小于cm .【答案】 7554【分析】根据垂径定理构造直角三角形即可得到OA 的长度;根据题意做出示意图再利用勾股定理列出方程即可.【详解】解:连接AB ,过点O 作OC ⊥AB ,垂足为C ,如图,∵OA =OB ,AB =90cm ,∴AC =BC =12AB =45cm ,∵点A ,点B 离地高度均为15cm ,∴OC =OA -15,∴在Rt △AOC 中,OC 2+AC 2=OA 2,∴OA -15 2+452=OA 2,∴OA =75cm ,故答案为75;过点B 作BE ⊥OA ,BF 垂直于地面,垂足分别是E 、F ,如图,∵BE =AF ,设BF =AE =x ,OA =OB =75cm ,∴OE =OA -AE =75-x ,∴在Rt △BOE 中,BE 2=OB 2-OE 2,在Rt △BEA 中,BE 2=AB 2-AE 2,∴752-75-x 2=902-x 2,∴x =54cm .∴则点B 离地面的高度应小于54cm .故答案为:54.【点睛】本题考查了垂径定理,勾股定理,解一元一次方程等相关知识点,熟记垂径定理是解题的关键.三、解答题11(2023秋·河北邢台·九年级校联考期末)如图,AB 是⊙O 的直径,BC=CD,∠COD =50°,求∠AOD 的度数.【答案】80°【分析】根据圆的性质进行计算即可得.【详解】解:在⊙O 中,AB 是⊙O 的直径,∴∠AOB =180°,又∵BC=CD,∴∠BOC =∠COD =50°,∴∠AOD =180°-50°-50°=80°.【点睛】本题考查了圆的性质,解题的关键是掌握同弧所对的圆心角相等.12(2023·江苏·九年级假期作业)如图,OA =OB ,AB 交⊙O 于点C ,D ,OE 是半径,且OE ⊥AB 于点F .(1)求证:AC =BD .(2)若CD =8,EF =2,求⊙O 的半径.【答案】(1)见解析(2)5【分析】(1)由垂径定理得到CF =DF ,由等腰三角形的性质得到AF =BF ,从而证明AC =BD ;(2)设⊙O 的半径是r ,由勾股定理,垂径定理列出关于r 的方程,即可求出⊙O 的半径.【详解】(1)证明:∵OE ⊥AB ,∴CF =DF ,∵OA =OB ,∴AF =BF ,∴AF -CF =BF -DF ,∴AC =BD ;(2)解:连接OC ,设⊙O 的半径是r ,∵CO 2=CF 2+OF 2,CF =12CD =4∴r 2=42+(r -2)2,∴r =5,∴⊙O 的半径是5.【点睛】本题考查垂径定理,勾股定理,等腰三角形的性质,关键是由勾股定理,垂径定理列出关于半径的方程.13(2023春·全国·九年级专题练习)如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,AE =2,CD =8.(1)求⊙O的半径长;(2)连接BC,作OF⊥BC于点F,求OF的长.【答案】(1)⊙O的半径长为5(2)OF的长为5【分析】(1)连接OD,设⊙O的半径长为r,OE=OA-AE=r-2,得到r-22+42=r2,求解即可.(2)勾股定理求得BC,垂径定理求得BF,勾股定理求出OF即可.【详解】(1)连接OD,如图,设⊙O的半径长为r,∵AB⊥CD,AE=2,CD=8,∴∠OED=90°,CE=DE=12CD=4,OE=OA-AE=r-2,在Rt△ODE中,∴r-22+42=r2,解得r=5,故⊙O的半径长为5.(2)在Rt△BCE中,∵CE=4,BE=AB-AE=10-2=8,∴BC=42+82=45,∵OF⊥BC,∴∠OFB=90°,CF=FB=12CB=25在Rt△BOF中,OF=52-252=5,故OF的长为5.【点睛】本题考查了勾股定理,垂径定理,熟练掌握两个定理是解题的关键.14(2023·河北衡水·校考模拟预测)图1是某种型号圆形车载手机支架,由圆形钢轨、滑动杆、支撑杆组成.图2是它的正面示意图,滑动杆AB的两端都在圆O上,A、B两端可沿圆形钢轨滑动,支撑杆CD的底端C固定在圆O上,另一端D是滑动杆AB的中点,(即当支架水平放置时直线AB平行于水平线,支撑杆CD垂直于水平线),通过滑动A、B可以调节CD的高度.当AB经过圆心O时,它的宽度达到最大值10cm,在支架水平放置的状态下:(1)当滑动杆AB的宽度从10厘米向上升高调整到6厘米时,求此时支撑杆CD的高度.(2)如图3,当某手机被支架锁住时,锁住高度与手机宽度恰好相等(AE=AB),求该手机的宽度.【答案】(1)支撑杆CD的高度为9cm.(2)手机的宽度为8cm.【分析】(1)如图,连结OA,由题意可得:⊙O的直径为10,AB=6, 由OD⊥AB, 先求解OD, 从而可得答案;(2)如图,记圆心为O ,连结OA ,证明AE =CD =BF =AB , 设AD =BD =x ,则AE =CD =BF =AB =2x ,则OD =2x -5, 再利用勾股定理建立方程求解即可.【详解】(1)解:如图,连结OA ,由题意可得:⊙O 的直径为10,AB =6,∴OA =5,∵CD ⊥AB , 即OD ⊥AB , ∴AD =BD =3, ∴OD =52-32=4, ∴CD =OC +OD =9.所以此时支撑杆CD 的高度为9cm .(2)解:如图,记圆心为O ,连结OA ,由题意可得:AB =AE ,∠E =∠EAB =∠ABF =90°, ∴四边形AEFB 为正方形,∵CD ⊥EF ,∴AE =CD =BF =AB ,∵CD ⊥AB , ∴设AD =BD =x ,则AE =CD =BF =AB =2x ,∵OA =OC =5, ∴OD =2x -5,由勾股定理可得:52=x 2+2x -5 2, 解得x 1=0,x 2=4,经检验x =0不符合题意,舍去,取x =4, AB =8(cm ),即手机的宽度为8cm .【点睛】本题考查的是正方形的判定与性质,垂径定理的应用,勾股定理的应用,一元二次方程的解法,理解题意,建立方程解题是关键.15(2023春·黑龙江哈尔滨·九年级哈尔滨市第十七中学校校考阶段练习)如图1,AB 是⊙O 的弦,点C 在⊙O 外,连接AC 、BC 分别交⊙O 于D 、E ,AC =BC(1)求证:CD =CE .(2)如图2,过圆心O 作PQ ∥AB ,交⊙O 于P 、Q 两点,交AC 、BC 于M 、N 两点,求证:PM =QN .(3)如图3,在(2)的条件下,连接EO 、AO ,∠EON +∠CAO =120°,若CD =112,NQ =32,求弦BE 的长.【答案】(1)见解析(2)见解析(3)13【分析】(1)连接DE ,利用圆内接四边形的性质,等腰三角形的两个底角相等的性质证明即可.(2)连接OA =OB ,证△OAM ≌△OBN ,得OM =ON ,得OP -OM =OQ -ON ,可证明PM =NQ .(3)连接OB ,证∠OAM =∠OBN ,OB =OE ,结合已知,得∠CNO =60°,等边△CMN ,∠OCN =30°,∠CNM =60°,作OG ⊥BE 于点G ,设GN =m ,可得ON =2m ,OG =3m ,GC =3m ,OE =OQ =2m+32,EG =3m -112,Rt △OGE 中勾股得2m +32 2=3m -112 2+3m 2,计算即可.【详解】(1)如图,连接DE ,∵四边形ADEB 是⊙O 的内接四边形,∴∠CDE =∠B ,∠CED =∠A ;∵AC =BC ,∴∠B =∠A ;∴∠CDE =∠CED ;∴CD =CE .(2)连接OA ,OB ,∵AC =BC ,∴∠CAB =∠CBA ;∵PQ ∥AB ,∴∠CAB =∠CMN ,∠CBA =∠CNM ,∴∠CMN =∠CNM ,∴CM =CN ,∴CA -CM =CB -CN ,∴MA =NB ,∵OA =OB ,∴∠OAB =∠OBA ,∴∠OAM =∠OBN ,∴MA =NB∠OAM=∠OBN OA =OB,∴△OAM ≌△OBN ,∴OM =ON ,∵OP =OQ ,∴OP -OM =OQ -ON ,∴PM =NQ .(3)连接OB ,∵AC =BC ,∴∠CAB =∠CBA ;∵OA =OB ,∴∠OAB =∠OBA ,∴∠CAO =∠CBO ,∵∠EON +∠CAO =120°,21∴∠EON +∠CBO =120°,∵OB =OE ,∴∠OEB =∠CBO ,∴∠EON +∠OEN =120°,∴∠CNO =60°,∵CM =CN ,∴等边△CMN ,∠OCN =30°,∠CNM =60°,作OG ⊥BE 于点G ,则BE =2EG ,∵CE =CD =112,NQ =32,设GN =m ,则ON =2m ,OG =3m ,∴CN =4m ,∴GC =CN -GN =3m ,OE =OQ =2m +32,EG =3m -112,Rt △OGE 中,根据勾股定理,得2m +32 2=3m -1122+3m 2,解得m 1=4,m 2=78, ∵3m -112>0,∴m =4,∴BE =2EG =23m -112=13.【点睛】本题考查了圆的性质,垂径定理,等边三角形的判定和性质,等腰三角形的性质,圆的内接四边形的性质,勾股定理,一元二次方程的解法,熟练掌握圆的性质,勾股定理,一元二次方程的解法是解题的关键.。

九年级数学圆的对称性(含答案)

九年级数学圆的对称性(含答案)

圆的对称性一、单选题(共9道,每道10分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A.等腰三角形B.等边三角形C.平行四边形D.圆答案:D解题思路:A:等腰三角形是轴对称图形,不是中心对称图形,故A错误B:等边三角形是轴对称图形,不是中心对称图形,故B错误C:平行四边形不是轴对称图形,是中心对称图形,故C错误D:圆既是轴对称图形又是中心对称图形,故D正确试题难度:三颗星知识点:略2.如果两个圆心角相等,那么( )A.这两个圆心角所对的弦相等B.这两个圆心角所对的弧相等C.这两个圆心角所对的弦的弦心距相等D.以上说法都不对答案:D解题思路:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,故选D试题难度:三颗星知识点:略3.如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,下列说法不正确的是( )A.AD=BDB.弧AC=弧CBC.∠COA=∠COBD.OD=CD答案:D解题思路:垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧∵AB是弦,半径OC⊥AB,垂足为点D∴AD=BD,弧AC=弧CB,故A,B正确∵弧AC=弧CB∴∠COA=∠COB,故C正确OD不一定等于CD,故D不正确试题难度:三颗星知识点:略4.如图,在三个等圆上各有一条劣弧:弧AB,弧CD,弧EF,如果弧AB+弧CD=弧EF,那么AB+CD与EF的大小关系是( )A.AB+CD=EFB.AB+CD<EFC.AB+CD>EFD.大小关系不确定答案:C解题思路:如图,在弧EF上取一点M使弧EM=弧AB,则弧FM=弧CD∴AB=EM,CD=FM在△EMF中,EM+FM>EF∴AB+CD>EF试题难度:三颗星知识点:略5.已知⊙O中,弧AB=2弧CD,则弦AB和2CD的大小关系是( )A.AB>2CDB.AB=2CDC.AB<2CDD.不能确定答案:C解题思路:如图,取弧AB的中点E,则弧AE=弧BE∵弧AB=2弧CD∴弧AE=弧BE=弧CD∴AE=BE=CD∵在△AEB中,AE+BE>AB∴AB<2CD试题难度:三颗星知识点:略6.如图,在⊙O中,若点C是弧AB的中点,∠A=50°,则∠BOC=( )A.40°B.45°C.50°D.60°答案:A解题思路:在△AOB中,OA=OB,∠A=50°∴∠BOA=180°-2∠A=80°∵点C是弧AB的中点∴弧AC=弧BC∴∠BOC=∠AOC=∠BOA=40°试题难度:三颗星知识点:略7.如图,AB是⊙O的直径,C,D为半圆的三等分点,CE⊥AB于点E,∠ACE的度数为( )A.22.5°B.30°C.45°D.60°答案:B解题思路:如图,连接OC∵AB是⊙O的直径,C,D为半圆的三等分点∴弧AC=弧CD=弧DB∴∠AOC=∠COD=∠DOB=60°又OA=OC∴△AOC是等边三角形∴∠A=60°∵CE⊥AB∴∠ACE=90°-60°=30°试题难度:三颗星知识点:略8.如图,AB是⊙O的直径,弧BC=弧CD=弧DE,∠COD=34°,则∠AEO的度数是( )A.51°B.56°C.68°D.78°答案:A解题思路:∵弧BC=弧CD=弧DE,∠COD=34°∴∠BOC=∠EOD=∠COD=34°∴∠AOE=180°-∠EOD-∠COD-∠BOC=78°又OA=OE∴∠AEO=∠OAE∴∠AEO=试题难度:三颗星知识点:略9.已知在半径为5的⊙O中,AB,CD是互相垂直且相等的两条弦,垂足为点P,且OP=,则弦AB的长为( )A.4B.6C.8D.10答案:C解题思路:如图,作OM⊥CD于M,ON⊥AB于N,连接OB,则四边形MPNO为矩形∵AB,CD是互相垂直且相等的两条弦,OM⊥CD,ON⊥AB∴OM=ON∴四边形MPNO为正方形∴ON=OP=3在Rt△ONB中,OB=5,ON=3∴又ON⊥AB∴AB=2BN=8试题难度:三颗星知识点:略。

九年级数学圆的对称性

九年级数学圆的对称性

在a,d,r,h中,已知其中任意两个 量,可以求出其它两个量.
做一做
8
驶向胜利 的彼岸
• 在直径为650mm的圆柱形油槽内装入一些油后,截面 如图所示.若油面宽AB = 600mm,求油的最大深度.
A
O ┌ E
D
600
B
想一想
垂径定理的逆应用
9
驶向胜利 的彼岸
• 在直径为650mm的圆柱形油槽内装入一些油后,截 面如图所示.若油面宽AB = 600mm,求油的最大深 度.
想一想
7
已知:如图,直径CD⊥AB,垂足为E . ⑴若半径R = 2 ,AB = 2 3 , 求OE、DE 的长. ⑵若半径R = 2 ,OE = 1 ,求AB、DE 的长. ⑶由⑴ 、⑵两题的启发,你还能编出什么其他问题?
C
a 2 ⑴d + h = r ⑵ r d ( ) 2
2 2
O E A D B
2 2 2
R 300 R 90 . 解这个方程, 得R 545. 这段弯路的半径约为545 m.
随堂练习 3
赵州石拱桥
驶向胜利 的彼岸
• 1.1300多年前,我国隋朝建造的赵州石拱桥(如图)的桥 拱是圆弧形,它的跨度(弧所对是弦的长)为 37.4 m,拱高 (弧的中点到弦的距离,也叫弓形高)为7.2m,求桥拱的半 径(精确到0.1m).
O
做一做
5
船能过拱桥吗
驶向胜利 的彼岸
• 2 . 如图,某地有一圆弧形拱桥,桥下水面宽为7.2米,拱顶 高出水面2.4米.现有一艘宽3米、船舱顶部为长方形并 高出水面2米的货船要经过这里,此货船能顺利通过这 座拱桥吗?
• 相信自己能独立 完成解答.

初三数学圆的对称性试卷

初三数学圆的对称性试卷

#### 一、选择题(每题4分,共20分)1. 下列哪个图形是轴对称图形?A. 等边三角形B. 等腰梯形C. 正方形D. 圆2. 一个圆的直径是10cm,那么这个圆的对称轴有:A. 1条B. 2条C. 4条D. 无限多条3. 圆的对称性可以用来证明以下哪个性质?A. 对角线相等B. 对边平行C. 角平分线相等D. 对角相等4. 如果一个圆的半径增加了2cm,那么它的对称轴数量:A. 不变B. 增加了2条C. 减少了2条D. 无法确定5. 下列哪个图形不是圆的对称图形?A. 圆内的任意直线B. 圆内的任意半径C. 圆内的任意直径D. 圆内的任意弦#### 二、填空题(每题5分,共20分)6. 圆的对称轴是指通过圆心的______。

7. 一个圆有______条对称轴。

8. 如果一个图形关于某条直线对称,那么这条直线称为这个图形的______。

9. 圆的对称性在生活中的应用有______。

10. 在圆中,直径是圆的最长对称轴,因为它是圆的______。

#### 三、解答题(每题10分,共30分)11. 请说明圆具有对称性的原因,并举例说明圆的对称性在实际生活中的应用。

12. 证明:一个圆的任意直径都是它的对称轴。

13. 已知一个圆的半径为5cm,请画出这个圆的所有对称轴,并标明它们。

#### 四、拓展题(10分)14. 设有一个圆的半径为6cm,已知圆内有两条互相垂直的直径AB和CD。

请证明:AC和BD也是圆的对称轴。

---注意:本试卷的答案部分将在试卷发布后提供。

学生在答题时,请认真审题,确保答案的准确性。

在解答题中,不仅要给出结论,还要尽可能详细地展示解题过程。

圆的对称性(个人整理,经典题型)

圆的对称性(个人整理,经典题型)

第八讲圆的对称性(一)【你必须知道的数学小知识】1、圆的定义:平面上到定点..的距离等于_____________的所有点组成的图形叫做圆.;其中,定点称为__________,______________称为半径,以点O为圆心的圆可记作___________。

注意:①圆是一条___________的曲线,不能认为是圆面;②圆上各点到定点的距离都等于_________,到定点的距离等于定长的点都在__________;③圆的两要素:________________________________。

2、圆具有对称性:_______________________________________________________________________________。

3、圆的相关概念(1)弦与直径:连结圆上任意两点的__________叫做弦;经过___________的弦叫做直径;(2)弧:圆上任意两点间的部分叫做__________,简称________。

用符号"⌒"表示,以A、B为端点的弧记作___________;(注意”半圆“、”优弧“、”劣弧“之间的区别)4、点与圆的位置关系:(1)点在圆外——点到圆心的距离_________半径;(2)点在圆上——点到圆心的距离_________半径;(3)点在园内——点到圆心的距离_________半径;5、垂径定理:垂直于弦的____________平方这条__________,并且平分弦所对的________________.用符号语言表示为:6、垂径定理推论:平分弦(不是直径....)的___________垂直于___________,并且平分弦所对的___________. 用符号语言表示为:7、知二推三【经典例题】例1、(1)若⊙O的半径为5cm,圆心O到直线α的距离OM是4cm,直线α上有一点A,AM为6cm,则A在⊙O_____________________(填内、外、上)(2)已知一点与⊙O上的点最近距离是4cm,最远距离是9cm,则这个圆的半径是______________cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C
A P O
D C E
O A D B 圆对称性练习题
一.填空题
1.如图所示,OA 是圆O 的半径,弦CD ⊥OA 于点P ,已知OC=5,OP=3,则弦CD=____________________。

2. 如图所示,在圆O 中,AB 、AC 为互相垂直且相等的两条弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E ,若AC=2cm ,则圆O 的半径为____________cm 。

3. 如图所示,AB 是圆O 的直径,弦CD ⊥AB ,E 为垂足,若AB=9,BE=1,则CD=_________________。

1题 2题 3题
4. 如图所示,在△ABC 中,∠C =90°,AB =10,AC =8,以AC 为直径作圆与斜边交于点
P ,则BP 的长
为________________。

5. 如图所示,四边形ABCD 内接于圆O ,∠BCD=120°,则∠BOD=____________度。

6. △ABC 中,∠C=90°,AB=cm 4,BC=cm 2,以点A 为圆心,以cm 5.3长为半径画圆,则点
C 在圆A___________,点B 在圆A_________;
7. 圆的半径等于cm 2,圆内一条弦长23cm ,则弦的中点与弦所对弧的中点的距离等于_____________;
8. 在△ABC 中,∠C=90°,AC=BC=4cm ,D 是AB 边的中点,以点C 为圆心,4cm 为半径作圆。

则A 、B 、C 、D 四点在圆内有_____________。

9.半径为5cm 的圆O 中有一点P ,OP=4,则过P 的最短弦长_________,最长弦是__________,
二.选择题
1.如图所示,圆O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段的OM 的长的取值范围是()
A. 3≤OM ≤5
B. 4≤OM ≤5
C. 3<OM <5
D. 4<OM <5
4题
2.下列说法中,正确的是()
A. 到圆心的距离大于半径的点在圆内
B. 圆的半径垂直于圆的切线
C. 圆周角等于圆心角的一半
D. 等弧所对的圆心角相等
3.若圆的一条弦把圆分成度数的比为1:3的两条弧,则劣弧所对的圆周角等于(
) A. 45° B. 90° C. 135° D. 270°
4. 如图所示,A 、B 、C 三点在圆O 上,∠AOC=100°,则∠ABC 等于()
A. 140°
B. 110°
C. 120°
D. 130°。

相关文档
最新文档